Sample records for toxicity profile compared

  1. Ocular Toxicity Profile of ST-162 and ST-168 as Novel Bifunctional MEK/PI3K Inhibitors.

    PubMed

    Smith, Andrew; Pawar, Mercy; Van Dort, Marcian E; Galbán, Stefanie; Welton, Amanda R; Thurber, Greg M; Ross, Brian D; Besirli, Cagri G

    2018-04-30

    ST-162 and ST-168 are small-molecule bifunctional inhibitors of MEK and PI3K signaling pathways that are being developed as novel antitumor agents. Previous small-molecule and biologic MEK inhibitors demonstrated ocular toxicity events that were dose limiting in clinical studies. We evaluated in vitro and in vivo ocular toxicity profiles of ST-162 and ST-168. Photoreceptor cell line 661W and adult retinal pigment epithelium cell line ARPE-19 were treated with increasing concentrations of bifunctional inhibitors. Western blots, cell viability, and caspase activity assays were performed to evaluate MEK and PI3K inhibition and dose-dependent in vitro toxicity, and compared with monotherapy. In vivo toxicity profile was assessed by intravitreal injection of ST-162 and ST-168 in Dutch-Belted rabbits, followed by ocular examination and histological analysis of enucleated eyes. Retinal cell lines treated with ST-162 or ST-168 exhibited dose-dependent inhibition of MEK and PI3K signaling. Compared with inhibition by monotherapies and their combinations, bifunctional inhibitors demonstrated reduced cell death and caspase activity. In vivo, both bifunctional inhibitors exhibited a more favorable toxicity profile when compared with MEK inhibitor PD0325901. Novel MEK and PI3K bifunctional inhibitors ST-162 and ST-168 demonstrate favorable in vitro and in vivo ocular toxicity profiles, supporting their further development as potential therapeutic agents targeting multiple aggressive tumors.

  2. Treosulfan induces distinctive gonadal toxicity compared with busulfan

    PubMed Central

    Levi, Mattan; Stemmer, Salomon M.; Stein, Jerry; Shalgi, Ruth; Ben-Aharon, Irit

    2018-01-01

    Treosulfan (L-treitol-1,4-bis-methanesulfonate) has been increasingly incorporated as a main conditioning protocol for hematopoietic stem cell transplantation in pediatric malignant and non-malignant diseases. Treosulfan presents lower toxicity profile than other conventional alkylating agents containing myeloablative and immunosuppressive traits such as busulfan. Yet, whereas busulfan is considered highly gonadotoxic, the gonadal toxicity profile of treosulfan remains to be elucidated. To study the gonadotoxicity of treosulfan, pubertal and prepubertal male and female mice were injected with treosulfan or busulfan and sacrificed one week, one month or six months later. Testicular function was assessed by measurements of sperm properties, testes and epididymides weights as well as markers for testicular reserve, proliferation and apoptosis. Ovarian function was assessed by measurements of ovary weight and markers for ovarian reserve, proliferation and apoptosis. Treosulfan testicular toxicity was milder than that of busulfan toxicity; possibly by sparing the stem spermatogonia in the testicular sanctuary. By contrast, ovarian toxicity of both treosulfan and busulfan was severe and permanent and displayed irreversible reduction of reserve primordial follicles in the ovaries. Our data indicate that treosulfan exerts a different gonadal toxicity profile from busulfan, manifested by mild testicular toxicity and severe ovarian toxicity. PMID:29721205

  3. Differential toxicity of arsenic on renal oxidative damage and urinary metabolic profiles in normal and diabetic mice.

    PubMed

    Yin, Jinbao; Liu, Su; Yu, Jing; Wu, Bing

    2017-07-01

    Diabetes is a common metabolic disease, which might influence susceptibility of the kidney to arsenic toxicity. However, relative report is limited. In this study, we compared the influence of inorganic arsenic (iAs) on renal oxidative damage and urinary metabolic profiles of normal and diabetic mice. Results showed that iAs exposure increased renal lipid peroxidation in diabetic mice and oxidative DNA damage in normal mice, meaning different effects of iAs exposure on normal and diabetic individuals. Nuclear magnetic resonance (NMR)-based metabolome analyses found that diabetes significantly changed urinary metabolic profiles of mice. Oxidative stress-related metabolites, such as arginine, glutamine, methionine, and β-hydroxybutyrate, were found to be changed in diabetic mice. The iAs exposure altered amino acid metabolism, lipid metabolism, carbohydrate metabolism, and energy metabolism in normal and diabetic mice, but had higher influence on metabolic profiles of diabetic mice than normal mice, especially for oxidative stress-related metabolites and metabolisms. Above results indicate that diabetes increased susceptibility to iAs exposure. This study provides basic information on differential toxicity of iAs on renal toxicity and urinary metabolic profiles in normal and diabetic mice and suggests that diabetic individuals should be considered as susceptible population in toxicity assessment of arsenic.

  4. Thymidine analogue-sparing highly active antiretroviral therapy (HAART).

    PubMed

    Nolan, David; Mallal, Simon

    2003-02-01

    The use of alternative nucleoside reverse transcriptase inhibitors (NRTIs) to the thymidine analogues stavudine (d4T) and zidovudine(ZDV) has been advocated as a means of limiting long-term NRTI-associated toxicity, particularly the development of lipoatrophy or fat wasting. This approach reflects an increasing knowledge of the distinct toxicity profiles of NRTI drugs. However, recent clinical trials have demonstrated that the use of thymidine analogue NRTIs and newer alternative backbone NRTIs, such as tenofovir (TNF) and abacavir (ABC), is associated with comparable short-term efficacy and tolerability. Given the importance of toxicity profile differences in determining clinical management, it is important to recognise that d4T and ZDV cary significantly different risks for long-term NRTI toxicity. Recognising that all NRTIs, including thymidine analogues, have individual toxicity profiles provides a more appropriate basis for selecting optimal antiretroviral therapy. The safety and efficacy of TNF and ABC are also reviewed here, although the available data provide only limited knowledge of the long-term effects of these drugs in terms of toxicity and antiviral durability.

  5. Management of pegylated interferon alpha toxicity in adjuvant therapy of melanoma.

    PubMed

    Daud, Adil; Soon, Christopher; Dummer, Reinhard; Eggermont, Alexander M M; Hwu, Wen-Jen; Grob, Jean Jacques; Garbe, Claus; Hauschild, Axel

    2012-08-01

    Both native IFNα2b and pegylated IFNα2b (PegIFNα2b) are approved for the adjuvant treatment of high-risk melanoma. This review compares the toxicity profiles of high-dose IFNα2b (HDI) and PegIFNα2b, and provides recommendations on the management of common PegIFNα2b-related toxicities, based on available clinical data and published literature. The toxicity profile of PegIFNα2b at the approved dose (6 μg/kg/week for 8 weeks then 3 μg/kg/week for up to 5 years) is qualitatively similar to HDI in melanoma. The most common adverse events (AEs) are fatigue, anorexia, hepatotoxicity, flu-like symptoms, injection site reactions and depression. However, fatigue and flu-like symptoms appear less severe with PegIFNα2b, and toxicity seems to occur earlier, whereas with HDI toxicity may increase with time. Most AEs can be managed effectively by dose modification and aggressive symptom control. Dosing to tolerance using a three-step dose reduction schedule to maintain an ECOG performance status of 0 - 1 may enable patients experiencing toxicity to remain on treatment; this can be applied readily in clinical practice. PegIFNα2b is therefore a valuable alternative option for adjuvant treatment in melanoma, with a toxicity profile similar to that of HDI overall but a more convenient administration schedule.

  6. A Prospective Comparative Study of the Toxicity Profile of 5-Flurouracil, Adriamycin, Cyclophosphamide Regime VS Adriamycin, Paclitaxel Regime in Patients with Locally Advanced Breast Carcinoma

    PubMed Central

    Pillai, Pradeep Sadasivan; Jayakumar, Krishnan Nair Lalithamma

    2015-01-01

    Introduction A 5-flurouracil, Adriamycin, Cyclophosphamide (FAC) and Adriamycin, Paclitaxel (AT) are two popular chemotherapeutic regimens for treatment of breast carcinoma. The most time tested and popular regimen is FAC. It is extensively studied for efficacy and toxicity. But data regarding toxicity profile and efficacy of AT regimen is sparse. Aim To study the toxicity profile, severity of toxicities and clinical response rate of FAC and AT regimens in patients with locally advanced breast carcinoma. Materials and Methods A prospective observational study with 50 patients in each treatment arm. Study duration was 12 months from November 2012 to October 2013. Consecutive patients with locally advanced breast carcinoma receiving treatment with either FAC or AT regimen, satisfying inclusion criteria were enrolled into the study after getting informed written consent. Prior to initiation of treatment detailed medical history was taken from all patients. General clinical examination, examination of organ systems and local examination of breast lump were done. After each cycle of chemotherapy and after completion of treatment patients were interviewed and examined for clinical response and toxicities. Toxicities were graded with WHO toxicity grading criteria. All data were entered in a structured proforma. At least 50% reduction in tumour size was taken as adequate clinical response. Statistical Analysis Data was analysed using Chi-square test with help of Excel 2007 and SPSS-16 statistical software. Results Different pattern of toxicities were seen with FAC and AT regimens. Anaemia, thrombocytopenia, stomatitis, hyperpigmentation, photosensitivity and diarrhoea were more common with patients receiving FAC regimen. Leucopenia, peripheral neuropathy, myalgia, arthralgia, vomiting and injection site reactions were more common in AT regimen. Both FAC and AT regimens gave 100% clinical response. Conclusion FAC and AT regimens are equally efficacious but have different toxicity profiles. Patient’s predisposition to toxicities may govern the selection of a particular regime. PMID:26870703

  7. Development and application of a comparative fatty acid analysis method to investigate voriconazole-induced hepatotoxicity.

    PubMed

    Chen, Guan-yuan; Chiu, Huai-hsuan; Lin, Shu-wen; Tseng, Yufeng Jane; Tsai, Sung-jeng; Kuo, Ching-hua

    2015-01-01

    As fatty acids play an important role in biological regulation, the profiling of fatty acid expression has been used to discover various disease markers and to understand disease mechanisms. This study developed an effective and accurate comparative fatty acid analysis method using differential labeling to speed up the metabolic profiling of fatty acids. Fatty acids were derivatized with unlabeled (D0) or deuterated (D3) methanol, followed by GC-MS analysis. The comparative fatty acid analysis method was validated using a series of samples with different ratios of D0/D3-labeled fatty acid standards and with mouse liver extracts. Using a lipopolysaccharide (LPS)-treated mouse model, we found that the fatty acid profiles after LPS treatment were similar between the conventional single-sample analysis approach and the proposed comparative approach, with a Pearson's correlation coefficient of approximately 0.96. We applied the comparative method to investigate voriconazole-induced hepatotoxicity and revealed the toxicity mechanism as well as the potential of using fatty acids as toxicity markers. In conclusion, the comparative fatty acid profiling technique was determined to be fast and accurate and allowed the discovery of potential fatty acid biomarkers in a more economical and efficient manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Testicular distribution and toxicity of a novel LTA4H inhibitor in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, P.D., E-mail: pward4@its.jnj.com; La, D.

    JNJ 40929837, a novel leukotriene A4 hydrolase inhibitor in drug development, was reported to induce testicular toxicity in rats. The mechanism of toxicity was considered to be rodent specific and not relevant to humans. To further investigate this finding in rats, the distribution and toxicokinetics of JNJ 40929837 and its two metabolites, M1 and M2, were investigated. A quantitative whole body autoradiography study showed preferential distribution and retention of JNJ 40929837-derived radioactivity in the testes consistent with the observed site of toxicity. Subsequent studies with unlabeled JNJ 40929837 showed different metabolite profiles between the plasma and testes. Following a singlemore » oral 50 mg/kg dose of JNJ 40929837, M2 was the primary metabolite in plasma whereas M1 was the primary metabolite in testes. The exposure of M1 was 386-fold higher in the testes compared to plasma whereas M2 had limited exposure in testes. Furthermore, the T{sub max} of M1 was 48 h in testes suggesting a large accumulation potential of this metabolite in testes compared to plasma. Following six months of repeated daily oral dosing, M1 accumulated approximately five-fold in the testes whereas the parent did not accumulate. These results indicate that the toxicokinetic profiles of JNJ 40929837 and its two metabolites in testes are markedly different compared to plasma and support the importance of understanding the toxicokinetic profiles of compounds and their metabolites in organs/tissues where toxicity is observed. - Highlights: • JNJ 40929837-derived radioactivity preferentially distributed into testes • Primary metabolite flip-flop in plasma and testes • The primary metabolite in testes accumulated 5-fold but not parent.« less

  9. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials

    PubMed Central

    Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L.; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-01-01

    Purpose The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. Patients and Methods We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. Results A total of 13,008 toxicities were captured: 46% of patients’ first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m2, the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. Conclusions When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. PMID:26926682

  10. Case Example of Dose Optimization Using Data From Bortezomib Dose-Finding Clinical Trials.

    PubMed

    Lee, Shing M; Backenroth, Daniel; Cheung, Ying Kuen Ken; Hershman, Dawn L; Vulih, Diana; Anderson, Barry; Ivy, Percy; Minasian, Lori

    2016-04-20

    The current dose-finding methodology for estimating the maximum tolerated dose of investigational anticancer agents is based on the cytotoxic chemotherapy paradigm. Molecularly targeted agents (MTAs) have different toxicity profiles, which may lead to more long-lasting mild or moderate toxicities as well as to late-onset and cumulative toxicities. Several approved MTAs have been poorly tolerated during long-term administration, leading to postmarketing dose optimization studies to re-evaluate the optimal treatment dose. Using data from completed bortezomib dose-finding trials, we explore its toxicity profile, optimize its dose, and examine the appropriateness of current designs for identifying an optimal dose. We classified the toxicities captured from 481 patients in 14 bortezomib dose-finding studies conducted through the National Cancer Institute Cancer Therapy Evaluation Program, computed the incidence of late-onset toxicities, and compared the incidence of dose-limiting toxicities (DLTs) among groups of patients receiving different doses of bortezomib. A total of 13,008 toxicities were captured: 46% of patients' first DLTs and 88% of dose reductions or discontinuations of treatment because of toxicity were observed after the first cycle. Moreover, for the approved dose of 1.3 mg/m(2), the estimated cumulative incidence of DLT was > 50%, and the estimated cumulative incidence of dose reduction or treatment discontinuation because of toxicity was nearly 40%. When considering the entire course of treatment, the approved bortezomib dose exceeds the conventional ceiling DLT rate of 20% to 33%. Retrospective analysis of trial data provides an opportunity for dose optimization of MTAs. Future dose-finding studies of MTAs should take into account late-onset toxicities to ensure that a tolerable dose is identified for future efficacy and comparative trials. © 2016 by American Society of Clinical Oncology.

  11. Gemcitabine plus cisplatin versus gemcitabine plus carboplatin as first-line chemotherapy in advanced transitional cell carcinoma of the urothelium: results of a randomized phase 2 trial.

    PubMed

    Dogliotti, Luigi; Cartenì, Giacomo; Siena, Salvatore; Bertetto, Oscar; Martoni, Andrea; Bono, Aldo; Amadori, Dino; Onat, Haluk; Marini, Luca

    2007-07-01

    This phase 2 randomized study compared the toxicity and assessed the efficacy of gemcitabine-cisplatin (GP) and gemcitabine-carboplatin (GC) in patients with advanced transitional cell carcinoma of the urothelium (TCC), with the main objective to demonstrate a reduction in toxicity of at least 25% in the GC arm. A total of 110 chemonaive patients (55 per arm) with locally advanced or metastatic TCC received gemcitabine 1250 mg/m(2) on days 1 and 8 plus cisplatin 70 mg/m(2) on day 2 (GP) every 3 wk or gemcitabine 1250 mg/m(2) on days 1 and 8 plus carboplatin AUC 5 on day 2 (GC) every 3 wk for a maximum of six cycles. No differences between arms were noted in the overall toxicity profiles and any parameter of toxicity. The most frequent grade 3-4 hematologic toxicity was neutropenia in 34.6% of patients for GP and 45.4% for GC. The most frequent grade 3-4 nonhematologic toxicity was nausea and vomiting (GP: 9.1%; GC: 3.6%). Grade 1-2 nephrotoxicity occurred in 14 GP-treated patients (26.0%) and 9 GC-treated patients (16.3%). Per an intent-to-treat analysis, overall response, evaluated on 80 patients, was 49.1% for GP (CR: 14.5%; PR: 34.5%) and 40.0% for GC (CR: 1.8%; PR: 38.2%). Median time to progression was 8.3 mo for GP and 7.7 mo for GC. Median survival was 12.8 mo and 9.8 mo for GP and GC, respectively. GC has a comparably acceptable toxicity profile compared with that of GP and seems active in patients with TCC.

  12. Comparison of the toxicities, activities and chemical profiles of raw and processed Xanthii Fructus.

    PubMed

    Su, Tao; Cheng, Brian Chi-Yan; Fu, Xiu-Qiong; Li, Ting; Guo, Hui; Cao, Hui-Hui; Kwan, Hiu-Yee; Tse, Anfernee Kai-Wing; Yu, Hua; Cao, Hui; Yu, Zhi-Ling

    2016-01-22

    Although toxic, the Chinese medicinal herb Xanthii Fructus (XF) is commonly used to treat traditional Chinese medicine (TCM) symptoms that resemble cold, sinusitis and arthritis. According to TCM theory, stir-baking (a processing method) can reduce the toxicity and enhance the efficacy of XF. Cytotoxicities of raw XF and processed XF (stir-baked XF, SBXF) were determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay in normal liver derived MIHA cells. Nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) mRNA expression were measured by the Griess reagent and quantitative real-time PCR, respectively. The chemical profiles of XF and SBXF were compared using an established ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) method. SBXF was less toxic than XF in MIHA cells. Both XF and SBXF had anti-inflammatory effects as demonstrated by their abilities to reduce nitric oxide production as well as inducible nitric oxide synthase mRNA expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effects of SBXF were more potent than that of XF. By comparing the chemical profiles, we found that seven peaks were lower, while nine other peaks were higher in SBXF than in XF. Eleven compounds including carboxyatractyloside, atractyloside and chlorogenic acid corresponding to eleven individual changed peaks were tentatively identified by matching with empirical molecular formulae and mass fragments, as well as literature data. Our study showed that stir-baking significantly reduced the cytotoxicity and enhanced the anti-inflammatory effects of XF; moreover, with a developed ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry method we differentiated XF and SBXF by their chemical profiles. Further studies are warranted to establish the relationship between the alteration of chemical profiles and the changes of medicinal properties caused by stir-baking.

  13. Exposure to metals mixtures: Genomic alterations of infectious ...

    EPA Pesticide Factsheets

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression profiles in children in Detroit, Michigan. As part of the Mechanistic Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A metals mixture score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed when comparing children exposed to low and high levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P < 10-6) severe acute respiratory syndrome (P < 10-5), and sepsis (P < 10-3). Taken together, these data demonstrate that exposure to metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policie

  14. Associations between dioxins/furans and dioxin-like PCBs in estuarine sediment and blue crab

    USGS Publications Warehouse

    Liebens, J.; Mohrherr, C.J.; Karouna-Renier, N. K.; Snyder, R.A.; Rao, K.R.

    2011-01-01

    The objective of the present study was to evaluate the relationships between the quantity, toxicity, and compositional profile of dioxin/furan compounds (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in estuarine sediment and in the blue crab (Callinectes sapidus). Sediment and blue crab samples were collected in three small urban estuaries that are in relatively close proximity to each other. Results show that differences between PCDD/F and DL-PCB mass concentrations and total toxic equivalents (TEQ) toxicity in sediments of the three estuaries are reflected in those of the blue crab. TEQs are higher in the hepatopancreas of the crabs than in the sediment, but the concentration factor is inversely proportional to the TEQ in the sediments. Congener profiles in the crabs are systematically different from those in the sediments, and the difference is more pronounced for PCDD/Fs than for DL-PCBs, possibly due to differences in metabolization rates. Compared with sediment profiles, more lesser-chlorinated PCDD/Fs that have higher TEFs accumulate in crab hepatopancreas. This selective bioaccumulation of PCDD/Fs results in a TEQ augmentation in crab hepatopancreas compared with sediments. The bioaccumulation in the blue crab is also selective for PCDD/Fs over DL-PCBs. ?? 2011 Springer Science+Business Media B.V.

  15. Profiling Animal Toxicants by Automatically Mining Public Bioassay Data: A Big Data Approach for Computational Toxicology

    PubMed Central

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175

  16. Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.

    PubMed

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.

  17. Comparison of in vivo toxicity, antioxidant and immunomodulatory activities of coconut, nipah and pineapple juice vinegars.

    PubMed

    Mohamad, Nurul Elyani; Keong Yeap, Swee; Beh, Boon Keen; Romli, Muhammad Firdaus; Yusof, Hamidah Mohd; Kristeen-Teo, Ye Wen; Sharifuddin, Shaiful Adzni; Long, Kamariah; Alitheen, Noorjahan Banu

    2018-01-01

    Vinegar is widely used as a food additive, in food preparation and as a food supplement. This study compared the phenolic acid profiles and in vivo toxicities, and antioxidant and immunomodulatory effects of coconut, nipah and pineapple juice vinegars, which were respectively prepared via a two-step fermentation using Saccharomyces cerevisiae 7013 INRA and Acetobacter aceti vat Europeans. Pineapple juice vinegar, which had the highest total phenolic acid content, also exhibited the greatest in vitro antioxidant capacity compared to coconut juice and nipah juice vinegars. Following acute and sub-chronic in vivo toxicity evaluation, no toxicity and mortality were evident and there were no significant differences in the serum biochemical profiles between mice administered the vinegars versus the control group. In the sub-chronic toxicity evaluation, the highest liver antioxidant levels were found in mice fed with pineapple juice vinegar, followed by coconut juice and nipah juice vinegars. However, compared to the pineapple juice and nipah juice vinegars, the mice fed with coconut juice vinegar, exhibited a higher population of CD4 + and CD8 + T-lymphocytes in the spleen, which was associated with greater levels of serum interleukin-2 and interferon-γ cytokines. Overall, the data suggested that not all vinegar samples cause acute and sub-chronic toxicity in vivo. Moreover, the in vivo immunity and organ antioxidant levels were enhanced, to varying extents, by the phenolic acids present in the vinegars. The results obtained in this study provide appropriate guidelines for further in vivo bioactivity studies and pre-clinical assessments of vinegar consumption. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Dose-finding designs using a novel quasi-continuous endpoint for multiple toxicities

    PubMed Central

    Ezzalfani, Monia; Zohar, Sarah; Qin, Rui; Mandrekar, Sumithra J; Deley, Marie-Cécile Le

    2013-01-01

    The aim of a phase I oncology trial is to identify a dose with an acceptable safety profile. Most phase I designs use the dose-limiting toxicity, a binary endpoint, to assess the unacceptable level of toxicity. The dose-limiting toxicity might be incomplete for investigating molecularly targeted therapies as much useful toxicity information is discarded. In this work, we propose a quasi-continuous toxicity score, the total toxicity profile (TTP), to measure quantitatively and comprehensively the overall severity of multiple toxicities. We define the TTP as the Euclidean norm of the weights of toxicities experienced by a patient, where the weights reflect the relative clinical importance of each grade and toxicity type. We propose a dose-finding design, the quasi-likelihood continual reassessment method (CRM), incorporating the TTP score into the CRM, with a logistic model for the dose–toxicity relationship in a frequentist framework. Using simulations, we compared our design with three existing designs for quasi-continuous toxicity score (the Bayesian quasi-CRM with an empiric model and two nonparametric designs), all using the TTP score, under eight different scenarios. All designs using the TTP score to identify the recommended dose had good performance characteristics for most scenarios, with good overdosing control. For a sample size of 36, the percentage of correct selection for the quasi-likelihood CRM ranged from 80% to 90%, with similar results for the quasi-CRM design. These designs with TTP score present an appealing alternative to the conventional dose-finding designs, especially in the context of molecularly targeted agents. PMID:23335156

  19. Blister fluid cytokines in cutaneous inflammatory bullous disorders.

    PubMed

    Rhodes, L E; Hashim, I A; McLaughlin, P J; Friedmann, P S

    1999-07-01

    Cytokines are important regulators of immune and inflammatory reactions in the skin, and may contribute to inflammatory blister induction. We examined the profiles of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-alpha) in fluid of spontaneous blisters in the immune-based inflammatory disorders bullous pemphigoid (8 patients), allergic contact dermatitis (5 patients) and toxic epidermal necrolysis (5 patients). These were compared with levels in 9 patients with burns, i.e. inflammatory blisters of non-immune aetiology, and 4 patients with blisters of physical origin. Very high levels of IL-6 were found in bullous pemphigoid and toxic epidermal necrolysis (p<0.001) compared with non-inflammatory and burn blisters. TNF-alpha levels were high in bullous pemphigoid and burns, but undetectable in non-inflammatory blisters. The pattern in bullous pemphigoid (very high IL-6, high TNF-alpha) differed substantially from toxic epidermal necrolysis (very high IL-6, low TNF-alpha), while burns and allergic contact dermatitis showed lesser elevation of both cytokines. Hence, differences in cytokine profiles were identified, although the relevance to underlying pathomechanisms is uncertain.

  20. 3D printed polymers toxicity profiling: a caution for biodevice applications

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-12-01

    A recent revolution in additive manufacturing technologies and access to 3D Computer Assisted Design (CAD) software has spurred an explosive growth of new technologies in biomedical engineering. This includes biomodels for diagnosis, surgical training, hard and soft tissue replacement, biodevices and tissue engineering. Moreover, recent developments in high-definition additive manufacturing systems such as Multi-Jet Modelling (MJM) and Stereolithography (SLA), capable of reproducing feature sizes close to 100 μm, promise brand new capabilities in fabrication of optical-grade biomicrofluidic Lab-on-a-Chip and MEMS devices. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in PMMA, SLA and MJM systems can enable user-friendly production of prototypes, superior feature reproduction quality and comparable levels of optical transparency. Prospectively they can revolutionize fabrication of microfluidic devices with complex geometric features and eliminate the need to use clean room environment and conventional microfabrication techniques. In this work we demonstrate preliminary data on toxicity profiling of a panel of common polymers used in 3D printing applications. The main motivation of our work was to evaluate toxicity profiles of most commonly used polymers using standardized biotests according to OECD guidelines for testing of chemic risk assessment. Our work for the first time provides a multispecies view of potential dangers and limitation for building biocompatible devices using FDM, SLA and MJM additive manufacturing systems. Our work shows that additive manufacturing holds significant promise for fabricating LOC and MEMS but requires caution when selecting systems and polymers due to toxicity exhibited by some 3D printing polymers.

  1. Acute and sub-chronic toxicological evaluation of hydro-methanolic extract of Coriandrum sativum L. seeds

    PubMed Central

    Patel, Dipak; Desai, Swati; Devkar, Ranjitsinh; Ramachandran, A.V.

    2012-01-01

    Coriandrum sativum L. (CS) seeds are known to possess therapeutic potentials against a variety of physiological disorders. This study assesses acute and sub-chronic toxicity profile of hydro-methanolic extract of CS seeds using OECD guidelines. In acute toxicity study, mice were once orally administered 1000, 3000 and 5000 mg/kg body weight of CS extract. There were no any behavioral alterations or mortality recorded in CS treated groups. The LD50 value was more than 5000 mg/kg body weight. In the sub-chronic oral toxicity study, the animals were orally administered with CS extract (1000, 2000 and 3000mg/kg body weight) daily for 28 days whereas; vehicle control group received 0.5 % carboxy methyl cellulose. There was significant reduction in food intake, body weight gain and plasma lipid profiles of CS2 and CS3 (2000 and 3000 mg/kg body weight respectively) groups as compared to the control group. However, there were no alterations in haematological profile, relative organ weights, histology and plasma markers of damage of vital organs (heart, liver and kidney). The overall finding of this study indicates that CS extract is non-toxic up to 3000 mg/kg body weight and can be considered as safe for consumption. PMID:27847445

  2. Central nervous system toxicity of mefenamic acid overdose compared with other NSAIDs: an analysis of cases reported to the United Kingdom National Poisons Information Service

    PubMed Central

    Crichton, Siobhan; Cooper, Gill; Lupton, David J.; Eddleston, Michael; Vale, J. Allister; Thompson, John P.; Thomas, Simon H. L.

    2016-01-01

    Aims Case reports and small case series suggest increased central nervous system (CNS) toxicity, especially convulsions, after overdose of mefenamic acid, compared with other nonsteroidal anti‐inflammatory drugs (NSAIDs), although comparative epidemiological studies have not been conducted. The current study compared rates of CNS toxicity after overdose between mefenamic acid, ibuprofen, diclofenac and naproxen, as reported in telephone enquiries to the UK National Poisons Information Service (NPIS). Methods NPIS telephone enquiries related to the four NSAIDs, received between January 2007 and December 2013, were analysed, comparing the frequency of reported CNS toxicity (convulsions, altered conscious level, agitation or aggression, confusion or disorientation) using multivariable logistic regression. Results Of 22 937 patient‐specific telephone enquiries, 10 398 did not involve co‐ingestion of other substances (mefenamic acid 461, ibuprofen 8090, diclofenac 1300, naproxen 547). Patients taking mefenamic acid were younger and more commonly female than those using other NSAIDs. Those ingesting mefenamic acid were more likely to experience CNS toxicity than those ingesting the other NSAIDs combined [adjusted odds ratio (OR) 7.77, 95% confidence interval (CI) 5.68, 10.62], especially convulsions (adjusted OR 81.5, 95% CI 27.8, 238.8). Predictors of CNS toxicity included reported dose and age, but not gender. Conclusions Mefenamic acid overdose is associated with a much larger and dose‐related risk of CNS toxicity, especially convulsions, compared with overdose of other NSAIDs. The benefit–risk profile of mefenamic acid should now be re‐evaluated in light of effective and less toxic alternatives. PMID:27785820

  3. Central nervous system toxicity of mefenamic acid overdose compared with other NSAIDs: an analysis of cases reported to the United Kingdom National Poisons Information Service.

    PubMed

    Kamour, Ashraf; Crichton, Siobhan; Cooper, Gill; Lupton, David J; Eddleston, Michael; Vale, J Allister; Thompson, John P; Thomas, Simon H L

    2017-04-01

    Case reports and small case series suggest increased central nervous system (CNS) toxicity, especially convulsions, after overdose of mefenamic acid, compared with other nonsteroidal anti-inflammatory drugs (NSAIDs), although comparative epidemiological studies have not been conducted. The current study compared rates of CNS toxicity after overdose between mefenamic acid, ibuprofen, diclofenac and naproxen, as reported in telephone enquiries to the UK National Poisons Information Service (NPIS). NPIS telephone enquiries related to the four NSAIDs, received between January 2007 and December 2013, were analysed, comparing the frequency of reported CNS toxicity (convulsions, altered conscious level, agitation or aggression, confusion or disorientation) using multivariable logistic regression. Of 22 937 patient-specific telephone enquiries, 10 398 did not involve co-ingestion of other substances (mefenamic acid 461, ibuprofen 8090, diclofenac 1300, naproxen 547). Patients taking mefenamic acid were younger and more commonly female than those using other NSAIDs. Those ingesting mefenamic acid were more likely to experience CNS toxicity than those ingesting the other NSAIDs combined [adjusted odds ratio (OR) 7.77, 95% confidence interval (CI) 5.68, 10.62], especially convulsions (adjusted OR 81.5, 95% CI 27.8, 238.8). Predictors of CNS toxicity included reported dose and age, but not gender. Mefenamic acid overdose is associated with a much larger and dose-related risk of CNS toxicity, especially convulsions, compared with overdose of other NSAIDs. The benefit-risk profile of mefenamic acid should now be re-evaluated in light of effective and less toxic alternatives. © 2016 The British Pharmacological Society.

  4. Understanding Genetic Toxicity Through Data Mining: The ...

    EPA Pesticide Factsheets

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies. This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in a weight-of-evidence approach to assess potential for genetic toxicity, and to guide the development of intelligent testing strategies.

  5. Enhanced anti-tumor activity and safety profile of targeted nano-scaled HPMA copolymer-alendronate-TNP-470 conjugate in the treatment of bone malignances

    PubMed Central

    Segal, Ehud; Pan, Huaizhong; Benayoun, Liat; Kopečková, Pavla; Shaked, Yuval; Kopeček, Jindčrich; Satchi-Fainaro, Ronit

    2015-01-01

    Bone neoplasms, such as osteosarcoma, exhibit a propensity for systemic metastases resulting in adverse clinical outcome. Traditional treatment consisting of aggressive chemotherapy combined with surgical resection, has been the mainstay of these malignances. Therefore, bone-targeted non-toxic therapies are required. We previously conjugated the aminobisphosphonate alendronate (ALN), and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer. HPMA copolymer-ALN-TNP-470 conjugate exhibited improved anti-angiogenic and anti-tumor activity compared with the combination of free ALN and TNP-470 when evaluated in a xenogeneic model of human osteosarcoma. The immune system has major effect on toxicology studies and on tumor progression. Therefore, in this manuscript we examined the safety and efficacy profiles of the conjugate using murine osteosarcoma syngeneic model. Toxicity and efficacy evaluation revealed superior anti-tumor activity and decreased organ-related toxicities of the conjugate compared with the combination of free ALN plus TNP-470. Finally, comparative anti-angiogenic activity and specificity studies, using surrogate biomarkers of circulating endothelial cells (CEC), highlighted the advantage of the conjugate over the free agents. The therapeutic platform described here may have clinical translational relevance for the treatment of bone-related angiogenesis-dependent malignances. PMID:21429572

  6. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits

    PubMed Central

    Liang, H.; Brignole-Baudouin, F.; Rabinovich-Guilatt, L.; Mao, Z.; Riancho, L.; Faure, M.O.; Warnet, J.M.; Lambert, G.

    2008-01-01

    Purpose To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Methods Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 µl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Results Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. Conclusions The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration. PMID:18347566

  7. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits.

    PubMed

    Liang, H; Brignole-Baudouin, F; Rabinovich-Guilatt, L; Mao, Z; Riancho, L; Faure, M O; Warnet, J M; Lambert, G; Baudouin, C

    2008-01-31

    To evaluate and compare the toxicological profiles of two quaternary ammonium compounds (QAC), benzalkonium chloride (BAK), and cetalkonium chloride (CKC), in standard solution or cationic emulsion formulations in rabbit eyes using newly developed in vivo and ex vivo experimental approaches. Seventy eyes of 35 adult male New Zealand albino rabbits were used in this study. They were randomly divided into five groups: 50 microl of phosphate-buffered saline (PBS), PBS containing 0.02% BAK or 0.002% CKC (BAK Sol and CKC Sol, respectively), and emulsion containing 0.02% BAK or 0.002% CKC (BAK Em and CKC Em, respectively) were applied to rabbit eyes 15 times at 5-min intervals. The ocular surface changes induced by these eye drops were investigated using slit-lamp examination, flow cytometry (FCM), impression cytology (IC) on conjunctiva, and corneal in vivo confocal microscopy (IVCM). Standard immunohistology in cryosections was also examined for cluster of differentiation (CD) 45+ infiltrating and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL)+ apoptotic cells. Clinical observations and IVCM showed that the highest toxicity was induced by BAK Sol, characterized by damaged corneal epithelium and a high level of inflammatory infiltration. BAK Em and CKC Sol presented moderate effects, and CKC Em showed the lowest toxicity with results similar to those of PBS. Conjunctival imprints analyzed by FCM showed a higher expression of RLA-DR and TNFR1 markers in BAK Sol-instilled eyes than in all other groups, especially at 4 h. Immunohistology was correlated with in vivo and ex vivo findings and confirmed this toxicity profile. A high level of infiltration of CD45+ inflammatory cells and TUNEL+ apoptotic cells was observed in limbus and conjunctiva, especially in QAC solution-receiving eyes compared to QAC emulsion-instilled eyes. The acute administration of 15 instillations at 5 min intervals was a rapid and efficient model to assess quaternary ammonium toxicity profiles. This model showed the highest toxicity, induced by the BAK solution, and the lowest level of toxicity, induced by the CKC emulsion. These in vivo and ex vivo experimental approaches demonstrated that ocular surface toxicity was reduced by using an emulsion instead of a traditional solution and that a CKC emulsion was safe for future ocular administration.

  8. Phase 1 Study of Erlotinib Plus Radiation Therapy in Patients With Advanced Cutaneous Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, C. Hope; Deep, Nicholas L.; Nabell, Lisle

    Purpose: To assess the toxicity profile of erlotinib therapy combined with postoperative adjuvant radiation therapy in patients with advanced cutaneous squamous cell carcinoma. Methods and Materials: This was a single-arm, prospective, phase 1 open-label study of erlotinib with radiation therapy to treat 15 patients with advanced cutaneous head-and-neck squamous cell carcinoma. Toxicity data were summarized, and survival was analyzed with the Kaplan-Meier method. Results: The majority of patients were male (87%) and presented with T4 disease (93%). The most common toxicity attributed to erlotinib was a grade 2-3 dermatologic reaction occurring in 100% of the patients, followed by mucositis (87%).more » Diarrhea occurred in 20% of the patients. The 2-year recurrence rate was 26.7%, and mean time to cancer recurrence was 10.5 months. Two-year overall survival was 65%, and disease-free survival was 60%. Conclusions: Erlotinib and radiation therapy had an acceptable toxicity profile in patients with advanced cutaneous squamous cell carcinoma. The disease-free survival in this cohort was comparable to that in historical controls.« less

  9. Pharmacology, toxicology, and clinical use of new long acting local anesthetics, ropivacaine and levobupivacaine.

    PubMed

    Leone, Stefania; Di Cianni, Simone; Casati, Andrea; Fanelli, Guido

    2008-08-01

    Levobupivacaine and ropivacaine, two new long-acting local anesthetics, have been developed as an alternative to bupivacaine, after the evidence of its severe toxicity. Both of these agents are pure left-isomers and, due to their three-dimensional structure, seem to have less toxic effects on the central nervous system and on the cardiovascular system. Many clinical studies have investigated their toxicology and clinical profiles: theoretically and experimentally, some differences have been observed, but the effects of these properties on clinical practice have not been shown. By examining randomised, controlled trials that have compared these three local agents, this review supports the evidence that both levobupivacaine and ropivacaine have a clinical profile similar to that of racemic bupivacaine, and that the minimal differences reported between the three anesthetics are mainly related to the slightly different anesthetic potency, with racemic bupivacaine > levobupivacaine > ropivacaine. However, the reduced toxic potential of the two pure left-isomers suggests their use in the clinical situations in which the risk of systemic toxicity related to either overdosing or unintended intravascular injection is high, such as during epidural or peripheral nerve blocks.

  10. Bupivacaine, levobupivacaine and ropivacaine: are they clinically different?

    PubMed

    Casati, Andrea; Putzu, Marta

    2005-06-01

    Two new, long-acting local anaesthetics have been developed after the evidence of bupivacaine-related severe toxicity: levobupivacaine and ropivacaine. Both these agents are pure left-isomers and, based on their three-dimensional structure, they have less toxic potential both on the central nervous system and on the heart. Several clinical studies have evaluated their toxicology and clinical profiles: theoretically and experimentally, some differences can be seen, but the reflections of these characteristics into clinical practice have not been evident. Evaluating randomised, controlled trials that have compared these three local anaesthetics, this chapter supports the evidence that both levobupivacaine and ropivacaine have a clinical profile similar to that of racemic bupivacaine, and that the minimal differences observed between the three agents are mainly related to the slightly different anaesthetic potency, with racemic bupivacaine>levobupivacaine>ropivacaine. However, the reduced toxic potential of the two pure left-isomers supports their use in those clinical situations in which the risk of systemic toxicity related to either overdosing or unwanted intravascular injection is high, such as during epidural or peripheral nerve blocks.

  11. Metabonomics study of the effects of pretreatment with glycyrrhetinic acid on mesaconitine-induced toxicity in rats.

    PubMed

    Sun, Bo; Zhang, Ming; Zhang, Qi; Ma, Kunpeng; Li, Haijing; Li, Famei; Dong, Fangting; Yan, Xianzhong

    2014-07-03

    Aconitum carmichaelii Debx. (Fuzi), a commonly use traditional Chinese medicine (TCM), has often been used in combination with Rhizoma Glycyrrhizae (Gancao) to reduce its toxicity due to diester diterpenoid alkaloids aconitine, mesaconitine, and hypaconitine. However, the mechanism of detoxication is still unclear. Glycyrrhetinic acid (GA) is the metabolite of glycyrrhizinic acid (GL), the major component of Gancao. In present study, the effect of GA on the changes of metabolic profiles induced by mesaconitine was investigated using NMR-based metabolomic approaches. Fifteen male Wistar rats were divided into a control group, a group administered mesaconitine alone, and a group administered mesaconitine with one pretreatment with GA. Their urine samples were used for NMR spectroscopic metabolic profiling. Statistical analyses such as orthogonal projections to latent structures-discriminant analysis (OPLS-DA), t-test, hierarchical cluster, and pathway analysis were used to detect the effects of pretreatment with GA on mesaconitine-induced toxicity. The OPLS-DA score plots showed the metabolic profiles of GA-pretreated rats apparently approach to those of normal rats compared to mesaconitine-induced rats. From the t-test and boxplot results, the concentrations of leucine/isoleucine, lactate, acetate, succinate, trimethylamine (TMA), dimethylglycine (DMG), 2-oxo-glutarate, creatinine/creatine, glycine, hippurate, tyrosine and benzoate were significantly changed in metabolic profiles of mesaconitine-induced rats. The disturbed metabolic pathways include amino acid biosynthesis and metabolism. GA-pretreatment can mitigate the metabolic changes caused by mesaconitine-treatment on rats, indicating that prophylaxis with GA could reduce the toxicity of mesaconitine at the metabolic level. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Biologically Targeted Therapeutics in Pediatric Brain Tumors

    PubMed Central

    Nageswara Rao, Amulya A.; Scafidi, Joseph; Wells, Elizabeth M.; Packer, Roger J.

    2013-01-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. PMID:22490764

  13. Biologically targeted therapeutics in pediatric brain tumors.

    PubMed

    Nageswara Rao, Amulya A; Scafidi, Joseph; Wells, Elizabeth M; Packer, Roger J

    2012-04-01

    Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Bridging the gap between high-throughput genetic and transcriptional data reveals cellular pathways responding to alpha-synuclein toxicity

    PubMed Central

    Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D.; Cashikar, Anil; King, Oliver D.; Auluck, Pavan K.; Geddie, Melissa L.; Valastyan, Julie S.; Karger, David R.; Lindquist, Susan; Fraenkel, Ernest

    2009-01-01

    Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alpha-synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470

  15. Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.

    PubMed

    Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart

    2011-02-28

    Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.

  16. Occurrence, profiles, and toxic equivalents of chlorinated and brominated polycyclic aromatic hydrocarbons in E-waste open burning soils.

    PubMed

    Nishimura, Chiya; Horii, Yuichi; Tanaka, Shuhei; Asante, Kwadwo Ansong; Ballesteros, Florencio; Viet, Pham Hung; Itai, Takaaki; Takigami, Hidetaka; Tanabe, Shinsuke; Fujimori, Takashi

    2017-06-01

    We conducted this study to assess the occurrence, profiles, and toxicity of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) and brominated polycyclic aromatic hydrocarbons (Br-PAHs) in e-waste open burning soils (EOBS). In this study, concentrations of 15 PAHs, 26 Cl-PAHs and 14 Br-PAHs were analyzed in EOBS samples. We found that e-waste open burning is an important emission source of Cl-PAHs and Br-PAHs as well as PAHs. Concentrations of total Cl-PAHs and Br-PAHs in e-waste open burning soil samples ranged from 21 to 2800 ng/g and from 5.8 to 520 ng/g, respectively. Compared with previous studies, the mean of total Cl-PAH concentrations of the EOBS samples in this study was higher than that of electronic shredder waste, that of bottom ash, and comparable to fly ash from waste incinerators in Korea and Japan. The mean of total Br-PAH concentrations of the EOBS samples was generally three to four orders of magnitude higher than those in incinerator bottom ash and comparable to incinerator fly ash, although the number of Br-PAH congeners measured differed among studies. We also found that the Cl-PAH and Br-PAH profiles were similar among all e-waste open burning soil samples but differed from those in waste incinerator fly ash. The profiles and principal component analysis results suggested a unique mechanism of Cl-PAH and Br-PAH formation in EOBS. In addition, the Cl-PAHs and Br-PAHs showed high toxicities equivalent to PCDD/Fs measured in same EOBS samples when calculated based on their relative potencies to benzo[a]pyrene. Along with chlorinated and brominated dioxins and PAHs, Cl-PAHs and Br-PAHs are important environmental pollutants to investigate in EOBS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium: a comparison with sodium selenite.

    PubMed

    Li, Hongcheng; Zhang, Jinsong; Wang, Thanh; Luo, Wenru; Zhou, Qunfang; Jiang, Guibin

    2008-09-29

    Recent studies have shown that elemental selenium particles at nano-size (Nano-Se) exhibited comparable bioavailability and less toxicity in mice and rats when compared to sodium selenite, selenomethinine and methylselenocysteine. However, little is known about the toxicity profile of Nano-Se in aquatic animals. In the present study, toxicities of Nano-Se and selenite in selenium-sufficient Medaka fish were compared. Selenium bioaccumulation and subsequent clearance in fish livers, gills, muscles and whole bodies were examined after 10 days of exposure to Nano-Se and selenite (100 microg Se/L) and again after 7 days of depuration. Both forms of selenium exposure effectively increased selenium concentrations in the investigated tissues. Surprisingly, Nano-Se was found to be more hyper-accumulated in the liver compared to selenite with differences as high as sixfold. Selenium clearance of both Nano-Se and selenite occurred at similar ratios in whole bodies and muscles but was not rapidly cleared from livers and gills. Nano-Se exhibited strong toxicity for Medaka with an approximately fivefold difference in terms of LC(50) compared to selenite. Nano-Se also caused larger effects on oxidative stress, most likely due to more hyper-accumulation of selenium in liver. The present study suggests that toxicity of nanoparticles can largely vary between different species and concludes that the evaluation of nanotoxicology should be carried out on a case-by-case basis.

  18. LC-MS based metabolomics and chemometrics study of the toxic effects of copper on Saccharomyces cerevisiae.

    PubMed

    Farrés, Mireia; Piña, Benjamí; Tauler, Romà

    2016-08-01

    Copper containing fungicides are used to protect vineyards from fungal infections. Higher residues of copper in grapes at toxic concentrations are potentially toxic and affect the microorganisms living in vineyards, such as Saccharomyces cerevisiae. In this study, the response of the metabolic profiles of S. cerevisiae at different concentrations of copper sulphate (control, 1 mM, 3 mM and 6 mM) was analysed by liquid chromatography coupled to mass spectrometry (LC-MS) and multivariate curve resolution-alternating least squares (MCR-ALS) using an untargeted metabolomics approach. Peak areas of the MCR-ALS resolved elution profiles in control and in Cu(ii)-treated samples were compared using partial least squares regression (PLSR) and PLS-discriminant analysis (PLS-DA), and the intracellular metabolites best contributing to sample discrimination were selected and identified. Fourteen metabolites showed significant concentration changes upon Cu(ii) exposure, following a dose-response effect. The observed changes were consistent with the expected effects of Cu(ii) toxicity, including oxidative stress and DNA damage. This research confirmed that LC-MS based metabolomics coupled to chemometric methods are a powerful approach for discerning metabolomics changes in S. cerevisiae and for elucidating modes of toxicity of environmental stressors, including heavy metals like Cu(ii).

  19. Comparative Toxicity of Simulated Smog Atmospheres in Healthy and Allergic Mice

    EPA Science Inventory

    Effects of complex regional multipollutant mixtures on disease expression in susceptible populations are dependent on multiple exposure and susceptibility factors. Differing profiles of ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM), which are key components of s...

  20. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.

    PubMed

    Shah, Falgun; Greene, Nigel

    2014-01-21

    The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds.

  1. Understanding Genetic Toxicity Through Data Mining: The Process of Building Knowledge by Integrating Multiple Genetic Toxicity Databases

    EPA Science Inventory

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in...

  2. [Toxin profiles in fish implicated in ciguatera fish poisoning in Amami and Kakeroma Islands, Kagoshima Prefecture, Japan].

    PubMed

    Yogi, Kentaro; Oshiro, Naomasa; Matsuda, Seiko; Sakugawa, Satsuki; Matsuo, Toshiaki; Yasumoto, Takeshi

    2013-01-01

    Ciguatoxins (CTXs) responsible for ciguatera fish poisoning (CFP) in Amami Islands, Kagoshima, Japan in 2008 were determined by LC-MS/MS analysis. Ciguatoxin-1B (CTX1B), 54-deoxyCTX1B, and 52-epi-54-deoxyCTX1B were detected in Variola louti and Lutjanus monostigma. The toxin profile distinctly differed from that of a CFP-related fish from Miyazaki, which mainly contained ciguatoxin-3C type toxins. Toxin profiles were species-specific, as observed in fish from Okinawa. The LC-MS/MS and mouse bioassay (MBA) methods produced comparable data, though 54-deoxyCTX1B was not taken into consideration owing to the lack of toxicity data. To improve assessment, toxicity data for this compound are needed. A reef fish caught on the same occasion and judged nontoxic by MBA (<0.025 MU/g) was found to contain low levels of CTX, indicating a potential risk for CFP.

  3. Haematolohical profile of subacute oral toxicity of molybdenum and ameliorative efficacy of copper salt in goats.

    PubMed

    Kusum; Raina, R; Verma, P K; Pankaj, N K; Kant, V; Kumar, J; Srivastava, A K

    2010-07-01

    Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils.

  4. Haematolohical Profile of Subacute Oral Toxicity of Molybdenum and Ameliorative Efficacy of Copper Salt in Goats

    PubMed Central

    Kusum; Raina, R.; Verma, P. K.; Pankaj, N. K.; Kant, V.; Kumar, J.; Srivastava, A. K.

    2010-01-01

    Molybdenum toxicity produces a state of secondary hypocuprosis, resulting into alterations in normal hematological profile. In the present study, ammonium molybdate alone and with copper sulfate (II) pentahydrate (ameliorative agent) was administered orally for 30 consecutive days in healthy goats of group 1 and 2, respectively, to access the effect on the hematological profile on different predetermined days of dosing. Administration of ammonium molybdate alone produced significant decline in the mean values of hemoglobin (Hb), packed cell volume (PCV), total leukocyte count (TLC), total erythrocyte count (TEC), and mean corpuscular hemoglobin concentration (MCHC), with a significant increase in neutrophil level and mean corpuscular volume (MCV). However, values of erythrocyte sedimentation rate, mean corpuscular hemoglobin, and differential leukocyte count were not significantly altered. On comparing observations of ameliorative group with the group 1 goats, it is concluded that the ameliorative copper salt has beneficial effects in alleviating the alterations in the values of Hb, PCV, TLC, TEC, MCV, MCHC, and neutrophils. PMID:21170251

  5. Connection Map for Compounds (CMC): A Server for Combinatorial Drug Toxicity and Efficacy Analysis.

    PubMed

    Liu, Lei; Tsompana, Maria; Wang, Yong; Wu, Dingfeng; Zhu, Lixin; Zhu, Ruixin

    2016-09-26

    Drug discovery and development is a costly and time-consuming process with a high risk for failure resulting primarily from a drug's associated clinical safety and efficacy potential. Identifying and eliminating inapt candidate drugs as early as possible is an effective way for reducing unnecessary costs, but limited analytical tools are currently available for this purpose. Recent growth in the area of toxicogenomics and pharmacogenomics has provided with a vast amount of drug expression microarray data. Web servers such as CMap and LTMap have used this information to evaluate drug toxicity and mechanisms of action independently; however, their wider applicability has been limited by the lack of a combinatorial drug-safety type of analysis. Using available genome-wide drug transcriptional expression profiles, we developed the first web server for combinatorial evaluation of toxicity and efficacy of candidate drugs named "Connection Map for Compounds" (CMC). Using CMC, researchers can initially compare their query drug gene signatures with prebuilt gene profiles generated from two large-scale toxicogenomics databases, and subsequently perform a drug efficacy analysis for identification of known mechanisms of drug action or generation of new predictions. CMC provides a novel approach for drug repositioning and early evaluation in drug discovery with its unique combination of toxicity and efficacy analyses, expansibility of data and algorithms, and customization of reference gene profiles. CMC can be freely accessed at http://cadd.tongji.edu.cn/webserver/CMCbp.jsp .

  6. Metabolic Profiling in Association with Vascular Endothelial Cell Dysfunction Following Non-Toxic Cadmium Exposure

    PubMed Central

    Li, Xiaofei; Nong, Qingjiao; Mao, Baoyu; Pan, Xue

    2017-01-01

    This study aimed to determine the metabolic profile of non-toxic cadmium (Cd)-induced dysfunctional endothelial cells using human umbilical vein endothelial cells (HUVECs). HUVECs (n = 6 per group) were treated with 0, 1, 5, or 10 μM cadmium chloride (CdCl2) for 48 h. Cell phenotypes, including nitric oxide (NO) production, the inflammatory response, and oxidative stress, were evaluated in Cd-exposed and control HUVECs. Cd-exposed and control HUVECs were analysed using gas chromatography time-of-flight/mass spectrometry. Compared to control HUVECs, Cd-exposed HUVECs were dysfunctional, exhibiting decreased NO production, a proinflammatory state, and non-significant oxidative stress. Further metabolic profiling revealed 24 significantly-altered metabolites in the dysfunctional endothelial cells. The significantly-altered metabolites were involved in the impaired tricarboxylic acid (TCA) cycle, activated pyruvate metabolism, up-regulated glucogenic amino acid metabolism, and increased pyrimidine metabolism. The current metabolic findings further suggest that the metabolic changes linked to TCA cycle dysfunction, glycosylation of the hexosamine biosynthesis pathway (HBP), and compensatory responses to genomic instability and energy deficiency may be generally associated with dysfunctional phenotypes, characterized by decreased NO production, a proinflammatory state, and non-significant oxidative stress, in endothelial cells following non-toxic Cd exposure. PMID:28872622

  7. Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity.

    PubMed

    Nisani, Zia; Boskovic, Danilo S; Dunbar, Stephen G; Kelln, Wayne; Hayes, William K

    2012-09-01

    We investigated the biochemical profile of regenerated venom of the scorpion Parabuthus transvaalicus in relation to its metabolic cost and toxicity. Using a closed-system respirometer, we compared oxygen consumption between milked and unmilked scorpions to determine the metabolic costs associated with the first 192 h of subsequent venom synthesis. Milked scorpions had a substantially (21%) higher mean metabolic rate than unmilked scorpions, with the largest increases in oxygen consumption occurring at approximately 120 h, 162 h, and 186 h post-milking. Lethality tests in crickets indicated that toxicity of the regenerated venom returned to normal levels within 4 d after milking. However, the chemical profile of the regenerated venom, as evaluated by FPLC and MALDI-TOF mass spectrometry, suggested that regeneration of different venom components was asynchronous. Some peptides regenerated quickly, particularly those associated with the scorpion's "prevenom," whereas others required much or all of this time period for regeneration. This asynchrony could explain the different spikes detected in oxygen consumption of milked scorpions as various peptides and other venom components were resynthesized. These observations confirm the relatively high metabolic cost of venom regeneration and suggest that greater venom complexity can be associated with higher costs of venom production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Substituent Effects on Desferrithiocin and Desferrithiocin Analogue Iron Clearing and Toxicity Profiles

    PubMed Central

    Bergeron, Raymond J.; Wiegand, Jan; Bharti, Neelam; McManis, James S.

    2012-01-01

    Desferrithiocin (DFT, 1) is a very efficient iron chelator when given orally. However, it is severely nephrotoxic. Structure-activity studies with 1 demonstrated that removal of the aromatic nitrogen to provide desazadesferrithiocin (DADFT, 2) and introduction of either a hydroxyl group or a polyether fragment onto the aromatic ring resulted in orally active iron chelators that were much less toxic than 1. The purpose of the current study was to determine if a comparable reduction in renal toxicity could be achieved by performing the same structural manipulations on 1 itself. Accordingly, three DFT analogues were synthesized. Iron clearing efficiency and ferrokinetics were evaluated in rats and primates; toxicity assessments were carried out in rodents. The resulting DFT ligands demonstrated a reduction in toxicity that was equivalent to that of the DADFT analogues and presented with excellent iron clearing properties. PMID:22889170

  9. Impact of tumour bed boost integration on acute and late toxicity in patients with breast cancer: A systematic review.

    PubMed

    Hamilton, Daniel George; Bale, Rebecca; Jones, Claire; Fitzgerald, Emma; Khor, Richard; Knight, Kellie; Wasiak, Jason

    2016-06-01

    The purpose of this systematic review was to summarise the evidence from studies investigating the integration of tumour bed boosts into whole breast irradiation for patients with Stage 0-III breast cancer, with a focus on its impact on acute and late toxicities. A comprehensive systematic electronic search through the Ovid MEDLINE, EMBASE and PubMed databases from January 2000 to January 2015 was conducted. Studies were considered eligible if they investigated the efficacy of hypo- or normofractionated whole breast irradiation with the inclusion of a daily concurrent boost. The primary outcomes of interest were the degree of observed acute and late toxicity following radiotherapy treatment. Methodological quality assessment was performed on all included studies using either the Newcastle-Ottawa Scale or a previously published investigator-derived quality instrument. The search identified 35 articles, of which 17 satisfied our eligibility criteria. Thirteen and eleven studies reported on acute and late toxicities respectively. Grade 3 acute skin toxicity ranged from 1 to 7% whilst moderate to severe fibrosis and telangiectasia were both limited to 9%. Reported toxicity profiles were comparable to historical data at similar time-points. Studies investigating the delivery of concurrent boosts with whole breast radiotherapy courses report safe short to medium-term toxicity profiles and cosmesis rates. Whilst the quality of evidence and length of follow-up supporting these findings is low, sufficient evidence has been generated to consider concurrent boost techniques as an alternative to conventional sequential techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Exposure to crude oil micro-droplets causes reduced food uptake in copepods associated with alteration in their metabolic profiles.

    PubMed

    Hansen, Bjørn Henrik; Altin, Dag; Nordtug, Trond; Øverjordet, Ida Beathe; Olsen, Anders J; Krause, Dan; Størdal, Ingvild; Størseth, Trond R

    2017-03-01

    Acute oil spills and produced water discharges may cause exposure of filter-feeding pelagic organisms to micron-sized dispersed oil droplets. The dissolved oil components are expected to be the main driver for oil dispersion toxicity; however, very few studies have investigated the specific contribution of oil droplets to toxicity. In the present work, the contribution of oil micro-droplet toxicity in dispersions was isolated by comparing exposures to oil dispersions (water soluble fraction with droplets) to concurrent exposure to filtered dispersions (water-soluble fractions without droplets). Physical (coloration) and behavioral (feeding activity) as well as molecular (metabolite profiling) responses to oil exposures in the copepod Calanus finmarchicus were studied. At high dispersion concentrations (4.1-5.6mg oil/L), copepods displayed carapace discoloration and reduced swimming activity. Reduced feeding activity, measured as algae uptake, gut filling and fecal pellet production, was evident also for lower concentrations (0.08mg oil/L). Alterations in metabolic profiles were also observed following exposure to oil dispersions. The pattern of responses were similar between two comparable experiments with different oil types, suggesting responses to be non-oil type specific. Furthermore, oil micro-droplets appear to contribute to some of the observed effects triggering a starvation-type response, manifested as a reduction in metabolite (homarine, acetylcholine, creatine and lactate) concentrations in copepods. Our work clearly displays a relationship between crude oil micro-droplet exposure and reduced uptake of algae in copepods. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Comparison of the toxicity of fluoridation compounds in the nematode Caenorhabditis elegans.

    PubMed

    Rice, Julie R; Boyd, Windy A; Chandra, Dave; Smith, Marjolein V; Den Besten, Pamela K; Freedman, Jonathan H

    2014-01-01

    Fluorides are commonly added to drinking water in the United States to decrease the incidence of dental caries. Silicofluorides, such as sodium hexafluorosilicate (Na2 SiF6 ) and fluorosilicic acid (H2 SiF6 ), are mainly used for fluoridation, although fluoride salts such as sodium fluoride (NaF) are also used. Interestingly, only the toxicity of NaF has been examined and not that of the more often used silicofluorides. In the present study, the toxicities of NaF, Na2 SiF6 , and H2 SiF6 were compared. The toxicity of these fluorides on the growth, feeding, and reproduction in the alternative toxicological testing organism Caenorhabditis elegans was examined. Exposure to these compounds produced classic concentration-response toxicity profiles. Although the effects of the fluoride compounds varied among the 3 biological endpoints, no differences were found between the 3 compounds, relative to the fluoride ion concentration, in any of the assays. This suggests that silicofluorides have similar toxicity to NaF. © 2013 SETAC.

  12. A phase III, open label, randomized multicenter controlled trial of oral versus intravenous treosulfan in heavily pretreated recurrent ovarian cancer: a study of the North-Eastern German Society of Gynecological Oncology (NOGGO).

    PubMed

    Sehouli, Jalid; Tomè, Oliver; Dimitrova, Desislava; Camara, Oumar; Runnebaum, Ingo Bernhard; Tessen, Hans Werner; Rautenberg, Beate; Chekerov, Radoslav; Muallem, Mustafa Zelal; Lux, Michael Patrick; Trarbach, Tanja; Gitsch, Gerald

    2017-03-01

    In recurrent ovarian cancer (ROC), there is a high demand on effective therapies with a mild toxicity profile. Treosulfan is an alkylating agent approved as oral (p.o.) and intravenous (i.v.) formulation for the treatment of recurrent ovarian cancer. Data on safety and efficacy for either formulation are rare. For the first time we conducted a randomized phase III study comparing both formulations in women with ROC. Patients having received at least two previous lines of chemotherapy were randomly assigned to one of two treatment arms: treosulfan i.v. 7000 mg/m 2 d1 q4w or treosulfan p.o. 600 mg/m 2 d1-28 q8w. Primary endpoint was safety regarding hematological and gastrointestinal toxicity grade III/IV, secondary endpoints were other toxicities, clinical benefit rate (CBR), time to progression (TTP), overall survival (OS) and quality of life. 250 patients were treated with treosulfan i.v. (128) or treosulfan p.o. (122). In general treosulfan therapy was well tolerated in both treatment arms. Leukopenia grade III/IV occurred significantly more frequently in the p.o. arm (3.9% i.v. arm, 14.8% p.o. arm, p = 0.002). Other toxicities were similar in both arms. CBR was comparable between arms (41.4% i.v. arm, 36.9% p.o. arm). No difference in TTP (3.7 months i.v. arm, 3.5 months p.o. arm) or OS (13.6 months i.v. arm, 10.4 months p.o. arm, p = 0.087) occurred. Given the safety and efficacy results treosulfan is an acceptable option for heavily pretreated OC patients. Regarding the toxicity profile the i.v. application was better tolerated with less grade III and IV toxicities.

  13. Preclinical evaluations of norcantharidin-loaded intravenous lipid microspheres with low toxicity.

    PubMed

    Lin, Xia; Zhang, Bo; Zhang, Keru; Zhang, Yu; Wang, Juan; Qi, Na; Yang, Shenshen; He, Haibing; Tang, Xing

    2012-12-01

    The aim of this study was to perform a systematic preclinical evaluation of norcantharidin (NCTD)-loaded intravenous lipid microspheres (NLM). Pharmacokinetics, biodistribution, antitumor efficacy and drug safety assessment (including acute toxicity, subchronic toxicity, hemolysis testing, intravenous stimulation and injection anaphylaxis) of NLM were carried out in comparison with the commercial product disodium norcantharidate injection (NI). The pharmacokinetics of NLM in rats was similar to that of NI, and a non-linear correlation was observed between AUC and dose. A comparable antitumor efficacy of NLM and NI was observed in mice inoculated with A549, BEL7402 and BCAP-37 cell lines. It was worth noting that the NLM produced a lower drug concentration in heart compared with NI, and significantly reduced the cardiac and renal toxicity. The LD(50) of NLM was twice higher than that of NI. In NLM, over 80% of NCTD was loaded in the lipid phase or bound with phospholipids. Thus, NCTD was sequestered by direct contacting with body fluids and largely avoided distribution into tissues, consequently leading to significantly reduced cardiac and renal toxicity. These preclinical results suggested that NLM could be a useful potential carrier for parenteral administration of NCTD, while providing a superior safety profile.

  14. Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules.

    PubMed

    Nobre, Lígia S; Jeremias, Hélia; Romão, Carlos C; Saraiva, Lígia M

    2016-01-28

    Transition metal carbonyl complexes used as CO-releasing molecules (CORMs) for biological and therapeutic applications may exhibit interesting antimicrobial activity. However, understanding the chemical traits and mechanisms of action that rule this activity is required to establish a rationale for the development of CORMs into useful antibiotics. In this work the bactericidal activity, the toxicity to eukaryotic cells, and the ability of CORMs to deliver CO to bacterial and eukaryotic cells were analysed for a set of seven CORMs that differ in the transition metal, ancillary ligands and the CO release profile. Most of these CORMs exhibited bactericidal properties that decrease in the following order: CORM-2 > CORM-3 > ALF062 > ALF850 > ALF186 > ALF153 > [Fe(SBPy3)(CO)](BF4)2. A similar yet not entirely coincident decreasing order was found for their induction of intracellular reactive oxygen species (ROS) in E. coli. In contrast, studies in model animal cells showed that for any given CORM, the level of intracellular ROS generated was negligible when compared with that measured inside bacteria. Importantly, these CORMs were in general not toxic to eukaryotic cells, namely murine macrophages, kidney LLC-PK1 epithelial cells, and liver cell line HepG2. CORM-2 and CORM-3 delivered CO to the intracellular space of both E. coli and the two types of tested eukaryotic cells, yet toxicity was only elicited in the case of E. coli. CO delivered by ALF186 into the intercellular space did not enter E. coli cells and the compound was not toxic to either bacteria or to eukaryotic cells. The Fe(ii) carbonyl complex [Fe(SBPy3)(CO)](2+) had the reverse, undesirable toxicity profile, being unexpectedly toxic to eukaryotic cells and non-toxic to E. coli. ALF153, the most stable complex in the whole set, was essentially devoid of toxicity or ROS induction ability in all cells. These results suggest that CORMs have a relevant therapeutic potential as antimicrobial drugs since (i) they can show opposite toxicity profiles towards bacteria and eukaryotic cells; (ii) their activity can be modulated through manipulation of the ancillary ligands, as shown with the three {Ru(CO)3}(2+) and two zerovalent Mo based CORMs; and (iii) their toxicity to eukaryotic cells can be made acceptably low. With this new approach, this work contributes to the understanding of the roots of the bactericidal action of CORMs and helps in establishing strategies for their development into a new class of antibiotics.

  15. A metabolic profiling analysis of the acute hepatotoxicity and nephrotoxicity of Zhusha Anshen Wan compared with cinnabar in rats using (1)H NMR spectroscopy.

    PubMed

    Wang, Haifeng; Bai, Jiao; Chen, Gang; Li, Wen; Xiang, Rongwu; Su, Guangyue; Pei, Yuehu

    2013-03-27

    Zhusha Anshen Wan (ZSASW), a traditional Chinese medicine (TCM) prescription, composed of cinnabar (cinnabaris), Coptidis Rhizoma (Coptis chinensis French.), Angelicae Sinensis Radix (Angelica sinensis (oliv.) Diels), uncooked Rehmanniae Radix (Rehmannia glutinosa Libosch.), honey fried Glycyrrhizae Radix Et Rhizoma (Glycyrrhiza uralensis Fisch.), has been widely used for sedative therapy. Cinnabar, the chief component of ZSASW, has been proved to possess the toxicities. In this study, a metabonomics approach based on high-resolution (1)H nuclear magnetic resonance spectroscopy was applied to investigate the protective effects of ZSASW on the toxic effects induced by cinnabar alone. Male Wistar rats were divided into three groups: control group, ZSASW group and cinnabar group. Partial least squares-discriminant analysis (PLS-DA) was performed to identify different metabolic profiles of urine and serum from rats. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. The significant difference in metabolic profiling of urine and serum of the rats was observed between cinnabar treated group, control group, and the changes of endogenous metabolites related to the toxicities were identified. The results were also certified by the liver and kidney histopathology examinations and biochemical analysis of blood. Our results suggested that the four combined herbal medicines of ZSASW had the effects of protecting from the toxicity induced by cinnabar alone. This work showed that the NMR-based metabonomics approach might be a promising approach to study detoxification of Chinese medicines and reasonable combination of TCM prescriptions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. GENE EXPRESSION PROFILING TO IDENTIFY MECHANISMS OF MALE REPRODUCTIVE TOXICITY

    EPA Science Inventory

    Gene Expression Profiling to Identify Mechanisms of Male Reproductive Toxicity
    David J. Dix
    National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
    Ab...

  17. Comparative Toxicity and Dosimetric Profile of Whole-Pelvis Versus Prostate Bed-Only Intensity-Modulated Radiation Therapy After Prostatectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deville, Curtiland, E-mail: deville@uphs.upenn.edu; Vapiwala, Neha; Hwang, Wei-Ting

    2012-03-15

    Purpose: To assess whether whole-pelvis (WP) intensity modulated radiation therapy (IMRT) for prostate cancer (PCa) after prostatectomy is associated with increased toxicity compared to prostate-bed only (PB) IMRT. Methods and Materials: All patients (n = 67) undergoing postprostatectomy IMRT to 70.2 Gy at our institution from January 2006 to January 2009 with minimum 12-month follow-up were divided into WP (n = 36) and PB (n = 31) comparison groups. WP patients received initial pelvic nodal IMRT to 45 Gy. Pretreatment demographics, bladder and rectal dose-volume histograms, and maximum genitourinary (GU) and gastrointestinal (GI) toxicities were compared. Logistic regression models evaluatedmore » uni- and multivariate associations between pretreatment demographics and toxicities. Results: Pretreatment demographics including age and comorbidities were similar between groups. WP patients had higher Gleason scores, T stages, and preoperative prostate-specific antigen (PSA) levels, and more WP patients underwent androgen deprivation therapy (ADT). WP minimum (Dmin) and mean bladder doses, bladder volumes receiving more than 5 Gy (V5) and V20, rectal Dmin, and PB bladder and rectal V65 were significantly increased. Maximum acute GI toxicity was Grade 2 and was increased for WP (61%) vs. PB (29%) patients (p = 0.001); there was no significant difference in acute Grade {>=}2 GU toxicity (22% WP vs. 10% PB; p = 0.193), late Grade {>=}2 GI toxicity (3% WP vs. 0% PB; p = 0.678), or late Grade {>=}2 GU toxicity (28% WP vs. 19% PB; p = 0.274) with 25-month median follow-up (range, 12-44 months). On multivariate analysis, long-term ADT use was associated with Grade {>=}2 late GU toxicity (p = 0.02). Conclusion: Despite dosimetric differences in irradiated bowel, bladder, and rectum, WP IMRT resulted only in clinically significant increased acute GI toxicity in comparison to that with PB IMRT, with no differences in GU or late GI toxicity.« less

  18. Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values.

    PubMed

    Rodriguez-Ruiz, A; Etxebarria, J; Boatti, L; Marigómez, I

    2015-09-01

    Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.

  19. Proposal of an in silico profiler for categorisation of repeat dose toxicity data of hair dyes.

    PubMed

    Nelms, M D; Ates, G; Madden, J C; Vinken, M; Cronin, M T D; Rogiers, V; Enoch, S J

    2015-05-01

    This study outlines the analysis of 94 chemicals with repeat dose toxicity data taken from Scientific Committee on Consumer Safety opinions for commonly used hair dyes in the European Union. Structural similarity was applied to group these chemicals into categories. Subsequent mechanistic analysis suggested that toxicity to mitochondria is potentially a key driver of repeat dose toxicity for chemicals within each of the categories. The mechanistic hypothesis allowed for an in silico profiler consisting of four mechanism-based structural alerts to be proposed. These structural alerts related to a number of important chemical classes such as quinones, anthraquinones, substituted nitrobenzenes and aromatic azos. This in silico profiler is intended for grouping chemicals into mechanism-based categories within the adverse outcome pathway paradigm.

  20. Comparison of the serum toxicokinetics of larkspur toxins in cattle, sheep and goats

    USDA-ARS?s Scientific Manuscript database

    Larkspurs (Delphinium spp.) are a major cause of cattle losses in western North America, whereas sheep are thought to be resistant to larkspur toxicosis. Goats are often used as a small ruminant model to study poisonous plants. In this study, we compared the serum toxicokinetic profile of toxic lark...

  1. In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents

    PubMed Central

    Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali

    2015-01-01

    The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. PMID:25679975

  2. HIM-herbal ingredients in-vivo metabolism database.

    PubMed

    Kang, Hong; Tang, Kailin; Liu, Qi; Sun, Yi; Huang, Qi; Zhu, Ruixin; Gao, Jun; Zhang, Duanfeng; Huang, Chenggang; Cao, Zhiwei

    2013-05-31

    Herbal medicine has long been viewed as a valuable asset for potential new drug discovery and herbal ingredients' metabolites, especially the in vivo metabolites were often found to gain better pharmacological, pharmacokinetic and even better safety profiles compared to their parent compounds. However, these herbal metabolite information is still scattered and waiting to be collected. HIM database manually collected so far the most comprehensive available in-vivo metabolism information for herbal active ingredients, as well as their corresponding bioactivity, organs and/or tissues distribution, toxicity, ADME and the clinical research profile. Currently HIM contains 361 ingredients and 1104 corresponding in-vivo metabolites from 673 reputable herbs. Tools of structural similarity, substructure search and Lipinski's Rule of Five are also provided. Various links were made to PubChem, PubMed, TCM-ID (Traditional Chinese Medicine Information database) and HIT (Herbal ingredients' targets databases). A curated database HIM is set up for the in vivo metabolites information of the active ingredients for Chinese herbs, together with their corresponding bioactivity, toxicity and ADME profile. HIM is freely accessible to academic researchers at http://www.bioinformatics.org.cn/.

  3. Toxic substances handbook

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1979-01-01

    Handbook, published in conjunction with Toxic Substances Alert Program at NASA Lewis Research Center, profiles 187 toxic chemicals in their relatively pure states and include 27 known or suspected carcinogens.

  4. The role of surface chemistry in the cytotoxicity profile of graphene.

    PubMed

    Majeed, Waqar; Bourdo, Shawn; Petibone, Dayton M; Saini, Viney; Vang, Kieng Bao; Nima, Zeid A; Alghazali, Karrer M; Darrigues, Emilie; Ghosh, Anindya; Watanabe, Fumiya; Casciano, Daniel; Ali, Syed F; Biris, Alexandru S

    2017-04-01

    Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization

    PubMed Central

    Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton

    2016-01-01

    Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972

  6. Pathway Profiling and Tissue Modeling of Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  7. VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...

  8. 78 FR 4147 - Notice of Development of Set 26 Toxicological Profiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry [ATSDR-277] Notice of Development of Set 26 Toxicological Profiles AGENCY: Agency for Toxic Substances and Disease Registry (ATSDR), Department of Health and Human Services (HHS). ACTION: Notice. SUMMARY: This...

  9. 77 FR 6800 - Notice of Development of Set 25 Toxicological Profiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry [ATSDR-273] Notice of Development of Set 25 Toxicological Profiles AGENCY: Agency for Toxic Substances and Disease Registry (ATSDR), Department of Health and Human Services (DHHS). ACTION: Notice. SUMMARY: This...

  10. [Functional-behavioral profile of new cyclic GABA analogs in acute toxicity tests].

    PubMed

    Bugaeva, L I; Spasov, A A; Verovskiĭ, V E

    2004-01-01

    The properties of karphedone and phepyrone--new phenyl derivatives of pyrrolidone possessing nootropic activity--were studied in the course of the acute toxicity tests on rats. The drug effects were evaluated in terms of their integral influence on the state and behavior of test animals. The real therapeutic range and the profit/risk ratio of karphedone were comparable with those of the reference drug pyracetam and exceeded by a factor of 1.3 the corresponding values for phepyrone (irrespective of the LD50 values). The results give grounds for the further preclinical investigation of karphedone.

  11. GENE EXPRESSION PROFILING OF ACCESSIBLE SURROGATE TISSUES TO MONITOR MOLECULAR CHANGES IN INACCESSIBLE TARGET TISSUES FOLLOWING TOXICANT EXPOSURE

    EPA Science Inventory

    Gene Expression Profiling Of Accessible Surrogate Tissues To Monitor Molecular Changes In Inaccessible Target Tissues Following Toxicant Exposure
    John C. Rockett, Chad R. Blystone, Amber K. Goetz, Rachel N. Murrell, Judith E. Schmid and David J. Dix
    Reproductive Toxicology ...

  12. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  13. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities

    Treesearch

    Matt D. Busse; Alice W. Ratcliff; Carol J. Stestak; Robert F. Powers

    2001-01-01

    We assessed the direct and indirect effect of the herbicide glyphosate on soil microbial communities from soil bioassays at glyphosate concentrations up to 100-fold greater than expected following a single field application. Indirect effects on microbial biomass, respiration, and metabolic diversity (Biolog and catabolic response profile) were compared seasonally after...

  14. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    PubMed

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain. This strain represents a xylose fermenting yeast specifically tailored to GVL produced hydrolysates.

  15. Acute Toxicity Profile and Compliance to Accelerated Radiotherapy Plus Carbogen and Nicotinamide for Clinical Stage T2-4 Laryngeal Cancer: Results of a Phase III Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janssens, Geert O., E-mail: g.janssens@rther.umcn.nl; Terhaard, Chris H.; Doornaert, Patricia A.

    2012-02-01

    Purpose: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. Methods and Materials: From April 2001 to February 2008, 345 patients with cT2-4 squamous cell laryngeal cancer were randomized to AR (n = 174) and ARCON (n = 171). Acute toxicity was scored weekly until Week 8 and every 2-4 weeks thereafter. Compliance to carbogen and nicotinamide was reported. Results: Between both treatment arms (AR vs. ARCON) no statistically significant difference was observed for incidence of acute skin reactions (moistmore » desquamation: 56% vs. 58%, p = 0.80), acute mucosal reactions (confluent mucositis: 79% vs. 85%, p = 0.14), and symptoms related to acute mucositis (severe pain on swallowing: 53% vs. 58%, p = 0.37; nasogastric tube feeding: 28% vs. 28%, p = 0.98; narcotic medicines required: 58% vs. 58%, p = 0.97). There was a statistically significant difference in median duration of confluent mucositis in favor of AR (2.0 vs 3.0 weeks, p = 0.01). There was full compliance with carbogen breathing and nicotinamide in 86% and 80% of the patients, with discontinuation in 6% and 12%, respectively. Adjustment of antiemesis prophylaxis was needed in 42% of patients. Conclusion: With the exception of a slight increase in median duration of acute confluent mucositis, the present data reveal a similar acute toxicity profile between both regimens and a good compliance with ARCON for clinical stage T2-4 laryngeal cancers. Treatment outcome and late morbidity will determine the real therapeutic benefit.« less

  16. Comparative In Vitro Toxicity Profile of Electronic and Tobacco Cigarettes, Smokeless Tobacco and Nicotine Replacement Therapy Products: E-Liquids, Extracts and Collected Aerosols

    PubMed Central

    Misra, Manoj; Leverette, Robert D.; Cooper, Bethany T.; Bennett, Melanee B.; Brown, Steven E.

    2014-01-01

    The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic. PMID:25361047

  17. Profiling the reproductive toxicity of chemicals from multigeneration studies in the toxicity reference database

    EPA Science Inventory

    Multigeneration reproduction studies are used to characterize parental and offspring systemic toxicity, as well as reproductive toxicity of pesticides, industrial chemicals and pharmaceuticals. Results from 329 multigeneration studies on 316 chemicals have been digitized into sta...

  18. Comparative Developmental Toxicity of Flavonoids Using an Integrative Zebrafish System

    PubMed Central

    Bugel, Sean M.; Bonventre, Josephine A.; Tanguay, Robert L.

    2016-01-01

    Flavonoids are a large, structurally diverse class of bioactive naturally occurring chemicals commonly detected in breast milk, soy based infant formulas, amniotic fluid, and fetal cord blood. The potential for pervasive early life stage exposures raises concerns for perturbation of embryogenesis, though developmental toxicity and bioactivity information is limited for many flavonoids. Therefore, we evaluated a suite of 24 flavonoid and flavonoid-like chemicals using a zebrafish embryo-larval toxicity bioassay—an alternative model for investigating developmental toxicity of environmentally relevant chemicals. Embryos were exposed to 1–50 µM of each chemical from 6 to 120 h postfertilization (hpf), and assessed for 26 adverse developmental endpoints at 24, 72, and 120 hpf. Behavioral changes were evaluated in morphologically normal animals at 24 and 72 hpf, at 120 hpf using a larval photomotor response (LPR) assay. Gene expression was comparatively evaluated for all compounds for effects on biomarker transcripts indicative of AHR (cyp1a) and ER (cyp19a1b, esr1, lhb, vtg) pathway bioactivity. Overall, 15 of 24 flavonoids elicited adverse effects on one or more of the developmental or behavioral endpoints. Hierarchical clustering and principle component analyses compared toxicity profiles and identified 3 distinct groups of bioactive flavonoids. Despite robust induction of multiple estrogen-responsive biomarkers, co-exposure with ER and GPER antagonists did not ameliorate toxicity, suggesting ER-independence and alternative modes of action. Taken together, these studies demonstrate that development is sensitive to perturbation by bioactive flavonoids in zebrafish that are not related to traditional estrogen receptor mode of action pathways. This integrative zebrafish platform provides a useful framework for evaluating flavonoid developmental toxicity and hazard prioritization. PMID:27492224

  19. Toxicity of ZnO and TiO2 to Escherichia coli cells

    PubMed Central

    Leung, Yu Hang; Xu, Xiaoying; Ma, Angel P. Y.; Liu, Fangzhou; Ng, Alan M. C.; Shen, Zhiyong; Gethings, Lee A.; Guo, Mu Yao; Djurišić, Aleksandra B.; Lee, Patrick K. H.; Lee, Hung Kay; Chan, Wai Kin; Leung, Frederick C. C.

    2016-01-01

    We performed a comprehensive investigation of the toxicity of ZnO and TiO2 nanoparticles using Escherichia coli as a model organism. Both materials are wide band gap n-type semiconductors and they can interact with lipopolysaccharide molecules present in the outer membrane of E. coli, as well as produce reactive oxygen species (ROS) under UV illumination. Despite the similarities in their properties, the response of the bacteria to the two nanomaterials was fundamentally different. When the ROS generation is observed, the toxicity of nanomaterial is commonly attributed to oxidative stress and cell membrane damage caused by lipid peroxidation. However, we found that significant toxicity does not necessarily correlate with up-regulation of ROS-related proteins. TiO2 exhibited significant antibacterial activity, but the protein expression profile of bacteria exposed to TiO2 was different compared to H2O2 and the ROS-related proteins were not strongly expressed. On the other hand, ZnO exhibited lower antibacterial activity compared to TiO2, and the bacterial response involved up-regulating ROS-related proteins similar to the bacterial response to the exposure to H2O2. Reasons for the observed differences in toxicity and bacterial response to the two metal oxides are discussed. PMID:27731373

  20. Time Course, Behavioral Safety, and Protective Efficacy of Centrally Active Reversible Acetylcholinesterase Inhibitors in Cynomolgus Macaques.

    PubMed

    Hamilton, Lindsey R; Schachter, Steven C; Myers, Todd M

    2017-07-01

    Galantamine hydrobromide and (-)huperzine A, centrally active reversible acetylcholinesterase inhibitors, are potentially superior to the current standard, pyridostigmine bromide, as a pretreatment for organophosphorus chemical warfare nerve agent intoxication. Galantamine, huperzine, and pyridostigmine were compared for time course of acetylcholinesterase inhibition in 12 cynomolgus macaques. Although both galantamine and huperzine shared a similar time course profile for acetylcholinesterase inhibition, huperzine was 88 times more potent than galantamine. The dose for 50% acetylcholinesterase inhibition (ID 50 ) was 4.1 ug/kg for huperzine, 362 ug/kg for galantamine, and 30.9 ug/kg for pyridostigmine. In a safety assessment, galantamine, huperzine, and pyridostigmine were examined using an operant time-estimation task. Huperzine and pyridostigmine were devoid of behavioral toxicity, whereas galantamine was behaviorally toxic at doses producing peak acetylcholinesterase inhibition of about 50% and higher. Following pretreatment with galantamine, huperzine or pyridostigmine, monkeys were challenged with the median lethal dose of soman at the time of peak acetylcholinesterase inhibition and evaluated for overt signs of soman toxicity (cholinergic crisis, convulsions). Both huperzine and galantamine were equally effective at preventing overt signs of soman toxicity, but neither drug was capable of preventing soman-induced neurobehavioral disruption. In contrast, three of four pyridostigmine-pretreated animals exposed to soman exhibited convulsions and required therapy. Full functional recovery required 3-16 days. The degree of acetylcholinesterase inhibition was lower for pyridostigmine, but rates of recovery of acetylcholinesterase activity following soman challenge were comparable for all drug pretreatments. Huperzine may be the more promising centrally active reversible acetylcholinesterase inhibitor due to its greater potency and superior safety profile.

  1. Evaluation and comparison of bisphenol A analog activity ...

    EPA Pesticide Factsheets

    Bisphenol A (BPA) is used in consumer products and industrial applications, primarily in plastics, and has been detected in the environment, human urine, blood, and breast milk. Mainly studied as an endocrine disruptor, other toxicities, including obesity, metabolic conditions such as diabetes, and neurodevelopmental effects have also been associated with exposure to BPA, indicating that its effects may not be limited to estrogenicity. In addition, a number of BPA analogs are in use and may exhibit other additional toxicities. To address these unknowns, we examined the bioactivity of 21 BPA analogs across a selection of ToxCast/Tox21 assays grouped by 7 gene sets including estrogen receptor (ER), androgen receptor (AR), thyroid receptor (TR), peroxisome proliferator-activated receptor (PPAR), pregnane x receptor (PXR), aromatase (AROM), and aryl hydrocarbon receptor (AHR). The most active compounds were bisphenol AF (BPAF) (ER, AR, AROM, AHR), bisphenol A glycidyl methacrylate (TR), 3,3’,5,5’-tetrabromobisphenol A (PPAR) and bisphenol B (BPB) (PXR). We used these data to produce toxicological prioritization index (ToxPi) scores and images to integrate and visually compare the toxicity profiles across all gene sets. The compounds with highest ToxPi scores were BPAF, BPA and BPB. We also mapped the intended gene targets for all ToxCast assays to their associated KEGG BRITE protein families in order to characterize their toxicity profiles on a broader spectr

  2. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    EPA Science Inventory

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  4. Beam Path Toxicities to Non-Target Structures During Intensity-Modulated Radiation Therapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, David I.; Chambers, Mark S.; Fuller, Clifton D.

    2008-11-01

    Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A totalmore » of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p {<=} 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient management.« less

  5. Comparative study of the nutritional composition and toxic elements of farmed and wild Chanodichthys mongolicus

    NASA Astrophysics Data System (ADS)

    Jiang, Haifeng; Cheng, Xiaofei; Geng, Longwu; Tang, Shizhan; Tong, Guangxiang; Xu, Wei

    2017-07-01

    Information of the difference in quality between farmed and wild fish is central to better ensuring fish products produced in aquaculture meet regulatory and consumer requirements. Proximate composition, amino acid and fatty acid profiles, and toxic elements contents of farmed and wild Chanodichthys mongolicus were established and compared. Significantly higher crude protein content while lower moisture content in farmed fish compared to wild fish were observed ( P<0.05). The percentages of total amino acids (TAA), total essential amino acids (TEAA), total non-essential amino acids (TNEAA) and total delicious amino acids (TDAA) in farmed fish were all significantly higher than those in the wild equivalent ( P<0.05). Compared to the FAO/WHO recommended reference values, the ratios of TEAA/TAA (39.84%-40.33%) were comparable to 40% and TEAA / TNEAA (66.22%-67.60%) were above 60%. Fatty acid profiles in both farmed and wild C. mongolicus were dominated by monounsaturated fatty acid (MUFA), with farmed fish contained much more MUFA content compared to wild counterpart ( P<0.05). Notably, wild fish exhibited significantly higher levels of total polyunsaturated fatty acid (PUFA) including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) than farmed fish ( P<0.05). The EPA (C20:5n3) and linoleic acid (C18:2n6) were the predominant PUFA in wild and farmed C. mongolicus, respectively. Moreover, farmed fish displayed an overall lower toxic element levels (As, Cd, Pb and Hg) in comparison with wild fish, and both were far lower than the established limit standard. In conclusion, our results suggest that the nutritional quality of farmed C. mongolicus was inferior to their wild counterpart with respect to fatty acids nutrition, and therefore further studies should focus on the improving C. mongolicus diet in order to enhance the overall nutritional composition.

  6. Toxicity profile and treatment delays in NOPHO ALL2008-comparing adults and children with Philadelphia chromosome-negative acute lymphoblastic leukemia.

    PubMed

    Toft, Nina; Birgens, Henrik; Abrahamsson, Jonas; Griškevičius, Laimonas; Hallböök, Helene; Heyman, Mats; Klausen, Tobias Wirenfeldt; Jónsson, Ólafur Gísli; Palk, Katrin; Pruunsild, Kaie; Quist-Paulsen, Petter; Vaitkeviciene, Goda; Vettenranta, Kim; Asberg, Ann; Helt, Louise Rold; Frandsen, Thomas; Schmiegelow, Kjeld

    2016-02-01

    Cure rates improve when adolescents and young adults with acute lymphoblastic leukemia (ALL) are treated according to pediatric protocols. Assumed risks of toxicities and associated delays in treatment have played a role in setting upper age limits. The aim of this study was to examine the toxicity profile and treatment delays in NOPHO ALL2008 comparing children and adults. We collected information on 19 treatment-related toxicities, systematically captured at 3-month intervals throughout therapy, and time intervals between 12 consecutive treatment phases for 1076 patients aged 1-45 yrs treated according to the Nordic/Baltic ALL2008 protocol. No adults died during induction. The duration of induction therapy and postinduction treatment phases did not differ between children and adults, except for patients 18-45 yrs being significantly delayed during two of nine high-risk blocks (median number of days for patients 1-9, 10-17, and 18-45 yrs; the glucocorticosteroid/antimetabolite-based block B1: 24, 26, and 29 d, respectively, P = 0.001, and Block 5 (in most cases also a B block): 29, 29, and 37 d, respectively, P = 0.02). A higher incidence of thrombosis with increasing age was found; highest odds ratio 5.4 (95% CI: (2.6;11.0)) for patients 15-17 yrs compared with children 1-9 yrs (P < 0.0001). Risk of avascular osteonecrosis was related to age with the highest OR for patients 10-14 yrs (OR = 10.4 (95% CI: (4.4;24.9)), P < 0.0001). Adults followed and tolerated the NOPHO ALL2008 protocol virtually as well as children, although thrombosis and avascular osteonecrosis was most common among adolescents. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  8. Toxin levels and profiles in microalgae from the north-Western Adriatic Sea--15 years of studies on cultured species.

    PubMed

    Pistocchi, Rossella; Guerrini, Franca; Pezzolesi, Laura; Riccardi, Manuela; Vanucci, Silvana; Ciminiello, Patrizia; Dell'Aversano, Carmela; Forino, Martino; Fattorusso, Ernesto; Tartaglione, Luciana; Milandri, Anna; Pompei, Marinella; Cangini, Monica; Pigozzi, Silvia; Riccardi, Elena

    2012-01-01

    The Northern Adriatic Sea is the area of the Mediterranean Sea where eutrophication and episodes related to harmful algae have occurred most frequently since the 1970s. In this area, which is highly exploited for mollusk farming, the first occurrence of human intoxication due to shellfish consumption occurred in 1989, nearly 10 years later than other countries in Europe and worldwide that had faced similar problems. Until 1997, Adriatic mollusks had been found to be contaminated mostly by diarrhetic shellfish poisoning toxins (i.e., okadaic acid and dinophysistoxins) that, along with paralytic shellfish poisoning toxins (i.e., saxitoxins), constitute the most common marine biotoxins. Only once, in 1994, a toxic outbreak was related to the occurrence of paralytic shellfish poisoning toxins in the Adriatic coastal waters. Moreover, in the past 15 years, the Adriatic Sea has been characterized by the presence of toxic or potentially toxic algae, not highly widespread outside Europe, such as species producing yessotoxins (i.e., Protoceratium reticulatum, Gonyaulax spinifera and Lingulodinium polyedrum), recurrent blooms of the potentially ichthyotoxic species Fibrocapsa japonica and, recently, by blooms of palytoxin-like producing species of the Ostreopsis genus. This review is aimed at integrating monitoring data on toxin spectra and levels in mussels farmed along the coast of the Emilia-Romagna region with laboratory studies performed on the species involved in the production of those toxins; toxicity studies on toxic or potentially toxic species that have recently appeared in this area are also reviewed. Overall, reviewed data are related to: (i) the yessotoxins producing species P. reticulatum, G. spinifera and L. polyedrum, highlighting genetic and toxic characteristics; (ii) Adriatic strains of Alexandrium minutum, Alexandrium ostenfeldii and Prorocentrum lima whose toxic profiles are compared with those of strains of different geographic origins; (iii) F. japonica and Ostreopsis cf. ovata toxicity. Moreover, new data concerning domoic acid production by a Pseudo-nitzschia multistriata strain, toxicity investigations on a Prorocentrum cf. levis, and on presumably ichthyotoxic species, Heterosigma akashiwo and Chattonella cf. subsalsa, are also reported.

  9. Toxin Levels and Profiles in Microalgae from the North-Western Adriatic Sea—15 Years of Studies on Cultured Species

    PubMed Central

    Pistocchi, Rossella; Guerrini, Franca; Pezzolesi, Laura; Riccardi, Manuela; Vanucci, Silvana; Ciminiello, Patrizia; Dell’Aversano, Carmela; Forino, Martino; Fattorusso, Ernesto; Tartaglione, Luciana; Milandri, Anna; Pompei, Marinella; Cangini, Monica; Pigozzi, Silvia; Riccardi, Elena

    2012-01-01

    The Northern Adriatic Sea is the area of the Mediterranean Sea where eutrophication and episodes related to harmful algae have occurred most frequently since the 1970s. In this area, which is highly exploited for mollusk farming, the first occurrence of human intoxication due to shellfish consumption occurred in 1989, nearly 10 years later than other countries in Europe and worldwide that had faced similar problems. Until 1997, Adriatic mollusks had been found to be contaminated mostly by diarrhetic shellfish poisoning toxins (i.e., okadaic acid and dinophysistoxins) that, along with paralytic shellfish poisoning toxins (i.e., saxitoxins), constitute the most common marine biotoxins. Only once, in 1994, a toxic outbreak was related to the occurrence of paralytic shellfish poisoning toxins in the Adriatic coastal waters. Moreover, in the past 15 years, the Adriatic Sea has been characterized by the presence of toxic or potentially toxic algae, not highly widespread outside Europe, such as species producing yessotoxins (i.e., Protoceratium reticulatum, Gonyaulax spinifera and Lingulodinium polyedrum), recurrent blooms of the potentially ichthyotoxic species Fibrocapsa japonica and, recently, by blooms of palytoxin-like producing species of the Ostreopsis genus. This review is aimed at integrating monitoring data on toxin spectra and levels in mussels farmed along the coast of the Emilia-Romagna region with laboratory studies performed on the species involved in the production of those toxins; toxicity studies on toxic or potentially toxic species that have recently appeared in this area are also reviewed. Overall, reviewed data are related to: (i) the yessotoxins producing species P. reticulatum, G. spinifera and L. polyedrum, highlighting genetic and toxic characteristics; (ii) Adriatic strains of Alexandrium minutum, Alexandrium ostenfeldii and Prorocentrum lima whose toxic profiles are compared with those of strains of different geographic origins; (iii) F. japonica and Ostreopsis cf. ovata toxicity. Moreover, new data concerning domoic acid production by a Pseudo-nitzschia multistriata strain, toxicity investigations on a Prorocentrum cf. levis, and on presumably ichthyotoxic species, Heterosigma akashiwo and Chattonella cf. subsalsa, are also reported. PMID:22363227

  10. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    PubMed

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641; http://dx.doi.org/10.1289/ehp.1509763.

  11. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data

    PubMed Central

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2015-01-01

    Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634–641; http://dx.doi.org/10.1289/ehp.1509763 PMID:26383846

  12. Literature-based compound profiling: application to toxicogenomics.

    PubMed

    Frijters, Raoul; Verhoeven, Stefan; Alkema, Wynand; van Schaik, René; Polman, Jan

    2007-11-01

    To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action.

  13. Antioxidant and antihyperlipidemic effect of Solanum nigrum fruit extract on the experimental model against chronic ethanol toxicity

    PubMed Central

    Arulmozhi, Vadivel; Krishnaveni, Mani; Karthishwaran, Kandhan; Dhamodharan, Ganesan; Mirunalini, Sankaran

    2010-01-01

    The possible protective effect of Solanum nigrum fruit extract (SNFEt) was investigated for its antioxidant and antihyperlipidemic activity against ethanol-induced toxicity in rats. The experimental animals were intoxicated with 20% ethanol (7.9 g/kg/day) for 30 days via gastric intubation. SNFEt was administered at the dose of 250 mg/kg body weight along with the daily dose of ethanol for 30 days. From the result it was observed that ethanol-induced rats showed a significant elevation in the levels of Thiobarbituric acid reactive substances (TBARS), which lowered the antioxidant defense systems, such as, reduced glutathione (GSH) and vitamins C and E, when compared to the controls. In the lipid profiles, the levels of total cholesterol (TC), triglycerides (TG), low density lipoproteins (LDL), very low density lipoproteins (VLDL), free fatty acids (FFA), and phospholipids were significantly elevated in the ethanol-induced group, whereas, the high density lipoproteins (HDL) were found to be reduced in the plasma, and the phospholipid levels were significantly decreased in the tissues. Supplementation of SNFEt improved the antioxidant status by decreasing the levels of TBARS and altering the lipid profiles to near normal. These activities were also compared to the standard drug silymarin (25 mg/kg body weight). Thus the findings of the present study indicated a significant antioxidant and antihyperlipidemic activity of Solanum nigrum fruits, which offered protection against ethanol-induced toxicity. PMID:20548935

  14. TIME COURSE OF CHOLINESTERASE INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL CARBOFURAN, FORMETANATE, METHOMYL, METHIOCARB, OXAMYL ON PROPOXUR.

    EPA Science Inventory

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n=4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); ...

  15. Experience with ibrutinib for first-line use in patients with chronic lymphocytic leukemia.

    PubMed

    Itchaki, Gilad; Brown, Jennifer R

    2018-01-01

    Ibrutinib is the first in-class, orally administered, Bruton's tyrosine kinase (BTK) inhibitor that abrogates the critical signaling downstream of the B-cell receptor (BCR). This signaling is required for B-cell survival, proliferation and interaction with the microenvironment. Ibrutinib proved active in preclinical models of lymphoproliferative diseases and achieved impressive response rates in heavily pretreated relapsed and refractory (R/R) patients with chronic lymphocytic leukemia (CLL). Ibrutinib prolonged survival compared to standard therapy and mitigated the effect of most poor prognostic factors in CLL, thus becoming the main therapeutic option in high-risk populations. Moreover, compared with standard chemoimmunotherapy (CIT) for adults, ibrutinib causes fewer cytopenias and infections, while having its own unique toxicity profile. Its efficacy in relapsed patients as well as its tolerability have led to its increased use in previously untreated patients, especially in those with poor prognostic markers and/or the elderly. This review elaborates on ibrutinib's unique toxicity profile and the mechanisms of acquired resistance leading to progression on ibrutinib, since both are critical for understanding the obstacles to its first-line use. We will further evaluate the data from ongoing clinical trials in this setting and explore future options for combination therapy.

  16. Proteome Profiling of BEAS-2B Cells Treated with Titanium Dioxide Reveals Potential Toxicity of and Detoxification Pathways for Nanomaterial

    EPA Science Inventory

    Oxidative stress is known to play important roles in nanomaterial-induced toxicities. However, the proteins and signaling pathways associated with nanomaterial-mediated oxidative stress and toxicity are largely unknown. To identify oxidative stress-responding toxicity pathways an...

  17. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Titanium Dioxide Nanoparticles

    EPA Science Inventory

    Oxidative stress is known to play important roles in engineered nanomaterial induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial mediated oxidative stress and toxicity are largely unknown. To identify these toxicity ...

  18. In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects

    PubMed Central

    Cronin, Mark T.D.; Enoch, Steven J.; Mellor, Claire L.; Przybylak, Katarzyna R.; Richarz, Andrea-Nicole; Madden, Judith C.

    2017-01-01

    In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given. PMID:28744348

  19. In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects.

    PubMed

    Cronin, Mark T D; Enoch, Steven J; Mellor, Claire L; Przybylak, Katarzyna R; Richarz, Andrea-Nicole; Madden, Judith C

    2017-07-01

    In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given.

  20. Comparative toxicities of 3 platinum-containing chemotherapy regimens in relapsed/refractory lymphoma patients.

    PubMed

    Tixier, F; Ranchon, F; Iltis, A; Vantard, N; Schwiertz, V; Bachy, E; Bouafia-Sauvy, F; Sarkozy, C; Tournamille, J F; Gyan, E; Salles, G; Rioufol, C

    2017-12-01

    Optimal salvage chemotherapy regimen for patients with relapsed or refractory Hodgkin and non-Hodgkin lymphoma remains unclear but often based on platinum regimens. This retrospective study assesses in real life the toxicities profiles of patients with relapsed or refractory lymphoma treated with DHA (dexamethasone, high dose aracytine cytarabine) plus platinum salt (dexamethasone-High dose aracytine (cis)platin (DHAP), dexamethasone-High dose aracytine carboplatin (DHAC), or dexamethasone-High dose aracytine Oxaliplatin (DHAOX)), from February 2007 to May 2013 in 2 French hospitals. Toxicities were recorded from medical files and assessed according to the National Cancer Institute Common Toxicity Criteria version 3.0. Potential risk factors of renal insufficiency were tested by univariate analyses. A total of 276 patients were treated: 168 with DHAP (60.9%), 79 with DHAOX (28.6%), and 29 with DHAC (10.5%). Rituximab was associated in 80.1% of patients (n = 221). Renal failure was reported in 97 patients, mainly with cisplatin regimen (86.6%) leading to 8.9% grade III to IV renal failure (P = .001). Renal insufficiency was reversible in most patients but remained persistent in 24, with all of them being treated with DHAP except 1. Cisplatin-based regimen (50.0% versus 12.0%, P < .05) and female (44.6% versus 29.7%, P < .05) appeared to be at higher risks of renal failure. Platinum cumulative dose is a significant risk factor of nephrotoxicity. Hematologic toxicity was more frequent with carboplatin and cisplatin with at least 1 event (all toxicity grade) respectively in 79.3% and 71.4% of patients treated (P < .005). Auditory toxicity was mainly reported with cisplatin (n = 19; 4 grade I-II and 15 grade III-IV). Oxaliplatin was implicated in 77.6% of neurotoxicity (n = 59), mainly moderate (grade I-II). In conclusion, DHAOX and DHAC regimens have more favorable toxicity profile than DHAP regimen. Their lack of renal toxicity makes them attractive regimens, which may be interesting for patients eligible for autologous stem cell transplantation. Nevertheless, these results have to be confirmed by the therapeutic efficacy of these 3 regimens. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Pharmacology-based toxicity assessment: towards quantitative risk prediction in humans.

    PubMed

    Sahota, Tarjinder; Danhof, Meindert; Della Pasqua, Oscar

    2016-05-01

    Despite ongoing efforts to better understand the mechanisms underlying safety and toxicity, ~30% of the attrition in drug discovery and development is still due to safety concerns. Changes in current practice regarding the assessment of safety and toxicity are required to reduce late stage attrition and enable effective development of novel medicines. This review focuses on the implications of empirical evidence generation for the evaluation of safety and toxicity during drug development. A shift in paradigm is needed to (i) ensure that pharmacological concepts are incorporated into the evaluation of safety and toxicity; (ii) facilitate the integration of historical evidence and thereby the translation of findings across species as well as between in vitro and in vivo experiments and (iii) promote the use of experimental protocols tailored to address specific safety and toxicity questions. Based on historical examples, we highlight the challenges for the early characterisation of the safety profile of a new molecule and discuss how model-based methodologies can be applied for the design and analysis of experimental protocols. Issues relative to the scientific rationale are categorised and presented as a hierarchical tree describing the decision-making process. Focus is given to four different areas, namely, optimisation, translation, analytical construct and decision criteria. From a methodological perspective, the relevance of quantitative methods for estimation and extrapolation of risk from toxicology and safety pharmacology experimental protocols, such as points of departure and potency, is discussed in light of advancements in population and Bayesian modelling techniques (e.g. non-linear mixed effects modelling). Their use in the evaluation of pharmacokinetics (PK) and pharmacokinetic-pharmacodynamic relationships (PKPD) has enabled great insight into the dose rationale for medicines in humans, both in terms of efficacy and adverse events. Comparable benefits can be anticipated for the assessment of safety and toxicity profile of novel molecules. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Novel potent pyridoxine-based inhibitors of AChE and BChE, structural analogs of pyridostigmine, with improved in vivo safety profile.

    PubMed

    Strelnik, Alexey D; Petukhov, Alexey S; Zueva, Irina V; Zobov, Vladimir V; Petrov, Konstantin A; Nikolsky, Evgeny E; Balakin, Konstantin V; Bachurin, Sergey O; Shtyrlin, Yurii G

    2016-08-15

    We report a novel class of carbamate-type ChE inhibitors, structural analogs of pyridostigmine. A small library of congeneric pyridoxine-based compounds was designed, synthesized and evaluated for AChE and BChE enzymes inhibition in vitro. The most active compounds have potent enzyme inhibiting activity with IC50 values in the range of 0.46-2.1μM (for AChE) and 0.59-8.1μM (for BChE), with moderate selectivity for AChE comparable with that of pyridostigmine and neostigmine. Acute toxicity studies using mice models demonstrated excellent safety profile of the obtained compounds with LD50 in the range of 22-326mg/kg, while pyridostigmine and neostigmine are much more toxic (LD50 3.3 and 0.51mg/kg, respectively). The obtained results pave the way to design of novel potent and safe cholinesterase inhibitors for symptomatic treatment of neuromuscular disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. An effective assessment of valproate sodium-induced hepatotoxicity with UPLC-MS and (1)HNMR-based metabonomics approach.

    PubMed

    Huo, Taoguang; Chen, Xi; Lu, Xiumei; Qu, Lianyue; Liu, Yang; Cai, Shuang

    2014-10-15

    Valproate sodium is one of the most prescribed antiepileptic drugs. However, valproate sodium has various side effects, especially its toxicity on liver. Current markers for toxicity reflect mostly the late stages of tissue damage; thus, more efficient methods for toxicity evaluation are desired. To evaluate the toxicity of valproate sodium on liver, we performed both UPLC-MS and (1)HNMR-based metabonomics analysis of serum samples from 34 epileptic patients (age: 42.0±18.6, 18 male/16 female) after valproate sodium treatment. Compared to conventional markers, the serum metabolic profiles provided clear distinction of the valproate sodium induced normal liver function and abnormal liver function in epileptic patients. Through multivariate statistical analysis, we identified marker metabolites associated with the hepatotoxicity induced by valproate sodium, such as glucose, lactate, acetoacetate, VLDL/LDL, lysophosphatidylcholines, phosphatidylcholines, choline, creatine, amino acids, N-acetyl glycoprotein, pyruvate and uric acid. This metabonomics approach may provide effective way to evaluate the valproate sodium-induced toxicity in a manner that can complement current measures. This approach is expected to find broader application in other drug-induced toxicity assessment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Low-dose fotemustine as second-line chemotherapy for recurrent glioblastoma multiforme.

    PubMed

    De Felice, Francesca; Bulzonetti, Nadia; Musio, Daniela; D'Elia, Alessandro; Salvati, Maurizio; Tombolini, Vincenzo

    2013-09-01

    To test if fotemustine administrated at low doses during the maintenance phase of gioblastoma therapy could improve the toxicity profile, without reducing progression-free survival at six months (PFS-6). Patients enrolled were affected by recurrent glioblastoma multiforme, proven by magnetic resonance imaging (MRI), at least six months after radiochemotherapy completion. Fotemustine was administered at an induction dose of 100 mg/m(2) followed by a maintenance dose of 75 mg/m(2). All 15 patients completed the induction phase. Eight patients began maintenance-phase therapy and received a median of three cycles (range=2-6). Grade 3 or more haematological toxicity was not documented. The PFS-6 was 5/15 and the median overall survival was 7.5 months. Haematological toxicity compares favourably with trials using the conventional scheme: no grade 3-4 adverse effects were recorded. This low-dose approach could be considered a compromise treatment whilst waiting for definitive standardization of second-line therapy, in order to reduce severe hematological toxicity.

  5. Profiling Developmental Toxicity of 387 Environmental Chemicals using EPA’s Toxicity Reference Database (ToxRefDB)

    EPA Science Inventory

    EPA's Toxicity Reference Databases (ToxRefDB) was developed by the National Center for Computational Toxicology in partnership with EPA's Office of Pesticide Programs, to store data derived from in vivo animal toxicity studies [www.epa.gov/ncct/toxrefdb/]. The initial build of To...

  6. Update on ropivacaine.

    PubMed

    Wang, R D; Dangler, L A; Greengrass, R A

    2001-12-01

    Long-acting local anaesthetics are primarily used in the practice of anaesthesia, particularly in regional anaesthesia and analgesia. Ropivacaine is a new long-acting local anaesthetic that has been the focus of interest because of its increased cardiovascular safety compared with bupivacaine. Other advantages of ropivacaine over bupivacaine include a greater sensorimotor differential block and shorter elimination half-life (t(1/2)), with a lower potential for accumulation. The most important attribute of ropivacaine, however, is its increased margin of safety compared with bupivacaine when given in equal doses. Many post-marketing studies have focused on the comparisons of efficacy in blocks and toxicity profiles of bupivacaine versus ropivacaine. Recent animal toxicity studies confirm the results of original studies showing that ropivacaine has less cardiovascular toxicity than bupivacaine with respect to direct myocardial depression, success of resuscitation and arrhythmogenic potential when given in equal doses. Reduced cardiotoxicity may be a distinct characteristic of ropivacaine. A review of current literature suggests that, at clinically relevant doses, ropivacaine provides the lowest potential risk of cardiotoxicity for inadvertent intravascular injection. Studies are currently under way comparing ropivacaine with levobupivacaine, the latest addition to the group of long-acting local anaesthetics.

  7. Gene Expression Analysis Reveals New Possible Mechanisms of Vancomycin-Induced Nephrotoxicity and Identifies Gene Markers Candidates

    PubMed Central

    Dieterich, Christine; Puey, Angela; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C.; Ng, Hanna H.

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription–polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury. PMID:18930951

  8. Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates.

    PubMed

    Dieterich, Christine; Puey, Angela; Lin, Sylvia; Lyn, Sylvia; Swezey, Robert; Furimsky, Anna; Fairchild, David; Mirsalis, Jon C; Ng, Hanna H

    2009-01-01

    Vancomycin, one of few effective treatments against methicillin-resistant Staphylococcus aureus, is nephrotoxic. The goals of this study were to (1) gain insights into molecular mechanisms of nephrotoxicity at the genomic level, (2) evaluate gene markers of vancomycin-induced kidney injury, and (3) compare gene expression responses after iv and ip administration. Groups of six female BALB/c mice were treated with seven daily iv or ip doses of vancomycin (50, 200, and 400 mg/kg) or saline, and sacrificed on day 8. Clinical chemistry and histopathology demonstrated kidney injury at 400 mg/kg only. Hierarchical clustering analysis revealed that kidney gene expression profiles of all mice treated at 400 mg/kg clustered with those of mice administered 200 mg/kg iv. Transcriptional profiling might thus be more sensitive than current clinical markers for detecting kidney damage, though the profiles can differ with the route of administration. Analysis of transcripts whose expression was changed by at least twofold compared with vehicle saline after high iv and ip doses of vancomycin suggested the possibility of oxidative stress and mitochondrial damage in vancomycin-induced toxicity. In addition, our data showed changes in expression of several transcripts from the complement and inflammatory pathways. Such expression changes were confirmed by relative real-time reverse transcription-polymerase chain reaction. Finally, our results further substantiate the use of gene markers of kidney toxicity such as KIM-1/Havcr1, as indicators of renal injury.

  9. [Evaluation of Brodifacoum-induced Toxicity by Metabonomics Approach Based on HPLC-TOF-MS].

    PubMed

    Yan, H; Zhuo, X Y; Shen, B H; Xiang, P; Shen, M

    2017-06-01

    To analyse the metabolic changes in urine of rats with brodifacoum intoxication, and to reveal the molecular mechanism of brodifacoum-induced toxicity on rats. By establishing a brodifacoum poisoning rats model, the urine metabolic profiling data of rats were acquired using high performance liquid chromatography-time of flight mass spectrometry (HPLC-TOF-MS). The orthogonal partial least squares analysis-discrimination analysis (OPLS-DA) was applied for the multivariate statistics and the discovery of differential metabolites closely related to toxicity of brodifacoum. OPLS-DA score plot showed that the urinary metabolic at different time points before and after drug administration had good similarity within time period and presented clustering phenomenon. Comparing the urine samples of rats before drug administration with which after drug administration, twenty-two metabolites related to brodifacoum-induced toxicity were selected. The toxic effect of brodifacoum worked by disturbing the metabolic pathways in rats such as tricarboxylic cycle, glycolysis, sphingolipid metabolism and tryptophan metabolism, and the toxicity of brodifacoum is characterized of accumulation effect. The metabonomic method based on urine HPLC-TOF-MS can provide a novel insight into the study on molecular mechanism of brodifacoum-induced toxicity. Copyright© by the Editorial Department of Journal of Forensic Medicine

  10. TIME COURSE AND DOSE RESPONSE ASSESSMENT OF CHOLINESTERASE (CHE) INHIBITION IN ADULT RATS TREATED ACUTELY WITH CARBARYL, METHOMYL, METHIOCARB, OXAMYL, OR PROPOXUR.

    EPA Science Inventory

    To compare the toxicity of 5 N-methyl carbamates, the time course and dose response profiles for ChE inhibition were established for each. For the time course comparison, adult male Long Evans rats (n=5 dose group) were dosed orally with either carbaryl (CB; 30 mg/kg in corn oi...

  11. Assessment of heavy metals contamination in soil profiles of roadside Suaeda salsa wetlands in a Chinese delta

    NASA Astrophysics Data System (ADS)

    Wen, Xiaojun; Wang, Qinggai; Zhang, Guangliang; Bai, Junhong; Wang, Wei; Zhang, Shuai

    2017-02-01

    Five sampling sites (Sites A, B, C, D and E) were selected along a 250 m sampling zone covered by Suaeda salsa, which is perpendicular to a road, in the Yellow River Delta of China. Soil samples were collected to a depth of 40cm in these five sampling sites to investigate the profile distributions and toxic risks of heavy metals. Concentrations of heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were determined using inductively coupled plasma atomic absorption spectrometry (ICP-AAS). The results showed that in each sampling site, Cd, Cu, Pb and Zn have approximately constant concentrations along soil profiles and did not show high contamination compared with the values of probable effect levels (PELs). All soils exhibited As and Ni contamination at all sampling sites compared with other heavy metals. The index of geo-accumulation (Igeo) values for As in the 20-30 cm soil layer at Site B was grouped into Class Ⅳ(2 < Igeo ≤ 3), indicating that the soil was moderately to strongly contaminated. Forty percent of Igeo values of Cd for all soil samples were grouped into Class Ⅳ(2 < Igeo ≤ 3) and 75% samples of Site C showed moderately to strongly contaminated level. The Enrichment factor (EF) values of As at Sites B, C, D and E reached significant enrichment level and EF values of Cd at five sampling sites all reached significant enrichment level. The sum of toxic units (∑TUs) values for surface soils of Sites B and C beyond 4 indicated that Sites B and C have severer toxicity compared with other three sampling sites. As and Ni should be paid more attention to avoid potential ecotoxicity due to their high contribution ratios to the ∑TUs in Suaeda salsa wetlands. Correlation analysis (CA) and principal components analysis (PCA) revealed that Cr, Cu, Ni, Pb and Zn might derive from the common sources, Cd might originate from another, while As might have more complex sources in this study area.

  12. Efficacy and toxicity of a paediatric protocol in teenagers and young adults with Philadelphia chromosome negative acute lymphoblastic leukaemia: results from UKALL 2003.

    PubMed

    Hough, Rachael; Rowntree, Clare; Goulden, Nick; Mitchell, Chris; Moorman, Anthony; Wade, Rachel; Vora, Ajay

    2016-02-01

    Despite the substantial outcome improvements achieved in paediatric acute lymphoblastic leukaemia (ALL), survival in teenage and young adult (TYA) patients has remained inferior. We report the treatment outcomes and toxicity profiles observed in TYA patients treated on the UK paediatric ALL trial, UKALL2003. UKALL2003 was a multi-centre, prospective, randomized phase III trial, investigating treatment intensification or de-escalation according to minimal residual disease (MRD) kinetics at the end of induction. Of 3126 patients recruited to UKALL2003, 229 (7·3%) were aged 16-24 years. These patients were significantly more likely to have high risk MRD compared to 10-15 year olds (47·9% vs. 36·6%, P = 0·004). Nonetheless, 5-year event-free survival for the TYA cohort (aged 16-24 years) was 72·3% [95% confidence interval (CI): 66·2-78·4] overall and 92·6% (95% CI: 85·5-99·7) for MRD low risk patients. The risk of serious adverse events was higher in patients aged ≥10 years compared to those aged 9 or younger (P < 0·0001) and novel age-specific patterns of treatment-related toxicity were observed. TYA patients obtain excellent outcomes with a risk- and response-adapted paediatric chemotherapy protocol. Whilst those aged 10 years and older have excess toxicity compared with younger patients, the age association is specific to individual toxicities. © 2015 John Wiley & Sons Ltd.

  13. Oxaliplatin-Based Doublets Versus Cisplatin or Carboplatin-Based Doublets in the First-Line Treatment of Advanced Nonsmall Cell Lung Cancer.

    PubMed

    Yu, Jing; Xiao, Jing; Yang, Yifan; Cao, Bangwei

    2015-07-01

    The efficacy and toxicity of oxaliplatin-based versus carboplatin/cisplatin-based doublets in patients with previously untreated nonsmall cell lung cancer (NSCLC) have been compared.We searched published randomized controlled trials of oxaliplatin-based or carboplatin/cisplatin-based medications for NSCLC. A fixed effect model was used to analyze outcomes which were expressed as the hazard ratio for overall survival (OS) and time-to-progression (TTP), relative risk, overall response rate (ORR), disease control rate (DCR), 1-year survival, and the odds ratios for toxicity were pooled.Eight studies involving 1047 patients were included. ORR tended to favor carboplatin/cisplatin but the effect was not significantly different compared with oxaliplatin doublets (P = 0.05). The effects of OS, TTP, DCR, and 1-year survival between the 2 regimens were comparable. Oxaliplatin doublets caused less grade 3/4 leukocytopenia and neutropenia. Grades 3 to 4 nonhematological toxicities and grades 3 to 4 hematological toxicities showed little difference between oxaliplatin doublets and carboplatin/cisplatin doublets.Meta-analysis shows that the efficacy of oxaliplatin doublets is similar to that of other currently used platinum doublets. The lack of significant differences in the statistic analysis does not preclude genuine differences in clinical efficacy, because higher diversities between the studies covered differences between the 2 groups in each study. Oxaliplatin combined with a third-generation agent should be considered for use as alternative chemotherapy in patients who cannot tolerate conventional platinum-based regimens because the toxicity profile is much more favorable.

  14. GENE EXPRESSION PROFILING IN TESTIS AND LIVER OF MICE TO IDENTIFY MODES OF ACTION OF CONAZOLE TOXICITIES

    EPA Science Inventory

    Gene Expression Profiling in Testis and Liver of Mice to Identify MODES OF ACTION OF Conazole TOXICITies

    Amber K. Goetz1, Wenjun Bao2, Judith E. Schmid2, Carmen Wood2, Hongzu Ren2, Deborah S. Best2, Rachel N. Murrell1, John C. Rockett2, Michael G. Narotsky2, Douglas C. Wol...

  15. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    PubMed Central

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  16. Conclusions of the expert panel: importance of erlotinib as a second-line therapeutic option

    PubMed Central

    Castagnari, Aldo

    2008-01-01

    During the Experts Meeting on Lung Cancer, participants emphasized the usefulness of erlotinib as second-line therapy for lung cancer. They noted that, although there are no comparative studies, erlotinib could be as effective as docetaxel and pemetrexed in second-line therapy. Regarding the toxicity profile of each of these drugs – one of the key issues considered in the meeting – specialists pointed out how important it is to clearly identify existing differences in this issue. Each drug has different degrees of toxicity, and this information is crucial at the time of choosing the therapeutic regimen. Erlotinib treatment could be an effective option for second-line therapy. PMID:18831720

  17. Class act: safety comparison of approved tyrosine kinase inhibitors for non-small-cell lung carcinoma.

    PubMed

    Burotto, Mauricio; Ali, Syed Abbas; O'Sullivan Coyne, Geraldine

    2015-01-01

    The past decade has seen the development and widespread use of tyrosine kinase inhibitors (TKIs) targeting a mutated EGFR (mEGFR) for the treatment of metastatic NSCLC. We discuss the main properties of the TKIs currently recommended for the treatment of mEGFR NSCLC: gefitinib, erlotinib and afatinib. The mechanism of action, pharmacodynamics and pharmacokinetics of these drugs, with emphasis on the historical context of their preclinical and clinical development, will be covered, including potential resistance mechanisms to these first-generation TKIs that has driven the trial design for second and third generations of EGFR inhibitors. Six Phase III clinical trials comparing these three TKIs with cisplatin-based chemotherapy upfront for mEGFR NSCLC provide the basis for the comparative safety and toxicity analysis between these agents. Class-related toxicity of these EGFR inhibitors, including life-threatening effects, will be discussed. Toxicity and safety analysis from the Phase III trials of these agents in mEGFR populations suggests that afatinib has more frequent and severe side effects. Given that an efficacy advantage has not yet been demonstrated for afatinib over erlotinib and gefitinib, the consistent class toxicity profile of these agents means that gefitinib and erlotinib are a safer first-line treatment recommendation.

  18. Dose-finding designs for trials of molecularly targeted agents and immunotherapies

    PubMed Central

    Chiuzan, Cody; Shtaynberger, Jonathan; Manji, Gulam A.; Duong, Jimmy K.; Schwartz, Gary K.; Ivanova, Anastasia; Lee, Shing M.

    2017-01-01

    Recently, there has been a surge of early phase trials of molecularly targeted agents (MTAs) and immunotherapies. These new therapies have different toxicity profiles compared to cytotoxic therapies. MTAs can benefit from new trial designs that allow inclusion of low-grade toxicities, late-onset toxicities, addition of an efficacy endpoint, and flexibility in the specification of a target toxicity probability. To study the degree of adoption of these methods, we conducted a Web of Science search of articles published between 2008 and 2014 that describe phase 1 oncology trials. Trials were categorized based on the dose-finding design used and the type of drug studied. Out of 1,712 dose-finding trials that met our criteria, 1,591 (92.9%) utilized a rule-based design, and 92 (5.4%; range 2.3% in 2009 to 9.7% in 2014) utilized a model-based or novel design. Over half of the trials tested an MTA or immunotherapy. Among the MTA and immunotherapy trials, 5.8% used model-based methods, compared to 3.9% and 8.3% of the chemotherapy or radiotherapy trials, respectively. While the percentage of trials using novel dose-finding designs has tripled since 2007, only 7.1% of trials use novel designs. PMID:28166468

  19. Extensive in vitro gastrointestinal digestion markedly reduces the immune-toxicity of Triticum monococcum wheat: implication for celiac disease.

    PubMed

    Gianfrani, Carmen; Camarca, Alessandra; Mazzarella, Giuseppe; Di Stasio, Luigia; Giardullo, Nicola; Ferranti, Pasquale; Picariello, Gianluca; Rotondi Aufiero, Vera; Picascia, Stefania; Troncone, Riccardo; Pogna, Norberto; Auricchio, Salvatore; Mamone, Gianfranco

    2015-09-01

    The ancient diploid Triticum monococcum is of special interest as a candidate low-toxic wheat species for celiac disease patients. Here, we investigated how an in vitro gastro-intestinal digestion, affected the immune toxic properties of gliadin from diploid compared to hexaploid wheat. Gliadins from Triticum monococcum, and Triticum aestivum cultivars were digested using either a partial proteolysis with pepsin-chymotrypsin, or an extensive degradation that used gastrointestinal enzymes including the brush border membrane enzymes. The immune stimulatory properties of the digested samples were investigated on T-cell lines and jejunal biopsies from celiac disease patients. The T-cell response profile to the Triticum monococcum gliadin was comparable to that obtained with Triticum aestivum gliadin after the partial pepsin-chymotrypsin digestion. In contrast, the extensive gastrointestinal hydrolysis drastically reduced the immune stimulatory properties of Triticum monococcum gliadin. MS-based analysis showed that several Triticum monococcum peptides, including known T-cell epitopes, were degraded during the gastrointestinal treatment, whereas many of Triticum aestivum gliadin survived the gastrointestinal digestion. The pattern of Triticum monococcum gliadin proteins is sufficiently different from those of common hexaploid wheat to determine a lower toxicity in celiac disease patients following in vitro simulation of human digestion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preclinical safety profile of trastuzumab emtansine (T-DM1): Mechanism of action of its cytotoxic component retained with improved tolerability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poon, Kirsten Achilles, E-mail: achilles.kirsten@gene.com; Flagella, Kelly; Beyer, Joseph

    2013-12-01

    Trastuzumab emtansine (T-DM1) is the first antibody-drug conjugate (ADC) approved for patients with human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. The therapeutic premise of ADCs is based on the hypothesis that targeted delivery of potent cytotoxic drugs to tumors will provide better tolerability and efficacy compared with non-targeted delivery, where poor tolerability can limit efficacious doses. Here, we present results from preclinical studies characterizing the toxicity profile of T-DM1, including limited assessment of unconjugated DM1. T-DM1 binds primate ErbB2 and human HER2 but not the rodent homolog c-neu. Therefore, antigen-dependent and non-antigen-dependent toxicity was evaluated in monkeysmore » and rats, respectively, in both single- and repeat-dose studies; toxicity of DM1 was assessed in rats only. T-DM1 was well tolerated at doses up to 40 mg/kg (∼ 4400 μg DM1/m{sup 2}) and 30 mg/kg (∼ 6000 μg DM1/m{sup 2}) in rats and monkeys, respectively. In contrast, DM1 was only tolerated up to 0.2 mg/kg (1600 μg DM1/m{sup 2}). This suggests that at least two-fold higher doses of the cytotoxic agent are tolerated in T-DM1, supporting the premise of ADCs to improve the therapeutic index. In addition, T-DM1 and DM1 safety profiles were similar and consistent with the mechanism of action of DM1 (i.e., microtubule disruption). Findings included hepatic, bone marrow/hematologic (primarily platelet), lymphoid organ, and neuronal toxicities, and increased numbers of cells of epithelial and phagocytic origin in metaphase arrest. These adverse effects did not worsen with chronic dosing in monkeys and are consistent with those reported in T-DM1-treated patients to date. - Highlights: • T-DM1 was well tolerated in preclinical studies in rats and cynomolgus monkeys. • T-DM1 is associated with bone marrow/hematologic, hepatic, and neuronal toxicities. • T-DM1 toxicities are related to DM1 mechanisms of action and pharmacologic activity. • When conjugated in T-DM1, higher doses of DM1 can be tolerated. • Antibody-drug conjugates may improve the therapeutic window for cytotoxic agents.« less

  1. Plasma metabolic profiling analysis of toxicity induced by brodifacoum using metabonomics coupled with multivariate data analysis.

    PubMed

    Yan, Hui; Qiao, Zheng; Shen, Baohua; Xiang, Ping; Shen, Min

    2016-10-01

    Brodifacoum is one of the most widely used rodenticides for rodent control and eradication; however, human and animal poisoning due to primary and secondary exposure has been reported since its development. Although numerous studies have described brodifacoum induced toxicity, the precise mechanism still needs to be explored. Gas chromatography mass spectrometry (GC-MS) coupled with an ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to characterize the metabolic profile of brodifacoum induced toxicity and discover potential biomarkers in rat plasma. The toxicity of brodifacoum was dose-dependent, and the high-dose group obviously manifested toxicity with subcutaneous hemorrhage. The blood brodifacoum concentration showed a positive relation to the ingestion dose in toxicological analysis. Significant changes of twenty-four metabolites were identified and considered as potential toxicity biomarkers, primarily involving glucose metabolism, lipid metabolism and amino acid metabolism associated with anticoagulant activity, nephrotoxicity and hepatic damage. MS-based metabonomics analysis in plasma samples is helpful to search for potential poisoning biomarkers and to understand the underlying mechanisms of brodifacoum induced toxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. ADME-Tox profiles of some food additives and pesticides

    NASA Astrophysics Data System (ADS)

    Craciun, Dana; Modra, Dorina; Isvoran, Adriana

    2015-12-01

    Within this study we compute the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADME-Tox) profiles of several commonly used food additives and some pesticides. As expected, all the food additives considered in this study provided to be safe, their ADME-Tox profiles indicating that they have a good oral bioavailability and they do not produce phosphoslipidosis. The ADME-Tox profiles of the pesticides indicate that, with a few exceptions, they are highly toxic (some of them being not approved in the EU, but still used in other countries) and may cause many diseases. Our results are in good agreement with published data concerning the considered food additives and pesticides revealing that the ADME-Tox profiling method may be successfully used to test other chemicals than drug candidates.

  3. Targeting Estrogen-Induced COX-2 Activity in Lymphangioleiomyomatosis (LAM)

    DTIC Science & Technology

    2013-10-01

    significant benefit in slowing LAM progression. The well-known side - effect and toxicity profile of these drugs make them attractive candidates for...well-known side - effect and toxicity profile of these drugs make them attractive candidates for long-term therapy in LAM patients. It is also possible...induced prostaglandin biosynthesis signature in TSC2- deficient cells in vitro and in vivo To examine the possible effects of estradiol on metabolic

  4. Urinary and Rectal Toxicity Profiles After Permanent Iodine-125 Implant Brachytherapy in Japanese Men: Nationwide J-POPS Multi-institutional Prospective Cohort Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Toshio, E-mail: ohashi@rad.med.keio.ac.jp; Yorozu, Atsunori; Saito, Shiro

    Purpose: To assess, in a nationwide multi-institutional cohort study begun in 2005 and in which 6927 subjects were enrolled by 2010, the urinary and rectal toxicity profiles of subjects who enrolled during the first 2 years, and evaluate the toxicity profiles for permanent seed implantation (PI) and a combination therapy with PI and external beam radiation therapy (EBRT). Methods and Materials: Baseline data for 2339 subjects out of 2354 patients were available for the analyses. Toxicities were evaluated using the National Cancer Institute's Common Terminology Criteria for Adverse Events, and the International Prostate Symptom Scores were recorded prospectively until 36 months after radiationmore » therapy. Results: Grade 2+ acute urinary toxicities developed in 7.36% (172 of 2337) and grade 2+ acute rectal toxicities developed in 1.03% (24 of 2336) of the patients. Grade 2+ late urinary and rectal toxicities developed in 5.75% (133 of 2312) and 1.86% (43 of 2312) of the patients, respectively. A higher incidence of grade 2+ acute urinary toxicity occurred in the PI group than in the EBRT group (8.49% vs 3.66%; P<.01). Acute rectal toxicity outcomes were similar between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late urinary toxicities were 6.04% versus 4.82% for the PI and the EBRT groups, respectively, with no significant differences between the treatment groups. The 3-year cumulative incidence rates for grade 2+ late rectal toxicities were 0.90% versus 5.01% (P<.01) for the PI and the EBRT groups, respectively. The mean of the postimplant International Prostate Symptom Score peaked at 3 months, but it decreased to a range that was within 2 points of the baseline score, which was observed in 1625 subjects (69.47%) at the 1-year follow-up assessment. Conclusions: The acute urinary toxicities observed were acceptable given the frequency and retention, and the late rectal toxicities were more favorable than those of other studies.« less

  5. An investigation of boron-toxicity in leaves of two citrus species differing in boron-tolerance using comparative proteomics.

    PubMed

    Sang, Wen; Huang, Zeng-Rong; Qi, Yi-Ping; Yang, Lin-Tong; Guo, Peng; Chen, Li-Song

    2015-06-18

    Limited data are available on boron (B)-toxicity-responsive proteins in plants. We first applied 2-dimensional electrophoresis (2-DE) to compare the effects of B-toxicity on leaf protein profiles in B-tolerant Citrus sinensis and B-intolerant Citrus grandis seedlings, and identified 27 (20) protein species with increased abundances and 23 (25) protein species with decreased abundances from the former (latter). Generally speaking, B-toxicity increased the abundances of protein species involved in antioxidation and detoxification, proteolysis, cell transport, and decreased the abundances of protein species involved in protein biosynthesis in the two citrus species. The higher B-tolerance of C. sinensis might include following several aspects: (a) protein species related to photosynthesis and energy metabolism in C. sinensis leaves were more adaptive to B-toxicity than in C. grandis ones, which was responsible for the higher photosynthesis and for the better maintenance of energy homeostasis in the former; and (b) the increased requirement for detoxification of reactive oxygen species and cytotoxic compounds due to decreased photosynthesis was less in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. B-toxicity-responsive protein species involved in coenzyme biosynthesis differed between the two species, which might also contribute to the higher B-tolerance of C. sinensis. B-toxicity occurs in many regions all over the world, especially in arid and semiarid regions due to the raising of B-rich water tables with high B accumulated in topsoil. In China, B-toxicity often occurs in some citrus orchards. However, the mechanisms of citrus B-tolerance are still not fully understood. Here, we first used 2-DE to identify some new B-toxicity-responsive-proteins involved in carbohydrate and energy metabolism, antioxidation and detoxification, signal transduction and nucleotide metabolism. Our results showed that proteins involved in photosynthesis and energy metabolism displayed more adaptive to B-toxicity in B-tolerant C. sinensis than in B-intolerant C. grandis, which might play a key role in citrus B-tolerance. Therefore, our results reveal some new mechanisms on plant B-response and tolerance. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems.

    PubMed

    Chatterjee, Nivedita; Yang, Ji Su; Park, Kwangsik; Oh, Seung Min; Park, Jeonggue; Choi, Jinhee

    2015-01-01

    The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nananomaterials (GFNs) in alternative in vitro and in vivo toxicity testing models. The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [NH2]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine>NH2>COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.

  7. Comparison and characterization of volatile compounds as markers of oils stability during frying by HS-SPME-GC/MS and Chemometric analysis.

    PubMed

    Ben Hammouda, Ibtissem; Freitas, Flavia; Ammar, Sonda; Da Silva, M D R Gomes; Bouaziz, Mohamed

    2017-11-15

    The formation and emission of volatile compounds, including the aldehydes and some toxic compounds of oil samples, ROPO pure (100%) and the blended ROPO/RCO (80-20%), were carried out during deep frying at 180°C. The volatile profile of both oil samples was evaluated by an optimized HS-SPME-GC/MS method, before and after 20, 40 and 60 successive sessions of deep-frying. Actually, from 100 detected compounds, aldehydes were found to be the main group formed. In addition, the oil degradation under thermal treatment regarding the volatile compounds were evaluated and compared. Consequently, the blended ROPO/RCO revealed fewer formations of unsaturated aldehydes, including toxic ones, such as acrolein, and showed a greater stability against oxidative thermal degradation compared to ROPO pure. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Behavioral, clinical, and pathological characterization of acid metalliferous water toxicity in mallards

    USGS Publications Warehouse

    Isanhart, J.P.; Wu, H.; Pandher, K.; MacRae, R.K.; Cox, S.B.; Hooper, M.J.

    2011-01-01

    From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ?? SE 127.9 ?? 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and kidney Cu concentrations were 23- and 6-fold greater, respectively, in SAMW mortalities compared with controls, whereas Cu concentrations in liver were not nearly as increased, suggesting that blood and kidney concentrations may be more useful than liver concentrations for diagnosing Cu toxicosis in wild birds. Based on these findings and other reports of AMW toxicity events in wild birds, we conclude that AMW bodies pose a significant hazard to wildlife that come in contact with them. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  9. Behavioral, clinical, and pathological characterization of acid metalliferous water toxicity in mallards

    USGS Publications Warehouse

    Isanhart, John P.; Wu, Hongmei; Pandher, Karamjeet; MacRae, Russell K.; Cox, Stephen B.; Hooper, Michael J.

    2011-01-01

    From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ± SE 127.9 ± 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and kidney Cu concentrations were 23- and 6-fold greater, respectively, in SAMW mortalities compared with controls, whereas Cu concentrations in liver were not nearly as increased, suggesting that blood and kidney concentrations may be more useful than liver concentrations for diagnosing Cu toxicosis in wild birds. Based on these findings and other reports of AMW toxicity events in wild birds, we conclude that AMW bodies pose a significant hazard to wildlife that come in contact with them.

  10. Behavioral, clinical, and pathological characterization of acid metalliferous water toxicity in mallards.

    PubMed

    Isanhart, John P; Wu, Hongmei; Pandher, Karamjeet; MacRae, Russell K; Cox, Stephen B; Hooper, Michael J

    2011-11-01

    From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ± SE 127.9 ± 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and kidney Cu concentrations were 23- and 6-fold greater, respectively, in SAMW mortalities compared with controls, whereas Cu concentrations in liver were not nearly as increased, suggesting that blood and kidney concentrations may be more useful than liver concentrations for diagnosing Cu toxicosis in wild birds. Based on these findings and other reports of AMW toxicity events in wild birds, we conclude that AMW bodies pose a significant hazard to wildlife that come in contact with them.

  11. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data

    EPA Science Inventory

    EPA's ToxCast™ project is profiling the in vitro bioactivity of chemicals to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesized that developmental toxicity in guideline animal studies captured in the ToxRefDB database wou...

  12. Profiling Chemicals Based on Chronic Toxicity Results from the U.S. EPA ToxRef Database

    EPA Science Inventory

    Thirty years of pesticide registration toxicity data have been historically stored as hardcopy and scanned documents by the U.S. Environmental Protection Agency (EPA) . A significant portion of these data have now been processed into standardized and structured toxicity data with...

  13. Major Pesticides Are More Toxic to Human Cells Than Their Declared Active Principles

    PubMed Central

    Spiroux de Vendômois, Joël; Séralini, Gilles-Eric

    2014-01-01

    Pesticides are used throughout the world as mixtures called formulations. They contain adjuvants, which are often kept confidential and are called inerts by the manufacturing companies, plus a declared active principle, which is usually tested alone. We tested the toxicity of 9 pesticides, comparing active principles and their formulations, on three human cell lines (HepG2, HEK293, and JEG3). Glyphosate, isoproturon, fluroxypyr, pirimicarb, imidacloprid, acetamiprid, tebuconazole, epoxiconazole, and prochloraz constitute, respectively, the active principles of 3 major herbicides, 3 insecticides, and 3 fungicides. We measured mitochondrial activities, membrane degradations, and caspases 3/7 activities. Fungicides were the most toxic from concentrations 300–600 times lower than agricultural dilutions, followed by herbicides and then insecticides, with very similar profiles in all cell types. Despite its relatively benign reputation, Roundup was among the most toxic herbicides and insecticides tested. Most importantly, 8 formulations out of 9 were up to one thousand times more toxic than their active principles. Our results challenge the relevance of the acceptable daily intake for pesticides because this norm is calculated from the toxicity of the active principle alone. Chronic tests on pesticides may not reflect relevant environmental exposures if only one ingredient of these mixtures is tested alone. PMID:24719846

  14. An in vitro cytotoxic approach to assess the toxicity of heavy metals and their binary mixtures on hippocampal HT-22 cell line.

    PubMed

    Karri, Venkatanaidu; Kumar, Vikas; Ramos, David; Oliveira, Eliandre; Schuhmacher, Marta

    2018-01-05

    Humans are exposed to a cocktail of heavy metal toxicants in the environment. Though heavy metals are deleterious, there is a paucity of information on the toxicity of mixtures. In this study, four common neurotoxicity heavy metals lead (Pb) cadmium (Cd), arsenic (As), and methylmercury (MeHg) were exposed individually and as mixtures to HT-22 cell line for 8days. The study established that low dose exposures induced toxicity to the HT-22 cell line during 8days. The results indicates potency dependent response, the toxicity of single metals on the HT-22 cells; MeHg > As > Cd > Pb. The cytotoxicity data of single metals were used to determine the mixtures interaction profile by using the dose additivity and effect additivity method. Metal mixtures showed higher toxicities compared to individual metals. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures in low dose exposure. The interactive responses of mixtures depend on the co-exposure metal and their respective concentration. We concluded that the combined effects should be considered in the risk assessment of heavy metal co-exposure and potency. In future, comprehensive mechanistic based investigations needed for understanding the real interactive mixtures effects at molecular level. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Case Study Approaches for Implementing the 2007 NRC Report “Toxicity Testing in the 21st Century: A Vision and A Strategy”

    PubMed Central

    Andersen, Melvin E.; Clewell, Harvey J.; Carmichael, Paul L.; Boekelheide, Kim

    2013-01-01

    The 2007 report “Toxicity Testing in the 21st Century: A Vision and A Strategy” argued for a change in toxicity testing for environmental agents and discussed federal funding mechanisms that could be used to support this transformation within the USA. The new approach would test for in vitro perturbations of toxicity pathways using human cells with high throughput testing platforms. The NRC report proposed a deliberate timeline, spanning about 20 years, to implement a wholesale replacement of current in-life toxicity test approaches focused on apical responses with in vitro assays. One approach to accelerating implementation is to focus on well-studied prototype compounds with known toxicity pathway targets. Through a series of carefully executed case studies with four or five pathway prototypes, the various steps required for implementation of an in vitro toxicity pathway approach to risk assessment could be developed and refined. In this article, we discuss alternative approaches for implementation and also outline advantages of a case study approach and the manner in which the cases studies could be pursued using current methodologies. A case study approach would be complementary to recently proposed efforts to map the human toxome, while representing a significant extension toward more formal risk assessment compared to the profiling and prioritization approaches offered by programs such as the EPA’s ToxCast effort. PMID:21993955

  16. Efficacy and toxicity profile of carfilzomib based regimens for treatment of multiple myeloma: A systematic review.

    PubMed

    Mushtaq, Adeela; Kapoor, Vikas; Latif, Azka; Iftikhar, Ahmad; Zahid, Umar; McBride, Ali; Abraham, Ivo; Riaz, Irbaz Bin; Anwer, Faiz

    2018-05-01

    Standard induction therapy for multiple myeloma is three-drug combination based on following classes of drugs: proteasome inhibitors, immunomodulators and steroids. Despite its notable efficacy, bortezomib has side effects like peripheral neuropathy (PNP) with reported incidence of grade ≥3 PNP between 2%-23% Schlafer et al., 2017. Carfilzomib (CFZ) has high selectivity and minimal off-target adverse effects including lower rates of PNP. CFZ is already approved for treatment of relapsed and refractory multiple myeloma (RRMM) as single agent as well as in combination with lenalidomide and/or dexamethasone. Extensive literature search identified a total of 1839 articles. Twenty-six articles (n = 5980) met the inclusion criteria, 15 in newly diagnosed multiple myeloma (NDMM) and 11 in RRMM group. CFZ demonstrates comparable or even better efficacy to bortezomib with much favorable AE profile. Deep, rapid and sustainable response using KRd with safer toxicity profile supports extension of KRd therapy to frontline therapy for all risk categories of MM. High incidence of grade ≥3 HTN underscores the importance of serial BP monitoring. In RRMM, CFZ has documented efficacy with standard 20-27mg/m2 dose. Further large-scale trials are needed to study benefit-to-risk profile of 20-56 and 20-70 mg/m2 dose of CFZ vs standard 20-27 mg/m2 dose in NDMM and RRMM. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Current pesticide profiles in blood serum of adults in Jiangsu Province of China and a comparison with other countries.

    PubMed

    Chang, Chunxin; Chen, Minjian; Gao, Jiawei; Luo, Jia; Wu, Keqin; Dong, Tianyu; Zhou, Kun; He, Xiaowei; Hu, Weiyue; Wu, Wei; Lu, Chuncheng; Hang, Bo; Meeker, John D; Wang, Xinru; Xia, Yankai

    2017-05-01

    Although various pesticides were used globally, the pesticides profiles in human blood serum remain largely unknown. We determined pesticide exposure profiles using solid-phase extraction and gas chromatography tandem with triple quadrupole mass spectrometry in 200 human blood serum samples from the adult population in Jiangsu Province, China. A systematic and comprehensive literature review was carried out to identify the articles investigating pesticide exposure and compare exposure data. Of the 88 pesticides, 76 were found in the blood serum of the population in Jiangsu Province. To the best of our knowledge, 58 pesticides were reported in human blood serum for the first time, and among these pesticides, parathion-methyl, pyrimethanil, fluacrypyrim, simazine, cloquintocet-mexyl and barban were debatable in more than half of the samples. By statistical comparison of the blood serum levels of pesticides between this study and other countries, we found the levels of several organochlorine pesticides were significantly higher in the female population of Jiangsu Province. Health risks related to the pesticide profiling were then revealed, which identified higher carcinogenic toxicity and teratogenic toxicity risk in the female adults of Jiangsu Province caused by organochlorine pesticide exposure. This study not only provides a high-throughput pesticide screening method for future studies of the exposome, but also presents the first human data on exposure to a number of pesticides. It may provide a knowledge database for the risk assessment and management of the pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Pectin-cysteine conjugate: synthesis and in-vitro evaluation of its potential for drug delivery.

    PubMed

    Majzoob, Sayeh; Atyabi, Fatemeh; Dorkoosh, Farid; Kafedjiiski, Krum; Loretz, Brigitta; Bernkop-Schnürch, Andreas

    2006-12-01

    This study was aimed at improving certain properties of pectin by introduction of thiol moieties on the polymer. Thiolated pectin was synthesized by covalent attachment of cysteine. Pectin-cysteine conjugate was evaluated for its ability to be degraded by pectinolytic enzyme. The toxicity profile of the thiolated polymer in Caco-2-cells, its permeation enhancing effect and its mucoadhesive and swelling properties were studied. Moreover insulin-loaded hydrogel beads of the new polymer were examined for their stability in simulated gastrointestinal conditions and their drug release profile. The new polymer displayed 892.27 +/- 68.68 micromol thiol groups immobilized per g polymer, and proved to have retained its biodegradability, upon addition of Pectinex Ultra SPL in-vitro, determined by viscosity measurements and titration method. Pectin-cysteine showed no severe toxicity in Caco-2 cells, as tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Moreover, the synthesized polymer exhibited a relative permeation enhancement ratio of 1.61 for sodium fluorescein, compared to unmodified pectin. Pectin-cysteine conjugate exhibited approximately 5-fold increased in in-vitro adhesion duration and significantly improved cohesive properties. Zinc pectin-cysteine beads showed improved stability in simulated gastrointestinal media; however, insulin release from these beads followed the same profile as unmodified zinc pectinate beads. Due to favourable safety and biodegradability profile, and improved cohesive and permeation-enhancing properties, pectin-cysteine might be a promising excipient in various transmucosal drug delivery systems.

  19. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  20. Mechanistic-based non-animal assessment of eye toxicity: Inflammatory profile of human keratinocytes cells after exposure to eye damage/irritant agents.

    PubMed

    da Silva, Artur Christian Garcia; Chialchia, Adrienny Rodrigues; de Ávila, Renato Ivan; Valadares, Marize Campos

    2018-06-25

    Eye toxicity is a mandatory parameter in human risk and safety evaluation for products including chemicals, pesticides, medicines and cosmetics. Historically, this endpoint has been evaluated using the Draize rabbit eye test, an in vivo model that was never formally validated. Due to advances in scientific knowledge, economic and ethical issues, non-animal methods based on mechanisms of toxicity are being developed and validated for increasing the capability of these models to predict eye toxicity. In this study, the Cytometric Bead Array (CBA) and ELISA assays were used to evaluate the inflammatory cytokine profile produced by HaCaT human keratinocytes after exposure to chemicals with different UN GHS eye toxicity classifications, aiming to stablish a correlation between inflammatory endpoints and eye toxicity (damage/irritation) potential. As a first step, cytotoxic profile of the chemicals, including 3 non-irritants and 10 eye toxicants (GHS Category 1, 2A and 2B), was evaluated after 24 h exposure using MTT assay and Inhibitory Concentration of 20% of cell viability (IC 20 ) was calculated for each chemical. Then, the cells were exposed to these chemicals at IC 20 for 24 h and supernatants and cell lysates were analyzed by CBA assay for quantification of the following cytokines: IL-6, IL-8, IL-10, IL-1β, TNF and IL-12p70. Regarding cytotoxicity evaluation, chemicals showed different cytotoxicity profiles and data demonstrated no correlation with their UN GHS classification. Among the cytokines evaluated, IL-1β production has changed after exposure and such alterations were confirmed by quantification employing ELISA method. The higher intracellular levels of IL-1β were found in GHS Category 1 chemicals, followed by Category 2A and 2B, while non irritants did not induce such increase. Thus, these findings show that IL-1β measurement, using HaCaT model, can be a considerable biomarker to identify chemicals according to their potential in promote eye toxicity, differentiating damage from irritation potential. Copyright © 2018. Published by Elsevier B.V.

  1. Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic liquids.

    PubMed

    Cao, Lingdi; Zhu, Peng; Zhao, Yongsheng; Zhao, Jihong

    2018-06-15

    Large-scale application of ionic liquids (ILs) hinges on the advancement of designable and eco-friendly nature. Research of the potential toxicity of ILs towards different organisms and trophic levels is insufficient. Quantitative structure-activity relationships (QSAR) model is applied to evaluate the toxicity of ILs towards the leukemia rat cell line (ICP-81). The structures of 57 cations and 21 anions were optimized by quantum chemistry. The electrostatic potential surface area (S EP ) and charge distribution area (S σ-profile ) descriptors are calculated and used to predict the toxicity of ILs. The performance and predictive aptitude of extreme learning machine (ELM) model are analyzed and compared with those of multiple linear regression (MLR) and support vector machine (SVM) models. The highest R 2 and the lowest AARD% and RMSE of the training set, test set and total set for the ELM are observed, which validates the superior performance of the ELM than that of obtained by the MLR and SVM. The applicability domain of the model is assessed by the Williams plot. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Protective effect of Withania somnifera roots extract on hematoserological profiles against lead nitrate-induced toxicity in mice.

    PubMed

    Sharma, Veena; Sharma, Sadhana; Pracheta

    2012-12-01

    The in vivo protective role of hydro-methanolic root extract of Withania somnifera (WS) was evaluated in alleviating lead nitrate (LN)-induced toxicity in male Swiss albino mice by measuring hematoserological profiles. The lead-treated (20 mg/kg body wt, p.o.) albino mice (25-30 g) concurrently received the root extract (200 and 500 mg/kg body wt, p.o.) once daily for the duration of six weeks. Animals exposed to LN showed significant (P < 0.001) decline in haemoglobin content, red blood cell count, white blood cell count, packed cell volume and insignificant decrease in mean corpuscular haemoglobin and mean corpuscular haemoglobin content, while mean corpuscular volume and platelet count were increased. A significant elevation (P < 0.001) in serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase, alkaline phosphatase, acid phosphatase and total cholesterol were also observed, when compared with control mice. Thus, the study demonstrated that the concurrent daily administration of root extract of WS protected the adverse effects of LN intoxication in mice.

  3. Pharmacogenetic profile of xenobiotic enzyme metabolism in survivors of the Spanish toxic oil syndrome.

    PubMed Central

    Ladona, M G; Izquierdo-Martinez, M; Posada de la Paz, M P; de la Torre, R; Ampurdanés, C; Segura, J; Sanz, E J

    2001-01-01

    In 1981, the Spanish toxic oil syndrome (TOS) affected more than 20,000 people, and over 300 deaths were registered. Assessment of genetic polymorphisms on xenobiotic metabolism would indicate the potential metabolic capacity of the victims at the time of the disaster. Thus, impaired metabolic pathways may have contributed to the clearance of the toxicant(s) leading to a low detoxification or accumulation of toxic metabolites contributing to the disease. We conducted a matched case-control study using 72 cases (54 females, 18 males) registered in the Official Census of Affected Patients maintained by the Spanish government. Controls were nonaffected siblings (n =72) living in the same household in 1981 and nonaffected nonrelatives (n = 70) living in the neighborhood at that time, with no ties to TOS. Genotype analyses were performed to assess the metabolic capacity of phase I [cytochrome P450 1A1 (CYP1A1), CYP2D6] and phase II [arylamine N-acetyltransferase-2 (NAT2), GSTM1 (glutathione S-transferase M1) and GSTT1] enzyme polymorphisms. The degree of association of the five metabolic pathways was estimated by calculating their odds ratios (ORs) using conditional logistic regression analysis. In the final model, cases compared with siblings (72 pairs) showed no differences either in CYP2D6 or CYP1A1 polymorphisms, or in conjugation enzyme polymorphisms, whereas cases compared with the unrelated controls (70 pairs) showed an increase in NAT2 defective alleles [OR = 6.96, 95% confidence interval (CI), 1.46-33.20] adjusted by age and sex. Glutathione transferase genetic polymorphisms (GSTM1, GSTT1) showed no association with cases compared with their siblings or unrelated controls. These findings suggest a possible role of impaired acetylation mediating susceptibility in TOS. PMID:11335185

  4. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches.

    PubMed

    Kim, Yong Ho; Boykin, Elizabeth; Stevens, Tina; Lavrich, Katelyn; Gilmour, M Ian

    2014-11-26

    Although engineered nanomaterials (ENM) are currently regulated either in the context of a new chemical, or as a new use of an existing chemical, hazard assessment is still to a large extent reliant on information from historical toxicity studies of the parent compound, and may not take into account special properties related to the small size and high surface area of ENM. While it is important to properly screen and predict the potential toxicity of ENM, there is also concern that current toxicity tests will require even heavier use of experimental animals, and reliable alternatives should be developed and validated. Here we assessed the comparative respiratory toxicity of ENM in three different methods which employed in vivo, in vitro and ex vivo toxicity testing approaches. Toxicity of five ENM (SiO2 (10), CeO2 (23), CeO2 (88), TiO2 (10), and TiO2 (200); parentheses indicate average ENM diameter in nm) were tested in this study. CD-1 mice were exposed to the ENM by oropharyngeal aspiration at a dose of 100 μg. Mouse lung tissue slices and alveolar macrophages were also exposed to the ENM at concentrations of 22-132 and 3.1-100 μg/mL, respectively. Biomarkers of lung injury and inflammation were assessed at 4 and/or 24 hr post-exposure. Small-sized ENM (SiO2 (10), CeO2 (23), but not TiO2 (10)) significantly elicited pro-inflammatory responses in mice (in vivo), suggesting that the observed toxicity in the lungs was dependent on size and chemical composition. Similarly, SiO2 (10) and/or CeO2 (23) were also more toxic in the lung tissue slices (ex vivo) and alveolar macrophages (in vitro) compared to other ENM. A similar pattern of inflammatory response (e.g., interleukin-6) was observed in both ex vivo and in vitro when a dose metric based on cell surface area (μg/cm(2)), but not culture medium volume (μg/mL) was employed. Exposure to ENM induced acute lung inflammatory effects in a size- and chemical composition-dependent manner. The cell culture and lung slice techniques provided similar profiles of effect and help bridge the gap in our understanding of in vivo, ex vivo, and in vitro toxicity outcomes.

  5. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kejian, E-mail: kejian.wang.bio@gmail.com; Weng, Zuquan; Sun, Liya

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. Inmore » the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development.« less

  6. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  7. Strategies for integrating transcriptional profiling into high throughput toxicity testing (SOT Symposium Workshop presentation)

    EPA Science Inventory

    Presentation Description: The release of the National Research Council’s Report “Toxicity Testing in the 21st Century: A Vision and a Strategy” in 2007 initiated a broad-based movement in the toxicology community to re-think how toxicity testing and risk assessment are performed....

  8. Bioremediation of cooking oil waste using lipases from wastes

    PubMed Central

    do Prado, Débora Zanoni; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases. PMID:29073166

  9. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice.

    PubMed

    Wang, Cong; Chen, Zhongqin; Pan, Yuxiang; Gao, Xudong; Chen, Haixia

    2017-10-01

    Polysaccharides are important bioactive ingredients from Inonotus obliquus. This study aimed to synthesize and characterize a novel I. obliquus polysaccharides-chromium (III) complex (UIOPC) and investigate the anti-diabetic effects in streptozotocin (STZ) induced type 2 diabetes mellitus (T2DM) mice and sub-acute toxicity in normal mice. The molecular weight of UIOPC was about 11.5 × 10 4  Da with the chromium content was 13.01% and the chromium was linked with polysaccharides through coordination bond. After treatment of UIOPC for four weeks, the body weight, fasting blood glucose (FBG) levels, plasma insulin levels of the diabetic mice were significantly reduced when compared with those of the diabetic mice (p < 0.05). The results on serum profiles and antioxidant enzymes activities revealed that UIOPC had a positive effect on hypoglycemic and antioxidant ability. Histopathology results showed that UIOPC could effectively alleviate the STZ-lesioned tissues in diabetic mice. Furthermore, high dose administration of UIOPC had no obviously influence on serum profiles levels and antioxidant ability of the normal mice and the organ tissues maintained organized and integrity in the sub-acute toxicity study. These results suggested that UIOPC might be a good candidate for the functional food or pharmaceuticals in the treatment of T2DM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. ToxCast Profiling in a Human Stem Cell Assay for ...

    EPA Pesticide Factsheets

    Standard practice for assessing disruptions in embryogenesis involves testing pregnant animals of two species, typically rats and rabbits, exposed during major organogenesis and evaluated just prior to term. Under this design the major manifestations of developmental toxicity are observed as one or more apical endpoints including intrauterine death, fetal growth retardation, structural malformations and variations. Alternative approaches to traditional developmental toxicity testing have been proposed in the form of in vitro data (e.g., embryonic stem cells, zebrafish embryos, HTS assays) and in silico models (e.g., computational toxicology). To increase the diversity of assays used to assess developmental toxicity in EPA’s ToxCast program, we tested the chemicals in Stemina’s metabolomics-based platform that utilizes the commecrially available H9 human embryonic stem cell line. The devTOXqP dataset for ToxCast of high-quality based on replicate samples and model performance (82% balanced accuracy, 0.71 sensitivity and 1.00 specificity). To date, 136 ToxCast chemicals (12.8% of 1065 tested) were positive in this platform; 48 triggered the biomarker signal without any change in hESC viability and 88 triggered activity concurrent with effects on cell viability. Work is in progress to complete the STM dataset entry into the TCPL, compare data with results from zFish and mESC platforms, profile bioactivity (ToxCastDB), endpoints (ToxRefDB), chemotypes (DSSTox)

  11. Bioremediation of cooking oil waste using lipases from wastes.

    PubMed

    Okino-Delgado, Clarissa Hamaio; Prado, Débora Zanoni do; Facanali, Roselaine; Marques, Márcia Mayo Ortiz; Nascimento, Augusto Santana; Fernandes, Célio Junior da Costa; Zambuzzi, William Fernando; Fleuri, Luciana Francisco

    2017-01-01

    Cooking oil waste leads to well-known environmental impacts and its bioremediation by lipase-based enzymatic activity can minimize the high cytotoxic potential. In addition, they are among the biocatalysts most commercialized worldwide due to the versatility of reactions and substrates. However, although lipases are able to process cooking oil wastes, the products generated from this process do not necessarily become less toxic. Thus, the aim of the current study is to analyze the bioremediation of lipase-catalyzed cooking oil wastes, as well as their effect on the cytotoxicity of both the oil and its waste before and after enzymatic treatment. Thus, assessed the post-frying modification in soybean oil and in its waste, which was caused by hydrolysis reaction catalyzed by commercial and home-made lipases. The presence of lipases in the extracts obtained from orange wastes was identified by zymography. The profile of the fatty acid esters formed after these reactions was detected and quantified through gas chromatography and fatty acids profile compared through multivariate statistical analyses. Finally, the soybean oil and its waste, with and without enzymatic treatment, were assessed for toxicity in cytotoxicity assays conducted in vitro using fibroblast cell culture. The soybean oil wastes treated with core and frit lipases through transesterification reaction were less toxic than the untreated oils, thus confirming that cooking oil wastes can be bioremediated using orange lipases.

  12. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    PubMed

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Revisiting the definition of dose-limiting toxicities in paediatric oncology phase I clinical trials: An analysis from the Innovative Therapies for Children with Cancer Consortium.

    PubMed

    Bautista, Francisco; Moreno, Lucas; Marshall, Lynley; Pearson, Andrew D J; Geoerger, Birgit; Paoletti, Xavier

    2017-11-01

    Dose-escalation trials aim to identify the maximum tolerated dose and, importantly, the recommended phase II dose (RP2D) and rely on the occurrence of dose-limiting toxicities (DLTs) during the first treatment cycle. Molecularly targeted agents (MTAs) often follow continuous and prolonged administrations, displaying a distinct toxicity profile compared to conventional chemotherapeutics, and classical DLT criteria might not be appropriate to evaluate MTAs' toxicity. We investigated this issue in children. The Innovative Therapies for Children with Cancer Consortium (ITCC) phase I trials of novel anticancer agents between 2004 and 2015 were analysed. Data from investigational product, trial design, items defining DLT/RP2D were extracted. A survey on dose-escalation process, DLTs and RP2D definition was conducted among the ITCC clinical trials committee members. Thirteen phase I trials with 15 dose-escalation cohorts were analysed. They explored 11 MTAs and 2 novel cytotoxics; 12 evaluated DLT during cycle 1. Definition of DLT was heterogeneous: Grade III-IV haematologic toxicities that were transient or asymptomatic and grade III-IV non-haematological toxicities manageable with adequate supportive care were often excluded, whereas some included dose intensity or grade II toxicities into DLT. None of the studies considered delayed toxicity into the RP2D definition. DLTs should be homogeneously defined across trials, limiting the number of exceptions due to specific toxicities. Dose escalation should still be based on safety data from cycle 1, but delayed and overall toxicities, pharmacokinetic parameters and pharmacodynamic data should be considered to refine the final RP2D. The evaluation of long-term toxicity in the developing child cannot be adequately addressed in early trials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fluorinated analogs of malachite green: synthesis and toxicity.

    PubMed

    Kraus, George A; Jeon, Insik; Nilsen-Hamilton, Marit; Awad, Ahmed M; Banerjee, Jayeeta; Parvin, Bahram

    2008-04-27

    A series of fluorinated analogs of malachite green (MG) have been synthesized and their toxicity to Saccharomyces cerevisiae and a human ovarian epithelial cell line examined. The toxicity profiles were found to be different for these two species. Two analogs, one with 2,4-difluoro substitution and the other with 2-fluoro substitution seem to be the most promising analogs because they showed the lowest toxicity to the human cells.

  15. 76 FR 10906 - Proposed Substances To Be Evaluated for Set 25 Toxicological Profiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ...-269] Proposed Substances To Be Evaluated for Set 25 Toxicological Profiles AGENCY: Agency for Toxic... comments on the proposed substances to be evaluated for Set 25 toxicological profiles. SUMMARY: ATSDR is initiating the development of its 25th set of toxicological profiles (CERCLA Set 25). This notice announces...

  16. Canning process that diminishes paralytic shellfish poison in naturally contaminated mussels (Mytilus galloprovincialis).

    PubMed

    Vieites, J M; Botana, L M; Vieytes, M R; Leira, F J

    1999-05-01

    Changes in toxin profile and total toxicity levels of paralytic shellfish poison (PSP)-containing mussels were monitored during the standard canning process of pickled mussels and mussels in brine using mouse bioassays and high-performance liquid chromatography. Detoxification percentages for canned mussel meat exceeded 50% of initial toxicity. Total toxicity reduction did not fully correspond to toxin destruction, which was due to the loss of PSP to cooking water and packing media of the canned product. Significant differences in detoxification percentages were due to changes in toxin profile during heat treatment in packing media. Toxin conversion phenomena should be determined to validate detoxification procedures in the canning industry.

  17. Evidence for Tissue Toxicity in BALB/c Exposed to a Long-Term Treatment with Oxiranes Compared to Meglumine Antimoniate

    PubMed Central

    Oliveira, Luiz Filipe Gonçalves; Souza-Silva, Franklin; Cysne-Finkelstein, Léa; Rabelo, Kíssila; Amorim, Juliana Fernandes; Azevedo, Adriana de Souza; Bourguignon, Saulo Cabral; Ferreira, Vitor Francisco; Paes, Marciano Viana

    2017-01-01

    Leishmaniasis remains a serious public health problem in developing countries without effective control, whether by vaccination or chemotherapy. Part of the failure of leishmaniasis control is due to the lack of new less toxic and more effective drugs able to eliminate both the lesions and the parasite. Oxiranes derived from naphthoquinones now being assayed are promising drugs for the treatment of this group of diseases. The predicted pharmacokinetic properties and toxicological profiles of epoxy-α-lapachone and epoxymethoxy-lawsone have now been compared to those of meglumine antimoniate, and histological changes induced by these drugs in noninfected BALB/c mice tissues are described. Effects of these compounds on liver, kidney, lung, heart, and cerebral tissues of healthy mice were examined. The data presented show that both these oxiranes and meglumine antimoniate induce changes in all BALB/c mice tissues, with the lung, heart, and brain being the most affected. Epoxymethoxy-lawsone was the most toxic to lung tissue, while most severe damage was caused in the heart by epoxy-α-lapachone. Meglumine antimoniate caused mild-to-moderate changes in heart and lung tissues. PMID:28798938

  18. Use of high-throughput and in vivo data to support read ...

    EPA Pesticide Factsheets

    Disrupting normal function of mitochondria can culminate in a variety of organ-level toxicities. A number of mechanisms - such as uncoupling of oxidative phosphorylation and inhibition of the electron transport chain - have been implicated in mitochondrial toxicity. The presence of mitochondrial toxicity has led to a number of drugs being withdrawn from the market highlighting the need to identify potential mitochondrial toxicants within the environment. High-throughput screening (HTS) assays provide a means of rapidly gathering toxicity data for a large number of chemicals; however, information as to the associated in vivo effect is typically unknown. The Adverse Outcome Pathway (AOP) concept provides a valuable scaffold onto which mechanistic data from different levels of biological organisation can be arranged.Information pertaining to mitochondrial toxicity from the U.S. EPA’s ToxCast program were integrated with rodent in vivo data from U.S. EPA’s ToxRefDB to connect the high throughput ToxCast assay results with potential adverse outcome data. Previously developed structural alerts were utilized to profile the chemicals with both in vitro mitochondrial toxicity and in vivo rodent data. Structural similarity guided by the toxicity profile as measured in the ToxCast assay battery was then used to group those chemicals which either were not tested in a mitochondrial toxicity assay or were not considered a “hit” and read-across was performed. Subsequen

  19. Intravascular hemolysis induced by phospholipases A2 from the venom of the Eastern coral snake, Micrurus fulvius: Functional profiles of hemolytic and non-hemolytic isoforms.

    PubMed

    Fernández, María Laura; Quartino, Pablo Yunes; Arce-Bejarano, Ruth; Fernández, Julián; Camacho, Luis F; Gutiérrez, José María; Kuemmel, Daniel; Fidelio, Gerardo; Lomonte, Bruno

    2018-04-01

    A unique feature of the venom of Micrurus fulvius (Eastern coral snake) is its ability to induce severe intravascular hemolysis in particular species, such as dogs or mice. This effect was previously shown to be induced by distinct phospholipase A 2 (PLA 2 ) isoforms which cause direct hemolysis in vitro, an uncommon finding for such enzymes. The functional profiles of PLA 2 -17, a direct hemolytic enzyme, and PLA 2 -12, a co-existing venom isoform lacking such effect, were compared. The enzymes differed not only in their ability to cause intravascular hemolysis: PLA 2 -17 additionally displayed lethal, myotoxic, and anticoagulant actions, whereas PLA 2 -12 lacked these effects. PLA 2 -12 was much more active in hydrolyzing a monodisperse synthetic substrate than PLA 2 -17, but the catalytic activity of latter was notably higher on a micellar substrate, or towards pure phospholipid artificial monolayers under controlled lateral pressures. Interestingly, PLA 2 -17 could hydrolyze substrate at a pressure of 20 mN m -1 , in contrast to PLA 2 -12 or the non-toxic pancreatic PLA 2 . This suggests important differences in the monolayer penetrating power, which could be related to differences in toxicity. Comparative examination of primary structures and predicted three-dimensional folding of PLA 2 -12 and PLA 2 -17, revealed that differences concentrate in their N-terminal and central regions, leading to variations of the surface properties at the membrane interacting interface. PLA 2 -17 presents a less basic interfacial surface than PLA 2 -12, but more bulky aromatic residues, which could be associated to its higher membrane-penetrating strength. Altogether, these structural and functional comparative observations suggest that the ability of PLA 2 s to penetrate substrate interfaces could be a major determinant of toxicity, perhaps more important than protein surface charge. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Influence of hyperforin on the morphology of internal organs and biochemical parameters, in experimental model in mice.

    PubMed

    Negreş, Simona; Scutari, Corina; Ionică, Floriana Elvira; Gonciar, Veaceslav; Velescu, Bruno Ştefan; Şeremet, Oana Cristina; Zanfirescu, Anca; Zbârcea, Cristina Elena; Ştefănescu, Emil; Ciobotaru, Emilia; ChiriŢă, Cornel

    2016-01-01

    Hyperforin (HY) is used to treat depression and skin irritation and has been shown a number of pharmacological activities. The literature does no cite data on changes that may occur in the body after HY intake (ethylene diammonium salt - EDS) in long-term administration. From this point of view, the present work is a key to determining the pharmacotoxicological profile of the HY-EDS, in long-term administration. In present research, the influence of toxic doses of HY-EDS was investigated on the biochemical serum parameters and the histopathological changes in internal organs on the experimental mice model. For acute toxicity determination, the HY-EDS was tested in doses of 2000-5000 mg÷kg, administered once per day orally. For subacute toxicity, the HY-EDS was tested in three groups of mice, in doses of 50, 75 and 100 mg÷kg÷day, administered once daily, for 28 consecutive days. As concern acute toxicity, a lethal effect has not occurred at any of the two tested doses and HY-EDS was classified as Class V toxic: median lethal dose (LD50) >5000 mg÷kg, p.o. After 14 days of follow-up in acute toxicity, the experimental results showed a statistically significant increase of aspartate transaminase (AST) and alanine transaminase (ALT), compared to the control group. There were no changes in creatinine and serum glucose compared to the control group. After the administration of repeated doses, it was observed an increase of serum transaminases and alkaline phosphatase. Histological examination revealed that the liver injuries were in an initial stage, making them reversible in case of HY-EDS treatment discontinuation. There was no evidence of kidney damage to any of the doses of HY-EDS.

  1. Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation.

    PubMed

    Bhuvaneshwari, M; Sagar, Bhawana; Doshi, Siddharth; Chandrasekaran, N; Mukherjee, Amitava

    2017-02-01

    This study evaluated the toxicity potential of ZnO and TiO 2 nanoparticles under pre-UV-A irradiation and visible light condition on Artemia salina. The nanoparticle suspension was prepared in seawater medium and exposed under pre-UV-A (0.23 mW/cm 2 ) and visible light (0.18 mW/cm 2 ) conditions. The aggregation profiles of both nanoparticles (NPs) and dissolution of ZnO NPs under both irradiation conditions at various kinetic intervals (1, 24, 48 h) were studied. The 48-h LC 50 values were found to be 27.62 and 71.63 mg/L for ZnO NPs and 117 and 120.9 mg/L for TiO 2 NPs under pre-UV-A and visible light conditions. ZnO NPs were found to be more toxic to A. salina as compared to TiO 2 NPs. The enhanced toxicity was observed under pre-UV-A-irradiated ZnO NPs, signifying its phototoxicity. Accumulation of ZnO and TiO 2 NPs into A. salina depends on the concentration of particles and type irradiations. Elimination of accumulated nanoparticles was also evident under both irradiation conditions. Other than ZnO NPs, the dissolved Zn 2+ also had a significant effect on toxicity and accumulation in A. salina. Increased catalase (CAT) activity in A. salina indicates the generation of oxidative stress due to NP interaction. Thus, this study provides an understanding of the toxicity of photoreactive ZnO and TiO 2 NPs as related to the effects of pre-UV-A and visible light irradiation.

  2. Diaryltriazine non-nucleoside reverse transcriptase inhibitors are potent candidates for pre-exposure prophylaxis in the prevention of sexual HIV transmission.

    PubMed

    Ariën, Kevin K; Venkatraj, Muthusamy; Michiels, Johan; Joossens, Jurgen; Vereecken, Katleen; Van der Veken, Pieter; Abdellati, Saïd; Cuylaerts, Vicky; Crucitti, Tania; Heyndrickx, Leo; Heeres, Jan; Augustyns, Koen; Lewi, Paul J; Vanham, Guido

    2013-09-01

    Pre-exposure prophylaxis and topical microbicides are important strategies in the prevention of sexual HIV transmission, especially since partial protection has been shown in proof-of-concept studies. In search of new candidate drugs with an improved toxicity profile and with activity against common non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV, we have synthesized and investigated a library of 60 new diaryltriazine analogues. From this library, 15 compounds were evaluated in depth using a broad armamentarium of in vitro assays that are part of a preclinical testing algorithm for microbicide development. Antiviral activity was assessed in a cell line, and in primary human cells, against both subtype B and subtype C HIV-1 and against viruses resistant to therapeutic NNRTIs and the candidate NNRTI microbicide dapivirine. Toxicity towards primary blood-derived cells, cell lines originating from the female reproductive tract and female genital microflora was also studied. We identified several compounds with highly potent antiviral activity and toxicity profiles that are superior to that of dapivirine. In particular, compound UAMC01398 is an interesting new candidate that warrants further investigation because of its superior toxicity profile and potent activity against dapivirine-resistant viruses.

  3. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer.

    PubMed

    Costa, Rubens Barros; Costa, Ricardo L B; Talamantes, Sarah M; Kaplan, Jason B; Bhave, Manali A; Rademaker, Alfred; Miller, Corinne; Carneiro, Benedito A; Mahalingam, Devalingam; Chae, Young Kwang

    2018-04-24

    Anaplastic lymphoma kinase ( ALK ) inhibitors are the mainstay treatment for patients with non-small cell lung carcinoma (NSCLC) harboring a rearrangement of the ALK gene or the ROS1 oncogenes. With the recent publication of pivotal trials leading to the approval of these compounds in different indications, their toxicity profile warrants an update. A systematic literature search was performed in July 2017. Studies evaluating US FDA approved doses of one of the following ALK inhibitors: Crizotinib, Ceritinib, Alectinib or Brigatinib as monotherapy were included. Data were analyzed using random effects meta-analysis for absolute risks (AR), study heterogeneity, publication bias and differences among treatments. Fifteen trials with a total of 2,005 patients with evaluable toxicity data were included in this report. There was significant heterogeneity amongst different studies. The pooled AR of death and severe adverse events were 0.5% and 34.5%, respectively. Grade 3/4 nausea, vomiting, diarrhea, and constipation were uncommon: 2.6%, 2.5%, 2.7%, 1.2%, respectively. ALK inhibitors have an acceptable safety profile with a low risk of treatment-related deaths. Important differences in toxicity profile were detected amongst the different drugs.

  4. Systematic and comprehensive investigation of the toxicity of curcuminoid‑essential oil complex: A bioavailable turmeric formulation.

    PubMed

    Aggarwal, Madan L; Chacko, Karampendethu M; Kuruvilla, Binu T

    2016-01-01

    Curcumin, the active component present in Curcuma longa of the family Zingiberaceae, has a number of pharmacological effects, including potential anti‑inflammatory activity. One of the major limitations of curcumin/turmeric extract is its poor absorption through the gastrointestinal tract. Several approaches have been adopted to increase the bioavailability of curcumin, including loading curcumin into liposomes or nanoparticles, complexation with phospholipids, addition of essential oils and synthesizing structural analogues of curcumin. In the present study, the toxicity and safety of one such bioavailable turmeric formulation, curcuminoid‑essential oil complex (CEC), the toxicity profile of which has not been reported, were examined using in vivo and in vitro models, as per the guidelines of the Organisation for Economic Co-operation and Development. Investigations of acute toxicity study were performed in rats and mice, and the results revealed no signs and symptoms or toxicity or mortality in any of the animals at the maximum recommended dose level of 5,000 mg/kg body weight. The repeated administration of CEC for 90 days in Wistar rats at a dose of 1,000 mg/kg body weight did not induce any observable toxic effects, compared with corresponding control animals. Mutagenicity/genotoxicity investigations were also performed using a bacterial reverse mutation assay (Ames test), a mammalian bone marrow chromosome aberration test and a mammalian erythrocyte micronucleus test in mice. CEC was found to be non‑mutagenic in all three mutagenic investigations. Consequently, the present study indicated that CEC elicited no toxic effects in animals or in vitro. Therefore, following investigations of acute toxicity, repeated dose toxicity and mutagenicity, CEC was deemed a safe, non‑toxic pharmacological formulation.

  5. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    EPA Pesticide Factsheets

    The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can use this XML-format dataset to create their own databases and hazard analyses of TRI chemicals. The hazard information is compiled from a series of authoritative sources including the Integrated Risk Information System (IRIS). The dataset is provided as a downloadable .zip file that when extracted provides XML files and schemas for the hazard information tables.

  6. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants.

    PubMed

    Kasemets, Kaja; Suppi, Sandra; Künnis-Beres, Kai; Kahru, Anne

    2013-03-18

    A suite of eight tentatively oxidative stress response-deficient Saccharomyces cerevisiae BY4741 single-gene mutants (sod1Δ, sod2Δ, yap1Δ, cta1Δ, ctt1Δ, gsh1Δ, glr1Δ, and ccs1Δ) and one copper-vulnerable mutant (cup2Δ) was used to elucidate weather the toxicity of CuO nanoparticles to S. cerevisiae is mediated by oxidative stress (OS). Specifically, sensitivity profiles of mutants' phenotypes and wild-type (wt) upon exposure to nano-CuO were compared. As controls, CuSO4 (solubility), bulk-CuO (size), H2O2, and menadione (OS) were used. Growth inhibition of wt and mutant strains was studied in rich YPD medium and cell viability in deionized water (DI). Dissolved Cu-ions were quantified by recombinant metal-sensing bacteria and chemical analysis. To wt strain nano-CuO was 32-fold more toxic than bulk-CuO: 24-h IC50 4.8 and 155 mg/L in DI and 643 and >20000 mg/L in YPD, respectively. In toxicant-free YPD medium, all mutants had practically similar growth patterns as wt. However, the mutant strains sod1Δ, sod2Δ, ccs1Δ, and yap1Δ showed up to 12-fold elevated sensitivity toward OS standard chemicals menadione and H2O2 but not to nano-CuO, indicating that CuO nanoparticles exerted toxicity to yeast cells via different mechanisms. The most vulnerable strain to all studied Cu compounds was the copper stress response-deficient strain cup2Δ (∼16-fold difference with wt), indicating that the toxic effect of CuO (nano)particles proceeds via dissolved Cu-ions. The dissolved copper solely explained the toxicity of nano-CuO in DI but not in YPD. Assumingly, in YPD nano-CuO acquired a coating of peptides/proteins and sorbed onto the yeast's outer surface, resulting in their increased solubility in the close vicinity of yeast cells and increased uptake of Cu-ions that was not registered by the assays used for the analysis of dissolved Cu-ions in the test medium. Lastly, as yeast retained its viability in DI even by 24th hour of incubation, the profiling of the acute basal toxicity of chemicals toward yeasts may be conducted in DI.

  7. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (S)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  8. Toxic substances alert program

    NASA Technical Reports Server (NTRS)

    Junod, T. L.

    1978-01-01

    A toxicity profile is provided, of 187 toxic substances procured by NASA Lewis Research Center during a 3 1/2 year period, including 27 known or suspected carcinogens. The goal of the program is to assure that the center's health and safety personnel are aware of the procurement and use of toxic substances and to alert and inform the users of these materials as to the toxic characteristics and the control measures needed to ensure their safe use. The program also provides a continuing record of the toxic substances procured, who procured them, what other toxic substances the user has obtained in the past, and where similar materials have been used elsewhere at the center.

  9. The discovery and preclinical evaluation of BMS-707035, a potent HIV-1 integrase strand transfer inhibitor.

    PubMed

    Naidu, B Narasimhulu; Walker, Michael A; Sorenson, Margaret E; Ueda, Yasutsugu; Matiskella, John D; Connolly, Timothy P; Dicker, Ira B; Lin, Zeyu; Bollini, Sagarika; Terry, Brian J; Higley, Helen; Zheng, Ming; Parker, Dawn D; Wu, Dedong; Adams, Stephen; Krystal, Mark R; Meanwell, Nicholas A

    2018-07-01

    BMS-707035 is an HIV-1 integrase strand transfer inhibitor (INSTI) discovered by systematic optimization of N-methylpyrimidinone carboxamides guided by structure-activity relationships (SARs) and the single crystal X-ray structure of compound 10. It was rationalized that the unexpectedly advantageous profiles of N-methylpyrimidinone carboxamides with a saturated C2-substitutent may be due, in part, to the geometric relationship between the C2-substituent and the pyrimidinone core. The single crystal X-ray structure of 10 provided support for this reasoning and guided the design of a spirocyclic series 12 which led to discovery of the morpholino-fused pyrimidinone series 13. Several carboxamides derived from this bicyclic scaffold displayed improved antiviral activity and pharmacokinetic profiles when compared with corresponding spirocyclic analogs. Based on the excellent antiviral activity, preclinical profiles and acceptable in vitro and in vivo toxicity profiles, 13a (BMS-707035) was selected for advancement into phase I clinical trials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Schiff Bases of Benzothiazol-2-ylamine and Thiazolo[5,4-b] pyridin-2-ylamine as Anticonvulsants: Synthesis, Characterization and Toxicity Profiling.

    PubMed

    Shukla, Rashmi; Singh, Ajeet P; Sonar, Pankaj K; Mishra, Mudita; Saraf, Shailendra K

    2016-01-01

    Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.

  11. Safety evaluation of tangeretin and the effect of using emulsion-based delivery system: Oral acute and 28-day sub-acute toxicity study using mice.

    PubMed

    Ting, Yuwen; Chiou, Yi-Shiou; Jiang, Yike; Pan, Min-Hsiung; Lin, Zhengyu; Huang, Qingrong

    2015-08-01

    Polymethoxyflavones, found widely in the peel of citrus fruits, is an emerging group of bioactive compounds with wide arrays of disease prevention functionalities. To understand the potential oral toxicity, tangeretin, being one of the most abundant polymethoxyflavones from natural sources, was used as model compound for the safety evaluation. Acute oral toxicity study was conducted using both male and female mice giving 1000, 2000, or 3000mg/kgbody weight (bw) of tangeretin in oil suspension from single gavage administration. No evidence of death was observed during 14-day post-administration period. Alterations of the hepatic cell and clinical chemistry profile increased dose dependently and exhibited distinct injury recovery pattern among different sexes. To determine the potential safety concern related to emulsification, the sub-acute toxicity of tangeretin in emulsion was evaluated and compared with un-processed oil suspension when conducting the sub-acute toxicity study over 28days. In the sub-acute study, emulsion system did not induce a significant increase of toxicity response. However, the daily low-dose application of tangeretin showed U-shaped dose-response pattern in regard to hepatic alteration. The result from this study can serve as a good safety reference for future application of polymethoxyflavone as a functional ingredient in food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Safety Assessment of Commonly Used Nanoparticles in Biomedical Applications: Impact on Inflammatory Processes

    NASA Astrophysics Data System (ADS)

    Alnasser, Yossef

    Nanotechnology offers great promise in the biomedical field. Current knowledge of nanoparticles' (NPs) safety and possible mechanisms of various particle types' toxicity is insufficient. The role of particle properties and the route of particles administration in toxic reactions remain unexplored. In this thesis, we aimed to inspect the interrelationship between particle size, chemical composition and toxicological effects of four candidate NPs for drug delivery systems: gold (Au), chitosan, silica, and poly (lactide-co-glycolide) (PLGA). Mice model was combined with in vitro study to explore NPs' safety. We investigated mice survival, weight, behavior, and pro-inflammatory changes. NF-kappaB induction was assessed in vitro using the Luciferase Assay System. As observed in mice, Au NPs had a higher toxicity profile at a shorter duration than the other NPs. This was significantly in concordance with pro-inflammatory changes which may be the key routes of Au NPs toxicity. Although silica NPs induced NF-kappaB, they were less toxic to the mice than Au NPs and did not lead to the pro-inflammatory changes. Chitosan NPs were toxic to the mice but failed to cause significant NF-kappaB induction and pro-inflammatory changes. These findings indicate that chitosan NPs might not have the same pathophysiologic mechanism as the Au NPs. Comparative analysis in this model demonstrated that PLGA NPs is the safest drug delivery candidate to be administered subcutaneously.

  13. New targeted treatments for non-small-cell lung cancer - role of nivolumab.

    PubMed

    Zago, Giulia; Muller, Mirte; van den Heuvel, Michel; Baas, Paul

    2016-01-01

    Non-small-cell lung cancer (NSCLC) is often diagnosed at an advanced stage of disease, where it is no longer amenable to curative treatment. During the last decades, the survival has only improved significantly for lung cancer patients who have tumors harboring a driver mutation. Therefore, there is a clear unmet need for effective therapies for patients with no mutation. Immunotherapy has emerged as an effective treatment for different cancer types. Nivolumab, a monoclonal inhibitory antibody against PD-1 receptor, can prolong survival of NSCLC patients, with a manageable toxicity profile. In two Phase III trials, nivolumab was compared to docetaxel in patients with, respectively, squamous (CheckMate 017) and non-squamous NSCLC (CheckMate 057). In both trials, nivolumab significantly reduced the risk of death compared to docetaxel (41% and 27% lower risk of death for squamous and non-squamous NSCLC, respectively). Therefore, nivolumab has been approved in the US and in Europe as second-line treatment for advanced NSCLC. Unfortunately, accurate predictive factors for patient selection are lacking, making it difficult to decide who will benefit and who will not. Currently, there are many ongoing trials that evaluate the efficacy of nivolumab in different settings and in combination with other agents. This paper reviews the present literature about the role of nivolumab in the treatment of NSCLC. Particular attention has been given to efficacy studies, toxicity profile, and current and emerging predictive factors.

  14. Efficacy and toxicological studies of cremophor EL free alternative paclitaxel formulation.

    PubMed

    Utreja, Puneet; Jain, Subheet; Yadav, Subodh; Khandhuja, K L; Tiwary, A K

    2011-11-01

    In the present study, Cremophor EL free paclitaxel elastic liposomal formulation consisting of soya phosphatidylcholine and biosurfactant sodium deoxycholate was developed and optimized. The toxicological profile, antitumor efficacy and hemolytic toxicity of paclitaxel elastic liposomal formulation in comparison to Cremophor EL based marketed formulation were evaluated. Paclitaxel elastic liposomal formulations were prepared and characterized in vitro, ex-vivo and in vivo. Single dose toxicity study of paclitaxel elastic liposomal and marketed formulation was carried out in dose range of 10, 20, 40, 80, 120, 160 and 200 mg/kg. Cytotoxicity of developed formulation was evaluated using small cell lung cancer cell line (A549). Antitumor activity of developed formulation was compared with the marketed formulation using Cytoselect™ 96-well cell transformation assay. In vivo administration of paclitaxel elastic liposomal formulation into mice showed 6 fold increase in Maximum Tolerated Dose (MTD) in comparison to the marketed formulation. Similarly, LD50 (141.6 mg/kg) was also found to increase significantly than the marketed formulation (16.7 mg/kg). Result of antitumor assay revealed a high reduction of tumor density with paclitaxel elastic liposomal formulation. Reduction in hemolytic toxicity was also observed with paclitaxel elastic liposomal formulation in comparison to the marketed formulation. The carrier based approach for paclitaxel delivery demonstrated significant reduction in toxicity as compared to the Cremophor EL based marketed formulation following intra-peritoneal administration in mice model. The reduced toxicity and enhanced anti-cancer activity of elastic liposomal formulation strongly indicate its potential for safe and effective delivery of paclitaxel.

  15. Use of the Zebrafish Larvae as a Model to Study Cigarette Smoke Condensate Toxicity

    PubMed Central

    Ellis, Lee D.; Soo, Evelyn C.; Achenbach, John C.; Morash, Michael G.; Soanes, Kelly H.

    2014-01-01

    The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products. PMID:25526262

  16. Use of the zebrafish larvae as a model to study cigarette smoke condensate toxicity.

    PubMed

    Ellis, Lee D; Soo, Evelyn C; Achenbach, John C; Morash, Michael G; Soanes, Kelly H

    2014-01-01

    The smoking of tobacco continues to be the leading cause of premature death worldwide and is linked to the development of a number of serious illnesses including heart disease, respiratory diseases, stroke and cancer. Currently, cell line based toxicity assays are typically used to gain information on the general toxicity of cigarettes and other tobacco products. However, they provide little information regarding the complex disease-related changes that have been linked to smoking. The ethical concerns and high cost associated with mammalian studies have limited their widespread use for in vivo toxicological studies of tobacco. The zebrafish has emerged as a low-cost, high-throughput, in vivo model in the study of toxicology. In this study, smoke condensates from 2 reference cigarettes and 6 Canadian brands of cigarettes with different design features were assessed for acute, developmental, cardiac, and behavioural toxicity (neurotoxicity) in zebrafish larvae. By making use of this multifaceted approach we have developed an in vivo model with which to compare the toxicity profiles of smoke condensates from cigarettes with different design features. This model system may provide insights into the development of smoking related disease and could provide a cost-effective, high-throughput platform for the future evaluation of tobacco products.

  17. Developmental toxicity in flounder embryos exposed to crude oils derived from different geographical regions.

    PubMed

    Jung, Jee-Hyun; Lee, Eun-Hee; Choi, Kwang-Min; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo

    2017-06-01

    Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Dielectrophoretic Field-Flow Fractionation System for Detection of Aquatic Toxicants

    PubMed Central

    Pui-ock, Sittisak; Ruchirawat, Mathuros; Gascoyne, Peter

    2009-01-01

    Dielectrophoretic field-flow fractionation (dFFF) was applied as a contact-free way to sense changes in the plasma membrane capacitances and conductivities of cultured human HL-60 cells in response to toxicant exposure. A micropatterned electrode imposed electric forces on cells in suspension in a parabolic flow profile as they moved through a thin chamber. Relative changes in the dFFF peak elution time, reflecting changes in cell membrane area and ion permeability, were measured as indices of response during the first 150 min of exposure to eight toxicants having different single or mixed modes of action (acrylonitrile, actinomycin D, carbon tetrachloride, endosulfan, N-nitroso-N-methylurea (NMU), paraquat dichloride, puromycin, and styrene oxide). The dFFF method was compared with the cell viability assay for all toxicants and with the mitochondrial potentiometric dye assay or DNA alkaline comet assay according to the mode of action of the specific agents. Except for low doses of nucleic acid-targeting agents (actinomycin D and NMU), the dFFF method detected all toxicants more sensitively than other assays, in some cases up to 105 times more sensitively than the viability approach. The results suggest the dFFF method merits additional study for possible applicability in toxicology. PMID:18788754

  19. Toxic effects of arsenic on semen and hormonal profile and their amelioration with vitamin E in Teddy goat bucks.

    PubMed

    Zubair, M; Ahmad, M; Jamil, H; Deeba, F

    2016-12-01

    The present environmental study has been planned to investigate the toxic effects of arsenic on reproductive functions of Teddy bucks as well as to examine whether these toxic effects are ameliorated by vitamin E. Sixteen adult Teddy bucks were divided randomly into four equal groups A, B, C and D with following treatment: A (control), B (sodium arsenite 5 mg kg -1 BW day -1 ), C (vit E 200 mg kg -1 BW day -1  + Arsenic 5 mg kg -1 BW day -1 ) and D (vit E 200 mg kg -1 BW day -1 ). This treatment was continued for 84 days. Semen quality parameters were evaluated weekly. Male testosterone, luteinising hormone (LH), follicle-stimulating hormone (FSH) and cortisol levels were measured through enzyme-linked immunosorbent assay (ELISA) after every 2 weeks. The data were subjected to two-way analysis of variance followed by Duncan test for multiple comparisons. Semen evaluation parameters were reduced significantly (P < 0.05) in arsenic-treated animals. The serum hormonal profile of testosterone, LH and FSH was reduced significantly (P < 0.05) in arsenic group, while the serum level of cortisol was increased. Vitamin E alleviated the toxic effects of arsenic on semen and hormonal parameters. It may be concluded from this study that sodium arsenite causes major toxicity changes in semen and hormonal profile in Teddy goat bucks and vitamin E has ameliorative effects on these toxic changes. © 2016 Blackwell Verlag GmbH.

  20. Scalable Preparation and Differential Pharmacologic and Toxicologic Profiles of Primaquine Enantiomers

    PubMed Central

    Tekwani, Babu L.; Herath, H. M. T. Bandara; Sahu, Rajnish; Gettayacamin, Montip; Tungtaeng, Anchalee; van Gessel, Yvonne; Baresel, Paul; Wickham, Kristina S.; Bartlett, Marilyn S.; Fronczek, Frank R.; Melendez, Victor; Ohrt, Colin; Reichard, Gregory A.; McChesney, James D.; Rochford, Rosemary; Walker, Larry A.

    2014-01-01

    Hematotoxicity in individuals genetically deficient in glucose-6-phosphate dehydrogenase (G6PD) activity is the major limitation of primaquine (PQ), the only antimalarial drug in clinical use for treatment of relapsing Plasmodium vivax malaria. PQ is currently clinically used in its racemic form. A scalable procedure was developed to resolve racemic PQ, thus providing pure enantiomers for the first time for detailed preclinical evaluation and potentially for clinical use. These enantiomers were compared for antiparasitic activity using several mouse models and also for general and hematological toxicities in mice and dogs. (+)-(S)-PQ showed better suppressive and causal prophylactic activity than (−)-(R)-PQ in mice infected with Plasmodium berghei. Similarly, (+)-(S)-PQ was a more potent suppressive agent than (−)-(R)-PQ in a mouse model of Pneumocystis carinii pneumonia. However, at higher doses, (+)-(S)-PQ also showed more systemic toxicity for mice. In beagle dogs, (+)-(S)-PQ caused more methemoglobinemia and was toxic at 5 mg/kg of body weight/day given orally for 3 days, while (−)-(R)-PQ was well tolerated. In a novel mouse model of hemolytic anemia associated with human G6PD deficiency, it was also demonstrated that (−)-(R)-PQ was less hemolytic than (+)-(S)-PQ for the G6PD-deficient human red cells engrafted in the NOD-SCID mice. All these data suggest that while (+)-(S)-PQ shows greater potency in terms of antiparasitic efficacy in rodents, it is also more hematotoxic than (−)-(R)-PQ in mice and dogs. Activity and toxicity differences of PQ enantiomers in different species can be attributed to their different pharmacokinetic and metabolic profiles. Taken together, these studies suggest that (−)-(R)-PQ may have a better safety margin than the racemate in human. PMID:24913163

  1. Selection of Bacillus thuringiensis strains toxic to cotton boll weevil (Anthonomus grandis, Coleoptera: Curculionidae) larvae.

    PubMed

    Pérez, Melisa P; Sauka, Diego H; Onco, María I; Berretta, Marcelo F; Benintende, Graciela B

    Preliminary bioassays with whole cultures (WC) of 124 Bacillus thuringiensis strains were performed with neonate larvae of Anthonomus grandis, a major cotton pest in Argentina and other regions of the Americas. Three exotic and four native strains were selected for causing more than 50% mortality. All of them were β-exotoxin producers. The native strains shared similar morphology of parasporal crystals, similar protein pattern and identical insecticidal gene profiles. These features resembled Lepidoptera-toxic strains. Furthermore, these strains showed a Rep-PCR pattern identical to lepidoptericidal strain HD-1, suggesting that these strains may belong to serovar kurstaki. However, some differences were observed in the plasmid profiles and in the production of β-exotoxin. To determine the culture fractions where the insecticidal metabolites were present, bioassays including resuspended spore-crystal pellets, filtered supernatants (FS) were compared with those of WC. Both fractions tested showed some level of insecticidal activity. The results may suggest that the main toxic factors can be found in FS and could be directly correlated with the presence of β-exotoxin. Based on the bioassays with FS and autoclaved FS, the participation of thermolabile virulence factors such as Cry1I in toxicity is neither discarded. In the selected strains, β-exotoxin would be the major associated virulence factor; therefore, their use in biological control of A. grandis should be restricted. Nevertheless, these strains could be the source of genes (e.g., cry1Ia) to produce transgenic cotton plants resistant to this pest. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. DEVELOPMENTAL TOXICOGENOMIC STUDIES OF PFOA AND PFOS IN MICE.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are developmentally toxic in rodents. To better understand the mechanism(s) associated with this toxicity, we have conducted transcript profiling in mice. In an initial study, pregnant animals were dosed througho...

  3. Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing

    EPA Science Inventory

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

  4. Gene Transcription, Metabolite and Lipid Profiling in Eco-Indicator Daphnia magna Indicate Diverse Mechanisms of Toxicity by Legacy and Emerging Flame-Retardants

    EPA Science Inventory

    The use of chemical flame-retardants (FR) in consumer products has steadily increased over the last 30 years. Toxicity data exist for legacy FRs such as pentabromodiphenyl ether (pentaBDE), but less is known about effects of new formulations. To address this issue, the toxicity o...

  5. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies.

    PubMed

    Wang, Kui; Kievit, Forrest M; Zhang, Miqin

    2016-12-01

    Compared to conventional treatments, gene therapy offers a variety of advantages for cancer treatment including high potency and specificity, low off-target toxicity, and delivery of multiple genes that concurrently target cancer tumorigenesis, recurrence, and drug resistance. In the past decades, gene therapy has undergone remarkable progress, and is now poised to become a first line therapy for cancer. Among various gene delivery systems, nanoparticles have attracted much attention because of their desirable characteristics including low toxicity profiles, well-controlled and high gene delivery efficiency, and multi-functionalities. This review provides an overview on gene therapeutics and gene delivery technologies, and highlight recent advances, challenges and insights into the design and the utility of nanoparticles in gene therapy for cancer treatment. Copyright © 2016. Published by Elsevier Ltd.

  6. 75 FR 52535 - Availability of Draft Toxicological Profile

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... toxicological profile on unregulated hazardous substances that was prepared for the Department of Defense (DOD... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry [ATSDR... Registry (ATSDR), [[Page 52536

  7. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4′-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1–3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA’s. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as “expression signatures”. The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action. PMID:16488489

  8. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-05-25

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4'-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action.

  9. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data.

    PubMed

    Hettne, Kristina M; Boorsma, André; van Dartel, Dorien A M; Goeman, Jelle J; de Jong, Esther; Piersma, Aldert H; Stierum, Rob H; Kleinjans, Jos C; Kors, Jan A

    2013-01-29

    Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.

  10. Next-generation text-mining mediated generation of chemical response-specific gene sets for interpretation of gene expression data

    PubMed Central

    2013-01-01

    Background Availability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles. Methods We created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals. Results Next-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals. Conclusions Gene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect. PMID:23356878

  11. Blood transcriptomics: applications in toxicology

    PubMed Central

    Joseph, Pius; Umbright, Christina; Sellamuthu, Rajendran

    2015-01-01

    The number of new chemicals that are being synthesized each year has been steadily increasing. While chemicals are of immense benefit to mankind, many of them have a significant negative impact, primarily owing to their inherent chemistry and toxicity, on the environment as well as human health. In addition to chemical exposures, human exposures to numerous non-chemical toxic agents take place in the environment and workplace. Given that human exposure to toxic agents is often unavoidable and many of these agents are found to have detrimental human health effects, it is important to develop strategies to prevent the adverse health effects associated with toxic exposures. Early detection of adverse health effects as well as a clear understanding of the mechanisms, especially at the molecular level, underlying these effects are key elements in preventing the adverse health effects associated with human exposure to toxic agents. Recent developments in genomics, especially transcriptomics, have prompted investigations into this important area of toxicology. Previous studies conducted in our laboratory and elsewhere have demonstrated the potential application of blood gene expression profiling as a sensitive, mechanistically relevant and practical surrogate approach for the early detection of adverse health effects associated with exposure to toxic agents. The advantages of blood gene expression profiling as a surrogate approach to detect early target organ toxicity and the molecular mechanisms underlying the toxicity are illustrated and discussed using recent studies on hepatotoxicity and pulmonary toxicity. Furthermore, the important challenges this emerging field in toxicology faces are presented in this review article. PMID:23456664

  12. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses.

    PubMed

    Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme

    2017-08-01

    Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment contamination. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Assessment of toxicological profiles of the municipal wastewater effluents using chemical analyses and bioassays.

    PubMed

    Smital, Tvrtko; Terzic, Senka; Zaja, Roko; Senta, Ivan; Pivcevic, Branka; Popovic, Marta; Mikac, Iva; Tollefsen, Knut Erik; Thomas, Kevin V; Ahel, Marijan

    2011-05-01

    The hazardous chemical contamination of untreated wastewater and secondary effluent from the wastewater treatment plant (WWTP) of the city of Zagreb, Croatia was comprehensively characterized using large-volume solid-phase extraction (SPE) and silica gel fractionation, followed by a detailed analysis of the resulting extracts by a combination of chemical and bioassay methods. Over 100 individual contaminants or closely related-contaminant groups were identified by high-resolution gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QTOF). Ecotoxicity profiling of the investigated samples, including cytotoxicity, chronic toxicity and EROD activity; inhibition of the multixenobiotic resistance (MXR), genotoxicity and estrogenic potential, revealed the most significant contribution of toxic compounds to be present in polar fractions. Wastewater treatment using conventional activated sludge process reduced the initial toxicity of raw wastewater to various extents, ranging from 28% for algal toxicity to 73.2% for an estrogenic activity. The most efficient toxicity removal was observed for the polar compounds. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Treosulfan-based conditioning regimens for allogeneic HSCT in children with acute lymphoblastic leukaemia.

    PubMed

    Boztug, Heidrun; Zecca, Marco; Sykora, Karl-Walter; Veys, Paul; Lankester, Arjan; Slatter, Mary; Skinner, Roderick; Wachowiak, Jacek; Pötschger, Ulrike; Glogova, Evgenia; Peters, Christina

    2015-02-01

    Standard myeloablative conditioning regimens for children with acute lymphoblastic leukaemia are based on total body irradiation (TBI). However, TBI causes profound short-term and long-term side effects, provoking the necessity for alternative regimens. Treosulfan combines a potent immunosuppressive and antileukaemic effect with myeloablative activity and low toxicity profile. We retrospectively studied toxicity and outcome of 71 paediatric patients with acute lymphoblastic leukaemia (ALL) undergoing haematopoietic stem cell transplantation (HSCT) following treosulfan-based conditioning aiming to identify risk factors for treatment failure and dose-depending outcome differences. Early regimen-related toxicity was low. No case of veno-occlusive disease was reported. There was no association of toxicity with age or number of HSCT. Event-free survival (EFS) of infants was significantly better compared to older children. Overall survival (OS) at 3 years was 51 % and not significantly influenced by number of HSCT (first HSCT 54 %, ≥second HSCT 44 %, p = 0.71). In multivariate analysis, OS and EFS were significantly worse for patients transplanted without complete remission (p = 0.04 and 0.004). Treatment-related mortality was low at 14 %. We conclude that treosulfan-based conditioning is a safe and efficacious approach for paediatric ALL.

  15. Preliminary toxicity study of dichloromethane extract of Kielmeyera coriacea stems in mice and rats.

    PubMed

    Obici, Simoni; Otobone, Fernanda Jacques; da Silva Sela, Vânia Ramos; Ishida, Kelly; da Silva, José Carlos; Nakamura, Celso Vataru; Garcia Cortez, Diógenes Aparício; Audi, Elisabeth Aparecida

    2008-01-04

    Kielmeyera coriacea Mart. (Clusiaceae), known as "Pau Santo" or "Saco de Boi" in the central Brazilian plateau region, is used to treat several tropical diseases. The present study evaluated the toxic effects of dichloromethane (DcM) extract of Kielmeyera coriacea stems, administered to rodents. In the acute toxicity tests, mice receiving doses of this extract by the oral and intraperitoneal routes, showed reversible effects, with LD50 values of 1503.0 and 538.8 mg/kg, respectively. In the repeated-dose oral (90 days) toxicity tests, male and female Wistar rats were treated by gavage with different doses of DcM extract (5, 25 or 125 mg/kg). In biochemical and haematological evaluations, the results varied widely in respect to dose and sex, with no linear profile, and did not show clinical correlations. In the histopathological examinations, the groups exhibited some changes, but there were no significant differences between the groups compared to the controls. In conclusion, these investigations appeared to indicate the safety of acute and repeated oral administration of the DcM extract of Kielmeyera coriacea stems, which can therefore be continuously used with safety.

  16. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Ng, Ashley S; Goh, Wei Huang; McGinnis, Claudia; Fowler, Stephen; Carney, Tom J; Wang, Haishan; Ingham, Phillip W

    2017-03-01

    Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.

  17. Multi-parameter optimization of aza-follow-ups to BI 207524, a thumb pocket 1 HCV NS5B polymerase inhibitor. Part 2: Impact of lipophilicity on promiscuity and in vivo toxicity.

    PubMed

    Beaulieu, Pierre L; Bolger, Gordon; Deon, Dan; Duplessis, Martin; Fazal, Gulrez; Gagnon, Alexandre; Garneau, Michel; LaPlante, Steven; Stammers, Timothy; Kukolj, George; Duan, Jianmin

    2015-03-01

    We describe our efforts to identify analogs of thumb pocket 1 HCV NS5B inhibitor 1 (aza-analog of BI 207524) with improved plasma to liver partitioning and a predicted human half-life consistent with achieving a strong antiviral effect at a reasonable dose in HCV-infected patients. Compounds 3 and 7 were identified that met these criteria but exhibited off-target promiscuity in an in vitro pharmacology screen and in vivo toxicity in rats. High lipophilicity in this class was found to correlate with increased probability for promiscuous behavior and toxicity. The synthesis of an 8×11 matrix of analogs allowed the identification of C3, an inhibitor that displayed comparable potency to 1, improved partitioning to the liver and reduced lipophilicity. Although C3 displayed reduced propensity for in vitro off-target inhibition and the toxicity profile in rats was improved, the predicted human half-life of this compound was short, resulting in unacceptable dosing requirements to maintain a strong antiviral effect in patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?

    PubMed

    Vazquez-Muñoz, Roberto; Borrego, Belen; Juárez-Moreno, Karla; García-García, Maritza; Mota Morales, Josué D; Bogdanchikova, Nina; Huerta-Saquero, Alejandro

    2017-07-05

    Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin

    USGS Publications Warehouse

    Davis, John M.; Ekman, Drew R.; Teng, Quincy; Ankley, Gerald T.; Berninger, Jason P.; Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Schroeder, Anthony L.; Villeneuve, Daniel L.; Jorgenson, Zachary G.; Lee, Kathy E.; Collette, Timothy W.

    2016-01-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493–2502.

  20. Mefloquine use, psychosis, and violence: a retinoid toxicity hypothesis.

    PubMed

    Mawson, Anthony

    2013-07-15

    Mefloquine use has been linked to severe gastrointestinal and neuropsychiatric adverse effects, including cognitive disturbances, anxiety, depression, psychosis, and violence. The adverse effects of the drug are thought to result from the secondary consequences of hepatocellular injury; in fact, mefloquine is known to cause a transient, anicteric chemical hepatitis. However, the mechanism of mefloquine-associated liver damage and the associated neuropsychiatric and behavioral effects of the drug are not well understood. Mefloquine and other 8-amino-quinolines are the only antimalarial drugs that target the liver-stage malaria parasites, which selectively absorb vitamin A from the host. Vitamin A is also stored mainly in the liver, in potentially poisonous concentrations. These observations suggest that both the therapeutic effectiveness of mefloquine and its adverse effects are related to the ability of the 8-aminoquinolines to alter the metabolism of retinoids (vitamin A and its congeners). Several lines of evidence support the hypothesis that mefloquine neurotoxicity and other adverse effects reflect an endogenous form of hypervitaminosis A due to a process involving: mefloquine-induced dehydrogenase inhibition; the accumulation of retinoids in the liver; retinoid-induced hepatocellular damage; the spillage of stored retinoids into the circulation; and the transport of these compounds to the gut and brain in toxic concentrations. The retinoid hypothesis could be tested clinically by comparing cases of mefloquine toxicity and untreated controls in terms of retinoid profiles (retinol, retinyl esters, percent retinyl esters, and retinoic acid). Subject to such tests, retinoid profiling could provide an indicator for assessing mefloquine-associated adverse effects.

  1. [Dose-intensive chemotherapy with continuous infusion 5-fluorouracil].

    PubMed

    Tichler, T; Ghodsizade, E; Katz, A; Rath, P; Berger, R; Brenner, H

    1999-11-01

    54 patients with advanced malignancy refractory to chemotherapy were studied to evaluate efficacy and toxicity of continuous infusion of 5-fluorouracil (5FU) given for 3 weeks. We report results of the first 156 courses given in combination with other drugs. 19 (37%) of the 54 responded, including 3 (6%) with complete response. Toxicity was acceptable, with mucositis in 13 (26%) and 3 (6%) with grade II-III toxicity. Results and toxicity profile were compatible with further disease-oriented studies using this dose-intensive program.

  2. Comparison of the serum toxicokinetics of larkspur toxins in cattle, sheep and goats.

    PubMed

    Welch, K D; Gardner, D R; Green, B T; Stonecipher, C A; Cook, D; Pfister, J A

    2016-09-01

    Larkspurs (Delphinium spp.) are a major cause of cattle losses in western North America, whereas sheep are thought to be resistant to larkspur toxicosis. Goats are often used as a small ruminant model to study poisonous plants. In this study, we compared the serum toxicokinetic profile of toxic larkspur alkaloids from Delphinium barbeyi in cattle, goats, and sheep. The results from this study indicate that kinetic differences could partially explain species differences in susceptibility to larkspur toxicosis. Published by Elsevier Ltd.

  3. Modeling for influenza vaccines and adjuvants profile for safety prediction system using gene expression profiling and statistical tools

    PubMed Central

    Sasaki, Eita; Momose, Haruka; Hiradate, Yuki; Furuhata, Keiko; Takai, Mamiko; Asanuma, Hideki; Ishii, Ken J.

    2018-01-01

    Historically, vaccine safety assessments have been conducted by animal testing (e.g., quality control tests and adjuvant development). However, classical evaluation methods do not provide sufficient information to make treatment decisions. We previously identified biomarker genes as novel safety markers. Here, we developed a practical safety assessment system used to evaluate the intramuscular, intraperitoneal, and nasal inoculation routes to provide robust and comprehensive safety data. Influenza vaccines were used as model vaccines. A toxicity reference vaccine (RE) and poly I:C-adjuvanted hemagglutinin split vaccine were used as toxicity controls, while a non-adjuvanted hemagglutinin split vaccine and AddaVax (squalene-based oil-in-water nano-emulsion with a formulation similar to MF59)-adjuvanted hemagglutinin split vaccine were used as safety controls. Body weight changes, number of white blood cells, and lung biomarker gene expression profiles were determined in mice. In addition, vaccines were inoculated into mice by three different administration routes. Logistic regression analyses were carried out to determine the expression changes of each biomarker. The results showed that the regression equations clearly classified each vaccine according to its toxic potential and inoculation amount by biomarker expression levels. Interestingly, lung biomarker expression was nearly equivalent for the various inoculation routes. The results of the present safety evaluation were confirmed by the approximation rate for the toxicity control. This method may contribute to toxicity evaluation such as quality control tests and adjuvant development. PMID:29408882

  4. Untying a nanoscale knotted polymer structure to linear chains for efficient gene delivery in vitro and to the brain

    NASA Astrophysics Data System (ADS)

    Newland, B.; Aied, A.; Pinoncely, A. V.; Zheng, Y.; Zhao, T.; Zhang, H.; Niemeier, R.; Dowd, E.; Pandit, A.; Wang, W.

    2014-06-01

    The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies.The purpose of this study was to develop a platform transfection technology, for applications in the brain, which could transfect astrocytes without requiring cell specific functionalization and without the common cause of toxicity through high charge density. Here we show that a simple and scalable preparation technique can be used to produce a ``knot'' structured cationic polymer, where single growing chains can crosslink together via disulphide intramolecular crosslinks (internal cyclizations). This well-defined knot structure can thus ``untie'' under reducing conditions, showing a more favorable transfection profile for astrocytes compared to 25 kDa-PEI (48-fold), SuperFect® (39-fold) and Lipofectamine®2000 (18-fold) whilst maintaining neural cell viability at over 80% after four days of culture. The high transfection/lack of toxicity of this knot structured polymer in vitro, combined with its ability to mediate luciferase transgene expression in the adult rat brain, demonstrates its use as a platform transfection technology which should be investigated further for neurodegenerative disease therapies. Electronic supplementary information (ESI) available: 1H NMR spectroscopy data and gel permeation chromatography data. See DOI: 10.1039/c3nr06737h

  5. Blinatumomab: Enlisting serial killer T cells in the war against hematologic malignanciess

    PubMed Central

    Rogala, Britny; Freyer, Craig W.; Ontiveros, Evelena P.; Griffiths, Elizabeth A.; Wang, Eunice S.; Wetzler, Meir

    2016-01-01

    Introduction The approval of blinatumomab signals the long awaited arrival of immunotherapy for acute lymphoblastic leukemia (ALL). Previous options for relapsed or refractory disease were restricted to combination cytotoxic chemotherapy with limited efficacy and significant toxicity. Through an innovative mechanism of action, blinatumomab stimulates a polyclonal antitumor T cell response, yielding unprecedented single agent efficacy in the relapsed/refractory setting. Success comes at the cost of immunological toxicities rarely encountered with previous therapies and challenging administration logistics requiring clinical expertise. Areas covered All published clinical and preclinical studies using blinatumomab were reviewed in addition to all registered ongoing clinical trials and data published in abstract form. The search was limited to the English language. The pharmacology, clinical efficacy, toxicity profile, and logistical considerations for drug administration are discussed. Expert Opinion Blinatumomab is an exciting addition to the treatment armamentarium for relapsed/refractory ALL, yet several questions remain regarding optimal implementation into the current treatment paradigm. A unique toxicity profile should be weighed against promising benefits in a poor prognosis population. Other emerging therapies, such as chimeric antigen receptor-modified T cells and inotuzumab ozogamicin, with different side effect profiles and administration schedules, may prove to be more beneficial for specific patient populations. PMID:25985814

  6. Systematic review and meta-analysis of selected toxicities of approved ALK inhibitors in metastatic non-small cell lung cancer

    PubMed Central

    Costa, Rubens Barros; Costa, Ricardo L.B.; Talamantes, Sarah M.; Kaplan, Jason B.; Bhave, Manali A.; Rademaker, Alfred; Miller, Corinne; Carneiro, Benedito A.; Mahalingam, Devalingam; Chae, Young Kwang

    2018-01-01

    Introduction Anaplastic lymphoma kinase (ALK) inhibitors are the mainstay treatment for patients with non-small cell lung carcinoma (NSCLC) harboring a rearrangement of the ALK gene or the ROS1 oncogenes. With the recent publication of pivotal trials leading to the approval of these compounds in different indications, their toxicity profile warrants an update. Materials and Methods A systematic literature search was performed in July 2017. Studies evaluating US FDA approved doses of one of the following ALK inhibitors: Crizotinib, Ceritinib, Alectinib or Brigatinib as monotherapy were included. Data were analyzed using random effects meta-analysis for absolute risks (AR), study heterogeneity, publication bias and differences among treatments. Results Fifteen trials with a total of 2,005 patients with evaluable toxicity data were included in this report. There was significant heterogeneity amongst different studies. The pooled AR of death and severe adverse events were 0.5% and 34.5%, respectively. Grade 3/4 nausea, vomiting, diarrhea, and constipation were uncommon: 2.6%, 2.5%, 2.7%, 1.2%, respectively. Conclusions ALK inhibitors have an acceptable safety profile with a low risk of treatment-related deaths. Important differences in toxicity profile were detected amongst the different drugs. PMID:29774128

  7. Elucidation of Adverse Bioactivity Profiles as Predictors of Toxicity Potential

    EPA Science Inventory

    Toxicity testing in vitro remains a formidable challenge due to lack of understanding of key molecular targets and pathways underlying many pathological events. The combination of genome sequencing and widespread application of high-throughput screening tools have provided the me...

  8. An Introduction to ToxCast™

    EPA Science Inventory

    ToxCast™ is a chemical prioritization research program to develop the ability to forecast toxicity using bioactivity profiling. The point is to use results in a variety of in vitro and rapid non-mammalian in vivo assays to explore effects at different toxicity targets. The desi...

  9. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  10. 78 FR 63981 - Availability of Interaction Profile for Chlorinated Dibenzo-p -Dioxins, Polybrominated Diphenol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... found in human blood, adipose tissue, and breast milk. The purpose of this interaction profile is to... endpoints in humans. This interaction profile has undergone external peer-review and review by ATSDR's... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry [Docket...

  11. Development and Characterization of a Microemulsion System Containing Amphotericin B with Potential Ocular Applications.

    PubMed

    da Silveira, Walteçá Louis Lima; Damasceno, Bolivar P G L; Ferreira, Laura F; Ribeiro, Izabel L S; Silva, Karolyne S; Silva, André Leandro; Giannini, Maria José Mendes; da Silva-Júnior, Arnóbio Antônio; de Oliveira, Anselmo Gomes; do Egito, E Sócrates Tabosa

    2016-01-01

    Amphotericin B eye drops are widely used in the treatment of ocular infections. However, amphotericin's toxicity leads to low patient compliance and aggravation of symptoms. This work describes the development of a microemulsion system containing amphotericin B, aiming for its use in ocular applications. The microemulsion was developed by the titration technique. The physicochemical characteristics were determined with both loaded and unloaded amphotericin B-microemulsion. The nanostructures were analyzed by polarized light microscopy. The microdilution method was used to establish the minimum inhibitory concentration against fungal strains, and, therefore, evaluate the microemulsion activity. Additionally, in order to evaluate the microemulsion toxicity an in vitro toxicity assay against red blood cells was performed. The performed studies showed that the presence of amphotericin B loaded into the system did not induce serious changes in the physicochemical properties of the microemulsion when compared to the unloaded system. The spectrophotometric studies depicted amphotericin B-self-associated species, which allow predicting its behavior in vitro. The high pressure liquid chromatography results revealed high drug content entrapment in the microemulsion droplet. Finally, the amphotericin B-microemulsion in vitro susceptibility test showed high activity against Candida strains and a low toxicity profile against red blood cells when compared to Fungizone®. The physicochemical characterization of the microemulsion demonstrated that its characteristics are compatible with the topical ocular route, making it eligible for consideration as a new and interesting amphotericin B-deliverydosage form to be used as eye drop formulation.

  12. Transcriptomics analysis of lungs and peripheral blood of crystalline silica-exposed rats

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R.; Chapman, Rebecca; Young, Shih-Houng; Richardson, Diana; Cumpston, Jared; McKinney, Walter; Chen, Bean T.; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    Minimally invasive approaches to detect/predict target organ toxicity have significant practical applications in occupational toxicology. The potential application of peripheral blood transcriptomics as a practical approach to study the mechanisms of silica-induced pulmonary toxicity was investigated. Rats were exposed by inhalation to crystalline silica (15 mg/m3, 6 h/day, 5 days) and pulmonary toxicity and global gene expression profiles of lungs and peripheral blood were determined at 32 weeks following termination of exposure. A significant elevation in bronchoalveolar lavage fluid lactate dehydrogenase activity and moderate histological changes in the lungs, including type II pneumocyte hyperplasia and fibrosis, indicated pulmonary toxicity in the rats. Similarly, significant infiltration of neutrophils and elevated monocyte chemotactic protein-1 levels in the lungs showed pulmonary inflammation in the rats. Microarray analysis of global gene expression profiles identified significant differential expression [>1.5-fold change and false discovery rate (FDR) p < 0.01] of 520 and 537 genes, respectively, in the lungs and blood of the exposed rats. Bioinformatics analysis of the differentially expressed genes demonstrated significant similarity in the biological processes, molecular networks, and canonical pathways enriched by silica exposure in the lungs and blood of the rats. Several genes involved in functions relevant to silica-induced pulmonary toxicity such as inflammation, respiratory diseases, cancer, cellular movement, fibrosis, etc, were found significantly differentially expressed in the lungs and blood of the silica-exposed rats. The results of this study suggested the potential application of peripheral blood gene expression profiling as a toxicologically relevant and minimally invasive surrogate approach to study the mechanisms underlying silica-induced pulmonary toxicity. PMID:22861000

  13. Gene expression profiling and environmental contaminant assessment of migrating Pacific salmon in the Fraser River watershed of British Columbia.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Dubetz, Cory; Macpherson, Nancy; Sampson, Tracy; Kelly, Barry C; Helbing, Caren C

    2010-05-05

    The health and physiological condition of anadromous salmon is of concern as their upriver migration requires navigation of human-impacted waterways and metabolism of stored energy reserves containing anthropogenic contaminants. Such factors may affect reproductive success of fish stocks. This study investigates chemical contaminant burdens and select gene expression profiles in Pacific Sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon which traverse the Fraser River watershed during their spawning migration. Chemical analyses of muscle tissue and eggs of salmon collected from the lower Fraser River (pre-migration) and from upstream spawning grounds (post-migration) during the 2007 migration revealed the presence of numerous chemical contaminants, including PCBs, dioxins/furans, pesticides, and heavy metals. However, muscle tissue residue concentrations were well below human health consumption guidelines and 2,3,7,8 TCDD toxic equivalents (SigmaTEQs) in salmon eggs, calculated using WHO toxic equivalency factors (WHO-TEFs) for fish health, did not exceed the 0.3pgg(-1) wet weight toxicological threshold level previously associated with 30% egg mortality in salmon populations. Quantitative real-time PCR probes were generated and used to assess differences in abundance of key mRNA transcripts encoding nine gene products associated with reproduction, stress, metal toxicity, and exposure to environmental contaminants. Gene expression profiles were characterized in liver and muscle tissue of pre- and post-migration Sockeye and Chinook salmon. The results of stock-matched animals indicate that dynamic changes in mRNA levels occur for a number of genes in both species during migration and suggest that Sockeye salmon exhibit a greater level of biological stress compared to the Chinook salmon population. Using a male-specific genotypic marker, we found that out of the 154 animals examined, one Sockeye was genotypically male but phenotypically female. This individual's gene expression profile in liver and muscle was reminiscent of, but not identical to, the female expression profile. These studies provide the first glimpse of the dynamic yet common nature of changes in the transcriptome that are shared between species during in-migration and highlight differences that may relate to population success. Continued longitudinal assessment will further define the association between contaminant burden, physiological stress, and modulation of gene expression in migrating Pacific salmon.

  14. Comparison of efficacy and ocular surface toxicity of topical preservative-free methylprednisolone and preserved prednisolone in the treatment of acute anterior uveitis.

    PubMed

    Hedayatfar, Alireza; Hashemi, Hassan; Asgari, Soheila; Chee, Soon-Phaik

    2014-04-01

    The aim of this study was to compare the antiinflammatory effect and ocular surface toxicity of topical nonpreserved methylprednisolone sodium succinate 1% and preserved prednisolone acetate suspension 1% for the management of acute anterior uveitis (AAU). In this prospective, randomized, investigator-masked, comparative clinical trial, patients with mild-to-moderate noninfectious AAU were assigned randomly to receive either hourly nonpreserved methylprednisolone 1% (group A) or preserved prednisolone 1% (group B) eye drops followed by a 2-week tapering regimen. Anterior chamber cells and flare were clinically evaluated for the objective comparison of the antiinflammatory effect. The main outcome measure was the percentage of patients with a resolution of inflammation (anterior chamber cells <1+) on day 14. Ocular surface toxicity was assessed by means of the corneal fluorescein staining score, tear breakup time, Schirmer I test, and questionnaire-based grading of ocular discomfort parameters. Seventy-two eyes of 68 patients were studied, of which 38 eyes were enrolled in group A and 34 eyes were enrolled in group B. On day 14, 76.3% of the patients in group A had resolution of inflammation compared with 70.6% of the patients in group B, proving noninferiority (χ = 0.303, P = 0.582). The mean anterior chamber cell grade reduction for patients in group A was similar to that in group B (2.52 vs. 2.86, respectively; P = 0.92). Group A patients showed significantly lower corneal fluorescein staining scores (P < 0.001) and reported milder subjective ocular discomfort (0.55 vs. 1.43, P = 0.01) as compared with group B. Both preparations demonstrated equal antiinflammatory effects for the treatment of AAU. Nonpreserved methylprednisolone eye drops exhibited a significantly lower ocular surface toxicity profile and milder subjective discomfort when compared with that exhibited by preserved prednisolone.

  15. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    PubMed

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  16. ENDOTHELIAL INJURY IN PARTICULATE MATTER (PM)-INDUCED CARDIOVASCULAR INJURY: KINETIC ANALYSIS OF GENE EXPRESSION PROFILES

    EPA Science Inventory

    Numerous epidemiological studies established positive associations between ambient fine PM and cardiovascular morbidity and mortality. The biological basis for these adverse health effects is yet to be elucidated. Cardiovascular toxicity of fine PM and its toxic constituents may ...

  17. ToxCast: Developing Predictive Signatures of Chemically Induced Toxicity (Developing Predictive Bioactivity Signatures from ToxCasts HTS Data)

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry, bioactivity profiling and toxicogenomic data to predict potential for toxicity and prioritize limited testing resour...

  18. Chemical Genomics Profiling of Environmental Chemical Modulation of Human Nuclear Receptors

    EPA Science Inventory

    The large and increasing number of chemicals released into the environment demand more efficient and cost effective approaches for assessing environmental chemical toxicity. The U.S. Tox21 program has responded to this challenge by proposing alternative strategies for toxicity te...

  19. Anti-Candida activity and brine shrimp toxicity assay of Ganoderma boninense.

    PubMed

    Daruliza, K M A; Fernandez, L; Jegathambigai, R; Sasidharan, S

    2012-01-01

    Ganoderma (G.) boninense is a white rot fungus, which can be found in the palm oil tree. Several studies have shown that G. boninense has antimicrobial and antagonistic properties. However, there is limited information reported on antifungal properties especially on Candida (C) albicans. Hence, this study was conducted to determine the anti-Candida activity of G. boninense against C albicans. Crude methanolic extracts of G. boninense was obtained by maceration method with 70% methanol. Anti-Candida test was carried out using disc diffusion assay, broth dilution method, time killing profile and brine shrimp toxicity assay. Anti-Candida activity indicated that the mean zone of inhibition was 12.5 +/- 0.6 mm. The MIC value for C. albicans found to be 3.125 mg/ml. The result from time-killing profile showed that the growth of C albicans was inhibited hence decreases its exponential phase. For brine shrimp toxicity assay, the LC50 value was 3.59 mg/ml which proved that the extract of G. boninense is not toxic.

  20. Assessing the toxicity of sediments using the medaka embryo-larval assay and 2 other bioassays.

    PubMed

    Barhoumi, Badreddine; Clérandeau, Christelle; Landi, Laure; Pichon, Anaïk; Le Bihanic, Florane; Poirier, Dominique; Anschutz, Pierre; Budzinski, Hélène; Driss, Mohamed Ridha; Cachot, Jérôme

    2016-09-01

    Sediments are sinks for aquatic pollutants, and analyzing toxicity in such complex matrices is still challenging. To evaluate the toxicity of bioavailable pollutants accumulated in sediments from the Bizerte lagoon (Tunisia), a novel assay, the medaka embryo-larval assay by sediment contact, was applied. Japanese medaka (Oryzias latipes) embryos were incubated in direct contact with sediment samples up to hatching. Lethal and sublethal adverse effects were recorded in embryos and larvae up to 20 d postfertilization. Results from medaka embryo-larval assay were compared with cytotoxicity (Microtox®), genotoxicity (SOS chromotest), and pollutant content of sediments. The results highlight differences in the contamination profile and toxicity pattern between the different studied sediments. A significant correlation was shown between medaka embryo-larval assay by sediment contact and SOS chromotest responses and concentrations of most organic pollutants studied. No correlation was shown between pollutant levels and Microtox. According to the number of sediment samples detected as toxic, medaka embryo-larval assay by sediment contact was more sensitive than Microtox, which in turn was more sensitive than the SOS chromotest; and medaka embryo-larval assay by sediment contact allowed sediment toxicity assessment of moderately polluted sediments without pollutant extraction and using an ecologically realistic exposure scenario. Although medaka embryo-larval assay by sediment contact should be tested on a larger sample set, the results show that it is sensitive and convenient enough to monitor the toxicity of natural sediments. Environ Toxicol Chem 2016;35:2270-2280. © 2016 SETAC. © 2016 SETAC.

  1. High-dose versus weekly cisplatin definitive chemoradiotherapy for HPV-related oropharyngeal squamous cell carcinoma of the head and neck.

    PubMed

    Perez, Cesar Augusto; Wu, Xiaoyong; Amsbaugh, Mark J; Gosain, Rahul; Claudino, Wederson M; Yusuf, Mehran; Roberts, Teresa; Jain, Dharamvir; Jenson, Alfred; Khanal, Sujita; Silverman, Craig I; Tennant, Paul; Bumpous, Jeffrey M; Dunlap, Neal E; Rai, Shesh N; Redman, Rebecca A

    2017-04-01

    To compare the outcomes and toxicity of high-dose cisplatin (HDC) versus weekly cisplatin (WC) definitive chemoradiotherapy (CRT) for patients with human papillomavirus (HPV) related oropharyngeal squamous cell carcinoma (SCCOPx). All patients with p16 positive SCCOPx treated with definitive CRT with cisplatin between 2010 and 2014 at a single institution were retrospectively reviewed. CTCAE v 4.03 toxicity criteria were used. The Kaplan-Meier method was used to estimate event-free survival (EFS) and the overall survival (OS). Of the 55 patients included, 22 were patients treated with HDC at dose of 100mg/m 2 on days 1 and 22; and the remaining 33 patients were treated with WC at 40mg/m 2 . Both cohorts received a median total dose of cisplatin of 200mg/m 2 . At median follow-up of 31months, there was one local failure and no distant failures in the HDC cohort. In the WC group, there were 6 total failures (2 local, 4 distant). Estimated 2-year EFS was better in HDC cohort as compared to WC (96% vs. 75%; p=0.04). There was no significant difference in 2-year OS (95% vs. 94%; p=0.40). Weight loss, gastric tube dependence at six months, acute renal injury and grade 3 or 4 hematological toxicity were all similar between both groups. HPV-related SCCOPx treated with definitive CRT with either HDC or WC had similar toxicity profile. HDC had better EFS when compared with WC and this seems to be driven by increased distant failure rates, although the OS was similar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of High Toxic Boron Concentration on Protein Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by a 2-DE Based MS Approach

    PubMed Central

    Sang, Wen; Huang, Zeng-Rong; Yang, Lin-Tong; Guo, Peng; Ye, Xin; Chen, Li-Song

    2017-01-01

    Citrus are sensitive to boron (B)-toxicity. In China, B-toxicity occurs in some citrus orchards. So far, limited data are available on B-toxicity-responsive proteins in higher plants. Thirteen-week-old seedlings of “Sour pummelo” (Citrus grandis) and “Xuegan” (Citrus sinensis) was fertilized every other day until dripping with nutrient solution containing 10 μM (control) or 400 μM (B-toxicity) H3BO3 for 15 weeks. The typical B-toxic symptom only occurred in 400 μM B-treated C. grandis leaves, and that B-toxicity decreased root dry weight more in C. grandis seedlings than in C. sinensis ones, demonstrating that C. sinensis was more tolerant to B-toxicity than C. grandis. Using a 2-dimensional electrophoresis (2-DE) based MS approach, we identified 27 up- and four down-accumulated, and 28 up- and 13 down-accumulated proteins in B-toxic C. sinensis and C. grandis roots, respectively. Most of these proteins were isolated only from B-toxic C. sinensis or C. grandis roots, only nine B-toxicity-responsive proteins were shared by the two citrus species. Great differences existed in B-toxicity-induced alterations of protein profiles between C. sinensis and C. grandis roots. More proteins related to detoxification were up-accumulated in B-toxic C. grandis roots than in B-toxic C. sinensis roots to meet the increased requirement for the detoxification of the more reactive oxygen species and other toxic compounds such as aldehydes in the former. For the first time, we demonstrated that the active methyl cycle was induced and repressed in B-toxic C. sinensis and C. grandis roots, respectively, and that C. sinensis roots had a better capacity to keep cell wall and cytoskeleton integrity than C. grandis roots in response to B-toxicity, which might be responsible for the higher B-tolerance of C. sinensis. In addition, proteins involved in nucleic acid metabolism, biological regulation and signal transduction might play a role in the higher B-tolerance of C. sinensis. PMID:28261239

  3. Gene expression profiles in rainbow trout, Onchorynchus mykiss, exposed to a simple chemical mixture.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Gopalan, Banu; Small, Jack A; Schultz, Irvin R

    2008-03-01

    Among proposed uses for microarrays in environmental toxiciology is the identification of key contributors to toxicity within a mixture. However, it remains uncertain whether the transcriptomic profiles resulting from exposure to a mixture have patterns of altered gene expression that contain identifiable contributions from each toxicant component. We exposed isogenic rainbow trout Onchorynchus mykiss, to sublethal levels of ethynylestradiol, 2,2,4,4-tetrabromodiphenyl ether, and chromium VI or to a mixture of all three toxicants Fluorescently labeled complementary DNA (cDNA) were generated and hybridized against a commercially available Salmonid array spotted with 16,000 cDNAs. Data were analyzed using analysis of variance (p<0.05) with a Benjamani-Hochberg multiple test correction (Genespring [Agilent] software package) to identify up and downregulated genes. Gene clustering patterns that can be used as "expression signatures" were determined using hierarchical cluster analysis. The gene ontology terms associated with significantly altered genes were also used to identify functional groups that were associated with toxicant exposure. Cross-ontological analytics approach was used to assign functional annotations to genes with "unknown" function. Our analysis indicates that transcriptomic profiles resulting from the mixture exposure resemble those of the individual contaminant exposures, but are not a simple additive list. However, patterns of altered genes representative of each component of the mixture are clearly discernible, and the functional classes of genes altered represent the individual components of the mixture. These findings indicate that the use of microarrays to identify transcriptomic profiles may aid in the identification of key stressors within a chemical mixture, ultimately improving environmental assessment.

  4. Respirable Uranyl-Vanadate Containing Particulate Matter Derived from a Legacy Uranium Mine Site Exhibits Potentiated Cardiopulmonary Toxicity.

    PubMed

    Zychowski, Katherine E; Kodali, Vamsi; Harmon, Molly; Tyler, Christina; Sanchez, Bethany; Ordonez Suarez, Yoselin; Herbert, Guy; Wheeler, Abigail; Avasarala, Sumant; Cerrato, José M; Kunda, Nitesh K; Muttil, Pavan; Shuey, Chris; Brearley, Adrian; Ali, Abdul-Mehdi; Lin, Yan; Shoeb, Mohammad; Erdely, Aaron; Campen, Matthew J

    2018-04-05

    Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared to background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤10μm) fraction. Mice were dosed with either PM sample, uranyl acetate or vanadyl sulfate via aspiration (100µg), with assessments of pulmonary and vascular toxicity 24h later. PM samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared to background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated IL-1β, TNFα, KC/GRO) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.

  5. Toxicity evaluation of cordycepin and its delivery system for sustained in vitro anti-lung cancer activity

    NASA Astrophysics Data System (ADS)

    Aramwit, Pornanong; Porasuphatana, Supatra; Srichana, Teerapol; Nakpheng, Titpawan

    2015-03-01

    In the previous study, we have found that the cordycepin which was extracted from Cordyceps mycelia produced by growing Cordyceps militaris on the dead larva of Bombyx mori silkworms showed the anti-proliferative effect toward lung cancer cells without toxicity to non-cancer cells. In this work, the cordycepin was tested for its in vitro mutagenicity and in vivo toxicity. From the Ames test and subacute toxicity test using oral administration in a rat model, the cordycepin was proved to be a non-mutagenic and non-toxic compound. The hematology and blood chemistry as well as the microanatomical characteristic of the tissues of rats fed with cordycepin every day for consecutive 30 days were comparable to those of the normal ones. Then, the cordycepin was incorporated in gelatin type A (GA) and gelatin type B (GB) nanoparticles aimed to sustain its release and activity. The cordycepin incorporated in both GA and GB nanoparticles showed the sustained release profiles. GA nanoparticles could encapsulate cordycepin at higher encapsulation efficiency due to the attractive electrostatic interaction between the positive-charged GA and the negative-charged cordycepin. However, GA nanoparticles released cordycepin at the higher amount possibly because of the large surface area of small size nanoparticles. Comparing to GB nanoparticles, the higher amount of cordycepin released from GA nanoparticles showed the higher anti-proliferative and anti-migratory effects on A549 lung cancer cells. In conclusion, GA nanoparticles were suggested as a suitable carrier for the sustained release of cordycepin. The GA nanoparticles releasing cordycepin could be an effective and non-invasive material for the treatment of lung cancer cells.

  6. Influence of surfactants and humic acids on Artemia Franciscana's embryonic phospho-metabolite profile as measured by 31P NMR.

    PubMed

    Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J; Cook, Robert L

    2017-05-01

    Surfactants, such as triton X-100 (Tx-100), cetylpyridinium chloride (CPC), and sodium dodecyl sulfate (SDS) are known to be toxic to Artemia Franciscana (Artemia) - an organism, frequently used to monitor the health of the aquatic environment. The phospho-metabolite profile of a living organism is often indicative of imbalances that may have been caused by environmental stressors, such as surfactants. This study utilizes in vivo 31 P NMR to monitor temporal changes in the phospho-metabolite profile of Artemia caused by Tx-100, CPC, and SDS and the ability of humic acid (HA) to mitigate the toxicity of these surfactants. It was found that, while Tx-100 does not have any effect on the phospho-metabolite profile, both CPC and SDS cause a complete retardation in growth of the phosphodiester (PDE) peak in the 31 P NMR spectrum, which is indicative of the inhibited cell replication. This growth inhibition was independently verified by the decreased guanosine triphosphate (GTP) concentration in the CPC and SDS-exposed Artemia. In addition, upon introduction of HA to the CPC and SDS-exposed Artemia, an increase of PDE peak over time is indicative of HA mitigating toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analysis of longitudinal "time series" data in toxicology.

    PubMed

    Cox, C; Cory-Slechta, D A

    1987-02-01

    Studies focusing on chronic toxicity or on the time course of toxicant effect often involve repeated measurements or longitudinal observations of endpoints of interest. Experimental design considerations frequently necessitate between-group comparisons of the resulting trends. Typically, procedures such as the repeated-measures analysis of variance have been used for statistical analysis, even though the required assumptions may not be satisfied in some circumstances. This paper describes an alternative analytical approach which summarizes curvilinear trends by fitting cubic orthogonal polynomials to individual profiles of effect. The resulting regression coefficients serve as quantitative descriptors which can be subjected to group significance testing. Randomization tests based on medians are proposed to provide a comparison of treatment and control groups. Examples from the behavioral toxicology literature are considered, and the results are compared to more traditional approaches, such as repeated-measures analysis of variance.

  8. Dose-response relationships in gene expression profiles in rainbow trout, Oncorhyncus mykiss, exposed to ethynylestradiol.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-07-01

    Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss,were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as "expression signatures". Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that different doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose.

  9. Classification and prediction of toxicity of chemicals using an automated phenotypic profiling of Caenorhabditis elegans.

    PubMed

    Gao, Shan; Chen, Weiyang; Zeng, Yingxin; Jing, Haiming; Zhang, Nan; Flavel, Matthew; Jois, Markandeya; Han, Jing-Dong J; Xian, Bo; Li, Guojun

    2018-04-18

    Traditional toxicological studies have relied heavily on various animal models to understand the effect of various compounds in a biological context. Considering the great cost, complexity and time involved in experiments using higher order organisms. Researchers have been exploring alternative models that avoid these disadvantages. One example of such a model is the nematode Caenorhabditis elegans. There are some advantages of C. elegans, such as small size, short life cycle, well defined genome, ease of maintenance and efficient reproduction. As these benefits allow large scale studies to be initiated with relative ease, the problem of how to efficiently capture, organize and analyze the resulting large volumes of data must be addressed. We have developed a new method for quantitative screening of chemicals using C. elegans. 33 features were identified for each chemical treatment. The compounds with different toxicities were shown to alter the phenotypes of C. elegans in distinct and detectable patterns. We found that phenotypic profiling revealed conserved functions to classify and predict the toxicity of different chemicals. Our results demonstrate the power of phenotypic profiling in C. elegans under different chemical environments.

  10. Using in vitro Dose-Response Profiles to Enhance QSAR Modeling of in vivo Toxicity

    EPA Science Inventory

    To develop effective means for rapid toxicity evaluation of environmental chemicals, the Tox21 partnership among the National Toxicology Program (NTP), NIH Chemical Genomics Center, and National Center for Computational Toxicology (NCCT) at the US EPA are conducting a number of ...

  11. ToxCast Profiling in a Human Stem Cell Assay for Developmental Toxicity (CompTox CoP)

    EPA Science Inventory

    Standard practice for assessing disruptions in embryogenesis involves testing pregnant animals of two species, typically rats and rabbits, exposed during major organogenesis and evaluated just prior to term. Under this design the major manifestations of developmental toxicity are...

  12. Perturbational Metabolic Profiling of Human Breast Cancer Cells

    EPA Science Inventory

    A major goal of toxicity testing is to obtain toxicity data for protecting public health and the environment from adverse effects that may be caused by exposure to environmental agents in the air, water, soil and food. The current toxicological studies that target human health ef...

  13. Probing the ToxCast Chemical Library for Predictive Signatures of Developmental Toxicity

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  14. PROFILE OF TOXIC RESPONSE TO SEDIMENTS USING WHOLE-ANIMAL AND IN VITRO SUBMITOCHONDRIAL PARTICLE (SMP) ASSAYS

    EPA Science Inventory

    A rapid bioassy for monitoring acute toxicity of wastewater, ground water, and soil and sediment extracts using submitochondrial particles (SMP) has been developed. The assay utilizes the mitochondrial electron transfer enzyme complex present in all eukaryotic cells. Prior develo...

  15. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  16. The common insecticides cyfluthrin and chlorpyrifos alter the expression of a subset of genes with diverse functions in primary human astrocytes.

    PubMed

    Mense, Sarah M; Sengupta, Amitabha; Lan, Changgui; Zhou, Mei; Bentsman, Galina; Volsky, David J; Whyatt, Robin M; Perera, Frederica P; Zhang, Li

    2006-09-01

    Given the widespread use of insecticides in the environment, it is important to perform studies evaluating their potential effects on humans. Organophosphate insecticides, such as chlorpyrifos, are being phased out; however, the use of pyrethroids in household pest control is increasing. While chlorpyrifos is relatively well studied, much less is known about the potential neurotoxicity of cyfluthrin and other pyrethroids. To gain insights into the neurotoxicity of cyfluthrin, we compared and evaluated the toxicity profiles of chlorpyrifos and cyfluthrin in primary human fetal astrocytes. We found that at the same concentrations, cyfluthrin exerts as great as, or greater toxic effects on the growth, survival, and proper functioning of human astrocytes. By using microarray gene expression profiling, we systematically identified and compared the potential molecular targets of chlorpyrifos and cyfluthrin, at a genome-wide scale. We found that chlorpyrifos and cyfluthrin affect a similar number of transcripts. These targets include molecular chaperones, signal transducers, transcriptional regulators, transporters, and those involved in behavior and development. Further computational and biochemical analyses show that cyfluthrin and chlorpyrifos upregulate certain targets of the interferon-gamma and insulin-signaling pathways and that they increase the protein levels of activated extracellular signal-regulated kinase 1/2, a key component of insulin signaling; interleukin 6, a key inflammatory mediator; and glial fibrillary acidic protein, a marker of inflammatory astrocyte activation. These results suggest that inflammatory activation of astrocytes might be an important mechanism underlying neurotoxicity of both chlorpyrifos and cyfluthrin.

  17. Toxicological profile of ultrapure 2,2',3,4,4',5,5'-heptachlorbiphenyl (PCB 180) in adult rats.

    PubMed

    Viluksela, Matti; Heikkinen, Päivi; van der Ven, Leo T M; Rendel, Filip; Roos, Robert; Esteban, Javier; Korkalainen, Merja; Lensu, Sanna; Miettinen, Hanna M; Savolainen, Kari; Sankari, Satu; Lilienthal, Hellmuth; Adamsson, Annika; Toppari, Jorma; Herlin, Maria; Finnilä, Mikko; Tuukkanen, Juha; Leslie, Heather A; Hamers, Timo; Hamscher, Gerd; Al-Anati, Lauy; Stenius, Ulla; Dervola, Kine-Susann; Bogen, Inger-Lise; Fonnum, Frode; Andersson, Patrik L; Schrenk, Dieter; Halldin, Krister; Håkansson, Helen

    2014-01-01

    PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological targets with dioxin-like compounds emphasizing the potential for interactions.

  18. Toxicological Profile of Ultrapure 2,2′,3,4,4′,5,5′-Heptachlorbiphenyl (PCB 180) in Adult Rats

    PubMed Central

    Viluksela, Matti; Heikkinen, Päivi; van der Ven, Leo T. M.; Rendel, Filip; Roos, Robert; Esteban, Javier; Korkalainen, Merja; Lensu, Sanna; Miettinen, Hanna M.; Savolainen, Kari; Sankari, Satu; Lilienthal, Hellmuth; Adamsson, Annika; Toppari, Jorma; Herlin, Maria; Finnilä, Mikko; Tuukkanen, Juha; Leslie, Heather A.; Hamers, Timo; Hamscher, Gerd; Al-Anati, Lauy; Stenius, Ulla; Dervola, Kine-Susann; Bogen, Inger-Lise; Fonnum, Frode; Andersson, Patrik L.; Schrenk, Dieter; Halldin, Krister; Håkansson, Helen

    2014-01-01

    PCB 180 is a persistent non-dioxin-like polychlorinated biphenyl (NDL-PCB) abundantly present in food and the environment. Risk characterization of NDL-PCBs is confounded by the presence of highly potent dioxin-like impurities. We used ultrapure PCB 180 to characterize its toxicity profile in a 28-day repeat dose toxicity study in young adult rats extended to cover endocrine and behavioral effects. Using a loading dose/maintenance dose regimen, groups of 5 males and 5 females were given total doses of 0, 3, 10, 30, 100, 300, 1000 or 1700 mg PCB 180/kg body weight by gavage. Dose-responses were analyzed using benchmark dose modeling based on dose and adipose tissue PCB concentrations. Body weight gain was retarded at 1700 mg/kg during loading dosing, but recovered thereafter. The most sensitive endpoint of toxicity that was used for risk characterization was altered open field behavior in females; i.e. increased activity and distance moved in the inner zone of an open field suggesting altered emotional responses to unfamiliar environment and impaired behavioral inhibition. Other dose-dependent changes included decreased serum thyroid hormones with associated histopathological changes, altered tissue retinoid levels, decreased hematocrit and hemoglobin, decreased follicle stimulating hormone and luteinizing hormone levels in males and increased expression of DNA damage markers in liver of females. Dose-dependent hypertrophy of zona fasciculata cells was observed in adrenals suggesting activation of cortex. There were gender differences in sensitivity and toxicity profiles were partly different in males and females. PCB 180 adipose tissue concentrations were clearly above the general human population levels, but close to the levels in highly exposed populations. The results demonstrate a distinct toxicological profile of PCB 180 with lack of dioxin-like properties required for assignment of WHO toxic equivalency factor. However, PCB 180 shares several toxicological targets with dioxin-like compounds emphasizing the potential for interactions. PMID:25137063

  19. Induction gemcitabine in standard dose or prolonged low-dose with cisplatin followed by concurrent radiochemotherapy in locally advanced non-small cell lung cancer: a randomized phase II clinical trial

    PubMed Central

    Vrankar, Martina; Zwitter, Matjaz; Bavcar, Tanja; Milic, Ana; Kovac, Viljem

    2014-01-01

    Background The optimal combination of chemotherapy with radiation therapy for treatment locally advanced non-small cell lung cancer (NSCLC) remains an open issue. This randomized phase II study compared gemcitabine in two different schedules and cisplatin - as induction chemotherapy, followed by radiation therapy concurrent with cisplatin and etoposid. Patients and methods. Eligible patients had microscopically confirmed inoperable non-metastatic non-small cell lung cancer; fulfilled the standard criteria for platin-based chemotherapy; and signed informed consent. Patients were treated with 3 cycles of induction chemotherapy with gemcitabine and cisplatin. Two different aplications of gemcitabine were compared: patients in arm A received gemcitabine at 1250 mg/m2 in a standard half hour i.v. infusion on days 1 and 8; patients in arm B received gemcitabine at 250 mg/m2 in prolonged 6-hours i.v. infusion on days 1 and 8. In both arms, cisplatin 75 mg/m2 on day 2 was administered. All patients continued treatment with radiation therapy with 60–66 Gy concurrent with cisplatin 50 mg/m2 on days 1, 8, 29 and 36 and etoposid 50 mg/m2 on days 1–5 and 29–33. The primary endpoint was response rate (RR) after induction chemotherapy; secondary endpoints were toxicity, progression-free survival (PFS) and overall survival (OS). Results From September 2005 to November 2010, 106 patients were recruited to this study. No statistically signifficant differences were found in RR after induction chemotherapy between the two arms (48.1% and 57.4%, p = 0.34). Toxicity profile was comparable and mild with grade 3/4 neutropenia as primary toxicity in both arms. One patient in arm B suffered from acute peripheral ischemia grade 4 and an amputation of lower limb was needed. With a median follow-up of 69.3 months, progression-free survival and median survival in arm A were 15.7 and 24.8 months compared to 18.9 and 28.6 months in arm B. The figures for 1- and 3-year overall survival were 73.1% and 30.8% in arm A, and 81.5 % and 44.4% in arm B, respectively. Conclusions Among the two cisplatin-based doublets of induction chemotherapy for inoperable NSCLC, both schedules of gemcitabine have a comparable toxicity profile. Figures for RR, PFS and OS are among the best reported in current literature. While there is a trend towards better efficacy of the treament with prolonged infusion of gemcitabine, the difference between the two arms did not reach statistical significance. PMID:25435850

  20. Serum toxicokinetics after intravenous and oral dosing of larkspur toxins in goats.

    PubMed

    Welch, K D; Gardner, D R; Stonecipher, C A; Green, B T; Pfister, J A

    2017-07-01

    Poisoning of cattle by larkspur plants (Delphinium spp.) is a concern for cattle ranchers in western North America. Previous research studies have evaluated the toxicokinetic profile of multiple larkspur toxins in several livestock species. However, those studies were all performed by orally dosing plant material. Consequently some toxicokinetic parameters could not be definitively determined. In this study, we compared the serum toxicokinetic profile of the larkspur alkaloids methyllycaconitine (MLA) and deltaline in goats dosed both IV and via oral gavage. The results from this study indicate that the toxic alkaloids in larkspurs undergo flip-flop kinetics, meaning the rate of absorption of the alkaloids is slower than the rate of elimination. The implications of flip-flop kinetics in treating animals poisoned by larkspur is discussed. Published by Elsevier Ltd.

  1. ToxCast: Using high throughput screening to identify profiles of biological activity

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  2. Applications of high throughput screening to identify profiles of biological activity

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  3. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays

    EPA Science Inventory

    Understanding potential health risks is a significant challenge for large numbers of diverse chemicals with poorly characterized exposures and mechanisms of toxicities. The present study analyzes chemical-target activity profiles of 976 chemicals (including failed pharmaceuticals...

  4. 78 FR 38982 - Availability of Draft Toxicological Profiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry [Docket... and Disease Registry (ATSDR), Department of Health and Human Services (DHHS). ACTION: Notice of... substances during the profile development process, this Federal Register notice solicits any relevant...

  5. Toxicity and biocompatibility profile of 3D bone scaffold developed by Universitas Indonesia: A preliminary study

    NASA Astrophysics Data System (ADS)

    Rahyussalim A., J.; Kurniawati, T.; Aprilya, D.; Anggraini, R.; Ramahdita, Ghiska; Whulanza, Yudan

    2017-02-01

    Scaffold as a biomaterial must fulfill some requirements to be safely implanted to the human body. Toxicity and biocompatibility test are needed to evaluate scaffold material in mediating cell proliferation and differentiation, secreting extracelullar matrix and carrying biomolecular signals for cell communication. An in vitro study with mesenchymal stem cells consisted of direct contact test and indirect contact test using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay was conducted on 4 scaffolds made of poly-L-lactic acid (PLA), polyvinyl alcohol (PVA), and hydroxyapatite-poly (vinyl alcohol) composite. There were cells-substrate adhesion impairment, morphological changes, cell death and reduction in cell proliferation seen at 2nd and 6th day in most tested scaffold. Cell count result at day-6 showed proliferation inhibition of more than 50% cell death (inhibition value >50) in all tested scaffold. In MTT assay, two scaffolds were proven non-toxic. In conclusion, various scaffold materials showed different toxicity effect. The toxicity and biocompatibility profile in this study is a preliminary data for further research aiming to use those local-made scaffolds to fill human bone defect in various needs.

  6. NMR-based metabonomics study on the effect of Gancao in the attenuation of toxicity in rats induced by Fuzi.

    PubMed

    Sun, Bo; Wang, Xubin; Cao, Ruili; Zhang, Qi; Liu, Qiao; Xu, Meifeng; Zhang, Ming; Du, Xiangbo; Dong, Fangting; Yan, Xianzhong

    2016-12-04

    Fuzi, the processed lateral root of Aconitum carmichaelii Debeaux, is a traditional Chinese medicine used for its analgesic, antipyretic, anti-rheumatoid arthritis and anti-inflammation effects; however, it is also well known for its toxicity. Gancao, the root of Glycyrrhiza uralensis Fisch., is often used concurrently with Fuzi to alleviate its toxicity. However, the mechanism of detoxication is still not well clear. In this study, the effect of Gancao on the metabolic changes induced by Fuzi was investigated by NMR-based metabonomic approaches. Fifty male Wistar rats were randomly divided into five groups (group A: control, group B: Fuzi decoction alone, group C: Gancao decoction alone, group D: Fuzi decoction and Gancao decoction simultaneously, group E: Fuzi decoction 5h after Gancao decoction) and urine samples were collected for NMR-based metabolic profiling analysis. Statistical analyses such as unsupervised PCA, t-test, hierarchical cluster, and pathway analysis were used to detect the effects of Gancao on the metabolic changes induced by Fuzi. The behavioral and biochemical characteristics showed that Fuzi exhibited toxic effects on treated rats (group B) and statistical analyses showed that their metabolic profiles were in contrast to those in groups A and C. However, when Fuzi was administered with Gancao, the metabolic profiles became similar to controls, whereby Gancao reduced the levels of trimethylamine N-oxide, betaine, dimethylglycine, valine, acetoacetate, citrate, fumarate, 2-ketoglutarate and hippurate, and regulated the concentrations of taurine and 3-hydroxybutyrate, resulting in a decrease in toxicity. Furthermore, important pathways that are known to be involved in the effect of Gancao on Fuzi, including phenylalanine, tyrosine and tryptophan biosynthesis, the synthesis and degradation of ketone bodies, and the TCA cycle, were altered in co-treated rats. Gancao treatment mitigated the metabolic changes altered by Fuzi administration in rats, demonstrating that dosing with Gancao could reduce the toxicity of Fuzi at the metabolic level. Fuzi and Gancao administered simultaneously resulted in improved toxicity reduction than when Gancao was administrated 5h prior to Fuzi. In summary, co-administration of Gancao with Fuzi reduces toxicity at the metabolic level. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Adverse drug reactions induced by valproic acid.

    PubMed

    Nanau, Radu M; Neuman, Manuela G

    2013-10-01

    Valproic acid is a widely-used first-generation antiepileptic drug, prescribed predominantly in epilepsy and psychiatric disorders. VPA has good efficacy and pharmacoeconomic profiles, as well as a relatively favorable safety profile. However, adverse drug reactions have been reported in relation with valproic acid use, either as monotherapy or polytherapy with other antiepileptic drugs or antipsychotic drugs. This systematic review discusses valproic acid adverse drug reactions, in terms of hepatotoxicity, mitochondrial toxicity, hyperammonemic encephalopathy, hypersensitivity syndrome reactions, neurological toxicity, metabolic and endocrine adverse events, and teratogenicity. Copyright © 2013 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  8. The Role of Biomarkers in Detection of Cardio-toxicity.

    PubMed

    Shah, Kevin S; Yang, Eric H; Maisel, Alan S; Fonarow, Gregg C

    2017-06-01

    The goal of this paper is to review the current literature on the role of biomarkers in the detection and management of patients with cardio-oncologic disease. The role of biomarker surveillance in patients with known cardiac disease, as a result of chemotherapy or with the potential to develop cardio-toxicity, will be discussed. In addition, the studies surrounding sub-clinical cardiac toxicity monitoring during therapy, identification of high-risk patients prior to therapy, and tailoring oncologic therapies to potential biomarker risk profiles are reviewed. Based on evidence, to date, troponin and natriuretic peptides have the greatest potential to detect sub-clinical cardiac dysfunction and even tailor therapy to prevent progression based on biomarker profiles. Finally, future directions for potential utilization of novel biomarkers for the improvement of care of patients in the field of cardio-oncology are discussed.

  9. A preliminary 13-week oral toxicity study of ginger oil in male and female Wistar rats.

    PubMed

    Jeena, Kottarapat; Liju, Vijayastelter B; Kuttan, Ramadasan

    2011-12-01

    Zingiber officinale Roscoe, ginger, is a major spice extensively used in traditional medicine. The toxicity profile of ginger oil was studied by subchronic oral administration for 13 weeks at doses of 100, 250, and 500 mg/kg per day to 6 groups of Wistar rats (5/sex per dose). Separate groups of rats (5/sex per group) received either paraffin oil (vehicle) or were untreated and served as comparative control groups. There was no mortality and no decrease in body weight or food consumption as well as selective organ weights during the study period. Administration of ginger oil to rats did not produce any treatment-related changes in hematological parameters, hepatic, renal functions, serum electrolytes, or in histopathology of selected organs. The major component of ginger oil was found to be zingiberene (31.08%), and initial studies indicated the presence of zingiberene in the serum after oral dosing. These results confirmed that ginger oil is not toxic to male and female rats following subchronic oral administrations of up to 500 mg/kg per day (no observed adverse effect level [NOAEL]).

  10. Synthesis and Characterization of Stimuli-Responsive Poly(2-dimethylamino-ethylmethacrylate)-Grafted Chitosan Microcapsule for Controlled Pyraclostrobin Release

    PubMed Central

    Xu, Chunli; Zhou, Zhaolu; Cao, Chong; Zhu, Feng; Li, Fengmin; Huang, Qiliang

    2018-01-01

    Controllable pesticide release in response to environmental stimuli is highly desirable for better efficacy and fewer adverse effects. Combining the merits of natural and synthetic polymers, pH and temperature dual-responsive chitosan copolymer (CS-g-PDMAEMA) was facilely prepared through free radical graft copolymerization with 2-(dimethylamino) ethyl 2-methacrylate (DMAEMA) as the vinyl monomer. An emulsion chemical cross-linking method was used to expediently fabricate pyraclostrobin microcapsules in situ entrapping the pesticide. The loading content and encapsulation efficiency were 18.79% and 64.51%, respectively. The pyraclostrobin-loaded microcapsules showed pH-and thermo responsive release. Microcapsulation can address the inherent limitation of pyraclostrobin that is photo unstable and highly toxic on aquatic organisms. Compared to free pyraclostrobin, microcapsulation could dramatically improve its photostability under ultraviolet light irradiation. Lower acute toxicity against zebra fish on the first day and gradually similar toxicity over time with that of pyraclostrobin technical concentrate were in accordance with the release profiles of pyraclostrobin microcapsules. This stimuli-responsive pesticide delivery system may find promising application potential in sustainable plant protection. PMID:29538323

  11. Dose and time-dependent sub-chronic toxicity study of hydroethanolic leaf extract of Flabellaria paniculata Cav. (Malpighiaceae) in rodents

    PubMed Central

    Akindele, Abidemi J.; Adeneye, Adejuwon A.; Salau, Oluwole S.; Sofidiya, Margaret O.; Benebo, Adokiye S.

    2014-01-01

    Flabellaria paniculata Cav. (Malpighiaceae) is a climbing shrub, the preparations of which are used in the treatment of wounds and ulcers in Nigeria and Ghana. This study investigated the sub-chronic toxicity profile of the hydroethanolic leaf extract of F. paniculata (HLE-FP). HLE-FP was administered p.o. (20, 100, and 500 mg/kg) for 30 and 60 days to different groups of rats. Control animals received 10 ml/kg distilled water. In the group of animals for reversibility study, HLE-FP administration ceased on the 60th day and animals were monitored for a further 15 days. Results showed that oral treatment with HLE-FP for 30 days caused significant (p < 0.05) reductions in weight gain pattern compared to control. These changes were sustained with 60 days treatment. However, no significant (p > 0.05) differences in relative organ weights between control and treatment groups were observed. HLE-FP-treated rats showed significant (p < 0.05) increases in Hb, PCV and RBC on day 30 and significant (p < 0.05) increases in MCV and MCH indices on day 60 compared to control. There were significant (p < 0.05) elevations in serum K+, urea and creatinine compared to control. The liver function tests showed slight but non-significant alterations in relevant parameters when compared to control. Biochemical findings were supported by histopathological observations of vital organs including the kidney and liver. Toxicities observed in respect of kidney function were irreversible at 15 days of stoppage of treatment. In the acute toxicity study, HLE-FP given p.o. caused no lethality at 5000 mg/kg but behavioral manifestations like restlessness, generalized body tremor, feed, and water refusal were observed. The i.p. LD50 was estimated to be 2951.2 mg/kg. Findings in this study showed that HLE-FP is relatively non-toxic on acute exposure and generally safe on sub-chronic administration, but could be deleterious on the kidneys on prolonged oral exposure at a high dose. Thus, caution should be exercised with its long-term usage. PMID:24795634

  12. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity -NLTO Poster

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  13. Speciation Profiles and Toxic Emission Factors for Nonroad Engines: DRAFT REPORT

    EPA Science Inventory

    This document details the research and development behind how MOVES2014a estimates air toxic emissions for nonroad engines and equipment run on conventional gasoline without ethanol (E0) and gasoline blended with 10% ethanol (E10) as well as diesel fuel, compressed natural gas (C...

  14. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  15. Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA’s ToxRefDB

    EPA Science Inventory

    As the primary source for regulatory developmental toxicity information, prenatal studies characterize maternal effects and fetal endpoints including malformations, resorptions, and fetal weight reduction. Results from 383 rat and 368 rabbit prenatal studies on 387 chemicals, mo...

  16. Building predictive models of developmental toxicity from ToxRefDB and ToxCast

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that are highly correlated with observed in vivo toxicity. We hypothesize that cell signaling pathways underlying development are primary targets f...

  17. Framework for a Quantitative Systemic Toxicity Model (FutureToxII)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  18. Predictive Signatures of Developmental Toxicity Modeled with HTS Data from ToxCast™ Bioactivity Profiles

    EPA Science Inventory

    The EPA ToxCast™ research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I contains 309 well-characterized chemicals which are mostly pesticides tested in over 600 assays of different molecular targets, cel...

  19. Cisplatin-induced hyponatremia in malignancy: comparison between brand-name and generic formulation.

    PubMed

    Ochi, Nobuaki; Yamane, Hiromichi; Hotta, Katsuyuki; Fujii, Hiromi; Isozaki, Hideko; Honda, Yoshihiro; Yamagishi, Tomoko; Kubo, Toshio; Tanimoto, Mitsune; Kiura, Katsuyuki; Takigawa, Nagio

    2014-01-01

    Widespread use of generic drugs is considered to be indispensable if reductions in total health care costs are to be achieved, but the market share of such drugs remains low. In general, generic drugs have the same active ingredients as brand-name drugs, but this is not always the case. Thus, toxicity profiles may vary when brand-name and generic drugs are compared. We retrospectively investigated the incidence of hyponatremia in patients receiving brand-name cisplatin (CDDP) and a generic counterpart thereof. We reviewed the medical records of patients treated with brand-name CDDP (n=53) and a generic formulation (n=26), and compared the incidences of hyponatremia and renal toxicity. Toxicities were graded using the Common Terminology Criteria for Adverse Events, version 4.0. Differences between groups were evaluated using the Student's t-test, and the odds ratio for hyponatremia was estimated via logistic regression analysis. Serum creatinine levels after chemotherapy increased significantly in both the brand-name and generic CDDP groups; no significant difference was evident between the two groups. Hyponatremia of grade 3 or above developed in 30.7% of the generic CDDP group compared to 15.1% of the brand-name CDDP group (P=0.011). Multivariate analysis showed that the use of generic CDDP increased the incidence of hyponatremia (odds ratio =5.661, 95% confidence interval =1.403-22.839; P=0.015). Oncologists should be aware that use of a generic CDDP might be associated with more hyponatremia than would use of brand-name CDDP.

  20. Hypofractionated radiation therapy for prostate cancer: biologic and technical considerations

    PubMed Central

    Sanfilippo, Nicholas J; Cooper, Benjamin T

    2014-01-01

    The optimal radiation schedule for the curative treatment of prostate cancer is not known. The dose-response of tumors and normal tissues to fractionated irradiation can be described according to a parameter called the alpha-beta ratio (α/β). In the past several years numerous reports have been published that suggest that the alpha-beta ratio for prostate cancer may be quite low; between 1 and 3. If this hypothesis is true, then a radiation therapy schedule that employs less frequent and larger fractions, termed hypofractionation, may be more efficacious. Multiple randomized trials have been conducted comparing moderate (less than 5 Gy/day) hypofractionated radiation therapy and standard radiation therapy in men with prostate cancer. In the majority of these studies the moderate hypofractionated arm had equivalent efficacy with a similar or improved side effect profile. One area to use caution may be in patients with compromised (IPSS > 12) urinary function at baseline due to an increase in urinary toxicity observed in patients treated with hypofractionated radiation in one study. Extreme hypofractionation (greater than or equal to 5 Gy/day), is currently being compared in a randomized trial. Early prospectively collected data from multiple institutions demonstrates efficacy and toxicity that compares favorably with historical controls. The cost savings from hypofractionation could be profound on a national level and only increases the necessity of testing hypofractionated treatment schedules. Long term data and future trials will help radiation oncologists determine the ideal fractionation scheme based on cost, efficacy, and toxicity. PMID:25606574

  1. Drug transporter expression profiling in a three-dimensional kidney proximal tubule in vitro nephrotoxicity model.

    PubMed

    Diekjürgen, Dorina; Grainger, David W

    2018-05-09

    Given currently poor toxicity translational predictions for drug candidates, improved mechanistic understanding underlying nephrotoxicity and drug renal clearance is needed to improve drug development and safety screening. Therefore, better relevant and well-characterized in vitro screening models are required to reliably predict human nephrotoxicity. Because kidney proximal tubules are central to active drug uptake and secretion processes and therefore to nephrotoxicity, this study acquired regio-specific expression data from recently reported primary proximal tubule three-dimensional (3D) hyaluronic acid gel culture and non-gel embedded cultured murine proximal tubule suspensions used in nephrotoxicity assays. Quantitative assessment of the mRNA expression of 21 known kidney tubule markers and important proximal tubule transporters with known roles in drug transport was obtained. Asserting superior gene expression levels over current commonly used two-dimensional (2D) kidney cell culture lines was the study objective. Hence, we compare previously published gel-based 3D proximal tubule fragment culture and their non-gel suspensions for up to 1 week. We demonstrate that 3D tubule culture exhibits superior gene expression levels and profiles compared to published commonly used 2D kidney cell lines (Caki-1 and HK-2) in plastic plate monocultures. Additionally, nearly all tested genes retain mRNA expression after 7 days in both proximal tubule cultures, a limitation of 2D cell culture lines. Importantly, gel presence is shown not to interfere with the gene expression assay. Western blots confirm protein expression of OAT1 and 3 and OCT2. Functional transport assays confirm their respective transporter functions in vitro. Overall, results validate retention of essential toxicity-relevant transporters in this published 3D proximal tubule model over conventional 2D kidney cell cultures, producing opportunities for more reliable, sensitive, and comprehensive drug toxicity studies relevant to drug development and nephrotoxicity goals.

  2. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  3. Preclinical toxicity profile of oral bilastine.

    PubMed

    Lucero, María Luisa; Arteche, Joseba K; Sommer, E W; Casadesus, Agustín

    2012-06-01

    As part of the bilastine development program, and as mandated by regulatory authorities, several studies were performed with oral bilastine in different animal species to evaluate its toxicity profile. Toxicokinetic analyses conducted in tandem to evaluate systemic exposure, gender differences, and dose proportionality in the different animal species indicated that animals were systemically exposed to bilastine during treatment. Repeated-dose toxicity studies in beagle dogs (52 weeks) and in rats and mice (13 weeks) showed that bilastine at doses up to 2,000 mg/kg/day was not associated with any mortality, ocular effects, or nodules/masses. Likewise, no bilastine-associated neoplastic lesions were observed in rats and mice after 104 weeks of treatment with bilastine at doses up to 2,000 mg/kg/day. In general, bilastine-related clinical signs, body-weight changes, food consumption, clinical chemistry, haematology, and macro- and microscopic findings were of low order and reversible, with effects present only at the highest doses administered. Bilastine (up to 1,000 mg/kg/day) was well tolerated in pregnant/lactating rats and in their offspring and subsequent generations. With respect to effects on embryofoetal development in rabbits, bilastine at 400 mg/kg/day (the highest dose evaluated) was assessed to be the no observed adverse effects level. Overall, bilastine demonstrated a favorable toxicity profile in all animal models investigated and at higher doses than the corresponding recommended daily human dosage.

  4. Lead Toxicity in the Pediatric Patient with Sickle Cell Disease: Unique Risks and Management.

    PubMed

    Jung, Josephine Misun; Peddinti, Radhika

    2018-01-01

    Lead toxicity is the result of lead ingestion, one of the most common ingestions in the pediatric population. Nationwide and statewide efforts to recognize and curtail this epidemic have led to declining rates of toxicity. In patients with sickle cell disease (SCD), lead toxicity can be an elusive diagnosis due to overlapping symptom profiles, and inconsistent follow-up with a primary care physician can make the diagnosis even more difficult. In this article, two illustrative cases of lead toxicity in patients with SCD are described. The discussion reviews the current risk factors, screening, and inpatient management of lead toxicity, as well as describing the unique and sometimes confounding presentations of lead toxicity versus sickle cell crisis. [Pediatr Ann. 2018;47(1):e36-e40.]. Copyright 2018, SLACK Incorporated.

  5. Applications of high throughput screening to identify profiles of biological activity relevant to carcinogenesis

    EPA Science Inventory

    ToxCast, the United States Environmental Protection Agency’s chemical prioritization research program, is developing methods for utilizing computational chemistry and bioactivity profiling to predict potential for toxicity and prioritize limited testing resources (www.epa.gov/toc...

  6. Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays (Communities of Practice)

    EPA Science Inventory

    Understanding potential health risks is a significant challenge for large numbers of diverse chemicals with poorly characterized exposures and mechanisms of toxicities. The present study analyzes chemical-target activity profiles of 976 chemicals (including failed pharmaceuticals...

  7. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  8. 76 FR 23600 - Availability of Draft Toxicological Profile

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry [CDC-2011... Registry (ATSDR), Department of Health and Human Services (DHHS). ACTION: Notice of availability. SUMMARY... of uranium. Although ATSDR considered key studies for uranium during the profile development process...

  9. Mefloquine use, psychosis, and violence: A retinoid toxicity hypothesis

    PubMed Central

    Mawson, Anthony R.

    2013-01-01

    Mefloquine use has been linked to severe gastrointestinal and neuropsychiatric adverse effects, including cognitive disturbances, anxiety, depression, psychosis, and violence. The adverse effects of the drug are thought to result from the secondary consequences of hepatocellular injury; in fact, mefloquine is known to cause a transient, anicteric chemical hepatitis. However, the mechanism of mefloquine-associated liver damage and the associated neuropsychiatric and behavioral effects of the drug are not well understood. Mefloquine and other 8-amino-quinolines are the only antimalarial drugs that target the liver-stage malaria parasites, which selectively absorb vitamin A from the host. Vitamin A is also stored mainly in the liver, in potentially poisonous concentrations. These observations suggest that both the therapeutic effectiveness of mefloquine and its adverse effects are related to the ability of the 8-aminoquinolines to alter the metabolism of retinoids (vitamin A and its congeners). Several lines of evidence support the hypothesis that mefloquine neurotoxicity and other adverse effects reflect an endogenous form of hypervitaminosis A due to a process involving: mefloquine-induced dehydrogenase inhibition; the accumulation of retinoids in the liver; retinoid-induced hepatocellular damage; the spillage of stored retinoids into the circulation; and the transport of these compounds to the gut and brain in toxic concentrations. The retinoid hypothesis could be tested clinically by comparing cases of mefloquine toxicity and untreated controls in terms of retinoid profiles (retinol, retinyl esters, percent retinyl esters, and retinoic acid). Subject to such tests, retinoid profiling could provide an indicator for assessing mefloquine-associated adverse effects. PMID:23852388

  10. A first-in-human phase I and pharmacokinetic study of CP-4126 (CO-101), a nucleoside analogue, in patients with advanced solid tumours.

    PubMed

    Venugopal, B; Awada, A; Evans, T R J; Dueland, S; Hendlisz, A; Rasch, W; Hernes, K; Hagen, S; Aamdal, S

    2015-10-01

    CP-4126 (gemcitabine elaidate, previously CO-101) is a lipid-drug conjugate of gemcitabine designed to circumvent human equilibrative nucleoside transporter1-related resistance to gemcitabine. The purpose of this study was to determine the maximum tolerated dose (MTD) and the recommended phase II dose (RP2D) of CP-4126, and to describe its pharmacokinetic profile. Eligible patients with advanced refractory solid tumours, and adequate performance status, haematological, renal and hepatic function, were treated with one of escalating doses of CP-4126 administered by a 30-min intravenous infusion on days 1, 8 and 15 of a 28-day cycle. Blood and urine samples were collected to determine the pharmacokinetics (PKs) of CP-4126. Forty-three patients, median age 59 years (range 18-76; male = 27, female = 16), received one of ten dose levels (30-1600 mg/m(2)). Dose-limiting toxicities included grade 3 anaemia, grade 3 fatigue and grade 3 elevation of transaminases. The MTD and RP2D were 1250 mg/m(2) on basis of the toxicity and PK data. CP-4126 followed dose-dependent kinetics and maximum plasma concentrations occurred at the end of CP-4126 infusion. Seven patients achieved stable disease sustained for ≥3 months, including two patients with pancreatic cancer who had progressed on or after gemcitabine exposure. CP-4126 was well tolerated with comparable toxicity profile to gemcitabine. Future studies are required to determine its anti-tumour efficacy, either alone or in combination with other cytotoxic chemotherapy regimens.

  11. Metal Oxide Nanoparticles: The Importance of Size, Shape, Chemical Composition, and Valence State in Determining Toxicity

    NASA Astrophysics Data System (ADS)

    Dunnick, Katherine

    Nanoparticles, which are defined as a structure with at least one dimension between 1 and 100 nm, have the potential to be used in a variety of consumer products due to their improved functionality compared to similar particles of larger size. Their small size is associated with increased strength, improved catalytic properties, and increased reactivity; however, their size is also associated with increased toxicity in vitro and in vivo. Numerous toxicological studies have been conducted to determine the properties of nanomaterials that increase their toxicity in order to manufacture new nanomaterials with decreased toxicity. Data indicates that size, shape, chemical composition, and valence state of nanomaterials can dramatically alter their toxicity profile. Therefore, the purpose of this dissertation was to determine how altering the shape, size, and chemical composition of various metal oxide nanoparticles would affect their toxicity. Metal oxides are used in variety of consumer products, from spray-sun screens, to food coloring agents; thus, understanding the toxicity of metal oxides and determining which aspects affect their toxicity may provide safe alternatives nanomaterials for continued use in manufacturing. Tungstate nanoparticles toxicity was assessed in an in vitro model using RAW 264.7 cells. The size, shape, and chemical composition of these nanomaterials were altered and the effect on reactive oxygen species and general cytotoxicity was determined using a variety of techniques. Results demonstrate that shape was important in reactive oxygen species production as wires were able to induce significant reactive oxygen species compared to spheres. Shape, size, and chemical composition did not have much effect on the overall toxicity of these nanoparticles in RAW 264.7 cells over a 72 hour time course, implicating that the base material of the nanoparticles was not toxic in these cells. To further assess how chemical composition can affect toxicity, cerium oxide nanoparticles were chemically modified using a process known as doping, to alter their valence state. The size and shape of the cerium oxide nanoparticles remained constant. Overall, results indicated that cerium oxide was not toxic in both RLE-6TN and NR8383 pulmonary rat cells, however, chemically modifying the valence state of the nanomaterial did affect the antioxidant potential. To determine if this trend was measureable in vivo, rats were exposed to various cerium oxide nanoparticles via intratracheal instillation and damage, changes in pulmonary cell differentials, and phagocytic cell activity were assessed. Results implicate that chemically modifying the nanoparticles had an effect on the overall damage induced by the material but did not dramatically affect inflammatory potential or phagocytic cell activity. Overall the data from these studies imply that size, shape, chemical composition, and valence state of nanomaterials can be manipulated to alter their toxicity.

  12. Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification

    PubMed Central

    Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138

  13. Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human

    PubMed Central

    McHale, Cliona M.; Smith, Martyn T.; Zhang, Luoping

    2014-01-01

    Genetic variation underlies a significant proportion of the individual variation in human susceptibility to toxicants. The primary current approaches to identify gene–environment (GxE) associations, genome-wide association studies (GWAS) and candidate gene association studies, require large exposed and control populations and an understanding of toxicity genes and pathways, respectively. This limits their application in the study of GxE associations for the leukemogens benzene and formaldehyde, whose toxicity has long been a focus of our research. As an alternative approach, we applied innovative in vitro functional genomics testing systems, including unbiased functional screening assays in yeast and a near-haploid human bone marrow cell line (KBM7). Through comparative genomic and computational analyses of the resulting data, we have identified human genes and pathways that may modulate susceptibility to benzene and formaldehyde. We have validated the roles of several genes in mammalian cell models. In populations occupationally exposed to low levels of benzene, we applied peripheral blood mononuclear cell transcriptomics and chromosome-wide aneuploidy studies (CWAS) in lymphocytes. In this review of the literature, we describe our comprehensive toxicogenomic approach and the potential mechanisms of toxicity and susceptibility genes identified for benzene and formaldehyde, as well as related studies conducted by other researchers. PMID:24571325

  14. Discovery of safety biomarkers for atorvastatin in rat urine using mass spectrometry based metabolomics combined with global and targeted approach.

    PubMed

    Kumar, Bhowmik Salil; Lee, Young-Joo; Yi, Hong Jae; Chung, Bong Chul; Jung, Byung Hwa

    2010-02-19

    In order to develop a safety biomarker for atorvastatin, this drug was orally administrated to hyperlipidemic rats, and a metabolomic study was performed. Atorvastatin was given in doses of either 70 mg kg(-1) day(-1) or 250 mg kg(-1) day(-1) for a period of 7 days (n=4 for each group). To evaluate any abnormal effects of the drug, physiological and plasma biochemical parameters were measured and histopathological tests were carried out. Safety biomarkers were derived by comparing these parameters and using both global and targeted metabolic profiling. Global metabolic profiling was performed using liquid chromatography/time of flight/mass spectrometry (LC/TOF/MS) with multivariate data analysis. Several safety biomarker candidates that included various steroids and amino acids were discovered as a result of global metabolic profiling, and they were also confirmed by targeted metabolic profiling using gas chromatography/mass spectrometry (GC/MS) and capillary electrophoresis/mass spectrometry (CE/MS). Serum biochemical and histopathological tests were used to detect abnormal drug reactions in the liver after repeating oral administration of atorvastatin. The metabolic differences between control and the drug-treated groups were compared using PLS-DA score plots. These results were compared with the physiological and plasma biochemical parameters and the results of a histopathological test. Estrone, cortisone, proline, cystine, 3-ureidopropionic acid and histidine were proposed as potential safety biomarkers related with the liver toxicity of atorvastatin. These results indicate that the combined application of global and targeted metabolic profiling could be a useful tool for the discovery of drug safety biomarkers. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Nephron Toxicity Profiling via Untargeted Metabolome Analysis Employing a High Performance Liquid Chromatography-Mass Spectrometry-based Experimental and Computational Pipeline*

    PubMed Central

    Ranninger, Christina; Rurik, Marc; Limonciel, Alice; Ruzek, Silke; Reischl, Roland; Wilmes, Anja; Jennings, Paul; Hewitt, Philip; Dekant, Wolfgang; Kohlbacher, Oliver; Huber, Christian G.

    2015-01-01

    Untargeted metabolomics has the potential to improve the predictivity of in vitro toxicity models and therefore may aid the replacement of expensive and laborious animal models. Here we describe a long term repeat dose nephrotoxicity study conducted on the human renal proximal tubular epithelial cell line, RPTEC/TERT1, treated with 10 and 35 μmol·liter−1 of chloroacetaldehyde, a metabolite of the anti-cancer drug ifosfamide. Our study outlines the establishment of an automated and easy to use untargeted metabolomics workflow for HPLC-high resolution mass spectrometry data. Automated data analysis workflows based on open source software (OpenMS, KNIME) enabled a comprehensive and reproducible analysis of the complex and voluminous metabolomics data produced by the profiling approach. Time- and concentration-dependent responses were clearly evident in the metabolomic profiles. To obtain a more comprehensive picture of the mode of action, transcriptomics and proteomics data were also integrated. For toxicity profiling of chloroacetaldehyde, 428 and 317 metabolite features were detectable in positive and negative modes, respectively, after stringent removal of chemical noise and unstable signals. Changes upon treatment were explored using principal component analysis, and statistically significant differences were identified using linear models for microarray assays. The analysis revealed toxic effects only for the treatment with 35 μmol·liter−1 for 3 and 14 days. The most regulated metabolites were glutathione and metabolites related to the oxidative stress response of the cells. These findings are corroborated by proteomics and transcriptomics data, which show, among other things, an activation of the Nrf2 and ATF4 pathways. PMID:26055719

  16. Acute Lethality of Inhaled Hydrogen Cyanide in the Laboratory Rat: Impact of Concentration x Time Profile and Evaluation of the Predictivity of Toxic Load Models

    DTIC Science & Technology

    2013-05-03

    public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Toxic load models are mathematical...equal). The Department of Defense (DOD) (2005) publication “Potential Military Chemical/Biological Agents and Compounds” currently uses the toxic load

  17. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  18. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with themore » latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.« less

  19. Metabolism and toxicity of arsenicals in mammals.

    PubMed

    Sattar, Adeel; Xie, Shuyu; Hafeez, Mian Abdul; Wang, Xu; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Pan, Yuanhu; Iqbal, Mujahid; Shabbir, Muhammad Abubakr; Yuan, Zonghui

    2016-12-01

    Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world. Copyright © 2016. Published by Elsevier B.V.

  20. Repeated-dose toxicological studies of Tithonia diversifolia (Hemsl.) A. gray and identification of the toxic compounds.

    PubMed

    Passoni, Flávia Donaire; Oliveira, Rejane Barbosa; Chagas-Paula, Daniela Aparecida; Gobbo-Neto, Leonardo; Da Costa, Fernando Batista

    2013-05-20

    Tithonia diversifolia (Hemsl.) A. Gray has been commonly used in folk medicine to treat abscesses, microbiological infections, snake bites, malaria and diabetes. Both anti-inflammatory and anti-malarial properties have been identified using appropriate assays, but the effective doses have demonstrated toxic effects for the experimental animals. Most of the pharmacological activities have been attributed to sesquiterpene lactones (STLs) and some chlorogenic acid derivatives (CAs) in the leaves of this species. This work aimed to evaluate the repeated-dose toxicity of an aqueous extract (AE) from Tithonia diversifolia leaves and to compare the results with an extract rich in STLs (LRE) and a polar extract (PE) without STLs but rich in CAs. The purpose of this work was to provide insights into the identity of the compounds responsible for the toxic effects of Tithonia diversifolia. The major classes of compounds were confirmed in each extract by IR spectra and HPLC-UV-DAD profiling using previously isolated or standard compounds. The toxicity of each extract was evaluated in a repeated-dose toxicity study in Wistar rats for 90 days. The AE is composed of both STLs and CAs, the LRE is rich in STLs, and the PE is rich in CAs. The AE caused alterations in haematological parameters but few alterations in biochemical parameters and was relatively safe at doses lower than 100mg/kg. However, the PE and LRE demonstrated several adverse effects by damaging the liver and kidneys, respectively. STLs and CAs can be toxic in prolonged use at higher doses in extracts prepared from Tithonia diversifolia by affecting the kidneys and liver. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Updated efficacy and toxicity analysis of irinotecan and oxaliplatin (IROX) : intergroup trial N9741 in first-line treatment of metastatic colorectal cancer.

    PubMed

    Ashley, Amanda C; Sargent, Daniel J; Alberts, Steven R; Grothey, Axel; Campbell, Megan E; Morton, Roscoe F; Fuchs, Charles S; Ramanathan, Ramesh K; Williamson, Stephen K; Findlay, Brian P; Pitot, Henry C; Goldberg, Richard M

    2007-08-01

    Efficacy and toxicity of oxaliplatin (Eloxatin; Sanofi-Aventis, Paris, France) combined with irinotecan (IROX) were examined in 383 patients enrolled on the IROX arm of Intergroup Study N9741. This IROX regimen was oxaliplatin 85 mg/m(2) and irinotecan 200 mg/m(2) administered every 3 weeks. The relation between adverse events on IROX to selected characteristics was analyzed. Time to progression (TTP), response rate, and overall survival for patients treated with IROX compared with patients treated with oxaliplatin with 5- fluorouracil (FOLFOX) were updated in this article. Grade >or=3 gastrointestinal and hematologic toxicities were common with 39% patients experiencing neutropenia, 28% diarrhea, and 21% vomiting. Patients ages >70 years experienced higher rates of grade >or=3 toxicity, with significantly higher rates of grade >or=3 hematologic toxicities (P = .02). Long-term toxicity was uncommon, and nearly all cases of grade >or=3 neurotoxicity resolved within 10 months. Fifty-two percent of patients required dose reductions for adverse events, and 26% experienced 119 hospitalizations related to complications of treatment or their disease, with 5 treatment-related deaths. This analysis confirmed prior findings that FOLFOX is superior to IROX in terms of response rate (43% vs 36%, p = 0.002), TTP (9.2 months vs 6.7 months, P < .0001), and overall survival (19.5 months vs 17.3 months, P = .0001). IROX was found to be less active than FOLFOX but with a similar toxicity profile except in patients ages >70 years. Although IROX may be considered in patients intolerant of 5-FU or in patients known to have a dihydropyrimidine dehydrogenase (DPD) deficiency, it should be used with caution in older patients. (c) 2007 American Cancer Society.

  2. Pelvic radiotherapy in the setting of rheumatoid arthritis: Refining the paradigm.

    PubMed

    Felefly, T; Mazeron, R; Huertas, A; Canova, C H; Maroun, P; Kordahi, M; Morice, P; Deutsch, É; Haie-Méder, C; Chargari, C

    2017-04-01

    Conflicting results concerning the toxicity of radiotherapy in the setting of rheumatoid arthritis were reported in literature. This work describes the toxicity profiles of patients with rheumatoid arthritis undergoing pelvic radiotherapy for gynecologic malignancies at our institution. Charts of patients with rheumatoid arthritis who underwent pelvic radiotherapy for cervical or endometrial cancer in a curative intent at the Gustave-Roussy Cancer Campus between 1990 and 2015 were reviewed for treatment-related toxicities. Acute and late effects were graded as per the Common Terminology Criteria for Adverse Events version 4.0 scoring system. Eight patients with cervical cancer and three with endometrial cancer were identified. Median follow-up was 56 months. Median external beam radiotherapy dose was 45Gy. All patients received a brachytherapy boost using either pulse- or low-dose rate technique. Concomitant chemotherapy was used in seven cases. Median time from rheumatoid arthritis diagnosis to external beam radiation therapy was 5 years. No severe acute gastrointestinal or genitourinary toxicity was reported. One patient had grade 3 dermatitis. Any late toxicity occurred in 7 /11 patients, and one patient experienced severe late toxicities. One patient with overt systemic rheumatoid arthritis symptoms at the time of external beam radiation therapy experienced late grade 3 ureteral stenosis, enterocolitis and lumbar myelitis. Pelvic radiotherapy, in the setting of rheumatoid arthritis, appears to be feasible, with potentially slight increase in low grade late events compared to other anatomic sites. Patients with overt systemic rheumatoid arthritis manifestation at the time of radiotherapy might be at risk of potential severe toxicities. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  3. Effect of N′-nitrosodimethylamine on red blood cell rheology and proteomic profiles of brain in male albino rats

    PubMed Central

    Ahmad, Areeba; Fatima, Ravish; Maheshwari, Veena; Ahmad, Riaz

    2011-01-01

    We investigated the effects of N'-nitrosodimethylamine (NDMA) induced toxicity on red blood cell rheology in male rats and identified bands in proteomic profiles of brain which can be used as novel markers. Polyacrylamide gel electrophoresis (PAGE) profiles exhibited constitutive as well as induced expression of the polypeptides. Remarkably, the molecular weight range of the polypeptides (8–150 kDa) corresponded to that of the family of heat shock proteins. Our results revealed significant changes in blood parameters and showed the presence of acanthocytes, tear drop cells, spicules and cobot rings in the treated categories. Lactate dehydrogenase and esterase zymograms displayed a shift to anaerobic metabolism generating hypoxia-like conditions. This study strongly suggests that NDMA treatment causes acute toxicity leading to cell membrane destruction and alters protein profiles in rats. It is therefore recommended that caution should be exercised in using NDMA to avoid risks, and if at all necessary strategies should be designed to combat such conditions. PMID:22058653

  4. Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats.

    PubMed

    Huang, Qingyu; Xi, Guochen; Alamdar, Ambreen; Zhang, Jie; Shen, Heqing

    2017-10-01

    Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform.

    PubMed

    Heo, Yun Seok; Lee, Ho-Joon; Hassell, Bryan A; Irimia, Daniel; Toth, Thomas L; Elmoazzen, Heidi; Toner, Mehmet

    2011-10-21

    Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation.

  6. Identifying Functionally Linked Gene Modules Within Biological Pathways Assessed by ToxCast In Vitro Assays

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro high-throughput screening assays to profile the bioactivity of environmental chemicals, with the ultimate goal of predicting in vivo toxicity. We hypothesize that in modeling toxicity it will be more constructive to understand the pert...

  7. Probing the ToxCastTM Chemical Library for Predictive Signatures of Developmental Toxicity - Poster at Teratology Society Annual Meeting

    EPA Science Inventory

    EPA’s ToxCast™ project is profiling the in vitro bioactivity of chemical compounds to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesize that cell signaling pathways are primary targets for diverse environmental chemicals ...

  8. In Vitro Vascular Toxicity of Manufactured Metal Oxide Nanoparticles: Size Profile Predicts Cellular Specificity, Delivered Dose, and Toxicity

    EPA Science Inventory

    Metal oxide nanoparticles (NPs) are being used in an expanding range of products and applications due to their unique physicochemical properties. In vivo biokinetic studies have demonstrated the ability of metal oxide NPs to translocate to the distal organs, including the cardiov...

  9. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  10. Quantitative Model of Systemic Toxicity Using ToxCast and ToxRefDB (SOT)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  11. New Chemical/Biological Profiling and Informatics Approaches for Exploring Mutagenicity & Carcinogenicity: Updates of EPA ToxCast and Tox21 Programs

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through harnessing of legacy toxicity data, creation of data linkages, and generation of new in vitro screening data. In association with EP...

  12. Distribution of perfluorooctane sulfonate isomers and predicted risk of thyroid hormonal perturbation in drinking water.

    PubMed

    Yu, Nanyang; Wang, Xiaoxiang; Zhang, Beibei; Yang, Jingping; Li, Meiying; Li, Jun; Shi, Wei; Wei, Si; Yu, Hongxia

    2015-06-01

    We documented the distribution of seven perfluorooctane sulfonate (PFOS) isomers in drinking water in Jiangsu Province, China. Compared to the 30% proportion of branched PFOS in technical PFOS, the levels of branched PFOS in drinking water increased to 31.8%-44.6% of total PFOS. Because of previous risk assessment without considering the PFOS isomer profile and the toxicity of individual PFOS isomers, here we performed a new health risk assessment of PFOS for thyroid hormonal perturbation in drinking water with the contribution from individual PFOS isomers. The risk quotients (RQs) of individual PFOS isomers indicated that linear PFOS contributed most to the risk among all the target PFOS isomers (83.0%-90.2% of the total PFOS RQ), and that risk from 6m-PFOS (5.2%-11.9% of the total PFOS RQ) was higher than that from other branched PFOS isomers. We found that the risks associated with PFOS in drinking water would be overestimated by 10.0%-91.7% if contributions from individual PFOS isomers were not considered. The results revealed that the PFOS isomer profile and the toxicity of individual PFOS isomers were important factors in health risk assessment of PFOS and should be considered in the future risk assessments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Evaluation of cytotoxic, genotoxic and inflammatory responses of micro- and nano-particles of granite on human lung fibroblast cell IMR-90.

    PubMed

    Ahmad, Iqbal; Khan, Mohd Imran; Patil, Govil; Chauhan, L K S

    2012-02-05

    Occupational exposure of granite workers is well known to cause lung impairment and silicosis. Toxicological profiles of different size particles of granite dust, however, are not yet understood. Present evaluation of micro- and nano-particles of granite dust as on human lung fibroblast cells IMR-90, revealed that their toxic effects were dose-dependent, and nanoparticles in general were more toxic. In this study we first demonstrated that nanoparticles caused oxidative stress, inflammatory response and genotoxicity, as seen by nearly 2 fold induction of ROS and LPO, mRNA levels of TNF-α and IL-1β, and induction in micronuclei formation. All these were significantly higher when compared with the effect of micro particles. Thus, the study suggests that separate health safety standards would be required for granite particles of different sizes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials?

    PubMed Central

    Liu, Jie; Shi, Jing-Zheng; Yu, Li-Mei; Goyer, Robert A.; Waalkes, Michael P.

    2009-01-01

    Mercury is a major toxic metal ranking top in the Toxic Substances List. Cinnabar (contains mercury sulfide) has been used in traditional medicines for thousands years as an ingredient in various remedies, and 40 cinnabar-containing traditional medicines are still used today. Little is known about toxicology profiles or toxicokinetics of cinnabar and cinnabar-containing traditional medicines, and the high mercury content in these Chinese medicines raises justifiably escalations of public concern. This minireview searched the available database of cinnabar, compared cinnabar with common mercurials, such as mercury vapor, inorganic mercury, and organic mercury, and discusses differences in their bioavailability, disposition, and toxicity. The analysis showed that cinnabar is insoluble and poorly absorbed from the gastrointestinal tract. Absorbed mercury from cinnabar is mainly accumulated in kidney, resembling the disposition pattern of inorganic mercury. Heating cinnabar results in release of mercury vapor, which in turn can produce toxicity similar to inhalation of these vapors. The doses of cinnabar required to produce neurotoxicity are thousands 1000 times higher than methyl mercury. Following long-term use of cinnabar, renal dysfunction may occur. Dimercaprol and succimer are effective chelation therapies for general mercury intoxication including cinnabar. Pharmacology studies of cinnabar suggest sedative and hypnotic effects, but the therapeutic basis of cinnabar is still not clear. In summary, cinnabar is chemically inert with a relatively low toxic potential when taken orally. In risk assessment, cinnabar is less toxic than many other forms of mercury, but the rationale for its inclusion in traditional Chinese medicines remains to be fully justified. PMID:18445765

  15. Classification of Chemicals Based On Structured Toxicity ...

    EPA Pesticide Factsheets

    Thirty years and millions of dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data within the Toxicity Reference Database (ToxRefDB). Toxicity-based classifications of chemicals were performed as a model application of ToxRefDB. These endpoints will ultimately provide the anchoring toxicity information for the development of predictive models and biological signatures utilizing in vitro assay data. Utilizing query and structured data mining approaches, toxicity profiles were uniformly generated for greater than 300 chemicals. Based on observation rate, species concordance and regulatory relevance, individual and aggregated effects have been selected to classify the chemicals providing a set of predictable endpoints. ToxRefDB exhibits the utility of transforming unstructured toxicity data into structured data and, furthermore, into computable outputs, and serves as a model for applying such data to address modern toxicological problems.

  16. Monitoring and Management of Toxicities of Novel B Cell Signaling Agents.

    PubMed

    Rhodes, Joanna; Mato, Anthony; Sharman, Jeff P

    2018-04-11

    B cell signaling agents, including ibrutinib, idelalisib, and the BCL-2 inhibitor venetoclax have become an integral part of therapy for patients with non-Hodgkin's lymphomas. The toxicity profiles of these medications is distinct from chemoimmunotherapy. Here, we will review the mechanism of action of these drugs, their efficacy, and toxicity management. Ibrutinib use is associated with increased risk of atrial fibrillation and bleeding which can be managed using dose interruptions and modifications. Patients on idelalisib require close clinical and frequent laboratory monitoring, particularly of liver function tests to ensure there are no serious adverse events. Monitoring for infections is important in patients on both idelalisib and ibrutinib. Venetoclax requires close clinical and laboratory monitoring to prevent significant tumor lysis. Targeted B cell receptor therapies each have unique side effect profiles which require careful clinical monitoring. As we continue to use these therapies, optimal management strategies will continue to be elucidated.

  17. Modeling Profiles and Signatures of Enrichments

    NASA Astrophysics Data System (ADS)

    Ali, A.; Qualls, C.; Lucas, S. G.; Lombari, G.; Appenzeller, O.

    2014-12-01

    Anthropogenic and geochemical enrichment of soils and living matter have been well documented 1, 2, 3.Here we report on geochemical, anthropogenic and biological enrichments with heavy metals in Modern Peru and compared this to Modern and ancient data from New Mexico, USA. We established a signature derived from the quantities of 25 metals in various biological, fossil and soil materials. We also speculate that human adaptation to mercury toxicity may occur in remarkably short time spans during the Holocene. We found mercury concentrations in Modern pigeon feathers and llama wool from free foraging birds and animals in Albuquerque, NM, ranging from 0.006 to 0.019 mg/Kg of tissue. The values for Modern Peru ranged from 22.0 to 556 mg/Kg for the same tissues. We discovered, in 64 million-year-old fossilized plants from New Mexico (Paleocene Nacimiento Formation, San Juan Basin), a mercury concentration of 1.11 mg/Kg of fossil, whereas Modern plant material from the Rio Grande Basin in New Mexico contained no mercury. Profiling of metal content of these samples suggests that mercury is a proxy for anthropogenic rather than geochemical enrichment in the localities we examined. We found no overt signs of mercury toxicity in contemporaneous inhabitants of Huancavelica4, Peru; one of the ten most mercury-polluted places in the world and the mercury concentration in their hair is well below modern admissible levels. However, assessment of their annual scalp hair growth-rate showed marked reduction in growth (~ 5cm/yr) versus ~ 16cm/year for normal scalp hair from other continents4. This is consistent with a toxic effect of heavy metals on human metabolism and especially autonomic nervous system function in Huancavelica, Peru. Contemporaneous anthropogenic activities are known to increase heavy metal content in the biosphere with potentially toxic effects on humans. However, signs of human evolutionary adaptation to such toxins might already be evident in Peru4.

  18. Iron-based catalysts for photocatalytic ozonation of some emerging pollutants of wastewater.

    PubMed

    Espejo, Azahara; Beltrán, Fernando J; Rivas, Francisco J; García-Araya, Juan F; Gimeno, Olga

    2015-01-01

    A synthetic secondary effluent containing an aqueous mixture of emerging contaminants (ECs) has been treated by photocatalytic ozonation using Fe(3+) or Fe3O4 as catalysts and black light lamps as the radiation source. For comparative purposes, ECs have also been treated by ultraviolet radiation (UVA radiation, black light) and ozonation (pH 3 and 7). With the exception of UVA radiation, O3-based processes lead to the total removal of ECs in the mixture. The time taken to achieve complete degradation depends on the oxidation process applied. Ozonation at pH 3 is the most effective technique. The addition of iron based catalysts results in a slight inhibition of the parent compounds degradation rate. However, a positive effect is experienced when measuring the total organic carbon (TOC) and the chemical oxygen demand (COD) removals. Photocatalytic oxidation in the presence of Fe(3+) leads to 81% and 88% of TOC and COD elimination, respectively, compared to only 23% and 29% of TOC and COD removals achieved by single ozonation. The RCT concept has been used to predict the theoretical ECs profiles in the homogeneous photocatalytic oxidation process studied. Treated wastewater effluent was toxic to Daphnia magna when Fe(3+) was used in photocatalytic ozonation. In this case, toxicity was likely due to the ferryoxalate formed in the process. Single ozonation significantly reduced the toxicity of the treated wastewater.

  19. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    PubMed Central

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189

  20. A phase I study with neratinib (HKI-272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors.

    PubMed

    Wong, Kwok-K; Fracasso, Paula M; Bukowski, Ronald M; Lynch, Thomas J; Munster, Pamela N; Shapiro, Geoffrey I; Jänne, Pasi A; Eder, Joseph P; Naughton, Michael J; Ellis, Matthew J; Jones, Suzanne F; Mekhail, Tarek; Zacharchuk, Charles; Vermette, Jennifer; Abbas, Richat; Quinn, Susan; Powell, Christine; Burris, Howard A

    2009-04-01

    The dose-limiting toxicities, maximum tolerated dose, pharmacokinetic profile, and preliminary antitumor activity of neratinib (HKI-272), an irreversible pan ErbB inhibitor, were determined in patients with advanced solid tumors. Neratinib was administered orally as a single dose, followed by a 1-week observation period, and then once daily continuously. Planned dose escalation was 40, 80, 120, 180, 240, 320, 400, and 500 mg. For pharmacokinetic analysis, timed blood samples were collected after administration of the single dose and after the first 14 days of continuous daily administration. Dose-limiting toxicity was grade 3 diarrhea, which occurred in one patient treated with 180 mg and in four patients treated with 400 mg neratinib; hence, the maximum tolerated dose was determined to be 320 mg. Other common neratinib-related toxicities included nausea, vomiting, fatigue, and anorexia. Exposure to neratinib was dose dependent, and the pharmacokinetic profile of neratinib supports a once-a-day dosing regimen. Partial response was observed for 8 (32%) of the 25 evaluable patients with breast cancer. Stable disease >or=24 weeks was observed in one evaluable breast cancer patient and 6 (43%) of the 14 evaluable non-small cell lung cancer patients. The maximum tolerated dose of once-daily oral neratinib is 320 mg. The most common neratinib-related toxicity was diarrhea. Antitumor activity was observed in patients with breast cancer who had previous treatment with trastuzumab, anthracyclines, and taxanes, and tumors with a baseline ErbB-2 immunohistochemical staining intensity of 2+ or 3+. The antitumor activity, tolerable toxicity profile, and pharmacokinetic properties of neratinib warrant its further evaluation.

  1. A hierarchical approach employing metabolic and gene expression profiles to identify the pathways that confer cytotoxicity in HepG2 cells

    PubMed Central

    Li, Zheng; Srivastava, Shireesh; Yang, Xuerui; Mittal, Sheenu; Norton, Paul; Resau, James; Haab, Brian; Chan, Christina

    2007-01-01

    Background Free fatty acids (FFA) and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of many obesity-related metabolic disorders. When human hepatoblastoma cells (HepG2) were exposed to different types of FFA and TNF-α, saturated fatty acid was found to be cytotoxic and its toxicity was exacerbated by TNF-α. In order to identify the processes associated with the toxicity of saturated FFA and TNF-α, the metabolic and gene expression profiles were measured to characterize the cellular states. A computational model was developed to integrate these disparate data to reveal the underlying pathways and mechanisms involved in saturated fatty acid toxicity. Results A hierarchical framework consisting of three stages was developed to identify the processes and genes that regulate the toxicity. First, discriminant analysis identified that fatty acid oxidation and intracellular triglyceride accumulation were the most relevant in differentiating the cytotoxic phenotype. Second, gene set enrichment analysis (GSEA) was applied to the cDNA microarray data to identify the transcriptionally altered pathways and processes. Finally, the genes and gene sets that regulate the metabolic responses identified in step 1 were identified by integrating the expression of the enriched gene sets and the metabolic profiles with a multi-block partial least squares (MBPLS) regression model. Conclusion The hierarchical approach suggested potential mechanisms involved in mediating the cytotoxic and cytoprotective pathways, as well as identified novel targets, such as NADH dehydrogenases, aldehyde dehydrogenases 1A1 (ALDH1A1) and endothelial membrane protein 3 (EMP3) as modulator of the toxic phenotypes. These predictions, as well as, some specific targets that were suggested by the analysis were experimentally validated. PMID:17498300

  2. Dose–response relationships in gene expression profiles in rainbow trout, Oncorhyncus mykiss, exposed to ethynylestradiol

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss, were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as “expression signatures”. Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that diffierent doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose. PMID:16725192

  3. Comparative Gene Expression Profiles Induced by PPARγ and PPARα/γ Agonists in Human Hepatocytes

    PubMed Central

    Rogue, Alexandra; Lambert, Carine; Jossé, Rozenn; Antherieu, Sebastien; Spire, Catherine; Claude, Nancy; Guillouzo, André

    2011-01-01

    Background Several glitazones (PPARγ agonists) and glitazars (dual PPARα/γ agonists) have been developed to treat hyperglycemia and, simultaneously, hyperglycemia and dyslipidemia, respectively. However, most have caused idiosyncratic hepatic or extrahepatic toxicities through mechanisms that remain largely unknown. Since the liver plays a key role in lipid metabolism, we analyzed changes in gene expression profiles induced by these two types of PPAR agonists in human hepatocytes. Methodology/Principal Findings Primary human hepatocytes and the well-differentiated human hepatoma HepaRG cells were exposed to different concentrations of two PPARγ (troglitazone and rosiglitazone) and two PPARα/γ (muraglitazar and tesaglitazar) agonists for 24 h and their transcriptomes were analyzed using human pangenomic Agilent microarrays. Principal Component Analysis, hierarchical clustering and Ingenuity Pathway Analysis® revealed large inter-individual variability in the response of the human hepatocyte populations to the different compounds. Many genes involved in lipid, carbohydrate, xenobiotic and cholesterol metabolism, as well as inflammation and immunity, were regulated by both PPARγ and PPARα/γ agonists in at least a number of human hepatocyte populations and/or HepaRG cells. Only a few genes were selectively deregulated by glitazars when compared to glitazones, indicating that PPARγ and PPARα/γ agonists share most of their target genes. Moreover, some target genes thought to be regulated only in mouse or to be expressed in Kupffer cells were also found to be responsive in human hepatocytes and HepaRG cells. Conclusions/Significance This first comprehensive analysis of gene regulation by PPARγ and PPARα/γ agonists favor the conclusion that glitazones and glitazars share most of their target genes and induce large differential changes in gene profiles in human hepatocytes depending on hepatocyte donor, the compound class and/or individual compound, thereby supporting the occurrence of idiosyncratic toxicity in some patients. PMID:21533120

  4. Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: a review of its phytochemistry and pharmacology

    PubMed Central

    Okhuarobo, Agbonlahor; Falodun, Joyce Ehizogie; Erharuyi, Osayemwenre; Imieje, Vincent; Falodun, Abiodun; Langer, Peter

    2014-01-01

    Andrographis paniculata Wall (family Acanthaceae) is one of the most popular medicinal plants used traditionally for the treatment of array of diseases such as cancer, diabetes, high blood pressure, ulcer, leprosy, bronchitis, skin diseases, flatulence, colic, influenza, dysentery, dyspepsia and malaria for centuries in Asia, America and Africa continents. It possesses several photochemical constituents with unique and interesting biological properties. This review describes the past and present state of research on Andrographis paniculata with respect to the medicinal usage, phytochemistry, pharmacological activities, toxicity profile and therapeutic usage, in order to bridge the gap requiring future research opportunities. This review is based on literature study on scientific journals and books from library and electronic sources. Diterpenes, flavonoids, xanthones, noriridoides and other miscellaneous compounds have been isolated from the plant. Extract and pure compounds of the plant have been reported for their anti-microbial, cytotoxicity, anti-protozoan, anti-inflammatory, anti-oxidant, immunostimulant, anti-diabetic, anti-infective, anti-angiogenic, hepato-renal protective, sex hormone/sexual function modulation, liver enzymes modulation insecticidal and toxicity activities. The results of numerous toxicity evaluations of extracts and metabolites isolated from this plant did not show any significant acute toxicity in experimental animals. Detailed and more comprehensive toxicity profile on mammalian tissues and organs is needed in future studies.

  5. Acute, 28days sub acute and genotoxic profiling of Quercetin-Magnesium complex in Swiss albino mice.

    PubMed

    Ghosh, Nilanjan; Sandur, Rajendra; Ghosh, Deepanwita; Roy, Souvik; Janadri, Suresh

    2017-02-01

    Quercetin-Magnesium complex is one of the youngest alkaline rare earth metal (Magnesium) complexes with flavonoids (Quercetin) in organo-metalic family. Earlier studies describe the details of the complex formation, characterization and antioxidant study of the complex but toxicity profile is still under darkness. The present study was taken up to investigate the oral acute toxicity, 28days repeated oral sub-acute toxicity study and genotoxicity study of Quercetin-Magnesium complex in Swiss albino mice. Quercetin-Magnesium complex showed mortality at a dose of 185mg/kg in the Swiss albino mice. In 28days repeated oral toxicity study, Quercetin-Magnesium complex was administered to both sex of Swiss albino mice at dose levels of 150, 130 and 100mg/kg body weight respectively. Where 150mg/kg dose shows increased levels of white blood cells and changes in total protein, serum creatinine and blood urea nitrogen. Histopathological study of Quercetin-Magnesium complex shows minor structural alteration in kidney at 150mg/kg dose. No observed toxic level found in 130mg/kg or below doses. No genotoxic effect found in any doses of the complex. Therefore 130mg/kg or below dose level could be better for further study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Toxicogenomics concepts and applications to study hepatic effects of food additives and chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stierum, Rob; Heijne, Wilbert; Kienhuis, Anne

    2005-09-01

    Transcriptomics, proteomics and metabolomics are genomics technologies with great potential in toxicological sciences. Toxicogenomics involves the integration of conventional toxicological examinations with gene, protein or metabolite expression profiles. An overview together with selected examples of the possibilities of genomics in toxicology is given. The expectations raised by toxicogenomics are earlier and more sensitive detection of toxicity. Furthermore, toxicogenomics will provide a better understanding of the mechanism of toxicity and may facilitate the prediction of toxicity of unknown compounds. Mechanism-based markers of toxicity can be discovered and improved interspecies and in vitro-in vivo extrapolations will drive model developments in toxicology. Toxicologicalmore » assessment of chemical mixtures will benefit from the new molecular biological tools. In our laboratory, toxicogenomics is predominantly applied for elucidation of mechanisms of action and discovery of novel pathway-supported mechanism-based markers of liver toxicity. In addition, we aim to integrate transcriptome, proteome and metabolome data, supported by bioinformatics to develop a systems biology approach for toxicology. Transcriptomics and proteomics studies on bromobenzene-mediated hepatotoxicity in the rat are discussed. Finally, an example is shown in which gene expression profiling together with conventional biochemistry led to the discovery of novel markers for the hepatic effects of the food additives butylated hydroxytoluene, curcumin, propyl gallate and thiabendazole.« less

  7. Repeated-Doses Toxicity Study of the Essential Oil of Hyptis martiusii Benth. (Lamiaceae) in Swiss Mice

    PubMed Central

    Freire Rocha Caldas, Germana; Araújo, Alice Valença; Albuquerque, Giwellington Silva; Silva-Neto, Jacinto da Costa; Costa-Silva, João Henrique; de Menezes, Irwin Rose Alencar; Leite, Ana Cristina Lima; da Costa, José Galberto Martins; Wanderley, Almir Gonçalves

    2013-01-01

    Hyptis martiusii Benth. (Lamiaceae) is found in abundance in Northeastern Brazil where it is used in traditional medicine to treat gastric disorders. Since there are no studies reporting the toxicity and safety profile of this species, we investigated repeated-doses toxicity of the essential oil of Hyptis martiusii (EOHM). Swiss mice of both sexes were orally treated with EOHM (100 and 500 mg/kg) for 30 days, and biochemical, hematological, and morphological parameters were determined. No toxicity signs or deaths were recorded during the treatment with EOHM. The body weight gain was not affected, but there was an occasional variation in water and food consumption among mice of both sexes treated with both doses. The hematological and biochemical profiles did not show significant differences except for a decrease in the MCV and an increase in albumin, but these variations are within the limits described for the species. The microscopic analysis showed changes in liver, kidneys, lungs, and spleen; however, these changes do not have clinical relevance since they varied among the groups, including the control group. The results indicate that the treatment of repeated-doses with the essential oil of Hyptis martiusii showed low toxicity in mice. PMID:24151521

  8. Dynamic development of the protein corona on silica nanoparticles: composition and role in toxicity

    NASA Astrophysics Data System (ADS)

    Mortensen, Ninell P.; Hurst, Gregory B.; Wang, Wei; Foster, Carmen M.; Nallathamby, Prakash D.; Retterer, Scott T.

    2013-06-01

    The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments.The formation and composition of the protein corona on silica (SiO2) nanoparticles (NP) with different surface chemistries was evaluated over time. Native SiO2, amine (-NH2) and carboxy (-COO-) modified NP were examined following incubation in mammalian growth media containing fetal bovine serum (FBS) for 1, 4, 24 and 48 hours. The protein corona transition from its early dynamic state to the later more stable corona was evaluated using mass spectrometry. The NP diameter was 22.4 +/- 2.2 nm measured by scanning transmission electron microscopy (STEM). Changes in hydrodynamic diameter and agglomeration kinetics were studied using dynamic light scattering (DLS). The initial surface chemistry of the NP played an important role in the development and final composition of the protein corona, impacting agglomeration kinetics and NP toxicity. Particle toxicity, indicated by changes in membrane integrity and mitochondrial activity, was measured by lactate dehydrogenase (LDH) release and tetrazolium reduction (MTT), respectively, in mouse alveolar macrophages (RAW264.7) and mouse lung epithelial cells (C10). SiO2-COO- NP had a slower agglomeration rate, formed smaller aggregates, and exhibited lower cytotoxicity compared to SiO2 and SiO2-NH2. Composition of the protein corona for each of the three NP was unique, indicating a strong dependence of corona development on NP surface chemistry. This work underscores the need to understand all aspects of NP toxicity, particularly the influence of agglomeration on effective dose and particle size. Furthermore, the interplay between materials and local biological environment is emphasized and highlights the need to conduct toxicity profiling under physiologically relevant conditions that provide an appropriate estimation of material modifications that occur during exposure in natural environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33280b

  9. Innovative Strategies to Develop Chemical Categories Using a Combination of Structural and Toxicological Properties.

    PubMed

    Batke, Monika; Gütlein, Martin; Partosch, Falko; Gundert-Remy, Ursula; Helma, Christoph; Kramer, Stefan; Maunz, Andreas; Seeland, Madeleine; Bitsch, Annette

    2016-01-01

    Interest is increasing in the development of non-animal methods for toxicological evaluations. These methods are however, particularly challenging for complex toxicological endpoints such as repeated dose toxicity. European Legislation, e.g., the European Union's Cosmetic Directive and REACH, demands the use of alternative methods. Frameworks, such as the Read-across Assessment Framework or the Adverse Outcome Pathway Knowledge Base, support the development of these methods. The aim of the project presented in this publication was to develop substance categories for a read-across with complex endpoints of toxicity based on existing databases. The basic conceptual approach was to combine structural similarity with shared mechanisms of action. Substances with similar chemical structure and toxicological profile form candidate categories suitable for read-across. We combined two databases on repeated dose toxicity, RepDose database, and ELINCS database to form a common database for the identification of categories. The resulting database contained physicochemical, structural, and toxicological data, which were refined and curated for cluster analyses. We applied the Predictive Clustering Tree (PCT) approach for clustering chemicals based on structural and on toxicological information to detect groups of chemicals with similar toxic profiles and pathways/mechanisms of toxicity. As many of the experimental toxicity values were not available, this data was imputed by predicting them with a multi-label classification method, prior to clustering. The clustering results were evaluated by assessing chemical and toxicological similarities with the aim of identifying clusters with a concordance between structural information and toxicity profiles/mechanisms. From these chosen clusters, seven were selected for a quantitative read-across, based on a small ratio of NOAEL of the members with the highest and the lowest NOAEL in the cluster (< 5). We discuss the limitations of the approach. Based on this analysis we propose improvements for a follow-up approach, such as incorporation of metabolic information and more detailed mechanistic information. The software enables the user to allocate a substance in a cluster and to use this information for a possible read- across. The clustering tool is provided as a free web service, accessible at http://mlc-reach.informatik.uni-mainz.de.

  10. Distribution of toxic alkaloids in tissues from three herbal medicine Aconitum species using laser micro-dissection, UHPLC-QTOF MS and LC-MS/MS techniques.

    PubMed

    Jaiswal, Yogini; Liang, Zhitao; Ho, Alan; Wong, LaiLai; Yong, Peng; Chen, Hubiao; Zhao, Zhongzhen

    2014-11-01

    Aconite poisoning continues to be a major type of poisoning caused by herbal drugs in many countries. Nevertheless, despite its toxic characteristics, aconite is used because of its valuable therapeutic benefits. The aim of the present study was to determine the distribution of toxic alkaloids in tissues of aconite roots through chemical profiling. Three species were studied, all being used in traditional Chinese Medicine (TCM) and traditional Indian medicine (Ayurveda), namely: Aconitum carmichaelii, Aconitum kusnezoffii and Aconitum heterophyllum. Laser micro-dissection was used for isolation of target microscopic tissues, such as the metaderm, cortex, xylem, pith, and phloem, with ultra-high performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) employed for detection of metabolites. Using a multi-targeted approach through auto and targeted LC-MS/MS, 48 known compounds were identified and the presence of aconitine, mesaconitine and hypaconitine that are the biomarkers of this plant was confirmed in the tissues. These results suggest that the three selected toxic alkaloids were exclusively found in A. carmichaelii and A. kusnezoffii. The most toxic components were found in large A. carmichaelii roots with more lateral root projections, and specifically in the metaderm, cork and vascular bundle tissues. The results from metabolite profiling were correlated with morphological features to predict the tissue specific distribution of toxic components and toxicity differences among the selected species. By careful exclusion of tissues having toxic diester diterpenoid alkaloids, the beneficial effects of aconite can still be retained and the frequency of toxicity occurrences can be greatly reduced. Knowledge of tissue-specific metabolite distribution can guide users and herbal drug manufacturers in prudent selection of relatively safer and therapeutically more effective parts of the root. The information provided from this study can contribute towards improved and effective management of therapeutically important, nonetheless, toxic drug such as Aconite. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Phytochemical and anti-inflammatory activities of aqueous leaf extract of Indian borage (oregano) on rats induced with inflammation.

    PubMed

    Akinbo, David Bolaji; Onyeaghala, Augustine A; Emomidue, Jennifer Ochuko; Ogbhemhe, Stephanie Okhuriafe; Okpoli, Henry Chijindu

    2018-03-30

    The Indian borage (Plectranthus amboinicus) also called Oregano contains many effective antioxidants, which includes caffeic acid, rosmarinic acid and flavonoids. It has been employed in traditional medicine for its several health benefits including the prevention and cure of many debilitating diseases. Anti-inflammatory properties of Plectranthus amboinicus grown within this environment have not been adequately explored. The protective and therapeutic effects of Oregano against endotoxaemia and inflammation were evaluated using lipopolysaccharide (LPS)-induced rat models. A total of 30 Wistar rats were randomly selected for this study and divided into six groups, with each group having 5 rats. Inflammation was induced on appropriate animal groups using LPS injection at a concentration of 4 mg/kg. Aqueous leaf extract of Indian borage was administered orally in four doses (100 mg/kg, 200 mg/kg, 400 mg/kg post-LPS exposure and 150 mg/kg pre-LPS exposure) to respective treatment rat groups. Haematological profile, toxicity profile of liver and kidney and levels of biomarkers of inflammation were assayed using standard methods. Rats injected with LPS showed severe anaemia and marked leucopoenia with significant decrease in monocytes compared to the control group (p< 0.05). There was increased expression of interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) (p< 0.05) in the peripheral circulation of rats exposed to LPS. Treatment with Indian borage significantly (p< 0.05) reduced the toxic effects in the LPS-treated animals and attenuated the increase in the expression of circulating proinflammatory cytokines; tumor necrosis factor alpha (TN-Fα) and interleukin-8 (IL-8) caused by LPS. Indian borage pretreatment also significantly (p< 0.05) counteracted the associated haematological dyscrasias caused by exposure to LPS. The extract elicited a significant protective effect on the kidney and liver as evidenced by the decreased renal markers and hepatic enzyme activities when compared with the control. The extract demonstrated protective and suppressive role against the overexpression of inflammatory mediators by ameliorating the induced inflammation and endotoxaemic conditions in the affected rat groups thereby validating its folkloric use. Our study thus reveals that the extract might be an active, natural and non-toxic drug lead against endotoxaemia-induced inflammation and toxicity.

  12. Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.

    PubMed

    Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas

    2004-07-08

    D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.

  13. In Silico Molecular Interaction of Bisphenol Analogues with Human Nuclear Receptors Reveals their Stronger Affinity vs. Classical Bisphenol A.

    PubMed

    Sharma, Shikha; Ahmad, Shahzad; Faraz Khan, Mohemmed; Parvez, Suhel; Raisuddin, Sheikh

    2018-06-21

    Bisphenol A (BPA) is known for endocrine disrupting activity. In order to replace BPA a number of bisphenol analogues have been designed. However, their activity profile is poorly described and little information exists about their endocrine disrupting potential and interactions with nuclear receptors. An understanding of such interaction may unravel mechanism of their molecular action and provide valuable inputs for risk assessment. BPA binds and activates peroxisome proliferator-activated receptors (PPARs) and retinoid X receptors (RXRs) which act as transcription factors and regulate genes involved in glucose, lipid, and cholesterol metabolism and adipogenesis. We studied binding efficiency of 18 bisphenol analogues and BPA with human PPARs and RXRs. Using Maestro Schrodinger 9.4, docking scores of bisphenols were compared with the known endogenous and exogenous ligands of hPPARs and hRXRs. BPA showed good binding efficiency. Several analogues also showed higher binding efficiency than BPA. BPPH which has high tendency to be absorbed in tissues showed the strongest binding with hPPARα, hPPARβ, hPPARγ and hRXRα whereas two of the most toxic bisphenols, BPM and BPAF showed strongest binding with hRXRβ and hRXRγ. Some of the bisphenol analogues showed a stronger binding affinity with PPAR and RXR compared to BPA implying that BPA substitutes may not be fully safe and chemico-biological interactions indicate their toxic potential. These results may also serve to plan further studies for determining safety profile of bisphenol analogues and be helpful in risk characterization.

  14. ToxPi Prioritization and Profiling of 1060 ToxCast Chemicals Across Multiple Sectors of Toxicological Concern

    EPA Science Inventory

    The Toxicological Prioritization Index (ToxPi™) framework was developed as a decision-support tool to aid in the prioritization of chemicals for integrated toxicity testing. ToxPi consolidates information from multiple domains - including ToxCast™ in vitro bioactivity profiles (a...

  15. Randomized controlled trial of reduced-dose bolus fluorouracil plus leucovorin and irinotecan or infused fluorouracil plus leucovorin and oxaliplatin in patients with previously untreated metastatic colorectal cancer: a North American Intergroup Trial.

    PubMed

    Goldberg, Richard M; Sargent, Daniel J; Morton, Roscoe F; Fuchs, Charles S; Ramanathan, Ramesh K; Williamson, Stephen K; Findlay, Brian P; Pitot, Henry C; Alberts, Steven

    2006-07-20

    Previously, we reported results of Intergroup N9741, which compared standard bolus fluorouracil (FU), leucovorin, plus irinotecan (IFL) with infused FU, leucovorin, plus oxaliplatin (FOLFOX4) and irinotecan plus oxaliplatin in patients with untreated metastatic colorectal cancer. High rates of grade > or = 3 toxicity on IFL (resulting in some deaths) led us to reduce the starting doses of both irinotecan and FU by 20% (rIFL). This article compares rIFL with FOLFOX4. The primary comparison was time to progression, with secondary end points of response rate (RR), overall survival, and toxicity. Three hundred five patients were randomly assigned. The North Central Cancer Treatment Group Data Safety Monitoring Committee interrupted enrollment at a planned interim analysis when outcomes crossed predetermined stopping boundaries. The results were significantly superior for FOLFOX4 compared with rIFL for time to progression (9.7 v 5.5 months, respectively; P < .0001), RR (48% v 32%, respectively; P = .006), and overall survival (19.0 v 16.3 months, respectively; P = .026). Toxicity profiles were not significantly different between regimens for nausea, vomiting, diarrhea, febrile neutropenia, dehydration, or 60-day all-cause mortality. Sensory neuropathy and neutropenia were significantly more common with FOLFOX4. Approximately 75% of patients in both arms received second-line therapy; 58% of rIFL patients received oxaliplatin-based second-line therapy, and 55% of FOLFOX4 patients received irinotecan-based regimens as second-line therapy. FOLFOX4 led to superior RR, time to progression, and overall survival compared with rIFL. The survival benefit for FOLFOX4 observed in the earlier stage of the study was preserved with equal use of either irinotecan or oxaliplatin as second-line therapy.

  16. Radiochemotherapy in Patients With Primary Glioblastoma Comparing Two Temozolomide Dose Regimens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, Stephanie E.; Wagner, Johanna; Bischof, Marc

    2008-07-15

    Purpose: To evaluate toxicity and outcomes in patients with primary glioblastoma (GB) treated with postoperative radiochemotherapy (RCHT) with temozolomide (TMZ) comparing two dose regimens. Methods and Materials: A total of 160 patients with histologically confirmed GB were treated with postoperative RCHT with TMZ. Of the patients, 66 were female and 94 were male, with a median age of 60 years. After the primary diagnosis, a biopsy had been performed in 42 patients; a subtotal and total resection was conducted in 66 and 52 patients. Postoperative radiotherapy was applied with a median dose of 60 Gy with a median fractionation ofmore » 5 x 2Gy/week. Concomitant TMZ was prescribed at 50 mg/m{sup 2} in 123 patients (Group A) and at 75 mg/m{sup 2} in 37 patients (Group B). Patients were followed in 3-months intervals, with a median follow-up of 13 months. Results: Overall survival (OS) rates in Group A vs. Group B were 67% and 79% at 1 year and 43% vs. 49% at 2 years, respectively (p = 0.69). Progression-free survival was 49% vs. 54% at 1 year and 22% vs. 29% at 2 years (p = 0.31). Hematologic toxicity was not statistically significant over the 6-week RCHT period except for a significant decrease in platelets during Week 6 (p = 0.01) in Group B. Conclusions: Overall survival seems to be comparable in both groups, although longer follow-up and a larger group of patients are needed to corroborate these results. Lower dosing of TMZ also is associated with a more beneficial toxicity profile.« less

  17. Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.

    PubMed

    Sanders, John M; Beshore, Douglas C; Culberson, J Christopher; Fells, James I; Imbriglio, Jason E; Gunaydin, Hakan; Haidle, Andrew M; Labroli, Marc; Mattioni, Brian E; Sciammetta, Nunzio; Shipe, William D; Sheridan, Robert P; Suen, Linda M; Verras, Andreas; Walji, Abbas; Joshi, Elizabeth M; Bueters, Tjerk

    2017-08-24

    High-throughput screening (HTS) has enabled millions of compounds to be assessed for biological activity, but challenges remain in the prioritization of hit series. While biological, absorption, distribution, metabolism, excretion, and toxicity (ADMET), purity, and structural data are routinely used to select chemical matter for further follow-up, the scarcity of historical ADMET data for screening hits limits our understanding of early hit compounds. Herein, we describe a process that utilizes a battery of in-house quantitative structure-activity relationship (QSAR) models to generate in silico ADMET profiles for hit series to enable more complete characterizations of HTS chemical matter. These profiles allow teams to quickly assess hit series for desirable ADMET properties or suspected liabilities that may require significant optimization. Accordingly, these in silico data can direct ADMET experimentation and profoundly impact the progression of hit series. Several prospective examples are presented to substantiate the value of this approach.

  18. Dacarbazine in combination with bevacizumab for the treatment of unresectable/metastatic melanoma: a phase II study.

    PubMed

    Ferrucci, Pier F; Minchella, Ida; Mosconi, Massimo; Gandini, Sara; Verrecchia, Francesco; Cocorocchio, Emilia; Passoni, Claudia; Pari, Chiara; Testori, Alessandro; Coco, Paola; Munzone, Elisabetta

    2015-06-01

    The combined treatment of dacarbazine with an antiangiogenic drug such as bevacizumab may potentiate the therapeutic effects of dacarbazine in metastatic melanoma (MM). Preliminary antitumour activity of dacarbazine plus bevacizumab is evaluated, together with the toxicity and safety profile, in MM patients. This prospective, open-label, phase II study included patients with previously untreated MM or unresectable melanoma. Patients received dacarbazine and bevacizumab until progressive disease or unacceptable toxicity. The primary efficacy variable was the overall response rate. The secondary efficacy parameters included duration of response, duration of stable disease, time to progression/progression-free survival, time to treatment failure and overall survival. The safety analysis included recordings of adverse events and exposure to study treatment. The intention-to-treat population included 37 patients (24 men and 13 women, mean age 54.2±13.1 years). Overall response rate was 18.9% (seven patients achieved a response) and clinical benefit was 48.6%. In patients who achieved a response, the median duration of response was 16.9 months and the median duration of stable disease was 12.5 months. The median time to progression/progression-free survival and time to treatment failure were 5.5 and 3.1 months, respectively. The median overall survival was 11.4 months. Almost all patients (94.6%) experienced at least one adverse event; however, no new area of toxicity of bevacizumab emerged. The dacarbazine/bevacizumab combination provides benefits compared with dacarbazine monotherapy in historical controls, with an acceptable safety profile. This combination appears to be a valid option in specific subgroups of patients, namely, those triple negative (BRAF, C-KIT and NRAS wild type) or with a BRAF mutation who have already received, or are not eligible for, immunomodulating or targeted agents.

  19. Safety evaluation of food contact paper and board using chemical tests and in vitro bioassays: role of known and unknown substances.

    PubMed

    Honkalampi-Hämäläinen, U; Bradley, E L; Castle, L; Severin, I; Dahbi, L; Dahlman, O; Lhuguenot, J-C; Andersson, M A; Hakulinen, P; Hoornstra, D; Mäki-Paakkanen, J; Salkinoja-Salonen, M; Turco, L; Stammati, A; Zucco, F; Weber, A; von Wright, A

    2010-03-01

    In vitro toxicological tests have been proposed as an approach to complement the chemical safety assessment of food contact materials, particularly those with a complex or unknown chemical composition such as paper and board. Among the concerns raised regarding the applicability of in vitro tests are the effects of interference of the extractables on the outcome of the cytotoxicity and genotoxicity tests applied and the role of known compounds present in chemically complex materials, such as paper and board, either as constituents or contaminants. To answer these questions, a series of experiments were performed to assess the role of natural substances (wood extracts, resin acids), some additives (diisopropylnaphthalene, phthalates, acrylamide, fluorescent whitening agents) and contaminants (2,4-diaminotoluene, benzo[a]pyrene) in the toxicological profile of paper and board. These substances were individually tested or used to spike actual paper and board extracts. The toxic concentrations of diisopropylnaphthalenes and phthalates were compared with those actually detected in paper and board extracts showing conspicuous toxicity. According to the results of the spiking experiments, the extracts did not affect the toxicity of tested chemicals nor was there any significant metabolic interference in the cases where two compounds were used in tests involving xenobiotic metabolism by the target cells. While the identified substances apparently have a role in the cytotoxicity of some of the project samples, their presence does not explain the total toxicological profile of the extracts. In conclusion, in vitro toxicological testing can have a role in the safety assessment of chemically complex materials in detecting potentially harmful activities not predictable by chemical analysis alone.

  20. DSSTOX (DISTRIBUTED STRUCTURE-SEARCHABLE ...

    EPA Pesticide Factsheets

    Distributed Structure-Searchable Toxicity Database Network Major trends affecting public toxicity information resources have the potential to significantly alter the future of predictive toxicology. Chemical toxicity screening is undergoing shifts towards greater use of more fundamental information on gene/protein expression patterns and bioactivity and bioassay profiles, the latter generated with highthroughput screening technologies. Curated, systematically organized, and webaccessible toxicity and biological activity data in association with chemical structures, enabling the integration of diverse data information domains, will fuel the next frontier of advancement for QSAR (quantitative structure-activity relationship) and data mining technologies. The DSSTox project is supporting progress towards these goals on many fronts, promoting the use of formalized and structure-annotated toxicity data models, helping to interface these efforts with QSAR modelers, linking data from diverse sources, and creating a large, quality reviewed, central chemical structure information resource linked to various toxicity data sources

  1. Neratinib for the treatment of breast cancer.

    PubMed

    Prové, Annemie; Dirix, Luc

    2016-10-03

    Neratinib is an orally available, pan-HER inhibitor with clinical activity in patients with HER2-amplified and HER2-mutated breast cancer. Areas Covered. A summary of publically available and relevant clinical data on neratinib. Expert Opinion. Neratinib (N) is clearly distinct from lapatinib (L), a difference based on its broad anti-HER effect, its covalent target binding and its toxicity profile. The main toxicity of neratinib is gastro-intestinal and is essentially limited to diarrhea. Although not directly compared with single agent lapatinib, skin toxicity is much less pronounced with N. The direct clinical comparison of N-capecitabine versus L-capecitabine is the subject of the ongoing NALA-trial. In patients with advanced disease, neratinib has clinically relevant activity in patients with trastuzumab(T)-pretreated and unpretreated disease. In patients having completed one year of adjuvant trastuzumab, an additional year of neratinib further reduces the risk of recurrence of invasive disease. The activity of neratinib in HER2-mutated advanced disease is subject of ongoing clinical trials but preclinical and early clinical results are promising. Neratinib is a usefull drug and a valuable addition to the different anti-HER2-drugs avalaible for patients with HER2-overexpressing and HER2-mutated breast cancer.

  2. Behavioral Screening for Toxicology | Science Inventory | US ...

    EPA Pesticide Factsheets

    Screening for behavioral toxicity, or neurotoxicity, has been in use for decades; however, only in the past 20 years has this become a standard practice in toxicology. Current screening batteries, such as the functional observational battery (FOB), are derived from protocols used in pharmacology, toxicology, and psychology. Although there is a range of protocols in use today, all focus on detailed observations and specific tests of reflexes and responses. Several neurological functions are typically assessed, including autonomic, neuromuscular, and sensory, as well as levels of activity and excitability. The tests have been shown to be valid in detecting expected effects of known neurotoxicants, and reliable and reproducible whn compared across laboratories. Regardless of the specific protocol used, proper conduct and statistical analyses of the data are critical. Interpretation is based on the information from individual end points as well as the profile, or pattern, of effects observed. As long as continual refinements are made, behavioral screening methods will continue to be important tools with which to protect human health in the future.autonomic function; behavior; behavioral phenotypes; behavioral toxicity; excitability; functional observational battery ; motor activity; mouse; neuromuscular function; positive controls; rat; screening battery ; sensory function Screening for behavioral toxicity, or neurotoxicity, has been in use for decades; how

  3. Selection and testing of reference genes for accurate RT-qPCR in rice seedlings under iron toxicity.

    PubMed

    Santos, Fabiane Igansi de Castro Dos; Marini, Naciele; Santos, Railson Schreinert Dos; Hoffman, Bianca Silva Fernandes; Alves-Ferreira, Marcio; de Oliveira, Antonio Costa

    2018-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is a technique for gene expression profiling with high sensibility and reproducibility. However, to obtain accurate results, it depends on data normalization by using endogenous reference genes whose expression is constitutive or invariable. Although the technique is widely used in plant stress analyzes, the stability of reference genes for iron toxicity in rice (Oryza sativa L.) has not been thoroughly investigated. Here, we tested a set of candidate reference genes for use in rice under this stressful condition. The test was performed using four distinct methods: NormFinder, BestKeeper, geNorm and the comparative ΔCt. To achieve reproducible and reliable results, Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were followed. Valid reference genes were found for shoot (P2, OsGAPDH and OsNABP), root (OsEF-1a, P8 and OsGAPDH) and root+shoot (OsNABP, OsGAPDH and P8) enabling us to perform further reliable studies for iron toxicity in both indica and japonica subspecies. The importance of the study of other than the traditional endogenous genes for use as normalizers is also shown here.

  4. Selection and testing of reference genes for accurate RT-qPCR in rice seedlings under iron toxicity

    PubMed Central

    dos Santos, Fabiane Igansi de Castro; Marini, Naciele; dos Santos, Railson Schreinert; Hoffman, Bianca Silva Fernandes; Alves-Ferreira, Marcio

    2018-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is a technique for gene expression profiling with high sensibility and reproducibility. However, to obtain accurate results, it depends on data normalization by using endogenous reference genes whose expression is constitutive or invariable. Although the technique is widely used in plant stress analyzes, the stability of reference genes for iron toxicity in rice (Oryza sativa L.) has not been thoroughly investigated. Here, we tested a set of candidate reference genes for use in rice under this stressful condition. The test was performed using four distinct methods: NormFinder, BestKeeper, geNorm and the comparative ΔCt. To achieve reproducible and reliable results, Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were followed. Valid reference genes were found for shoot (P2, OsGAPDH and OsNABP), root (OsEF-1a, P8 and OsGAPDH) and root+shoot (OsNABP, OsGAPDH and P8) enabling us to perform further reliable studies for iron toxicity in both indica and japonica subspecies. The importance of the study of other than the traditional endogenous genes for use as normalizers is also shown here. PMID:29494624

  5. Split-course, high-dose palliative pelvic radiotherapy for locally progressive hormone-refractory prostate cancer.

    PubMed

    Gogna, Nirdosh Kumar; Baxi, Siddhartha; Hickey, Brigid; Baumann, Kathryn; Burmeister, Elizabeth; Holt, Tanya

    2012-06-01

    Local progression, in patients with hormone-refractory prostate cancer, often causes significant morbidity. Pelvic radiotherapy (RT) provides effective palliation in this setting, with most published studies supporting the use of high-dose regimens. The aim of the present study was to examine the role of split-course hypofractionated RT used at our institution in treating this group of patients. A total of 34 men with locoregionally progressive hormone-refractory prostate cancer, treated with a split course of pelvic RT (45-60 Gy in 18-24 fractions) between 2000 and 2008 were analyzed. The primary endpoints were the response rate and actuarial locoregional progression-free survival. Secondary endpoints included overall survival, compliance, and acute and late toxicity. The median age was 71 years (range, 53-88). Treatment resulted in an overall initial response rate of 91%, a median locoregional progression-free survival of 43 months, and median overall survival of 28 months. Compliance was excellent and no significant late toxicity was reported. The split course pelvic RT described has an acceptable toxicity profile, is effective, and compares well with other high-dose palliative regimens that have been previously reported. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Evaluation of the potential toxicity of unmodified and modified cyclodextrins on murine blood-brain barrier endothelial cells.

    PubMed

    Shityakov, Sergey; Salmas, Ramin Ekhteiari; Salvador, Ellaine; Roewer, Norbert; Broscheit, Jens; Förster, Carola

    2016-04-01

    In this study, we investigated the cytotoxic effects of unmodified α-cyclodextrin (α-CD) and modified cyclodextrins, including trimethyl-β-cyclodextrin (TRIMEB) and hydroxypropyl-β-cyclodextrin (HPβCD), on immortalized murine microvascular endothelial (cEND) cells of the blood-brain barrier (BBB). A CellTiter-Glo viability test, performed on the cEND cells showed significant differences among the different cyclodextrins. After 24 hr of incubation, TRIMEB was the most cytotoxic, and HPβCD was non-toxic. α-CD and TRIMEB exhibited greater cytotoxicity in the Dulbecco's modified Eagle's medium than in heat-inactivated human serum indicating protective properties of the human serum. The predicted dynamic toxicity profiles (Td) for α-CD and TRIMEB indicated higher cytotoxicity for these cyclodextrins compared to the reference compound (dimethylsulfoxide). Molecular dynamics simulation of cholesterol binding to the CDs suggested that not just cholesterol but phospholipids extraction might be involved in the cytotoxicity. Overall, the results demonstrate that HPβCD has the potential to be used as a candidate for drug delivery vector development and signify a correlation between the in vitro cytotoxic effect and cholesterol binding of cyclodextrins.

  7. Preclinical Evaluation of Promitil, a Radiation-Responsive Liposomal Formulation of Mitomycin C Prodrug, in Chemoradiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Xi; Warner, Samuel B.; Wagner, Kyle T.

    Purpose: To examine the effect of radiation on in vitro drug activation and release of Promitil, a pegylated liposomal formulation of a mitomycin C (MMC) lipid-based prodrug; and examine the efficacy and toxicity of Promitil with concurrent radiation in colorectal cancer models. Methods and Materials: Promitil was obtained from Lipomedix Pharmaceuticals (Jerusalem, Israel). We tested the effects of radiation on release of active MMC from Promitil in vitro. We next examined the radiosensitization effect of Promitil in vitro. We further evaluated the toxicity of a single injection of free MMC or Promitil when combined with radiation by assessing the effects on blood counts and in-fieldmore » skin and hair toxicity. Finally, we compared the efficacy of MMC and Promitil in chemoradiotherapy using mouse xenograft models. Results: Mitomycin C was activated and released from Promitil in a controlled-release profile, and the rate of release was significantly increased in medium from previously irradiated cells. Both Promitil and MMC potently radiosensitized HT-29 cells in vitro. Toxicity of MMC (8.4 mg/kg) was substantially greater than with equivalent doses of Promitil (30 mg/kg). Mice treated with human-equivalent doses of MMC (3.3 mg/kg) experienced comparable levels of toxicity as Promitil-treated mice at 30 mg/kg. Promitil improved the antitumor efficacy of 5-fluorouracil–based chemoradiotherapy in mouse xenograft models of colorectal cancer, while equitoxic doses of MMC did not. Conclusions: We demonstrated that Promitil is an attractive agent for chemoradiotherapy because it demonstrates a radiation-triggered release of active drug. We further demonstrated that Promitil is a well-tolerated and potent radiosensitizer at doses not achievable with free MMC. These results support clinical investigations using Promitil in chemoradiotherapy.« less

  8. Convection-enhanced drug delivery of interleukin-4 Pseudomonas exotoxin (PRX321): increased distribution and magnetic resonance monitoring.

    PubMed

    Mardor, Y; Last, D; Daniels, D; Shneor, R; Maier, S E; Nass, D; Ram, Z

    2009-08-01

    Convection-enhanced drug delivery (CED) enables achieving a drug concentration within brain tissue and brain tumors that is orders of magnitude higher than by systemic administration. Previous phase I/II clinical trials using intratumoral convection of interleukin-4 Pseudomonas exotoxin (PRX321) have demonstrated an acceptable safety and toxicity profile with promising signs of therapeutic activity. The present study was designed to assess the distribution efficiency and toxicity of this PRX321 using magnetic resonance imaging (MRI) and to test whether reformulation with increased viscosity could enhance drug distribution. Convection of low- [0.02% human serum albumin (HSA)] and high-viscosity (3% HSA) infusates mixed with gadolinium-diethylenetriamine pentaacetic acid and PRX321 were compared with low- and high-viscosity infusates without the drug, in normal rat brains. MRI was used for assessment of drug distribution and detection of early and late toxicity. Representative brain samples were subjected to histological examination. Distribution volumes calculated from the magnetic resonance images showed that the average distribution of 0.02% HSA was larger than that of 0.02% HSA with PRX321 by a factor of 1.98 (p < 0.02). CED of 3.0% HSA, with or without PRX321, tripled the volume of distribution compared with 0.02% HSA with PRX321 (p < 0.015). No drug-related toxicity was detected. These results suggest that the impeded convection of the PRX321 infusate used in previous clinical trials can be reversed by increasing infusate viscosity and lead to tripling of the volume of distribution. This effect was not associated with any detectable toxicity. A similar capability to reverse impeded convection was also demonstrated in a CED model using acetic acid. These results will be implemented in an upcoming phase IIb PRX321 CED trial with a high-viscosity infusate.

  9. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.

    PubMed

    Sanderson, Hans; Thomsen, Marianne

    2009-06-01

    Pharmaceuticals have been reported to be ubiquitously present in surface waters prompting concerns of effects of these bioactive substances. Meanwhile, there is a general scarcity of publicly available ecotoxicological data concerning pharmaceuticals. The aim of this paper was to compile a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68% of the pharmaceuticals have a non-specific MOA. Additionally, the acute-to-chronic ratio (ACR) for 70% of the analyzed pharmaceuticals was below 25 further suggesting a non-specific MOA. Sub-lethal receptor-mediated effects may however have a more specific MOA.

  10. The effect of 7,8-methylenedioxylycoctonine-type diterpenoid alkaloids on the toxicity of methyllycaconitine in mice.

    PubMed

    Welch, K D; Panter, K E; Gardner, D R; Green, B T; Pfister, J A; Cook, D; Stegelmeier, B L

    2008-10-01

    Larkspur plants contain numerous norditerpenoid alkaloids, which include the 7,8-methylenedioxylycoctonine (MDL)-type alkaloids and the N-(methylsuccinimido)anthranoyllycoctonine (MSAL)-type alkaloids. The MSAL-type alkaloids are generally much more toxic (typically >20 times). Toxicity of many tall larkspurs, such as Delphinium barbeyi, has been attributed to its large concentration of MSAL-type alkaloids, including methyllycaconitine (MLA). However, the norditerpenoid alkaloids found in the greatest concentrations in most D. barbeyi populations are either deltaline or 14-O-acetyldictyocarpine (14-OAD), both less toxic MDL-type alkaloids. Although the individual toxicities of MLA, 14-OAD, and deltaline have been determined, the impact (additive or antagonistic) that large concentrations of deltaline or 14-OAD in the plant have on the toxicity of MLA is unknown. Consequently, the effect of MDL-type alkaloids on the toxicity of MLA was compared by using median lethal dose (LD(50)) and toxicokinetic profiles of the brainand muscle from mice receiving i.v. administration of these alkaloids, individually or in combination, at ratios of 1:1, 1:5, and 1:25 MLA to MDL-type alkaloids. The LD(50) for MLA alone was 4.4 +/- 0.7 mg/kg of BW, whereas the coadministration of MLA and deltaline at 1:1, 1:5, and 1:25 resulted in an LD(50) of 2.7, 2.5, and 1.9 mg/kg of BW, respectively. Similarly, the coadministration of MLA and 14-OAD at 1:1, 1:5, and 1:25 resulted in an LD(50) of 3.1, 2.2, and 1.5 mg/kg of BW, respectively. Coadministration of mixtures did not result in increased MLA bioavailability or alterations in clearance from the brain and muscle. Consequently, the increased toxicity of the mixtures was not a result of increased MLA bioavailability (based on the maximum concentrations observed) or alterations in MLA clearance from the brain and muscle, because these were unchanged. These results demonstrate that MDL-type alkaloids have an additive effect on MLA toxicity in mice and may also play a role in the overall toxicity of tall larkspur plants in cattle.

  11. Interactive toxicity of usnic acid and lipopolysaccharides in human liver HepG2 cells.

    PubMed

    Sahu, Saura C; O'Donnell, Michael W; Sprando, Robert L

    2012-09-01

    Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccarides (LPS), a potential contaminant of food, at low non-toxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in a binary mixture, for 24 h at 37°C in 5% CO2. After the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenomic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway-focused gene expression profiles. Compared with the controls, low non-toxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their binary mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway-focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the binary mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of the present study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells. Published 2012. This article is a US Government work and is in the public domain in the USA.

  12. Extending the Derek-Meteor Workflow to Predict Chemical-Toxicity Space Impacted by Metabolism: Application to ToxCast and Tox21 Chemical Inventories

    EPA Science Inventory

    A central aim of EPA’s ToxCast project is to use in vitro high-throughput screening (HTS) profiles to build predictive models of in vivo toxicity. Where assays lack metabolic capability, such efforts may need to anticipate the role of metabolic activation (or deactivation). A wo...

  13. Sentinel lymph node mapping in endometrial cancer: comparison of fluorescence dye with traditional radiocolloid and blue.

    PubMed

    Papadia, Andrea; Gasparri, Maria Luisa; Buda, Alessandro; Mueller, Michael D

    2017-10-01

    Sentinel lymph node (SLN) mapping in endometrial cancer (EMCA) is rapidly gaining acceptance in the clinical community. As compared to a full lymphadenectomy in every patient, to a selective lymphadenectomy after frozen section of uterus in selected patients with intrauterine risk factors or to a strategy in which a lymphadenectomy is always omitted, SLN mapping seems to be a reasonable and oncologically safe middle ground. Various protocols can be used when applying an SLN mapping. In this manuscript we review the characteristics, toxicity and clinical impact of technetium-99m radiocolloid (Tc-99m), of the blue dyes (methylene blue, isosulfan blue and patent blue) and of indocyanine green (ICG). ICG has an excellent toxicity profile, has higher overall and bilateral detection rates as compared to blue dyes and higher bilateral detection rates as compared to a combination of Tc-99m and blue dye. The detrimental effect of BMI on the detection rates is attenuated when ICG is used as a tracer. The ease of use of the ICG SLN mapping is perceived by the patients as a better quality of care delivered. Whenever possible, ICG should be favored over the other tracers for SLN mapping in EMCA patients.

  14. Extending the Limits of Quantitative Proteome Profiling with Data-Independent Acquisition and Application to Acetaminophen-Treated Three-Dimensional Liver Microtissues*

    PubMed Central

    Bruderer, Roland; Bernhardt, Oliver M.; Gandhi, Tejas; Miladinović, Saša M.; Cheng, Lin-Yang; Messner, Simon; Ehrenberger, Tobias; Zanotelli, Vito; Butscheid, Yulia; Escher, Claudia; Vitek, Olga; Rinner, Oliver; Reiter, Lukas

    2015-01-01

    The data-independent acquisition (DIA) approach has recently been introduced as a novel mass spectrometric method that promises to combine the high content aspect of shotgun proteomics with the reproducibility and precision of selected reaction monitoring. Here, we evaluate, whether SWATH-MS type DIA effectively translates into a better protein profiling as compared with the established shotgun proteomics. We implemented a novel DIA method on the widely used Orbitrap platform and used retention-time-normalized (iRT) spectral libraries for targeted data extraction using Spectronaut. We call this combination hyper reaction monitoring (HRM). Using a controlled sample set, we show that HRM outperformed shotgun proteomics both in the number of consistently identified peptides across multiple measurements and quantification of differentially abundant proteins. The reproducibility of HRM in peptide detection was above 98%, resulting in quasi complete data sets compared with 49% of shotgun proteomics. Utilizing HRM, we profiled acetaminophen (APAP)1-treated three-dimensional human liver microtissues. An early onset of relevant proteome changes was revealed at subtoxic doses of APAP. Further, we detected and quantified for the first time human NAPQI-protein adducts that might be relevant for the toxicity of APAP. The adducts were identified on four mitochondrial oxidative stress related proteins (GATM, PARK7, PRDX6, and VDAC2) and two other proteins (ANXA2 and FTCD). Our findings imply that DIA should be the preferred method for quantitative protein profiling. PMID:25724911

  15. Ocular toxicity of fludarabine

    PubMed Central

    Ding, Xiaoyan; Herzlich, Alexandra A; Bishop, Rachel; Tuo, Jingsheng; Chan, Chi-Chao

    2008-01-01

    The purine analogs, fludarabine and cladribine represent an important class of chemotherapy agents used to treat a broad spectrum of lymphoid malignancies. Their toxicity profiles include dose-limiting myelosuppression, immunosuppression, opportunistic infection and severe neurotoxicity. This review summarizes the neurotoxicity of high- and standard-dose fludarabine, focusing on the clinical and pathological manifestations in the eye. The mechanisms of ocular toxicity are probably multifactorial. With increasing clinical use, an awareness of the neurological and ocular vulnerability, particularly to fludarabine, is important owing to the potential for life- and sight-threatening consequences. PMID:18461151

  16. Potential Lipid-Lowering Effects of Eleusine indica (L) Gaertn. Extract on High-Fat-Diet-Induced Hyperlipidemic Rats

    PubMed Central

    Ong, Siew Ling; Nalamolu, Koteswara Rao; Lai, How Yee

    2017-01-01

    Background: To date, anti-obesity agents based on natural products are tested for their potential using lipase inhibition assay through the interference of hydrolysis of fat by lipase resulting in reduced fat absorption without altering the central mechanisms. Previous screening study had indicated strong anti-obesity potential in Eleusine indica (E. indica), but to date, no pharmacologic studies have been reported so far. Objective: This study was performed to investigate the lipid-lowering effects of E. indica using both in vitro and in vivo models. Methods: The crude methanolic extract of E. indica was fractionated using hexane (H-Ei), dichloromethane (DCM-Ei), ethyl acetate (EA-Ei), butanol (B-Ei), and water (W-Ei). All the extracts were tested for antilipase activity using porcine pancreatic lipase. Because H-Ei showed the highest inhibition, it was further subjected to chemical profiling using high-performance liquid chromatography. Subsequently, oral toxicity analysis of H-Ei was performed [Organization for Economic Cooperation and Development guidelines using fixed dose procedure (No. 420)]; efficacy analysis was performed using high-fat diet (HFD)-induced hyperlipidemic female Sprague–Dawley rats. Results: According to the toxicity and efficacy analyses, H-Ei did not demonstrate any noticeable biochemical toxicity or physiologic abnormalities and did not cause any tissue damage as per histologic analysis. Furthermore, H-Ei significantly reduced body weight and improved serum profile and did not show hepatotoxicity and nephrotoxicity based on the serum profile. Moreover, H-Ei alleviated HFD-induced hepatosteatosis and ameliorated induced adiposity in both visceral and subcutaneous adipose tissue. Conclusion: Our results demonstrate that H-Ei effectively improved hyperlipidemia. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted. SUMMARY Hexane extract of Eleusine indica (H-Ei) showed strong potential in the inhibition of porcine pancreatic lipase (27.01 ± 5.68%).The acute oral toxicity of E. indica hexane extract on animal model falls into Globally Harmonized System Category 5 (low hazard), since mortality, clinical toxicity symptoms, gross pathologic, or histopathologic damage was not observed.The hexane extract of E. indica had significantly reduced the body weight and improved serum lipid profile, with reduction in serum triglycerides, total cholesterol, low-density lipoprotein, and elevation in high-density lipoprotein when comparing against the high-fat diet control group.Microscopic evaluation on histologic slides of liver and adipose tissues suggested that E. indica hexane extract had greatly improved liver steatosis and adipose tissue hypertrophy in high-fat diet control group. Abbreviation used: ALT: Alanine transaminase; AST: Aspartate transaminase; B-Ei: Butanol extract of E. indica; DCM-Ei: Dichloromethane extract of E. indica; EA-Ei: Ethyl acetate extract of E. indica; GHS: Globally Harmonized System; HDL: High-density lipoprotein; H-Ei: Hexane extract of E. indica; HFD: High-fat diet; HPLC: High-performance liquid chromatography; LDL: Low-density lipoprotein; NFD: Normal fed diet; PPL: Porcine pancreatic lipase; SEM: Standard error of mean; SD: Standard deviation; TC: Total cholesterol; TG: Triglycerides; W-Ei: Water extract of E. indica. PMID:28479718

  17. Potential Lipid-Lowering Effects of Eleusine indica (L) Gaertn. Extract on High-Fat-Diet-Induced Hyperlipidemic Rats.

    PubMed

    Ong, Siew Ling; Nalamolu, Koteswara Rao; Lai, How Yee

    2017-01-01

    To date, anti-obesity agents based on natural products are tested for their potential using lipase inhibition assay through the interference of hydrolysis of fat by lipase resulting in reduced fat absorption without altering the central mechanisms. Previous screening study had indicated strong anti-obesity potential in Eleusine indica ( E. indica ), but to date, no pharmacologic studies have been reported so far. This study was performed to investigate the lipid-lowering effects of E. indica using both in vitro and in vivo models. The crude methanolic extract of E. indica was fractionated using hexane (H-Ei), dichloromethane (DCM-Ei), ethyl acetate (EA-Ei), butanol (B-Ei), and water (W-Ei). All the extracts were tested for antilipase activity using porcine pancreatic lipase. Because H-Ei showed the highest inhibition, it was further subjected to chemical profiling using high-performance liquid chromatography. Subsequently, oral toxicity analysis of H-Ei was performed [Organization for Economic Cooperation and Development guidelines using fixed dose procedure (No. 420)]; efficacy analysis was performed using high-fat diet (HFD)-induced hyperlipidemic female Sprague-Dawley rats. According to the toxicity and efficacy analyses, H-Ei did not demonstrate any noticeable biochemical toxicity or physiologic abnormalities and did not cause any tissue damage as per histologic analysis. Furthermore, H-Ei significantly reduced body weight and improved serum profile and did not show hepatotoxicity and nephrotoxicity based on the serum profile. Moreover, H-Ei alleviated HFD-induced hepatosteatosis and ameliorated induced adiposity in both visceral and subcutaneous adipose tissue. Our results demonstrate that H-Ei effectively improved hyperlipidemia. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted. Hexane extract of Eleusine indica (H-Ei) showed strong potential in the inhibition of porcine pancreatic lipase (27.01 ± 5.68%).The acute oral toxicity of E. indica hexane extract on animal model falls into Globally Harmonized System Category 5 (low hazard), since mortality, clinical toxicity symptoms, gross pathologic, or histopathologic damage was not observed.The hexane extract of E. indica had significantly reduced the body weight and improved serum lipid profile, with reduction in serum triglycerides, total cholesterol, low-density lipoprotein, and elevation in high-density lipoprotein when comparing against the high-fat diet control group.Microscopic evaluation on histologic slides of liver and adipose tissues suggested that E. indica hexane extract had greatly improved liver steatosis and adipose tissue hypertrophy in high-fat diet control group. Abbreviation used: ALT: Alanine transaminase; AST: Aspartate transaminase; B-Ei: Butanol extract of E. indica ; DCM-Ei: Dichloromethane extract of E. indica ; EA-Ei: Ethyl acetate extract of E. indica ; GHS: Globally Harmonized System; HDL: High-density lipoprotein; H-Ei: Hexane extract of E. indica ; HFD: High-fat diet; HPLC: High-performance liquid chromatography; LDL: Low-density lipoprotein; NFD: Normal fed diet; PPL: Porcine pancreatic lipase; SEM: Standard error of mean; SD: Standard deviation; TC: Total cholesterol; TG: Triglycerides; W-Ei: Water extract of E. indica .

  18. Interaction, transformation and toxicity assessment of particles and additives used in the semiconducting industry.

    PubMed

    Dumitrescu, Eduard; Karunaratne, Dinusha P; Babu, S V; Wallace, Kenneth N; Andreescu, Silvana

    2018-02-01

    Chemical mechanical planarization (CMP) is a widely used technique for the manufacturing of integrated circuit chips in the semiconductor industry. The process generates large amounts of waste containing engineered particles, chemical additives, and chemo-mechanically removed compounds. The environmental and health effects associated with the release of CMP materials are largely unknown and have recently become of significant concern. Using a zebrafish embryo assay, we established toxicity profiles of individual CMP particle abrasives (SiO 2 and CeO 2 ), chemical additives (hydrogen peroxide, proline, glycine, nicotinic acid, and benzotriazole), as well as three model representative slurries and their resulting waste. These materials were characterized before and after use in a typical CMP process in order to assess changes that may affect their toxicological profile and alter their surface chemistry due to polishing. Toxicity outcome in zebrafish is discussed in relation with the physicochemical characteristics of the abrasive particles and with the type and concentration profile of the slurry components pre and post-polishing, as well as the interactions between particle abrasives and additives. This work provides toxicological information of realistic CMP slurries and their polishing waste, and can be used as a guideline to predict the impact of these materials in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Natural deep eutectic solvents: cytotoxic profile.

    PubMed

    Hayyan, Maan; Mbous, Yves Paul; Looi, Chung Yeng; Wong, Won Fen; Hayyan, Adeeb; Salleh, Zulhaziman; Mohd-Ali, Ozair

    2016-01-01

    The purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes' phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures.

  20. Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays

    PubMed Central

    Menzel, Ralph; Swain, Suresh C; Hoess, Sebastian; Claus, Evelyn; Menzel, Stefanie; Steinberg, Christian EW; Reifferscheid, Georg; Stürzenbaum, Stephen R

    2009-01-01

    Background Traditionally, toxicity of river sediments is assessed using whole sediment tests with benthic organisms. The challenge, however, is the differentiation between multiple effects caused by complex contaminant mixtures and the unspecific toxicity endpoints such as survival, growth or reproduction. The use of gene expression profiling facilitates the identification of transcriptional changes at the molecular level that are specific to the bio-available fraction of pollutants. Results In this pilot study, we exposed the nematode Caenorhabditis elegans to three sediments of German rivers with varying (low, medium and high) levels of heavy metal and organic contamination. Beside chemical analysis, three standard bioassays were performed: reproduction of C. elegans, genotoxicity (Comet assay) and endocrine disruption (YES test). Gene expression was profiled using a whole genome DNA-microarray approach to identify overrepresented functional gene categories and derived cellular processes. Disaccharide and glycogen metabolism were found to be affected, whereas further functional pathways, such as oxidative phosphorylation, ribosome biogenesis, metabolism of xenobiotics, aging and several developmental processes were found to be differentially regulated only in response to the most contaminated sediment. Conclusion This study demonstrates how ecotoxicogenomics can identify transcriptional responses in complex mixture scenarios to distinguish different samples of river sediments. PMID:19366437

  1. ¹H NMR-based metabolic profiling of naproxen-induced toxicity in rats.

    PubMed

    Jung, Jeeyoun; Park, Minhwa; Park, Hye Jin; Shim, Sun Bo; Cho, Yang Ha; Kim, Jinho; Lee, Ho-Sub; Ryu, Do Hyun; Choi, Donwoong; Hwang, Geum-Sook

    2011-01-15

    The dose-dependent perturbations in urinary metabolite concentrations caused by naproxen toxicity were investigated using ¹H NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic evaluation of naproxen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) of ¹H NMR from rat urine revealed a dose-dependent metabolic shift between the vehicle-treated control rats and rats treated with low-dose (10 mg/kg body weight), moderate-dose (50 mg/kg), and high-dose (100 mg/kg) naproxen, coinciding with their gastric damage scores after naproxen administration. The resultant metabolic profiles demonstrate that the naproxen-induced gastric damage exhibited energy metabolism perturbations that elevated their urinary levels of citrate, cis-aconitate, creatine, and creatine phosphate. In addition, naproxen administration decreased choline level and increased betaine level, indicating that it depleted the main protective constituent of the gastric mucosa. Moreover, naproxen stimulated the decomposition of tryptophan into kynurenate, which inhibits fibroblast growth factor-1 and delays ulcer healing. These findings demonstrate that ¹H NMR-based urinary metabolic profiling can facilitate noninvasive and rapid diagnosis of drug side effects and is suitable for elucidating possible biological pathways perturbed by drug toxicity. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Toxicity Profile of a Nutraceutical Formulation Derived from Green Mussel Perna viridis

    PubMed Central

    Joseph, Deepu; Chakkalakal, Selsa J.

    2014-01-01

    The short-term (acute) and long-term (subchronic) toxicity profile, mean lethal dose 50 (LD50), and no-observed-adverse-effect level (NOAEL) of a nutraceutical formulation developed from green mussel Perna viridis, which showed in vitro and in vivo anti-inflammatory properties, were evaluated in the present study. The formulation was administered to the male and female Wistar rats at graded doses (0.5, 1.0, and 2.5 g/kg body weight) for two weeks of acute toxicity study and 0.5, 1.0, and 2.0 g/kg body weight for 90 days in subchronic toxicity study. The LD50, variations in clinical signs, changes in body weight, body weight, food/water consumption, organ weight (liver, kidney, spleen, and brain), hematology, serum chemistry, and histopathological changes were evaluated. The LD50 of the formulation was 5,000 mg/kg BW. No test article related mortalities as well as change in body weight, and food and water consumption were observed. No toxicity related significant changes were noted in renal/hepatic function, hematological indices, and serum biochemical parameters between the control and treated groups. Histopathological alterations were not observed in the vital organs of rats. The subchronic NOAEL for the formulation in rats is greater than 2000 mg/kg. This study demonstrated that the green mussel formulation is safe to consume without any adverse effects in the body. PMID:24995298

  3. Mangifera indica L. leaf extract alleviates doxorubicin induced cardiac stress

    PubMed Central

    Bhatt, Laxit; Joshi, Viraj

    2017-01-01

    Aim: The study was undertaken to evaluate the cardioprotective effect of the alcoholic leaf extract of Mangifera indica L. against cardiac stress caused by doxorubicin (DOX). Materials and Methods: Rats were treated with 100 mg/kg of M. indica leaf extract (MILE) in alone and interactive groups for 21 days. Apart from the normal and MILE control groups, all the groups were subjected to DOX (15 mg/kg, i.p.) toxicity for 21 days and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile, and histopathological evaluation. Results: The MILE treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidants levels. Compared to DOX control group, MILE treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score, and mortality. Conclusion: These findings clearly suggest the protective role of alcoholic leaf extract of M. indica against oxidative stress induced by DOX. PMID:28894627

  4. Profiling of the toxicity mechanisms of coated and uncoated silver nanoparticles to yeast Saccharomyces cerevisiae BY4741 using a set of its 9 single-gene deletion mutants defective in oxidative stress response, cell wall or membrane integrity and endocytosis.

    PubMed

    Käosaar, Sandra; Kahru, Anne; Mantecca, Paride; Kasemets, Kaja

    2016-09-01

    The widespread use of nanosilver in various antibacterial, antifungal, and antiviral products warrants the studies of the toxicity pathways of nanosilver-enabled materials toward microbes and viruses. We profiled the toxicity mechanisms of uncoated, casein-coated, and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) using Saccharomyces cerevisiae wild-type (wt) and its 9 single-gene deletion mutants defective in oxidative stress (OS) defense, cell wall/membrane integrity, and endocytosis. The 48-h growth inhibition assay in organic-rich growth medium and 24-h cell viability assay in deionized (DI) water were applied whereas AgNO3, H2O2, and SDS served as positive controls. Both coated AgNPs (primary size 8-12nm) were significantly more toxic than the uncoated (~85nm) AgNPs. All studied AgNPs were ~30 times more toxic if exposed to yeast cells in DI water than in the rich growth medium: the IC50 based on nominal concentration of AgNPs in the growth inhibition test ranged from 77 to 576mg Ag/L and in the cell viability test from 2.7 to 18.7mg Ag/L, respectively. Confocal microscopy showed that wt but not endocytosis mutant (end3Δ) internalized AgNPs. Comparison of toxicity patterns of wt and mutant strains defective in OS defense and membrane integrity revealed that the toxicity of the studied AgNPs to S. cerevisiae was not caused by the OS or cell wall/membrane permeabilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on cbp and protect against proteotoxicity.

    PubMed

    Lublin, Alex; Isoda, Fumiko; Patel, Harshil; Yen, Kelvin; Nguyen, Linda; Hajje, Daher; Schwartz, Marc; Mobbs, Charles

    2011-01-01

    Screening a library of drugs with known safety profiles in humans yielded 30 drugs that reliably protected mammalian neurons against glucose toxicity. Subsequent screening demonstrated that 6 of these 30 drugs increase lifespan in C. elegans: caffeine, ciclopirox olamine, tannic acid, acetaminophen, bacitracin, and baicalein. Every drug significantly reduced the age-dependent acceleration of mortality rate. These protective effects were blocked by RNAi inhibition of cbp-1 in adults only, which also blocks protective effects of dietary restriction. Only 2 drugs, caffeine and tannic acid, exhibited a similar dependency on DAF-16. Caffeine, tannic acid, and bacitracin also reduced pathology in a transgenic model of proteotoxicity associated with Alzheimer's disease. These results further support a key role for glucose toxicity in driving age-related pathologies and for CBP-1 in protection against age-related pathologies. These results also provide novel lead compounds with known safety profiles in human for treatment of age-related diseases, including Alzheimer's disease and diabetic complications.

  6. Phenolic profile and antioxidant activity from non-toxic Mexican Jatropha curcas L. shell methanolic extracts.

    PubMed

    Perea-Domínguez, Xiomara Patricia; Espinosa-Alonso, Laura Gabriela; Hosseinian, Farah; HadiNezhad, Mehri; Valdez-Morales, Maribel; Medina-Godoy, Sergio

    2017-03-01

    Jatropha curcas seed shells are the by-product obtained during oil extraction process. Recently, its chemical composition has gained attention since its potential applications. The aim of this study was to identify phenolic compounds profile from a non-toxic J. curcas shell from Mexico, besides, evaluate J. curcas shell methanolic extract (JcSME) antioxidant activity. Free, conjugate and bound phenolics were fractionated and quantified (606.7, 193.32 and 909.59 μg/g shell, respectively) and 13 individual phenolic compounds were detected by HPLC. The radical-scavenging activity of JcSME was similar to Trolox and ascorbic acid by DPPH assay while by ABTS assay it was similar to BHT. Effective antioxidant capacity by ORAC was found (426.44 ± 53.39 μmol Trolox equivalents/g shell). The Mexican non-toxic J. curcas shell is rich in phenolic compounds with high antioxidant activity; hence, it could be considerate as a good source of natural antioxidants.

  7. Alkaloid Profiling as an Approach to Differentiate Lupinus garfieldensis, Lupinus sabinianus and Lupinus sericeus.

    PubMed

    Cook, Daniel; Lee, Stephen T; Pfister, James A; Stonecipher, Clint A; Welch, Kevin D; Green, Benedict T; Panter, Kip E

    2012-01-01

    Many species in the Lupinus genus are poorly defined morphologically, potentially resulting in improper taxonomic identification. Lupine species may contain quinolizidine and/or piperidine alkaloids that can be acutely toxic and/or teratogenic, the latter resulting in crooked calf disease. To identify characteristic alkaloid profiles of Lupinus sabinianus, L. garfieldensis and L. sericeus which would aid in discriminating these species from each other and from L. sulphureus. Quinolizidine and piperidine alkaloids were extracted from herbarium specimens and recent field collections of L. sabinianus, L. garfieldensis and L. sericeus. The alkaloid composition of each species was defined using GC-FID and GC-MS and compared using multivariate statistics. Each of the three species investigated contained a diagnostic chemical fingerprint composed of quinolizidine and/or piperidine alkaloids. The alkaloid profiles of Lupinus sabinianus, L. garfieldensis and L. sericeus can be used as a tool to discriminate these species from each other and L. sulphureus as long as one considers locality of the collection in the case of L. sabinianus. Published 2011. This article is a US Government work and is in the public domain in the USA.

  8. Analysis of variability of concentrations of valproic acid (VPA) and its selected metabolites in the blood serum of patients treated with VPA and patients hospitalized because of VPA poisoning.

    PubMed

    Wilimowska, J; Kłys, M; Jawień, W

    2014-01-01

    To compare the metabolic profile of valproic acid (VPA) in the studied groups of cases through an analysis of variability of concentrations of VPA with its selected metabolites (2-ene-VPA, 4-ene-VPA, 3-keto-VPA). Blood serum samples collected from 27 patients treated with VPA drugs in the Psychiatry Unit and in the Neurology and Cerebral Strokes Unit at the Ludwik Rydygier Provincial Specialist Hospital in Krakow, and blood serum samples collected from 26 patients hospitalized because of suspected acute VPA poisoning at the Toxicology Department, Chair of Toxicology and Environmental Diseases, Jagiellonian University Medical College in Krakow. The analysis of concentrations of VPA and its selected metabolites has shown that the metabolic profile of VPA determined in cases of acute poisoning is different from cases of VPA therapy. One of VPA's metabolic pathways - the process of desaturation - is unchanged in acute poisoning and prevails over the process of β-oxidation. The ingestion of toxic VPA doses results in an increased formation of 4-ene-VPA, proportional to an increase in VPA concentration. Acute VPA poisoning involves the saturation of VPA's metabolic transformations at the stage of β-oxidation. The process of oxidation of 2-ene-VPA to 3-keto-VPA is slowed down after the ingestion of toxic doses.

  9. Emission factors and congener-specific characterization of PCDD/Fs, PCBs, PBDD/Fs and PBDEs from an off-road diesel engine using waste cooking oil-based biodiesel blends.

    PubMed

    Chen, Shui-Jen; Tsai, Jen-Hsiung; Chang-Chien, Guo-Ping; Huang, Kuo-Lin; Wang, Lin-Chi; Lin, Wen-Yinn; Lin, Chih-Chung; Yeh, C Kuei-Jyum

    2017-10-05

    Few studies have been performed up to now on the emission factors and congener profiles of persistent organic pollutants (POPs) emitted from off-road diesel engines. This investigation elucidates the emission factors and congener profiles of various POPs, namely polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), in the exhausts of a diesel generator fueled with different waste cooking oil-based biodiesel (WCO-based biodiesel) blends. The PCDD/Fs contributed 87.2% of total dioxin-like toxicity (PCDD/Fs+PCBs+PBDD/Fs) in the exhaust, while the PCBs and PBDD/Fs only contributed 8.2% and 4.6%, respectively. Compared with petroleum diesel, B20 (20vol% WCO-based biodiesel+80vol% diesel) reduced total toxicity by 46.5% for PCDD/Fs, 47.1% for PCBs, and 24.5% for PBDD/Fs, while B40 (40vol% WCO-based biodiesel+60vol% diesel) reduced it by 89.5% for PCDD/Fs, 57.1% for PCBs, and 63.2% for PBDD/Fs in POP emission factors. The use of WCO-based biodiesel not only solves the problem of waste oil disposal, but also lowers POP emissions from diesel generators. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A framework for an alternatives assessment dashboard for evaluating chemical alternatives applied to flame retardants for electronic applications.

    PubMed

    Martin, Todd M

    2017-05-01

    The goal of alternatives assessment (AA) is to facilitate a comparison of alternatives to a chemical of concern, resulting in the identification of safer alternatives. A two stage methodology for comparing chemical alternatives was developed. In the first stage, alternatives are compared using a variety of human health effects, ecotoxicity, and physicochemical properties. Hazard profiles are completed using a variety of online sources and quantitative structure activity relationship models. In the second stage, alternatives are evaluated utilizing an exposure/risk assessment over the entire life cycle. Exposure values are calculated using screening-level near-field and far-field exposure models. The second stage allows one to more accurately compare potential exposure to each alternative and consider additional factors that may not be obvious from separate binned persistence, bioaccumulation, and toxicity scores. The methodology was utilized to compare phosphate-based alternatives for decabromodiphenyl ether (decaBDE) in electronics applications.

  11. A 90-day oral (dietary) toxicity and mass balance study of corn starch fiber in Sprague Dawley rats.

    PubMed

    Crincoli, Christine M; Nikiforov, Andrey I; Rihner, Marisa O; Lambert, Elizabeth A; Greeley, Melanie A; Godsey, Justin; Eapen, Alex K; van de Ligt, Jennifer L G

    2016-11-01

    The potential toxicity of corn starch fiber was assessed and compared to polydextrose, a commonly used bulking agent with a long history of safe use in the food supply. Groups of male and female Crl:CD(SD) rats were fed 0 (control), 1,000, 3,000, or 10,000 mg/kg-bw/day corn starch fiber in the diet for 90 days. The polydextrose reference article was offered on a comparable regimen at 10,000 mg/kg-bw/day. Following a single gavage dose of [ 14 C]-corn starch fiber on study day 13 or 90, the mass balance of the test article was assessed by analysis of excreta samples collected from 0 to 168 h post-dose. There were no toxicologically or biologically relevant findings in any of the test article-treated groups. The few minor differences observed between the corn starch fiber and polydextrose exposed groups were considered to be due to normal biological variation. Following [ 14 C]-corn starch fiber dosing, nearly complete excretion of the administered dose occurred over 168 h post-dosing, with the majority excreted in the feces. The dietary no-observed-adverse-effect level of corn starch fiber after 90 days was 10,000 mg/kg-bw/day. Similar toxicity profiles for corn starch fiber and polydextrose were observed due to the structural and compositional similarities of these materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper.

    PubMed

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2018-03-01

    Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Protective effects of quercetin and vitamin C against nicotine-induced toxicity in the blood of Wistar rats.

    PubMed

    Paunović, Milica G; Ognjanović, Branka I; Matić, Miloš M; Štajn, Andraš Š; Saičić, Zorica S

    2016-12-01

    Nicotine is a potential inducer of oxidative stress, through which it can damage numerous biological molecules. The aim of our study was to investigate the prooxidative effects of nicotine and protective (additive or synergistic) effects of quercetin and vitamin C in the blood of experimental animals, to determine whether the combination of these antioxidants might be beneficial for clinical purposes. Wistar albino rats were receiving intraperitoneal nicotine injection (0.75 mg kg-1 per day) or saline (control group) or nicotine plus quercetin (40 mg kg-1 per day) and vitamin C (100 mg kg-1 per day) for three consecutive days. On day 4, we determined their blood lipid profile, liver enzymes, oxidative stress parameters, and antioxidative system parameters. Compared to untreated control, nicotine significantly increased total cholesterol, LDLcholesterol, triglycerides, liver enzymes (alanine transaminase, aspartate transaminase, and lactate dehydrogenase) and oxidative stress parameters (superoxide anion, hydrogen peroxide, and lipid peroxide) and decreased HDL-cholesterol, glutathione, and superoxide dismutase/catalase activity. Quercetin + vitamin C reversed these values significantly compared to the nicotine alone group. Our results confirm that nicotine has significant prooxidative effects that may disrupt the redox balance and show that the quercetin + vitamin C combination supports antioxidant defence mechanisms with strong haematoprotective activity against nicotine-induced toxicity. In practical terms, this means that a diet rich in vitamin C and quercetin could prevent nicotine-induced toxicity and could also be useful in the supportive care of people exposed to nicotine.

  14. Toxicity and paralytic shellfish toxin profiles of the xanthid crabs, Lophozozymus pictor and Zosimus aeneus, collected from some Australian coral reefs.

    PubMed

    Llewellyn, L E; Endean, R

    1989-01-01

    Purification of toxic aqueous extracts from the xanthid crabs Zosimus aeneus and Lophozozymus pictor, collected from Australian waters, yielded paralytic shelfish toxins, including saxitoxin (STX), neosaxitoxin (neoSTX) and gonyautoxins 1, 2 and 4 (GTX1,2,4). No more than two paralytic shellfish toxins were found in any of the purified extracts from any specimen. Four specimens of Z. aeneus and one specimen of L. pictor each contained more toxic material than the suggested human oral lethal dose. The moult of a specimen of L. pictor was toxic, which may indicate a route in crabs for toxin removal.

  15. Novel Phenoxazinones as potent agonist of PPAR-α: design, synthesis, molecular docking and in vivo studies.

    PubMed

    Ugwu, David I; Okoro, Uchechukwu C; Mishra, Narendra K; Okafor, Sunday N

    2018-05-22

    The use of statin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor for the treatment of dyslipidemia has been associated with dose limiting hepatoxicity, mytotoxicity and tolerability due to myalgias thereby necessitating the synthesis of new drug candidates for the treatment of lipid disorder. The reaction of appropriate benzenesulphonamide with substituted phenoxazinone in the presence of phenylboronic acid gave the targeted compounds. The molecular docking study were carried out using autodock tool against peroxisome proliferator activated receptor alpha. The in vivo lipid profile were assayed using conventional methods. The kidney and liver function test were carried out to assess the effect of the derivatives on the organs. The LD 50 of the most active derivatives were determined using mice. The targeted compounds were successfully synthesized in excellent yields and characterized using spectroscopic techniques. The results of the molecular docking experiment showed that they were good stimulant of peroxisome proliferator activated receptor alpha. Compound 9f showed activity at Ki of 2.8 nM and binding energy of 12.6 kcal/mol. All the compounds tested reduced triglyceride, total cholesterol, low density lipoprotein cholesterol and very low density lipoprotein cholesterol level in the mice model. Some of the reported compounds also increased high density lipoprotein cholesterol level in the mice. The compounds did not have appreciable effect on the kidney and liver of the mice used. The LD 50 showed that the novel compounds have improved toxicity profile. The synthesis of fifteen new derivatives of carboxamides bearing phenoxazinone and sulphonamide were successful. The compounds possessed comparable activity to gemfibrozil. The reported compounds had better toxicity profile than gemfibrozil and could serve as a replacement for the statins and fibrate class of lipid agents.

  16. Sex differences in hepatic and intestinal contributions to nevirapine biotransformation in rats.

    PubMed

    Pinheiro, P F; Marinho, A T; Antunes, A M M; Marques, M M; Pereira, S A; Miranda, J P

    2015-05-25

    The understanding of the intestine contribution to drug biotransformation improved significantly in recent years. However, the sources of inter-individual variability in intestinal drug biotransformation, namely sex-differences, are still elusive. Nevirapine (NVP) is an orally taken anti-HIV drug associated with severe idiosyncratic reactions elicited by toxic metabolites, with women at increased risk. As such, NVP is a good model to assess sex-dimorphic metabolism. The aim of this study was to perform a comparative profiling of NVP biotransformation in rat intestine and liver and evaluate whether or not it is organ- and sex-dependent. Therefore, nevirapine-containing solutions were perfused through the intestine, in a specially designed chamber, or incubated with liver slices, from male and female Wistar rats. The levels of NVP and its Phase I metabolites were quantified by HPLC-UV. Liver incubation experiments yielded the metabolites 2-, 3-, 8-, and 12-OH-NVP, being 12-OH-NVP and 2-OH-NVP the major metabolites in males and females, respectively. Inter-sex differences in the metabolic profile were also detected in the intestine perfusion experiments. Herein, the metabolites 3- and 12-OH-NVP were only found in male rats, whereas 2-OH-NVP levels were higher in females, both in extraluminal (p<0.01) and intraluminal media. The metabolite 8-OH-NVP was not detected in the intraluminal media from either males or females. In this study, important inter-sex differences were detected in both organs, providing further clues to the sex-dimorphic profile of NVP toxicity. Moreover, an extra-hepatic contribution to NVP biotransformation was observed, strengthening the relevance of the intestinal contribution in the biotransformation of orally taken-drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  18. The new generation of intravenous iron: chemistry, pharmacology, and toxicology of ferric carboxymaltose.

    PubMed

    Funk, Felix; Ryle, Peter; Canclini, Camillo; Neiser, Susann; Geisser, Peter

    2010-01-01

    An ideal preparation for intravenous iron replacement therapy should balance effectiveness and safety. Compounds that release iron rapidly tend to cause toxicity, while large molecules can induce antibody formation and cause anaphylactic reactions. There is therefore a need for an intravenous iron preparation that delivers appropriate amounts of iron in a readily available form but with minimal side effects and thus with an excellent safety profile. In this paper, a review is given on the chemistry, pharmacology, and toxicology of ferric carboxymaltose (FCM, Ferinject), a stable and robust complex formulated as a colloidal solution with a physiological pH. The complex is gradually taken up mainly from the hepatic reticulo-endothelial system (RES), followed by effective delivery of iron to the endogeneous transport system for the haem synthesis in new erythrocytes, as shown in studies on the pharmacodynamics and pharmacokinetics with radio-labelled FCM. Studies with radio-labelled FCM also demonstrated a barrier function of the placenta and a low transfer of iron into the milk of lactating rats. Safety pharmacology studies indicated a favourable profile with regard to cardiovascular, central nervous, respiratory, and renal toxicity. A high maximum non-lethal dose was demonstrated in the single-dose toxicity studies. Furthermore, based on the No-Observed-Adverse-Effect-Levels (NOAELs) found in repeated-dose toxicity studies and on the cumulative doses administered, FCM has good safety margins. Reproductive and developmental toxicity studies did not reveal any direct or indirect harmful effects. No genotoxic potential was found in in vitro or in vivo studies. Moreover, antigenicity studies showed no cross-reactivity of FMC with anti-dextran antibodies and also suggested that FCM does not possess sensitizing potential. Lastly, no evidence of irritation was found in local tolerance studies with FCM. This excellent toxicity profile and the high effectiveness of FCM allow the administration of high doses as a single infusion or bolus injection, which will enhance the cost-effectiveness and convenience of iron replacement therapy. In conclusion, FCM has many of the characteristics of an ideal intravenous iron preparation.

  19. High Time Resolution Measurements of VOCs from Vehicle Cold Starts: The Air Toxic Cold Start Pulse

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Huangfu, Y.; Vanderschelden, G. S.

    2017-12-01

    Pollutants emitted during motor vehicle cold starts, especially in winter in some climates, is a significant source of winter time air pollution. While data exist for CO, NO, and total hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is known about the emission rates of individual volatile organic compounds, in particular the air toxics benzene, formaldehyde, and acetaldehyde. Little is known about the VOC speciation and temperature dependence for cold starts. The US EPA vehicle emission model MOVES assumes that cold start emissions have the same speciation profile as running emissions. We examined this assumption by measuring cold start exhaust composition for 4 vehicles fueled with E10 gasoline over a temperature range of -4°C to 10°C in winter of 2015. The extra cold start emissions were determined by comparison with emissions during engine idling. In addition to CO and NOx measurements a proton transfer reaction mass spectrometer was used to measure formaldehyde, acetaldehyde, benzene, toluene, and C2-alkylbenzenes at high time resolution to compare with the cold start emission speciation profiles used in the EPA MOVES2014 model. The results show that after the vehicle was started, CO mixing ratios can reach a few percent of the exhaust and then drop to several ppmv within 2 minutes of idling, while NOx showed different temporal behaviors among the four vehicles. VOCs displayed elevated levels during cold start and the peak mixing ratios can be two orders higher than idling phase levels. Molar emission ratios relative to toluene were used to compare with the emission ratio used in MOVES2014 and we found the formaldehyde-to-toluene emission ratio was about 0.19, which is 5 times higher than the emission ratio used in MOVES2014 and the acetaldehyde-to-toluene emission ratios were 0.86-0.89, which is 8 times higher than the ones in MOVES2014. The C2-alkylbenzene-to-toluene ratio agreed well with moves. Our results suggest that for the air toxics acetaldehyde and formaldehyde, wintertime cold temperature vehicle start emissions are likely significantly underestimated in the MOVES 2014 model.

  20. Epirubicin versus mitoxantrone in combination chemotherapy for metastatic breast cancer.

    PubMed

    Pavesi, L; Preti, P; Da Prada, G; Pedrazzoli, P; Poggi, G; Robustelli della Cuna, G

    1995-01-01

    As valid therapeutic alternatives to adriamycin, with a more favourable safety profile, epirubicin (E) and novantrone (N) were compared in combination with fluorouracil (F) and cyclophosphamide (C) in a prospective randomized clinical trial as first-line treatment for metastatic breast cancer (mbc). 158 women with mbc were randomly allocated to receive FEC or FNC regimen; the dosage in mg/m2 was as follows: 500 for C and F, 75 for E and 10 for N. All drugs were administered iv. on day 1 and recycled on day 21. In 141 evaluable patients the response rate (CR+PR) was better in the FEC (43.6%) than in the FNC regimen (30.3%) (95% C.I. of 32% to 55% versus 14% to 34%), without any statistically significant difference. Differences in response rate were significantly in favour of FEC group in previously untreated patients (57.6% versus 25%, p = .02), and in postmenopausal women (46.1% versus 23.6%, p = .01). No significant differences between the two treatment arms were observed in terms of either time to progression or duration of response and survival. The most important dose-limiting toxicity was hematological (leuko-and thrombocytopenia were significantly higher in FNC-treated patients). This difference in hematological toxicity sustained a significantly different incidence of delays in administering chemotherapy courses, which precluded the administration of comparable doses of all drugs in both groups. The incidence of complete alopecia was significantly higher in FEC-treated patients, while no clinical or instrumental evidence of CHF was observed with either regimen. Due to its more favourable therapeutic profile, the E-containing regimen seems a suitable first-line treatment for previously untreated patients with mbc, while the FNC combination should be offered to women refusing hair loss.

  1. Medicinal plants with potential anti-arthritic activity

    PubMed Central

    Choudhary, Manjusha; Kumar, Vipin; Malhotra, Hitesh; Singh, Surender

    2015-01-01

    Ethno Pharmacological Relevance: Traditional medicinal plants are practiced worldwide for treatment of arthritis especially in developing countries where resources are meager. This review presents the plants profiles inhabiting throughout the world regarding their traditional usage by various tribes/ethnic groups for treatment of arthritis. Materials and Methods: Bibliographic investigation was carried out by analyzing classical text books and peer reviewed papers, consulting worldwide accepted scientific databases from the last six decades. Plants/their parts/extracts/polyherbal formulations, toxicity studies for arthritis have been included in the review article. The profiles presented also include information about the scientific name, family, dose, methodology along with mechanism of action and toxicity profile. Research status of 20 potential plant species has been discussed. Further, geographical distribution of research, plants distribution according to families has been given in graphical form. Results: 485 plant species belonging to 100 families, traditionally used in arthritis are used. Among 100 plant families, malvaceae constitute 16, leguminasae 7, fabaceae 13, euphorbiaceae 7, compositae 20, araceae 7, solanaceae 12, liliaceae 9, apocynaceae, lauraceae, and rubiaceae 10, and remaining in lesser proportion. It was observed in our study that majority of researches are carried mainly in developing countries like India, China, Korea and Nigeria. Conclusion: This review clearly indicates that list of medicinal plants presented in this review might be useful to researchers as well as practioners. This review can be useful for preliminary screening of potential anti-arthritis plants. Further toxicity profile given in the review can be useful for the researchers for finding the safe dose. PMID:26401403

  2. Editor's Highlight: High-Throughput Functional Genomics Identifies Modulators of TCE Metabolite Genotoxicity and Candidate Susceptibility Genes.

    PubMed

    De La Rosa, Vanessa Y; Asfaha, Jonathan; Fasullo, Michael; Loguinov, Alex; Li, Peng; Moore, Lee E; Rothman, Nathaniel; Nakamura, Jun; Swenberg, James A; Scelo, Ghislaine; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2017-11-01

    Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Accumulation of perfluorinated compounds in captive Bengal tigers (Panthera tigris tigris) and African lions (Panthera leo Linnaeus) in China.

    PubMed

    Li, Xuemei; Yeung, Leo Wai Yin; Taniyasu, Sachi; Lam, Paul K S; Yamashita, Nobuyoshi; Xu, Muqi; Dai, Jiayin

    2008-11-01

    The accumulation of perfluorinated compounds (PFCs) in the sera of captive wildlife species Bengal tigers (Panthera tigris tigris) and African lions (Panthera leo Linnaeus) from Harbin Wildlife Park, Heilongjiang Province, in China were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Perfluorooctanesulfonate (PFOS) was the predominant contaminant with a mean serum concentration of 1.18 ng mL(-1) in tigers and 2.69 ng mL(-1) in lions. Perfluorononanoic acid (PFNA) was the second most prevalent contaminant in both species. The composition profiles of the tested PFCs differed between tigers and lions, and the percentages of perfluorooctanoic acid (PFOA) were greater in lions than in tigers, indicating different exposures and/or metabolic capabilities between the two species. Assessments of the risk of PFC contamination to the two species were obtained by comparing measured concentrations to points of departure or toxicity reference values (TRVs). Results suggest no risk of PFOS exposure or toxicity for the two species.

  4. A recent history of metal accumulation in the sediments of Rijeka harbor, Adriatic Sea, Croatia.

    PubMed

    Cukrov, Neven; Frančišković-Bilinski, Stanislav; Hlača, Bojan; Barišić, Delko

    2011-01-01

    We studied metal pollution in the sediments of Rijeka harbor, including anthropogenic influence during recent decades and at the present time. Sediment profiles were collected at ten sampling points. The concentrations of 63 elements in bulk sediment were obtained using ICP-MS, and the concentrations of selected elements were evaluated by statistical factor analyses. We also calculated metal-enrichment factors and geoaccumulation indices and constructed spatial-distribution maps. Mercury (Hg) was the heaviest pollutant, with concentrations exceeding 4 mg/kg. Silver (Ag) was the second most important pollutant, with constantly increasing values. The average concentrations of the most toxic elements were comparable to those found in sediments of other ports throughout the world, and their toxicity ranged from threshold values [chromium (Cr), arsenic (As)] and midrange-effect values [cadmium (Cd), lead (Pb), copper (Cu), zinc (Zn), nickel (Ni)] to extreme-effect values (Hg). Metal pollution has decreased during recent decades, except for Ag and barium (Ba). Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Present and future treatment of advanced non-small cell lung cancer.

    PubMed

    Crinò, Lucio; Cappuzzo, Federico

    2002-06-01

    Platinum-based chemotherapy is considered the standard treatment for advanced non-small cell lung cancer (NSCLC). Several phase II trials using cisplatin in combination with new chemotherapeutic agents, such as gemcitabine, the taxanes, vinorelbine, and irinotecan, showed impressive response rates and suggested an improvement in overall survival. Large phase III trials comparing these second-generation cisplatin regimens indicated a substantial equivalence of new combinations, marginally improving the outcome of patients over the first-generation platinum-based regimens. Phase III trials have not yet shown dramatic advantages for either multiple-drug regimens, with nonoverlapping mechanisms of action and toxicity, or nonplatinum doublets, with efficacy and/or toxicity profiles superior to those of platinum-based chemotherapy. Chemotherapy in advanced non-small cell lung cancer has reached a plateau, and it is clear that new approaches are required. These should include prevention, screening, and early detection, and the use of novel treatments based on our understanding of the biology and molecular biology of this disease. Copyright 2002, Elsevier Science (USA). All rights reserved.

  6. A High-Content Live-Cell Viability Assay and Its Validation on a Diverse 12K Compound Screen.

    PubMed

    Chiaravalli, Jeanne; Glickman, J Fraser

    2017-08-01

    We have developed a new high-content cytotoxicity assay using live cells, called "ImageTOX." We used a high-throughput fluorescence microscope system, image segmentation software, and the combination of Hoechst 33342 and SYTO 17 to simultaneously score the relative size and the intensity of the nuclei, the nuclear membrane permeability, and the cell number in a 384-well microplate format. We then performed a screen of 12,668 diverse compounds and compared the results to a standard cytotoxicity assay. The ImageTOX assay identified similar sets of compounds to the standard cytotoxicity assay, while identifying more compounds having adverse effects on cell structure, earlier in treatment time. The ImageTOX assay uses inexpensive commercially available reagents and facilitates the use of live cells in toxicity screens. Furthermore, we show that we can measure the kinetic profile of compound toxicity in a high-content, high-throughput format, following the same set of cells over an extended period of time.

  7. Focus on Alectinib and Competitor Compounds for Second-Line Therapy in ALK-Rearranged NSCLC

    PubMed Central

    Tran, Phu N.; Klempner, Samuel J.

    2016-01-01

    The management of anaplastic lymphoma kinase rearranged (ALK+) non-small cell lung cancer (NSCLC) exemplifies the potential of a precision medicine approach to cancer care. The ALK inhibitor crizotinib has led to improved outcomes in the first- and second-line setting; however, toxicities, intracranial activity, and acquired resistance necessitated the advent of later generation ALK inhibitors. A large portion of acquired resistance to ALK inhibitors is caused by secondary mutations in the ALK kinase domain. Alectinib is a second-generation ALK inhibitor capable of overcoming multiple crizotinib-resistant ALK mutations and has demonstrated improved outcomes after crizotinib failure. Favorable toxicity profile and improved intracranial activity have spurred ongoing front-line trials and comparisons to other ALK inhibitors. However, important questions regarding comparability to competitor compounds, acquired alectinib resistance, and ALK inhibitor sequencing remain. Here, we review the key clinical data supporting alectinib in the second-line therapy of ALK+ NSCLC and provide context in comparison to other ALK inhibitors in development. PMID:27965961

  8. Focus on Alectinib and Competitor Compounds for Second-Line Therapy in ALK-Rearranged NSCLC.

    PubMed

    Tran, Phu N; Klempner, Samuel J

    2016-01-01

    The management of anaplastic lymphoma kinase rearranged (ALK+) non-small cell lung cancer (NSCLC) exemplifies the potential of a precision medicine approach to cancer care. The ALK inhibitor crizotinib has led to improved outcomes in the first- and second-line setting; however, toxicities, intracranial activity, and acquired resistance necessitated the advent of later generation ALK inhibitors. A large portion of acquired resistance to ALK inhibitors is caused by secondary mutations in the ALK kinase domain. Alectinib is a second-generation ALK inhibitor capable of overcoming multiple crizotinib-resistant ALK mutations and has demonstrated improved outcomes after crizotinib failure. Favorable toxicity profile and improved intracranial activity have spurred ongoing front-line trials and comparisons to other ALK inhibitors. However, important questions regarding comparability to competitor compounds, acquired alectinib resistance, and ALK inhibitor sequencing remain. Here, we review the key clinical data supporting alectinib in the second-line therapy of ALK+ NSCLC and provide context in comparison to other ALK inhibitors in development.

  9. Nanoparticle-Delivered Chemotherapy: Old Drugs in New Packages.

    PubMed

    Lee, Michael S; Dees, E Claire; Wang, Andrew Z

    2017-03-15

    Cytotoxic chemotherapies have a narrow therapeutic window, with high peaks and troughs of plasma concentration. Novel nanoparticle formulations of cytotoxic chemotherapy drugs can enhance pharmacokinetic characteristics and facilitate passive targeting of drugs to tumors via the enhanced permeability and retention effect, thus mitigating toxicity. Nanoparticle vehicles currently in clinical use or undergoing clinical investigation for anticancer therapies include liposomes, polymeric micelles, protein-drug nanoparticles, and dendrimers. Multiple nanoparticle formulations of existing cytotoxic chemotherapies are approved for use in several indications, with clinical data indeed showing optimization of pharmacokinetics and different toxicity profiles compared with their parent drugs. There are also many new nanoparticle drug formulations in development and undergoing early- and late-phase clinical trials, including several that utilize active targeting or triggered release based on environmental stimuli. Here, we review the rationale for nanoparticle formulations of existing or previously investigated cytotoxic drugs, describe currently approved nanoparticle formulations of drugs, and discuss some of the most promising clinical trials currently underway.

  10. Frontline strategy for follicular lymphoma: are we ready to abandon chemotherapy?

    PubMed

    Fowler, Nathan

    2016-12-02

    Chemotherapy combinations have been the backbone of therapy for follicular lymphoma, and are associated with high initial response rates. Unfortunately, toxicity and secondary malignancies remain concerns, and most advanced-stage patients still relapse within 5 years, regardless of the regimen. Advances in the understanding of lymphoma biology have resulted in a new generation of noncytotoxic therapeutics with significant activity in follicular lymphoma. Recent studies exploring biological and targeted combinations in the frontline have shown promise, with response rates similar to chemotherapy. However, these regimens are also associated with significant cost as well as a unique toxicity profile. Large randomized studies are underway to compare noncytotoxic regimens with chemotherapy in the frontline, and several new combinations are being tested in the phase 2 setting. Ongoing work to identify predictive biomarkers and investment in mechanistic studies will ultimately lead to the personalization of therapy in the frontline setting for follicular lymphoma. © 2016 by The American Society of Hematology. All rights reserved.

  11. Identification of Metabolism and Excretion Differences of Procymidone between Rats and Humans Using Chimeric Mice: Implications for Differential Developmental Toxicity.

    PubMed

    Abe, Jun; Tomigahara, Yoshitaka; Tarui, Hirokazu; Omori, Rie; Kawamura, Satoshi

    2018-02-28

    A metabolite of procymidone, hydroxylated-PCM, causes rat-specific developmental toxicity due to higher exposure to it in rats than in rabbits or monkeys. When procymidone was administered to chimeric mice with rat or human hepatocytes, the plasma level of hydroxylated-PCM was higher than that of procymidone in rat chimeric mice, and the metabolic profile of procymidone in intact rats was well reproduced in rat chimeric mice. In human chimeric mice, the plasma level of hydroxylated-PCM was less, resulting in a much lower exposure. The main excretion route of hydroxylated-PCM-glucuronide was bile (the point that hydroxylated-PCM enters the enterohepatic circulation) in rat chimeric mice, and urine in human chimeric mice. These data suggest that humans, in contrast to rats, extensively form the glucuronide and excrete it in urine, as do rabbits and monkeys. Overall, procymidone's potential for causing teratogenicity in humans must be low compared to that in rats.

  12. [Subcutaneous bortezomib as a new promising way to successful maintenance therapy in multiple myeloma].

    PubMed

    Grosicki, Sebastian

    2012-01-01

    Multiple myeloma (MM) despite the introduction to clinical practice of a new drugs in the last years, and still searching of new points of the handle for targeting treatment, remaining incurable disease. Even most intensive and most modern induction-consolidation regimens is not in the state to eradicate of the clone of myeloma, and even complete remission in immunofixation the most often after some time ends progression. Optimal way of maintenance treatment is still searching, which would be maximally effective near acceptable toxicity. Now hypothesis about possible successful maintenance therapy, which may prolong survival of MM patients became more actual in the face of the introduction to the studies with maintenance of a new drugs as: thalidomide, lenalidomide and bortesomib. The expectations on the essential progress to establish the optimal bortesomib-based regimen of the maintenance treatment in MM cause the results of the studies with its subcutaneous administration, which proved comparable efficacy with advantage in toxicity profile, especially neurological in comparison to classic intravenous way.

  13. Developmental response of Spodoptera litura Fab. to treatments of crude volatile oil from Piper betle L. and evaluation of toxicity to earthworm, Eudrilus eugeniae Kinb.

    PubMed

    Vasantha-Srinivasan, Prabhakaran; Senthil-Nathan, Sengottayan; Thanigaivel, Annamalai; Edwin, Edward-Sam; Ponsankar, Athirstam; Selin-Rani, Selvaraj; Pradeepa, Venkatraman; Sakthi-Bhagavathy, Muthiah; Kalaivani, Kandaswamy; Hunter, Wayne B; Duraipandiyan, Veeramuthu; Al-Dhabi, Naif Abdullah

    2016-07-01

    Evaluations of biological effects of (Pb-CVO) the crude volatile oil of Piper betle leaves on the tobacco cutworm Spodoptera litura were conducted. Pb-CVO was subjected to GC-MS analysis and twenty vital compounds were isolated from the betel leaf oil. Pb-CVO was tested at four different concentrations (0.25, 0.5, 1.0 and 1.5%) against S. litura. The treated insects exhibited dose depended mortality. The mortality rate was significantly higher at the 1.0 and 1.5% Pb-CVO. The LC50 (Lethal concentration) were observed at 0.48% Pb-CVO. Larval and pupal durations increased in all treatment concentrations (0.25, 0.3, 0.4 and 0.5%) whereas, pupal weight decreased compared to control. Adult longevity of S. litura was reduced in all treatments but predominantly in the 0.4 and 0.5% Pb-CVO. Correspondingly, mean fecundity rate was reduced at all concentrations compared to control. Histological studies of larvae mid-gut profiles of S. litura were severely damaged in 1.0 and 1.5% and showed abnormalities in mid-gut cells with 0.25 and 0.5% Pb-CVO treatments. Earthworm toxicity illustrated that 0.1% of chemical insecticides (monocrotophos and cypermethrin) varied widely in their contact toxicities compared to 0.5 and 1.0% Pb-CVO and control in both contact filter paper and artificial soil test. These findings suggest that twenty essential compounds of betel leaf oil were significant inhibitors of the development and caused behavioral changes of S. litura. Treatment with betel leaf oil at these concentrations had no adverse effect on earthworm populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Treatment of sporadic Burkitt lymphoma in adults, a retrospective comparison of four treatment regimens.

    PubMed

    Oosten, L E M; Chamuleau, M E D; Thielen, F W; de Wreede, L C; Siemes, C; Doorduijn, J K; Smeekes, O S; Kersten, M J; Hardi, L; Baars, J W; Demandt, A M P; Stevens, W B C; Nijland, M; van Imhoff, G W; Brouwer, R; Uyl-de Groot, C A; Kluin, P M; de Jong, D; Veelken, H

    2018-02-01

    Burkitt lymphoma is an aggressive B cell malignancy accounting for 1-2% of all adult lymphomas. Treatment with dose-intensive, multi-agent chemotherapy is effective but associated with considerable toxicity. In this observational study, we compared real-world efficacy, toxicity, and costs of four frequently employed treatment strategies for Burkitt lymphoma: the Lymphome Malins B (LMB), the Berlin-Frankfurt-Münster (BFM), the HOVON, and the CODOX-M/IVAC regimens. We collected data from 147 adult patients treated in eight referral centers. Following central pathology assessment, 105 of these cases were accepted as Burkitt lymphoma, resulting in the following treatment groups: LMB 36 patients, BFM 19 patients, HOVON 29 patients, and CODOX-M/IVAC 21 patients (median age 39 years, range 14-74; mean duration of follow-up 47 months). There was no significant difference between age, sex ratio, disease stage, or percentage HIV-positive patients between the treatment groups. Five-year progression-free survival (69%, p = 0.966) and 5-year overall survival (69%, p = 0.981) were comparable for all treatment groups. Treatment-related toxicity was also comparable with only hepatotoxicity seen more frequently in the CODOX/M-IVAC group (p = 0.004). Costs were determined by the number of rituximab gifts and the number of inpatients days. Overall, CODOX-M/IVAC had the most beneficial profile with regards to costs, treatment duration, and percentage of patients completing planned treatment. We conclude that the four treatment protocols for Burkitt lymphoma yield nearly identical results with regards to efficacy and safety but differ in treatment duration and costs. These differences may help guide future choice of treatment.

  15. Preoperative Capecitabine and Pelvic Radiation in Locally Advanced Rectal Cancer-Is it Equivalent to 5-FU Infusion Plus Leucovorin and Radiotherapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Alexander K., E-mail: alexc@cancerboard.ab.c; Wong, Alfred O.; Jenken, Daryl A.

    2010-04-15

    Purpose: The aim of this retrospective case-matching study was to compare the treatment outcomes and acute toxicity of preoperative radiotherapy (RT) with capecitabine vs. preoperative RT with intermittent 5-fluorouracil (5-FU) infusion, leucovorin, and mitomycin C in rectal cancer. Methods and Materials: We matched 34 patients who were treated with preoperative concurrent capecitabine and 50 Gy of RT by their clinical T stage (T3 or T4) and the tumor location (<=7 cm or >7 cm from the anal verge) with another 68 patients who were treated with preoperative intermittent 5-FU infusion, leucovorin, mitomycin C, and 50 Gy of RT for amore » comparison of the pathologic tumor response, local control, distant failure, and survival rates. Results: The pathologic complete response rate was 21% with capecitabine and 18% with 5-FU and leucovorin (p = 0.72). The rate of T downstaging after chemoradiation was 59% for both groups. The rate of sphincter-sparing resection was 38% after capecitabine plus RT and 43% after 5-FU plus RT (p = 0.67). At 3 years, there was no significant difference in the local control rate (93% for capecitabine and 92% for 5-FU and leucovorin), relapse-free rate (74% for capecitabine and 73% for 5-FU and leucovorin), or disease-specific survival rate (86% for capecitabine and 77% for 5-FU and leucovorin). The acute toxicity profile was comparable, with little Grade 3 and 4 toxicity. Conclusions: When administered with concurrent preoperative RT, both capecitabine and intermittent 5-FU infusion with leucovorin modulation provided comparable pathologic tumor response, local control, relapse-free survival, and disease-specific survival rates in rectal cancer.« less

  16. Integrated analysis of drug-induced gene expression profiles predicts novel hERG inhibitors.

    PubMed

    Babcock, Joseph J; Du, Fang; Xu, Kaiping; Wheelan, Sarah J; Li, Min

    2013-01-01

    Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays.

  17. Integrated Analysis of Drug-Induced Gene Expression Profiles Predicts Novel hERG Inhibitors

    PubMed Central

    Babcock, Joseph J.; Du, Fang; Xu, Kaiping; Wheelan, Sarah J.; Li, Min

    2013-01-01

    Growing evidence suggests that drugs interact with diverse molecular targets mediating both therapeutic and toxic effects. Prediction of these complex interactions from chemical structures alone remains challenging, as compounds with different structures may possess similar toxicity profiles. In contrast, predictions based on systems-level measurements of drug effect may reveal pharmacologic similarities not evident from structure or known therapeutic indications. Here we utilized drug-induced transcriptional responses in the Connectivity Map (CMap) to discover such similarities among diverse antagonists of the human ether-à-go-go related (hERG) potassium channel, a common target of promiscuous inhibition by small molecules. Analysis of transcriptional profiles generated in three independent cell lines revealed clusters enriched for hERG inhibitors annotated using a database of experimental measurements (hERGcentral) and clinical indications. As a validation, we experimentally identified novel hERG inhibitors among the unannotated drugs in these enriched clusters, suggesting transcriptional responses may serve as predictive surrogates of cardiotoxicity complementing existing functional assays. PMID:23936032

  18. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.

    PubMed

    Nendza, Monika; Wenzel, Andrea

    2006-05-01

    Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in-vitro data). Functional similarity of chemical substances is defined in terms of their (eco)toxicity profiles. Within each MOA class, the compounds share some properties related to the rate-limiting interactions, e.g., steric fit to the target site and/or reactivity with target biomolecules, revealing a specific pattern (fingerprint) of characteristic effects. The successful discrimination of toxicant classes by MOA is based on comprehensive characterization of test chemicals' properties related to interactions with target sites. The suite of aquatic in-vivo tests using fish, daphnids, algae and bacteria covers most acute effects, whilst long-term (latent) impacts are generally neglected. With the MOA-specific in-vitro test battery such distinctions are futile, because it focuses on isolated targets, i.e. it indicates the possible targets of a chemical regardless of the timescale of effects. The data analysis indicates that the in-vitro battery covers most effects in vivo and moreover provides additional aspects of the compounds' MOA. Translating in-vitro effects to in-vivo toxicity requires combining physiological and chemical knowledge about underlying processes. Comparison of the specific in-vitro effects of a compound with the respective sensitivities of aquatic organisms indicates particularly sensitive species. Classifications of toxicants by MOA based on physicochemical descriptors provides insight to interactions and directs to mechanistic QSARs.

  19. Toxicological Profiles of Poisonous, Edible, and Medicinal Mushrooms

    PubMed Central

    Jo, Woo-Sik; Hossain, Md. Akil

    2014-01-01

    Mushrooms are a recognized component of the human diet, with versatile medicinal properties. Some mushrooms are popular worldwide for their nutritional and therapeutic properties. However, some species are dangerous because they cause toxicity. There are many reports explaining the medicinal and/or toxic effects of these fungal species. Cases of serious human poisoning generally caused by the improper identification of toxic mushroom species are reported every year. Different substances responsible for the fatal signs and symptoms of mushroom toxicity have been identified from various poisonous mushrooms. Toxicity studies of mushroom species have demonstrated that mushroom poisoning can cause adverse effects such as liver failure, bradycardia, chest pain, seizures, gastroenteritis, intestinal fibrosis, renal failure, erythromelalgia, and rhabdomyolysis. Correct categorization and better understanding are essential for the safe and healthy consumption of mushrooms as functional foods as well as for their medicinal use. PMID:25346597

  20. A metabolic profiling analysis of the acute toxicological effects of the realgar (As₂S₂) combined with other herbs in Niuhuang Jiedu Tablet using ¹H NMR spectroscopy.

    PubMed

    Xu, Wenfeng; Wang, Haifeng; Chen, Gang; Li, Wen; Xiang, Rongwu; Zhang, Xiaoli; Pei, Yuehu

    2014-05-14

    Niuhuang Jiedu Tablet (NJT), composed of Realgar (As₂S₂), Bovis Calculus Artificialis, Borneolum Synthcticum, Gypsum Fibrosum, Rhei Radix et Rhizoma (RR), Scutellariae Radix (SR), Platycodonis Radix (PR) and Glycyrrhizae Radix et Rhizoma (GR), is an effective formula of traditional Chinese medicine (TCM) used in treating acute tonsillitis, pharyngitis, periodontitis and mouth ulcer. In the formula, significant level of realgar (As₂S₂) as a potentially toxic element is contained. In our pervious experiments, NJT was significantly less toxic than realgar (As₂S₂), and the material bases of toxicity alleviation effect to realgar (As₂S₂) were RR, SR, PR and GR. However, the toxicity alleviation effect of each above mentioned four herbs to realgar (As₂S₂) and their synergistic detoxification effects to realgar (As₂S₂) were still obscure. Male Wistar rats were divided into 11 groups: control, group R (treated with Realgar), group RRSPG (treated with Realgar, RR, SR, PR and GR), group RRSP (treated with Realgar, RR, SR and PR), group RRSG (treated with Realgar, RR, SR and GR), group RRPG (treated with Realgar, RR, PR and GR), group RSPG (treated with Realgar, SR, PR and GR), group RR (treated with Realgar and RR), group RS (treated with Realgar and SR), group RP (treated with Realgar and PR) and group RG (treated with Realgar and GR). Based on (1)H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. The metabolic profiles of groups RR, RS, RP and RG were similar to those of group R, while the metabolic profiles of groups RRSPG, RRSP, RRSG, RRPG and RSPG were almost in line with those of control group. Statistics results were confirmed by the histopathological examination and biochemical assay. The present work suggested that the toxicity alleviation effects of RR, SR, PR and GR to realgar (As₂S₂) were not obvious when combined with realgar (As₂S₂) respectively, but they had synergistic detoxification effects on realgar (As₂S₂) mutually. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Early life exposure to PCB126 results in delayed mortality and growth impairment in the zebrafish larvae.

    PubMed

    Di Paolo, Carolina; Groh, Ksenia J; Zennegg, Markus; Vermeirssen, Etiënne L M; Murk, Albertinka J; Eggen, Rik I L; Hollert, Henner; Werner, Inge; Schirmer, Kristin

    2015-12-01

    The occurrence of chronic or delayed toxicity resulting from the exposure to sublethal chemical concentrations is an increasing concern in environmental risk assessment. The Fish Embryo Toxicity (FET) test with zebrafish provides a reliable prediction of acute toxicity in adult fish, but it cannot yet be applied to predict the occurrence of chronic or delayed toxicity. Identification of sublethal FET endpoints that can assist in predicting the occurrence of chronic or delayed toxicity would be advantageous. The present study characterized the occurrence of delayed toxicity in zebrafish larvae following early exposure to PCB126, previously described to cause delayed effects in the common sole. The first aim was to investigate the occurrence and temporal profiles of delayed toxicity during zebrafish larval development and compare them to those previously described for sole to evaluate the suitability of zebrafish as a model fish species for delayed toxicity assessment. The second aim was to examine the correlation between the sublethal endpoints assessed during embryonal and early larval development and the delayed effects observed during later larval development. After exposure to PCB126 (3-3000ng/L) until 5 days post fertilization (dpf), larvae were reared in clean water until 14 or 28 dpf. Mortality and sublethal morphological and behavioural endpoints were recorded daily, and growth was assessed at 28 dpf. Early life exposure to PCB126 caused delayed mortality (300 ng/L and 3000 ng/L) as well as growth impairment and delayed development (100 ng/L) during the clean water period. Effects on swim bladder inflation and cartilaginous tissues within 5 dpf were the most promising for predicting delayed mortality and sublethal effects, such as decreased standard length, delayed metamorphosis, reduced inflation of swim bladder and column malformations. The EC50 value for swim bladder inflation at 5 dpf (169 ng/L) was similar to the LC50 value at 8 dpf (188 and 202 ng/L in two experiments). Interestingly, the patterns of delayed mortality and delayed effects on growth and development were similar between sole and zebrafish. This indicates the comparability of critical developmental stages across divergent fish species such as a cold water marine flatfish and a tropical freshwater cyprinid. Additionally, sublethal effects in early embryo-larval stages were found promising for predicting delayed lethal and sublethal effects of PCB126. Therefore, the proposed method with zebrafish is expected to provide valuable information on delayed mortality and delayed sublethal effects of chemicals and environmental samples that may be extrapolated to other species. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Incidence of CNS Oxygen Toxicity with Mild Hyperoxia: A Literature and Data Review

    DTIC Science & Technology

    2013-04-01

    multi-depth profiles.16,17 One diver reported numbness, tingling, poor concentration and dizziness after only 5 minutes. One diver reported tinnitus ...function dives,22, 24, 26, 28 the symptoms considered to be CNS oxygen toxicity during the training dives--nausea, dizziness, tinnitus ...models accumulate risk from prior exposure but do not (and cannot) consider other possible changes caused by immediate history , e.g., sensitization or

  3. Biomarkers of Exposure to Toxic Substances: Volume 4: Metabonomics Biomarkers to Liver and Organ Damage

    DTIC Science & Technology

    2009-05-01

    examined the urinary metabolite profiles from rats following a single exposure to the kidney toxicants D- serine, puromycin, hippuric acid and...15. SUBJECT TERMS Amphotericin B, bioinformatics, cell cycle regulation, clinical, clustering analysis, D-serine, glomerular injury, hippuric acid ...puromycin, hippuric acid and amphotericin B at various doses, and as a function of time post-dose. In toxicology, such dose-time metabonomics studies are

  4. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles.

    PubMed

    Asati, Atul; Santra, Santimukul; Kaittanis, Charalambos; Perez, J Manuel

    2010-09-28

    Cerium oxide nanoparticles (nanoceria) have shown great potential as antioxidant and radioprotective agents for applications in cancer therapy. Recently, various polymer-coated nanoceria preparations have been developed to improve their aqueous solubility and allow for surface functionalization of these nanoparticles. However, the interaction of polymer-coated nanoceria with cells, their uptake mechanism, and subcellular localization are poorly understood. Herein, we engineered polymer-coated cerium oxide nanoparticles with different surface charges (positive, negative, and neutral) and studied their internalization and toxicity in normal and cancer cell lines. The results showed that nanoceria with a positive or neutral charge enters most of the cell lines studied, while nanoceria with a negative charge internalizes mostly in the cancer cell lines. Moreover, upon entry into the cells, nanoceria is localized to different cell compartments (e.g., cytoplasm and lysosomes) depending on the nanoparticle's surface charge. The internalization and subcellular localization of nanoceria plays a key role in the nanoparticles' cytotoxicity profile, exhibiting significant toxicity when they localize in the lysosomes of the cancer cells. In contrast, minimal toxicity is observed when they localize into the cytoplasm or do not enter the cells. Taken together, these results indicate that the differential surface-charge-dependent localization of nanoceria in normal and cancer cells plays a critical role in the nanoparticles' toxicity profile.

  5. Intra-articular administration of lidocaine in anaesthetized dogs: pharmacokinetic profile and safety on cardiovascular and nervous systems.

    PubMed

    Di Salvo, A; Bufalari, A; De Monte, V; Cagnardi, P; Marenzoni, M L; Catanzaro, A; Vigorito, V; Della Rocca, G

    2015-08-01

    The intra-articular administration of lidocaine is a frequent practice in human orthopaedic surgical procedures, but an eventual absorption of the drug into the bloodstream can lead to toxicity, mainly concerning the central nervous system and the cardiovascular systems. The purpose of this study was to determine the pharmacokinetic profile and the safety, in terms of cardiovascular and CNS toxicity, of lidocaine after intra-articular administration to anesthetized dogs undergoing arthroscopy. Lidocaine 2% was administered to eight dogs before surgery in differing amounts, depending on the volume of the joints involved, and blood samples were taken at predetermined time points. The maximum serum concentration of lidocaine ranged from 0.50 to 3.01 μg/mL (mean ± SD: 2.18 ± 0.91 μg/mL), and the time to reach it was 28.75 ± 15.74 min. No signs of cardiac toxicity were detected during the entire procedure, and possible signs of CNS toxicity were masked by the anaesthesia. However, concentrations reported in literature as responsible for neurotoxicity in dog were achieved in three of eight investigated subjects. Pending further studies, veterinarians should consider the possibility of side effects occurring following the intra-articular administration of local anaesthetics. © 2014 John Wiley & Sons Ltd.

  6. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë

    PubMed Central

    Guerre, Philippe

    2015-01-01

    The development of fungal endophytes of the genus Epichloë in grasses results in the production of different groups of alkaloids, whose mechanism and biological spectrum of toxicity can differ considerably. Ergot alkaloids, when present in endophyte-infected tall fescue, are responsible for “fescue toxicosis” in livestock, whereas indole-diterpene alkaloids, when present in endophyte-infected ryegrass, are responsible for “ryegrass staggers”. In contrast, peramine and loline alkaloids are deterrent and/or toxic to insects. Other toxic effects in livestock associated with the consumption of endophyte-infected grass that contain ergot alkaloids include the “sleepy grass” and “drunken horse grass” diseases. Although ergovaline is the main ergopeptine alkaloid produced in endophyte-infected tall fescue and is recognized as responsible for fescue toxicosis, a number of questions still exist concerning the profile of alkaloid production in tall fescue and the worldwide distribution of tall fescue toxicosis. The purpose of this review is to present ergot alkaloids produced in endophyte-infected grass, the factors of variation of their level in plants, and the diseases observed in the mammalian species as relate to the profiles of alkaloid production. In the final section, interactions between ergot alkaloids and drug-metabolizing enzymes are presented as mechanisms that could contribute to toxicity. PMID:25756954

  7. Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide.

    PubMed

    Sweeney, Lisa M; Sommerville, Douglas R; Channel, Stephen R

    2014-03-01

    The ten Berge model, also known as the toxic load model, is an empirical approach in hazard assessment modeling for estimating the relationship between the inhalation toxicity of a chemical and the exposure duration. The toxic load (TL) is normally expressed as a function of vapor concentration (C) and duration (t), with TL equaling C(n) × t being a typical form. Hypothetically, any combination of concentration and time that yields the same "toxic load" will give a constant biological response. These formulas have been developed and tested using controlled, constant concentration animal studies, but the validity of applying these assumptions to time-varying concentration profiles has not been tested. Experiments were designed to test the validity of the model under conditions of non-constant acute exposure. Male Sprague-Dawley rats inhaled constant or pulsed concentrations of hydrogen cyanide (HCN) generated in a nose-only exposure system for 5, 15, or 30 min. The observed lethality of HCN for the 11 different C versus t profiles was used to evaluate the ability of the model to adequately describe the lethality of HCN under the conditions of non-constant inhalation exposure. The model was found to be applicable under the tested conditions, with the exception of the median lethality of very brief, high concentration, discontinuous exposures.

  8. Effect of apitherapy formulations against carbon tetrachloride-induced toxicity in Wistar rats after three weeks of treatment.

    PubMed

    Andritoiu, Calin Vasile; Ochiuz, Lacramioara; Andritoiu, Vasile; Popa, Marcel

    2014-08-29

    The human body is exposed nowadays to increasing attacks by toxic compounds in polluted air, industrially processed foods, alcohol and drug consumption that increase liver toxicity, leading to more and more severe cases of hepatic disorders. The present paper aims to evaluate the influence of the apitherapy diet in Wistar rats with carbon tetrachloride-induced hepatotoxicity, by analyzing the biochemical determinations (enzymatic, lipid and protein profiles, coagulation parameters, minerals, blood count parameters, bilirubin levels) and histopathological changes at the level of liver, spleen and pancreas. The experiment was carried out on six groups of male Wistar rats. Hepatic lesions were induced by intraperitoneal injection of carbon tetrachloride (dissolved in paraffin oil, 10% solution). Two mL per 100 g were administered, every 2 days, for 2 weeks. Hepatoprotection was achieved with two apitherapy diet formulations containing honey, pollen, propolis, Apilarnil, with/without royal jelly. Biochemical results reveal that the two apitherapy diet formulations have a positive effect on improving the enzymatic, lipid, and protein profiles, coagulation, mineral and blood count parameters and bilirubin levels. The histopathological results demonstrate the benefits of the two apitherapy diet formulations on reducing toxicity at the level of liver, spleen and pancreas in laboratory animals.

  9. Phytochemical, sub-acute toxicity, and antibacterial evaluation of Cordia sebestena leaf extracts.

    PubMed

    Osho, Adeleke; Otuechere, Chiagoziem A; Adeosun, Charles B; Oluwagbemi, Tolu; Atolani, Olubunmi

    2016-03-01

    In Nigeria, Cordia sebestena (Boraginaceae), an understudied medicinal plant, is used in traditional medicine for the treatment of gastrointestinal disorders. In this study, we investigated the chemical composition, antibacterial potential, and sub-acute toxicity of C. sebestena leaves. Ethyl acetate extracts were analyzed using thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectrophotometry. The antibacterial potential of the extracts was tested against five standard bacteria, namely Bacillus cereus, Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Clinical observations and blood parameters were used to evaluate the possible toxicity of C. sebestena. The TLC profile yielded 39 fractions, which were pooled to nine combined sub-fractions (A-I). The FTIR spectrum of sub-fraction H indicated the presence of aliphatic C-H stretching vibration at 2922 and 2850 cm-1, C=O stretch at 1734 and 1708 cm-1, and C=C stretch of aromatics and aliphatics at 1464 and (shoulder) 1618 cm-1, respectively. The fractions of the C. sebestena ethyl acetate leaf extract showed antibacterial potential across board, but fraction H had the highest antibacterial activity against B. cereus and S. aureus. The study also indicated the relatively low toxicity profile of the ethyl acetate leaf extract of C. sebestena in the liver of rats. The study showed that C. sebestena leaves have strong antibacterial potential and low toxicity, thereby underlying the scientific basis for their folkloric use in the management of microbial infections and its associated complications.

  10. Proposing Novel MAO-B Hit Inhibitors Using Multidimensional Molecular Modeling Approaches and Application of Binary QSAR Models for Prediction of Their Therapeutic Activity, Pharmacokinetic and Toxicity Properties.

    PubMed

    Is, Yusuf Serhat; Durdagi, Serdar; Aksoydan, Busecan; Yurtsever, Mine

    2018-05-07

    Monoamine oxidase (MAO) enzymes MAO-A and MAO-B play a critical role in the metabolism of monoamine neurotransmitters. Hence, MAO inhibitors are very important for the treatment of several neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). In this study, 256 750 molecules from Otava Green Chemical Collection were virtually screened for their binding activities as MAO-B inhibitors. Two hit molecules were identified after applying different filters such as high docking scores and selectivity to MAO-B, desired pharmacokinetic profile predictions with binary quantitative structure-activity relationship (QSAR) models. Therapeutic activity prediction as well as pharmacokinetic and toxicity profiles were investigated using MetaCore/MetaDrug platform which is based on a manually curated database of molecular interactions, molecular pathways, gene-disease associations, chemical metabolism, and toxicity information. Particular therapeutic activity and toxic effect predictions are based on the ChemTree ability to correlate structural descriptors to that property using recursive partitioning algorithm. Molecular dynamics (MD) simulations were also performed to make more detailed assessments beyond docking studies. All these calculations were made not only to determine if studied molecules possess the potential to be a MAO-B inhibitor but also to find out whether they carry MAO-B selectivity versus MAO-A. The evaluation of docking results and pharmacokinetic profile predictions together with the MD simulations enabled us to identify one hit molecule (ligand 1, Otava ID: 3463218) which displayed higher selectivity toward MAO-B than a positive control selegiline which is a commercially used drug for PD therapeutic purposes.

  11. Phase I/II Study of Weekly Oraxol for the Second-Line Treatment of Patients With Metastatic or Recurrent Gastric Cancer

    PubMed Central

    Lee, Keun-Wook; Lee, Kyung Hee; Zang, Dae Young; Park, Young Iee; Shin, Dong Bok; Kim, Jin Won; Im, Seock-Ah; Koh, Sung Ae; Cho, Joo-Youn; Jung, Jin-A

    2015-01-01

    Lessons Learned Oraxol, a novel oral formulation of paclitaxel, displayed modest efficacy as second-line chemotherapy for gastric cancer. Considering its favorable toxicity profiles, further studies are warranted in various solid tumors including gastric cancer. Background. Oraxol consists of paclitaxel and HM30181A, a P-glycoprotein inhibitor, to increase the oral bioavailability of paclitaxel. This phase I/II study (HM-OXL-201) was conducted to determine the maximum tolerated dose (MTD) and recommended phase II dose (RP2D) of Oraxol. In addition, we investigated the efficacy and safety of Oraxol as second-line chemotherapy for metastatic or recurrent gastric cancer (GC). Methods. In the phase I component, paclitaxel was orally administered at escalating doses (90, 120, or 150 mg/m2 per day) with a fixed dose (15 mg/day) of HM30181A. Oraxol was administrated 6 times per cycle (days 1, 2, 8, 9, 15, and 16) every 4 weeks. In the phase II component, the efficacy and safety of Oraxol were evaluated. Results. In the phase I component, the MTD could not be determined. Based on toxicity and pharmacokinetic data, the RP2D of oral paclitaxel was determined to be 150 mg/m2. In the phase II component, 4 of 43 patients (9.3%) achieved partial responses. Median progression-free survival and overall survival were 2.6 and 10.7 months, respectively. Toxicity profiles were favorable, and the most common drug-related adverse events (grade ≥3) were neutropenia and diarrhea. Conclusion. Oraxol exhibited modest efficacy and favorable toxicity profiles as second-line chemotherapy for GC. PMID:26112004

  12. Protein profiling as early detection biomarkers for TiO2 nanoparticle toxicity in Daphnia magna.

    PubMed

    Sá-Pereira, Paula; Diniz, Mário S; Moita, Liliana; Pinheiro, Teresa; Mendonça, Elsa; Paixão, Susana M; Picado, Ana

    2018-05-01

    The mode of action for nanoparticle (NP) toxicity in aquatic organisms is not yet fully understood. In this work, a strategy other than toxicity testing was applied to Daphnia magna exposed to TiO 2 -NPs: the use of nuclear microscopy and the assessment of protein profile. D. magna is a keystone species broadly used as a model system in ecotoxicology. Titanium (Ti) was found in the D. magna digestive tract, mainly in the gut. The penetration of Ti into the epithelial region was greater at higher exposure levels and also observed in eggs in the brood pouch. The protein profile of individuals exposed to different concentrations showed that 2.8 and 5.6 mg/L TiO 2 -NP concentrations induced an over-expression of the majority of proteins, in particular proteins with molecular weight of ∼120, 85 and 15 kDa, while 11.2 mg/L TiO 2 -NP had an inhibitory effect on protein expression. The Matrix-assisted laser desorption ionization with tandem time of flight mass spectrometry (MALDI-TOF/TOF MS) analysis of these proteins consistently identified them as vitellogenin (Vtg)-like proteins, associated with enzymes involved in redox balance. These results indicate that Vtg-like proteins are up-regulated in D. magna exposed to TiO 2 -NPs. Vitellogenesis is associated with the reproduction system, suggesting that TiO 2 -NP exposure can impair reproduction by affecting this process. The precise mode of action of TiO 2 -NPs is still unclear and the results from this study are a first attempt to identify specific proteins as potential markers of TiO 2 -NP toxicity in D. magna, providing useful information for future research.

  13. Clinical Development of VEGF Signaling Pathway Inhibitors in Childhood Solid Tumors

    PubMed Central

    Yamashiro, Darrell J.; Fox, Elizabeth

    2011-01-01

    Angiogenesis is a target shared by both adult epithelial cancers and the mesenchymal or embryonal tumors of childhood. Development of antiangiogenic agents for the pediatric population has been complicated by largely theoretical concern for toxicities specific to the growing child and prioritization among the many antiangiogenic agents being developed for adults. This review summarizes the mechanism of action and preclinical data relevant to childhood cancers and early-phase clinical trials in childhood solid tumors. Single-agent adverse event profiles in adults and children are reviewed with emphasis on cardiovascular, bone health, and endocrine side effects. In addition, pharmacological factors that may be relevant for prioritizing clinical trials of these agents in children are reviewed. Considerations for further clinical evaluation should include preclinical data, relative potency, efficacy in adults, and the current U.S. Food and Drug Administration approval status. Toxicity profiles of vascular endothelial growth factor (VEGF) signaling pathway inhibitors may be age dependent and ultimately, their utility in the treatment of childhood cancer will require combination with standard cytotoxic drugs or other molecularly targeted agents. In combination studies, toxicity profiles, potential drug interactions, and late effects must be considered. Studies to assess the long-term impact of VEGF signaling pathway inhibitors on cardiovascular, endocrine, and bone health in children with cancer are imperative if these agents are to be administered to growing children and adolescents with newly diagnosed cancers. PMID:22042784

  14. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis.

    PubMed

    Chen, Mei; Mishra, Sasmita; Heckathorn, Scott A; Frantz, Jonathan M; Krause, Charles

    2014-02-15

    Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Toxicity associated with ingestion of a polyacrylic acid hydrogel dog pad.

    PubMed

    Dorman, David C; Foster, Melanie L; Olesnevich, Brooke; Bolon, Brad; Castel, Aude; Sokolsky-Papkov, Marina; Mariani, Christopher L

    2018-06-01

    Superabsorbent sodium polyacrylate polymeric hydrogels that retain large amounts of liquids are used in disposable diapers, sanitary napkins, and other applications. These polymers are generally considered "nontoxic" with acute oral median lethal doses (LD 50 ) >5 g/kg. Despite this favorable toxicity profile, we identified a novel toxic syndrome in dogs and rats following the ingestion of a commercial dog pad composed primarily of a polyacrylic acid hydrogel. Inappropriate mentation, cerebellar ataxia, vomiting, and intention tremors were observed within 24 h after the ingestion of up to 15.7 g/kg of the hydrogel by an adult, castrated male Australian Shepherd mix. These observations prompted an experimental study in rats to further characterize the toxicity of the hydrogel. Adult, female Sprague Dawley rats ( n = 9) were assessed before and after hydrogel ingestion (2.6-19.2 g/kg over 4 h) using a functional observation battery and spontaneous motor activity. Clinical signs consistent with neurotoxicity emerged in rats as early as 2 h after the end of hydrogel exposure, including decreased activity in an open field, hunched posture, gait changes, reduced reaction to handling, decreased muscle tone, and abnormal surface righting. Hydrogel-exposed rats also had reduced motor activity when compared with pre-exposure baseline data. Rats that ingested the hydrogel did not develop nervous system lesions. These findings support the conclusion that some pet pad hydrogel products can induce acute neurotoxicity in animals under high-dose exposure conditions.

  16. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats.

    PubMed

    Ragavan, Gokulakannan; Muralidaran, Yuvashree; Sridharan, Badrinathan; Nachiappa Ganesh, Rajesh; Viswanathan, Pragasam

    2017-07-01

    Garlic oil nanoemulsion was formulated using ultrasonic emulsification and the optimized garlic oil nanoemulsion ratio (1:2) of oil: surfactant showed spherical, with tiny droplet size 24.9 ± 1.11 nm. It was observed that the prepared nanoemulsion has the zeta potential of -42.63 ± 1.58 mV and a low polydispersity index of 0.2 ± 0.09 with excellent stability. The formulation was subjected to in vivo acute and sub-acute toxicity. In acute toxicity study, single oral administration of 18.63 ml of garlic oil nanoemulsion/kg resulted in immediate mortality. However, garlic oil nanoemulsion (0.46 ml/kg) and tween 80 (0.5 ml/kg) administered rats did not exhibit any toxicity and showed no changes in hematological and histological parameters. Further, both preventive and curative studies of garlic oil nanoemulsion were evaluated in high-fat diet fed dyslipidemic Wistar rats. Garlic oil nanoemulsion administered groups showed a significant effect in reducing the levels of lipid profiles (p < 0.001) compared to atorvastatin and garlic oil. Evaluation of lipid deposits in hepatic tissues was analyzed by Oil Red O staining, which revealed that garlic oil nanoemulsion administered rats markedly reduced the fat depots. Our findings suggest that garlic oil nano-emulsified form reduced toxicity and improved efficacy in preventing and treating dyslipidemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. PI3Kδ-selective and PI3Kα/δ-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma.

    PubMed

    Lampson, Benjamin L; Brown, Jennifer R

    2017-11-01

    The efficacy of the prototypical phosphatidylinositol-3-kinase (PI3K) inhibitor idelalisib for the treatment of chronic lymphocytic leukemia (CLL) and indolent non-Hodgkin lymphoma (iNHL) has led to development of multiple compounds targeting this pathway. Areas Covered: We review the hypothesized therapeutic mechanisms of PI3K inhibitors, including abrogation of B cell receptor signaling, blockade of microenvironmental pro-survival signals, and enhancement of anti-tumor immunity. We examine toxicities of idelalisib, including bacterial infections (possibly secondary to drug-induced neutropenia), opportunistic infections (possibly attributable to on-target inhibition of T cell function), and organ toxicities such as transaminitis and enterocolitis (possibly autoimmune, secondary to on-target inhibition of p110δ in regulatory T cells). We evaluate PI3K inhibitors that have entered trials for the treatment of lymphoma, focusing on agents with selectivity for PI3Kα and PI3Kδ. Expert Opinion: PI3K inhibitors, particularly those that target p110δ, have robust efficacy in the treatment of CLL and iNHL. However, idelalisib has infectious and autoimmune toxicities that limit its use. Outside of trials, idelalisib should be restricted to CLL patients with progression on ibrutinib or iNHL patients with progression on two prior therapies. Whether newer PI3K inhibitors will demonstrate differentiated toxicity profiles in comparable patient populations while retaining efficacy remains to be seen.

  18. Identification of potential genomic biomarkers of hepatotoxicity caused by reactive metabolites of N-methylformamide: Application of stable isotope labeled compounds in toxicogenomic studies.

    PubMed

    Mutlib, Abdul; Jiang, Ping; Atherton, Jim; Obert, Leslie; Kostrubsky, Seva; Madore, Steven; Nelson, Sidney

    2006-10-01

    The inability to predict if a metabolically bioactivated compound will cause toxicity in later stages of drug development or post-marketing is of serious concern. One approach for improving the predictive success of compound toxicity has been to compare the gene expression profile in preclinical models dosed with novel compounds to a gene expression database generated from compounds with known toxicity. While this guilt-by-association approach can be useful, it is often difficult to elucidate gene expression changes that may be related to the generation of reactive metabolites. In an effort to address this issue, we compared the gene expression profiles obtained from animals treated with a soft-electrophile-producing hepatotoxic compound against corresponding deuterium labeled analogues resistant to metabolic processing. Our aim was to identify a subset of potential biomarker genes for hepatotoxicity caused by soft-electrophile-producing compounds. The current study utilized a known hepatotoxic compound N-methylformamide (NMF) and its two analogues labeled with deuterium at different positions to block metabolic oxidation at the formyl (d(1)) and methyl (d(3)) moieties. Groups of mice were dosed with each compound, and their livers were harvested at different time intervals. RNA was prepared and analyzed on Affymetrix GeneChip arrays. RNA transcripts showing statistically significant changes were identified, and selected changes were confirmed using TaqMan RT-PCR. Serum clinical chemistry and histopathologic evaluations were performed on selected samples as well. The data set generated from the different groups of animals enabled us to determine which gene expression changes were attributed to the bioactivating pathway. We were able to selectively modulate the metabolism of NMF by labeling various positions of the molecule with a stable isotope, allowing us to monitor gene changes specifically due to a particular metabolic pathway. Two groups of genes were identified, which were associated with the metabolism of a certain part of the NMF molecule. The metabolic pathway leading to the production of reactive methyl isocyanate resulted in distinct expression patterns that correlated with histopathologic findings. There was a clear correlation between the expression of certain genes involved in the cell cycle/apoptosis and inflammatory pathways and the presence of reactive metabolite. These genes may serve as potential genomic biomarkers of hepatotoxicity induced by soft-electrophile-producing compounds. However, the robustness of these potential genomic biomarkers will need to be validated using other hepatotoxicants (both soft- and hard-electrophile-producing agents) and compounds known to cause idiosyncratic liver toxicity before being adopted into the drug discovery screening process.

  19. Malignancy in Children with Trisomy 21

    PubMed Central

    Rabin, Karen R.; Whitlock, James A.

    2009-01-01

    Patients with Down syndrome (DS) display a unique spectrum of malignancies, with a 10 to 20-fold increased risk of acute leukemias, and a markedly decreased incidence of solid tumors. This review discusses current understanding of the basis for this distinctive pattern of cancer incidence, and the clinical and biologic features of the malignant disorders most frequent in DS: transient myeloproliferative disease, acute megakaryoblastic leukemia, and acute lymphoblastic leukemia. We also review distinctive pharmacogenetic issues, highlighting the differential chemosensitivity and toxicity profiles of DS patients compared to the general population; and epidemiologic studies of protective and adverse environmental risk factors for development of leukemia. PMID:19176633

  20. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial.

    PubMed

    Shaverdian, Narek; Lisberg, Aaron E; Bornazyan, Krikor; Veruttipong, Darlene; Goldman, Jonathan W; Formenti, Silvia C; Garon, Edward B; Lee, Percy

    2017-07-01

    Preclinical studies have found radiotherapy enhances antitumour immune responses. We aimed to assess disease control and pulmonary toxicity in patients who previously received radiotherapy for non-small-cell lung cancer (NSCLC) before receiving pembrolizumab. We assessed patients with advanced NSCLC treated on the phase 1 KEYNOTE-001 trial at a single institution (University of California, Los Angeles, CA, USA). Patients were aged 18 years or older, had an Eastern Cooperative Oncology Group performance status of 1 or less, had adequate organ function, and no history of pneumonitis. Patients received pembrolizumab at a dose of either 2 mg/kg of bodyweight or 10 mg/kg every 3 weeks, or 10 mg/kg every 2 weeks, until disease progression, unacceptable toxicity, or other protocol-defined reasons for discontinuation. Disease response and pulmonary toxicity were prospectively assessed by Immune-related Response Criteria and Common Terminology Criteria for Adverse Events version 4.0. The primary objective of the KEYNOTE-001 trial was to assess the safety, side-effect profile, and antitumour activity of pembrolizumab. For our secondary analysis, patients were divided into subgroups to compare patients who previously received radiotherapy with patients who had not. Our primary objective was to determine whether previous radiotherapy affected progression-free survival, overall survival, and pulmonary toxicity in the intention-to-treat population. The KEYNOTE-001 trial was registered with ClinicalTrials.gov, number NCT01295827. Between May 22, 2012, and July 11, 2014, 98 patients were enrolled and received their first cycle of pembrolizumab. One patient was lost to follow-up. 42 (43%) of 97 patients had previously received any radiotherapy for the treatment of NSCLC before the first cycle of pembrolizumab. 38 (39%) of 97 patients received extracranial radiotherapy and 24 (25%) of 97 patients received thoracic radiotherapy. Median follow-up for surviving patients was 32·5 months (IQR 29·8-34·1). Progression-free survival with pembrolizumab was significantly longer in patients who previously received any radiotherapy than in patients without previous radiotherapy (hazard ratio [HR] 0·56 [95% CI 0·34-0·91], p=0·019; median progression-free survival 4·4 months [95% CI 2·1-8·6] vs 2·1 months [1·6-2·3]) and for patients who previously received extracranial radiotherapy compared with those without previous extracranial radiotherapy (HR 0·50 [0·30-0·84], p=0·0084; median progression-free survival 6·3 months [95% CI 2·1-10·4] vs 2·0 months [1·8-2·1]). Overall survival with pembrolizumab was significantly longer in patients who previously received any radiotherapy than in patients without previous radiotherapy (HR 0·58 [95% CI 0·36-0·94], p=0·026; median overall survival 10·7 months [95% CI 6·5-18·9] vs 5·3 months [2·7-7·7]) and for patients who previously received extracranial radiotherapy compared with those without previous extracranial radiotherapy (0·59 [95% CI 0·36-0·96], p=0·034; median overall survival 11·6 months [95% CI 6·5-20·5] vs 5·3 months [3·0-8·5]). 15 (63%) of 24 patients who had previously received thoracic radiotherapy had any recorded pulmonary toxicity versus 29 (40%) of 73 patients with no previous thoracic radiotherapy. Three (13%) patients with previous thoracic radiotherapy had treatment-related pulmonary toxicity compared with one (1%) of those without; frequency of grade 3 or worse treatment-related pulmonary toxicities was similar (one patient in each group). Our data suggest that previous treatment with radiotherapy in patients with advanced NSCLC results in longer progression-free survival and overall survival with pembrolizumab treatment than that seen in patients who did not have previous radiotherapy, with an acceptable safety profile. Further clinical trials investigating this combination are needed to determine the optimal treatment strategy for patients with advanced NSCLC. US National Institutes of Health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Importance of A Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Sullivan, J. T.; Liu, X.; Zoogman, P.; Newchurch, M.; Kuang, S.; McGee, T. J.; Leblanc, T.

    2017-12-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME, GOME-2, and OMI. This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's operational GEOS-5 FP model and reanalysis data from MERRA2) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 km) and tropospheric (0-10 km) TOLNet observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.

  2. Development and characterization of a novel lipohydrogel nanocarrier: repaglinide as a lipophilic model drug.

    PubMed

    Ebrahimi, Hossein Ali; Javadzadeh, Yousef; Hamidi, Mehrdad; Barzegar Jalali, Mohammad

    2016-04-01

    Solid lipid nanoparticles (SLNs) are highly susceptible to phagocytosis by reticuloendothelial system (RES). To overcome this problem, a novel hydrogel-coated SLNs structure was developed and evaluated in this study. Solid lipid nanoparticles surface was coated with chitosan, via electrostatic attraction with the negatively charged SLNs surface. The resulting polymer-coated SLNs then hosted an inorganic poly-anionic agent, tripolyphosphate, to form the final lipohydrogel structure. Compared with the bare SLNs, lipohydrogel nanoparticles (LHNs) showed a significant increase in size and zeta potential. The release profile showed lower burst release and lower release rate for LHNs compared with SLNs. LHNs nanoparticles released the model antidiabetic drug, repaglinide, in a more sustained manner with lower burst effect compared with the corresponding SLN structure. Cytotoxicity studies via cell culture and MTT assay revealed no bio-toxicity of the SLNs and LHNs. In addition, intravenous administration of repaglinide-loaded SLNs and LHNs in rats showed longer drug residence time in circulation for LHNs, a trend also evident for the blood glucose level-time profile. The particle size, zeta potential, FTIR and microscopy data demonstrated the formation of the supposed lipohydrogel nanoparticles. All these benefits of LHNs propose it as a promising candidate for controlled release of the drugs. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  3. Boron-containing acids: preliminary evaluation of acute toxicity and access to the brain determined by Raman scattering spectroscopy.

    PubMed

    Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; López-Cabrera, Yessica; Querejeta, Enrique; Trujillo-Ferrara, José G

    2014-01-01

    Boron-containing compounds (BCCs), particularly boron containing acids (BCAs), have become attractive moieties or molecules in drug development. It has been suggested that when functional groups with boron atoms are added to well-known drugs, the latter are conferred with greater potency and efficacy in relation to their target receptors. However, the use of BCAs in drug development is limited due to the lack of a toxicological profile. Consequently, the aim of the present study was to evaluate the acute toxicity of boric and boronic acids. Thus, a determination was made of the lethal dose (LD50) of test compounds in male CD1 mice, as well as the effective dose required to negatively affect spontaneous motor activity and to produce notable behavioral abnormalities. After treatment of animals at different doses, macroscopic observations were made from a necropsy, and Raman scattering spectroscopic studies were carried out on brain tissue samples. In general, the results show that most of the tested BCAs have very low toxicity, evidenced by the high doses required to induce notable toxic effects (greater than 100 mg/kg of body weight for all compounds, except for 3-thyenilboronic acid). Such toxic effects, presumably mediated by action on the CNS, include eye damage, gastrointestinal effects (e.g., gastric-gut dilatation and fecal retention), sedation, hypnosis and/or trembling. This preliminary toxicological profile suggests that BCAs can be considered potential therapeutic agents or moieties to be added to other compounds in the development of new drugs. Future studies are required to explore possible chronic toxicity of BCCs. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Toxicity profiles and solvent-toxicant interference in the planarian Schmidtea mediterranea after dimethylsulfoxide (DMSO) exposure.

    PubMed

    Stevens, An-Sofie; Pirotte, Nicky; Plusquin, Michelle; Willems, Maxime; Neyens, Thomas; Artois, Tom; Smeets, Karen

    2015-03-01

    To investigate hydrophobic test compounds in toxicological studies, solvents like dimethylsulfoxide (DMSO) are inevitable. However, using these solvents, the interpretation of test compound-induced responses can be biased. DMSO concentration guidelines are available, but are mostly based on acute exposures involving one specific toxicity endpoint. Hence, to avoid solvent-toxicant interference, we use multiple chronic test endpoints for additional interpretation of DMSO concentrations and propose a statistical model to assess possible synergistic, antagonistic or additive effects of test compounds and their solvents. In this study, the effects of both short- (1 day) and long-term (2 weeks) exposures to low DMSO concentrations (up to 1000 µl l(-1) ) were studied in the planarian Schmidtea mediterranea. We measured different biological levels in both fully developed and developing animals. In a long-term exposure set-up, a concentration of 500 µl l(-1) DMSO interfered with processes on different biological levels, e.g. behaviour, stem cell proliferation and gene expression profiles. After short exposure times, 500 µl l(-1) DMSO only affected motility, whereas the most significant changes on different parameters were observed at a concentration of 1000 µl l(-1) DMSO. As small sensitivity differences exist between biological levels and developmental stages, we advise the use of this solvent in concentrations below 500 µl l(-1) in this organism. In the second part of our study, we propose a statistical approach to account for solvent-toxicant interactions and discuss full-scale solvent toxicity studies. In conclusion, we reassessed DMSO concentration limits for different experimental endpoints in the planarian S. mediterranea. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  6. Comparative toxicology of laboratory organisms for assessing hazardous-waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.E.; Peterson, S.A.; Greene, J.C.

    1985-01-01

    Multi-media/multi-trophic level bioassays have been proposed to determine the extent and severity of environmental contamination at hazardous waste sites. Comparative toxicological profiles for algae, daphnia, earthworms, microbes, mixed sewage and plants; wheat Stephens, lettuce, butter crunch, radish, Cherry Belle, red clover, Kenland, and cucumber, Spartan Valor are presented for selected heavy metals, herbicides and insecticides. Specific chemical EC50 values are presented for each test organism. Differences in standard deviations were compared between each individual test organism, as well as for the chemical subgroup assayed. Algae and daphnia are the most sensitive test organisms to heavy metals and insecticides followed inmore » order of decreasing sensitivity by Microtox, DO depletion rate, seed germination and earthworms. Differences in toxicity of 2,4-D chemical formulations and commercial sources of insecticides were observed with algae and daphnia tests.« less

  7. Polyamine analogue antidiarrheals: a structure-activity study.

    PubMed

    Bergeron, R J; Wiegand, J; McManis, J S; Weimar, W R; Smith, R E; Algee, S E; Fannin, T L; Slusher, M A; Snyder, P S

    2001-01-18

    The syntheses of a group of spermine polyamine analogues and their evaluation as antidiarrheals are described. Each compound was assessed in a rodent castor oil-induced diarrhea model for its ability to reduce stool output and weight loss in a dose-dependent manner. The spermine pharmacophore is shown to be an excellent platform from which to construct antidiarrheals. The activity of the compounds is very dependent on both the nature of the terminal alkyl groups and the geometry of the methylene spacers separating the nitrogens. The toxicity profile is also quite dependent on these same structural features. On the basis of subcutaneous dose-response data and toxicity profiles, two compounds, N(1),N(12)-diisopropylspermine and N(1),N(12)-diethylspermine, were taken forward into more complete evaluation. These measurements included formal acute and chronic toxicity trials, drug and metabolic tissue distribution studies, and assessment of the impact of these analogues on tissue polyamine pools. Finally, the remarkable activity of N,N'-bis[3-(ethylamino)propyl]-trans-1,4-cyclohexanediamine underscores the need to further explore this framework as a pharmacophore for the construction of other antidiarrheal agents.

  8. Supporting Asian patients with metastatic breast cancer during ixabepilone therapy.

    PubMed

    Bourdeanu, Laura; Wong, Siu-Fun

    2010-05-01

    Ixabepilone is currently FDA-approved in metastatic breast cancer, and most patients in the registrational trials were Caucasian. Studies in Asian populations receiving other cytotoxic agents have revealed differential pharmacokinetics and clinical outcomes. As such, clinicians should understand the possible contributions of Asian ethnicity and culture to the clinical profile of ixabepilone. Studies in Asian patients receiving other chemotherapeutics reported altered toxicity profiles for myelosuppression, neurotoxicity and gastrointestinal symptoms. Encouragingly, the limited clinical data in Asian patients receiving ixabepilone suggest that efficacy and toxicity in these women resemble those reported in the ixabepilone registrational trials. The reader will better understand how Asian genetics and culture may influence treatment outcomes and patient attitudes toward therapy and interaction with caregivers. Management of ixabepilone-related adverse events is also discussed with an emphasis on special considerations for Asian patients. Awareness of possible altered drug response in Asian patients will aid clinicians in monitoring for toxicity, recognizing the need for dose modification and educating patients. Sensitivity to cultural aspects that are unique to Asians may improve adherence, reporting of adverse events and trust among Asian patients receiving ixabepilone.

  9. Antimicrobial efficacy of an innovative emulsion of medium chain triglycerides against canine and feline periodontopathogens.

    PubMed

    Laverty, G; Gilmore, B F; Jones, D S; Coyle, L; Folan, M; Breathnach, R

    2015-04-01

    To test the in vitro antimicrobial efficacy of a non-toxic emulsion of free fatty acids against clinically relevant canine and feline periodontopathogens Antimicrobial kill kinetics were established utilising an alamarBlue(®) viability assay against 10 species of canine and feline periodontopathogens in the biofilm mode of growth at a concentration of 0·125% v/v medium chain triglyceride (ML:8) emulsion. The results were compared with 0·12% v/v chlorhexidine digluconate and a xylitol-containing dental formulation. Mammalian cellular cytotoxicity was also investigated for both the ML:8 emulsion and chlorhexidine digluconate (0·25 to 0·0625% v/v) using in vitro tissue culture techniques. No statistically significant difference was observed in the antimicrobial activity of the ML:8 emulsion and chlorhexidine digluconate; a high percentage kill rate (>70%) was achieved within 5 minutes of exposure and was maintained at subsequent time points. A statistically significant improvement in antibiofilm activity was observed with the ML:8 emulsion compared with the xylitol-containing formulation. The ML:8 emulsion possessed a significantly lower (P < 0·001) toxicity profile compared with the chlorhexidine digluconate in mammalian cellular cytotoxicity assays. The ML:8 emulsion exhibited significant potential as a putative effective antimicrobial alternative to chlorhexidine- and xylitol- based products for the reduction of canine and feline periodontopathogens. © 2015 British Small Animal Veterinary Association.

  10. Balancing Antiviral Potency and Host Toxicity: Identifying a Nucleotide Inhibitor with an Optimal Kinetic Phenotype for HIV-1 Reverse Transcriptase

    PubMed Central

    Sohl, Christal D.; Kasiviswanathan, Rajesh; Kim, Jiae; Pradere, Ugo; Schinazi, Raymond F.; Copeland, William C.; Mitsuya, Hiroaki; Baba, Masanori

    2012-01-01

    Two novel thymidine analogs, 3′-fluoro-3′-deoxythymidine (FLT) and 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine (Ed4T), have been investigated as nucleoside reverse transcriptase inhibitors (NRTIs) for treatment of HIV infection. Ed4T seems very promising in phase II clinical trials, whereas toxicity halted FLT development during this phase. To understand these different molecular mechanisms of toxicity, pre–steady-state kinetic studies were used to examine the interactions of FLT and Ed4T with wild-type (WT) human mitochondrial DNA polymerase γ (pol γ), which is often associated with NRTI toxicity, as well as the viral target protein, WT HIV-1 reverse transcriptase (RT). We report that Ed4T-triphosphate (TP) is the first analog to be preferred over native nucleotides by RT but to experience negligible incorporation by WT pol γ, with an ideal balance between high antiretroviral efficacy and minimal host toxicity. WT pol γ could discriminate Ed4T-TP from dTTP 12,000-fold better than RT, with only an 8.3-fold difference in discrimination being seen for FLT-TP. A structurally related NRTI, 2′,3′-didehydro-2′,3′-dideoxythymidine, is the only other analog favored by RT over native nucleotides, but it exhibits only a 13-fold difference (compared with 12,000-fold for Ed4T) in discrimination between the two enzymes. We propose that the 4′-ethynyl group of Ed4T serves as an enzyme selectivity moiety, critical for discernment between RT and WT pol γ. We also show that the pol γ mutation R964C, which predisposes patients to mitochondrial toxicity when receiving 2′,3′-didehydro-2′,3′-dideoxythymidine to treat HIV, produced some loss of discrimination for FLT-TP and Ed4T-TP. These molecular mechanisms of analog incorporation, which are critical for understanding pol γ-related toxicity, shed light on the unique toxicity profiles observed during clinical trials. PMID:22513406

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldridge, Sandy R.; Covey, Joseph; Morris, Joel

    NSC-743380 (1-[(3-chlorophenyl)-methyl]-1H-indole-3-carbinol) is in early stages of development as an anticancer agent. Two metabolites reflect sequential conversion of the carbinol functionality to a carboxaldehyde and the major metabolite, 1-[(3-chlorophenyl)-methyl]-1H-indole-3-carboxylic acid. In an exploratory toxicity study in rats, NSC-743380 induced elevations in liver-associated serum enzymes and biliary hyperplasia. Biliary hyperplasia was observed 2 days after dosing orally for 2 consecutive days at 100 mg/kg/day. Notably, hepatotoxicity and biliary hyperplasia were observed after oral administration of the parent compound, but not when major metabolites were administered. The toxicities of a structurally similar but pharmacologically inactive molecule and a structurally diverse molecule withmore » a similar efficacy profile in killing cancer cells in vitro were compared to NSC-743380 to explore scaffold versus target-mediated toxicity. Following two oral doses of 100 mg/kg/day given once daily on two consecutive days, the structurally unrelated active compound produced hepatic toxicity similar to NSC-743380. The structurally similar inactive compound did not, but, lower exposures were achieved. The weight of evidence implies that the hepatotoxicity associated with NSC-743380 is related to the anticancer activity of the parent molecule. Furthermore, because biliary hyperplasia represents an unmanageable and non-monitorable adverse effect in clinical settings, this model may provide an opportunity for investigators to use a short-duration study design to explore biomarkers of biliary hyperplasia. - Highlights: • NSC-743380 induced biliary hyperplasia in rats. • Toxicity of NSC-743380 appears to be related to its anticancer activity. • The model provides an opportunity to explore biomarkers of biliary hyperplasia.« less

  12. IDENTIFICATION OF NOVEL TOXICITY-ASSOCIATED METABOLITES BY METABOLOMICS AND MASS ISOTOPOMER ANALYSIS OF ACETAMINOPHEN METABOLISM IN WILD-TYPE AND CYP2E1-NULL MICE

    PubMed Central

    Chen, Chi; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.

    2008-01-01

    CYP2E1 is recognized as the most important enzyme for initiation of acetaminophen (APAP)-induced toxicity. In this study, the resistance of Cyp2e1-null mice to APAP treatment was confirmed by comparing serum aminotransferase activities and blood urea nitrogen levels in wild-type and Cyp2e1-null mice. However, unexpectedly, profiling of major known APAP metabolites in urine and serum revealed that the contribution of CYP2E1 to APAP metabolism decreased with increasing APAP doses administered. Measurement of hepatic glutathione and hydrogen peroxide levels exposed the importance of oxidative stress in determining the consequence of APAP overdose. Subsequent metabolomic analysis was capable of constructing a principal components analysis (PCA) model that delineated a relationship between urinary metabolomes and the responses to APAP treatment. Urinary ions high in wild-type mice treated with 400 mg/kg APAP were elucidated as 3-methoxy-APAP glucuronide (VII) and three novel APAP metabolites, including S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid (VI, formed by a Cys-APAP transamination reaction in kidney), 3,3′-biacetaminophen (VIII, an APAP dimer) and a benzothiazine compound (IX, originated from deacetylated APAP), through mass isotopomer analysis, accurate mass measurement, tandem MS fragmentation, in vitro reactions and chemical treatments. Dose-, time- and genotype-dependent appearance of these minor APAP metabolites implied their association with the APAP-induced toxicity and potential biomarker application. Overall, the oxidative stress elicited by CYP2E1-mediated APAP metabolism might significantly contribute to APAP-induced toxicity. The combination of genetically-modified animal models, mass isotopomer analysis and metabolomics provides a powerful and efficient technical platform to characterize APAP-induced toxicity through identifying novel biomarkers and unravelling novel mechanisms. PMID:18093979

  13. Pulmonary toxicity and extrapulmonary tissue distribution of metals after repeated exposure to different welding fumes.

    PubMed

    Antonini, James M; Roberts, Jenny R; Chapman, Rebecca S; Soukup, Joleen M; Ghio, Andrew J; Sriram, Krishnan

    2010-08-01

    Welders are exposed to fumes with different metal profiles. The goals of this study were to compare lung responses in rats after treatment with chemically different welding fumes and to examine the extrapulmonary fate of metals after deposition in the lungs. Rats were treated by intratracheal instillation (0.5 mg/rat, once a week for 7 weeks) with gas metal arc-mild steel (GMAW-MS) or manual metal arc-hardsurfacing (MMAW-HS) welding fumes. Controls were treated with saline. At 1, 4, 35, and 105 days after the last treatment, lung injury and inflammation were measured, and elemental analysis of different organs was determined to assess metal clearance. The MMAW-HS fume was highly water-soluble and chemically more complex with higher levels of soluble Mn and Cr compared to the GMAW-MS fume. Treatments with the GMAW-MS fume had no effect on toxicity when compared with controls. The MMAW-HS fume induced significant lung damage early after treatment that remained elevated until 35 days. Metals associated with each fume sample was cleared at different rates from the lungs. Mn was cleared from the lungs at a faster rate and to a greater extent compared to the other metals over the 105-day recovery period. Mn and Cr in the MMAW-HS fume translocated from the respiratory tract and deposited in other organs. Importantly, increased deposition of Mn, but not other metals, was observed in discrete brain regions, including dopamine-rich areas (e.g., striatum and midbrain).

  14. Management of unresectable, locally advanced pancreatic adenocarcinoma.

    PubMed

    Salgado, M; Arévalo, S; Hernando, O; Martínez, A; Yaya, R; Hidalgo, M

    2018-02-01

    The diagnosis of unresectable locally advanced pancreatic adenocarcinoma (LAPC) requires confirmation, through imaging tests, of the unfeasibility of achieving a complete surgical resection, in the absence of metastatic spread. The increase in overall survival (OS), together with an appropriate symptom management is the therapeutic target in LAPC, maintaining an acceptable quality of life and, if possible, increasing the time until the appearance of metastasis. Chemoradiation (CRT) improves OS compared to best support treatment or radiotherapy (RT) but with greater toxicity. No significant increase in OS has been achieved with CRT when compared to chemotherapy (QT) alone in patients without disease progression after four months of treatment with QT. However, a significantly better local control, that is, a significant increase in the time to disease progression was associated with this approach. The greater effectiveness of the schemes FOLFIRINOX and gemcitabine (Gem) + Nab-paclitaxel compared to gemcitabine alone, has been extrapolated from metastatic disease to LAPC, representing a possible alternative for patients with good performance status (ECOG 0-1). In the absence of randomized clinical trials, Gem is the standard treatment in LAPC. If disease control is achieved after 4-6 cycles of QT, the use of CRT for consolidation can be considered an option vs QT treatment maintenance. Capecitabine has a better toxicity profile and effectiveness compared to gemcitabine as a radiosensitizer. After local progression, and without evidence of metastases, treatment with RT or CRT, in selected patients, can support to maintain the regional disease control.

  15. CHEMICAL STRUCTURE INDEXING OF TOXICITY DATA ON ...

    EPA Pesticide Factsheets

    Standardized chemical structure annotation of public toxicity databases and information resources is playing an increasingly important role in the 'flattening' and integration of diverse sets of biological activity data on the Internet. This review discusses public initiatives that are accelerating the pace of this transformation, with particular reference to toxicology-related chemical information. Chemical content annotators, structure locator services, large structure/data aggregator web sites, structure browsers, International Union of Pure and Applied Chemistry (IUPAC) International Chemical Identifier (InChI) codes, toxicity data models and public chemical/biological activity profiling initiatives are all playing a role in overcoming barriers to the integration of toxicity data, and are bringing researchers closer to the reality of a mineable chemical Semantic Web. An example of this integration of data is provided by the collaboration among researchers involved with the Distributed Structure-Searchable Toxicity (DSSTox) project, the Carcinogenic Potency Project, projects at the National Cancer Institute and the PubChem database. Standardizing chemical structure annotation of public toxicity databases

  16. [Toxicity and toxin profiles of xanthid crabs collected around Nakanoshima in the Tokara Islands, Japan].

    PubMed

    Sagara, Takefumi; Taniyama, Shigeto; Takatani, Tomohiro; Nishibori, Naoyoshi; Nishio, Sachio; Noguchi, Tamao; Arakawa, Osamu

    2009-10-01

    A total of 36 specimens of 5 xanthid crab species, Zosimus aeneus (n=16), Xanthias lividus (n=4), Leptodius sanguineus (n=3), Daira perlata (n=10) and Eriphia sebana (n=3), were collected around Nakanoshima Island, which is located at the northeastern part of the Tokara Islands, Kagoshima Prefecture, Japan in May and July 2000, and their toxicity was determined by mouse bioassay. Nine of 16 Z. aeneus specimens and all of 4 X. lividus specimens showed lethal potency to mice (2.1-11 MU/g, 2.8-8.6 MU/g, respectively), whereas all the other species were non-toxic (less than 2.0 MU/g). LC/MS analyses indicated that the toxin of the Z. aeneus specimens was mainly composed of tetrodotoxin (41% of total toxicity), and 11-oxotetrodotoxin contributed to the remaining toxicity. The toxin of the X. lividus specimens, however, was apparently not tetrodotoxin. In HPLC-FLD analyses, no paralytic shellfish poison component was detected in either of the two toxic species.

  17. Safety of multiple repeated cycles of 177Lu-octreotate in patients with recurrent neuroendocrine tumour.

    PubMed

    Yordanova, Anna; Mayer, Karin; Brossart, Peter; Gonzalez-Carmona, Maria A; Strassburg, Christian P; Essler, Markus; Ahmadzadehfar, Hojjat

    2017-07-01

    Peptide receptor radionuclide therapy (PRRT) is an effective therapy in patients with a somatostatin receptor-positive neuroendocrine tumour (NET). Still unclear is how many cycles of 177 Lu-octreotate can be repeated while maintaining an acceptable toxicity profile. The purpose of this study was to assess the safety of repeated PRRT in patients with recurrent NET. We retrospectively evaluated data from 15 patients treated with repeated PRRT between 2004 and 2015. The median administered activity was 63.8 GBq (range 52-96.6 GBq) in a median of 9 cycles (range 8-13 cycles). Nonhaematological and haematological toxicities were assessed from clinical reports and laboratory data. The rates of adverse events in three therapy groups were compared: during cycles 1 to 4, cycles 5 to 8, and cycles 9 to 13. Baseline laboratory assessments were also compared with data obtained at the end of treatment. The overall survival in the study patients was compared with survival data in patients who received only a baseline PRRT of three or four cycles. We observed no life-threatening adverse events (CTC-4) during 177 Lu-octreotate treatment. Reversible haematological toxicity (CTC-3) occurred in two patients (13%). No CTC-3/4 nephrotoxicity was recorded. More CTC-3 adverse events were recorded in the first therapy group than in the other two groups. Furthermore, there were no significant changes in the mean values of thrombocytes, leucocytes and serum creatinine before and after therapy. However, the mean haemoglobin levels fell from 14 g/dL to 11 g/dL. Finally, compared with those patients who received three or four cycles, there was a survival benefit in patients treated with repeated PRRT (censored overall survival 85.6 vs. 69.7 months, p < 0.001). Therapy with eight or more cycles of 177 Lu-octreotate was well tolerated and led to a survival benefit in patients with recurrent NET.

  18. Renal and Metabolic Toxicities Following Initiation of HIV-1 Treatment Regimen in a Diverse, Multinational Setting: A Focused Safety Analysis of ACTG PEARLS (A5175)

    PubMed Central

    Romo, F. Touzard; Smeaton, L.M.; Campbell, T.B.; Riviere, C.; Mngqibisa, R.; Nyirenda, M.; Supparatpinyo, K.; Kumarasamy, N.; Hakim, J.G.; Flanigan, T.P.

    2015-01-01

    Background Convenient dosing, potency, and low toxicity support use of tenofovir disoproxil fumarate (TDF) as preferred nucleotide reverse transcriptase inhibitor (NRTI) for HIV-1 treatment. However, renal and metabolic safety of TDF compared to other NRTIs has not been well described in resource-limited settings. Methods This was a secondary analysis examining the occurrence of renal abnormalities (RAs) and renal and metabolic serious non-AIDS-defining events (SNADEs) through study follow-up between participants randomized to zidovudine (ZDV)/lamivudine/efavirenz and TDF/emtricitabine/efavirenz treatment arms within A5175/PEARLS trial. Exact logistic regression explored associations between baseline covariates and RAs. Response profile longitudinal analysis compared creatinine clearance (CrCl) over time between NRTI groups. Results Twenty-one of 1,045 participants developed RAs through 192 weeks follow-up; there were 15 out of 21 in the TDF arm (P = .08). Age 41 years or older (odds ratio [OR], 3.35; 95% CI, 1.1–13.1), history of diabetes (OR, 10.7; 95% CI, 2.1–55), and lower baseline CrCl (OR, 3.1 per 25 mL/min decline; 95% CI, 1.7–5.8) were associated with development of RAs. Renal SNADEs occurred in 42 participants; 33 were urinary tract infections and 4 were renal failure/insufficiency; one event was attributed to TDF. Significantly lower CrCl values were maintained among patients receiving TDF compared to ZDV (repeated measures analysis P = .05), however worsening CrCl from baseline was not observed with TDF exposure over time. Metabolic SNADEs were rare, but were higher in the ZDV arm (20 vs 3; P < .001). Conclusions TDF is associated with lower serious metabolic toxicities but not higher risk of RAs, serious renal events, or worsening CrCl over time compared to ZDV in this randomized multinational study. PMID:25433664

  19. Comparative metabolism as a key driver of wildlife species sensitivity to human and veterinary pharmaceuticals

    PubMed Central

    Hutchinson, Thomas H.; Madden, Judith C.; Naidoo, Vinny; Walker, Colin H.

    2014-01-01

    Human and veterinary drug development addresses absorption, distribution, metabolism, elimination and toxicology (ADMET) of the Active Pharmaceutical Ingredient (API) in the target species. Metabolism is an important factor in controlling circulating plasma and target tissue API concentrations and in generating metabolites which are more easily eliminated in bile, faeces and urine. The essential purpose of xenobiotic metabolism is to convert lipid-soluble, non-polar and non-excretable chemicals into water soluble, polar molecules that are readily excreted. Xenobiotic metabolism is classified into Phase I enzymatic reactions (which add or expose reactive functional groups on xenobiotic molecules), Phase II reactions (resulting in xenobiotic conjugation with large water-soluble, polar molecules) and Phase III cellular efflux transport processes. The human–fish plasma model provides a useful approach to understanding the pharmacokinetics of APIs (e.g. diclofenac, ibuprofen and propranolol) in freshwater fish, where gill and liver metabolism of APIs have been shown to be of importance. By contrast, wildlife species with low metabolic competency may exhibit zero-order metabolic (pharmacokinetic) profiles and thus high API toxicity, as in the case of diclofenac and the dramatic decline of vulture populations across the Indian subcontinent. A similar threat looms for African Cape Griffon vultures exposed to ketoprofen and meloxicam, recent studies indicating toxicity relates to zero-order metabolism (suggesting P450 Phase I enzyme system or Phase II glucuronidation deficiencies). While all aspects of ADMET are important in toxicity evaluations, these observations demonstrate the importance of methods for predicting API comparative metabolism as a central part of environmental risk assessment. PMID:25405970

  20. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion.

    PubMed

    Gorain, Bapi; Choudhury, Hira; Tekade, Rakesh Kumar; Karan, Saumen; Jaisankar, P; Pal, Tapan Kumar

    2016-12-01

    Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Elucidating mechanisms of toxic action of dissolved organic chemicals in oil sands process-affected water (OSPW).

    PubMed

    Morandi, Garrett D; Wiseman, Steve B; Guan, Miao; Zhang, Xiaowei W; Martin, Jonathan W; Giesy, John P

    2017-11-01

    Oil sands process-affected water (OSPW) is generated during extraction of bitumen in the surface-mining oil sands industry in Alberta, Canada, and is acutely and chronically toxic to aquatic organisms. It is known that dissolved organic compounds in OSPW are responsible for most toxic effects, but knowledge of the specific mechanism(s) of toxicity, is limited. Using bioassay-based effects-directed analysis, the dissolved organic fraction of OSPW has previously been fractionated, ultimately producing refined samples of dissolved organic chemicals in OSPW, each with distinct chemical profiles. Using the Escherichia coli K-12 strain MG1655 gene reporter live cell array, the present study investigated relationships between toxic potencies of each fraction, expression of genes and characterization of chemicals in each of five acutely toxic and one non-toxic extract of OSPW derived by use of effects-directed analysis. Effects on expressions of genes related to response to oxidative stress, protein stress and DNA damage were indicative of exposure to acutely toxic extracts of OSPW. Additionally, six genes were uniquely responsive to acutely toxic extracts of OSPW. Evidence presented supports a role for sulphur- and nitrogen-containing chemical classes in the toxicity of extracts of OSPW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Concentration rather than dose defines the local brain toxicity of agents that are effectively distributed by convection-enhanced delivery.

    PubMed

    Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji

    2014-01-30

    Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Biomolecular Profiling of Jet Fuel Toxicity Using Proteomics

    DTIC Science & Technology

    2006-02-28

    pulmonary alveolar type II cells and macrophages, and human epidermal keratinocytes in various exposure models. Results strongly suggest an injurious effect ...of exposure on all cells studied. In both pulmonary and skin cells, the protein profiles of JP-8 effect corroborates previous histological findings...potential intervention by Substance P (SP) in the pulmonary effects of JP-8 exposure , studies incorporating SP treatment along with JP-8 exposure

  4. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-03-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms.

  5. A MicroRNA-Mediated Insulin Signaling Pathway Regulates the Toxicity of Multi-Walled Carbon Nanotubes in Nematode Caenorhabditis elegans

    PubMed Central

    Zhao, Yunli; Yang, Junnian; Wang, Dayong

    2016-01-01

    The underlying mechanisms for functions of microRNAs (miRNAs) in regulating toxicity of nanomaterials are largely unclear. Using Illumina HiSeqTM 2000 sequencing technique, we obtained the dysregulated mRNA profiling in multi-walled carbon nanotubes (MWCNTs) exposed nematodes. Some dysregulated genes encode insulin signaling pathway. Genetic experiments confirmed the functions of these dysregulated genes in regulating MWCNTs toxicity. In the insulin signaling pathway, DAF-2/insulin receptor regulated MWCNTs toxicity by suppressing function of DAF-16/FOXO transcription factor. Moreover, we raised a miRNAs-mRNAs network involved in the control of MWCNTs toxicity. In this network, mir-355 might regulate MWCNTs toxicity by inhibiting functions of its targeted gene of daf-2, suggesting that mir-355 may regulate functions of the entire insulin signaling pathway by acting as an upregulator of DAF-2, the initiator of insulin signaling pathway, in MWCNTs exposed nematodes. Our results provides highlight on understanding the crucial role of miRNAs in regulating toxicity of nanomaterials in organisms. PMID:26984256

  6. Toxicity Ranking and Toxic Mode of Action Evaluation of Commonly Used Agricultural Adjuvants on the Basis of Bacterial Gene Expression Profiles

    PubMed Central

    Nobels, Ingrid; Spanoghe, Pieter; Haesaert, Geert; Robbens, Johan; Blust, Ronny

    2011-01-01

    The omnipresent group of pesticide adjuvants are often referred to as “inert” ingredients, a rather misleading term since consumers associate this term with “safe”. The upcoming new EU regulation concerning the introduction of plant protection products on the market (EC1107/2009) includes for the first time the demand for information on the possible negative effects of not only the active ingredients but also the used adjuvants. This new regulation requires basic toxicological information that allows decisions on the use/ban or preference of use of available adjuvants. In this study we obtained toxicological relevant information through a multiple endpoint reporter assay for a broad selection of commonly used adjuvants including several solvents (e.g. isophorone) and non-ionic surfactants (e.g. ethoxylated alcohols). The used assay allows the toxicity screening in a mechanistic way, with direct measurement of specific toxicological responses (e.g. oxidative stress, DNA damage, membrane damage and general cell lesions). The results show that the selected solvents are less toxic than the surfactants, suggesting that solvents may have a preference of use, but further research on more compounds is needed to confirm this observation. The gene expression profiles of the selected surfactants reveal that a phenol (ethoxylated tristyrylphenol) and an organosilicone surfactant (ethoxylated trisiloxane) show little or no inductions at EC20 concentrations, making them preferred surfactants for use in different applications. The organosilicone surfactant shows little or no toxicity and good adjuvant properties. However, this study also illustrates possible genotoxicity (induction of the bacterial SOS response) for several surfactants (POEA, AE, tri-EO, EO FA and EO NP) and one solvent (gamma-butyrolactone). Although the number of compounds that were evaluated is rather limited (13), the results show that the used reporter assay is a promising tool to rank commonly used agricultural adjuvants based on toxicity and toxic mode of action data. PMID:22125591

  7. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  8. Chlorpyrifos chronic toxicity in broilers and effect of vitamin C.

    PubMed

    Kammon, A M; Brar, R S; Sodhi, S; Banga, H S; Singh, J; Nagra, N S

    2011-01-01

    An experiment was conducted to study chlorpyrifos chronic toxicity in broilers and the protective effect of vitamin C. Oral administration of 0.8 mg/kg body weight (bw) (1/50 LD50) chlorpyrifos (Radar(®)), produced mild diarrhea and gross lesions comprised of paleness, flaccid consistency and slightly enlargement of liver. Histopathologically, chlorpyrifos produced degenerative changes in various organs. Oral administration of 100 mg/kg bw vitamin C partially ameliorated the degenerative changes in kidney and heart. There was insignificant alteration in biochemical and haematological profiles. It is concluded that supplementation of vitamin C reduced the severity of lesions induced by chronic chlorpyrifos toxicity in broilers.

  9. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    PubMed

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach. Findings from this proof-of-concept study suggest that our approach has a great potential in providing a novel and sensitive tool for threshold setting in chemical risk assessment. In future work, we plan to analyze more time-series datasets with a full spectrum of concentrations and sufficient replications per treatment. The pathway alteration-derived thresholds will also be compared with those derived from apical endpoints such as cell growth rate.

  10. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  11. A Pilot Safety Study of Lenalidomide and Radiotherapy for Patients With Newly Diagnosed Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drappatz, Jan; Division of Cancer Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Wong, Eric T.

    2009-01-01

    Purpose: To define the maximum tolerated dose (MTD) of lenalidomide, an analogue of thalidomide with enhanced immunomodulatory and antiangiogenic properties and a more favorable toxicity profile, in patients with newly diagnosed glioblastoma multiforme (GBM) when given concurrently with radiotherapy. Patients and Methods: Patients with newly diagnosed GBM received radiotherapy concurrently with lenalidomide given for 3 weeks followed by a 1-week rest period and continued lenalidomide until tumor progression or unacceptable toxicity. Dose escalation occurred in groups of 6. Determination of the MTD was based on toxicities during the first 12 weeks of therapy. The primary endpoint was toxicity. Results: Twenty-threemore » patients were enrolled, of whom 20 were treated and evaluable for both toxicity and tumor response and 2 were evaluable for toxicity only. Common toxicities included venous thromboembolic disease, fatigue, and nausea. Dose-limiting toxicities were eosinophilic pneumonitis and transaminase elevations. The MTD for lenalidomide was determined to be 15 mg/m{sup 2}/d. Conclusion: The recommended dose for lenalidomide with radiotherapy is 15 mg/m{sup 2}/d for 3 weeks followed by a 1-week rest period. Venous thromboembolic complications occurred in 4 patients, and prophylactic anticoagulation should be considered.« less

  12. Acute Toxicity and Quality of Life in Patients With Prostate Cancer Treated With Protons or Carbon Ions in a Prospective Randomized Phase II Study—The IPI Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habl, Gregor; Department of Radiation Oncology, Technische Universität München, Munich; Uhl, Matthias

    Purpose: The purpose of this study was to compare safety and feasibility of proton therapy with that of carbon ion therapy in hypofractionated raster-scanned irradiation of the prostate, in a prospective randomized phase 2 trial. Methods and Materials: In this trial, 92 patients with localized prostate cancer were enrolled. Patients were randomized to receive either proton therapy (arm A) or carbon ion therapy (arm B) and treated with a total dose of 66 Gy(relative biological effectiveness [RBE]) administered in 20 fractions (single dose of 3.3 Gy[RBE]). Patients were stratified by the use of antihormone therapy. Primary endpoint was the combined assessment ofmore » safety and feasibility. Secondary endpoints were specific toxicities, prostate-specific antigen progression-free survival (PFS), overall survival (OS), and quality of life (QoL). Results: Ninety-one patients completed therapy and have had a median follow-up of 22.3 months. Among acute genitourinary toxicities, grade 1 cystitis rates were 34.1% (39.1% in A; 28.9% in B) and 17.6% grade 2 (21.7% in A; 13.3% in B). Seven patients (8%) required urinary catheterization during treatment due to urinary retention, 5 of whom were in arm A. Regarding acute gastrointestinal toxicities, 2 patients treated with protons developed grade 3 rectal fistulas. Grade 1 radiation proctitis occurred in 12.1% (13.0% in A; 11.1% in B) and grade 2 in 5.5% (8.7% in A; 2.2% in B). No statistically significant differences in toxicity profiles between arms were found. Reduced QoL was evident mainly in fatigue, pain, and urinary symptoms during therapy and 6 weeks thereafter. All European Organization for Research and Treatment of Cancer QLQ-C30 and -PR25 scores improved during follow-up. Conclusions: Hypofractionated irradiation using either carbon ions or protons results in comparable acute toxicities and QoL parameters. We found that hypofractionated particle irradiation is feasible and may be safe. Due to the occurrence of gel in the rectal wall and the consecutive occurrence of 2 rectal fistulas, we stopped using the insertion of spacer gel. Longer follow-up is necessary for evaluation of PFS and OS. (Ion Prostate Irradiation (IPI); (NCT01641185); (ClinicalTrials.gov).)« less

  13. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    PubMed Central

    Fabian, Gabriella; Farago, Nora; Feher, Liliana Z.; Nagy, Lajos I.; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L.; Tiszlavicz, Laszlo; Puskas, Laszlo G.

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment. PMID:22016648

  14. Indocyanine Green Clearance Varies as a Function of N-Acetylcysteine Treatment in a Murine Model of Acetaminophen Toxicity

    PubMed Central

    Milesi-Hallé, Alessandra; Abdel-Rahman, Susan M.; Brown, Aliza; McCullough, Sandra S.; Letzig, Lynda; Hinson, Jack A.; James, Laura P.

    2011-01-01

    Standard assays to assess acetaminophen (APAP) toxicity in animal models include determination of ALT (alanine aminotransferase) levels and examination of histopathology of liver sections. However, these assays do not reflect the functional capacity of the injured liver. To examine a functional marker of liver injury, the pharmacokinetics of indocyanine green (ICG) were examined in mice treated with APAP, saline, or APAP followed by N-acetylcysteine (NAC) treatment. Male B6C3F1 mice were administered APAP (200 mg/kg IP) or saline. Two additional groups of mice received APAP followed by NAC at 1 or 4 h after APAP. At 24 h, mice were injected with ICG (10 mg/kg IV) and serial blood samples (0, 2, 10, 30, 50 and 75 min) were obtained for determination of serum ICG concentrations and ALT. Mouse livers were removed for measurement of APAP protein adducts and examination of histopathology. Toxicity (ALT values and histology) was significantly increased above saline treated mice in the APAP and APAP/NAC 4 h mice. Mice treated with APAP/NAC 1 h had complete protection from toxicity. APAP protein adducts were increased in all APAP treated groups and were highest in the APAP/NAC 1 h group. Pharmacokinetic analysis of ICG demonstrated that the total body clearance (ClT) of ICG was significantly decreased and the mean residence time (MRT) was significantly increased in the APAP mice compared to the saline mice. Mice treated with NAC at 1 h had ClT and MRT values similar to those of saline treated mice. Conversely, mice that received NAC at 4 h had a similar ICG pharmacokinetic profile to that of the APAP only mice. Prompt treatment with NAC prevented loss of functional activity while late treatment with NAC offered no improvement in ICG clearance at 24 h. ICG clearance in mice with APAP toxicity can be utilized in future studies testing the effects of novel treatments for APAP toxicity. PMID:21145883

  15. An ecological risk assessment of the acute and chronic effects of the herbicide clopyralid to rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Fairchild, J.F.; Allert, A.L.; Feltz, K.P.; Nelson, K.J.; Valle, J.A.

    2009-01-01

    Clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) is a pyridine herbicide frequently used to control invasive, noxious weeds in the northwestern United States. Clopyralid exhibits low acute toxicity to fish, including the rainbow trout (Oncorhynchus mykiss) and the threatened bull trout (Salvelinus confluentus). However, there are no published chronic toxicity data for clopyralid and fish that can be used in ecological risk assessments. We conducted 30-day chronic toxicity studies with juvenile rainbow trout exposed to the acid form of clopyralid. The 30-day maximum acceptable toxicant concentration (MATC) for growth, calculated as the geometric mean of the no observable effect concentration (68 mg/L) and the lowest observable effect concentration (136 mg/L), was 96 mg/L. No mortality was measured at the highest chronic concentration tested (273 mg/L). The acute:chronic ratio, calculated by dividing the previously published 96-h acutely lethal concentration (96-h ALC50; 700 mg/L) by the MATC was 7.3. Toxicity values were compared to a four-tiered exposure assessment profile assuming an application rate of 1.12 kg/ha. The Tier 1 exposure estimation, based on direct overspray of a 2-m deep pond, was 0.055 mg/L. The Tier 2 maximum exposure estimate, based on the Generic Exposure Estimate Concentration model (GEENEC), was 0.057 mg/L. The Tier 3 maximum exposure estimate, based on previously published results of the Groundwater Loading Effects of Agricultural Management Systems model (GLEAMS), was 0.073 mg/L. The Tier 4 exposure estimate, based on published edge-of-field monitoring data, was estimated at 0.008 mg/L. Comparison of toxicity data to estimated environmental concentrations of clopyralid indicates that the safety factor for rainbow trout exposed to clopyralid at labeled use rates exceeds 1000. Therefore, the herbicide presents little to no risk to rainbow trout or other salmonids such as the threatened bull trout. ?? 2009 US Government.

  16. Influence of gastrointestinal tract on metabolism of bisphenol A as determined by in vitro simulated system.

    PubMed

    Wang, Yonghua; Rui, Min; Nie, Yang; Lu, Guanghua

    2018-05-07

    Oral exposure is a major route of human bisphenol A (BPA) exposure. However, influence of gastrointestinal tract on BPA metabolism is unavailable. In this study, in vitro simulator of the human intestinal microbial ecosystem (SHIME) was applied to investigate the changes in bioaccessibility and metabolism of BPA in different parts of gastrointestinal tract (stomach, small intestine and colon). Then the human hepatoma cell line HepG2 was employed to compare toxic effects of BPA itself and effluents of SHIME system on hepatic gene expression profiles. Results showed that level of bioaccessible BPA decreased with the process of gastrointestinal digestion. But the gastrointestinal digestion could not completely degrade BPA. Then, BPA exposure significantly changed microbial community in colons and increased the percentage of microbes shared in ascending, transverse and descending colons. Abundances of BPA-degradable bacteria, such as Microbacterium and Alcaligenes, were up-regulated. Further, SHIME effluents significantly up-regulated expressions of genes related to estrogenic effect and oxidative stress compared to BPA itself, but reduced or had little change on the risk of cell apoptosis and fatty deposits. This study sheds new lights on influence of gastrointestinal digestion on bioaccessibility and toxic effects of BPA. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Liposomal Amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions

    PubMed Central

    Stone, Neil RH; Bicanic, Tihana; Salim, Rahuman; Hope, William

    2016-01-01

    Liposomal amphotericin B (AmBisome®; LAmB) is a unique lipid formulation of amphotericin B. LAmB is a standard of care for a wide range of medically important opportunistic fungal pathogens. LAmB has a significantly improved toxicity profile compared with conventional amphotericin B deoxycholate (DAmB). Despite nearly 20 years of clinical use, the pharmacokinetics and pharmacodynamics of this agent, which differ considerably from DAmB, remain relatively poorly understood and underutilized in the clinical setting. The molecular pharmacology, preclinical and clinical pharmacokinetics, and clinical experience with LAmB for the most commonly encountered fungal pathogens are reviewed. In vitro, experimental animal models and human clinical trial data are summarized, and novel routes of administration and dosing schedules are discussed. LAmB is a formulation that results in reduced toxicity as compared with DAmB while retaining the antifungal effect of the active agent. Its long terminal half-life and retention in tissues suggest that single or intermittent dosing regimens are feasible, and these should be actively investigated in both preclinical models and in clinical trials. Significant gaps remain in knowledge of pharmacokinetics and pharmacodynamics in special populations such as neonates and children, pregnant women and obese patients. PMID:26818726

  18. Biodiesel versus Diesel: A Pilot Study Comparing Exhaust Exposures for Employees at a Rural Municipal Facility

    PubMed Central

    Traviss, Nora; Thelen, Brett Amy; Ingalls, Jaime Kathryn; Treadwell, Melinda Dawn

    2016-01-01

    Many organizations interested in renewable, domestic energy have switched from petroleum diesel to biodiesel blends for use in transportation and heavy-duty equipment. Although considerable evidence exists on the negative health effects of petroleum diesel exhaust exposures in occupational settings, there has been little research examining biodiesel exposures. Working collaboratively with a local municipality, concentrations of particulate matter (PM) and other air toxics were measured at a recycling facility in southwestern New Hampshire while heavy equipment operated first on petroleum diesel and then on a B20 blend (20% soy-based biodiesel/80% petroleum diesel). This pilot study used a combination of established industrial hygiene and environmental air monitoring methods to estimate occupational exposure profiles to PM and air toxics from combustion of petroleum diesel and biodiesel. Results indicate that B20 use dramatically reduces work area respirable particle, PM2.5 (PM ≤2.5 µm in aerodynamic diameter), and formaldehyde levels compared with petroleum diesel. Some volatile organic compound concentrations were higher for petroleum diesel and others were higher for the B20 blend. Overall, this study suggests that biodiesel blends reduce worker exposure to and health risk from petroleum diesel exhaust, but additional exposure research is recommended. PMID:20863048

  19. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes basin.

    PubMed

    Davis, John M; Ekman, Drew R; Teng, Quincy; Ankley, Gerald T; Berninger, Jason P; Cavallin, Jenna E; Jensen, Kathleen M; Kahl, Michael D; Schroeder, Anthony L; Villeneuve, Daniel L; Jorgenson, Zachary G; Lee, Kathy E; Collette, Timothy W

    2016-10-01

    The ability to focus on the most biologically relevant contaminants affecting aquatic ecosystems can be challenging because toxicity-assessment programs have not kept pace with the growing number of contaminants requiring testing. Because it has proven effective at assessing the biological impacts of potentially toxic contaminants, profiling of endogenous metabolites (metabolomics) may help screen out contaminants with a lower likelihood of eliciting biological impacts, thereby prioritizing the most biologically important contaminants. The authors present results from a study that utilized cage-deployed fathead minnows (Pimephales promelas) at 18 sites across the Great Lakes basin. They measured water temperature and contaminant concentrations in water samples (132 contaminants targeted, 86 detected) and used 1 H-nuclear magnetic resonance spectroscopy to measure endogenous metabolites in polar extracts of livers. They used partial least-squares regression to compare relative abundances of endogenous metabolites with contaminant concentrations and temperature. The results indicated that profiles of endogenous polar metabolites covaried with at most 49 contaminants. The authors identified up to 52% of detected contaminants as not significantly covarying with changes in endogenous metabolites, suggesting they likely were not eliciting measurable impacts at these sites. This represents a first step in screening for the biological relevance of detected contaminants by shortening lists of contaminants potentially affecting these sites. Such information may allow risk assessors to prioritize contaminants and focus toxicity testing on the most biologically relevant contaminants. Environ Toxicol Chem 2016;35:2493-2502. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  20. Physicochemical, pharmacokinetic, efficacy and toxicity profiling of a potential nitrofuranyl methyl piperazine derivative IIIM-MCD-211 for oral tuberculosis therapy via in-silico-in-vitro-in-vivo approach.

    PubMed

    Magotra, Asmita; Sharma, Anjna; Singh, Samsher; Ojha, Probir Kumar; Kumar, Sunil; Bokolia, Naveen; Wazir, Priya; Sharma, Shweta; Khan, Inshad Ali; Singh, Parvinder Pal; Vishwakarma, Ram A; Singh, Gurdarshan; Nandi, Utpal

    2018-02-01

    Recent tuberculosis (TB) drug discovery programme involve continuous pursuit for new chemical entity (NCE) which can be not only effective against both susceptible and resistant strains of Mycobacterium tuberculosis (Mtb) but also safe and faster acting with the target, thereby shortening the prolonged TB treatments. We have identified a potential nitrofuranyl methyl piperazine derivative, IIIM-MCD-211 as new antitubercular agent with minimum inhibitory concentration (MIC) value of 0.0072 μM against H37Rv strain. Objective of the present study is to investigate physicochemical, pharmacokinetic, efficacy and toxicity profile using in-silico, in-vitro and in-vivo model in comprehensive manner to assess the likelihood of developing IIIM-MCD-211 as a clinical candidate. Results of computational prediction reveal that compound does not violate Lipinski's, Veber's and Jorgensen's rule linked with drug like properties and oral bioavailability. Experimentally, IIIM-MCD-211 exhibits excellent lipophilicity that is optimal for oral administration. IIIM-MCD-211 displays evidence of P-glycoprotein (P-gp) induction but no inhibition ability in rhodamine cell exclusion assay. IIIM-MCD-211 shows high permeability and plasma protein binding based on parallel artificial membrane permeability assay (PAMPA) and rapid equilibrium dialysis (RED) assay model, respectively. IIIM-MCD-211 has adequate metabolic stability in rat liver microsomes (RLM) and favourable pharmacokinetics with admirable correlation during dose escalation study in Swiss mice. IIIM-MCD-211 has capability to appear into highly perfusable tissues. IIIM-MCD-211 is able to actively prevent progression of TB infection in chronic infection mice model. IIIM-MCD-211 shows no substantial cytotoxicity in HepG2 cell line. In acute toxicity study, significant increase of total white blood cell (WBC) count in treatment group as compared to control group is observed. Overall, amenable preclinical data make IIIM-MCD-211 ideal candidate for further development of oral anti-TB agent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    PubMed Central

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-01-01

    Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. Conclusion The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis. PMID:17118137

  2. Different Toxicity of Cetuximab and Panitumumab in Metastatic Colorectal Cancer Treatment: A Systematic Review and Meta-Analysis.

    PubMed

    Petrelli, Fausto; Ardito, Raffaele; Ghidini, Antonio; Zaniboni, Alberto; Ghidini, Michele; Barni, Sandro; Tomasello, Gianluca

    2018-01-01

    Over the last few years only one large randomized phase III study has tried to prospectively assess the safety of cetuximab and panitumumab in a head-to-head comparison. Despite the similar overall toxicity profile, cetuximab and panitumumab retain peculiar safety characteristics that deserve to be deeply investigated. We conducted a systematic review for randomized trials in PubMed, the Cochrane Central Register of Controlled Trials, SCOPUS, Web of Science, and EMBASE using the terms ("cetuximab" or "panitumumab") AND ("colorectal cancer" OR "colorectal carcinoma"). Data of adverse events were aggregated to obtain pooled incidence rates of prespecified adverse events. Incidence of skin toxicities was the primary outcome. A χ2 test was used for comparisons of proportions and an odds ratio (OR) was calculated for comparison. A total of 38 studies were included for analysis. Cetuximab was associated with fewer G3-4 skin toxicities (OR = 0.62, 95% CI 0.53-0.62; p < 0.001), slightly more frequent G3-4 acne-like rash (OR = 1.24, 95% CI 1.04-1.48; p = 0.04), and paronychia (OR 1.36, 95% CI 1.1-1.7), but fewer cases of skin fissures (OR = 0.64, 95% CI 0.44-0.93; p = 0.02) and pruritus (OR = 0.45, 95% CI 0.35-0.58; p < 0.001) than PANI. In conclusion, this meta-analysis shows that cetuximab- and panitumumab-based chemotherapy have different toxicity profiles in terms of the rate of severe adverse events. © 2018 S. Karger AG, Basel.

  3. Pathogenesis of Zika Virus-Associated Embryopathy.

    PubMed

    Mawson, Anthony R

    2016-01-01

    A strong causal association has become evident between Zika virus (ZIKV) infection during pregnancy and the occurrence of fetal growth restriction, microcephaly and eye defects. Circumstantial evidence is presented in this paper in support of the hypothesis that these effects, as well as the Guillain-Barré syndrome, are due to an endogenous form of hypervitaminosis A resulting from ZIKV infection-induced damage to the liver and the spillage of stored vitamin A compounds ("retinoids") into the maternal and fetal circulation in toxic concentrations. Retinoids are mainly stored in the liver (about 80%) and are essential for numerous biological functions. In higher concentration, retinoids are potentially cytotoxic, pro-oxidant, mutagenic and teratogenic, especially if sudden shifts occur in their bodily distribution. Although liver involvement has not been mentioned specifically in recent reports, conventional liver enzyme tests underestimate the true extent of liver dysfunction. The proposed model could be tested by comparing retinoid concentration and expression profiles in microcephalic newborns of ZIKV-infected mothers and nonmicrocephalic newborn controls, and by correlating these profiles with measures of clinical severity.

  4. Mangiferin protects rat myocardial tissue against cyclophosphamide induced cardiotoxicity.

    PubMed

    Bhatt, Laxit; Sebastian, Binu; Joshi, Viraj

    Mangiferin is a highly potent antioxidant present in mango leaves which is utilized for therapeutic purposes. The present study was undertaken to evaluate the cardioprotective effect of mangiferin against cyclophosphamide induced cardiotoxicity. Rats were treated with 100 mg/kg of mangiferin in alone and interactive groups for 10 days. Apart from normal and mangiferin control groups, all the groups were subjected to cyclophosphamide (200 mg/kg, i.p.) toxicity on Day 1 and effects of different treatments were analyzed by changes in serum biomarkers, tissue antioxidant levels, electrocardiographic parameters, lipid profile and histopathological evaluation. Mangiferin treated group showed decrease in serum biomarker enzyme levels and increase in tissue antioxidant levels. Compared to cyclophosphamide control group, mangiferin treated animals showed improvement in lipid profile, electrocardiographic parameters, histological score and mortality. The present findings clearly suggest the protective role of mangiferin as a powerful antioxidant preventing cardiotoxicity caused by cyclophosphamide. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  5. Red-throated loons (Gavia stellata) breeding in Alaska, USA, are exposed to PCBs while on their Asian wintering grounds

    USGS Publications Warehouse

    Schmutz, J.A.; Trust, K.A.; Matz, A.C.

    2009-01-01

    Red-throated loons (Gavia stellata) breeding in Alaska declined 53% during 1977-1993. We compare concentrations of environmental contaminants in red-throated loons among four nesting areas in Alaska and discuss potential ramifications of exposure on reproductive success and population trends. Eggs from the four areas had similar total polychlorinated biphenyl (PCB) concentrations, but eggs from the Arctic coastal plain had different congener profiles and greater toxic equivalents (TEQs) than eggs from elsewhere. Satellite telemetry data indicate that red-throated loons from the Arctic coastal plain in northern Alaska winter in southeast Asia, while those breeding elsewhere in Alaska winter in North America. Different wintering areas may lead to differential PCB accumulation among red-throated loon populations. For eggs from the Arctic coastal plain, TEQs were great enough to postulate PCB-associated reproductive effects in piscivores. The correlation between migration patterns and PCB profiles suggests that red-throated loons breeding in northern Alaska are exposed to PCBs while on their Asian wintering grounds.

  6. Comparison of chronic toxicities between brachytherapy-based accelerated partial breast irradiation and whole breast irradiation using intensity modulated radiotherapy.

    PubMed

    Wobb, Jessica L; Shah, Chirag; Jawad, Maha S; Wallace, Michelle; Dilworth, Joshua T; Grills, Inga S; Ye, Hong; Chen, Peter Y

    2015-12-01

    Brachytherapy-based APBI (bAPBI) shortens treatment duration and limits dose to normal tissue. While studies have demonstrated similar local control when comparing bAPBI and whole breast irradiation using intensity modulated radiotherapy (WBI-IMRT), comparison of late side effects is limited. Here, we report chronic toxicity profiles associated with these two treatment modalities. 1034 patients with early stage breast cancer were treated at a single institution; 489 received standard-fractionation WBI-IMRT between 2000 and 2013 and 545 received bAPBI (interstitial 40%, applicator-based 60%) between 1993 and 2013. Chronic toxicity was evaluated ≥6 months utilizing CTCAE version 3.0; cosmesis was evaluated using the Harvard scale. Median follow-up was 4.6 years (range 0.1-13.4) for WBI-IMRT versus 6.7 years (range 0.1-20.1) for bAPBI (p < 0.001). Compared to WBI-IMRT, bAPBI was associated with higher rates of ≥grade 2 seroma formation (14.4% vs 2.9%, p < 0.001), telangiectasia (12.3% vs 2.1%, p = 0.002) and symptomatic fat necrosis (10.2% vs 3.6%, p < 0.001). Lower rates of hyperpigmentation were observed (5.8% vs 14.5%; p = 0.001). Infection rates were similar (3.3% vs 1.3%, p = 0.07). There was no difference between rates of fair (6.1% vs. 4.1%, p = 0.30) or poor (0.2% vs. 0.5%, p = NS) cosmesis. Mastectomy rates for local recurrence (3.1% for WBI-IMRT and 1.2% for bAPBI, p = 0.06), or for other reasons (0.8% and 0.6%, p = 0.60) were similar between groups. With 5-year follow-up, WBI-IMRT and bAPBI are associated with similar, acceptable rates of toxicity. These data further support the utilization of bAPBI as a modality to deliver adjuvant radiation in a safe and efficacious manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Paralytic shellfish toxins, including deoxydecarbamoyl-STX, in wild-caught Tasmanian abalone (Haliotis rubra).

    PubMed

    Harwood, D Tim; Selwood, Andrew I; van Ginkel, Roel; Waugh, Craig; McNabb, Paul S; Munday, Rex; Hay, Brenda; Thomas, Krista; Quilliam, Michael A; Malhi, Navreet; Dowsett, Natalie; McLeod, Catherine

    2014-11-01

    For the first time wild-caught Tasmanian abalone, Haliotis rubra, have been reported to contain paralytic shellfish toxins (PSTs). This observation followed blooms of the toxic dinoflagellate Gymnodinium catenatum. No illnesses were reported, but harvesting restrictions were enforced in commercial areas. Abalone were assayed using HPLC-FLD methodology based on AOAC official method 2005.06. An uncommon congener, deoxydecarbamoyl-STX (doSTX), was observed in addition to regulated PSTs as unassigned chromatographic peaks. A quantitative reference material was prepared from contaminated Tasmanian abalone viscera and ampouled at 54.2 μmol/L. The LD50 of doSTX via intraperitoneal injection was 1069 nmol/kg (95% confidence limits 983-1100 nmol/kg), indicating it is nearly 40 times less toxic than STX. A toxicity equivalence factor of 0.042 was generated using the mouse bioassay. Levels of PSTs varied among individuals from the same site, although the toxin profile remained relatively consistent. In the foot tissue, STX, decarbamoyl-STX and doSTX were identified. On a molar basis doSTX was the dominant congener in both foot and viscera samples. The viscera toxin profile was more complex, with other less toxic PST congeners observed and was similar to mussels from the same site. This finding implicates localised dinoflagellate blooms as the PST source in Tasmanian abalone. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense

    NASA Astrophysics Data System (ADS)

    Sun, Min; Ting Li, Yi; Liu, Yang; Chin Lee, Shao; Wang, Lan

    2016-01-01

    Cadmium (Cd) pollution is a serious global problem, which causes irreversible toxic effects on animals. Freshwater crab, Sinopotamon henanense, is a useful environmental indicator since it is widely distributed in benthic habitats whereby it tends to accumulate Cd and other toxicants. However, its molecular responses to Cd toxicity remain unclear. In this study, we performed transcriptome sequencing and gene expression analyses of its hepatopancreas with and without Cd treatments. A total of 7.78 G clean reads were obtained from the pooled samples, and 68,648 unigenes with an average size of 622 bp were assembled, in which 5,436 were metabolism-associated and 2,728 were stimulus response-associated that include 380 immunity-related unigenes. Expression profile analysis demonstrated that most genes involved in macromolecular metabolism, oxidative phosphorylation, detoxification and anti-oxidant defense were up-regulated by Cd exposure, whereas immunity-related genes were down-regulated, except the genes involved in phagocytosis were up-regulated. The current data indicate that Cd exposure alters gene expressions in a concentration-dependent manner. Therefore, our results provide the first comprehensive S.henanense transcriptome dataset, which is useful for biological and ecotoxicological studies on this crab and its related species at molecular level, and some key Cd-responsive genes may provide candidate biomarkers for monitoring aquatic pollution by heavy metals.

  9. Using in vitro models for expression profiling studies on ethanol and drugs of abuse.

    PubMed

    Thibault, Christelle; Hassan, Sajida; Miles, Michael

    2005-03-01

    The use of expression profiling with microarrays offers great potential for studying the mechanisms of action of drugs of abuse. Studies with the intact nervous system seem likely to be most relevant to understanding the mechanisms of drug abuse-related behaviours. However, the use of expression profiling with in vitro culture models offers significant advantages for identifying details of cellular signalling actions and toxicity for drugs of abuse. This study discusses general issues of the use of microarrays and cell culture models for studies on drugs of abuse. Specific results from existing studies are also discussed, providing clear examples of relevance for in vitro studies on ethanol, nicotine, opiates, cannabinoids and hallucinogens such as LSD. In addition to providing details on signalling mechanisms relevant to the neurobiology of drugs of abuse, microarray studies on a variety of cell culture systems have also provided important information on mechanisms of cellular/organ toxicity with drugs of abuse. Efforts to integrate genomic studies on drugs of abuse with both in vivo and in vitro models offer the potential for novel mechanistic rigor and physiological relevance.

  10. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation - Arizona, New Mexico, and Utah, USA.

    PubMed

    Hoover, Joseph H; Coker, Eric; Barney, Yolanda; Shuey, Chris; Lewis, Johnnye

    2018-08-15

    Contaminant mixtures are identified regularly in public and private drinking water supplies throughout the United States; however, the complex and often correlated nature of mixtures makes identification of relevant combinations challenging. This study employed a Bayesian clustering method to identify subgroups of water sources with similar metal and metalloid profiles. Additionally, a spatial scan statistic assessed spatial clustering of these subgroups and a human health metric was applied to investigate potential for human toxicity. These methods were applied to a dataset comprised of metal and metalloid measurements from unregulated water sources located on the Navajo Nation, in the southwest United States. Results indicated distinct subgroups of water sources with similar contaminant profiles and that some of these subgroups were spatially clustered. Several profiles had metal and metalloid concentrations that may have potential for human toxicity including arsenic, uranium, lead, manganese, and selenium. This approach may be useful for identifying mixtures in water sources, spatially evaluating the clusters, and help inform toxicological research investigating mixtures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A framework for an alternatives assessment dashboard for evaluating chemical alternatives applied to flame retardants for electronic applications

    PubMed Central

    Martin, Todd M.

    2017-01-01

    The goal of alternatives assessment (AA) is to facilitate a comparison of alternatives to a chemical of concern, resulting in the identification of safer alternatives. A two stage methodology for comparing chemical alternatives was developed. In the first stage, alternatives are compared using a variety of human health effects, ecotoxicity, and physicochemical properties. Hazard profiles are completed using a variety of online sources and quantitative structure activity relationship models. In the second stage, alternatives are evaluated utilizing an exposure/risk assessment over the entire life cycle. Exposure values are calculated using screening-level near-field and far-field exposure models. The second stage allows one to more accurately compare potential exposure to each alternative and consider additional factors that may not be obvious from separate binned persistence, bioaccumulation, and toxicity scores. The methodology was utilized to compare phosphate-based alternatives for decabromodiphenyl ether (decaBDE) in electronics applications. PMID:29333139

  12. 77 FR 74192 - Availability of Final Toxicological Profiles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... Road NE., Atlanta, Georgia 30333; telephone number (800) 232-4636 or (770)488-3351. Electronic access... literature, research, and studies on the health effects of toxic substances'' under CERCLA Section 104(i)(1...

  13. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice.

    PubMed

    Socała, Katarzyna; Nieoczym, Dorota; Kowalczuk-Vasilev, Edyta; Wyska, Elżbieta; Wlaź, Piotr

    2017-07-01

    Activation of Nrf2 with sulforaphane has recently gained attention as a new therapeutic approach in the treatment of many diseases, including epilepsy. As a plant-derived compound, sulforaphane is considered to be safe and well-tolerated. It is widely consumed, also by patients suffering from seizure and taking antiepileptic drugs, but no toxicity profile of sulforaphane exists. Since many natural remedies and dietary supplements may increase seizure risk and potentially interact with antiepileptic drugs, the aim of our study was to investigate the acute effects of sulforaphane on seizure thresholds and activity of some first- and second-generation antiepileptic drugs in mice. In addition, some preliminary toxicity profile of sulforaphane in mice after intraperitoneal injection was evaluated. The LD 50 value of sulforaphane in mice was estimated at 212.67mg/kg, while the TD 50 value - at 191.58mg/kg. In seizure tests, sulforaphane at the highest dose tested (200mg/kg) significantly decreased the thresholds for the onset of the first myoclonic twitch and generalized clonic seizure in the iv PTZ test as well as the threshold for the 6Hz-induced psychomotor seizure. At doses of 10-200mg/kg, sulforaphane did not affect the threshold for the iv PTZ-induced forelimb tonus or the threshold for maximal electroshock-induced hindlimb tonus. Interestingly, sulforaphane (at 100mg/kg) potentiated the anticonvulsant efficacy of carbamazepine in the maximal electroshock seizure test. This interaction could have been pharmacokinetic in nature, as sulforaphane increased concentrations of carbamazepine in both serum and brain tissue. The toxicity study showed that high doses of sulforaphane produced marked sedation (at 150-300mg/kg), hypothermia (at 150-300mg/kg), impairment of motor coordination (at 200-300mg/kg), decrease in skeletal muscle strength (at 250-300mg/kg), and deaths (at 200-300mg/kg). Moreover, blood analysis showed leucopenia in mice injected with sulforaphane at 200mg/kg. In conclusion, since sulforaphane was proconvulsant at a toxic dose, the safety profile and the risk-to-benefit ratio of sulforaphane usage in epileptic patients should be further evaluated. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    PubMed

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  15. ADMINISTRATION OF POTENTIALLY ANTIANDROGENIC PESTICIDES (PROCYMIDONE, LINURON, IPRODIONE, CHLOZOLINATE, P,P'-DDE AND KETOCONAZOLE) AND TOXIC SUBSTANCES (DIBUTYL-AND DIETHYLHEXYL PHTHALATE, PCB 169, AND ETHANE DIMETHANE SULPHONATE) DURING SEXUAL DIFFERENTIATION PRODUCES DIVERSE PROFILES OF REPRODUCTIVE MALFORMATIONS IN THE MALE RAT

    EPA Science Inventory

    Antiandrogenic chemicals alter sexual differentiation by a variety of mechanisms, and as a consequence, they induce different profiles of effects. For example, in utero treatment with the androgen receptor (AR) antagonist, flutamide, produces ventral prostate agenesis and testicu...

  16. Comparative analytical study of the selected wine varieties grown in Montenegro.

    PubMed

    Đorđević, Neda O; Novaković, Miroslav M; Pejin, Boris; Mutić, Jelena J; Vajs, Vlatka E; Pajović, Snežana B; Tešević, Vele V

    2017-08-01

    Samples of the selected red wine varieties grown in Montenegro (Merlot, Cabernet Sauvignon and Vranac; vintages 2010-2012) were compared according to total phenolic content, anti-DPPH radical activity, phenolic profile and elemental composition. All the samples showed profound anti-DPPH radical activity, due to high content of total phenolic compounds (R = 0.92). The most abundant phenolics were catechin and gallic acid with the highest values recorded for Merlot 2012 (43.22 and 28.65 mg/L, respectively). In addition to this, the content of essential elements including the potentially toxic ones was within healthy (safe) level for all the samples analysed. This study has actually pointed out Merlot wine variety as the best quality one, though all three varieties may be used as safe and health-promoting nutritional products.

  17. Environmental profile evaluations of piezoelectric polymers using life cycle assessment

    NASA Astrophysics Data System (ADS)

    Parvez Mahmud, M. A.; Huda, Nazmul; Hisan Farjana, Shahjadi; Lang, Candace

    2018-05-01

    Piezoelectric materials are indispensable to produce electricity, harvesting ambient mechanical energy through motion for sectors and products, from sensors, to biomedical systems, to tiny electronics. Nylon 66 and tetrafluoroethylene dominate the market among thousands of piezoelectric materials to provide an autonomous power supply. Emphasis has been given on investigating the environmental impacts of both materials due to the growing consciousness of the ecological and health risks of piezoelectric polymers. The fabrication steps of these polymers from raw materials are extremely hazardous to the environment in terms of toxicity and human health effects. However, no quantification of the possible environmental impacts for the manufacturing of nylon 66 and tetrafluoroethylene exists. This research paper addresses their comparative environmental effects, in terms of chemical constituents. Life cycle impact analysis has been carried out by ReCipe 2016 Endpoint, Ecopoints 97, Raw material flows and CML-IA baseline methods, using Australasian life cycle inventory database and SimaPro software. The impacts are considered in categories like global warming, eutrophication, terrestrial ecotoxicity, human carcinogenic toxicity, fine particulates, and marine ecotoxicity. The results show that there is a significant environmental impact caused by tetrafluoroethylene in comparison with nylon 66 polymer during the manufacturing process. These impacts occur due to the quantity of toxic chemical elements present as constituents of tetrafluoroethylene raw material and its fabrication periods. It can be anticipated that a better ecological performance can be attained through optimization, especially by cautiously picking substitute materials and machines, taking into account the toxicity aspects, and by minimizing the impacts related to designs, fabrication processes and usage.

  18. Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

    PubMed

    Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin

    2018-06-01

    Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

  19. Comparison of Toxicity of Benzene Metabolite Hydroquinone in Hematopoietic Stem Cells Derived from Murine Embryonic Yolk Sac and Adult Bone Marrow

    PubMed Central

    Zhu, Jie; Wang, Hong; Yang, Shuo; Guo, Liqiao; Li, Zhen; Wang, Wei; Wang, Suhan; Huang, Wenting; Wang, Liping; Yang, Tan; Ma, Qiang; Bi, Yongyi

    2013-01-01

    Benzene is an occupational toxicant and an environmental pollutant that potentially causes hematotoxicity and leukemia in exposed populations. Epidemiological studies suggest an association between an increased incidence of childhood leukemia and benzene exposure during the early stages of pregnancy. However, experimental evidence supporting the association is lacking at the present time. It is believed that benzene and its metabolites target hematopoietic stem cells (HSCs) to cause toxicity and cancer in the hematopoietic system. In the current study, we compared the effects of hydroquinone (HQ), a major metabolite of benzene in humans and animals, on mouse embryonic yolk sac hematopoietic stem cells (YS-HSCs) and adult bone marrow hematopoietic stem cells (BM-HSCs). YS-HSCs and BM-HSCs were isolated and enriched, and were exposed to HQ at increasing concentrations. HQ reduced the proliferation and the differentiation and colony formation, but increased the apoptosis of both YS-HSCs and BM-HSCs. However, the cytotoxic and apoptotic effects of HQ were more apparent and reduction of colony formation by HQ was more severe in YS-HSCs than in BM-HSCs. Differences in gene expression profiles were observed in HQ-treated YS-HSCs and BM-HSCs. Cyp4f18 was induced by HQ both in YS-HSCs and BM-HSCs, whereas DNA-PKcs was induced in BM-HSCs only. The results revealed differential effects of benzene metabolites on embryonic and adult HSCs. The study established an experimental system for comparison of the hematopoietic toxicity and leukemogenicity of benzene and metabolites during mouse embryonic development and adulthood. PMID:23940708

  20. Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey

    NASA Astrophysics Data System (ADS)

    van Geem, Moniek; Harvey, Jeffrey A.; Gols, Rieta

    2014-09-01

    Insect herbivores exhibit various strategies to counter the toxic effects of plant chemical defenses. These strategies include the detoxification, excretion, and sequestration of plant secondary metabolites. The latter strategy is often considered to provide an additional benefit in that it provides herbivores with protection against natural enemies such as predators. Profiles of sequestered chemicals are influenced by the food plants from which these chemicals are derived. We compared the effects of sequestration and nonsequestration of plant secondary metabolites in two specialist herbivores on the development of a generalist predator, Podisus maculiventris. Profiles of glucosinolates, secondary metabolites characteristic for the Brassicaceae, are known to differ considerably both inter- and intraspecifically. Throughout their immature (=nymphal) development, the predator was fed on larval stages of either sequestering (turnip sawfly, Athalia rosae) or nonsequestering (small cabbage white butterfly, Pieris rapae) prey that in turn had been feeding on plants originating from three wild cabbage ( Brassica oleracea) populations that have previously been shown to differ in their glucosinolate profiles. We compared survival, development time, and adult body mass as parameters for bug performance. Our results show that sequestration of glucosinolates by A. rosae only marginally affected the development of P. maculiventris. The effects of plant population on predator performance were variable. We suggest that sequestration of glucosinolates by A. rosae functions not only as a defensive mechanism against some predators, but may also be an alternative way of harmlessly dealing with plant allelochemicals.

  1. Estimation of skin concentrations of topically applied lidocaine at each depth profile.

    PubMed

    Oshizaka, Takeshi; Kikuchi, Keisuke; Kadhum, Wesam R; Todo, Hiroaki; Hatanaka, Tomomi; Wierzba, Konstanty; Sugibayashi, Kenji

    2014-11-20

    Skin concentrations of topically administered compounds need to be considered in order to evaluate their efficacies and toxicities. This study investigated the relationship between the skin permeation and concentrations of compounds, and also predicted the skin concentrations of these compounds using their permeation parameters. Full-thickness skin or stripped skin from pig ears was set on a vertical-type diffusion cell, and lidocaine (LID) solution was applied to the stratum corneum (SC) in order to determine in vitro skin permeability. Permeation parameters were obtained based on Fick's second law of diffusion. LID concentrations at each depth of the SC were measured using tape-stripping. Concentration-depth profiles were obtained from viable epidermis and dermis (VED) by analyzing horizontal sections. The corresponding skin concentration at each depth was calculated based on Fick's law using permeation parameters and then compared with the observed value. The steady state LID concentrations decreased linearly as the site became deeper in SC or VED. The calculated concentration-depth profiles of the SC and VED were almost identical to the observed profiles. The compound concentration at each depth could be easily predicted in the skin using diffusion equations and skin permeation data. Thus, this method was considered to be useful for promoting the efficient preparation of topically applied drugs and cosmetics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats.

    PubMed

    Páleníček, Tomáš; Balíková, Marie; Rohanová, Miroslava; Novák, Tomáš; Horáček, Jiří; Fujáková, Michaela; Höschl, Cyril

    2011-03-01

    Despite poisoning with the ecstasy substitute para-methoxymethamphetamine (PMMA) being typically associated with severe hyperthermia and death, behavioral and toxicological data on this drug are missing. Herein we present the behavioral profile of PMMA, its hyperthermic potency and pharmacokinetic profile in rats. The effects of PMMA 5 and 20 mg/kg on locomotion, on prepulse inhibition (PPI) of acoustic startle reaction (ASR), on body temperature under isolated and crowded conditions and on the pharmacokinetics analyzed with gas chromatography mass spectrometry (GC-MS) were evaluated. PMMA increased overall locomotion with the higher dose showing a biphasic effect. PPI was decreased dose-dependently. The hyperthermic response was present only with PMMA 20 mg/kg and was accompanied by extensive perspiration under crowded conditions. Serum levels of PMMA peaked at approximately 30 min after both treatments; on the contrary the maximum brain concentrations of PMMA at 20 mg/kg peaked approximately 1h after the administration, which was rather delayed compared to maximum after 5mg/kg dose. These data indicate that PMMA has a similar behavioral profile to stimulants and hallucinogens and that the toxicity might be increased in a crowded environment. High doses of PMMA have a gradual penetration to the brain which might lead to the delayed peak concentrations and prolonged effects of the drug. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Global transcriptomic profiling using small volumes of whole blood: a cost-effective method for translational genomic biomarker identification in small animals.

    PubMed

    Fricano, Meagan M; Ditewig, Amy C; Jung, Paul M; Liguori, Michael J; Blomme, Eric A G; Yang, Yi

    2011-01-01

    Blood is an ideal tissue for the identification of novel genomic biomarkers for toxicity or efficacy. However, using blood for transcriptomic profiling presents significant technical challenges due to the transcriptomic changes induced by ex vivo handling and the interference of highly abundant globin mRNA. Most whole blood RNA stabilization and isolation methods also require significant volumes of blood, limiting their effective use in small animal species, such as rodents. To overcome these challenges, a QIAzol-based RNA stabilization and isolation method (QSI) was developed to isolate sufficient amounts of high quality total RNA from 25 to 500 μL of rat whole blood. The method was compared to the standard PAXgene Blood RNA System using blood collected from rats exposed to saline or lipopolysaccharide (LPS). The QSI method yielded an average of 54 ng total RNA per μL of rat whole blood with an average RNA Integrity Number (RIN) of 9, a performance comparable with the standard PAXgene method. Total RNA samples were further processed using the NuGEN Ovation Whole Blood Solution system and cDNA was hybridized to Affymetrix Rat Genome 230 2.0 Arrays. The microarray QC parameters using RNA isolated with the QSI method were within the acceptable range for microarray analysis. The transcriptomic profiles were highly correlated with those using RNA isolated with the PAXgene method and were consistent with expected LPS-induced inflammatory responses. The present study demonstrated that the QSI method coupled with NuGEN Ovation Whole Blood Solution system is cost-effective and particularly suitable for transcriptomic profiling of minimal volumes of whole blood, typical of those obtained with small animal species.

  4. State of Art of Cancer Pharmacogenomics in Latin American Populations.

    PubMed

    López-Cortés, Andrés; Guerrero, Santiago; Redal, María Ana; Alvarado, Angel Tito; Quiñones, Luis Abel

    2017-05-23

    Over the past decades, several studies have shown that tumor-related somatic and germline alterations predicts tumor prognosis, drug response and toxicity. Latin American populations present a vast geno-phenotypic diversity due to the great interethnic and interracial mixing. This genetic flow leads to the appearance of complex characteristics that allow individuals to adapt to endemic environments, such as high altitude or extreme tropical weather. These genetic changes, most of them subtle and unexplored, could establish a mutational profile to develop new pharmacogenomic therapies specific for Latin American populations. In this review, we present the current status of research on somatic and germline alterations in Latin America compared to those found in Caucasian and Asian populations.

  5. Novel genipin crosslinked atorvastatin loaded sericin nanoparticles for their enhanced antihyperlipidemic activity.

    PubMed

    Kanoujia, Jovita; Singh, Mahendra; Singh, Pooja; Saraf, Shubhini A

    2016-12-01

    The objective of this study was to demonstrate the therapeutic as well as biopolymer like characteristics of naturally occurring sericin protein for development of nanoparticulate system of atorvastatin (Atr) to improve therapeutic effect and to reduce toxicity. The sericin encapsulated atorvastatin nanoparticles (Seri-Atr NPs) were prepared by desolvation method utilizing genipin (Gn) as a natural and nontoxic crosslinker. The optimized NPs exhibited small particle size (166±0.30nm), high entrapment efficiency (91±0.69%) and uniform spherical shape with sustained release profile. Moreover, the results of pharmacokinetic studies indicated an increase in AUC0-∞ of NPs (1189.74±52.3hng/ml) compared with Atr (501.84±66hng/ml). The cellular uptake of NPs suggested an interaction of negatively charged particles with the cell surface and considerable reduction in systemic toxicity. Histopathology studies also demonstrated the therapeutic potential of sericin and cytocompatibility. Hence, genipin crosslinked sericin based nanoparticles represents a promising nanoplatform for improved therapeutic efficiency of Atr. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process

    PubMed Central

    Cárdenas, Walter HZ; Mamani, Javier B; Sibov, Tatiana T; Caous, Cristofer A; Amaro, Edson; Gamarra, Lionel F

    2012-01-01

    Background Nanoparticles in suspension are often utilized for intracellular labeling and evaluation of toxicity in experiments conducted in vitro. The purpose of this study was to undertake a computational modeling analysis of the deposition kinetics of a magnetite nanoparticle agglomerate in cell culture medium. Methods Finite difference methods and the Crank–Nicolson algorithm were used to solve the equation of mass transport in order to analyze concentration profiles and dose deposition. Theoretical data were confirmed by experimental magnetic resonance imaging. Results Different behavior in the dose fraction deposited was found for magnetic nanoparticles up to 50 nm in diameter when compared with magnetic nanoparticles of a larger diameter. Small changes in the dispersion factor cause variations of up to 22% in the dose deposited. The experimental data confirmed the theoretical results. Conclusion These findings are important in planning for nanomaterial absorption, because they provide valuable information for efficient intracellular labeling and control toxicity. This model enables determination of the in vitro transport behavior of specific magnetic nanoparticles, which is also relevant to other models that use cellular components and particle absorption processes. PMID:22745539

  7. Cell cycle arrest and gene expression profiling of testis in mice exposed to fluoride.

    PubMed

    Su, Kai; Sun, Zilong; Niu, Ruiyan; Lei, Ying; Cheng, Jing; Wang, Jundong

    2017-05-01

    Exposure to fluoride results in low reproductive capacity; however, the mechanism underlying the impact of fluoride on male productive system still remains obscure. To assess the potential toxicity in testis of mice administrated with fluoride, global genome microarray and real-time PCR were performed to detect and identify the altered transcriptions. The results revealed that 763 differentially expressed genes were identified, including 330 up-regulated and 433 down-regulated genes, which were involved in spermatogenesis, apoptosis, DNA damage, DNA replication, and cell differentiation. Twelve differential expressed genes were selected to confirm the microarray results using real-time PCR, and the result kept the same tendency with that of microarray. Furthermore, compared with the control group, more apoptotic spermatogenic cells were observed in the fluoride group, and the spermatogonium were markedly increased in S phase and decreased in G2/M phase by fluoride. Our findings suggested global genome microarray provides an insight into the reproductive toxicity induced by fluoride, and several important biological clues for further investigations. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1558-1565, 2017. © 2016 Wiley Periodicals, Inc.

  8. Biochemical Changes after Short-term Oral Exposure of Jatropha curcas Seeds in Wistar Rats

    PubMed Central

    Awasthy, Vijeyta; Vadlamudi, V. P.; Koley, K. M.; Awasthy, B. K.; Singh, P. K.

    2010-01-01

    Jatropha curcas (Euphorbiaceae) is a multipurpose shrub with varied medicinal uses and is of significant economic importance. In addition to being the source of biodiesel, its seeds are also considered highly nutritious and could be exploited as a rich and economical protein supplement in animal feeds. However, the inherent phytotoxins present in the seed is the hindrance. The toxicity nature of the seeds of the local variety of J. curcas is not known. Therefore, investigations were undertaken to evaluate the short-term oral toxicity of the seeds of locally grown J. curcas. Short-term toxicity was conducted in rats by daily feeding the basal diet (Group I), and the diet in which the crude protein requirement was supplemented at 25% (Group II) and 50% (Group III) levels through Jatropha seed powder. The adverse effects of Jatropha seed protein supplementation (JSPS) were evaluated by observing alterations in biochemical profiles. The biochemical profile of rats fed on diet with JSPS at both the levels revealed significant reduction in plasma glucose and total protein and increase in plasma creatinine, transaminases (Plasma glutamic pyruvic transaminase and Plasma glutamic oxaloacetic transaminase), and alkaline phosphatase. PMID:21170248

  9. Metabolic profiling study on potential toxicity and immunotoxicity-biomarker discovery in rats treated with cyclophosphamide using HPLC-ESI-IT-TOF-MS.

    PubMed

    Li, Jing; Lin, Wensi; Lin, Weiwei; Xu, Peng; Zhang, Jianmei; Yang, Haisong; Ling, Xiaomei

    2015-05-01

    Despite the recent advances in understanding toxicity mechanism of cyclophosphamide (CTX), the development of biomarkers is still essential. CTX-induced immunotoxicity in rats by a metabonomics approach was investigated using high-performance liquid chromatography coupled with ion trap time-of-flight mass spectrometry (HPLC-ESI-IT-TOF-MS). The rats were orally administered CTX (30 mg/kg/day) for five consecutive days, and on the fifth day samples of urine, thymus and spleen were collected and analyzed. A significant difference in metabolic profiling was observed between the CTX-treated group and the control group by partial least squares-discriminant analysis (PLS-DA), which indicated that metabolic disturbances of immunotoxicity in CTX-treated rats had occurred. One potential biomarker in spleen, three in urine and three in thymus were identified. It is suggested that the CTX-toxicity mechanism may involve the modulation of tryptophan metabolism, phospholipid metabolism and energy metabolism. This research can help to elucidate the CTX-influenced pathways at a low dose and can further help to indicate the patients' pathological status at earlier stages of toxicological progression after drug administration. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Distinctive Pattern of Serum Elements During the Progression of Alzheimer’s Disease

    PubMed Central

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-01-01

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer’s disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD. PMID:26957294

  11. Distinctive Pattern of Serum Elements During the Progression of Alzheimer's Disease.

    PubMed

    Paglia, Giuseppe; Miedico, Oto; Cristofano, Adriana; Vitale, Michela; Angiolillo, Antonella; Chiaravalle, Antonio Eugenio; Corso, Gaetano; Di Costanzo, Alfonso

    2016-03-09

    Element profiling is an interesting approach for understanding neurodegenerative processes, considering that compelling evidences show that element toxicity might play a crucial role in the onset and progression of Alzheimer's disease (AD). Aim of this study was to profile 22 serum elements in subjects with or at risk of AD. Thirtyfour patients with probable AD, 20 with mild cognitive impairment (MCI), 24 with subjective memory complaint (SMC) and 40 healthy subjects (HS) were included in the study. Manganese, iron, copper, zinc, selenium, thallium, antimony, mercury, vanadium and molybdenum changed significantly among the 4 groups. Several essential elements, such as manganese, selenium, zinc and iron tended to increase in SMC and then progressively to decrease in MCI and AD. Toxic elements show a variable behavior, since some elements tended to increase, while others tended to decrease in AD. A multivariate model, built using a panel of six essential elements (manganese, iron, copper, zinc, selenium and calcium) and their ratios, discriminated AD patients from HS with over 90% accuracy. These findings suggest that essential and toxic elements contribute to generate a distinctive signature during the progression of AD, and their monitoring in elderly might help to detect preclinical stages of AD.

  12. Use of Zebrafish Larvae as a Multi-Endpoint Platform to Characterize the Toxicity Profile of Silica Nanoparticles.

    PubMed

    Pham, Duc-Hung; De Roo, Bert; Nguyen, Xuan-Bac; Vervaele, Mattias; Kecskés, Angela; Ny, Annelii; Copmans, Daniëlle; Vriens, Hanne; Locquet, Jean-Pierre; Hoet, Peter; de Witte, Peter A M

    2016-11-22

    Nanomaterials are being extensively produced and applied in society. Human and environmental exposures are, therefore, inevitable and so increased attention is being given to nanotoxicity. While silica nanoparticles (NP) are one of the top five nanomaterials found in consumer and biomedical products, their toxicity profile is poorly characterized. In this study, we investigated the toxicity of silica nanoparticles with diameters 20, 50 and 80 nm using an in vivo zebrafish platform that analyzes multiple endpoints related to developmental, cardio-, hepato-, and neurotoxicity. Results show that except for an acceleration in hatching time and alterations in the behavior of zebrafish embryos/larvae, silica NPs did not elicit any developmental defects, nor any cardio- and hepatotoxicity. The behavioral alterations were consistent for both embryonic photomotor and larval locomotor response and were dependent on the concentration and the size of silica NPs. As embryos and larvae exhibited a normal touch response and early hatching did not affect larval locomotor response, the behavior changes observed are most likely the consequence of modified neuroactivity. Overall, our results suggest that silica NPs do not cause any developmental, cardio- or hepatotoxicity, but they pose a potential risk for the neurobehavioral system.

  13. Genome-Wide Functional and Stress Response Profiling Reveals Toxic Mechanism and Genes Required for Tolerance to Benzo[a]pyrene in S. cerevisiae

    PubMed Central

    O’Connor, Sean Timothy Francis; Lan, Jiaqi; North, Matthew; Loguinov, Alexandre; Zhang, Luoping; Smith, Martyn T.; Gu, April Z.; Vulpe, Chris

    2012-01-01

    Benzo[a]pyrene (BaP) is a ubiquitous, potent, and complete carcinogen resulting from incomplete organic combustion. BaP can form DNA adducts but other mechanisms may play a role in toxicity. We used a functional toxicology approach in S. cerevisiae to assess the genetic requirements for cellular resistance to BaP. In addition, we examined translational activities of key genes involved in various stress response pathways. We identified multiple genes and processes involved in modulating BaP toxicity in yeast which support DNA damage as a primary mechanism of toxicity, but also identify other potential toxicity pathways. Gene ontology enrichment analysis indicated that DNA damage and repair as well as redox homeostasis and oxidative stress are key processes in cellular response to BaP suggesting a similar mode of action of BaP in yeast and mammals. Interestingly, toxicant export is also implicated as a potential novel modulator of cellular susceptibility. In particular, we identified several transporters with human orthologs (solute carrier family 22) which may play a role in mammalian systems. PMID:23403841

  14. Mutagenicity and Acute Oral Toxicity Test for Herbal Poultry Feed Supplements.

    PubMed

    Srinivasa Rao, Boddapati; Chandrasekaran, C V; Srikanth, H S; Sasikumar, Murugan; Edwin Jothie, R; Haseena, Begum; Bharathi, Bethapudi; Selvam, Ramasamy; Prashanth, D'Souza

    2018-01-01

    Herbal products are being used and trusted globally for thousands of years for their health benefits and limited side effects. Globally, a general belief amongst the consumers is that herbal supplements are always safe because they are "natural." But later, research reveals that they may not be safe. This raises concern on their safety and implications for their use as feed supplement or medicine. Toxicity testing can reveal some of the risks that may be associated with use of herbs, therefore avoiding potential harmful effects. The present study was designed to investigate five poultry feed supplements (PFS), EGMAX® (to revitalize ovarian activity), FEED-X ™ (feed efficiency enhancer), KOLIN PLUS ™ (natural replacer of synthetic choline chloride), PHYTOCEE® (natural defence enhancer), and STODI® (to prevent and control loose droppings), for their possible mutagenicity and toxicity. Bacterial reverse mutation (BRMT) and acute oral toxicity tests were employed to assess the PFS for their possible mutagenicity and toxicity. Results indicated that the PFS were devoid of mutagenic effects in BRMT and showed higher safety profile in rodent acute oral toxicity test.

  15. A comparative study on the traditional Indian Shodhana and Chinese processing methods for aconite roots by characterization and determination of the major components

    PubMed Central

    2013-01-01

    Background Aconitum is an indispensable entity of the traditional medicine therapy in Ayurveda and Traditional Chinese medicine (TCM), in spite of its known fatal toxicity characteristics. The prolonged use of this drug, irrespective of its known lethal effects, is governed by the practice of effective detoxification processes that have been used for decades. However, the processing methods of Ayurveda and TCM are different, and no comparative study has been carried out to evaluate their differences. The objective of the present study was to carry out comparative chemical profiling of the roots of Aconitum heterophyllum Wall, A. carmichaelii Debx., and A. kusnezoffii Reichb. after application of two detoxification methods used in Ayurveda and one method used in TCM . Results Analysis of the processed samples was carried out by ultra-high performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF/MS). The results obtained in the study demonstrate that all three processing methods used in Ayurveda and TCM effectively extract the diester diterpenoid alkaloids and led to their conversion into monoester diterpenoid alkaloids. The efficiency of the processes in reduction of toxic alkaloid contents can be stated as: Processing with water > Shodhana with cow milk > Shodhana with cow urine. The analysis method was validated as per ICH-Q2R1 guidelines and all the parameters were found to comply with the recommendations stated in the guidelines. Conclusions There have been no reports till date, to compare the processing methods used in Ayurveda with the methods used in TCM for detoxification of aconite roots. Our study demonstrates that, these methods used in both the traditional systems of medicine, efficiently detoxify the aconite roots. Amongst the three selected procedures, the TCM method of decoction with water is the most efficient. Through experimental evidences, we prove the conversion of toxic diester diterpenoid alkaloids to relatively safer monoester diterpenoid alkaloids. Thus, this study demonstrates that comparative study on the traditional experiences accumulated in different medical systems is useful for expanding their respective applications. PMID:24156713

  16. Dactinomycin and Vincristine Toxicity in the Treatment of Childhood Cancer: A Retrospective Study from the Children’s Oncology Group

    PubMed Central

    Langholz, Bryan; Skolnik, Jeffrey M.; Barrett, Jeffrey S.; Renbarger, Jamie; Seibel, Nita L.; Zajicek, Anne; Arndt, Carola A.S.

    2011-01-01

    Background Dactinomycin (AMD) and vincristine (VCR) have been used for the treatment of childhood cancer over the past 40 years but evidence-based dosing guidance is lacking. Methods Patient AMD and VCR dose and drug-related adverse event (AE) information from four rhabdomyosarcoma (RMS) and two Wilms tumor (WT) studies were assembled. Statistical modeling was used to account for differences in AE data collection across studies, develop rate models for grade 3/4 CTCAE v3 hepatic- (AMD) and neuro- (AMD) toxicity, assess variation in toxicity rates over age and other factors, and predict toxicity risk under current dosing guidelines. Results For the same dose/body size, AMD toxicity rates were higher in patients <1 year than older patients and VCR toxicity rates increased with age. The statistical model provided estimates for AMD and VCR toxicity risk under current dosing schedules and indicated that patients of smaller body size were at lower risk of VCR toxicity than larger patients of the same age. The rate of AMD toxicity was highest early in treatment and was lower in patients who tolerated initial AMD without toxicity. Conclusion The observed decrease in AMD toxicity rate with cumulative dose may indicate sensitivity in a subgroup of patients while the observed increase in VCR toxicity risk with age may indicate changing sensitivity to VCR. Current dosing practices result in a fairly uniform toxicity profile within age group. However, PK/PD studies should be done to provide further provide further information on best dosing guidelines. PMID:21671362

  17. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  18. Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells

    PubMed Central

    Toledano-Magaña, Yanis; Flores-Santos, Leticia; Montes de Oca, Georgina; González-Montiel, Alfonso; Laclette, Juan-Pedro; Carrero, Julio-César

    2015-01-01

    Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC) was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h), followed by the RAW 264.7 cell line (40%), and finally, macrophages derived from mice bone marrow monocytes (98%). Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6), in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro. PMID:26090385

  19. Photodynamic diagnosis in upper urinary tract urothelial carcinoma: A systematic review.

    PubMed

    Osman, Elsawi; Alnaib, Ziad; Kumar, Nitya

    2017-06-01

    To assess the diagnostic accuracy and safety of photodynamic diagnosis (PDD) in upper urinary tract urothelial carcinoma (UUTUC). A systematic literature search was conducted. Included studies were assessed for the risks of bias and quality using appropriate tools. Dedicated data extraction forms were used. Diagnostic accuracy in terms of sensitivity and specificity were quoted whenever provided by individual studies. A combined toxicity profile of 5-aminolevulinic acid (5ALA) was given after reviewing individual studies. In all, 17 studies were identified. After screening seven studies were included involving a total of 194 patients. None of the studies were randomised. All the available studies were of low-to-moderate quality. The largest available study, with 106 patients, reported a sensitivity of 95.8% and 53.5% for PDD and white-light (WL) ureterorenoscopy (URS) respectively, with a statistically significant difference. The specificity was 96.6% for PDD and 95.2% for WL-URS with no statistical significance. PDD showed better ability in detecting carcinoma in situ and dysplasia. One study compared PDD to computed tomography urogram (CTU) and found PDD to have better sensitivity and statistically significantly better specificity. 5ALA-associated toxicity was minor in nature and hypotension was the most common adverse event. PDD in UUTUC appears to be more accurate than WL-URS and CTU, with no significant toxicity. Larger scale randomised trials are needed.

  20. Cardiovascular effects of Phaleria macrocarpa extracts combined with mainstay FAC regimen for breast cancer.

    PubMed

    Anggadiredja, Kusnandar; Tjandrawinata, Raymond R

    2015-01-01

    DLBS1425 is a bioactive compound extracted from Phaleria macrocarpa, with anti-proliferative, anti-inflammatory and anti-angiogenic properties against cancer cells. The present study was aimed to assess cardiotoxicity of DLBS1425, compared to the mainstay regimen for breast cancer, 5-fluorouracil:doxorubicin:cyclophosphamide (FAC, given at 500/50/500 mg/m(2)). Treatment with FAC regimen at standard dose resulted in very severe toxicity, so mice had no chance to survive for more than 7 days following initial drug treatment. Furthermore, histological examination on the heart revealed severe muscular damage when mice were given the FAC regimen alone (severe toxicity). FAC as chemotherapeutic regimen exerted high toxicity profile to the cardiovascular cells in this experiment. Meanwhile, treatment with DLBS1425 alone up to a dose equivalent to as high as 300 mg three times daily in human had no hazardous consequences on the heart, hematological feature, as well as general safety. In the cardiovascular cells, DLBS1425 in the presence of FAC regimen (one-eight of the initial dose) gave protection to the cardiac muscle cells as well as other hematological features. Taken together, results of the present study suggest that DLBS1425 is safe when used as adjuvant therapy for breast cancer and may be even protective against cardiac cellular damage produced by chemotherapeutic regimen.

  1. Acute and sub-chronic oral toxicity studies of erythritol in Beagle dogs.

    PubMed

    Eapen, Alex K; de Cock, Peter; Crincoli, Christine M; Means, Charlotte; Wismer, Tina; Pappas, Christopher

    2017-07-01

    Polyols, also known as sugar alcohols, are widely used in the formulation of tooth-friendly and reduced-calorie foods. Considering the significant health benefits of polyols in products formulated for human use, there is increased interest in evaluating potential uses in companion animal applications. Erythritol and xylitol are two polyols which are currently widely used in products ranging from reduced-sugar foods to personal care and cosmetics. Published studies have shown that both of these compounds are well-tolerated in rodents. Their toxicity profiles differ when comparing canine safety data. Doses of xylitol as low as 0.15 g/kg-BW in dogs can result in life-threatening hypoglycemia and acute liver failure, whereas erythritol is well-tolerated in dogs with reported No Adverse Effect Levels upwards of 5 g/kg-BW/day in repeat-dose studies. While pivotal studies substantiating the safe use of erythritol in humans have been published, there are limited published studies to support the safe use of erythritol in dogs. Here we present the results of an acute oral and a sub-chronic oral toxicity study in Beagle dogs. Given the potential health benefits of oral products formulated with erythritol and the data presented herein substantiating the safe use in dogs, erythritol can be safely used in products for canines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Safety profiles of old and new antimicrobials for the treatment of MRSA infections.

    PubMed

    Bassetti, Matteo; Righi, Elda

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of severe nosocomial and community-acquired infections. Various adverse effects have been associated with compounds that are commonly used in the treatment of MRSA. Prolonged use of high-dose vancomycin has been linked with nephrotoxicity. Linezolid use has been associated with lactic acidosis in regimens longer than 14 days and occurrence of thrombocytopenia in patients with renal impairment. Daptomycin use correlates with reversible and often asymptomatic myopathy. Among new compounds, telavancin has shown increased toxicity compared to vancomycin, especially in patients with severe renal impairment, while a low rate of adverse effects was reported others glycolipopeptides such as dalbavancin and oritavancin and for new cephalosporins. Recently studied oxazolidinones (tedizolid and radezolid) also showed mild adverse effects in Phase 2 and 3 clinical trials. Due to the constant increase in antimicrobial resistance, the use of higher doses and prolonged regimens of antibiotics employed in the treatment of Gram-positive infections has become more common and linked to increased toxicity. Furthermore, new compounds with MRSA activity have been recently approved and will be regularly employed in clinical practice. The knowledge of the adverse effects and risk factors for the development of toxicity associated with anti-MRSA antimicrobials is paramount for the correct use of old and new compounds, especially in the treatment of severe infections.

  3. Severe Late Toxicities Following Concomitant Chemoradiotherapy Compared to Radiotherapy Alone in Cervical Cancer: An Inter-era Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondi, Vinai, E-mail: gondi@humonc.wisc.edu; Bentzen, Soren M.; Sklenar, Kathryn L.

    2012-11-15

    Purpose: To compare rates of severe late toxicities following concomitant chemoradiotherapy and radiotherapy alone for cervical cancer. Methods and Materials: Patients with cervical cancer were treated at a single institution with radiotherapy alone or concomitant chemoradiotherapy for curative intent. Severe late toxicity was defined as grade {>=}3 vaginal, urologic, or gastrointestinal toxicity or any pelvic fracture, using Common Terminology Criteria for Adverse Events version 4.0 (CTCAE), occurring {>=}6 months from treatment completion and predating any salvage therapy. Severe late toxicity rates were compared after adjusting for pertinent covariates. Results: At 3 years, probability of vaginal severe late toxicity was 20.2%more » for radiotherapy alone and 35.1% for concomitant chemoradiotherapy (P=.026). At 3 years, probability of skeletal severe late toxicity was 1.6% for radiotherapy alone and 7.5% for concomitant chemoradiotherapy (P=.010). After adjustment for case mix, concomitant chemoradiotherapy was associated with higher vaginal (hazard ratio [HR] 3.0, 95% confidence interval [CI], 1.7-5.2, P<.001), and skeletal (HR 7.0, 95% CI 1.4-34.1, P=.016) severe late toxicity. Compared to high dilator compliance, moderate (HR 3.6, 95% CI 2.0-6.5, P<.001) and poor (HR 8.5, 95% CI 4.3-16.9, P<.001) dilator compliance was associated with higher vaginal severe late toxicity. Age >50 was associated with higher vaginal (HR 1.8, 95% CI 1.1-3.0, P=.013) and skeletal (HR 5.7, 95% CI 1.2-27.0, P=.028) severe late toxicity. Concomitant chemoradiotherapy was not associated with higher gastrointestinal (P=.886) or urologic (unadjusted, P=.053; adjusted, P=.063) severe late toxicity. Conclusion: Compared to radiotherapy alone, concomitant chemoradiotherapy is associated with higher rates of severe vaginal and skeletal late toxicities. Other predictive factors include dilator compliance for severe vaginal late toxicity and age for severe vaginal and skeletal late toxicities.« less

  4. Genome-wide Gene Expression Profiling of Acute Metal Exposures in Male Zebrafish

    DTIC Science & Technology

    2014-10-23

    Data in Brief Genome-wide gene expression profiling of acute metal exposures in male zebrafish Christine E. Baer a,⁎, Danielle L. Ippolito b, Naissan... Zebrafish Whole organism Nickel Chromium Cobalt Toxicogenomics To capture global responses to metal poisoning and mechanistic insights into metal...toxicity, gene expression changes were evaluated in whole adult male zebrafish following acute 24 h high dose exposure to three metals with known human

  5. Adsorption of pharmaceuticals in water through lignocellulosic fibers synergism.

    PubMed

    Moro, Tatiana Rojo; Henrique, Francini Reis; Malucelli, Lucca Centa; de Oliveira, Cíntia Mara Ribas; da Silva Carvalho Filho, Marco Aurélio; de Vasconcelos, Eliane Carvalho

    2017-03-01

    The contamination of water from disposal of drugs is an emerging problem due to their consequences on trophic webs. This study evaluated the ability of sugarcane and coconut fiber to reduce water toxicity contaminated by pharmaceuticals. The toxicity of solutions containing pharmaceuticals was studied by bioassay using Allium cepa, before and after filtration of contaminated water. The coconut and sugarcane fiber have not been satisfactory in reducing toxicity when tested separately. Despite no induction of chromosomal aberrations, our study found a reduction of the mitotic index. The mixture of fibers showed better results providing total reduction of toxicity, in addition to maintenance in the mitotic index and induction of chromosome aberrations. The interaction between fibers and drugs was confirmed by Thermogravimetry and Differential Thermal Analyses (TG/DTA) which presented differences in profile between the fibers before and after adsorption. The mixture of coconut and sugarcane proved viable for reduction of toxicity in contaminated water by a mixture of pharmaceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Allelopathic interactions of linoleic acid and nitric oxide increase the competitive ability of Microcystis aeruginosa.

    PubMed

    Song, Hao; Lavoie, Michel; Fan, Xiaoji; Tan, Hana; Liu, Guangfu; Xu, Pengfei; Fu, Zhengwei; Paerl, Hans W; Qian, Haifeng

    2017-08-01

    The frequency and intensity of cyanobacterial blooms are increasing worldwide with major societal and economic costs. Interactions between toxic cyanobacteria and eukaryotic algal competitors can affect toxic bloom formation, but the exact mechanisms of interspecies interactions remain unknown. Using metabolomic and proteomic profiling of co-cultures of the toxic cyanobacterium Microcystis aeruginosa with a green alga as well as of microorganisms collected in a Microcystis spp. bloom in Lake Taihu (China), we disentangle novel interspecies allelopathic interactions. We describe an interspecies molecular network in which M. aeruginosa inhibits growth of Chlorella vulgaris, a model green algal competitor, via the release of linoleic acid. In addition, we demonstrate how M. aeruginosa takes advantage of the cell signaling compound nitric oxide produced by C. vulgaris, which stimulates a positive feedback mechanism of linoleic acid release by M. aeruginosa and its toxicity. Our high-throughput system-biology approach highlights the importance of previously unrecognized allelopathic interactions between a broadly distributed toxic cyanobacterial bloom former and one of its algal competitors.

  7. Importance of a Priori Vertical Ozone Profiles for TEMPO Air Quality Retrievals

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.; Sullivan, John; Liu, Xiong; Zoogman, Peter; Newchurch, Mike; Kuang, Shi; McGee, Thomas; Leblanc, Thierry

    2017-01-01

    Ozone (O3) is a toxic pollutant which plays a major role in air quality. Typically, monitoring of surface air quality and O3 mixing ratios is conducted using in situ measurement networks. This is partially due to high-quality information related to air quality being limited from space-borne platforms due to coarse spatial resolution, limited temporal frequency, and minimal sensitivity to lower tropospheric and surface-level O3. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite is designed to address the limitations of current space-based platforms and to improve our ability to monitor North American air quality. TEMPO will provide hourly data of total column and vertical profiles of O3 with high spatial resolution to be used as a near-real-time air quality product. TEMPO O3 retrievals will apply the Smithsonian Astrophysical Observatory profile algorithm developed based on work from GOME (Global Ozone Monitoring Experiment), GOME-2, and OMI (Ozone Monitoring Instrument). This algorithm is suggested to use a priori O3 profile information from a climatological data-base developed from long-term ozone-sonde measurements (tropopause-based (TB-Clim) O3 climatology). This study evaluates the TB-Clim dataset and model simulated O3 profiles, which could potentially serve as a priori O3 profile information in TEMPO retrievals, from near-real-time data assimilation model products (NASA GMAO's (Global Modeling and Assimilation Office) operational GEOS-5 (Goddard Earth Observing System, Version 5) FP (Forecast Products) model and reanalysis data from MERRA2 (Modern-Era Retrospective analysis for Research and Applications, Version 2)) and a full chemical transport model (CTM), GEOS-Chem. In this study, vertical profile products are evaluated with surface (0-2 kilometers) and tropospheric (0-10 kilometers) TOLNet (Tropospheric Ozone Lidar Network) observations and the theoretical impact of individual a priori profile sources on the accuracy of TEMPO O3 retrievals in the troposphere and at the surface are presented. Results indicate that while the TB-Clim climatological dataset can replicate seasonally-averaged tropospheric O3 profiles, model-simulated profiles from a full CTM resulted in more accurate tropospheric and surface-level O3 retrievals from TEMPO when compared to hourly and daily-averaged TOLNet observations. Furthermore, it is shown that when large surface O3 mixing ratios are observed, TEMPO retrieval values at the surface are most accurate when applying CTM a priori profile information compared to all other data products.

  8. Pituitary genomic expression profiles of steers are altered by grazing of high vs. low endophyte-infected tall fescue forages.

    PubMed

    Li, Qing; Hegge, Raquel; Bridges, Phillip J; Matthews, James C

    2017-01-01

    Consumption of ergot alkaloid-containing tall fescue grass impairs several metabolic, vascular, growth, and reproductive processes in cattle, collectively producing a clinical condition known as "fescue toxicosis." Despite the apparent association between pituitary function and these physiological parameters, including depressed serum prolactin; no reports describe the effect of fescue toxicosis on pituitary genomic expression profiles. To identify candidate regulatory mechanisms, we compared the global and selected targeted mRNA expression patterns of pituitaries collected from beef steers that had been randomly assigned to undergo summer-long grazing (89 to 105 d) of a high-toxic endophyte-infected tall fescue pasture (HE; 0.746 μg/g ergot alkaloids; 5.7 ha; n = 10; BW = 267 ± 14.5 kg) or a low-toxic endophyte tall fescue-mixed pasture (LE; 0.023 μg/g ergot alkaloids; 5.7 ha; n = 9; BW = 266 ± 10.9 kg). As previously reported, in the HE steers, serum prolactin and body weights decreased and a potential for hepatic gluconeogenesis from amino acid-derived carbons increased. In this manuscript, we report that the pituitaries of HE steers had 542 differentially expressed genes (P < 0.001, false discovery rate ≤ 4.8%), and the pattern of altered gene expression was dependent (P < 0.001) on treatment. Integrated Pathway Analysis revealed that canonical pathways central to prolactin production, secretion, or signaling were affected, in addition to those related to corticotropin-releasing hormone signaling, melanocyte development, and pigmentation signaling. Targeted RT-PCR analysis corroborated these findings, including decreased (P < 0.05) expression of DRD2, PRL, POU1F1, GAL, and VIP and that of POMC and PCSK1, respectively. Canonical pathway analysis identified HE-dependent alteration in signaling of additional pituitary-derived hormones, including growth hormone and GnRH. We conclude that consumption of endophyte-infected tall fescue alters the pituitary transcriptome profiles of steers in a manner consistent with their negatively affected physiological parameters.

  9. Assessment of tris (1, 3-dichloro-2-propyl) phosphate toxicology in PC12 cells by using digital gene expression profiling.

    PubMed

    Li, Li; Jiang, Shuai; Li, Kang; Lin, Bencheng; Wang, Ziyu; Zhang, Zhiqing; Fang, Yanjun

    2017-09-01

    Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP), one of the most universally used organophosphate flame retardants (OPFRs), is an environmental pollutant. However, limited information is available regarding its toxicity and environmental health risk. In the present study, PC12 cells provided a useful model for the evaluation of the toxic effects of TDCIPP. Exposure to 7.5, 15, 30, or 60 μM TDCIPP for 72 h inhibited cell viability, and enhanced cellular apoptosis and oxidative stress. To further explore the underlying mechanisms, digital gene expression (DGE) technology was used to identify early transcriptional changes following TDCIPP exposure. Expression of the transcripts of 161 genes was significantly altered upon treatment with TDCIPP. Functional and pathway analysis of the transcriptional profile demonstrated that genes showing significant TDCIPP-associated changes in expression were involved in the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, extracellular matrix-receptor interactions, protein digestion and absorption, and microRNAs in cancer. Using quantitative real-time PCR, we validated the differential expression of selected genes. These results showed that the expression profiles of cells exposed to 60 μM TDCIPP were consistent with the DGE data. Furthermore, western blotting showed that treatment with TDCIPP reduced the Bcl-2/Bax ratio and attenuated PI3K/Akt/Myc signaling. Taken together, these data suggest that TDCIPP exposure can reduce cell viability and induce apoptosis in PC12 cells by inhibiting activation of the PI3K/Akt/Myc signaling pathway. These observations provide valuable preliminary information regarding the mechanisms of TDCIPP-induced toxicity in PC12 cells and indicate that further study of the toxicity of other environmental OPFRs is warranted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Ocular toxicities associated with targeted anticancer agents: an analysis of clinical data with management suggestions

    PubMed Central

    Fu, Chen; Gombos, Dan S; Lee, Jared; George, Goldy C; Hess, Kenneth; Whyte, Andrew; Hong, David S

    2017-01-01

    Ocular toxicities are among the most common adverse events resulting from targeted anticancer agents and are becoming increasingly relevant in the management of patients on these agents. The purpose of this study is to provide a framework for management of these challenging toxicities based on objective data from FDA labels and from analysis of the literature. All oncologic drugs approved by the FDA up to March 14, 2015, were screened for inclusion. A total of 16 drugs (12 small-molecule drugs and 4 monoclonal antibodies) were analyzed for ocular toxicity profiles based on evidence of ocular toxicity. Trials cited by FDA labels were retrieved, and a combination search in Medline, Google Scholar, the Cochrane database, and the NIH Clinical Trials Database was conducted. The majority of ocular toxicities reported were low severity, and the most common were conjunctivitis and “visual disturbances.” However, severe events including incidents of blindness, retinal vascular occlusion, and corneal ulceration occurred. The frequency and severity at which ocular toxicities occur merits a more multidisciplinary approach to managing patients with agents that are known to cause ocular issues. We suggest a standardized methodology for referral and surveillance of patients who are potentially at risk of severe ocular toxicity. PMID:28938590

  11. Toxicopathological Evaluation of Hydroethanol Extract of Dianthus basuticus in Wistar Rats

    PubMed Central

    Ashafa, Anofi Omotayo Tom

    2015-01-01

    Background. Dianthus basuticus is a commonly used medicinal plant in Basotho traditional medicine for the treatment of diabetes, but there is no report on its safety or toxicity. Therefore, we evaluated the toxicity profile of the hydroethanol whole plant extract of Dianthus basuticus in Wistar rats. Methods. Acute toxicity test was performed with single oral administration of 100–3200 mg/kg body weight of D. basuticus extract to rats and the animals were observed for 14 days for signs of toxicity. The subacute toxicity experiment was conducted by oral administration of graded doses (200, 400, and 800 mg/kg) of D. basuticus extract daily for 28 days. Behavioural changes as well as haematological, biochemical, and histological parameters were then evaluated. Results. There was no observable sign of toxicity in the acute toxicity test. There were significant decreases (P < 0.05) in the feed and water intake as well as total cholesterol and triglycerides of the D. basuticus extract-treated rats in subacute toxicity study. There were no treatment related differences in the haematological, biochemical, and histopathological evaluations. Conclusions. Administration of hydroethanol extract of D. basuticus may be safe at the dosages tested in this study but its continuous usage can cause anorexia. PMID:26504473

  12. Improving risk assessment of color additives in medical device polymers.

    PubMed

    Chandrasekar, Vaishnavi; Janes, Dustin W; Forrey, Christopher; Saylor, David M; Bajaj, Akhil; Duncan, Timothy V; Zheng, Jiwen; Riaz Ahmed, Kausar B; Casey, Brendan J

    2018-01-01

    Many polymeric medical device materials contain color additives which could lead to adverse health effects. The potential health risk of color additives may be assessed by comparing the amount of color additive released over time to levels deemed to be safe based on available toxicity data. We propose a conservative model for exposure that requires only the diffusion coefficient of the additive in the polymer matrix, D, to be specified. The model is applied here using a model polymer (poly(ether-block-amide), PEBAX 2533) and color additive (quinizarin blue) system. Sorption experiments performed in an aqueous dispersion of quinizarin blue (QB) into neat PEBAX yielded a diffusivity D = 4.8 × 10 -10 cm 2  s -1 , and solubility S = 0.32 wt %. On the basis of these measurements, we validated the model by comparing predictions to the leaching profile of QB from a PEBAX matrix into physiologically representative media. Toxicity data are not available to estimate a safe level of exposure to QB, as a result, we used a Threshold of Toxicological Concern (TTC) value for QB of 90 µg/adult/day. Because only 30% of the QB is released in the first day of leaching for our film thickness and calculated D, we demonstrate that a device may contain significantly more color additive than the TTC value without giving rise to a toxicological concern. The findings suggest that an initial screening-level risk assessment of color additives and other potentially toxic compounds found in device polymers can be improved. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 310-319, 2018. © 2017 Wiley Periodicals, Inc.

  13. Feasibility and safety of extended adjuvant temozolomide beyond six cycles for patients with glioblastoma.

    PubMed

    Hsieh, S Yp; Chan, D Tm; Kam, M Km; Loong, H Hf; Tsang, W K; Poon, D Mc; Ng, S Cp; Poon, W S

    2017-12-01

    Temozolomide is the first chemotherapeutic agent proven effective for patients with newly diagnosed glioblastoma. The drug is well tolerated for its low toxicity. The current standard practice is concomitant chemoradiotherapy for 6 weeks followed by 6 cycles of adjuvant temozolomide. Some Caucasian studies have suggested that patients might benefit from extended adjuvant cycles of temozolomide (>6 cycles) to lengthen both progression-free survival and overall survival. In the present study, we compared differences in survival and toxicity profile between patients who received conventional 6-cycle temozolomide and those who received more than 6 cycles of temozolomide. Patients with newly diagnosed glioblastoma without progressive disease and completed concomitant chemoradiotherapy during a 4-year period were studied. Progression-free survival was compared using Kaplan-Meier survival curves. t Test, U test, and correlation were chosen accordingly to examine the impact of age, extent of resection, MGMT promoter methylation status and adjuvant cycles on progression-free survival. For factors with a P value of <0.05 in univariate analyses, Cox regression hazard model was adopted to determine the strongest factors related to progression-free survival. The median progression-free survival was 17.0 months for patients who received 6 cycles of temozolomide (n=7) and 43.4 months for those who received more than 6 cycles (n=7) [P=0.007, log-rank test]. Two patients in the former group and one in the latter group encountered grade 1 toxicity and recovered following dose adjustment. Cycles of adjuvant temozolomide were correlated with progression-free survival (P=0.016, hazard ratio=0.68). Extended cycles of temozolomide are safe and feasible for Chinese patients with disease responsive to temozolomide.

  14. Chemosaturation with Percutaneous Hepatic Perfusion for Unresectable Isolated Hepatic Metastases from Sarcoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneve, Jeremiah L., E-mail: Jeremiah.Deneve@Moffitt.org; Choi, Junsung; Gonzalez, Ricardo J.

    Purpose: Treatment of patients with unresectable liver metastases is challenging. Regional therapies to the liver have been developed that maximize treatment of the localized disease process without systemic toxic adverse effects. We discuss the procedural aspects of liver chemosaturation with percutaneous hepatic perfusion (CS-PHP). Methods: We present as an illustration of this technique a case report of the treatment of unresectable metastatic leiomyosarcoma of the liver. Results: A randomized phase III trial for unresectable liver metastases from melanoma was recently completed comparing CS-PHP with melphalan vs. best alternative care (BAC). When compared with BAC, CS-PHP was associated with a significantmore » improvement in hepatic progression-free survival (8.0 months CS-PHP vs. 1.6 months BAC, p < 0.0001) and overall progression-free survival (6.7 months CS-PHP vs. 1.6 months BAC, p < 0.0001), respectively. On the basis of these results, and given our experience as one of the treating institutions for this phase III trial, we appealed for compassionate use of CS-PHP in a patient with isolated bilobar unresectable hepatic metastases from leiomyosarcoma. Four target lesions were identified and monitored to assess treatment response. A total of 4 CS-PHP procedures were performed, with a 25 % reduction in size of the largest lesion observed and 16 month hepatic progression-free survival. Toxicity was mild (neutropenia) and manageable on an outpatient basis. Conclusion: CS-PHP offers several advantages for unresectable hepatic sarcoma metastases. CS-PHP is minimally invasive and repeatable, and it has a predictable and manageable systemic toxicity profile. For appropriately selected patients, CS-PHP can delay tumor progression and could potentially improve survival.« less

  15. Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H 2 and CO 2 compared to organotrophic growth with fructose

    DOE PAGES

    Aklujkar, Muktak; Leang, Ching; Shrestha, Pravin M.; ...

    2017-10-13

    Clostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H 2), carbon dioxide (CO 2), and carbon monoxide (CO), or with H 2 and CO 2. Gene expression was compared quantitatively by microarrays using RNA extracted from all three conditions. Gene expression with fructose and with H 2/CO 2 was compared by RNA-Seq. Upregulated genes with both syngas and H 2/CO 2 (compared to fructose) point to the urea cycle, uptake and degradation of peptides and amino acids, response to sulfurmore » starvation, potentially NADPH-producing pathways involving (S)-malate and ornithine, quorum sensing, sporulation, and cell wall remodeling, suggesting a global and multicellular response to lithotrophic conditions. With syngas, the upregulated (R)-lactate dehydrogenase gene represents a route of electron transfer from ferredoxin to NAD. With H 2/CO 2, flavodoxin and histidine biosynthesis genes were upregulated. Downregulated genes corresponded to an intracytoplasmic microcompartment for disposal of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several cytoplasmic and membrane-associated redox-active protein genes were differentially regulated. In conclusion, the transcriptomic profiles of C. ljungdahlii in lithotrophic and organotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide biofuel and commodity chemical production with this species.« less

  16. Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H 2 and CO 2 compared to organotrophic growth with fructose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aklujkar, Muktak; Leang, Ching; Shrestha, Pravin M.

    Clostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H 2), carbon dioxide (CO 2), and carbon monoxide (CO), or with H 2 and CO 2. Gene expression was compared quantitatively by microarrays using RNA extracted from all three conditions. Gene expression with fructose and with H 2/CO 2 was compared by RNA-Seq. Upregulated genes with both syngas and H 2/CO 2 (compared to fructose) point to the urea cycle, uptake and degradation of peptides and amino acids, response to sulfurmore » starvation, potentially NADPH-producing pathways involving (S)-malate and ornithine, quorum sensing, sporulation, and cell wall remodeling, suggesting a global and multicellular response to lithotrophic conditions. With syngas, the upregulated (R)-lactate dehydrogenase gene represents a route of electron transfer from ferredoxin to NAD. With H 2/CO 2, flavodoxin and histidine biosynthesis genes were upregulated. Downregulated genes corresponded to an intracytoplasmic microcompartment for disposal of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several cytoplasmic and membrane-associated redox-active protein genes were differentially regulated. In conclusion, the transcriptomic profiles of C. ljungdahlii in lithotrophic and organotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide biofuel and commodity chemical production with this species.« less

  17. 78 FR 17213 - Agency for Toxic Substances and Disease Registry Availability of Final Toxicological Profile

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... 30333; telephone number (800) 232-4636 or (770) 488-3351. Electronic access to this document is... Priorities List, in an effort to ``* * * establish and maintain inventory of literature, research, and...

  18. The physiological adaptations and toxin profiles of the toxic Alexandrium fundyense on the eastern Bering Sea and Chukchi Sea shelves.

    PubMed

    Natsuike, Masafumi; Oikawa, Hiroshi; Matsuno, Kohei; Yamaguchi, Atsushi; Imai, Ichiro

    2017-03-01

    Abundant cyst distributions of the toxic dinoflagellate Alexandrium fundyense (previous A. tamarense north American clade) were recently observed on the north Chukchi Sea shelf and on the eastern Bering Sea shelf, suggesting that A. fundyense is both highly adapted to the local environments in the high latitude areas and might cause toxin contamination of plankton feeders. However, little is known about the physiological characteristics and toxin profiles of A. fundyense in these areas, which are characterized by low water temperatures, weak sunlight, and more or less permanent ice cover during winter. To clarify the physiological characteristics of A. fundyense, the effects of water temperature and light intensity on the vegetative growth and toxin profiles of this species were examined using A. fundyense strains isolated from one sediment sample collected from each area. Using the same sediments samples, seasonal changes of the cyst germination in different water temperatures were investigated. Vegetative cells grew at temperatures as low as 5°C and survived at 1°C under relatively low light intensity. They also grew at moderate water temperatures (10-15°C). Their cysts could germinate at low temperatures (1°C) and have an endogenous dormancy period from late summer to early spring, and warmer water temperatures (5-15°C) increased germination success. These physiological characteristics suggest that A. fundyense in the Chukchi Sea and eastern Bering Sea is adapted to the environments of high latitude areas. In addition, the results suggest that in the study areas A. fundyense has the potential to germinate and grow when water temperatures increase. Cellular toxin amounts of A. fundyense strains from the eastern Bering Sea and Chukchi Sea were ranged from 7.2 to 38.2 fmol cell -1 . These toxin amounts are comparable with A. fundyense strains isolated from other areas where PSP toxin contamination of bivalves occurs. The dominant toxin of the strains isolated from the Chukchi Sea was saxitoxin, while most A. fundyense strains from the eastern Bering Sea are dominated by the C2 toxin. Toxin profiles similar to those detected in Chukchi Sea have not been reported by any previous research. The dominance of a highly toxic PST variant in Chukchi A. fundyense suggests that presence of the species at low cell concentrations may cause toxin contamination of predators. This study revealed that abundant A. fundyense cysts deposited on the eastern Bering Sea and Chukchi Sea shelves potentially germinate and grow with PSP toxin contents in the local environments. In conclusion, a high risk of PSP occurrences exists on the eastern Bering Sea and Chukchi Sea shelves. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Integrated Assessment of Diclofenac Biotransformation, Pharmacokinetics, and Omics-Based Toxicity in a Three-Dimensional Human Liver-Immunocompetent Coculture System

    PubMed Central

    Ravindra, Kodihalli C.; Large, Emma; Young, Carissa L.; Rivera-Burgos, Dinelia; Yu, Jiajie; Cirit, Murat; Hughes, David J.; Wishnok, John S.; Lauffenburger, Douglas A.; Griffith, Linda G.

    2017-01-01

    In vitro hepatocyte culture systems have inherent limitations in capturing known human drug toxicities that arise from complex immune responses. Therefore, we established and characterized a liver immunocompetent coculture model and evaluated diclofenac (DCF) metabolic profiles, in vitro–in vivo clearance correlations, toxicological responses, and acute phase responses using liquid chromatography–tandem mass spectrometry. DCF biotransformation was assessed after 48 hours of culture, and the major phase I and II metabolites were similar to the in vivo DCF metabolism profile in humans. Further characterization of secreted bile acids in the medium revealed that a glycine-conjugated bile acid was a sensitive marker of dose-dependent toxicity in this three-dimensional liver microphysiological system. Protein markers were significantly elevated in the culture medium at high micromolar doses of DCF, which were also observed previously for acute drug-induced toxicity in humans. In this immunocompetent model, lipopolysaccharide treatment evoked an inflammatory response that resulted in a marked increase in the overall number of acute phase proteins. Kupffer cell–mediated cytokine release recapitulated an in vivo proinflammatory response exemplified by a cohort of 11 cytokines that were differentially regulated after lipopolysaccharide induction, including interleukin (IL)-1β, IL-1Ra, IL-6, IL-8, IP-10, tumor necrosis factor-α, RANTES (regulated on activation normal T cell expressed and secreted), granulocyte colony-stimulating factor, macrophage colony-stimulating factor, macrophage inflammatory protein-1β, and IL-5. In summary, our findings indicate that three-dimensional liver microphysiological systems may serve as preclinical investigational platforms from the perspective of the discovery of a set of clinically relevant biomarkers including potential reactive metabolites, endogenous bile acids, excreted proteins, and cytokines to predict early drug-induced liver toxicity in humans. PMID:28450578

  20. Toxicity assessments of nonsteroidal anti-inflammatory drugs in isolated mitochondria, rat hepatocytes, and zebrafish show good concordance across chemical classes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadanaciva, Sashi; Aleo, Michael D.; Strock, Christopher J.

    To reduce costly late-stage compound attrition, there has been an increased focus on assessing compounds in in vitro assays that predict attributes of human safety liabilities, before preclinical in vivo studies are done. Relevant questions when choosing a panel of assays for predicting toxicity are (a) whether there is general concordance in the data among the assays, and (b) whether, in a retrospective analysis, the rank order of toxicity of compounds in the assays correlates with the known safety profile of the drugs in humans. The aim of our study was to answer these questions using nonsteroidal anti-inflammatory drugs (NSAIDs)more » as a test set since NSAIDs are generally associated with gastrointestinal injury, hepatotoxicity, and/or cardiovascular risk, with mitochondrial impairment and endoplasmic reticulum stress being possible contributing factors. Eleven NSAIDs, flufenamic acid, tolfenamic acid, mefenamic acid, diclofenac, meloxicam, sudoxicam, piroxicam, diflunisal, acetylsalicylic acid, nimesulide, and sulindac (and its two metabolites, sulindac sulfide and sulindac sulfone), were tested for their effects on (a) the respiration of rat liver mitochondria, (b) a panel of mechanistic endpoints in rat hepatocytes, and (c) the viability and organ morphology of zebrafish. We show good concordance for distinguishing among/between NSAID chemical classes in the observations among the three approaches. Furthermore, the assays were complementary and able to correctly identify “toxic” and “non-toxic” drugs in accordance with their human safety profile, with emphasis on hepatic and gastrointestinal safety. We recommend implementing our multi-assay approach in the drug discovery process to reduce compound attrition. - Highlights: • NSAIDS cause liver and GI toxicity. • Mitochondrial uncoupling contributes to NSAID liver toxicity. • ER stress is a mechanism that contributes to liver toxicity. • Zebrafish and cell based assays are complimentary.« less

Top