Sample records for toxicity screening study

  1. TOXICITY SCREENING WITH ZEBRAFISH ASSAY

    EPA Science Inventory

    The proposed toxicity screening will help EPA to prioritize chemicals for further testing, and it may also alert chemical manufacturers that some of their commercial products may be toxic. The proposed toxicity pathway studies will improve the research community’s abi...

  2. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons.

    PubMed

    Malik, Nasir; Efthymiou, Anastasia G; Mather, Karly; Chester, Nathaniel; Wang, Xiantao; Nath, Avindra; Rao, Mahendra S; Steiner, Joseph P

    2014-12-01

    Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens. Published by Elsevier B.V.

  3. Toxicity ForeCaster (ToxCast™) Data

    EPA Pesticide Factsheets

    Data is organized into different data sets and includes descriptions of ToxCast chemicals and assays and files summarizing the screening results, a MySQL database, chemicals screened through Tox21, and available data generated from animal toxicity studies.

  4. 75 FR 27434 - [alpha]-(p-Nonylphenol)-[omega]-hydroxypoly(oxyethylene) Sulfate and Phosphate Esters; Time...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    .... study with the reproduction/ developmental toxicity screening test in rats (NPEPSD) LOAEL = 300 mg/kg... toxicity screening test. In the Harmonized Guideline 870.3650 study with the nonylphenol ethoxylate... Guideline 870.3650 study in rats following pre- and post-natal exposure to NPEPSDs. E. Aggregate Risks and...

  5. Generation of human pluripotent stem cell-derived hepatocyte-like cells for drug toxicity screening.

    PubMed

    Takayama, Kazuo; Mizuguchi, Hiroyuki

    2017-02-01

    Because drug-induced liver injury is one of the main reasons for drug development failures, it is important to perform drug toxicity screening in the early phase of pharmaceutical development. Currently, primary human hepatocytes are most widely used for the prediction of drug-induced liver injury. However, the sources of primary human hepatocytes are limited, making it difficult to supply the abundant quantities required for large-scale drug toxicity screening. Therefore, there is an urgent need for a novel unlimited, efficient, inexpensive, and predictive model which can be applied for large-scale drug toxicity screening. Human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are able to replicate indefinitely and differentiate into most of the body's cell types, including hepatocytes. It is expected that hepatocyte-like cells generated from human ES/iPS cells (human ES/iPS-HLCs) will be a useful tool for drug toxicity screening. To apply human ES/iPS-HLCs to various applications including drug toxicity screening, homogenous and functional HLCs must be differentiated from human ES/iPS cells. In this review, we will introduce the current status of hepatocyte differentiation technology from human ES/iPS cells and a novel method to predict drug-induced liver injury using human ES/iPS-HLCs. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  6. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes.

    PubMed

    Bejgarn, Sofia; MacLeod, Matthew; Bogdal, Christian; Breitholtz, Magnus

    2015-08-01

    Between 60% and 80% of all marine litter is plastic. Leachate from plastics has previously been shown to cause acute toxicity in the freshwater species Daphnia magna. Here, we present an initial screening of the marine environmental hazard properties of leachates from weathering plastics to the marine harpacticoid copepod [Crustacea] Nitocra spinipes. Twenty-one plastic products made of different polymeric materials were leached and irradiated with artificial sunlight. Eight of the twenty-one plastics (38%) produced leachates that caused acute toxicity. Differences in toxicity were seen for different plastic products, and depending on the duration of irradiation. There was no consistent trend in how toxicity of leachate from plastics changed as a function of irradiation time. Leachate from four plastics became significantly more toxic after irradiation, two became significantly less toxic and two did not change significantly. Analysis of leachates from polyvinyl chloride (PVC) by liquid chromatography coupled to a full-scan high-resolution mass spectrometer showed that the leachates were a mixture of substances, but did not show evidence of degradation of the polymer backbone. This screening study demonstrates that leachates from different plastics differ in toxicity to N. spinipes and that the toxicity varies under simulated weathering. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Aquatic Toxicity Screening of Fire Fighting Agents; 2003 Report

    DTIC Science & Technology

    2003-06-02

    Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an acute, static, range-finding...five concentrations of 3M Light Water Brand Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity screening consisted of an...experimental foam concentrates against current Military Specification MIL-F-24385F Fire Extinguishing Agent, Aqueous Film Forming Foam

  8. In Vitro Toxicity Assessment Technique for Volatile ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency is tasked with evaluating the human health, environmental, and wildlife effects of over 80,000 chemicals registered for use in the environment and commerce. The challenge is that sparse chemical data exists; traditional toxicity testing methods are slow, costly, involve animal studies, and cannot keep up with a chemical registry that typically grows by at least 1000 chemicals every year. In recent years, High Throughput Screening (HTS) has been used in order to prioritize chemicals for traditional toxicity screening or to complement traditional toxicity studies. HTS is an in vitro approach of rapidly assaying a large number of chemicals for biochemical activity using robotics and automation. However, no method currently exists for screening volatile chemicals such as air pollutants in a HTS fashion. Additionally, significant uncertainty regarding in vitro to in in vivo extrapolation (IVIVE) remains. An approach to bridge the IVIVE gap and the current lack of ability to screen volatile chemicals in a HTS fashion is by using a probe molecule (PrM) technique. The proposed technique uses chemicals with empirical human pharmacokinetic data as PrMs to study toxicity of molecules with no known data for gas-phase analysis. We are currently studying the xenobiotic-metabolizing enzyme CYP2A6 using transfected BEAS-2B bronchial epithelial cell line. The CYP2A6 pathway activity is studied by the formation of cotinine from nicot

  9. Patients Undergoing Radiation Therapy Are at Risk of Financial Toxicity: A Patient-based Prospective Survey Study.

    PubMed

    Palmer, Joshua D; Patel, Tejash T; Eldredge-Hindy, Harriet; Keith, Scott W; Patel, Tapas; Malatesta, Theresa; DiNome, Jessie; Lowther, Anne; Ferguson, Linda; Wagenborg, Sally; Smyles, John; Babaria, Usha; Stabile, Richard; Gressen, Eric; Rudoler, Shari; Fisher, Scot A

    2018-06-01

    Little is known about the financial burden experienced by patients receiving radiation therapy. Furthermore, currently, no financial toxicity screening tools have been validated for use in radiation oncology. Physician surveys were used to gauge provider understanding of treatment costs and their willingness to adopt the use of financial toxicity screening tools. Post-treatment patient surveys were used to investigate the covariates of treatment-induced financial risk. Of the 210 radiation oncologists who completed our survey, 53% reported being "very concerned" with treatment-related costs negatively affecting their patients, and 80% believed that a financial toxicity screening tool would be useful in practice. An analysis of patient surveys using logistic regression found age and cancer site to be the most important variables associated with financial toxicity. Thirty-four patients (22%) experienced financial toxicity related to treatment. The financial toxicities experienced were loss of job (28%), loss of income (24%), difficulty paying their rent or mortgage (20%), difficulty paying for transportation (15%), and difficulty paying for meals (13%). Financial toxicity is an important measure for patients and providers and is experienced by approximately one quarter of patients. Further studies to improve models to predict financial toxicity and how financial toxicity is related to patient outcomes and quality of life are warranted. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Validation of Microtox as a first screening tool for waste classification.

    PubMed

    Weltens, R; Deprez, K; Michiels, L

    2014-12-01

    The Waste Framework Directive (WFD; 2008/98/EG) describes how waste materials are to be classified as hazardous or not. For complex waste materials chemical analyses are often not conclusive and the WFD provides the possibility to assess the hazardous properties by testing on the waste materials directly. As a methodology WFD refers to the protocols described in the CLP regulation (regulation on Classification, Labeling and Packaging of chemicals) but the toxicity tests on mammals are not acceptable for waste materials. The DISCRISET project was initiated to investigate the suitability of alternative toxicity tests that are already in use in pharmaceutical applications, for the toxicological hazard assessment of complex waste materials. Results indicated that Microtox was a good candidate as a first screening test in a tiered approached hazard assessment. This is now further validated in the present study. The toxic responses measured in Microtox were compared to biological responses in other bioassays for both organic and inorganic fractions of the wastes. Both fractions contribute to the toxic load of waste samples. Results show that the Microtox test is indeed a good and practical screening tool for the organic fraction. A screening threshold (ST) of 5 geq/l as the EC50 value in Microtox is proposed as this ST allows to recognize highly toxic samples in the screening test. The data presented here show that the Microtox toxicity response at this ST is not only predictive for acute toxicity in other organisms but also for sub lethal toxic effects of the organic fraction. This limit value has to be further validated. For the inorganic fraction no specific biotest can be recommended as a screening test, but the use of direct toxicity assessment is also preferable for this fraction as metal speciation is an important issue to define the toxic load of elutriate fractions. A battery of 3 tests (Microtox, Daphnia and Algae) for direct toxicity assessment of this fraction is recommended in literature, but including tests for mechanistic toxicity might be useful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Screening of Toxic Effects of Bisphenol A and Products of Its Degradation: Zebrafish (Danio rerio) Embryo Test and Molecular Docking.

    PubMed

    Makarova, Katerina; Siudem, Pawel; Zawada, Katarzyna; Kurkowiak, Justyna

    2016-10-01

    Bisphenol A (BPA) acts as an endocrine-disrupting compound even at a low concentration. Degradation of BPA could lead to the formation of toxic products. In this study, we compare the toxicity of BPA and seven intermediate products of its degradation. The accuracy of three molecular docking programs (Surflex, Autodock, and Autodock Vina) in predicting the binding affinities of selected compounds to human (ERα, ERβ, and ERRγ) and zebrafish (ERα, ERRγA, and ERRγB) estrogen and estrogen-related receptors was evaluated. The docking experiments showed that 4-isopropylphenol could have similar toxicity to that of BPA due to its high affinity to ERRγ and ERRγB and high octanol-water partitioning coefficient. The least toxic compounds were hydroquinone and phenol. Those compounds as well as BPA were screened in the zebrafish (Danio rerio) embryo test. 4-isopropylphenol had the strongest toxic effect on zebrafish embryos and caused 100% lethality shortly after exposure. BPA caused the delay in development, multiple deformations, and low heartbeats (30 bps), whereas hydroquinone had no impact on the development of the zebrafish embryo. Thus, the results of zebrafish screening are in good agreement with our docking experiment. The molecular docking could be used to screen the toxicity of other xenoestrogens and their products of degradation.

  12. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... toxicity screening test. 799.9355 Section 799.9355 Protection of Environment ENVIRONMENTAL PROTECTION... AND MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9355 TSCA reproduction/developmental toxicity screening test. (a) Scope—(1) Applicability. This section is intended to meet testing...

  13. 40 CFR 799.9355 - TSCA reproduction/developmental toxicity screening test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... toxicity screening test. 799.9355 Section 799.9355 Protection of Environment ENVIRONMENTAL PROTECTION... AND MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9355 TSCA reproduction/developmental toxicity screening test. (a) Scope—(1) Applicability. This section is intended to meet testing...

  14. Priority screening of toxic chemicals and industry sectors in the U.S. toxics release inventory: a comparison of the life cycle impact-based and risk-based assessment tools developed by U.S. EPA.

    PubMed

    Lim, Seong-Rin; Lam, Carl W; Schoenung, Julie M

    2011-09-01

    Life Cycle Impact Assessment (LCIA) and Risk Assessment (RA) employ different approaches to evaluate toxic impact potential for their own general applications. LCIA is often used to evaluate toxicity potentials for corporate environmental management and RA is often used to evaluate a risk score for environmental policy in government. This study evaluates the cancer, non-cancer, and ecotoxicity potentials and risk scores of chemicals and industry sectors in the United States on the basis of the LCIA- and RA-based tools developed by U.S. EPA, and compares the priority screening of toxic chemicals and industry sectors identified with each method to examine whether the LCIA- and RA-based results lead to the same prioritization schemes. The Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) is applied as an LCIA-based screening approach with a focus on air and water emissions, and the Risk-Screening Environmental Indicator (RSEI) is applied in equivalent fashion as an RA-based screening approach. The U.S. Toxic Release Inventory is used as the dataset for this analysis, because of its general applicability to a comprehensive list of chemical substances and industry sectors. Overall, the TRACI and RSEI results do not agree with each other in part due to the unavailability of characterization factors and toxic scores for select substances, but primarily because of their different evaluation approaches. Therefore, TRACI and RSEI should be used together both to support a more comprehensive and robust approach to screening of chemicals for environmental management and policy and to highlight substances that are found to be of concern from both perspectives. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hvastkovs, Eli, G.; Schenkman, John B.; Rusling, James, F.

    2012-07-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography-mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates.

  16. Toxicity Screening of the ToxCast Chemical Library Using a Zebrafish Developmental Assay

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the U.S. Environmental Protection Agency, the toxicity of the 320 ToxCast™ Phase I chemicals were assessed using a vertebrate screen of developmental toxicity. Zebrafish embryos/larvae (Danio rerio) were exp...

  17. The ToxCast Pathway Database for Identifying Toxicity Signatures and Potential Modes of Action from Chemical Screening Data

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), through its ToxCast program, is developing predictive toxicity approaches that will use in vitro high-throughput screening (HTS), high-content screening (HCS) and toxicogenomic data to predict in vivo toxicity phenotypes. There are ...

  18. Toxico-Cheminformatics: New and Expanding Public Resources to Support Chemical Toxicity Assessments

    EPA Science Inventory

    High-throughput screening (HTS) technologies, along with efforts to improve public access to chemical toxicity information resources and to systematize older toxicity studies, have the potential to significantly improve information gathering efforts for chemical assessments and p...

  19. Phytochemical screening and toxicity studies on the methanol extract of the seeds of moringa oleifera.

    PubMed

    Ajibade, Temitayo Olabisi; Arowolo, Ruben; Olayemi, Funsho Olakitike

    2013-05-07

    The seeds of Moringa oleifera were collected, air-dried, pulverized, and subjected to cold extraction with methanol. The methanol extract was screened phytochemically for its chemical components and used for acute and sub-acute toxicity studies in rats. The phytochemical screening revealed the presence of saponins, tannins, terpenes, alkaloids, flavonoids, carbohydrates, and cardiac glycosides but the absence of anthraquinones. Although signs of acute toxicity were observed at a dose of 4,000 mg kg-1 in the acute toxicity test, and mortality was recorded at 5,000 mg kg-1, no adverse effect was observed at concentrations lower than 3,000 mg kg-1. The median lethal dose of the extract in rat was 3,873 mg kg-1. Sub-acute administration of the seed extract caused significant (p<0.05) increase in the levels of alanine and aspartate transferases (ALT and AST), and significant (p<0.05) decrease in weight of experimental rats, at 1,600 mg kg-1. The study concludes that the extract of seeds of M. oleifera is safe both for medicinal and nutritional uses.

  20. Metabolic Toxicity Screening Using Electrochemiluminescence Arrays Coupled with Enzyme-DNA Biocolloid Reactors and Liquid Chromatography–Mass Spectrometry

    PubMed Central

    Hvastkovs, Eli G.; Schenkman, John B.; Rusling, James F.

    2012-01-01

    New chemicals or drugs must be guaranteed safe before they can be marketed. Despite widespread use of bioassay panels for toxicity prediction, products that are toxic to a subset of the population often are not identified until clinical trials. This article reviews new array methodologies based on enzyme/DNA films that form and identify DNA-reactive metabolites that are indicators of potentially genotoxic species. This molecularly based methodology is designed in a rapid screening array that utilizes electrochemiluminescence (ECL) to detect metabolite-DNA reactions, as well as biocolloid reactors that provide the DNA adducts and metabolites for liquid chromatography–mass spectrometry (LC-MS) analysis. ECL arrays provide rapid toxicity screening, and the biocolloid reactor LC-MS approach provides a valuable follow-up on structure, identification, and formation rates of DNA adducts for toxicity hits from the ECL array screening. Specific examples using this strategy are discussed. Integration of high-throughput versions of these toxicity-screening methods with existing drug toxicity bioassays should allow for better human toxicity prediction as well as more informed decision making regarding new chemical and drug candidates. PMID:22482786

  1. Making Waves: New Developments in Toxicology With the Zebrafish.

    PubMed

    Horzmann, Katharine A; Freeman, Jennifer L

    2018-05-01

    The laboratory zebrafish (Danio rerio) is now an accepted model in toxicologic research. The zebrafish model fills a niche between in vitro models and mammalian biomedical models. The developmental characteristics of the small fish are strategically being used by scientists to study topics ranging from high-throughput toxicity screens to toxicity in multi- and transgenerational studies. High-throughput technology has increased the utility of zebrafish embryonic toxicity assays in screening of chemicals and drugs for toxicity or effect. Additionally, advances in behavioral characterization and experimental methodology allow for observation of recognizable phenotypic changes after xenobiotic exposure. Future directions in zebrafish research are predicted to take advantage of CRISPR-Cas9 genome editing methods in creating models of disease and interrogating mechanisms of action with fluorescent reporters or tagged proteins. Zebrafish can also model developmental origins of health and disease and multi- and transgenerational toxicity. The zebrafish has many advantages as a toxicologic model and new methodologies and areas of study continue to expand the usefulness and application of the zebrafish.

  2. Tandem screening of toxic compounds on GFP-labeled bacteria and cancer cells in microtiter plates.

    PubMed

    Montoya, Jessica; Varela-Ramirez, Armando; Shanmugasundram, Muthian; Martinez, Luis E; Primm, Todd P; Aguilera, Renato J

    2005-09-23

    A 96-well fluorescence-based assay has been developed for the rapid screening of potential cytotoxic and bacteriocidal compounds. The assay is based on detection of green fluorescent protein (GFP) in HeLa human carcinoma cells as well as gram negative (Escherichia coli) and gram positive bacteria (Mycobacterium avium). Addition of a toxic compound to the GFP marked cells resulted in the loss of the GFP fluorescence which was readily detected by fluorometry. Thirty-nine distinct naphthoquinone derivatives were screened and several of these compounds were found to be toxic to all cell types. Apart from differences in overall toxicity, two general types of toxic compounds were detected, those that exhibited toxicity to two or all three of the cell types and those that were primarily toxic to the HeLa cells. Our results demonstrate that the parallel screening of both eukaryotic and prokaryotic cells is not only feasible and reproducible but also cost effective.

  3. Validation of Screening Assays for Developmental Toxicity: An Exposure-Based Approach

    EPA Science Inventory

    There continue to be widespread efforts to develop assay methods for developmental toxicity that are shorter than the traditional Segment 2 study and use fewer or no animals. As with any alternative test method, novel developmental toxicity assays must be validated by evaluating ...

  4. Pesticide Toxicity Index: a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms

    USGS Publications Warehouse

    Nowell, Lisa H.; Norman, Julia E.; Moran, Patrick W.; Martin, Jeffrey D.; Stone, Wesley W.

    2014-01-01

    Pesticide mixtures are common in streams with agricultural or urban influence in the watershed. The Pesticide Toxicity Index (PTI) is a screening tool to assess potential aquatic toxicity of complex pesticide mixtures by combining measures of pesticide exposure and acute toxicity in an additive toxic-unit model. The PTI is determined separately for fish, cladocerans, and benthic invertebrates. This study expands the number of pesticides and degradates included in previous editions of the PTI from 124 to 492 pesticides and degradates, and includes two types of PTI for use in different applications, depending on study objectives. The Median-PTI was calculated from median toxicity values for individual pesticides, so is robust to outliers and is appropriate for comparing relative potential toxicity among samples, sites, or pesticides. The Sensitive-PTI uses the 5th percentile of available toxicity values, so is a more sensitive screening-level indicator of potential toxicity. PTI predictions of toxicity in environmental samples were tested using data aggregated from published field studies that measured pesticide concentrations and toxicity to Ceriodaphnia dubia in ambient stream water. C. dubia survival was reduced to ≤ 50% of controls in 44% of samples with Median-PTI values of 0.1–1, and to 0% in 96% of samples with Median-PTI values > 1. The PTI is a relative, but quantitative, indicator of potential toxicity that can be used to evaluate relationships between pesticide exposure and biological condition.

  5. QSAR models for reproductive toxicity and endocrine disruption in regulatory use – a preliminary investigation†

    PubMed Central

    Jensen, G.E.; Niemelä, J.R.; Wedebye, E.B.; Nikolov, N.G.

    2008-01-01

    A special challenge in the new European Union chemicals legislation, Registration, Evaluation and Authorisation of Chemicals, will be the toxicological evaluation of chemicals for reproductive toxicity. Use of valid quantitative structure–activity relationships (QSARs) is a possibility under the new legislation. This article focuses on a screening exercise by use of our own and commercial QSAR models for identification of possible reproductive toxicants. Three QSAR models were used for reproductive toxicity for the endpoints teratogenic risk to humans (based on animal tests, clinical data and epidemiological human studies), dominant lethal effect in rodents (in vivo) and Drosophila melanogaster sex-linked recessive lethal effect. A structure set of 57,014 European Inventory of Existing Chemical Substances (EINECS) chemicals was screened. A total of 5240 EINECS chemicals, corresponding to 9.2%, were predicted as reproductive toxicants by one or more of the models. The chemicals predicted positive for reproductive toxicity will be submitted to the Danish Environmental Protection Agency as scientific input for a future updated advisory classification list with advisory classifications for concern for humans owing to possible developmental toxic effects: Xn (Harmful) and R63 (Possible risk of harm to the unborn child). The chemicals were also screened in three models for endocrine disruption. PMID:19061080

  6. Cross-species extrapolation of toxicity information using the ...

    EPA Pesticide Factsheets

    In the United States, the Endocrine Disruptor Screening Program (EDSP) was established to identify chemicals that may lead to adverse effects via perturbation of the endocrine system (i.e., estrogen, androgen, and thyroid hormone systems). In the mid-1990s the EDSP adopted a two tiered approach for screening chemicals that applied standardized in vitro and in vivo toxicity tests. The Tier 1 screening assays were designed to identify substances that have the potential of interacting with the endocrine system and Tier 2 testing was developed to identify adverse effects caused by the chemical, with documentation of dose-response relationships. While this tiered approach was effective in identifying possible endocrine disrupting chemicals, the cost and time to screen a single chemical was significant. Therefore, in 2012 the EDSP proposed a transition to make greater use of computational approaches (in silico) and high-throughput screening (HTS; in vitro) assays to more rapidly and cost-efficiently screen chemicals for endocrine activity. This transition from resource intensive, primarily in vivo, screening methods to more pathway-based approaches aligns with the simultaneously occurring transformation in toxicity testing termed “Toxicity Testing in the 21st Century” which shifts the focus to the disturbance of the biological pathway predictive of the observable toxic effects. An example of such screening tools include the US Environmental Protection Agency’s

  7. Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data

    EPA Science Inventory

    EPA's ToxCast™ project is profiling the in vitro bioactivity of chemicals to assess pathway-level and cell-based signatures that correlate with observed in vivo toxicity. We hypothesized that developmental toxicity in guideline animal studies captured in the ToxRefDB database wou...

  8. NEW PUBLIC DATA AND INTERNET RESOURCES ...

    EPA Pesticide Factsheets

    High-throughput screening (HTS) technologies, along with efforts to improve public access to chemical toxicity information resources and to systematize older toxicity studies, have the potential to significantly improve predictive capabilities in toxicology. Internet Resource

  9. Identification of compounds protective against G93A-SOD1 toxicity for the treatment of amyotrophic lateral sclerosis.

    PubMed

    Benmohamed, Radhia; Arvanites, Anthony C; Kim, Jinho; Ferrante, Robert J; Silverman, Richard B; Morimoto, Richard I; Kirsch, Donald R

    2011-03-01

    The underlying cause of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder, remains unknown. However, there is strong evidence that one pathophysiological mechanism, toxic protein misfolding and/or aggregation, may trigger motor neuron dysfunction and loss. Since the clinical and pathological features of sporadic and familial ALS are indistinguishable, all forms of the disease may be better understood and ultimately treated by studying pathogenesis and therapy in models expressing mutant forms of SOD1. We developed a cellular model in which cell death depended on the expression of G93A-SOD1, a mutant form of superoxide dismutase found in familial ALS patients that produces toxic protein aggregates. This cellular model was optimized for high throughput screening to identify protective compounds from a >50,000 member chemical library. Three novel chemical scaffolds were selected for further study following screen implementation, counter-screening and secondary testing, including studies with purchased analogs. All three scaffolds blocked SOD1 aggregation in high content screening assays and data on the optimization and further characterization of these compounds will be reported separately. These data suggest that optimization of these chemicals scaffolds may produce therapeutic candidates for ALS patients.

  10. Metabolomics Approach for Toxicity Screening of Volatile Substances

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However, the ch...

  11. Plants used in Guatemala for the treatment of protozoal infections. I. Screening of activity to bacteria, fungi and American trypanosomes of 13 native plants.

    PubMed

    Cáceres, A; López, B; González, S; Berger, I; Tada, I; Maki, J

    1998-10-01

    Extracts were prepared from 13 native plants used for the treatment of protozoal infections. Activity against bacteria and fungi was demonstrated by dilution procedures; Trypanosoma cruzi was evaluated in vitro against epimastigote and trypomastigotes and in vivo against trypomastigotes. In active extracts, toxicity was evaluated by Artemia salina nauplii, oral acute toxicity (1-5 g/kg) and oral and intraperitoneal subacute toxicity in mice (500 mg/kg). From the plants screened, six showed activity (< or = 2 mg/ml) against bacteria, three against yeasts, five against Microsporum gypseum and five against T. cruzi in vitro and/or in vivo. In vitro and in vivo activity was demonstrated by Neurolaena lobata and Solanum americanum; in vitro or in vivo activity was shown by Acalypha guatemalensis, Petiveria alliacea and Tridax procumbens. Toxicity studies showed that extracts from S. americanum are toxic to A. salina (aqueous, 160 ppm). None showed acute or oral toxicity to mice; S. americanum showed intraperitoneal subacute toxicity.

  12. National Air Toxics Assessment

    EPA Pesticide Factsheets

    NATA is an ongoing comprehensive evaluation of air toxics in the U.S. As a screening tool, it helps air agencies prioritize pollutants, emission sources and locations of interest for further study to gain a better understanding of risks.

  13. NEW PUBLIC DATA AND INTERNET RESOURCES IMPACTING PREDICTIVE TOXICOLOGY.

    EPA Science Inventory

    High-throughput screening (HTS) technologies, along with efforts to improve public access to chemical toxicity information resources and to systematize older toxicity studies, have the potential to significantly improve predictive capabilities in toxicology.

  14. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...

  15. CHRONIC ZINC SCREENING WATER EFFECT RATIO FOR THE H-12 OUTFALL, SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlin, D.; Looney, B.; Millings, M.

    2009-01-13

    In response to proposed Zn limits for the NPDES outfall H-12, a Zn screening Water Effects Ratio (WER) study was conducted to determine if a full site-specific WER is warranted. Using standard assumptions for relating the lab results to the stream, the screening WER data were consistent with the proposed Zn limit and suggest that a full WER would result in a similar limit. Addition of a humate amendment to the outfall water reduced Zn toxicity, but the toxicity reduction was relatively small and unlikely to impact proposed Zn limits. The screening WER data indicated that the time and expensemore » required to perform a full WER for Zn is not warranted.« less

  16. In vivo analgesic activity, toxicity and phytochemical screening of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine.

    PubMed

    Alvarenga, Felipe Queiroz; Mota, Bárbara C F; Leite, Marcel N; Fonseca, Jaciara M S; Oliveira, Dario A; Royo, Vanessa de Andrade; e Silva, Márcio L A; Esperandim, Viviane; Borges, Alexandre; Laurentiz, Rosangela S

    2013-10-28

    Psidium cattleianum Sabine is extensively used in Brazilian traditional medicine to treat several diseases including painful disorders. Aim of the study to investigate the toxicity and the possible analgesic activities of the hydroalcoholic extract from the leaves of Psidium cattleianum Sabine (ELPCS), to support its use in folk medicine. To screen the major phytochemical constituents of this extract and evaluate their antioxidant activity. ELPCS was assessed for its antioxidant activity using the DPPH model. Its analgesic activity was examined using mouse models of acetic acid-induced writhing and hot plate paw licking models. The major phytochemical constituents of the extract were screened; their toxicity on LLC-MK2 mammalian cells was evaluated. ELPCS exhibited significant peripheral analgesic activity at doses of 60, 80, 100, 200 and 400mg/kg in mice, but it did not display central analgesic activity and not was toxic to LLC-MK2 cell (LD50>400 µg/mL). The extract exhibited free radical scavenging activity as evidenced by IC50 values (15.9 µg/mL) obtained by the DPPH method. Phytochemical screening detected flavonoids, saponins, cardiac glycosides, anthraquinones, and tannins. The results of the experimental studies proved the analgesic activity of ELPCS and supported the traditional use of this plant. © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Identifying Toxicity Pathways with ToxCast High-Throughput Screening and Applications to Predicting Developmental Toxicity

    EPA Science Inventory

    Results from rodent and non-rodent prenatal developmental toxicity tests for over 300 chemicals have been curated into the relational database ToxRefDB. These same chemicals have been run in concentration-response format through over 500 high-throughput screening assays assessin...

  18. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models.

    PubMed

    Hannan, Shabab B; Dräger, Nina M; Rasse, Tobias M; Voigt, Aaron; Jahn, Thomas R

    2016-04-01

    Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements. © 2016 International Society for Neurochemistry.

  19. Toxico-Cheminformatics: A New Frontier for Predictive Toxicology

    EPA Science Inventory

    The DSSTox database network and efforts to improve public access to chemical toxicity information resources, coupled with high-throughput screening (HTS) data and efforts to systematize legacy toxicity studies, have the potential to significantly improve predictive capabilities i...

  20. Zebrafish Developmental Screening of the ToxCast™ Phase I Chemical Library

    EPA Science Inventory

    Zebrafish (Danio rerio) is an emerging toxicity screening model for both human health and ecology. As part of the Computational Toxicology Research Program of the U.S. EPA, the toxicity of the 309 ToxCast™ Phase I chemicals was assessed using a zebrafish screen for developmental ...

  1. The U.S. EPA's ToxCast Chemical Screening Program and Predictive Modeling of Toxicity

    EPA Science Inventory

    The ToxCast program was developed by the U.S. EPA's National Center for Computational Toxicology to provide cost-effective high-throughput screening for the potential toxicity of thousands of chemicals. Phase I screened 309 compounds in over 500 assays to evaluate concentration-...

  2. Dose response screening of the Toxcast chemical library using a Zebrafish developmental assay

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the U.S. Environmental Protection Agency, the toxicity of the 320 ToxCaspM Phase I chemicals was assessed using a vertebrate screen of developmental toxicity. Zebrafish embryos/larvae (Danio rerio) were expo...

  3. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  4. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  5. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  6. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  7. 40 CFR 799.9365 - TSCA combined repeated dose toxicity study with the reproduction/developmental toxicity screening...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the control and the top dose group for observation of reversibility, persistence or delayed occurrence... toxicity. (2) Dosage. (i) Generally, at least three test groups and a control group should be used. If... administering the test substance, the control group should receive the vehicle in the highest volume used. (ii...

  8. Statistical studies of animal response data from USF toxicity screening test method

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Machado, A. M.

    1978-01-01

    Statistical examination of animal response data obtained using Procedure B of the USF toxicity screening test method indicates that the data deviate only slightly from a normal or Gaussian distribution. This slight departure from normality is not expected to invalidate conclusions based on theoretical statistics. Comparison of times to staggering, convulsions, collapse, and death as endpoints shows that time to death appears to be the most reliable endpoint because it offers the lowest probability of missed observations and premature judgements.

  9. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  10. Recent Developments in Toxico-Cheminformatics: A New Frontier for Predictive Toxicology

    EPA Science Inventory

    Efforts to improve public access to chemical toxicity information resources, coupled with new high-throughput screening (HTS) data and efforts to systematize legacy toxicity studies, have the potential to significantly improve predictive capabilities in toxicology. Important rec...

  11. Toxicity Screening of the ToxCast Phase II Chemical Library Using a Zebrafish Developmental Assay (SOT)

    EPA Science Inventory

    As part of the chemical screening and prioritization research program of the US EPA, the ToxCast Phase II chemicals were assessed using a vertebrate screen for developmental toxicity. Zebrafish embryos (Danio rerio) were exposed in 96-well plates from late-blastula stage (6hr pos...

  12. Screening of Compounds Toxicity against Human Monocytic cell line-THP-1 by Flow Cytometry

    PubMed Central

    Pick, Neora; Cameron, Scott; Arad, Dorit

    2004-01-01

    The worldwide rapid increase in bacterial resistance to numerous antibiotics requires on-going development of new drugs to enter the market. As the development of new antibiotics is lengthy and costly, early monitoring of compound's toxicity is essential in the development of novel agents. Our interest is in a rapid, simple, high throughput screening method to assess cytotoxicity induced by potential agents. Some intracellular pathogens, such as Mycobacterium tuberculosis primary site of infection is human alveolar macrophages. Thus, evaluation of candidate drugs for macrophage toxicity is crucial. Protocols for high throughput drug toxicity screening of macrophages using flow cytometry are lacking in the literature. For this application we modified a preexisting technique, propidium iodide (PI) exclusion staining and utilized it for rapid toxicity tests. Samples were prepared in 96 well plates and analyzed by flow cytometry, which allowed for rapid, inexpensive and precise assessment of compound's toxicity associated with cell death. PMID:15472722

  13. A new approach for the assessment of the toxicity of polyphenol-rich compounds with the use of high content screening analysis

    PubMed Central

    Golanski, Jacek; Lukasiak, Magdalena; Redzynia, Malgorzata; Dastych, Jaroslaw; Watala, Cezary

    2017-01-01

    The toxicity of in vitro tested compounds is usually evaluated based on AC50 values calculated from dose-response curves. However, there is a large group of compounds for which a standard four-parametric sigmoid curve fitting may be inappropriate for estimating AC50. In the present study, 22 polyphenol-rich compounds were prioritized from the least to the most toxic based on the total area under and over the dose-response curves (AUOC) in relation to baselines. The studied compounds were ranked across three key cell indicators (mitochondrial membrane potential, cell membrane integrity and nuclear size) in a panel of five cell lines (HepG2, Caco-2, A549, HMEC-1, and 3T3), using a high-content screening (HCS) assay. Regarding AUOC score values, naringin (negative control) was the least toxic phenolic compound. Aronox, spent hop extract and kale leaf extract had very low cytotoxicity with regard to mitochondrial membrane potential and cell membrane integrity, as well as nuclear morphology (nuclear area). Kaempferol (positive control) exerted strong cytotoxic effects on the mitochondrial and nuclear compartments. Extracts from buckthorn bark, walnut husk and hollyhock flower were highly cytotoxic with regard to the mitochondrion and cell membrane, but not the nucleus. We propose an alternative algorithm for the screening of a large number of agents and for identifying those with adverse cellular effects at an early stage of drug discovery, using high content screening analysis. This approach should be recommended for series of compounds producing a non-sigmoidal cell response, and for agents with unknown toxicity or mechanisms of action. PMID:28662177

  14. SURVEY OF HALONITROMETHANES AND IODOMETHANES: DISINFECTION BY-PRODUCTS IN DRINKING WATER

    EPA Science Inventory

    This project involves the study of two classes of chemicals, halonitromethanes and iodomethanes, which have been found to be drinking water disinfection by-products (DBPs). Both have been predicted to have toxicity. In toxicity screening tests, bromonitromethanes have been shown ...

  15. Non-invasive carboxyhemoglobin monitoring: screening emergency medical services patients for carbon monoxide exposure.

    PubMed

    Nilson, Douglas; Partridge, Robert; Suner, Selim; Jay, Gregory

    2010-01-01

    Carbon monoxide (CO) toxicity is a significant health problem. The use of non-invasive pulse CO-oximetry screening in the emergency department has demonstrated that the rapid screening of numerous individuals for CO toxicity is simple and capable of identifying occult cases of CO toxicity. The objective of this study was to extend the use of this handheld device to the prehospital arena, assess carboxyhemoglobin (SpCO) levels in emergency medical services (EMS) patients, and correlate these levels with clinical and demographic data. This was a retrospective, observational, chart review of adult patients transported to hospital emergency departments by urban fire department EMS ambulances during a six-week period. Each ambulance used a non-invasive pulse CO-oximeter (Rad-57, Masimo Inc.) to record patients' COHb concentrations (SpCO) along with the standard EMS assessment data. Spearman's Rank Correlation tests and Student's t-tests were used to analyze the data and calculate relationships between SpCO and other variables (age, gender, respiratory rate, heart rate, mean arterial pressure, and oxygen saturation measured by pulse oximetry). A total of 36.4% of the patients transported during the study had SpCO documented. Of the 1,017 adults included in this group, 11 (1.1%) had an SpCO >15%. There was no correlation between SpCO and heart rate, ventilatory rate, mean arterial pressure, and oxygen saturation. Screening for CO toxicity in the EMS setting is possible, and may aid in the early detection and treatment of CO-poisoned patients.

  16. Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds.

    PubMed

    Racz, Peter I; Wildwater, Marjolein; Rooseboom, Martijn; Kerkhof, Engelien; Pieters, Raymond; Yebra-Pimentel, Elena Santidrian; Dirks, Ron P; Spaink, Herman P; Smulders, Chantal; Whale, Graham F

    2017-10-01

    To enable selection of novel chemicals for new processes, there is a recognized need for alternative toxicity screening assays to assess potential risks to man and the environment. For human health hazard assessment these screening assays need to be translational to humans, have high throughput capability, and from an animal welfare perspective be harmonized with the principles of the 3Rs (Reduction, Refinement, Replacement). In the area of toxicology a number of cell culture systems are available but while these have some predictive value, they are not ideally suited for the prediction of developmental and reproductive toxicology (DART). This is because they often lack biotransformation capacity, multicellular or multi- organ complexity, for example, the hypothalamus pituitary gonad (HPG) axis and the complete life cycle of whole organisms. To try to overcome some of these limitations in this study, we have used Caenorhabditis elegans (nematode) and Danio rerio embryos (zebrafish) as alternative assays for DART hazard assessment of some candidate chemicals being considered for a new commercial application. Nematodes exposed to Piperazine and one of the analogs tested showed a slight delay in development compared to untreated animals but only at high concentrations and with Piperazine as the most sensitive compound. Total brood size of the nematodes was also reduced primarily by Piperazine and one of the analogs. In zebrafish Piperazine and analogs showed developmental delays. Malformations and mortality in individual fish were also scored. Significant malformations were most sensitively identified with Piperazine, significant mortality was only observed in Piperazine and only at the higest dose. Thus, Piperazine seemed the most toxic compound for both nematodes and zebrafish. The results of the nematode and zebrafish studies were in alignment with data obtained from conventional mammalian toxicity studies indicating that these have potential as developmental toxicity screening systems. The results of these studies also provided reassurance that none of the Piperazines tested are likely to have any significant developmental and/or reproductive toxicity issues to humans when used in their commercial applications. Copyright © 2017. Published by Elsevier Ltd.

  17. Interspecies quantitative structure-activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties.

    PubMed

    Furuhama, A; Hasunuma, K; Aoki, Y

    2015-01-01

    In addition to molecular structure profiles, descriptors based on physicochemical properties are useful for explaining the eco-toxicities of chemicals. In a previous study we reported that a criterion based on the difference between the partition coefficient (log POW) and distribution coefficient (log D) values of chemicals enabled us to identify aromatic amines and phenols for which interspecies relationships with strong correlations could be developed for fish-daphnid and algal-daphnid toxicities. The chemicals that met the log D-based criterion were expected to have similar toxicity mechanisms (related to membrane penetration). Here, we investigated the applicability of log D-based criteria to the eco-toxicity of other kinds of chemicals, including aliphatic compounds. At pH 10, use of a log POW - log D > 0 criterion and omission of outliers resulted in the selection of more than 100 chemicals whose acute fish toxicities or algal growth inhibition toxicities were almost equal to their acute daphnid toxicities. The advantage of log D-based criteria is that they allow for simple, rapid screening and prioritizing of chemicals. However, inorganic molecules and chemicals containing certain structural elements cannot be evaluated, because calculated log D values are unavailable.

  18. Using enzyme bioassays as a rapid screen for metal toxicity

    USGS Publications Warehouse

    Choate, LaDonna M.; Ross, P.E.; Blumenstein, E. P.; Ranville, James F.

    2005-01-01

    Mine tailings piles and abandoned mine soils are often contaminated by a suite of toxic metals, which were released in the mining process. Traditionally, toxicity of such areas has been determined by numerous chemical methods including the Toxicity Characteristic Leachate Procedure (TCLP) and traditional toxicity tests using organisms such as the cladoceran Ceriodaphnia dubia. Such tests can be expensive and time-consuming. Enzymatic bioassays may provide an easier, less costly, and more time-effective toxicity screening procedure for mine tailings and abandoned mine soil leachates. This study evaluated the commercially available MetPLATE™ enzymatic toxicity assay test kit. The MetPLATE™ assay uses a modified strain of Escherichia coli bacteria as the test organism. Toxicity is defined by the activity of β-galactosidase enzyme which is monitored colorometrically with a 96-well spectrophotometer. The study used water samples collected from North Fork Clear Creek, a mining influenced water (MIW) located in Colorado. A great benefit to using the MetPLATE™ assay over the TCLP is that it shows actual toxicity of a sample by taking into account the bioavailability of the toxicants rather than simply measuring the metal concentration present. Benefits of the MetPLATE™ assay over the use of C. dubia include greatly reduced time for the testing process (∼2 hours), a more continuous variable due to a greater number of organisms present in each sample (100,000+), and the elimination of need to maintain a culture of organisms at all times.

  19. STP Position Paper: Recommended Practices for Sampling and Processing the Nervous System (Brain, Spinal Cord, Nerve, and Eye) during Nonclinical General Toxicity Studies

    EPA Science Inventory

    The Society of Toxicologic Pathology charged a Nervous System Sampling Working Group with devising recommended practices to routinely screen the central and peripheral nervous systems in Good Laboratory Practice-type nonclinical general toxicity studies. Brains should be trimmed ...

  20. Urine Multi-drug Screening with GC-MS or LC-MS-MS Using SALLE-hybrid PPT/SPE.

    PubMed

    Lee, Junhui; Park, Jiwon; Go, Ahra; Moon, Heesung; Kim, Sujin; Jung, Sohee; Jeong, Wonjoon; Chung, Heesun

    2018-05-14

    To intoxicated patients in the emergency room, toxicological analysis can be considerably helpful for identifying the involved toxicants. In order to develop a urine multi-drug screening (UmDS) method, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS-MS) were used to determine targeted and unknown toxicants in urine. A GC-MS method in scan mode was validated for selectivity, limit of detection (LOD) and recovery. An LC-MS-MS multiple reaction monitoring (MRM) method was validated for lower LOD, recovery and matrix effect. The results of the screening analysis were compared with patient medical records to check the reliability of the screen. Urine samples collected from an emergency room were extracted through a combination of salting-out assisted liquid-liquid extraction (SALLE) and hybrid protein precipitation/solid phase extraction (hybrid PPT/SPE) plates and examined by GC-MS and LC-MS-MS. GC-MS analysis was performed as unknown drug screen and LC-MS-MS analysis was conducted as targeted drug screen. After analysis by GC-MS, a library search was conducted using an in-house library established with the automated mass spectral deconvolution and identification system (AMDISTM). LC-MS-MS used Cliquid®2.0 software for data processing and acquisition in MRM mode. An UmDS method by GC-MS and LC-MS-MS was developed by using a SALLE-hybrid PPT/SPE and in-house library. The results of UmDS by GC-MS and LC-MS-MS showed that toxicants could be identified from 185 emergency room patient samples containing unknown toxicants. Zolpidem, acetaminophen and citalopram were the most frequently encountered drugs in emergency room patients. The UmDS analysis developed in this study can be used effectively to detect toxic substances in a short time. Hence, it could be utilized in clinical and forensic toxicology practices.

  1. Adaptation of High-Throughput Screening in Drug Discovery—Toxicological Screening Tests

    PubMed Central

    Szymański, Paweł; Markowicz, Magdalena; Mikiciuk-Olasik, Elżbieta

    2012-01-01

    High-throughput screening (HTS) is one of the newest techniques used in drug design and may be applied in biological and chemical sciences. This method, due to utilization of robots, detectors and software that regulate the whole process, enables a series of analyses of chemical compounds to be conducted in a short time and the affinity of biological structures which is often related to toxicity to be defined. Since 2008 we have implemented the automation of this technique and as a consequence, the possibility to examine 100,000 compounds per day. The HTS method is more frequently utilized in conjunction with analytical techniques such as NMR or coupled methods e.g., LC-MS/MS. Series of studies enable the establishment of the rate of affinity for targets or the level of toxicity. Moreover, researches are conducted concerning conjugation of nanoparticles with drugs and the determination of the toxicity of such structures. For these purposes there are frequently used cell lines. Due to the miniaturization of all systems, it is possible to examine the compound’s toxicity having only 1–3 mg of this compound. Determination of cytotoxicity in this way leads to a significant decrease in the expenditure and to a reduction in the length of the study. PMID:22312262

  2. The toxicological properties of petroleum gases.

    PubMed

    McKee, Richard H; Herron, Deborah; Saperstein, Mark; Podhasky, Paula; Hoffman, Gary M; Roberts, Linda

    2014-01-01

    To characterize the toxicological hazards of petroleum gases, 90-day inhalation toxicity (Organization for Economic Cooperation and Development [OECD] 413) and developmental toxicity (OECD 414) tests were conducted with liquefied propane gas (LPG) at concentrations of 1000, 5000, or 10,000 ppm. A micronucleus test (OECD 474) of LPG was also conducted. No systemic or developmental effects were observed; the overall no observed adverse effect concentration (NOAEC) was 10,000 ppm. Further, there was no effect of LPG exposure at levels up to 10,000 ppm on micronucleus induction and no evidence of bone marrow toxicity. Other alkane gases (ethane, propane, n-butane, and isobutane) were then evaluated in combined repeated exposure studies with reproduction/development toxicity screening tests (OECD 422). There were no toxicologically important changes in parameters relating to systemic toxicity or neurotoxicity for any of these gases at concentrations ranging from 9000 to 16,000 ppm. There was no evidence of effects on developmental or reproductive toxicity in the studies of ethane, propane, or n-butane at the highest concentrations tested. However, there was a reduction in mating in the high-exposure group (9000 ppm) of the isobutane study, which although not significantly different was outside the range previously observed in the testing laboratory. Assuming the reduction in mating to have been toxicologically significant, the NOAEC for the isobutane reproductive toxicity screening test was 3000 ppm (7125 mg/m(3)). A method is proposed by which the toxicity of any of the 106 complex petroleum gas streams can be estimated from its composition.

  3. The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening

    EPA Pesticide Factsheets

    The Texas-Indiana Virtual STAR Center: Zebrafish Models for Developmental Toxicity Screening (Presented by Maria Bondesson Bolin, Ph.D, University of Houston, Center for Nuclear Receptors and Cell Signaling) (3/22/2012)

  4. Screening tests in toxicity or drug effect studies with use of centrifichem general-purpose spectrophotometeric analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, B.; Bercz, J.P.

    CentrifiChem System 400 general-purpose spectrophotometric analyzer which can process simultaneously 30 samples and reads the reactions within milliseconds was used for toxicity studies. Organic and inorganic chemicals were screened for inhibitory action of the hydrolytic activity of sarcoplasmic reticulum (SR) Ca,Mg-ATPase and that of the sacrolemmal (SL) Na,K-ATPase, or mitochondrial ATPase (M). SR and SL were prepared from rabbit muscles, Na,K-ATPase from pig kidneys, M from pig hearts. Pseudosubstrates of paranitrophenyl phosphate and 2,4-dinitrophenyl phosphate, both proven high energy phosphate substitutes for ATPase coupled ion transfer were used. The reaction rates were followed spectrophotometrically at 405 nm measuring the accumulationmore » of yellow nitrophenolate ions. The reported calcium transfer coupling ratio to hydrolysis of 2:1 was ascertained with use of /sup 45/Ca in case of SR. Inhibition constants (pI) on SR, SL, and M for the pseudosubstrate hydrolysis will be given for over 20 chemicals tested. The applicability of the system to general toxicity testing and to general cardio-effective drug screening will be presented.« less

  5. TOWARDS REFINED USE OF TOXICITY DATA IN ...

    EPA Pesticide Factsheets

    In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants. In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.

  6. Studies on the Behavior of Larval Zebrafish for Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  7. ADMET in silico modelling: towards prediction paradise?

    PubMed

    van de Waterbeemd, Han; Gifford, Eric

    2003-03-01

    Following studies in the late 1990s that indicated that poor pharmacokinetics and toxicity were important causes of costly late-stage failures in drug development, it has become widely appreciated that these areas should be considered as early as possible in the drug discovery process. However, in recent years, combinatorial chemistry and high-throughput screening have significantly increased the number of compounds for which early data on absorption, distribution, metabolism, excretion (ADME) and toxicity (T) are needed, which has in turn driven the development of a variety of medium and high-throughput in vitro ADMET screens. Here, we describe how in silico approaches will further increase our ability to predict and model the most relevant pharmacokinetic, metabolic and toxicity endpoints, thereby accelerating the drug discovery process.

  8. A high-throughput screen for mitochondrial function reveals known and novel mitochondrial toxicants in a library of environmental agents

    PubMed Central

    Datta, Sandipan; Sahdeo, Sunil; Gray, Jennifer A.; Morriseau, Christophe; Hammock, Bruce D.; Cortopassi, Gino

    2016-01-01

    Mitochondrial toxicity is emerging as a major mechanism underlying serious human health consequences. This work performs a high-throughput screen (HTS) of 176 environmental chemicals for mitochondrial toxicity utilizing a previously reported biosensor platform. This established HTS confirmed known mitochondrial toxins and identified novel mitotochondrial uncouplers such as 2, 2′-Methylenebis(4-chlorophenol) and pentachlorophenol. It also identified a mitochondrial ‘structure activity relationship’ (SAR) in the sense that multiple environmental chlorophenols are mitochondrial inhibitors and uncouplers. This study demonstrates proof-of-concept that a mitochondrial HTS assay detects known and novel environmental mitotoxicants, and could be used to quickly evaluate human health risks from mitotoxicants in the environment. PMID:27717841

  9. High Throughput Screening For Hazard and Risk of Environmental Contaminants

    EPA Science Inventory

    High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...

  10. SeqAPASS: Sequence alignment to predict across-species susceptibility

    EPA Science Inventory

    Efforts to shift the toxicity testing paradigm from whole organism studies to those focused on the initiation of toxicity and relevant pathways have led to increased utilization of in vitro and in silico methods. Hence the emergence of high through-put screening (HTS) programs, s...

  11. Pathway Profiling and Tissue Modeling of Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  12. VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...

  13. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...

  14. Toxicity studies of a polyurethane rigid foam

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Schneider, J. E.

    1977-01-01

    Relative toxicity tests were performed on a polyurethane foam containing a trimethylopropane-based polyol and an organophosphate flame retardant. The routine screening procedure involved the exposure of four Swiss albino male mice in a 4.2 liter hemispherical chamber to the products generated by pyrolyzing a 1.00 g sample at a heating rate of 40 deg C/min from 200 to 800 C in the absence of air flow. In addition to the routine screening, experiments were performed with a very rapid rise to 800 C, with nominal 16 and 48 ml/sec air flow and with varying sample rates. No unusual toxicity was observed with either gradual or rapid pyrolysis to 800 C. Convulsions and seizures similar to those previously reported were observed when the materials were essentially flash pyrolyzed at 800 C in the presence of air flow, and the toxicity appeared unusual because of low sample weights required to produce death.

  15. Evaluation of the smoke density chamber as an apparatus for fire toxicity screening tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Labossiere, L. A.

    1976-01-01

    The smoke density chamber is perhaps the most widely used apparatus for smoke measurements. Because of its availability, it has been proposed as an apparatus for evaluating fire toxicity. The standard apparatus and procedure were not found suitable for toxicity screening tests using laboratory animals, because not enough materials of interest produced animal mortality or even incapacitation under standard test conditions. With modifications, the chamber offers greater promise as a screening tool, but other tests specifically designed to measure relative toxicity may be more cost-effective. Where one-dimensional heat flux is a requirement, the chamber is the most suitable apparatus available. It should be improved in regard to visibility of animals and ease of cleaning.

  16. High-throughput screening, predictive modeling and computational embryology

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to profile thousands of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition to projects worldwide,...

  17. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. An evaluation of inorganic toxicity reference values for use in assessing hazards to American robins (Turdus migratorius)

    USGS Publications Warehouse

    Beyer, W. Nelson; Sample, Bradley E.

    2017-01-01

    When performing screening-level and baseline risk assessments, assessors usually compare estimated exposures of wildlife receptor species with toxicity reference values (TRVs). We modeled the exposure of American robins (Turdus migratorius) to 10 elements (As, Cd, Cr, Cu, Hg, Mn, Pb, Se, Zn, and V) in spring and early summer, a time when earthworms are the preferred prey. We calculated soil benchmarks associated with possible toxic effects to these robins from 6 sets of published TRVs. Several of the resulting soil screening-level benchmarks were inconsistent with each other and less than soil background concentrations. Accordingly, we examined the derivations of the TRVs as a possible source of error. In the case of V, a particularly toxic chemical compound (ammonium vanadate) containing V, not normally present in soil, had been used to estimate a TRV. In the cases of Zn and Cu, use of uncertainty values of 10 in estimating TRVs led to implausibly low soil screening values. In the case of Pb, a TRV was calculated from studies demonstrating reductions in egg production in Japanese quail (Coturnix coturnix japonica) exposed to Pb concentrations well below than those causing toxic effects in other species of birds. The results on quail, which were replicated in additional trials, are probably not applicable to other, unrelated species, although we acknowledge that only a small fraction of all species of birds has been tested. These examples underscore the importance of understanding the derivation and relevance of TRVs before selecting them for use in screening or in ecological risk assessment.

  19. CHEMICAL PRIORITIZATION FOR DEVELOPMENTAL TOXICITY USING LITERATURE MINING-BASED WEIGHTING OF TOXCAST ASSAYS

    EPA Science Inventory

    Defining a predictive model of developmental toxicity from in vitro and high-throughput screening (HTS) assays can be limited by the availability of developmental defects data. ToxRefDB (www.epa.gov/ncct/todrefdb) was built from animal studies on data-rich environmental chemicals...

  20. Compound toxicity screening and structure-activity relationship modeling in Escherichia coli.

    PubMed

    Planson, Anne-Gaëlle; Carbonell, Pablo; Paillard, Elodie; Pollet, Nicolas; Faulon, Jean-Loup

    2012-03-01

    Synthetic biology and metabolic engineering are used to develop new strategies for producing valuable compounds ranging from therapeutics to biofuels in engineered microorganisms. When developing methods for high-titer production cells, toxicity is an important element to consider. Indeed the production rate can be limited due to toxic intermediates or accumulation of byproducts of the heterologous biosynthetic pathway of interest. Conversely, highly toxic molecules are desired when designing antimicrobials. Compound toxicity in bacteria plays a major role in metabolic engineering as well as in the development of new antibacterial agents. Here, we screened a diversified chemical library of 166 compounds for toxicity in Escherichia coli. The dataset was built using a clustering algorithm maximizing the chemical diversity in the library. The resulting assay data was used to develop a toxicity predictor that we used to assess the toxicity of metabolites throughout the metabolome. This new tool for predicting toxicity can thus be used for fine-tuning heterologous expression and can be integrated in a computational-framework for metabolic pathway design. Many structure-activity relationship tools have been developed for toxicology studies in eukaryotes [Valerio (2009), Toxicol Appl Pharmacol, 241(3): 356-370], however, to the best of our knowledge we present here the first E. coli toxicity prediction web server based on QSAR models (EcoliTox server: http://www.issb.genopole.fr/∼faulon/EcoliTox.php). Copyright © 2011 Wiley Periodicals, Inc.

  1. TOXICITY AND BIODEGRADABILITY SCREENING OF NONIONIC SURFACTANTS USING SEDIMENT-DERIVED METHANOGENIC CONSORTIA. (R825404)

    EPA Science Inventory

    Abstract

    The objective of this study was to screen and select biologically-compatible surfactants for subsequent use in enhancing the bioavailability and reductive dechlorination of sorbed-phase chlorinated organic contaminants. Sixteen surfactants commonly used in sur...

  2. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing*

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to screen for developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral par...

  3. Picking Cell Lines for High-Throughput Transcriptomic Toxicity Screening (SOT)

    EPA Science Inventory

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captu...

  4. Implementation of recommendations for the screening of hydroxychloroquine retinopathy: poor adherence of rheumatologists and ophthalmologists.

    PubMed

    Shulman, S; Wollman, J; Brikman, S; Padova, H; Elkayam, O; Paran, D

    2017-03-01

    The American Academy of Ophthalmology published in 2011 revised recommendations regarding screening for hydroxychloroquine (HCQ) toxicity. We aimed to assess implementation of these recommendations by rheumatologists and ophthalmologists. A questionnaire regarding screening practices for HCQ toxicity was distributed among all members of the Israeli societies of Rheumatology and Ophthalmology. A total of 128 physicians responded to the questionnaire (rheumatologists: 60, ophthalmologists: 68). Only 5% of the rheumatologists and 15% of the ophthalmologists are aware of ophthalmologic assessments recommended for baseline and follow-up evaluation. When an abnormal test is detected, even if inappropriate for HCQ toxicity screening, 60% of the responders recommend cessation of therapy. Only 13% of the responders recommend first follow-up after five years for patients without risk factors; the remainder recommend more frequent testing. Ninety-six percent of the responders are not aware of all of the known risk factors for HCQ toxicity. Use of inappropriate tests to detect HCQ retinal toxicity may lead to unnecessary cessation of beneficial treatment with risk of disease flare, while lack of consideration of risk factors may put patients at risk for toxicity. These results emphasize the importance of implementing the recommendations to ensure safe and effective use of this drug.

  5. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System@@

    EPA Science Inventory

    In 2007, the National Research Council envisioned the need for inexpensive, rapid, cell-based toxicity testing methods relevant to human health. in vitro screening approaches have largely addressed these problems by using robotics and automation. However, the challenge is that ma...

  6. FIELD SCREENING METHODS FOR HAZARDOUS WASTES AND TOXIC CHEMICALS

    EPA Science Inventory

    The purpose of this document is to present the technical papers that were presented at the Second International Symposium on Field Screening Methods for Hazardous Wastes and Toxic Chemicals. ixty platform presentations were made and included in one of ten sessions: hemical sensor...

  7. Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)

    EPA Science Inventory

    Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...

  8. Integration of Dosimetry, Exposure and High-Throughput Screening Data in Chemical Toxicity Assessment

    EPA Science Inventory

    High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, c...

  9. Recent Developments in Toxico-Cheminformatics; Supporting a New Paradigm for Predictive Toxicology

    EPA Science Inventory

    EPA's National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through the harnessing of legacy toxicity data, creation of data linkages, and generation of new high-content and high-thoughput screening d...

  10. Advances in Toxico-Cheminformatics: Supporting a New Paradigm for Predictive Toxicology

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through the harnessing of legacy toxicity data, creation of data linkages, and generation of new high-throughput screening (HTS) data. The D...

  11. Tox21 Enricher: Web-based Chemical/Biological Functional Annotation Analysis Tool Based on Tox21 Toxicity Screening Platform.

    PubMed

    Hur, Junguk; Danes, Larson; Hsieh, Jui-Hua; McGregor, Brett; Krout, Dakota; Auerbach, Scott

    2018-05-01

    The US Toxicology Testing in the 21st Century (Tox21) program was established to develop more efficient and human-relevant toxicity assessment methods. The Tox21 program screens >10,000 chemicals using quantitative high-throughput screening (qHTS) of assays that measure effects on toxicity pathways. To date, more than 70 assays have yielded >12 million concentration-response curves. The patterns of activity across assays can be used to define similarity between chemicals. Assuming chemicals with similar activity profiles have similar toxicological properties, we may infer toxicological properties based on its neighbourhood. One approach to inference is chemical/biological annotation enrichment analysis. Here, we present Tox21 Enricher, a web-based chemical annotation enrichment tool for the Tox21 toxicity screening platform. Tox21 Enricher identifies over-represented chemical/biological annotations among lists of chemicals (neighbourhoods), facilitating the identification of the toxicological properties and mechanisms in the chemical set. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of Chemical-induced Changes in Proliferation and Apoptosis in Human and Mouse Neuroprogenitor Cells.***

    EPA Science Inventory

    There is a need to develop rapid and efficient models to screen chemicals for their potential to cause developmental neurotoxicity. Use of in vitro neuronal models, including human cells, is one approach that allows for timely, cost-effective toxicity screening. The present study...

  13. RAZOR: A Phase II Open Randomized Trial of Screening Plus Goserelin and Raloxifene Versus Screening Alone in Premenopausal Women at Increased Risk of Breast Cancer.

    PubMed

    Howell, Anthony; Ashcroft, Linda; Fallowfield, Lesley; Eccles, Diana M; Eeles, Rosalind A; Ward, Ann; Brentnall, Adam R; Dowsett, Mitchell; Cuzick, Jack M; Greenhalgh, Rosemary; Boggis, Caroline; Motion, Jamie; Sergeant, Jamie C; Adams, Judith; Evans, D Gareth

    2018-01-01

    Background: Ovarian suppression in premenopausal women is known to reduce breast cancer risk. This study aimed to assess uptake and compliance with ovarian suppression using the luteinizing hormone releasing hormone (LHRH) analogue, goserelin, with add-back raloxifene, as a potential regimen for breast cancer prevention. Methods: Women at ≥30% lifetime risk breast cancer were approached and randomized to mammographic screening alone (C-Control) or screening in addition to monthly subcutaneous injections of 3.6 mg goserelin and continuous 60 mg raloxifene daily orally (T-Treated) for 2 years. The primary endpoint was therapy adherence. Secondary endpoints were toxicity/quality of life, change in bone density, and mammographic density. Results: A total of 75/950 (7.9%) women approached agreed to randomization. In the T-arm, 20 of 38 (52%) of women completed the 2-year period of study compared with the C-arm (27/37, 73.0%). Dropouts were related to toxicity but also the wish to have established risk-reducing procedures and proven chemoprevention. As relatively few women completed the study, data are limited, but those in the T-arm reported significant increases in toxicity and sexual problems, no change in anxiety, and less cancer worry. Lumbar spine bone density declined by 7.0% and visually assessed mammographic density by 4.7% over the 2-year treatment period. Conclusions: Uptake is somewhat lower than comparable studies with tamoxifen for prevention with higher dropout rates. Raloxifene may preserve bone density, but reduction in mammographic density reversed after treatment was completed. Impact: This study indicates that breast cancer risk reduction may be possible using LHRH agonists, but reducing toxicity and preventing bone changes would make this a more attractive option. Cancer Epidemiol Biomarkers Prev; 27(1); 58-66. ©2017 AACR . ©2017 American Association for Cancer Research.

  14. Predicting Developmental Toxicity of ToxCast Phase I Chemicals Using Human Embryonic Stem Cells and Metabolomics

    EPA Science Inventory

    EPA’s ToxRefDB contains prenatal guideline study data from rats and rabbits for over 240 chemicals that overlap with the ToxCast in vitro high throughput screening project. A subset of these compounds were tested in Stemina Biomarker Discovery's developmental toxicity platform, a...

  15. Economic benefits of using adaptive predictive models of reproductive toxicity in the context of a tiered testing program

    EPA Science Inventory

    A predictive model of reproductive toxicity, as observed in rat multigeneration reproductive (MGR) studies, was previously developed using high throughput screening (HTS) data from 36 in vitro assays mapped to 8 genes or gene-sets from Phase I of USEPA ToxCast research program, t...

  16. Introduction to Toxicity and Risk Assessment for Project Chemists

    DTIC Science & Technology

    2012-03-27

    Toxicity of Hexavalent Chromium  External review complete  EPA will wait until studies underway on carcinogenic mode of action are complete to...finalize the assessment  NJ and Cal values for hex chrome 16 Risk-Based Screening Levels Resident Soil (mg/kg) Resident Water Use (µg/L) DRAFT 0.04

  17. In vitro screening of 50 highly prescribed drugs for thiol adduct formation--comparison of potential for drug-induced toxicity and extent of adduct formation.

    PubMed

    Gan, Jinping; Ruan, Qian; He, Bing; Zhu, Mingshe; Shyu, Wen C; Humphreys, W Griffith

    2009-04-01

    Reactive metabolite formation has been associated with drug-induced liver, skin, and hematopoietic toxicity of many drugs that has resulted in serious clinical toxicity, leading to clinical development failure, black box warnings, or, in some cases, withdrawal from the market. In vitro and in vivo screening for reactive metabolite formation has been proposed and widely adopted in the pharmaceutical industry with the aim of minimizing the property and thus the risk of drug-induced toxicity (DIT). One of the most common screening methods is in vitro thiol trapping of reactive metabolites. Although it is well-documented that many hepatotoxins form thiol adducts, there is no literature describing the adduct formation potential of safer drugs that are widely used. The objective of this study was to quantitatively assess the thiol adduct formation potential of 50 drugs (10 associated with DIT and 40 not associated) and document apparent differences in adduct formation between toxic and safer drugs. Dansyl glutathione was used as a trapping agent to aid the quantitation of adducts following in vitro incubation of drugs with human liver microsomes in the presence and absence of NADPH. Metabolic turnover of these drugs was also monitored by LC/UV. Overall, 15 out of the 50 drugs screened formed detectable levels of thiol adducts. There were general trends toward more positive findings in the DIT group vs the non-DIT group. These trends became more marked when the relative amount of thiol adducts was taken into account and improved further when dose and total daily reactive metabolite burdens were considered. In conclusion, there appears to be a general trend between the extent of thiol adduct formation and the potential for DIT, which would support the preclinical measurement and minimization of the property through screening of thiol adduct formation as part of an overall discovery optimization paradigm.

  18. The Toxicant-Target Paradigm for Toxicity Screening – Pharmacophore Based Constraints

    EPA Science Inventory

    There is a compelling need to develop information for the screening and prioritization of the health and environmental effects of large numbers of man-made chemicals. Knowledge of the potential pathways for activity provides a rational basis for the preliminary evaluation of ris...

  19. Screening for Developmental Neurotoxicity in Zebrafish Larvae: Assessment of Behavior and Malformations.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. As part of this approach, it is important to be able to separate overt toxicity (Le., malformed larvae) from the more specific neurotoxic...

  20. Developmental neurotoxicity testing in vitro: Models for assessing chemical effects on neurite outgrowth

    EPA Science Inventory

    In vitro models may be useful for the rapid toxicological screening of large numbers of chemicals for their potential to produce toxicity. Such screening could facilitate prioritization of resources needed for in vivo toxicity testing towards those chemicals most likely to resul...

  1. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  2. An evaluation of inorganic toxicity reference values for use in assessing hazards to American robins (Turdus migratorius).

    PubMed

    Beyer, W Nelson; Sample, Bradley E

    2017-03-01

    When performing screening-level and baseline risk assessments, assessors usually compare estimated exposures of wildlife receptor species with toxicity reference values (TRVs). We modeled the exposure of American robins (Turdus migratorius) to 10 elements (As, Cd, Cr, Cu, Hg, Mn, Pb, Se, Zn, and V) in spring and early summer, a time when earthworms are the preferred prey. We calculated soil benchmarks associated with possible toxic effects to these robins from 6 sets of published TRVs. Several of the resulting soil screening-level benchmarks were inconsistent with each other and less than soil background concentrations. Accordingly, we examined the derivations of the TRVs as a possible source of error. In the case of V, a particularly toxic chemical compound (ammonium vanadate) containing V, not normally present in soil, had been used to estimate a TRV. In the cases of Zn and Cu, use of uncertainty values of 10 in estimating TRVs led to implausibly low soil screening values. In the case of Pb, a TRV was calculated from studies demonstrating reductions in egg production in Japanese quail (Coturnix coturnix japonica) exposed to Pb concentrations well below than those causing toxic effects in other species of birds. The results on quail, which were replicated in additional trials, are probably not applicable to other, unrelated species, although we acknowledge that only a small fraction of all species of birds has been tested. These examples underscore the importance of understanding the derivation and relevance of TRVs before selecting them for use in screening or in ecological risk assessment. Integr Environ Assess Manag 2017;13:352-359. © 2016 SETAC. © 2016 SETAC.

  3. Phytochemical Screening and Acute Toxicity of Aqueous Extract of Leaves of Conocarpus erectus Linnaeus in Swiss Albino Mice.

    PubMed

    Nascimento, Dayane K D; Souza, Ivone A DE; Oliveira, Antônio F M DE; Barbosa, Mariana O; Santana, Marllon A N; Pereira, Daniel F; Lira, Eduardo C; Vieira, Jeymesson R C

    2016-09-01

    Mangroves represent areas of high biological productivity and it is a region rich in bioactive substances used in medicine production. Conocarpus erectus (Combretaceae) known as button mangrove is one of the species found in mangroves and it is used in folk medicine in the treatment of anemia, catarrh, conjunctivitis, diabetes, diarrhea, fever, gonorrhea, headache, hemorrhage, orchitis, rash, bumps and syphilis. The present study aimed to investigate the acute toxicity of aqueous extract of leaves of C. erectus in Swiss albino mice. The plant material was collected in Vila Velha mangroves, located in Itamaracá (PE). The material was subjected to a phytochemical screening where extractive protocols to identify majority molecules present in leaves were used. The evaluation of acute toxicity of aqueous extract of C. erectus followed the model of Acute Toxicity Class based on OECD 423 Guideline, 2001. The majority molecules were identified: flavonoids, tannins and saponins. The LD50 was estimated at 2,000 mg/kg bw. Therefore, the aqueous extract showed low acute toxicity classified in category 5.

  4. The U.S. Environmental Protection Agency strategic plan for evaluating the toxicity of chemicals.

    PubMed

    Firestone, Michael; Kavlock, Robert; Zenick, Hal; Kramer, Melissa

    2010-02-01

    In the 2007 report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences envisioned a major transition in toxicity testing from cumbersome, expensive, and lengthy in vivo testing with qualitative endpoints, to in vitro robotic high-throughput screening with mechanistic quantitative parameters. Recognizing the need for agencies to partner and collaborate to ensure global harmonization, standardization, quality control and information sharing, the U.S. Environmental Protection Agency is leading by example and has established an intra-agency Future of Toxicity Testing Workgroup (FTTW). This workgroup has produced an ambitious blueprint for incorporating this new scientific paradigm to change the way chemicals are screened and evaluated for toxicity. Four main components of this strategy are discussed, as follows: (1) the impact and benefits of various types of regulatory activities, (2) chemical screening and prioritization, (3) toxicity pathway-based risk assessment, and (4) institutional transition. The new paradigm is predicated on the discovery of molecular perturbation pathways at the in vitro level that predict adverse health effects from xenobiotics exposure, and then extrapolating those events to the tissue, organ, or whole organisms by computational models. Research on these pathways will be integrated and compiled using the latest technology with the cooperation of global agencies, industry, and other stakeholders. The net result will be that chemical toxicity screening will become more efficient and cost-effective, include real-world exposure assessments, and eliminate currently used uncertainty factors.

  5. A possible early sign of hydroxychloroquine macular toxicity.

    PubMed

    Brandao, Livia M; Palmowski-Wolfe, Anja M

    2016-02-01

    Hydroxychloroquine (HCQ) has a low risk of retinal toxicity which increases dramatically with a cumulative dose of >1000 g. Here we report a case of HCQ macular toxicity presentation in a young patient with a cumulative dose of 438 g. A 15-year-old female started attending annual consultations for retinal toxicity screening in our clinic after 3 years of HCQ treatment for juvenile idiopathic dermatomyositis. She had been diagnosed at age 12 and had been on hydroxychloroquine 200 mg/day, cyclosporin 150 mg/day and vitamin D3 since. Screening consultations included: complete ophthalmologic examination, automated perimetry (AP, M Standard, Octopus 101, Haag-Streit), multifocal electroretinogram (VERIS 6.06™, FMSIII), optical coherence tomography (OCT, fast macular protocol, Cirrus SD-OCT, Carl Zeiss), fundus autofluorescence imaging (Spectralis OCT, Heidelberg Engineering Inc.) and color testing (Farnsworth-Panel-D-15). After 5 years of treatment, AP demonstrated reduced sensibility in only one extra-foveal point in each eye (p < 0.2). Even though other exams showed no alteration and the cumulative dose was only around 353 g, consultations were increased to every 6 months. After 2-year follow-up, that is, 7 years of HCQ, a bilateral paracentral macula thinning was evident on OCT, suggestive of bull's eye maculopathy. However, the retinal pigmented epithelium appeared intact and AP was completely normal in both eyes. Further evaluation with ganglion cell analysis (GCA = ganglion cell + inner plexiform layer, Cirrus SD-OCT, Carl Zeiss) showed a concentric thinning of this layer in the same area. Although daily and cumulative doses were still under the high toxicity risk parameters, HCQ was suspended. At a follow-up 1 year later, visual acuity was 20/16 without any further changes in OCT or on any other exam. This may be the first case report of insidious bull's eye maculopathy exclusively identified using OCT thickness analysis, in a patient in whom both cumulative and daily dosages were under the high-risk parameters for screening and the averages reported in studies. As ganglion cell analysis has only recently become available, further studies are needed to understand toxicity mechanisms and maybe review screening recommendations.

  6. Development and Application of In Vitro Models for Screening Drugs and Environmental Chemicals that Predict Toxicity in Animals and Humans

    EPA Pesticide Factsheets

    Development and Application of In Vitro Models for Screening Drugs and Environmental Chemicals that Predict Toxicity in Animals and Humans (Presented by James McKim, Ph.D., DABT, Founder and Chief Science Officer, CeeTox) (5/25/2012)

  7. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  8. Predictive Model of Rat Reproductive Toxicity from ToxCast High Throughput Screening

    EPA Science Inventory

    The EPA ToxCast research program uses high throughput screening for bioactivity profiling and predicting the toxicity of large numbers of chemicals. ToxCast Phase‐I tested 309 well‐characterized chemicals in over 500 assays for a wide range of molecular targets and cellular respo...

  9. A Workflow for Identifying Metabolically Active Chemicals to Complement in vitro Toxicity Screening

    EPA Science Inventory

    The new paradigm of toxicity testing approaches involves rapid screening of thousands of chemicals across hundreds of biological targets through use of in vitro assays. Such assays may lead to false negatives when the complex metabolic processes that render a chemical bioactive i...

  10. Screening for angiogenic inhibitors in zebrafish to evaluate a predictive model for developmental vascular toxicity

    EPA Science Inventory

    Chemically-induced vascular toxicity during embryonic development may cause a wide range of adverse effects. To identify putative vascular disrupting chemicals (pVDCs), a predictive signature was constructed from U.S. EPA ToxCast high-throughput screening (HTS) assays that map to...

  11. Recent Developments in Toxico-Cheminformatics and Progress Towards a New Paradigm for Predictive Toxicology (2)

    EPA Science Inventory

    EPAs National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through harnessing of legacy toxicity data, creation of data linkages, and generation of new in vitro screening data. In association with EPA...

  12. Recent Developments in Toxico-Cheminformatics and Progress Towards a New Paradigm for Predictive Toxicology

    EPA Science Inventory

    EPA’s Computational Toxicology Center is building capabilities to support a new paradigm for toxicity screening and prediction through harnessing of legacy toxicity data, creation of data linkages, and generation of new in vitro screening data. In association with EPA’s ToxCastTM...

  13. A Systematic Strategy for Screening and Application of Specific Biomarkers in Hepatotoxicity Using Metabolomics Combined With ROC Curves and SVMs.

    PubMed

    Li, Yubo; Wang, Lei; Ju, Liang; Deng, Haoyue; Zhang, Zhenzhu; Hou, Zhiguo; Xie, Jiabin; Wang, Yuming; Zhang, Yanjun

    2016-04-01

    Current studies that evaluate toxicity based on metabolomics have primarily focused on the screening of biomarkers while largely neglecting further verification and biomarker applications. For this reason, we used drug-induced hepatotoxicity as an example to establish a systematic strategy for screening specific biomarkers and applied these biomarkers to evaluate whether the drugs have potential hepatotoxicity toxicity. Carbon tetrachloride (5 ml/kg), acetaminophen (1500 mg/kg), and atorvastatin (5 mg/kg) are established as rat hepatotoxicity models. Fifteen common biomarkers were screened by multivariate statistical analysis and integration analysis-based metabolomics data. The receiver operating characteristic curve was used to evaluate the sensitivity and specificity of the biomarkers. We obtained 10 specific biomarker candidates with an area under the curve greater than 0.7. Then, a support vector machine model was established by extracting specific biomarker candidate data from the hepatotoxic drugs and nonhepatotoxic drugs; the accuracy of the model was 94.90% (92.86% sensitivity and 92.59% specificity) and the results demonstrated that those ten biomarkers are specific. 6 drugs were used to predict the hepatotoxicity by the support vector machines model; the prediction results were consistent with the biochemical and histopathological results, demonstrating that the model was reliable. Thus, this support vector machine model can be applied to discriminate the between the hepatic or nonhepatic toxicity of drugs. This approach not only presents a new strategy for screening-specific biomarkers with greater diagnostic significance but also provides a new evaluation pattern for hepatotoxicity, and it will be a highly useful tool in toxicity estimation and disease diagnoses. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy

    PubMed Central

    Oberdörster, Günter; Maynard, Andrew; Donaldson, Ken; Castranova, Vincent; Fitzpatrick, Julie; Ausman, Kevin; Carter, Janet; Karn, Barbara; Kreyling, Wolfgang; Lai, David; Olin, Stephen; Monteiro-Riviere, Nancy; Warheit, David; Yang, Hong

    2005-01-01

    The rapid proliferation of many different engineered nanomaterials (defined as materials designed and produced to have structural features with at least one dimension of 100 nanometers or less) presents a dilemma to regulators regarding hazard identification. The International Life Sciences Institute Research Foundation/Risk Science Institute convened an expert working group to develop a screening strategy for the hazard identification of engineered nanomaterials. The working group report presents the elements of a screening strategy rather than a detailed testing protocol. Based on an evaluation of the limited data currently available, the report presents a broad data gathering strategy applicable to this early stage in the development of a risk assessment process for nanomaterials. Oral, dermal, inhalation, and injection routes of exposure are included recognizing that, depending on use patterns, exposure to nanomaterials may occur by any of these routes. The three key elements of the toxicity screening strategy are: Physicochemical Characteristics, In Vitro Assays (cellular and non-cellular), and In Vivo Assays. There is a strong likelihood that biological activity of nanoparticles will depend on physicochemical parameters not routinely considered in toxicity screening studies. Physicochemical properties that may be important in understanding the toxic effects of test materials include particle size and size distribution, agglomeration state, shape, crystal structure, chemical composition, surface area, surface chemistry, surface charge, and porosity. In vitro techniques allow specific biological and mechanistic pathways to be isolated and tested under controlled conditions, in ways that are not feasible in in vivo tests. Tests are suggested for portal-of-entry toxicity for lungs, skin, and the mucosal membranes, and target organ toxicity for endothelium, blood, spleen, liver, nervous system, heart, and kidney. Non-cellular assessment of nanoparticle durability, protein interactions, complement activation, and pro-oxidant activity is also considered. Tier 1 in vivo assays are proposed for pulmonary, oral, skin and injection exposures, and Tier 2 evaluations for pulmonary exposures are also proposed. Tier 1 evaluations include markers of inflammation, oxidant stress, and cell proliferation in portal-of-entry and selected remote organs and tissues. Tier 2 evaluations for pulmonary exposures could include deposition, translocation, and toxicokinetics and biopersistence studies; effects of multiple exposures; potential effects on the reproductive system, placenta, and fetus; alternative animal models; and mechanistic studies. PMID:16209704

  15. Classification and Dose-Response Characterization of ...

    EPA Pesticide Factsheets

    Thirty years and over a billion of today’s dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data, within the U.S. Environmental Protection Agency’s (EPA) Toxicity Reference Database (ToxRefDB). The source toxicity data in ToxRefDB covers multiple study types, including subchronic, developmental, reproductive, chronic, and cancer studies, resulting in a diverse set of endpoints and toxicities. Novel approaches to chemical classification are performed as a model application of ToxRefDB and as an essential need for highly detailed chemical classifications within the EPA’s ToxCast™ research program. In order to develop predictive models and biological signatures utilizing high-throughput screening (HTS) and in vitro genomic data, endpoints and toxicities must first be identified and globally characterized for ToxCast Phase I chemicals. Secondarily, dose-response characterization within and across toxicity endpoints provide insight into key precursor toxicity events and overall endpoint relevance. Toxicity-based chemical classification and dose-response characterization utilizing ToxRefDB prioritized toxicity endpoints and differentiated toxicity outcomes across a large chemical set.

  16. Retinal toxicity associated with chronic exposure to hydroxychloroquine and its ocular screening. Review.

    PubMed

    Geamănu Pancă, A; Popa-Cherecheanu, A; Marinescu, B; Geamănu, C D; Voinea, L M

    2014-09-15

    Hydroxychloroquine sulfate (HCQ, Plaquenil) is an analogue of chloroquine (CQ), an antimalarial agent, used for the treatment of systemic lupus erythematosus, rheumatoid arthritis and other autoimmune disorders. Its use has been associated with severe retinal toxicity, requiring a discontinuation of therapy. Because it presents potential secondary effects including irreversible maculopathy, knowledge of incidence, risk factors, drug toxicity and protocol screening of the patients it represents important data for the ophthalmologists. Thus, it is imperative that rheumatologists, medical internists and ophthalmologists are aware of the toxicity from hydroxychloroquine they should also be careful to minimize its occurrence and effects.

  17. Screening for Chemical Effects on Neuronal Proliferation and Neurite Outgrowth Using High-Content/High-Throughput Microscopy

    EPA Science Inventory

    The need to develop novel screening methods for developmental neurotoxicity in order to alleviate the demands of cost, time, and animals required for in vivo toxicity studies is well recognized. Accordingly, the U.S. EPA launched the ToxCast research program in 2007 to develop c...

  18. Pluripotent stem cell derived hepatocyte like cells and their potential in toxicity screening.

    PubMed

    Greenhough, Sebastian; Medine, Claire N; Hay, David C

    2010-12-30

    Despite considerable progress in modelling human liver toxicity, the requirement still exists for efficient, predictive and cost effective in vitro models to reduce attrition during drug development. Thousands of compounds fail in this process, with hepatotoxicity being one of the significant causes of failure. The cost of clinical studies is substantial, therefore it is essential that toxicological screening is performed early on in the drug development process. Human hepatocytes represent the gold standard model for evaluating drug toxicity, but are a limited resource. Current alternative models are based on immortalised cell lines and animal tissue, but these are limited by poor function, exhibit species variability and show instability in culture. Pluripotent stem cells are an attractive alternative as they are capable of self-renewal and differentiation to all three germ layers, and thereby represent a potentially inexhaustible source of somatic cells. The differentiation of human embryonic stem cells and induced pluripotent stem cells to functional hepatocyte like cells has recently been reported. Further development of this technology could lead to the scalable production of hepatocyte like cells for liver toxicity screening and clinical therapies. Additionally, induced pluripotent stem cell derived hepatocyte like cells may permit in vitro modelling of gene polymorphisms and genetic diseases. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of different solvents extracts and mode of action of Loktanella spp. Gb03 on toxic dinoflagellate

    NASA Astrophysics Data System (ADS)

    Hameed, Anmar; Usup, Gires; Ahmad, Asmat

    2016-11-01

    This study was aimed to evaluate the algicidal activity of Loktanella sp. Gb-03 bacterial extracts against toxic dinoflagellate, using various polar and non-polar solvents. For this purpose, six different solvent extracts were prepared (i.e. methanol, ethyl acetate, hexane, chloroform, acetonitrile and water). Ratio of 1:100 (v:v) (extract to dinoflagellate culture) of each extract was used for preliminary algicidal activity screening against toxic dinoflagellate Coolia malaynesis. Dinoflagellate cells at the stationary phase (1.0 × 103 cells/ mL) were treated with 1% (v/v) of each extract by using 24-well microplate. The plates were then incubated for 24 hours at dinoflagellate culture condition (under a light intensity of 140 µmol m-2s-1 and 12:12 hours light:dark photoperiod). The result of algicidal activity screening showed that all 6 extracts from Loktanella sp. Gb-03 had different ranges of algicidal activity against the toxic dinoflagellates. Ethyl acetate extract showed the highest activity against C. malaynesis and also other harmful dinoflagellate (Alexandrium sp. Alexandrium leei, Alexandrium affine, Alexandrium tamiyavanichi, Alexandrium tamarense, Gambierdiscus belizeanus, and Ostreopsis). This study was the first to explore the algicidal activity of Loktanella sp. Gb-03 extracts against toxic dinoflagellate with ethyl acetate as the best solvent to extract algicidal active compounds.

  20. Isolation and toxicity test of Bacillus thuringiensis from Sekayu region soil, South Sumatra on Spodopteralitura

    NASA Astrophysics Data System (ADS)

    Afriani, S. R.; Pujiastuti, Y.; Irsan, C.; Damiri, N.; Nugraha, S.; Sembiring, E. R.

    2018-01-01

    This study aimed to obtain bacterial isolates B. thuringiensis potential as a biological control against pests Spodoptera litura. The research was conducted at the Laboratory of Pest and Disease Department, Agricultural Faculty of Sriwijaya University, Campus Inderalaya Ogan Ilir, South Sumatera, from March to June 2017. The study was conducted with survey method and laboratory trial. The results showed that of the 50 soil samples from three villages selected through morphological observation, reaction staining, KOH test, catalase test, producing 13 bacterial isolates. Screening of the 13th toxicity of the isolates suspected B. thuringiensis against S. litura larvae was investigated. Based on the toxicity screening test the following facts were obtained: five isolates ie KJ2M2, KJ3E1, KJ3JB1, KJ3D3 and KJ3D5 were lower toxicity than Dipel, two isolates ie KJ3K4 and KJ3D3 which had the same toxicity to Dipel. Five isolates the KJ3E3, KJ3BW5, KJ3JB5, KJ3D1 and LC2, LC3 known to have effectiveness until the seventh day reached 40%. There was one isolate that is KJ3BW5 which was more effective compared to Dipel as comparison.

  1. Unique Nanoparticle Optical Properties Confound Fluorescent Based Assays Widely Employed in Their In Vitro Toxicity Screening and Ranking

    EPA Science Inventory

    Nanoparticles (NPs) are novel materials having at least one dimension less than 100 nm and display unique physicochemical properties due to their nanoscale size. An emphasis has been placed on developing high throughput screening (HTS) assays to characterize and rank the toxiciti...

  2. New Chemical/Biological Profiling and Informatics Approaches for Exploring Mutagenicity & Carcinogenicity: Updates of EPA ToxCast and Tox21 Programs

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through harnessing of legacy toxicity data, creation of data linkages, and generation of new in vitro screening data. In association with EP...

  3. Studies with the USF/NASA toxicity screening test method - Exercise wheels and oxygen replenishment

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Continuing efforts to improve the University of San Francisco/NASA toxicity screening test method have included the addition of exercise wheels to provide a different measure of incapacitation, and oxygen replenishment to offset any effect of oxygen depletion by the test animals. The addition of exercise wheels limited the number of animals in each test and doubled the required number of tests without any significant improvement in reproducibility. Oxygen replenishment appears to have an effect on survival in the last 5 minutes of the 30-minute test, but the effect is expected to be similar for most materials.

  4. Isolation and characterization of mimosine, 3, 4 DHP and 2, 3 DHP degrading bacteria from a commercial rumen inoculum.

    PubMed

    Derakhshani, Hooman; Corley, Sean W; Al Jassim, Rafat

    2016-05-01

    The presence of the toxic amino acid mimosine in Leucaena leucocephala restricts its use as a protein source for ruminants. Rumen bacteria degrade mimosine to 3,4- and 2,3-dihydroxypyridine (DHP), which remain toxic. Synergistes jonesii is believed to be the main bacterium responsible for degradation of these toxic compounds but other bacteria may also be involved. In this study, a commercial inoculum provided by the Queensland's Department of Agriculture, Fisheries, and Forestry was screened for isolation and characterization of mimosine, 3,4- and 2,3-DHP degrading bacterial strains. A new medium for screening of 2,3-DHP degrading bacteria was developed. Molecular and biochemical approaches used in this study revealed four bacterial isolates - Streptococcus lutetiensis, Clostridium butyricum, Lactobacillus vitulinus, and Butyrivibrio fibrisolvens - to be able to completely degrade mimosine within 7 days of incubation. It was also observed that C. butyricum and L. vitulinus were able to partially degrade 2,3-DHP within 12 days of incubation, while S. lutetiensis, was able to fully degrade both 3,4 and 2,3 DHP. Collectively, we concluded that S. jonesii is not the sole bacterium responsible for detoxification of Leucaena. Comprehensive screening of rumen fluid of cattle grazing on Leucaena pastures is needed to identify additional mimosine-detoxifying bacteria and contribute to development of more effective inoculums to be used by farmers against Leucaena toxicity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Exploration of Bacillus thuringiensis Berl. from soil and screening test its toxicity on insects of Lepidoptera order

    NASA Astrophysics Data System (ADS)

    Astuti, DT; Pujiastuti, Y.; Suparman, SHK; Damiri, N.; Nugraha, S.; Sembiring, ER; Mulawarman

    2018-01-01

    Bacillus thuringiensis is a gram-positive bacterium that produces crystal proteins toxic (ᴕ-endotoxin) specific to the target insect, but is not toxic to humans and non-target organisms. This study aims to explore the origin of the soil bacterium B. thuringiensis sub-district Sekayu, Banyuasin, South Sumatra and toxicity to larvae of lepidoptera. Fifty soil samples were taken from Musi Banyuasin District, namely 15 from Kayuare strip 2, 20 from Kayuare and 15 from Lumpatan. Isolation, characterization, identification and screening test were conducted in the laboratorium of Pest and Disease, Agricultural Faculty, Sriwijaya University. Isolat codes were given based on the area origin of the samples. Results of the study showed that from 50 isolates of bacteria that had been isolated, there were 15 bacterial isolates, characterized by morphology and physiology the same as B. thuringiensis, which has round colonies, white, wrinkled edges, slippery, elevation arise, aerobic and gram-positive. Of the 15 codes that contain positive isolates of B. thuringiensis, we have obtained several isolates of the following codes: KJ2D5, KJ2N1, KJ2N4, KJ2B3, KJ3R1, KJ3R2, KJ3R3, KJ3R5, KJ3J3, KJ3J4, KJ3P1, DLM5, DLKK12, and DLKK23. Results of screening tests on insects of the Lepidoptera Order showed that there were six isolates that had toxic to Plutella xylostella and Spodoptera litura insects, ie bacterial isolate codes DLM5, KJ3R3, KJ3R5, KJ3J4, KJ3P1, and DLKK23.

  6. The sensitivity of relative toxicity rankings by the USF/NASA test method to some test variables

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Labossiere, L. A.; Leon, H. A.; Kourtides, D. A.; Parker, J. A.; Hsu, M.-T. S.

    1976-01-01

    Pyrolysis temperature and the distance between the source and sensor of effluents are two important variables in tests for relative toxicity. Modifications of the USF/NASA toxicity screening test method to increase the upper temperature limit of pyrolysis, reduce the distance between the sample and the test animals, and increase the chamber volume available for animal occupancy, did not significantly alter rankings of relative toxicity of four representative materials. The changes rendered some differences no longer significant, but did not reverse any rankings. The materials studied were cotton, wool, aromatic polyamide, and polybenzimidazole.

  7. [Plant physiological and molecular biological mechanism in response to aluminium toxicity].

    PubMed

    Liu, Qiang; Zheng, Shaojian; Lin, Xianyong

    2004-09-01

    Aluminium toxicity is the major factor limiting crop growth on acid soils, which greatly affects the crop productivity on about 40% cultivated soils of the world and 21% of China. In the past decades, a lot of researches on aluminium toxicity and resistant mechanisms have been doing, and great progress was achieved. This paper dealt with the genetic differences in aluminium tolerance among plants, screening and selecting methods and technologies for identifying aluminium resistance in plants, and physiological and molecular mechanism resistance to aluminium toxicity. Some aspects needed to be further studied were also briefly discussed.

  8. Retinal toxicity associated with chronic exposure to hydroxychloroquine and its ocular screening. Review

    PubMed Central

    Geamănu (Pancă), A; Popa-Cherecheanu, A; Marinescu, B; Geamănu, CD; Voinea, LM

    2014-01-01

    Abstract Hydroxychloroquine sulfate (HCQ, Plaquenil) is an analogue of chloroquine (CQ), an antimalarial agent, used for the treatment of systemic lupus erythematosus, rheumatoid arthritis and other autoimmune disorders. Its use has been associated with severe retinal toxicity, requiring a discontinuation of therapy. Because it presents potential secondary effects including irreversible maculopathy, knowledge of incidence, risk factors, drug toxicity and protocol screening of the patients it represents important data for the ophthalmologists. Thus, it is imperative that rheumatologists, medical internists and ophthalmologists are aware of the toxicity from hydroxychloroquine they should also be careful to minimize its occurrence and effects. PMID:25408748

  9. A systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Sakamuru, Srilatha; Witt, Kristine L.; Beeson, Gyda C.; Shou, Louie; Schnellmann, Rick G.; Beeson, Craig C.; Tice, Raymond R.; Austin, Christopher P.; Xia, Menghang

    2014-01-01

    A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs. PMID:23895456

  10. DSSTOX (DISTRIBUTED STRUCTURE-SEARCHABLE ...

    EPA Pesticide Factsheets

    Distributed Structure-Searchable Toxicity Database Network Major trends affecting public toxicity information resources have the potential to significantly alter the future of predictive toxicology. Chemical toxicity screening is undergoing shifts towards greater use of more fundamental information on gene/protein expression patterns and bioactivity and bioassay profiles, the latter generated with highthroughput screening technologies. Curated, systematically organized, and webaccessible toxicity and biological activity data in association with chemical structures, enabling the integration of diverse data information domains, will fuel the next frontier of advancement for QSAR (quantitative structure-activity relationship) and data mining technologies. The DSSTox project is supporting progress towards these goals on many fronts, promoting the use of formalized and structure-annotated toxicity data models, helping to interface these efforts with QSAR modelers, linking data from diverse sources, and creating a large, quality reviewed, central chemical structure information resource linked to various toxicity data sources

  11. High-throughput Screening of ToxCast™ Phase I Chemicals in a Mouse Embryonic Stem Cell (mESC) Assay Reveals Disruption of Potential Toxicity Pathways

    EPA Science Inventory

    Little information is available regarding the potential for many commercial chemicals to induce developmental toxicity. The mESC Adherent Cell Differentiation and Cytoxicity (ACDC) assay is a high-throughput screen used to close this data gap. Thus, ToxCast™ Phase I chemicals wer...

  12. Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay

    Treesearch

    Yvette M. Karchesy; Rick G. Kelsey; George Constantine; Joseph J. Karchesy

    2016-01-01

    The brine shrimp (Artemia salina) bioassay was used to screen 211 methanol extracts from 128 species of Pacific Northwest plants in search of general cytotoxic activity. Strong toxicity (LC50 < 100 μg/ml) was found for 17 extracts from 13 species, with highest activity observed for Angelica arguta...

  13. High-Density Real-Time PCR-Based in Vivo Toxicogenomic Screen to Predict Organ-Specific Toxicity

    PubMed Central

    Fabian, Gabriella; Farago, Nora; Feher, Liliana Z.; Nagy, Lajos I.; Kulin, Sandor; Kitajka, Klara; Bito, Tamas; Tubak, Vilmos; Katona, Robert L.; Tiszlavicz, Laszlo; Puskas, Laszlo G.

    2011-01-01

    Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment. PMID:22016648

  14. Understanding the toxicological potential of aerosol organic compounds using informatics based screening

    NASA Astrophysics Data System (ADS)

    Topping, David; Decesari, Stefano; Bassan, Arianna; Pavan, Manuela; Ciacci, Andrea

    2016-04-01

    Exposure to atmospheric particulate matter is responsible for both short-term and long-term adverse health effects. So far, all efforts spent in achieving a systematic epidemiological evidence of specific aerosol compounds determining the overall aerosol toxicity were unsuccessful. The results of the epidemiological studies apparently conflict with the laboratory toxicological analyses which have highlighted very different chemical and toxicological potentials for speciated aerosol compounds. Speciation remains a problem, especially for organic compounds: it is impossible to conduct screening on all possible molecular species. At the same time, research on toxic compounds risks to be biased towards the already known compounds, such as PAHs and dioxins. In this study we present results from an initial assessment of the use of in silico methods (i.e. (Q)SAR, read-across) to predict toxicity of atmospheric organic compounds including evaluation of applicability of a variety of popular tools (e.g. OECD QSAR Toolbox) for selected endpoints (e.g. genotoxicity). Compounds are categorised based on the need of new experimental data for the development of in silico approaches for toxicity prediction covering this specific chemical space, namely the atmospheric aerosols. Whilst only an initial investigation, we present recommendations for continuation of this work.

  15. Humanizing the zebrafish liver shifts drug metabolic profiles and improves pharmacokinetics of CYP3A4 substrates.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Ng, Ashley S; Goh, Wei Huang; McGinnis, Claudia; Fowler, Stephen; Carney, Tom J; Wang, Haishan; Ingham, Phillip W

    2017-03-01

    Understanding and predicting whether new drug candidates will be safe in the clinic is a critical hurdle in pharmaceutical development, that relies in part on absorption, distribution, metabolism, excretion and toxicology studies in vivo. Zebrafish is a relatively new model system for drug metabolism and toxicity studies, offering whole organism screening coupled with small size and potential for high-throughput screening. Through toxicity and absorption analyses of a number of drugs, we find that zebrafish is generally predictive of drug toxicity, although assay outcomes are influenced by drug lipophilicity which alters drug uptake. In addition, liver microsome assays reveal specific differences in metabolism of compounds between human and zebrafish livers, likely resulting from the divergence of the cytochrome P450 superfamily between species. To reflect human metabolism more accurately, we generated a transgenic "humanized" zebrafish line that expresses the major human phase I detoxifying enzyme, CYP3A4, in the liver. Here, we show that this humanized line shows an elevated metabolism of CYP3A4-specific substrates compared to wild-type zebrafish. The generation of this first described humanized zebrafish liver suggests such approaches can enhance the accuracy of the zebrafish model for toxicity prediction.

  16. SCREENING FOR TOXIC INDUSTRIAL CHEMICALS USING SEMIPERMEABLE MEMBRANE DEVICES WITH RAPID TOXICITY ASSAYS

    EPA Science Inventory

    A time-integrated sampling device interfaced with two toxicity-based assays is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethylsulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  17. Review: Endogenously Produced Volatiles for In Vitro Toxicity Testing Using Cell Lines

    EPA Science Inventory

    Due to the approximately 86,000 chemicals registered under the Toxic Substances Control Act and increasing ethical concerns regarding animal testing, it is not economically or technically feasible to screen every registered chemical for toxicity using animal-based toxicity assays...

  18. Exposure Science for Chemical Prioritization and Toxicity Testing

    EPA Science Inventory

    Currently, a significant research effort is underway to apply new technologies to screen and prioritize chemicals for toxicity testing as well as to improve understanding of toxicity pathways (Dix et al. 2007, Toxicol Sci; NRC, 2007, Toxicity Testing in the 21st Century; Collins ...

  19. THERMOREGULATION AND ITS INFLUENCE ON TOXICITY ASSESSMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Christopher J.; Spencer, Pamela J.; Hotchkiss, Jon

    2008-02-28

    The thermoregulatory system of laboratory rodents is susceptible to a variety of chemical toxicants. Because temperature directly affects the reaction of virtually all biological processes, it is critical to consider how changes in the thermoregulatory response to a toxicant may affect physiological, behavioral, and pathological endpoints. Researchers in industry and government laboratories are often faced with addressing how changes in body temperature of their experimental subjects may affect the outcome of a particular toxicity test and/or screening panel. However, many toxicologists are either unaware of the importance or ignore the potential impact of a toxic-induced change in body temperature. Thismore » paper endeavors to summarize the importance of thermoregulation in the study of toxicology and propose recommendations for thermometry that researchers may utilize in their toxicological studies.« less

  20. A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis

    PubMed Central

    Timm, David M.; Chen, Jianbo; Sing, David; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Raphael, Robert M.; Dehghani, Mehdi; Rosenblatt, Kevin P.; Killian, T. C.; Tseng, Hubert; Souza, Glauco R.

    2013-01-01

    There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures. PMID:24141454

  1. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens.

    PubMed

    Morgens, David W; Wainberg, Michael; Boyle, Evan A; Ursu, Oana; Araya, Carlos L; Tsui, C Kimberly; Haney, Michael S; Hess, Gaelen T; Han, Kyuho; Jeng, Edwin E; Li, Amy; Snyder, Michael P; Greenleaf, William J; Kundaje, Anshul; Bassik, Michael C

    2017-05-05

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens.

  2. Genome-scale measurement of off-target activity using Cas9 toxicity in high-throughput screens

    PubMed Central

    Morgens, David W.; Wainberg, Michael; Boyle, Evan A.; Ursu, Oana; Araya, Carlos L.; Tsui, C. Kimberly; Haney, Michael S.; Hess, Gaelen T.; Han, Kyuho; Jeng, Edwin E.; Li, Amy; Snyder, Michael P.; Greenleaf, William J.; Kundaje, Anshul; Bassik, Michael C.

    2017-01-01

    CRISPR-Cas9 screens are powerful tools for high-throughput interrogation of genome function, but can be confounded by nuclease-induced toxicity at both on- and off-target sites, likely due to DNA damage. Here, to test potential solutions to this issue, we design and analyse a CRISPR-Cas9 library with 10 variable-length guides per gene and thousands of negative controls targeting non-functional, non-genic regions (termed safe-targeting guides), in addition to non-targeting controls. We find this library has excellent performance in identifying genes affecting growth and sensitivity to the ricin toxin. The safe-targeting guides allow for proper control of toxicity from on-target DNA damage. Using this toxicity as a proxy to measure off-target cutting, we demonstrate with tens of thousands of guides both the nucleotide position-dependent sensitivity to single mismatches and the reduction of off-target cutting using truncated guides. Our results demonstrate a simple strategy for high-throughput evaluation of target specificity and nuclease toxicity in Cas9 screens. PMID:28474669

  3. A Multiplexed High-Content Screening Approach Using the Chromobody Technology to Identify Cell Cycle Modulators in Living Cells.

    PubMed

    Schorpp, Kenji; Rothenaigner, Ina; Maier, Julia; Traenkle, Bjoern; Rothbauer, Ulrich; Hadian, Kamyar

    2016-10-01

    Many screening hits show relatively poor quality regarding later efficacy and safety. Therefore, small-molecule screening efforts shift toward high-content analysis providing more detailed information. Here, we describe a novel screening approach to identify cell cycle modulators with low toxicity by combining the Cell Cycle Chromobody (CCC) technology with the CytoTox-Glo (CTG) cytotoxicity assay. The CCC technology employs intracellularly functional single-domain antibodies coupled to a fluorescent protein (chromobodies) to visualize the cell cycle-dependent redistribution of the proliferating cell nuclear antigen (PCNA) in living cells. This image-based cell cycle analysis was combined with determination of dead-cell protease activity in cell culture supernatants by the CTG assay. We adopted this multiplex approach to high-throughput format and screened 960 Food and Drug Administration (FDA)-approved drugs. By this, we identified nontoxic compounds, which modulate different cell cycle stages, and validated selected hits in diverse cell lines stably expressing CCC. Additionally, we independently validated these hits by flow cytometry as the current state-of-the-art format for cell cycle analysis. This study demonstrates that CCC imaging is a versatile high-content screening approach to identify cell cycle modulators, which can be multiplexed with cytotoxicity assays for early elimination of toxic compounds during screening. © 2016 Society for Laboratory Automation and Screening.

  4. Complex mixtures of dissolved pesticides show potential aquatic toxicity in a synoptic study of Midwestern U.S. streams

    USGS Publications Warehouse

    Nowell, Lisa H.; Moran, Patrick W.; Schmidt, Travis S.; Norman, Julia E.; Nakagaki, Naomi; Shoda, Megan E.; Mahler, Barbara J.; Van Metre, Peter C.; Stone, Wesley W.; Sandstrom, Mark W.; Hladik, Michelle L.

    2018-01-01

    Aquatic organisms in streams are exposed to pesticide mixtures that vary in composition over time in response to changes in flow conditions, pesticide inputs to the stream, and pesticide fate and degradation within the stream. To characterize mixtures of dissolved-phase pesticides and degradates in Midwestern streams, a synoptic study was conducted at 100 streams during May–August 2013. In weekly water samples, 94 pesticides and 89 degradates were detected, with a median of 25 compounds detected per sample and 54 detected per site. In a screening-level assessment using aquatic-life benchmarks and the Pesticide Toxicity Index (PTI), potential effects on fish were unlikely in most streams. For invertebrates, potential chronic toxicity was predicted in 53% of streams, punctuated in 12% of streams by acutely toxic exposures. For aquatic plants, acute but likely reversible effects on biomass were predicted in 75% of streams, with potential longer-term effects on plant communities in 9% of streams. Relatively few pesticides in water—atrazine, acetochlor, metolachlor, imidacloprid, fipronil, organophosphate insecticides, and carbendazim—were predicted to be major contributors to potential toxicity. Agricultural streams had the highest potential for effects on plants, especially in May–June, corresponding to high spring-flush herbicide concentrations. Urban streams had higher detection frequencies and concentrations of insecticides and most fungicides than in agricultural streams, and higher potential for invertebrate toxicity, which peaked during July–August. Toxicity-screening predictions for invertebrates were supported by quantile regressions showing significant associations for the Benthic Invertebrate-PTI and imidacloprid concentrations with invertebrate community metrics for MSQA streams, and by mesocosm toxicity testing with imidacloprid showing effects on invertebrate communities at environmentally relevant concentrations. This study documents the most complex pesticide mixtures yet reported in discrete water samples in the U.S. and, using multiple lines of evidence, predicts that pesticides were potentially toxic to nontarget aquatic life in about half of the sampled streams.

  5. Behavioral Screening for Toxicology | Science Inventory | US ...

    EPA Pesticide Factsheets

    Screening for behavioral toxicity, or neurotoxicity, has been in use for decades; however, only in the past 20 years has this become a standard practice in toxicology. Current screening batteries, such as the functional observational battery (FOB), are derived from protocols used in pharmacology, toxicology, and psychology. Although there is a range of protocols in use today, all focus on detailed observations and specific tests of reflexes and responses. Several neurological functions are typically assessed, including autonomic, neuromuscular, and sensory, as well as levels of activity and excitability. The tests have been shown to be valid in detecting expected effects of known neurotoxicants, and reliable and reproducible whn compared across laboratories. Regardless of the specific protocol used, proper conduct and statistical analyses of the data are critical. Interpretation is based on the information from individual end points as well as the profile, or pattern, of effects observed. As long as continual refinements are made, behavioral screening methods will continue to be important tools with which to protect human health in the future.autonomic function; behavior; behavioral phenotypes; behavioral toxicity; excitability; functional observational battery ; motor activity; mouse; neuromuscular function; positive controls; rat; screening battery ; sensory function Screening for behavioral toxicity, or neurotoxicity, has been in use for decades; how

  6. [Ideas and methods on efficient screening of traditional medicines for anti-osteoporosis activity based on M-Act/Tox integrated evaluation using zebrafish].

    PubMed

    Wang, Mo; Ling, Jie; Chen, Ying; Song, Jie; Sun, E; Shi, Zi-Qi; Feng, Liang; Jia, Xiao-Bin; Wei, Ying-Jie

    2017-11-01

    The increasingly apparent liver injury problems of bone strengthening Chinese medicines have brought challenges for clinical application, and it is necessary to consider both effectiveness and safety in screening anti-osteoporosis Chinese medicines. Metabolic transformation is closely related to drug efficacy and toxicity, so it is significant to comprehensively consider metabolism-action/toxicity(M-Act/Tox) for screening anti-osteoporosis Chinese medicines. The current evaluation models and the number of compounds(including metabolites) severely restrict efficient screening in vivo. By referring to previous relevant research and domestic and abroad literature, zebrafish M-Act/Tox integrative method was put forward for efficiently screening anti-osteoporosis herb medicines, which has organically integrated zebrafish metabolism model, osteoporosis model and toxicity evaluation method. This method can break through the bottleneck and blind spots that trace compositions can't achieve efficient and integrated in vivo evaluation, and realize both efficient and comprehensive screening on anti-osteoporosis traditional medicines based on in vivo process taking both safety and effectiveness into account, which is significant to accelerate discovery of effective and safe innovative traditional Chinese medicines for osteoporosis. Copyright© by the Chinese Pharmaceutical Association.

  7. In honor of the Teratology Society's 50th anniversary: The role of Teratology Society members in the development and evolution of in vivo developmental toxicity test guidelines.

    PubMed

    Tyl, Rochelle W

    2010-06-01

    Members of the Teratology Society (established in 1960) were involved in the first governmental developmental and reproductive toxicity testing guidelines (1966) by FDA following the thalidomide epidemic, followed by other national and international governmental testing guidelines. The Segment II (developmental toxicity) study design, described in rodents and rabbits, has evolved with additional enhanced endpoints and better descriptions, mechanistic insights, range-finding studies, and toxico/pharmacokinetic ADME information (especially for pharmaceuticals). Society members were also involved in the development of the current screening assays and tests for endocrine disruptors (beginning in 1996) and are now involved with developing new testing guidelines (e.g., the extended one-generation protocol), and evaluating the current test guidelines and new initiatives under ILSI/HESI sponsorship. New initiatives include ToxCast from the U.S. EPA to screen, prioritize, and predict toxic chemicals by high throughput and high-content in vitro assays, bioinformation, and modeling to reduce (or eliminate) in vivo whole animal studies. Our Society and its journal have played vital roles in the scientific and regulatory accomplishments in birth defects research over the past 50 years and will continue to do so in the future. Happy 50th anniversary! (c) 2010 Wiley-Liss, Inc.

  8. In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.

    PubMed

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.

  9. The use of the osmole gap as a screening test for the presence of exogenous substances.

    PubMed

    Purssell, Roy A; Lynd, Larry D; Koga, Yoshikata

    2004-01-01

    The rapid and accurate diagnosis of toxic alcohol poisoning due to methanol (methyl alcohol) [MeOH] and ethylene glycol (EG), is paramount in preventing serious adverse outcomes. The quantitative measurement of specific serum levels of these substances using gas chromatography is expensive, time consuming and generally only available at major tertiary-care facilities. Therefore, because these toxic substances are osmotically active and the measurement of serum osmolality is easily performed and more readily available, the presence of an osmole gap (OG) has been adopted as an alternative screening test. By definition, the OG is the difference between the measured serum osmolality determined using the freezing point depression (Osm(m)) and the calculated serum molarity (Mc), which is estimated from the known and readily measurable osmotically active substances in the serum, in particular sodium, urea, glucose, and potassium and ethanol (alcohol). Thus, the OG=Osm(m)-Mc, and an OG above a specific threshold (the threshold of positivity) suggests the presence of unmeasured osmotically active substances, which could be indicative of a toxic exposure. The objectives of this study were to review the principles of evaluating screening tests, the theory behind the OG as a screening test and the literature upon which the adoption of the OG as a screening test has been based. This review revealed that there have been numerous equations derived and proposed for the estimation of the Mc, with the objective of developing empirical evidence of the best equation for the determination of the OG and ultimately the utility of OG as a screening test. However, the methods and statistical analysis employed have generally been inconsistent with recommended guidelines for screening test evaluation and although many equations have been derived, they have not been appropriately validated. Specific evidence of the clinical utility of the OG requires that a threshold of positivity be definitively established, and the sensitivity and specificity of the OG in patients exposed to either EG or MeOH be measured. However, the majority of studies to date have only evaluated the relationship between the Osm(m) (mmol/kg H2O) and the Mc (mmol/L) in patients that have not been exposed to either MeOH or EG. While some studies have evaluated the relationship between the OG and serum ethanol concentration, these findings cannot be extrapolated to the use of the OG to screen for toxic alcohol exposure. This review shows that there has not been an appropriately designed empirical evaluation of the diagnostic utility of the OG and that its clinical utility remains hypothetical, having been theoretically extrapolated from the non-poisoned population.

  10. TOWARDS REFINED USE OF TOXICITY DATA IN STATISTICALLY BASED SAR MODELS FOR DEVELOPMENTAL TOXICITY.

    EPA Science Inventory

    In 2003, an International Life Sciences Institute (ILSI) Working Group examined the potential of statistically based structure-activity relationship (SAR) models for use in screening environmental contaminants for possible developmental toxicants.

  11. Conceptual Framework To Extend Life Cycle Assessment Using Near-Field Human Exposure Modeling and High-Throughput Tools for Chemicals.

    PubMed

    Csiszar, Susan A; Meyer, David E; Dionisio, Kathie L; Egeghy, Peter; Isaacs, Kristin K; Price, Paul S; Scanlon, Kelly A; Tan, Yu-Mei; Thomas, Kent; Vallero, Daniel; Bare, Jane C

    2016-11-01

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products.

  12. EPA’s ToxCast Program for Predicting Toxicity and Prioritizing Chemicals for Further Screening and Testing

    EPA Science Inventory

    Testing of environmental and industrial chemicals for toxicity potential is a daunting task because of the wide range of possible toxicity mechanisms. Although animal testing is one means of achieving broad toxicity coverage, evaluation of large numbers of chemicals is challengin...

  13. Toxicity of selected insecticides applied to western spruce budworm

    Treesearch

    Jacqueline L. Robertson; Nancy L. Gillette; Melvin Look; Barbara A. Lucas; Robert L. Lyon

    1975-01-01

    The contact toxicity of 100 insecticides to last stage larvae of Choristoneura occidentalis Freeman was tested by topical application in a 10-yr series of screening experiments. Pyrethroids were generally the most toxic group of chemicals tested. Compounds more toxic than the standard, mexacarbate, at Ld50 were:...

  14. Rapid Onset of Retinal Toxicity From High-Dose Hydroxychloroquine Given for Cancer Therapy.

    PubMed

    Leung, Loh-Shan B; Neal, Joel W; Wakelee, Heather A; Sequist, Lecia V; Marmor, Michael F

    2015-10-01

    To report rapid onset of retinal toxicity in a series of patients followed on high-dose (1000 mg daily) hydroxychloroquine during an oncologic clinical trial studying hydroxychloroquine with erlotinib for non-small cell lung cancer. Retrospective observational case series. Ophthalmic surveillance was performed on patients in a multicenter clinical trial testing high-dose (1000 mg daily) hydroxychloroquine for advanced non-small cell lung cancer. The US Food & Drug Administration-recommended screening protocol included only visual acuity testing, dilated fundus examination, Amsler grid testing, and color vision testing. In patients seen at Stanford, additional sensitive screening procedures were added at the discretion of the retinal physician: high-resolution spectral-domain optical coherence tomography (OCT), fundus autofluorescence (FAF) imaging, Humphrey visual field (HVF) testing, and multifocal electroretinography (mfERG). Out of the 7 patients having exposure of at least 6 months, 2 developed retinal toxicity (at 11 and 17 months of exposure). Damage was identified by OCT imaging, mfERG testing, and, in 1 case, visual field testing. Fundus autofluorescence imaging remained normal. Neither patient had symptomatic visual acuity loss. These cases show that high doses of hydroxychloroquine can initiate the development of retinal toxicity within 1-2 years. Although synergy with erlotinib is theoretically possible, there are no prior reports of erlotinib-associated retinal toxicity despite over a decade of use in oncology. These results also suggest that sensitive retinal screening tests should be added to ongoing and future clinical trials involving high-dose hydroxychloroquine to improve safety monitoring and preservation of vision. Published by Elsevier Inc.

  15. Research and Development of Hazardous/Toxic Waste Analytical Screening Procedures. Available Field Methods for Rapid Screening of Hazardous Waste Materials at Waste Sites (Class A Poisons).

    DTIC Science & Technology

    1982-01-01

    bromide is listed as a positive interference. Nitric oxide and nitrogen dioxide can be detected by using the Draeger nitrous fumes detector tube. A... fumes exhibit a delay from the time of exposure to the onset of symptoms. This time delay would not be conducive for a rapid field screening test. It...Dangerous when strongly heated, emits highly toxic fumes . THRESHOLD LIMIT VALUE: No information available PHYSIOLOGICAL EFFECTS: A. Intensely irritating to

  16. A Call for Nominations of Quantitative High-Throughput ...

    EPA Pesticide Factsheets

    The National Research Council of the United States National Academies of Science has recently released a document outlining a long-range vision and strategy for transforming toxicity testing from largely whole animal-based testing to one based on in vitro assays. “Toxicity Testing in the 21st Century: A Vision and a Strategy” advises a focus on relevant human toxicity pathway assays. Toxicity pathways are defined in the document as “Cellular response pathways that, when sufficiently perturbed, are expected to result in adverse health effects”. Results of such pathway screens would serve as a filter to drive selection of more specific, targeted testing that will complement and validate the pathway assays. In response to this report, the US EPA has partnered with two NIH organizations, the National Toxicology Program and the NIH Chemical Genomics Center (NCGC), in a program named Tox21. A major goal of this collaboration is to screen chemical libraries consisting of known toxicants, chemicals of environmental and occupational exposure concern, and human pharmaceuticals in cell-based pathway assays. Currently, approximately 3000 compounds (increasing to 9000 by the end of 2009) are being validated and screened in quantitative high-throughput (qHTS) format at the NCGC producing extensive concentration-response data for a diverse set of potential toxicity pathways. The Tox21 collaboration is extremely interested in accessing additional toxicity pathway assa

  17. EXPERIMENTAL MODELS FOR THE STUDY OF ORAL CLEFTS

    EPA Science Inventory

    Toxicology and teratology studies routinely utilize animal models to determine the potential for chemical and physical agents to produce reproductive and developmental toxicity, including birth defects such as cleft palate. The standardized teratology screen typically tests co...

  18. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements

    PubMed Central

    Economou, Anastasios

    2018-01-01

    This work reviews the field of screen-printed electrodes (SPEs) modified with “green” metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of “green” metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned. PMID:29596391

  19. Screen-Printed Electrodes Modified with "Green" Metals for Electrochemical Stripping Analysis of Toxic Elements.

    PubMed

    Economou, Anastasios

    2018-03-29

    This work reviews the field of screen-printed electrodes (SPEs) modified with "green" metals for electrochemical stripping analysis of toxic elements. Electrochemical stripping analysis has been established as a useful trace analysis technique offering many advantages compared to competing optical techniques. Although mercury has been the preferred electrode material for stripping analysis, the toxicity of mercury and the associated legal requirements in its use and disposal have prompted research towards the development of "green" metals as alternative electrode materials. When combined with the screen-printing technology, such environment-friendly metals can lead to disposable sensors for trace metal analysis with excellent operational characteristics. This review focuses on SPEs modified with Au, Bi, Sb, and Sn for stripping analysis of toxic elements. Different modification approaches (electroplating, bulk modification, use of metal precursors, microengineering techniques) are considered and representative applications are described. A developing related field, namely biosensing based on stripping analysis of metallic nanoprobe labels, is also briefly mentioned.

  20. Risk-Screening Environmental Indicators (RSEI)

    EPA Pesticide Factsheets

    EPA's Risk-Screening Environmental Indicators (RSEI) is a geographically-based model that helps policy makers and communities explore data on releases of toxic substances from industrial facilities reporting to EPA??s Toxics Release Inventory (TRI). By analyzing TRI information together with simplified risk factors, such as the amount of chemical released, its fate and transport through the environment, each chemical??s relative toxicity, and the number of people potentially exposed, RSEI calculates a numeric score, which is designed to only be compared to other scores calculated by RSEI. Because it is designed as a screening-level model, RSEI uses worst-case assumptions about toxicity and potential exposure where data are lacking, and also uses simplifying assumptions to reduce the complexity of the calculations. A more refined assessment is required before any conclusions about health impacts can be drawn. RSEI is used to establish priorities for further investigation and to look at changes in potential impacts over time. Users can save resources by conducting preliminary analyses with RSEI.

  1. Bioassay selection, experimental design and quality control/assurance for use in effluent assessment and control.

    PubMed

    Johnson, Ian; Hutchings, Matt; Benstead, Rachel; Thain, John; Whitehouse, Paul

    2004-07-01

    In the UK Direct Toxicity Assessment Programme, carried out in 1998-2000, a series of internationally recognised short-term toxicity test methods for algae, invertebrates and fishes, and rapid methods (ECLOX and Microtox) were used extensively. Abbreviated versions of conventional tests (algal growth inhibition tests, Daphnia magna immobilisation test and the oyster embryo-larval development test) were valuable for toxicity screening of effluent discharges and the identification of causes and sources of toxicity. Rapid methods based on chemiluminescence and bioluminescence were not generally useful in this programme, but may have a role where the rapid test has been shown to be an acceptable surrogate for a standardised test method. A range of quality assurance and control measures were identified. Requirements for quality control/assurance are most stringent when deriving data for characterising the toxic hazards of effluents and monitoring compliance against a toxicity reduction target. Lower quality control/assurance requirements can be applied to discharge screening and the identification of causes and sources of toxicity.

  2. Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the "flying saucer" sign).

    PubMed

    Chen, Eric; Brown, David M; Benz, Matthew S; Fish, Richard H; Wong, Tien P; Kim, Rosa Y; Major, James C

    2010-10-21

    While the long-term incidence of hydroxychloroquine (HCQ) retinopathy is low, there remains no definitive clinical screening test to recognize HCQ toxicity before ophthalmoscopic fundus changes or visual symptoms. Patients receiving HCQ were evaluated with spectral domain optical coherence tomography (SD OCT) to assess the feasibility of identifying HCQ retinopathy at an early stage. Twenty-five patients referred for the evaluation of hydroxychloroquine toxicity underwent a comprehensive ocular examination, Humphrey visual field (HVF) perimetry, time domain OCT, and SD OCT. Some patients with screening abnormalities also underwent further diagnostic testing at the discretion of the treating providers. Five patients were found to have SD OCT findings corresponding to HCQ toxicity and retinal damage as seen by clinical exam and/or HVF perimetry. Two patients with advanced toxicity were found to have significant outer retina disruption in the macula on SD OCT. Three patients with early HCQ toxicity and HVF 10-2 perifoveal defects were found to have loss of the perifoveal photoreceptor inner segment/outer segment (IS/OS) junction with intact outer retina directly under the fovea, creating the "flying saucer" sign. While two of these three patients had early ophthalmoscopic fundus changes, one had none. Outer retinal abnormalities including perifoveal photoreceptor IS/OS junction disruption can be identified by SD OCT in early HCQ toxicity, sometimes even before ophthalmoscopic fundus changes are apparent. SD OCT may have a potential complementary role in screening for HCQ retinopathy due to its quick acquisition and because it is more objective than automated perimetry.

  3. Utility of an improved model of amyloid-beta (Aβ1-42) toxicity in Caenorhabditis elegans for drug screening for Alzheimer’s disease

    PubMed Central

    2012-01-01

    Background The definitive indicator of Alzheimer’s disease (AD) pathology is the profuse accumulation of amyloid-ß (Aß) within the brain. Various in vitro and cell-based models have been proposed for high throughput drug screening for potential therapeutic benefit in diseases of protein misfolding. Caenorhabditis elegans offers a convenient in vivo system for examination of Aß accumulation and toxicity in a complex multicellular organism. Ease of culturing and a short life cycle make this animal model well suited to rapid screening of candidate compounds. Results We have generated a new transgenic strain of C. elegans that expresses full length Aß1-42. This strain differs from existing Aß models that predominantly express amino-truncated Aß3-42. The Aß1-42 is expressed in body wall muscle cells, where it oligomerizes, aggregates and results in severe, and fully penetrant, age progressive-paralysis. The in vivo accumulation of Aß1-42 also stains positive for amyloid dyes, consistent with in vivo fibril formation. The utility of this model for identification of potential protective compounds was examined using the investigational Alzheimer’s therapeutic PBT2, shown to be neuroprotective in mouse models of AD and significantly improve cognition in AD patients. We observed that treatment with PBT2 provided rapid and significant protection against the Aß-induced toxicity in C. elegans. Conclusion This C. elegans model of full length Aß1-42 expression can now be adopted for use in screens to rapidly identify and assist in development of potential therapeutics and to study underlying toxic mechanism(s) of Aß. PMID:23171715

  4. Toxico-Cheminformatics: New and Expanding Public ...

    EPA Pesticide Factsheets

    High-throughput screening (HTS) technologies, along with efforts to improve public access to chemical toxicity information resources and to systematize older toxicity studies, have the potential to significantly improve information gathering efforts for chemical assessments and predictive capabilities in toxicology. Important developments include: 1) large and growing public resources that link chemical structures to biological activity and toxicity data in searchable format, and that offer more nuanced and varied representations of activity; 2) standardized relational data models that capture relevant details of chemical treatment and effects of published in vivo experiments; and 3) the generation of large amounts of new data from public efforts that are employing HTS technologies to probe a wide range of bioactivity and cellular processes across large swaths of chemical space. By annotating toxicity data with associated chemical structure information, these efforts link data across diverse study domains (e.g., ‘omics’, HTS, traditional toxicity studies), toxicity domains (carcinogenicity, developmental toxicity, neurotoxicity, immunotoxicity, etc) and database sources (EPA, FDA, NCI, DSSTox, PubChem, GEO, ArrayExpress, etc.). Public initiatives are developing systematized data models of toxicity study areas and introducing standardized templates, controlled vocabularies, hierarchical organization, and powerful relational searching capability across capt

  5. Fluorescence-based assay as a new screening tool for toxic chemicals

    PubMed Central

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-01-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients. PMID:27653274

  6. Fluorescence-based assay as a new screening tool for toxic chemicals.

    PubMed

    Moczko, Ewa; Mirkes, Evgeny M; Cáceres, César; Gorban, Alexander N; Piletsky, Sergey

    2016-09-22

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  7. Fluorescence-based assay as a new screening tool for toxic chemicals

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  8. Intranasal melatonin nanoniosomes: pharmacokinetic, pharmacodynamics and toxicity studies.

    PubMed

    Priprem, Aroonsri; Johns, Jeffrey R; Limsitthichaikoon, Sucharat; Limphirat, Wanwisa; Mahakunakorn, Pramote; Johns, Nutjaree Prateepawanit

    2017-06-01

    Intranasal melatonin encapsulated in nanosized niosomes was preclinically evaluated. A formula of melatonin niosomes (MN) was selected through physicochemical and cytotoxic data for pharmacokinetic, pharmacodynamics and toxicity studies in male Wistar rats. Intranasal MN was bioequivalent to intravenous injection of melatonin, providing therapeutic level doses. Acute and subchronic toxicity screening showed no abnormal signs, symptoms or hematological effects in any animals. Transient nasal irritations with no inflammation were observed with intranasal MN, leading it to be categorized as relatively harmless. The intranasal MN could deliver melatonin to the brain to induce sleep and provide delayed systemic circulation, relative to intravenous injection and also distribute to peripheral tissue.

  9. Numeric Estimates of Teratogenic Severity from Embryo-Fetal Developmental Toxicity Studies.

    PubMed

    Wise, L David

    2016-02-01

    A developing organism exposed to a toxicant will have a response that ranges from none to severe (i.e., death or malformation). The response at a given dosage may be termed teratogenic (or developmental toxic) severity and is dependent on exposure conditions. Prenatal/embryo-fetal developmental (EFD) toxicity studies in rodents and rabbits are the most consistent and definitive assessments of teratogenic severity, and teratogenesis screening assays are best validated against their results. A formula is presented that estimates teratogenic severity for each group, including control, within an EFD study. The developmental components include embryonic/fetal death, malformations, variations, and mean fetal weight. The contribution of maternal toxicity is included with multiplication factors to adjust for the extent of mortality, maternal body weight change, and other parameters deemed important. The derivation of the formula to calculate teratogenic severity is described. Various EFD data sets from the literature are presented to highlight considerations to the calculation of the various components of the formula. Each score is compared to the concurrent control group to obtain a relative teratogenic severity. The limited studies presented suggest relative scores of two- to

  10. Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values.

    PubMed

    Rodriguez-Ruiz, A; Etxebarria, J; Boatti, L; Marigómez, I

    2015-09-01

    Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.

  11. Evaluation of Impermeant, DNA-Binding Dye Fluorescence as a Real-Time Readout of Eukaryotic Cell Toxicity in a High Throughput Screening Format

    PubMed Central

    Chiaraviglio, Lucius

    2014-01-01

    Abstract Interpretation of high throughput screening (HTS) data in cell-based assays may be confounded by cytotoxic properties of screening compounds. Therefore, assessing cell toxicity in real time during the HTS process itself would be highly advantageous. Here, we investigate the potential of putatively impermeant, fluorescent, DNA-binding dyes to give cell toxicity readout during HTS. Amongst 19 DNA-binding dyes examined, three classes were identified that were (1) permeant, (2) cytotoxic, or (3) neither permeant nor cytotoxic during 3-day incubation with a macrophage cell line. In the last class, four dyes (SYTOX Green, CellTox Green, GelGreen, and EvaGreen) gave highly robust cytotoxicity data in 384-well screening plates. As proof of principle, successful combination with a luminescence-based assay in HTS format was demonstrated. Here, both intracellular growth of Legionella pneumophila (luminescence) and host cell viability (SYTOX Green exclusion) were assayed in the same screening well. Incorporation of membrane-impermeant, DNA-binding, fluorescent dyes in HTS assays should prove useful by allowing evaluation of cytotoxicity in real time, eliminating reagent addition steps and effort associated with endpoint cell viability analysis, and reducing the need for follow-up cytotoxicity screening. PMID:24831788

  12. High-Content Screening in Zebrafish Embryos Identifies Butafenacil as a Potent Inducer of Anemia

    PubMed Central

    Leet, Jessica K.; Lindberg, Casey D.; Bassett, Luke A.; Isales, Gregory M.; Yozzo, Krystle L.; Raftery, Tara D.; Volz, David C.

    2014-01-01

    Using transgenic zebrafish (fli1:egfp) that stably express enhanced green fluorescent protein (eGFP) within vascular endothelial cells, we recently developed and optimized a 384-well high-content screening (HCS) assay that enables us to screen and identify chemicals affecting cardiovascular development and function at non-teratogenic concentrations. Within this assay, automated image acquisition procedures and custom image analysis protocols are used to quantify body length, heart rate, circulation, pericardial area, and intersegmental vessel area within individual live embryos exposed from 5 to 72 hours post-fertilization. After ranking developmental toxicity data generated from the U.S. Environmental Protection Agency's (EPA's) zebrafish teratogenesis assay, we screened 26 of the most acutely toxic chemicals within EPA's ToxCast Phase-I library in concentration-response format (0.05–50 µM) using this HCS assay. Based on this screen, we identified butafenacil as a potent inducer of anemia, as exposure from 0.39 to 3.125 µM butafenacil completely abolished arterial circulation in the absence of effects on all other endpoints evaluated. Butafenacil is an herbicide that inhibits protoporphyrinogen oxidase (PPO) – an enzyme necessary for heme production in vertebrates. Using o-dianisidine staining, we then revealed that severe butafenacil-induced anemia in zebrafish was due to a complete loss of hemoglobin following exposure during early development. Therefore, six additional PPO inhibitors within the ToxCast Phase-I library were screened to determine whether anemia represents a common adverse outcome for these herbicides. Embryonic exposure to only one of these PPO inhibitors – flumioxazin – resulted in a similar phenotype as butafenacil, albeit not as severe as butafenacil. Overall, this study highlights the potential utility of this assay for (1) screening chemicals for cardiovascular toxicity and (2) prioritizing chemicals for future hypothesis-driven and mechanism-focused investigations within zebrafish and mammalian models. PMID:25090246

  13. Hyalella IQ Toxicity Test{trademark} as a predictor of whole sediment toxicity with diversely contaminated sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, W.S.; Hayes, K.R.

    1994-12-31

    The IQ TOXICITY TEST{trademark} is a toxicity screening test that evaluates the organism`s galactosidase enzyme system functionality as a predictor of acute toxicity. Organisms are exposed to a potentially toxic solution for approximately one hour. Following the exposure, the organisms are exposed to a slurry of a galactoside sugar tagged with a fluorescent marker (methylumbelliferyl galactoside) for 15--20 minutes. A black light can then be used to examine whether the hemolymph of the organism contains free umbelliferone, which brightly fluoresces. The organisms are then scored as ``on`` or ``off`` with respect to free umbelliferone. This endpoint can then be usedmore » to calculate an EC50, which is comparable to a whole effluent, pure compound, or sediment toxicity test. Slightly different methodologies are used for different toxicity test organisms. The objective of this presentation is to discuss the use of the IQ{trademark} methodology with porewater extract exposures of the amphipod Hyalella azteca as a predictor of results of whole sediment toxicity tests. The results of over thirty 10 and 28-day whole sediment toxicity tests and the concurrent Hyalella azteca 10 TOXICITY TESTS{trademark} are compared and discussed. The use of screening tests as a reduced cost method for initial site assessment will be discussed.« less

  14. INTERNATIONAL SOURCE WATER TOXICITY MONITORING CONSORTIUM

    EPA Science Inventory

    Many researchers in the field of time-relevant, on-line toxicity monitors for source water protection believe that some mechanism to guide and prioritize research in this emerging field would be beneficial. On-line toxicity monitors are tools designed to screen water quality and ...

  15. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    EPA Science Inventory

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golub, M.S.

    The presence of a reproductive toxicant in drinking water is one possible explanation of differences in spontaneous abortion rates between women who drink tapwater and those who do not. As part of the investigation conducted by the California Department of Health Services, several routine water quality assays were used to screen water sources available to the populations studied. I reviewed information in the literature about the potential reproductive toxicity of contaminants detected in these assays. None of these contaminants was clearly linked to increased incidence of abortion in the studies reviewed.56 references.

  17. Behavioral Screening for Toxicology

    EPA Science Inventory

    Screening for behavioral toxicity, or neurotoxicity, has been in use for decades; however, only in the past 20 years has this become a standard practice in toxicology. Current screening batteries, such as the functional observational battery (FOB), are derived from protocols use...

  18. Bio-oils from biomass slow pyrolysis: a chemical and toxicological screening.

    PubMed

    Cordella, Mauro; Torri, Cristian; Adamiano, Alessio; Fabbri, Daniele; Barontini, Federica; Cozzani, Valerio

    2012-09-15

    Bio-oils were produced from bench-scale slow-pyrolysis of three different biomass samples (corn stalks, poplar and switchgrass). Experimental protocols were developed and applied in order to screen their chemical composition. Several hazardous compounds were detected in the bio-oil samples analysed, including phenols, furans and polycyclic aromatic hydrocarbons. A procedure was outlined and applied to the assessment of toxicological and carcinogenic hazards of the bio-oils. The following hazardous properties were considered: acute toxicity; ecotoxicity; chronic toxicity; carcinogenicity. Parameters related to these properties were quantified for each component identified in the bio-oils and overall values were estimated for the bio-oils. The hazard screening carried out for the three bio-oils considered suggested that: (i) hazards to human health could be associated with chronic exposures to the bio-oils; (ii) acute toxic effects on humans and eco-toxic effects on aquatic ecosystems could also be possible in the case of loss of containment; and (iii) bio-oils may present a marginal potential carcinogenicity. The approach outlined allows the collection of screening information on the potential hazards posed by the bio-oils. This can be particularly useful when limited time and analytical resources reduce the possibility to obtain detailed specific experimental data. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Toxicity of pyrolysis gases from polyether sulfone

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Olcomendy, E. M.

    1979-01-01

    A sample of polyether sulfone was evaluated for toxicity of pyrolysis gases, using the toxicity screening test method developed at the University of San Francisco. Animal response times were relatively short at pyrolysis temperatures of 600 to 800 C, with death occurring within 6 min. The principal toxicant appeared to be a compound other than carbon monoxide.

  20. Screening methods for chemical warfare agents in environmental samples at the Edgewood area of Aberdeen Proving Ground, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowski, E.M.; Borland, M.M.; Norris, L.

    1995-06-01

    The U.S. Army Edgewood Research, Development and Engineering Center, the U.S. Army Aberdeen Proving Ground Support Activity, Directorate of Safety, Health and the Environment and SciTech Services Inc., an independent contractor, have developed an approach for screening environmental samples for the presence of chemical warfare agents. Since 1918, the Edgewood area of Aberdeen Proving Ground has been a research and testing ground for toxic agent compounds. Since these materials are considered highly toxic, screening for their presence in environmental samples is necessary for safe shipment to contract laboratories for testing by EPA guidelines. The screening ensures worker safety and maintainsmore » U.S. Army standards for transportation of materials potentially contaminated with chemical warfare agents. This paper describes the screening methodology.« less

  1. VAPOR SAMPLING DEVICE FOR INTERFACE WITH MICROTOX ASSAY FOR SCREENING TOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    A time-integrated sampling system interfaced with a toxicity-based assay is reported for monitoring volatile toxic industrial chemicals (TICs). Semipermeable membrane devices (SPMDs) using dimethyl sulfoxide (DMSO) as the fill solvent accumulated each of 17 TICs from the vapor...

  2. Toxicological assessment of green petroleum coke.

    PubMed

    McKee, Richard H; Herron, Deborah; Beatty, Patrick; Podhasky, Paula; Hoffman, Gary M; Swigert, James; Lee, Carol; Wong, Diana

    2014-01-01

    Green petroleum coke is primarily inorganic carbon with some entrained volatile hydrocarbon material. As part of the petroleum industry response to the high production volume challenge program, the potential for reproductive effects was assessed in a subchronic toxicity/reproductive toxicity screening test in rats (OECD 421). The repeated-dose portion of the study provided evidence for dust accumulation and inflammatory responses in rats exposed to 100 and 300 mg/m(3) but there were no effects at 30 mg/m(3). In the reproductive toxicity screen, the frequency of successful matings was reduced in the high exposure group (300 mg/m(3)) and was not significantly different from control values but was outside the historical experience of the laboratory. The postnatal observations (external macroscopic examination, body weight, and survival) did not indicate any treatment-related differences. Additional tests conducted to assess the potential hazards to aquatic (fish, invertebrates, and algae) and soil dwelling organisms (earthworms and vascular plants) showed few effects at the maximum loading rates of 1000 mg coke/L in aquatic studies and 1000 mg coke/kg soil in terrestrial studies. The only statistically significant finding was an inhibition of algal growth measured as either biomass or growth rate.

  3. Behavioral screening for toxicology and safety pharmacology

    EPA Science Inventory

    Screening for behavioral toxicity, or neurotoxicity, has been in use for many decades; however, only in the past 20 years has this become a standard practice in toxicology and safety pharmacology. Current screening batteries, such as the functional observational battery (FOB) and...

  4. In Silico Studies of the Toxcast Chemicals Interacting with Biomolecular targets

    EPA Science Inventory

    Molecular docking, a structure-based in silico tool for chemical library pre-screening in drug discovery, can be used to explore the potential toxicity of environmental chemicals acting at specific biomelcular targets.

  5. [Use of urine drug screening in the emergency department of a paediatric hospital].

    PubMed

    Ferrer Bosch, Núria; Martínez Sánchez, Lidia; Trenchs Sainz de la Maza, Victoria; Velasco Rodríguez, Jesús; García González, Elsa; Luaces Cubells, Carles

    2018-01-01

    To describe the situations in which urine drug screening is used in a Paediatric Emergency Department (ED). An analysis is also made on its potential usefulness on whether it changes the patient management, and if the results are confirmed by using specific techniques. A retrospective study was conducted on patients under the age of 18 attended in the ED during 2014 and in whom urine drug screening was requested. Depending on the potential capacity of the screening result to change patient management, two groups were defined (potentially useful and not potentially useful). Urine drug screening was performed on a total of 161 patients. The screening was considered not to be potentially useful in 87 (54.0%). This was because the clinical history already explained the symptoms the patient had in 55 (34.1%) patients, in 29 (18.0%) because the patient was asymptomatic, and in 3 (1.9%) because the suspected drug was not detectable in the screening. The drug screening results changed the patient management in 5 (3.1%) cases. A toxic substance was detected in 44 (27.3%). Two out of the 44 that were positive (2.1%) were re-tested by specific techniques, and presence of the toxic substance was ruled out in both of them (false positives). Most of the drug screening tests are not justified, and it is very infrequent that they change patient management. It is very rare that the results are confirmed using more specific methods. Urine drug screening tests should be restricted to particular cases and if the result has legal implications, or if the patient denies using the drug, it should be followed by a specific toxicological study to provide a conclusive result. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Sequential assessment via daphnia and zebrafish for systematic toxicity screening of heterogeneous substances.

    PubMed

    Jang, Gun Hyuk; Park, Chang-Beom; Kang, Benedict J; Kim, Young Jun; Lee, Kwan Hyi

    2016-09-01

    Environment and organisms are persistently exposed by a mixture of various substances. However, the current evaluation method is mostly based on an individual substance's toxicity. A systematic toxicity evaluation of heterogeneous substances needs to be established. To demonstrate toxicity assessment of mixture, we chose a group of three typical ingredients in cosmetic sunscreen products that frequently enters ecosystems: benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), and titanium dioxide nanoparticle (TiO2 NP). We first determined a range of nominal toxic concentration of each ingredient or substance using Daphnia magna, and then for the subsequent organismal level phenotypic assessment, chose the wild-type zebrafish embryos. Any phenotype change, such as body deformation, led to further examinations on the specific organs of transgenic zebrafish embryos. Based on the systematic toxicity assessments of the heterogeneous substances, we offer a sequential environmental toxicity assessment protocol that starts off by utilizing Daphnia magna to determine a nominal concentration range of each substance and finishes by utilizing the zebrafish embryos to detect defects on the embryos caused by the heterogeneous substances. The protocol showed additive toxic effects of the mixtures. We propose a sequential environmental toxicity assessment protocol for the systematic toxicity screening of heterogeneous substances from Daphnia magna to zebrafish embryo in-vivo models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Conceptual Framework To Extend Life Cycle Assessment ...

    EPA Pesticide Factsheets

    Life Cycle Assessment (LCA) is a decision-making tool that accounts for multiple impacts across the life cycle of a product or service. This paper presents a conceptual framework to integrate human health impact assessment with risk screening approaches to extend LCA to include near-field chemical sources (e.g., those originating from consumer products and building materials) that have traditionally been excluded from LCA. A new generation of rapid human exposure modeling and high-throughput toxicity testing is transforming chemical risk prioritization and provides an opportunity for integration of screening-level risk assessment (RA) with LCA. The combined LCA and RA approach considers environmental impacts of products alongside risks to human health, which is consistent with regulatory frameworks addressing RA within a sustainability mindset. A case study is presented to juxtapose LCA and risk screening approaches for a chemical used in a consumer product. The case study demonstrates how these new risk screening tools can be used to inform toxicity impact estimates in LCA and highlights needs for future research. The framework provides a basis for developing tools and methods to support decision making on the use of chemicals in products. This paper presents a conceptual framework for including near-field exposures into Life Cycle Assessment using advanced human exposure modeling and high-throughput tools

  8. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.

    PubMed

    Lin, Shih-Hung; Huang, Kao-Jean; Weng, Ching-Feng; Shiuan, David

    2015-01-01

    Cholesterol plays an important role in living cells. However, a very high level of cholesterol may lead to atherosclerosis. HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase is the key enzyme in the cholesterol biosynthesis pathway, and the statin-like drugs are inhibitors of human HMG-CoA reductase (hHMGR). The present study aimed to virtually screen for potential hHMGR inhibitors from natural product to discover hypolipidemic drug candidates with fewer side effects and lesser toxicities. We used the 3D structure 1HWK from the PDB (Protein Data Bank) database of hHMGR as the target to screen for the strongly bound compounds from the traditional Chinese medicine database. Many interesting molecules including polyphenolic compounds, polisubstituted heterocyclics, and linear lipophilic alcohols were identified and their ADMET (absorption, disrtibution, metabolism, excretion, toxicity) properties were predicted. Finally, four compounds were obtained for the in vitro validation experiments. The results indicated that curcumin and salvianolic acid C can effectively inhibit hHMGR, with IC50 (half maximal inhibitory concentration) values of 4.3 µM and 8 µM, respectively. The present study also demonstrated the feasibility of discovering new drug candidates through structure-based virtual screening.

  9. FETAX assay for evaluation of developmental toxicity.

    PubMed

    Mouche, Isabelle; Malesic, Laure; Gillardeaux, Olivier

    2011-01-01

    The Frog Embryo Teratogenesis Assay Xenopus (FETAX) test is a development toxicity screening test. Due to the small amount of compound needed and the capability to study organogenesis in a short period of time (96 h), FETAX test constitutes an efficient development toxicity alert test when performed early in drug safety development. The test is conducted on fertilized Xenopus laevis mid-blastula stage eggs over the organogenesis period. Compound teratogenic potential is determined after analysis of the mortality and malformation observations on larva. In parallel, FETAX test provides also information concerning embryotoxic effect based on larva length.

  10. FETAX Assay for Evaluation of Developmental Toxicity.

    PubMed

    Mouche, Isabelle; Malésic, Laure; Gillardeaux, Olivier

    2017-01-01

    The frog embryo teratogenesis assay Xenopus (FETAX) test is a development toxicity screening test. Due to the small amount of compound needed and the capability to study organogenesis in a short period of time (96 h), FETAX test constitutes an efficient development toxicity alert test when performed early in drug safety development. The test is conducted on fertilized Xenopus laevis mid-blastula-stage eggs over the organogenesis period. Compound teratogenic potential is determined after analysis of the mortality and malformation observations on larvae. In parallel, FETAX test provides also information concerning embryotoxic effect based on larva length.

  11. Functional Genomic Screening Approaches in Mechanistic Toxicology and Potential Future Applications of CRISPR-Cas9

    PubMed Central

    Shen, Hua; McHale, Cliona M.; Smith, Martyn T; Zhang, Luoping

    2015-01-01

    Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Chemical toxicants act by many different mechanisms, however, and the genes involved in adverse outcome pathways (AOPs) and AOP networks are not yet characterized. Functional genomic approaches can reveal both toxicity pathways and susceptibility genes, through knockdown or knockout of all non-essential genes in a cell of interest, and identification of genes associated with a toxicity phenotype following toxicant exposure. Screening approaches in yeast and human near-haploid leukemic KBM7 cells, have identified roles for genes and pathways involved in response to many toxicants but are limited by partial homology among yeast and human genes and limited relevance to normal diploid cells. RNA interference (RNAi) suppresses mRNA expression level but is limited by off-target effects (OTEs) and incomplete knockdown. The recently developed gene editing approach called clustered regularly interspaced short palindrome repeats-associated nuclease (CRISPR)-Cas9, can precisely knock-out most regions of the genome at the DNA level with fewer OTEs than RNAi, in multiple human cell types, thus overcoming the limitations of the other approaches. It has been used to identify genes involved in the response to chemical and microbial toxicants in several human cell types and could readily be extended to the systematic screening of large numbers of environmental chemicals. CRISPR-Cas9 can also repress and activate gene expression, including that of non-coding RNA, with near-saturation, thus offering the potential to more fully characterize AOPs and AOP networks. Finally, CRISPR-Cas9 can generate complex animal models in which to conduct preclinical toxicity testing at the level of individual genotypes or haplotypes. Therefore, CRISPR-Cas9 is a powerful and flexible functional genomic screening approach that can be harnessed to provide unprecedented mechanistic insight in the field of modern toxicology. PMID:26041264

  12. [The establishment of the immortalized mouse brain microvascular pericytes model and its preliminary application in screening of cerebrovascular toxicants].

    PubMed

    Zhao, H P; Gao, Y F; Xia, D; Zhao, Z Q; Wu, S; Wang, X H; Liu, H X; Xiao, C; Xing, X M; He, Y

    2018-05-06

    Objective: To establish the immortalized mouse brain microvascular pericytes model and to apply to the cerebrovascular toxicants screening study. Methods: Brain pericytes were isolated from 3 weeks of mice by tissue digestion. Immortalized pericyte cell line was constructed by infecting with LT retrovirus. Monoclone was selected to purify the immortalized pericyte cell line. The pericyte characteristics and purity were explored by immunocytochemistry. Cell proliferation was measured by using the Pomega MTS cell Proliferation Colorimetric Assay Kit. Pericytes were treated with 0, 160, 320, 640, 1 280, 2 560 μmol/L lead acetate, 0, 5, 10, 20, 40, 80 μmol/L cadmium chloride and 0, 5, 10, 20, 40, 80 μmol/L sodium arsenite in 24 hours. Cell toxicity of each group was determined by MTS assay, median lethal dose (LD(50)) was calculated in linear regression. Results: Mouse brain pericytes were successfully isolated by tissue separation and enzyme digestion method. After immortalized by LT retroviruses, monoclone was selected and expanded to establish pericyte cell line. The brain pericytes exhibited typical long spindle morphology and positive staining for α-SMA and Vimentin. The proliferation of brain pericytes cell lines was very slowly, and the doubling time was about 48 hours. The proliferation of immortalized brain pericytes cell lines was very quickly, and the doubling time was about 24 hours. After lead acetate, cadmium chloride and sodium arsenite treatment for 24 hours respectively, gradual declines in cell viability were observed. The LD(50) of lead acetate was 2 025.0 μmol/L, the LD(50) of cadmium chloride was 36.6 μmol/L, and the LD(50) of sodium arsenite was 33.2 μmol/L. Conclusion: The immortalized mouse brain microvascular pericyte model is established successfully by infecting with LT retrovirus, and can be applied to screen cerebrovascular toxicants. The toxicity of these toxicants to immortalized mouse brain microvascular pericyte is in sequence: sodium arsenite,cadmium chloride, lead acetate.

  13. The ToxCast Chemical Landscape - Paving the Road to 21st ...

    EPA Pesticide Factsheets

    The ToxCast high-throughput screening (HTS) program within the U.S. Environmental Protection Agency (EPA) was launched in 2007. Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay endpoints. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in public release of screening data at the end of 2013. Concurrently, a larger EPA library of 3726 chemicals (including the Phase II chemicals) was undergoing screening in the cross-federal agency Tox21 HTS project. Four years later, Phase III of EPA’s ToxCast program is actively screening a diverse library consisting of more than 3800 chemicals, 96% of which are also undergoing Tox21 screening. The majority of ToxCast studies, to date, have focused on using HTS results to build biologically based models for predicting in vivo toxicity endpoints. The focus of the present article, in contrast, is on the EPA chemical library underpinning these efforts. A history of the phased construction of EPA’s ToxCast library is presented, considering factors influencing chemical selection as well as the various quality measures implemented. Next, Chemical Abstracts Service Registry Numbers (CASRN), which were used to compile initial chemical nominations for ToxCast testing, are used to assess overlaps of the current ToxCast library with important toxicity, regulatory, and exposure inventories. Lastly, ToxCast chemicals are described in terms of generaliz

  14. A comparison of relative toxicity rankings by some small-scale laboratory tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Small-scale laboratory tests for fire toxicity, suitable for use in the average laboratory hood, are needed for screening and ranking materials on the basis of relative toxicity. The performance of wool, cotton, and aromatic polyamide under several test procedures is presented.

  15. Recent Developments in Toxico-Cheminformatics; Supporting ...

    EPA Pesticide Factsheets

    EPA's National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction through the harnessing of legacy toxicity data, creation of data linkages, and generation of new high-content and high-thoughput screening data. In association with EPA's ToxCast, ToxRefDB, and ACToR projects, the DSSTox project provides cheminformatics support and, in addition, is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than traditionally employed in SAR modeling, and in ways that facilitate data-mining and data read-across. The latest DSSTox version of the Carcinogenic Potency Database file (CPDBAS) illustrates ways in which various summary definitions of carcinogenic activity can be employed in modeling and data mining. DSSTox Structure-Browser provides structure searchability across all published DSSTox toxicity-related inventory, and is enabling linkages between previously isolated toxicity data resources associated with environmental and industrial chemicals. The public DSSTox inventory also has been integrated into PubChem, allowing a user to take full advantage of PubChem structure-activity and bioassay clustering features. Phase I of the ToxCast project is generating high-throughput screening data from several hundred biochemical and cell-based assays for a set of 320 chemicals, mostly pesticide actives with rich toxicology profiles. Incorporating

  16. Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay

    PubMed Central

    Wills, Lauren P.; Beeson, Gyda C.; Hoover, Douglas B.; Schnellmann, Rick G.; Beeson, Craig C.

    2015-01-01

    Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents. PMID:25926417

  17. A Call for Nominations of Quantitative High-Throughput Screening Assays from Relevant Human Toxicity Pathways

    EPA Science Inventory

    The National Research Council of the United States National Academies of Science has recently released a document outlining a long-range vision and strategy for transforming toxicity testing from largely whole animal-based testing to one based on in vitro assays. “Toxicity Testin...

  18. Toxicity of selected insecticides applied to western spruce budworm

    Treesearch

    Jacqueline E. Robertson; Nancy L. Gillette; Barbara A. Lucas; Robert L. Lyon

    1976-01-01

    The contact toxlaty of 100 insecticides to last stage larvae of Choristoneura occidentalis Freeman was tested by topical application in a 10-yr series of screening experiments. Pyrethroids were generally the most toxic group of chemicals tested. Compounds more toxic than the standard, mexacarbate, at LD90 were:...

  19. EPAs ToxCast Program for Predicting Toxcity and Prioritizing Chemicals for Further Screening and Testing

    EPA Science Inventory

    Testing of environmental and industrial chemicals for toxicity potential is a daunting task because of the wide range of possible toxicity mechanisms. Although animal testing is one means of achieving broad toxicity coverage, evaluation of large numbers of chemicals is challengin...

  20. Robust ridge regression estimators for nonlinear models with applications to high throughput screening assay data.

    PubMed

    Lim, Changwon

    2015-03-30

    Nonlinear regression is often used to evaluate the toxicity of a chemical or a drug by fitting data from a dose-response study. Toxicologists and pharmacologists may draw a conclusion about whether a chemical is toxic by testing the significance of the estimated parameters. However, sometimes the null hypothesis cannot be rejected even though the fit is quite good. One possible reason for such cases is that the estimated standard errors of the parameter estimates are extremely large. In this paper, we propose robust ridge regression estimation procedures for nonlinear models to solve this problem. The asymptotic properties of the proposed estimators are investigated; in particular, their mean squared errors are derived. The performances of the proposed estimators are compared with several standard estimators using simulation studies. The proposed methodology is also illustrated using high throughput screening assay data obtained from the National Toxicology Program. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Lipid reducing activity and toxicity profiles of a library of polyphenol derivatives.

    PubMed

    Urbatzka, Ralph; Freitas, Sara; Palmeira, Andreia; Almeida, Tiago; Moreira, João; Azevedo, Carlos; Afonso, Carlos; Correia-da-Silva, Marta; Sousa, Emilia; Pinto, Madalena; Vasconcelos, Vitor

    2018-05-10

    Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 μM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 μM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC 50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Ecotoxicological evaluation of areas polluted by mining activities

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, M. L.; Martínez-Sánchez, M. J.; Pérez-Sirvent, C.; Molina, J.

    2009-04-01

    Determination of the contaminant content is not enough to evaluate the toxic effects or to characterise contaminated sites, because such a measure does not reflect the ecotoxicological danger in the environment and does not provide information on the effects of the chemical compounds. To estimate the risk of contaminants, chemical methods need to be complemented with biological methods. Therefore, ecotoxicological testing may be a useful approach for assessing the toxicity as a complement to chemical analysis. The aim of this study was to develop a battery of bioassays for the ecotoxicological screening of areas polluted by mining activities. Particularly, the toxicity of water samples, sediments and their pore-water extracts was evaluated by using three assays: bacteria, plants and ostracods. Moreover, the possible relationship between observed toxicity and results of chemical analysis was studied. The studied area, Sierra Minera, is close to the mining region of La Uni

  3. Bacillus subtilis as a bioindicator for estimating pentachlorophenol toxicity and concentration.

    PubMed

    Ayude, M A; Okada, E; González, J F; Haure, P M; Murialdo, S E

    2009-05-01

    Pentachlorophenol (PCP) and its sodium salt (Na-PCP) are extremely toxic chemicals responsible for important soil and groundwater pollution, mainly caused by wastes from wood-treatment plants, because chlorinated phenols are widely used as wood preservatives. The methods most commonly used for routine analysis of pesticides such as PCP and Na-PCP are high-performance liquid chromatography (HPLC) and gas chromatography-mass spectroscopy (GC-MS). A variety of rapid biological screening tests using marine organisms, bioluminescent bacteria, and enzymes have also been reported. In this study, rapid biological screening analysis using Bacillus subtilis was developed, to assess the biodegradation of PCP and its by-products in liquid samples. An empirical model is proposed for spectrophotometric analysis of Na-PCP concentration after growth of Bacillus subtilis.

  4. An integrated in vitro and in vivo high throughput screen identifies treatment leads for ependymoma

    PubMed Central

    Atkinson, Jennifer M.; Shelat, Anang A.; Carcaboso, Angel Montero; Kranenburg, Tanya A.; Arnold, Alexander; Boulos, Nidal; Wright, Karen; Johnson, Robert A.; Poppleton, Helen; Mohankumar, Kumarasamypet M.; Feau, Clementine; Phoenix, Timothy; Gibson, Paul; Zhu, Liqin; Tong, Yiai; Eden, Chris; Ellison, David W.; Priebe, Waldemar; Koul, Dimpy; Yung, W. K. Alfred; Gajjar, Amar; Stewart, Clinton F.; Guy, R. Kip; Gilbertson, Richard J.

    2011-01-01

    Summary Using a mouse model of ependymoma—a chemoresistant brain tumor—we combined multi-cell high-throughput screening (HTS), kinome-wide binding assays, and in vivo efficacy studies, to identify potential treatments with predicted toxicity against neural stem cells (NSC). We identified kinases within the insulin signaling pathway and centrosome cycle as regulators of ependymoma cell proliferation, and their corresponding inhibitors as potential therapies. FDA approved drugs not currently used to treat ependymoma were also identified that posses selective toxicity against ependymoma cells relative to normal NSCs both in vitro and in vivo e.g., 5-fluoruracil. Our comprehensive approach advances understanding of the biology and treatment of ependymoma including the discovery of several treatment leads for immediate clinical translation. PMID:21907928

  5. RFC 18001 – Regional Screening Level Tables – Anthraquinone

    EPA Pesticide Factsheets

    9,10-Anthraquinone (CASRN 84-65-1) in Provisional Peer-Reviewed Toxicity Values, EPA/690/R-11/007F, Final 2-17-2011, and EPA Regional Screening Level (RSL) Tables at: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2017

  6. Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery)

    DTIC Science & Technology

    2012-09-01

    1α may serve as a marker of epidermal damage or stress due to irritation in this in vitro model. As an alternative to the 3-dimensional human skin...AFRL-RH-FS-SR-2013-0003 Final Report: Evaluation of the Occupational Risks from Jet Fuel (Toxicity Screening Battery) David R. Mattie...2. REPORT TYPE Special Report 3. DATES COVERED (From - To) Oct 2010 – Dec 2011 4. TITLE AND SUBTITLE Evaluation of the Occupational Risks from

  7. Systematic Review of Radiation Therapy Toxicity Reporting in Randomized Controlled Trials of Rectal Cancer: A Comparison of Patient-Reported Outcomes and Clinician Toxicity Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Alexandra, E-mail: a.gilbert@leeds.ac.uk; Ziegler, Lucy; Martland, Maisie

    The use of multimodal treatments for rectal cancer has improved cancer-related outcomes but makes monitoring toxicity challenging. Optimizing future radiation therapy regimens requires collection and publication of detailed toxicity data. This review evaluated the quality of toxicity information provided in randomized controlled trials (RCTs) of radiation therapy in rectal cancer and focused on the difference between clinician-reported and patient-reported toxicity. Medline, EMBASE, and the Cochrane Library were searched (January 1995-July 2013) for RCTs reporting late toxicity in patients treated with regimens including preoperative (chemo)radiation therapy. Data on toxicity measures and information on toxicity reported were extracted using Quantitative Analyses ofmore » Normal Tissue Effects in the Clinic recommendations. International Society for Quality of Life Research standards on patient-reported outcomes (PROs) were used to evaluate the quality of patient-reported toxicity. Twenty-one RCT publications met inclusion criteria out of 4144 articles screened. All PRO studies reported higher rates of toxicity symptoms than clinician-reported studies and reported on a wider range and milder symptoms. No clinician-reported study published data on sexual dysfunction. Of the clinician-reported studies, 55% grouped toxicity data related to an organ system together (eg “Bowel”), and 45% presented data only on more-severe (grade ≥3) toxicity. In comparison, all toxicity grades were reported in 79% of PRO publications, and all studies (100%) presented individual symptom toxicity data (eg bowel urgency). However, PRO reporting quality was variable. Only 43% of PRO studies presented baseline data, 28% did not use any psychometrically validated instruments, and only 29% of studies described statistical methods for managing missing data. Analysis of these trials highlights the lack of reporting standards for adverse events and reveals the differences between clinician and patient reporting of toxicity. Recommendations for improving the quality of adverse event data collection are provided, with the aim of improving critical appraisal of outcomes for future studies.« less

  8. Evaluation of a standard test method for screening fuels in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorini, S.S.; Schabron, J.F.

    1996-12-31

    A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-5831-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be sued to screen organic- rich soils, as well as being fast, easy, and inexpensive to perform. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and cola oil, can be determined. The screening method for fuels in soils was evaluated by conducting a Collaborative study on the method.more » In the Collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the Collaborative study were used to determine the reproducibility (between participants) and repeatability (within participants) precision of the method for screening the test materials. The Collaborative study data also provide information on the performance of portable field equipment (patent pending) versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method.« less

  9. Environmental Toxin Screening Using Human-Derived 3D Bioengineered Liver and Cardiac Organoids.

    PubMed

    Forsythe, Steven D; Devarasetty, Mahesh; Shupe, Thomas; Bishop, Colin; Atala, Anthony; Soker, Shay; Skardal, Aleksander

    2018-01-01

    Environmental toxins, such as lead and other heavy metals, pesticides, and other compounds, represent a significant health concern within the USA and around the world. Even in the twenty-first century, a plethora of cities and towns in the U.S. have suffered from exposures to lead in drinking water or other heavy metals in food or the earth, while there is a high possibility of further places to suffer such exposures in the near future. We employed bioengineered 3D human liver and cardiac organoids to screen a panel of environmental toxins (lead, mercury, thallium, and glyphosate), and charted the response of the organoids to these compounds. Liver and cardiac organoids were exposed to lead (10 µM-10 mM), mercury (200 nM-200 µM), thallium (10 nM-10 µM), or glyphosate (25 µM-25 mM) for a duration of 48 h. The impacts of toxin exposure were then assessed by LIVE/DEAD viability and cytotoxicity staining, measuring ATP activity and determining IC50 values, and determining changes in cardiac organoid beating activity. As expected, all of the toxins induced toxicity in the organoids. Both ATP and LIVE/DEAD assays showed toxicity in both liver and cardiac organoids. In particular, thallium was the most toxic, with IC50 values of 13.5 and 1.35 µM in liver and cardiac organoids, respectively. Conversely, glyphosate was the least toxic of the four compounds, with IC50 values of 10.53 and 10.85 mM in liver and cardiac organoids, respectively. Additionally, toxins had a negative influence on cardiac organoid beating activity as well. Thallium resulting in the most significant decreases in beating rate, followed by mercury, then glyphosate, and finally, lead. These results suggest that the 3D organoids have significant utility to be deployed in additional toxicity screening applications, and future development of treatments to mitigate exposures. 3D organoids have significant utility to be deployed in additional toxicity screening applications, such as future development of treatments to mitigate exposures, drug screening, and environmental toxin detection.

  10. Evaluation of toxicity and estrogenicity of the landfill-concentrated leachate during advanced oxidation treatment: chemical analyses and bioanalytical tools.

    PubMed

    Wang, Guifang; Lu, Gang; Zhao, Jiandi; Yin, Pinghe; Zhao, Ling

    2016-08-01

    Landfill-concentrated leachate from membrane separation processes is a potential pollution source for the surroundings. In this study, the toxicity and estrogenicity potentials of concentrated leachate prior to and during UV-Fenton and Fenton treatments were assessed by a combination of chemical (di (2-ethylhexyl) phthalate and dibutyl phthalate were chosen as targets) and biological (Daphnia magna, Chlorella vulgaris, and E-screen assay) analyses. Removal efficiencies of measured di (2-ethylhexyl) phthalate and dibutyl phthalate were more than 97 % after treatment with the two methods. Biological tests showed acute toxicity effects on D. magna tests in untreated concentrated leachate samples, whereas acute toxicity on C. vulgaris tests was not observed. Both treatment methods were found to be efficient in reducing acute toxicity effects on D. magna tests. The E-screen test showed concentrated leachate had significant estrogenicity, UV-Fenton and Fenton treatment, especially the former, were effective methods for reducing estrogenicity of concentrated leachate. The EEQchem (estradiol equivalent concentration) of all samples could only explain 0.218-5.31 % range of the EEQbio. These results showed that UV-Fenton reagent could be considered as a suitable method for treatment of concentrated leachate, and the importance of the application of an integrated (biological + chemical) analytical approach for a comprehensive evaluation of treatment suitability.

  11. Assessment of the application of an ecotoxicological procedure to screen illicit toxic discharges in domestic septic tank sludge.

    PubMed

    López-Gastey, J; Choucri, A; Robidoux, P Y; Sunahara, G I

    2000-06-01

    An innovative screening procedure has been developed to detect illicit toxic discharges in domestic septic tank sludge hauled to the Montreal Urban Community waste-water treatment plant. This new means of control is based on an integrative approach, using bioassays and chemical analyses. Conservative criteria are applied to detect abnormal toxicity with great reliability while avoiding false positive results. The complementary data obtained from toxicity tests and chemical analyses support the use of this efficient and easy-to-apply procedure. This study assesses the control procedure in which 231 samples were analyzed over a 30-month period. Data clearly demonstrate the deterrent power of an efficient control procedure combined with a public awareness campaign among the carriers. In the first 15 months of application, between January 1996 and March 1997, approximately 30% of the 123 samples analyzed showed abnormal toxicity. Between April 1997 and June 1998, that is, after a public hearing presentation of this procedure, this proportion dropped significantly to approximately 9% based on 108 analyzed samples. The results of a 30-month application of this new control procedure show the superior efficiency of the ecotoxicological approach compared with the previously used chemical control procedure. To be able to apply it effectively and, if necessary, to apply the appropriate coercive measures, ecotoxicological criteria should be included in regulatory guidelines.

  12. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems.

    PubMed

    Chatterjee, Nivedita; Yang, Ji Su; Park, Kwangsik; Oh, Seung Min; Park, Jeonggue; Choi, Jinhee

    2015-01-01

    The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nananomaterials (GFNs) in alternative in vitro and in vivo toxicity testing models. The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [NH2]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine>NH2>COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.

  13. DEVELOPMENT OF EPA'S TOXCAST PROGRAM FOR PRIORITIZING THE TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS.

    EPA Science Inventory

    EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS)and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.

  14. WILDLIFE TOXICITY REFERENCE VALUES FOR POLYNUCLEAR AROMATIC HYDROCARBONS AND DDT

    EPA Science Inventory

    The presentation will provide an overview of the procedures used in deriving mammalian and avian wildlife toxicity reference values to be used in development of ecological soil screening levels (Eco-SSLs).

  15. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol).

    PubMed

    Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea

    2017-07-13

    Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta-analyses stratified by ethnicity. Our review and meta-analysis will update and add to the existing research in this field. By not restricting the scope of the review to a specific drug, genetic variant, or toxicity outcome, we hope to synthesise data for associations between genetic variants and anti-tuberculosis drug-related toxicity outcomes that have previously not been summarised in systematic reviews, and consequently, add to the knowledge base of the pharmacogenetics of anti-tuberculosis drugs. PROSPERO CRD42017068448.

  16. Variability within Systemic In Vivo Toxicity Studies (ASCCT)

    EPA Science Inventory

    In vivo studies have long been considered the gold standard for toxicology screening. Often time models developed in silico and/or using in vitro data to estimate points of departures (POD) are compared to the in vivo data to benchmark and evaluate quality and goodness of fit. ...

  17. Perceptions of environmental health risks among residents in the “Toxic Doughnut”: Opportunities for risk screening and community mobilization

    EPA Science Inventory

    Surrounded by landfills, and toxic and hazardous facilities, Altgeld Gardens is located in a “toxic doughnut.” With high rates of environmentally-related conditions, residents have called for a community-based environmental health assessment to improve overall health in their com...

  18. Aquatic Toxicity Screening of Fire Fighting Agents

    DTIC Science & Technology

    2005-09-21

    Aqueous Film Forming Foam ( AFFF ), the reference toxicant. The aquatic toxicity...Specification MIL-F-24385F Fire Extinguishing Agent, Aqueous Film Forming Foam ( AFFF ) Liquid Concentrate, For Fresh and Sea Water (MIL SPEC AFFF ). This...extinguish liquid hydrocarbon fuel fires involving aircraft operations. Several types of foam exist including protein, fluoroprotein and aqueous film

  19. Cell-based approaches for screening and prioritization of chemicals that may cause developmental neurotoxicity

    EPA Science Inventory

    The National Academies report on Toxicity Testing in the 21st Century envisioned the use of in vitro toxicity tests using cells of human origin to predict the ability of chemicals to cause toxicity in vivo. Successful implementation of this strategy will ultimately result in fast...

  20. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays

    PubMed Central

    2011-01-01

    Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205

  1. Analysis of ToxCast data for food-relevant compounds by ...

    EPA Pesticide Factsheets

    The ToxCast program has generated a wealth of in vitro high throughput screening data, and best approaches for the interpretation and use of these data remain undetermined. We present case studies comparing the ToxCast and in vivo toxicity data for two food contact substances using the RISK21 approach. Available exposure data, toxicity data, and model predictions were analyzed for sodium pyrithione and dibutyltin dichloride. In-vitro to in-vivo extrapolation (IVIVE) was performed to determine oral equivalent doses (OEDs) for the ToxCast data bioactivity. For sodium pyrithione, calculated OEDs corresponded to doses that demonstrated toxicity in animal studies. For dibutyltin dichloride, calculated OEDs were below the doses that demonstrated toxicity in animals, but this was confounded by the conservative estimates used in the IVIVE calculations. These studies highlight the potential of the ToxCast approach while also indicating areas where additional data or predictive tools are needed. We present case studies comparing the ToxCast and in vivo toxicity data for two food contact substances using the RISK21 approach.

  2. Applying mixture toxicity modelling to predict bacterial bioluminescence inhibition by non-specifically acting pharmaceuticals and specifically acting antibiotics.

    PubMed

    Neale, Peta A; Leusch, Frederic D L; Escher, Beate I

    2017-04-01

    Pharmaceuticals and antibiotics co-occur in the aquatic environment but mixture studies to date have mainly focused on pharmaceuticals alone or antibiotics alone, although differences in mode of action may lead to different effects in mixtures. In this study we used the Bacterial Luminescence Toxicity Screen (BLT-Screen) after acute (0.5 h) and chronic (16 h) exposure to evaluate how non-specifically acting pharmaceuticals and specifically acting antibiotics act together in mixtures. Three models were applied to predict mixture toxicity including concentration addition, independent action and the two-step prediction (TSP) model, which groups similarly acting chemicals together using concentration addition, followed by independent action to combine the two groups. All non-antibiotic pharmaceuticals had similar EC 50 values at both 0.5 and 16 h, indicating together with a QSAR (Quantitative Structure-Activity Relationship) analysis that they act as baseline toxicants. In contrast, the antibiotics' EC 50 values decreased by up to three orders of magnitude after 16 h, which can be explained by their specific effect on bacteria. Equipotent mixtures of non-antibiotic pharmaceuticals only, antibiotics only and both non-antibiotic pharmaceuticals and antibiotics were prepared based on the single chemical results. The mixture toxicity models were all in close agreement with the experimental results, with predicted EC 50 values within a factor of two of the experimental results. This suggests that concentration addition can be applied to bacterial assays to model the mixture effects of environmental samples containing both specifically and non-specifically acting chemicals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. PCR-Based Method for the Detection of Toxic Mushrooms Causing Food-Poisoning Incidents.

    PubMed

    Nomura, Chie; Masayama, Atsushi; Yamaguchi, Mizuka; Sakuma, Daisuke; Kajimura, Keiji

    2017-01-01

    In this study, species-specific identification of five toxic mushrooms, Chlorophyllum molybdites, Gymnopilus junonius, Hypholoma fasciculare, Pleurocybella porrigens, and Tricholoma ustale, which have been involved in food-poisoning incidents in Japan, was investigated. Specific primer pairs targeting internal transcribed spacer (ITS) regions were designed for PCR detection. The specific amplicons were obtained from fresh, cooked, and simulated gastric fluid (SGF)-treated samples. No amplicons were detected from other mushrooms with similar morphology. Our method using one-step extraction of mushrooms allows rapid detection within 2.5 hr. It could be utilized for rapid identification or screening of toxic mushrooms.

  4. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases

    PubMed Central

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-01-01

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013

  5. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.

    PubMed

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-03-04

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.

  6. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    PubMed

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry

    2014-06-07

    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  7. 20180312 - Evaluating the applicability of read-across tools and high throughput screening data for food relevant chemicals (SOT)

    EPA Science Inventory

    Alternative toxicity assessment methods to characterize the hazards of chemical substances have been proposed to reduce animal testing and screen thousands of chemicals in an efficient manner. Resources to accomplish these goals include utilizing large in vitro chemical screening...

  8. DEVELOPMENT OF AN OBJECTIVE AND QUANTIFIABLE TERATOLOGICAL SCREEN FOR USE IN ZEBRAFISH LARVAE.

    EPA Science Inventory

    To address EPA’s need to prioritize large numbers of chemicals for testing, a rapid, cost-effective in vivo screen for potential developmental toxicity using an alternative vertebrate species (zebrafish;Danio rerio) has been developed. A component of that screen is the observatio...

  9. Evaluating the Impact of Uncertainties in Clearance and Exposure When Prioritizing Chemicals Screened in High-Throughput Assays

    EPA Science Inventory

    The toxicity-testing paradigm has evolved to include high-throughput (HT) methods for addressing the increasing need to screen hundreds to thousands of chemicals rapidly. Approaches that involve in vitro screening assays, in silico predictions of exposure concentrations, and phar...

  10. The Toxicity Estimation Software Tool (T.E.S.T.)

    EPA Science Inventory

    The Toxicity Estimation Software Tool (T.E.S.T.) has been developed to estimate toxicological values for aquatic and mammalian species considering acute and chronic endpoints for screening purposes within TSCA and REACH programs.

  11. MULTIDISCIPLINARY APPROACH TO TOXICOLOGICAL SCREENING: I. SYSTEMIC TOXICITY

    EPA Science Inventory

    The toxicity of 10 chemicals (carbaryl, carbon tetrachloride, chlordane, ethylhexylphthalate, dichloromethane, heptachlor, phenol, tetrachloroethylene, triadimefon, and trichloroethylene were examined in the liver, kidney, spleen, thymus, and adrenal of female F-344 rats. cute le...

  12. Soil criteria to protect terrestrial wildlife and open-range livestock from metal toxicity at mining sites.

    PubMed

    Ford, Karl L; Beyer, W Nelson

    2014-03-01

    Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.

  13. Toxicophore exploration as a screening technology for drug design and discovery: techniques, scope and limitations.

    PubMed

    Singh, Pankaj Kumar; Negi, Arvind; Gupta, Pawan Kumar; Chauhan, Monika; Kumar, Raj

    2016-08-01

    Toxicity is a common drawback of newly designed chemotherapeutic agents. With the exception of pharmacophore-induced toxicity (lack of selectivity at higher concentrations of a drug), the toxicity due to chemotherapeutic agents is based on the toxicophore moiety present in the drug. To date, methodologies implemented to determine toxicophores may be broadly classified into biological, bioanalytical and computational approaches. The biological approach involves analysis of bioactivated metabolites, whereas the computational approach involves a QSAR-based method, mapping techniques, an inverse docking technique and a few toxicophore identification/estimation tools. Being one of the major steps in drug discovery process, toxicophore identification has proven to be an essential screening step in drug design and development. The paper is first of its kind, attempting to cover and compare different methodologies employed in predicting and determining toxicophores with an emphasis on their scope and limitations. Such information may prove vital in the appropriate selection of methodology and can be used as screening technology by researchers to discover the toxicophoric potentials of their designed and synthesized moieties. Additionally, it can be utilized in the manipulation of molecules containing toxicophores in such a manner that their toxicities might be eliminated or removed.

  14. Soil criteria to protect terrestrial wildlife and open-range livestock from metal toxicity at mining sites

    USGS Publications Warehouse

    Ford, Karl L; Beyer, W. Nelson

    2014-01-01

    Thousands of hard rock mines exist in the western USA and in other parts of the world as a result of historic and current gold, silver, lead, and mercury mining. Many of these sites in the USA are on public lands. Typical mine waste associated with these sites are tailings and waste rock dumps that may be used by wildlife and open-range livestock. This report provides wildlife screening criteria levels for metals in soil and mine waste to evaluate risk and to determine the need for site-specific risk assessment, remediation, or a change in management practices. The screening levels are calculated from toxicity reference values based on maximum tolerable levels of metals in feed, on soil and plant ingestion rates, and on soil to plant uptake factors for a variety of receptors. The metals chosen for this report are common toxic metals found at mining sites: arsenic, cadmium, copper, lead, mercury, and zinc. The resulting soil screening values are well above those developed by the US Environmental Protection Agency. The difference in values was mainly a result of using toxicity reference values that were more specific to the receptors addressed rather than the most sensitive receptor.

  15. Mixture toxicity of wood preservative products in the fish embryo toxicity test.

    PubMed

    Coors, Anja; Dobrick, Jan; Möder, Monika; Kehrer, Anja

    2012-06-01

    Wood preservative products are used globally to protect wood from fungal decay and insects. We investigated the aquatic toxicity of five commercial wood preservative products, the biocidal active substances and some formulation additives contained therein, as well as six generic binary mixtures of the active substances in the fish embryo toxicity test (FET). Median lethal concentrations (LC50) of the single substances, the mixtures, and the products were estimated from concentration-response curves and corrected for concentrations measured in the test medium. The comparison of the experimentally observed mixture toxicity with the toxicity predicted by the concept of concentration addition (CA) showed less than twofold deviation for all binary mixtures of the active substances and for three of the biocidal products. A more than 60-fold underestimation of the toxicity of the fourth product by the CA prediction was detected and could be explained fully by the toxicity of one formulation additive, which had been labeled as a hazardous substance. The reason for the 4.6-fold underestimation of toxicity of the fifth product could not be explained unambiguously. Overall, the FET was found to be a suitable screening tool to verify whether the toxicity of formulated wood preservatives can reliably be predicted by CA. Applied as a quick and simple nonanimal screening test, the FET may support approaches of applying component-based mixture toxicity predictions within the environmental risk assessment of biocidal products, which is required according to European regulations. Copyright © 2012 SETAC.

  16. A PATO-compliant zebrafish screening database (MODB): management of morpholino knockdown screen information.

    PubMed

    Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C

    2008-01-07

    The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.

  17. Virtual Embryo: Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  18. Variability within Systemic In Vivo Toxicity Points-of-Departure (SOT)

    EPA Science Inventory

    In vivo studies have long been considered the gold standard for toxicology screening and deriving points of departure (POD). With the push to decrease the use of animal studies, predictive models using in vivo data are being developed to estimate POD. However, recent work has il...

  19. US EPA Office of Research and Development Community-Focused Exposure and Risk Screening Tool (C-FERST) Air web mapping service

    EPA Pesticide Factsheets

    This map service displays all air-related layers used in the USEPA Community/Tribal-Focused Exposure and Risk Screening Tool (C/T-FERST) mapping application (https://www.epa.gov/c-ferst). The following data sources (and layers) are contained in this service:USEPA's 2005 National-Scale Air Toxic Assessment (NATA) data. Data are shown at the census tract level (2000 census tract boundaries, US Census Bureau) for Cumulative Cancer and Non-Cancer risks (Neurological and Respiratory) from 139 air toxics. In addition, individual pollutant estimates of Ambient Concentration, Exposure Concentration, Cancer, and Non-Cancer risks (Neurological and Respiratory) are provided for: Acetaldehyde, Acrolein, Arsenic, Benzene, 1,3-Butadiene, Chromium, Diesel PM, Formaldehyde, Lead, Naphthalene, and Polycyclic Aromatic Hydrocarbon (PAH). The original Access tables were downloaded from USEPA's Office of Air and Radiation (OAR) https://www.epa.gov/national-air-toxics-assessment/2005-national-air-toxics-assessment. The data classification (defined interval) for this map service was developed for USEPA's Office of Research and Development's (ORD) Community-Focused Exposure and Risk Screening Tool (C-FERST) per guidance provided by OAR.The 2005 NATA provides information on 177 of the 187 Clean Air Act air toxics (https://www.epa.gov/sites/production/files/2015-10/documents/2005-nata-pollutants.pdf) plus diesel particulate matter (diesel PM was assessed for non-cancer only). For addit

  20. Derivation of soil screening thresholds to protect chisel-toothed kangaroo rat from uranium mine waste in northern Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.

    2013-01-01

    Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.

  1. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae

    PubMed Central

    Huseinovic, Angelina; van Leeuwen, Jolanda S.; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P. E.; Kooter, Jan M.; Vos, J. Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity. PMID:28291796

  2. Metabolic enzyme microarray coupled with miniaturized cell-culture array technology for high-throughput toxicity screening.

    PubMed

    Lee, Moo-Yeal; Dordick, Jonathan S; Clark, Douglas S

    2010-01-01

    Due to poor drug candidate safety profiles that are often identified late in the drug development process, the clinical progression of new chemical entities to pharmaceuticals remains hindered, thus resulting in the high cost of drug discovery. To accelerate the identification of safer drug candidates and improve the clinical progression of drug candidates to pharmaceuticals, it is important to develop high-throughput tools that can provide early-stage predictive toxicology data. In particular, in vitro cell-based systems that can accurately mimic the human in vivo response and predict the impact of drug candidates on human toxicology are needed to accelerate the assessment of drug candidate toxicity and human metabolism earlier in the drug development process. The in vitro techniques that provide a high degree of human toxicity prediction will be perhaps more important in cosmetic and chemical industries in Europe, as animal toxicity testing is being phased out entirely in the immediate future.We have developed a metabolic enzyme microarray (the Metabolizing Enzyme Toxicology Assay Chip, or MetaChip) and a miniaturized three-dimensional (3D) cell-culture array (the Data Analysis Toxicology Assay Chip, or DataChip) for high-throughput toxicity screening of target compounds and their metabolic enzyme-generated products. The human or rat MetaChip contains an array of encapsulated metabolic enzymes that is designed to emulate the metabolic reactions in the human or rat liver. The human or rat DataChip contains an array of 3D human or rat cells encapsulated in alginate gels for cell-based toxicity screening. By combining the DataChip with the complementary MetaChip, in vitro toxicity results are obtained that correlate well with in vivo rat data.

  3. The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae.

    PubMed

    Huseinovic, Angelina; van Leeuwen, Jolanda S; van Welsem, Tibor; Stulemeijer, Iris; van Leeuwen, Fred; Vermeulen, Nico P E; Kooter, Jan M; Vos, J Chris

    2017-01-01

    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity.

  4. Lead Levels in Landfill Areas and Childhood Exposure: An Integrative Review.

    PubMed

    Kim, M Angela; Williams, Kimberly A

    2017-01-01

    Landfills are high-risk areas for environmental lead exposure for children living in poverty stricken areas in many countries. This review examines landfills and lead toxicity in children. The review discusses the effects of lead toxicity, provides evidenced based recommendations to reduce lead exposure, and identify gaps in the evidence. A database search was conducted of articles in English from 1985 to 2014. Ten articles met the inclusion criteria. The Whittemore and Knafl framework and the John Hopkins Research Evidence Appraisal Tool © were used for reviewing the data. Elevated blood lead levels (BLLs) of children living near landfills were related to increased soil lead levels. Toxic effects of lead included adverse outcomes such as encephalopathy or death for children. Different approaches to decrease lead level include environmental surveillance, BLL screening, and soil abatement which are costly. Increased BLL through environmental exposure is connected with poor health outcomes and death among children. Evidence-based prevention included monitoring and screening and costly soil abatement. It is recommended that future studies focus on community education for exposure avoidance for children living near landfill areas. © 2016 Wiley Periodicals, Inc.

  5. Zebrafish embryotoxicity test for developmental (neuro)toxicity: Demo case of an integrated screening approach system using anti-epileptic drugs.

    PubMed

    Beker van Woudenberg, Anna; Snel, Cor; Rijkmans, Eke; de Groot, Didima; Bouma, Marga; Hermsen, Sanne; Piersma, Aldert; Menke, Aswin; Wolterbeek, André

    2014-11-01

    To improve the predictability of the zebrafish embryotoxicity test (ZET) for developmental (neuro)toxicity screening, we used a multiple-endpoints strategy, including morphology, motor activity (MA), histopathology and kinetics. The model compounds used were antiepileptic drugs (AEDs): valproic acid (VPA), carbamazepine (CBZ), ethosuximide (ETH) and levetiracetam (LEV). For VPA, histopathology was the most sensitive parameter, showing effects already at 60μM. For CBZ, morphology and MA were the most sensitive parameters, showing effects at 180μM. For ETH, all endpoints showed similar sensitivity (6.6mM), whereas MA was the most sensitive parameter for LEV (40mM). Inclusion of kinetics did not alter the absolute ranking of the compounds, but the relative potency was changed considerably. Taking all together, this demo-case study showed that inclusion of multiple-endpoints in ZET may increase the sensitivity of the assay, contribute to the elucidation of the mode of toxic action and to a better definition of the applicability domain of ZET. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The impact of different algorithms for ideal body weight on screening for hydroxychloroquine retinopathy in women.

    PubMed

    Browning, David J; Lee, Chong; Rotberg, David

    2014-01-01

    To determine how algorithms for ideal body weight (IBW) affect hydroxychloroquine dosing in women. This was a retrospective study of 520 patients screened for hydroxychloroquine retinopathy. Charts were reviewed for sex, height, weight, and daily dose. The outcome measures were ranges of IBW across algorithms; rates of potentially toxic dosing; height thresholds below which 400 mg/d dosing is potentially toxic; and rates for which actual body weight (ABW) was less than IBW. Women made up 474 (91%) of the patients. The IBWs for a height varied from 30-34 pounds (13.6-15.5 kg) across algorithms. The threshold heights below which toxic dosing occurred varied from 62-70 inches (157.5-177.8 cm). Different algorithms placed 16%-98% of women in the toxic dosing range. The proportion for whom dosing should have been based on ABW rather than IBW ranged from 5%-31% across algorithms. Although hydroxychloroquine dosing should be based on the lesser of ABW and IBW, there is no consensus about the definition of IBW. The Michaelides algorithm is associated with the most frequent need to adjust dosing; the Metropolitan Life Insurance, large frame, mean value table with the least frequent need. No evidence indicates that one algorithm is superior to others.

  7. Nanomaterial Toxicity Testing in the 21st Century: Use of a Predictive Toxicological Approach and High Throughput Screening

    PubMed Central

    NEL, ANDRE; XIA, TIAN; MENG, HUAN; WANG, XIANG; LIN, SIJIE; JI, ZHAOXIA; ZHANG, HAIYUAN

    2014-01-01

    Conspectus The production of engineered nanomaterials (ENMs) is a scientific breakthrough in material design and the development of new consumer products. While the successful implementation of nanotechnology is important for the growth of the global economy, we also need to consider the possible environmental health and safety (EHS) impact as a result of the novel physicochemical properties that could generate hazardous biological outcomes. In order to assess ENM hazard, reliable and reproducible screening approaches are needed to test the basic materials as well as nano-enabled products. A platform is required to investigate the potentially endless number of bio-physicochemical interactions at the nano/bio interface, in response to which we have developed a predictive toxicological approach. We define a predictive toxicological approach as the use of mechanisms-based high throughput screening in vitro to make predictions about the physicochemical properties of ENMs that may lead to the generation of pathology or disease outcomes in vivo. The in vivo results are used to validate and improve the in vitro high throughput screening (HTS) and to establish structure-activity relationships (SARs) that allow hazard ranking and modeling by an appropriate combination of in vitro and in vivo testing. This notion is in agreement with the landmark 2007 report from the US National Academy of Sciences, “Toxicity Testing in the 21st Century: A Vision and a Strategy” (http://www.nap.edu/catalog.php?record_id=11970), which advocates increased efficiency of toxicity testing by transitioning from qualitative, descriptive animal testing to quantitative, mechanistic and pathway-based toxicity testing in human cells or cell lines using high throughput approaches. Accordingly, we have implemented HTS approaches to screen compositional and combinatorial ENM libraries to develop hazard ranking and structure-activity relationships that can be used for predicting in vivo injury outcomes. This predictive approach allows the bulk of the screening analysis and high volume data generation to be carried out in vitro, following which limited, but critical, validation studies are carried out in animals or whole organisms. Risk reduction in the exposed human or environmental populations can then focus on limiting or avoiding exposures that trigger these toxicological responses as well as implementing safer design of potentially hazardous ENMs. In this communication, we review the tools required for establishing predictive toxicology paradigms to assess inhalation and environmental toxicological scenarios through the use of compositional and combinatorial ENM libraries, mechanism-based HTS assays, hazard ranking and development of nano-SARs. We will discuss the major injury paradigms that have emerged based on specific ENM properties, as well as describing the safer design of ZnO nanoparticles based on characterization of dissolution chemistry as a major predictor of toxicity. PMID:22676423

  8. THE TOXCAST PROGRAM FOR PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals...

  9. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology.

    PubMed

    Sundaram, S K; Sacksteder, Colette A; Weber, Thomas J; Riley, Brian J; Addleman, R Shane; Harrer, Bruce J; Peterman, John W

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live cells interact with an external stimulus, such as a nanosized particle, and the toxicity and broad risk associated with these stimuli. It is difficult to capture the complexity and dynamics of these interactions by following omics-based approaches exclusively, which can be expensive and time-consuming. Attenuated total reflectance-Fourier transform infrared spectroscopy is well suited to provide noninvasive live-cell monitoring of cellular responses to potentially toxic nanosized particles or other stimuli. This alternative approach provides the ability to carry out rapid toxicity screenings and nondisruptive monitoring of live-cell cultures. We review the technical basis of the approach, the instrument configuration and interface with the biological media, the various effects that impact the data, subsequent data analysis and toxicity, and present some preliminary results on live-cell monitoring.

  10. The effect of changes in the USF/NASA toxicity screening test method on data from some cellular polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Miller, C. M.

    1976-01-01

    Rankings of relative toxicity can be markedly affected by changes in test variables. Revision of the USF/NASA toxicity screening test procedure to eliminate the connecting tube and supporting floor and incorporate a 1.0 g sample weight, 200 C starting temperature, and 800 C upper limit temperature for pyrolysis, reversed the rankings of flexible polyurethane and polychloroprene foams, not only in relation to each other, but also in relation to cotton and red oak. Much of the change is attributed to reduction of the distance between the sample and the test animals, and reduction of the sample weight charged. Elimination of the connecting tube increased the relative toxicity of the polyurethane foams. The materials tested were flexible polyurethane foam, without and with fire retardant; rigid polyurethane foam with fire retardant; flexible polychloroprene foam; cotton, Douglas fir, red oak, hemlock, hardboard, particle board, polystyrene, and polymethyl methacrylate.

  11. SCREENING BIOAVAILABLE HYDROPHOBIC TOXICANTS IN SURFACE WATERS WITH SEMIPERMEABLE MEMBRANE DEVICES: ROLE OF INHERENT OLEIC ACID IN TOXICITY EVALUATIONS

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) were deployed for 4 weeks in two rivers in Lithuania, The SPMD dialysates were tested in the Microtox assay and, surprisingly, the sample from the relatively clean (U) over bar la River exhibited three times more toxicity than the sample fro...

  12. Group B Streptococcal Toxic Shock Syndrome and covR/S Mutations Revisited

    PubMed Central

    Sendi, Parham; el Hay, Muad Abd; Brandt, Claudia M.

    2017-01-01

    Gene mutations in the virulence regulator CovR/S of group A Streptococcus play a substantial role in the pathogenesis of streptococcal toxic shock syndrome. We screened 25 group B Streptococcus (GBS) isolates obtained from patients with streptococcal toxic shock syndrome and found only 1 GBS clone harboring this kind of mutation. PMID:27983484

  13. Group B Streptococcal Toxic Shock Syndrome and covR/S Mutations Revisited.

    PubMed

    Sendi, Parham; El Hay, Muad Abd; Brandt, Claudia M; Spellerberg, Barbara

    2017-01-01

    Gene mutations in the virulence regulator CovR/S of group A Streptococcus play a substantial role in the pathogenesis of streptococcal toxic shock syndrome. We screened 25 group B Streptococcus (GBS) isolates obtained from patients with streptococcal toxic shock syndrome and found only 1 GBS clone harboring this kind of mutation.

  14. Lead Toxicity and Iron Deficiency in Utah Migrant Children.

    ERIC Educational Resources Information Center

    Ratcliffe, Stephen D.; And Others

    1989-01-01

    Determines the frequency of presumptive iron deficiency and lead toxicity in 198 Utah migrant children, aged 9-72 months. There were no confirmed cases of lead toxicity. Thirteen percent of all children tested, and 30 percent of those aged 9-23 months, were iron deficient. Hematocrit determination is an insensitive screen for iron deficiency.…

  15. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.

    PubMed

    Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S

    2016-08-15

    The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.

  16. Upfront Genotyping of DPYD*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis.

    PubMed

    Deenen, Maarten J; Meulendijks, Didier; Cats, Annemieke; Sechterberger, Marjolein K; Severens, Johan L; Boot, Henk; Smits, Paul H; Rosing, Hilde; Mandigers, Caroline M P W; Soesan, Marcel; Beijnen, Jos H; Schellens, Jan H M

    2016-01-20

    Fluoropyrimidines are frequently prescribed anticancer drugs. A polymorphism in the fluoropyrimidine metabolizing enzyme dihydropyrimidine dehydrogenase (DPD; ie, DPYD*2A) is strongly associated with fluoropyrimidine-induced severe and life-threatening toxicity. This study determined the feasibility, safety, and cost of DPYD*2A genotype-guided dosing. Patients intended to be treated with fluoropyrimidine-based chemotherapy were prospectively genotyped for DPYD*2A before start of therapy. Variant allele carriers received an initial dose reduction of ≥ 50% followed by dose titration based on tolerance. Toxicity was the primary end point and was compared with historical controls (ie, DPYD*2A variant allele carriers receiving standard dose described in literature) and with DPYD*2A wild-type patients treated with the standard dose in this study. Secondary end points included a model-based cost analysis, as well as pharmacokinetic and DPD enzyme activity analyses. A total of 2,038 patients were prospectively screened for DPYD*2A, of whom 22 (1.1%) were heterozygous polymorphic. DPYD*2A variant allele carriers were treated with a median dose-intensity of 48% (range, 17% to 91%). The risk of grade ≥ 3 toxicity was thereby significantly reduced from 73% (95% CI, 58% to 85%) in historical controls (n = 48) to 28% (95% CI, 10% to 53%) by genotype-guided dosing (P < .001); drug-induced death was reduced from 10% to 0%. Adequate treatment of genotype-guided dosing was further demonstrated by a similar incidence of grade ≥ 3 toxicity compared with wild-type patients receiving the standard dose (23%; P = .64) and by similar systemic fluorouracil (active drug) exposure. Furthermore, average total treatment cost per patient was lower for screening (€2,772 [$3,767]) than for nonscreening (€2,817 [$3,828]), outweighing screening costs. DPYD*2A is strongly associated with fluoropyrimidine-induced severe and life-threatening toxicity. DPYD*2A genotype-guided dosing results in adequate systemic drug exposure and significantly improves safety of fluoropyrimidine therapy for the individual patient. On a population level, upfront genotyping seemed cost saving. © 2015 by American Society of Clinical Oncology.

  17. Aquatic concentrations of chemical analytes compared to ecotoxicity estimates

    EPA Science Inventory

    We describe screening level estimates of potential aquatic toxicity posed by 227 chemical analytes that were measured in 25 ambient water samples collected as part of a joint USGS/USEPA drinking water plant study. Measured concentrations were compared to biological effect concent...

  18. A SCREENING-LEVEL MODEL EVALUATION OF ATRAZINE IN THE LAKE MICHIGAN BASIN

    EPA Science Inventory

    Atrazine, a widely used herbicide in the agricultural regions of the Lake Michigan basin, was selected as a priority toxic chemical study in the United States Environmental Protection Agency (U.S. EPA) - sponsored Lake Michigan Mass Balance Project.

  19. Toward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosisl,d-transpeptidase 2.

    PubMed

    Billones, Junie B; Carrillo, Maria Constancia O; Organo, Voltaire G; Macalino, Stephani Joy Y; Sy, Jamie Bernadette A; Emnacen, Inno A; Clavio, Nina Abigail B; Concepcion, Gisela P

    2016-01-01

    Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as LdtMt2, a protein primarily responsible for the catalysis of 3→3 cross-linkages that make up the mycolyl-arabinogalactan-peptidoglycan complex of Mtb. In this study, structure-based pharmacophore screening, molecular docking, and in silico toxicity evaluations were employed in screening compounds from a database of synthetic compounds. Out of the 4.5 million database compounds, 18 structures were identified as high-scoring, high-binding hits with very satisfactory absorption, distribution, metabolism, excretion, and toxicity properties. Two out of the 18 compounds were further subjected to in vitro bioactivity assays, with one exhibiting a good inhibitory activity against the Mtb H37Ra strain.

  20. siRNA screen identifies QPCT as a druggable target for Huntington's disease.

    PubMed

    Jimenez-Sanchez, Maria; Lam, Wun; Hannus, Michael; Sönnichsen, Birte; Imarisio, Sara; Fleming, Angeleen; Tarditi, Alessia; Menzies, Fiona; Dami, Teresa Ed; Xu, Catherine; Gonzalez-Couto, Eduardo; Lazzeroni, Giulia; Heitz, Freddy; Diamanti, Daniela; Massai, Luisa; Satagopam, Venkata P; Marconi, Guido; Caramelli, Chiara; Nencini, Arianna; Andreini, Matteo; Sardone, Gian Luca; Caradonna, Nicola P; Porcari, Valentina; Scali, Carla; Schneider, Reinhard; Pollio, Giuseppe; O'Kane, Cahir J; Caricasole, Andrea; Rubinsztein, David C

    2015-05-01

    Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.

  1. High-throughput Screening of ToxCast" Phase I Chemicals in an Embryonic Stem Cell Assay Reveals Potential Disruption of a Critical Developmental Signaling Pathway

    EPA Science Inventory

    Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...

  2. A multi-analyte profile of serum proteins to screen for toxicological effects of anticholinesterase insecticides in the rat

    EPA Science Inventory

    The development of high throughput biochemical screens could be useful to assess the broad spectrum of physiological effects of environmental toxicants. To explore the prospect of using a screen in an in vivo exposure scenario, we applied a commercially available multianalyte pro...

  3. ADDME – Avoiding Drug Development Mistakes Early: central nervous system drug discovery perspective

    PubMed Central

    Tsaioun, Katya; Bottlaender, Michel; Mabondzo, Aloise

    2009-01-01

    The advent of early absorption, distribution, metabolism, excretion, and toxicity (ADMET) screening has increased the attrition rate of weak drug candidates early in the drug-discovery process, and decreased the proportion of compounds failing in clinical trials for ADMET reasons. This paper reviews the history of ADMET screening and its place in pharmaceutical development, and central nervous system drug discovery in particular. Assays that have been developed in response to specific needs and improvements in technology that result in higher throughput and greater accuracy of prediction of human mechanisms of absorption and toxicity are discussed. The paper concludes with the authors' forecast of new models that will better predict human efficacy and toxicity. PMID:19534730

  4. Profiling Animal Toxicants by Automatically Mining Public Bioassay Data: A Big Data Approach for Computational Toxicology

    PubMed Central

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities. PMID:24950175

  5. Profiling animal toxicants by automatically mining public bioassay data: a big data approach for computational toxicology.

    PubMed

    Zhang, Jun; Hsieh, Jui-Hua; Zhu, Hao

    2014-01-01

    In vitro bioassays have been developed and are currently being evaluated as potential alternatives to traditional animal toxicity models. Already, the progress of high throughput screening techniques has resulted in an enormous amount of publicly available bioassay data having been generated for a large collection of compounds. When a compound is tested using a collection of various bioassays, all the testing results can be considered as providing a unique bio-profile for this compound, which records the responses induced when the compound interacts with different cellular systems or biological targets. Profiling compounds of environmental or pharmaceutical interest using useful toxicity bioassay data is a promising method to study complex animal toxicity. In this study, we developed an automatic virtual profiling tool to evaluate potential animal toxicants. First, we automatically acquired all PubChem bioassay data for a set of 4,841 compounds with publicly available rat acute toxicity results. Next, we developed a scoring system to evaluate the relevance between these extracted bioassays and animal acute toxicity. Finally, the top ranked bioassays were selected to profile the compounds of interest. The resulting response profiles proved to be useful to prioritize untested compounds for their animal toxicity potentials and form a potential in vitro toxicity testing panel. The protocol developed in this study could be combined with structure-activity approaches and used to explore additional publicly available bioassay datasets for modeling a broader range of animal toxicities.

  6. EPAS TOXCAST PROGRAM FOR PREDICTING HAZARD AND PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS(S).

    EPA Science Inventory

    EPAs National Center for Computational Toxicology is developing methods that apply computational chemistry, high-throughput screening (HTS) and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.

  7. Advances in Predictive Toxicology for Discovery Safety through High Content Screening.

    PubMed

    Persson, Mikael; Hornberg, Jorrit J

    2016-12-19

    High content screening enables parallel acquisition of multiple molecular and cellular readouts. In particular the predictive toxicology field has progressed from the advances in high content screening, as more refined end points that report on cellular health can be studied in combination, at the single cell level, and in relatively high throughput. Here, we discuss how high content screening has become an essential tool for Discovery Safety, the discipline that integrates safety and toxicology in the drug discovery process to identify and mitigate safety concerns with the aim to design drug candidates with a superior safety profile. In addition to customized mechanistic assays to evaluate target safety, routine screening assays can be applied to identify risk factors for frequently occurring organ toxicities. We discuss the current state of high content screening assays for hepatotoxicity, cardiotoxicity, neurotoxicity, nephrotoxicity, and genotoxicity, including recent developments and current advances.

  8. Identification of Inhibitors against Metastasis Protein “Survivin:” In silico Discovery Using Virtual Screening and Molecular Docking Studies

    PubMed Central

    Mishra, Swechha; Singh, Sangeeta

    2017-01-01

    Background: In experimental therapy of cancer, survivin is considered to be one of the well-established targets. Studies have found that it is overexpression in most of the human tumors, but it is rarely found in normal tissues. It is having varied structural and functional role. It controls cell division and cellular stress response and also regulates metastasis and migration of cancerous cells. It has also been recognized as a biomarker which makes it unconventional drug target. In spite of being one of the centrally active components in metastasis and invasion, their clinical use is minimal. To increase the therapeutic efficiency of cancer and its various stages, it is important to survey novel reagents targeting the pathways and mechanism involving survivin. Objective: The aim of this study was to identify novel survivin inhibitor candidates using in silico screening. Materials and Methods: In this course of work, virtual screening on a dataset of natural compounds retrieved from ZINC and other libraries were performed. Comparative analysis of the protein was done by studying the binding affinity of inhibitors that are already available. The best interacting complex was set for molecular dynamics simulation for 25 ns to validate the stability of system. These molecules were checked for their toxicity and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties using OSIRIS and pre-ADMET tools. Results: We discovered ten such candidates with better binding efficiency with survivin in comparison to marketed chemical against the same. Furthermore, these inhibitor candidates did not induce cell toxicity. Binding affinity of reference molecules was varied from −6.8 to −8.5 kcal/mol while that of top scoring compound ZINC00689728 is −9.3 kcal/mol binding energy. Good placement and strong bond formation of selected molecule was observed during course of work. It is also having permissible ADMET property. Conclusion: Considering all the parameters, the screened molecule can be considered as a potential lead compound for designing new drug against survivin. Further investigation and testing will be required to make it to the final stage. SUMMARY Survivin is one of the important protein of metastasis. Inhibiting survivin might led to the increased therapeutic efficiency of cancer. In this work we are screening library of natural compounds in view of finding some potent inhibitor against survivin. Abbreviations used: MD: Molecular dynamics, LogS: Aqueous solubility, Acceptor HB: Hydrogen bond acceptor, Donor HB: Donor hydrogen bond donor, ADMET: Absorption, distribution, metabolism, excretion, and toxicity, RCSB: Research Collaboratory for Structural Bioinformatics, OPLS: Optimized potentials for liquid simulations, RMSD: Root-mean-square deviation. PMID:29491627

  9. Phytochemical and cytotoxic evaluation of Medicago monantha: In vivo protective potential in rats.

    PubMed

    Kamran, Muhammad; Khan, Muhammad Rashid; Khan, Hizb Ullah; Abbas, Mazhar; Iqbal, Munawar; Nazir, Arif

    2018-06-01

    This research focuses on screening and evaluation of bioactive constituents in plants through pharmacological assays. In present study, we evaluated phytochemicals, cytotoxic activity, in vivo effect of M. monantha against CCl 4 induced toxicity in cardiac and renal tissues and its aphrodisiac potential in rats. Shade dried plant was extracted with methanol. The phytochemical screening indicates the presence of flavonoids and alkaloids. Aphrodisiac study showed improved sexual desire; may be attributed to the presence of saponins that boosts the androgen level. Cytotoxicity of the plant was assessed through brine shrimp lethality assay and nearly all the fractions showed promising results. The in vivo study focused on the protective ability of extract against CCl 4 -induced oxidative damage in renal and cardiac tissues of rats. Serum analysis revealed that CCl 4 intoxication increased the levels of bilirubin and blood urea nitrogen (BUN). Antioxidant enzyme analysis showed that catalase, peroxidase, superoxide dismutase, glutathione-S-transferase, glutathione activity and protein levels declined due to CCl 4 induced renal and cardiac toxicity. Moreover, the histopathological studies of both low & high dose plant treated group's revealed glomerular hypertrophy and glomerular congestion in kidney, cardiac degeneration and vacuolization of germinal epithelium induced by CCl 4 intoxication. DNA also shows damage showed the toxic nature of the plant. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. A novel approach for rapidly and cost-effectively assessing toxicity of toxic metals in acidic water using an acidophilic iron-oxidizing biosensor.

    PubMed

    Yang, Shih-Hung; Cheng, Kuo-Chih; Liao, Vivian Hsiu-Chuan

    2017-11-01

    Contamination by heavy metals and metalloids is a serious environmental and health concern. Acidic wastewaters are often associated with toxic metals which may enter and spread into agricultural soils. Several biological assays have been developed to detect toxic metals; however, most of them can only detect toxic metals in a neutral pH, not in an acidic environment. In this study, an acidophilic iron-oxidizing bacterium (IOB) Strain Y10 was isolated, characterized, and used to detect toxic metals toxicity in acidic water at pH 2.5. The colorimetric acidophilic IOB biosensor was based on the inhibition of the iron oxidizing ability of Strain Y10, an acidophilic iron-oxidizing bacterium, by metals toxicity. Our results showed that Strain Y10 is acidophilic iron-oxidizing bacterium. Thiobacillus caldus medium (TCM) (pH 2.5) supplied with both S 4 O 6 2- and glucose was the optimum growth medium for Strain Y10. The optimum temperature and pH for the growth of Strain Y10 was 45 °C and pH 2.5, respectively. Our study demonstrates that the color-based acidophilic IOB biosensor can be semi-quantitatively observed by eye or quantitatively measured by spectrometer to detect toxicity from multiple toxic metals at pH 2.5 within 45 min. Our study shows that monitoring toxic metals in acidic water is possible by using the acidophilic IOB biosensor. Our study thus provides a novel approach for rapid and cost-effective detection of toxic metals in acidic conditions that can otherwise compromise current methods of chemical analysis. This method also allows for increased efficiency when screening large numbers of environmental samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fishing anti(lymph)angiogenic drugs with zebrafish.

    PubMed

    García-Caballero, Melissa; Quesada, Ana R; Medina, Miguel A; Marí-Beffa, Manuel

    2018-02-01

    Zebrafish, an amenable small teleost fish with a complex mammal-like circulatory system, is being increasingly used for drug screening and toxicity studies. It combines the biological complexity of in vivo models with a higher-throughput screening capability compared with other available animal models. Externally growing, transparent embryos, displaying well-defined blood and lymphatic vessels, allow the inexpensive, rapid, and automatable evaluation of drug candidates that are able to inhibit neovascularisation. Here, we briefly review zebrafish as a model for the screening of anti(lymph)angiogenic drugs, with emphasis on the advantages and limitations of the different zebrafish-based in vivo assays. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals.

    PubMed

    Önlü, Serli; Saçan, Melek Türker

    2017-04-01

    The authors modeled the 72-h algal toxicity data of hundreds of chemicals with different modes of action as a function of chemical structures. They developed mode of action-based local quantitative structure-toxicity relationship (QSTR) models for nonpolar and polar narcotics as well as a global QSTR model with a wide applicability potential for industrial chemicals and pharmaceuticals. The present study rigorously evaluated the generated models, meeting the Organisation for Economic Co-operation and Development principles of robustness, validity, and transparency. The proposed global model had a broad structural coverage for the toxicity prediction of diverse chemicals (some of which are high-production volume chemicals) with no experimental toxicity data. The global model is potentially useful for endpoint predictions, the evaluation of algal toxicity screening, and the prioritization of chemicals, as well as for the decision of further testing and the development of risk-management measures in a scientific and regulatory frame. Environ Toxicol Chem 2017;36:1012-1019. © 2016 SETAC. © 2016 SETAC.

  13. New High Throughput Methods to Estimate Chemical ...

    EPA Pesticide Factsheets

    EPA has made many recent advances in high throughput bioactivity testing. However, concurrent advances in rapid, quantitative prediction of human and ecological exposures have been lacking, despite the clear importance of both measures for a risk-based approach to prioritizing and screening chemicals. A recent report by the National Research Council of the National Academies, Exposure Science in the 21st Century: A Vision and a Strategy (NRC 2012) laid out a number of applications in chemical evaluation of both toxicity and risk in critical need of quantitative exposure predictions, including screening and prioritization of chemicals for targeted toxicity testing, focused exposure assessments or monitoring studies, and quantification of population vulnerability. Despite these significant needs, for the majority of chemicals (e.g. non-pesticide environmental compounds) there are no or limited estimates of exposure. For example, exposure estimates exist for only 7% of the ToxCast Phase II chemical list. In addition, the data required for generating exposure estimates for large numbers of chemicals is severely lacking (Egeghy et al. 2012). This SAP reviewed the use of EPA's ExpoCast model to rapidly estimate potential chemical exposures for prioritization and screening purposes. The focus was on bounded chemical exposure values for people and the environment for the Endocrine Disruptor Screening Program (EDSP) Universe of Chemicals. In addition to exposure, the SAP

  14. A Critical Review of the Effects of Hydroxychloroquine and Chloroquine on the Eye.

    PubMed

    Costedoat-Chalumeau, Nathalie; Dunogué, Bertrand; Leroux, Gaëlle; Morel, Nathalie; Jallouli, Moez; Le Guern, Véronique; Piette, Jean-Charles; Brézin, Antoine P; Melles, Ronald B; Marmor, Michael F

    2015-12-01

    Hydroxychloroquine (HCQ) and chloroquine have been used for more than 50 years to treat systemic lupus erythematosus (SLE) and other rheumatic diseases. In general, these drugs are well tolerated and rarely need to be discontinued because of an adverse systemic reaction. However, both medications can be irreversibly toxic to the retina. A new study indicates that toxicity is not as rare as once believed, but depends critically on daily dosage and duration of use, as well as other risk factors. With attention to dosage and other factors, and with proper screening for early signs of toxicity, HCQ can be prescribed with relative safety even over long periods of time.

  15. Identification of key characteristics of male reproductive toxicants as an approach for screening and sorting mechanistic evidence.

    EPA Science Inventory

    The application of systematic review practices in human health assessment includes integration of multi-disciplinary evidence from epidemiological, experimental, and mechanistic studies. Although mode of action analysis relies on the evaluation of mechanistic and toxicological ou...

  16. INVERTEBRATE AND PLANT ECO-SSLS DERIVED FROM PUBLISHED TOXICITY STUDIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA), in collaboration with other federal, state, and industry groups has developed Ecological Soil Screening Levels (Eco-SSLs) for common contaminants found at Superfund sites. The Eco-SSLs were created as a tool to identify soil conta...

  17. Studies of the Variables Affecting Behavior of Larval Zebrafish for Developmental Neurotoxicity Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. We are exploring methods to detect developmentally neurotoxic chemicals using zebrafish behavior at 6 days of age. The behavioral paradig...

  18. Activity profiles of 676 ToxCast Phase II compounds in 231 biochemical high-throughput screening assays

    EPA Science Inventory

    Understanding potential health risks posed by environmental chemicals is a significant challenge elevated by large numbers of diverse chemicals with generally uncharacterized exposures, mechanisms and toxicities. The present study is a performance evaluation and critical analysis...

  19. EPA'S TOXCAST PROGRAM FOR PREDICTING HAZARD AND PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS

    EPA Science Inventory

    EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals that likely represent the greatest hazard to human ...

  20. Volume balance and toxicity analysis for the cross lake bridge.

    DOT National Transportation Integrated Search

    2009-09-01

    There were two overall objectives for this project: (1) to assess leakage from the bridge once repairs to the collection system were completed and (2) to investigate Microtox, a toxicity screening tool manufactured by Azur environmental, as a m...

  1. MULTIDISCIPLINARY APPROACH TO TOXICOLOGICAL SCREENING: II. DEVELOPMENTAL TOXICITY

    EPA Science Inventory

    As part of the validation of an integrated bioassay for systemic, neuro-, and developmental toxicity, we evaluated the responses of Fischer-344 rats to four pesticides, four chlorinated solvents, and two other industrial chemicals. he pesticides included carbaryl, triadimefon, ch...

  2. New Toxico-Cheminformatics & Computational Toxicology Initiatives At EPA

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than tr...

  3. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  4. The use of high-throughput screening techniques to evaluate mitochondrial toxicity.

    PubMed

    Wills, Lauren P

    2017-11-01

    Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optimization of Hyalella azteca IQ Toxicity Test{trademark} for prediction of 28-day sediment toxicity tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novotny, A.N.; Ezzard, C.L.; Douglas, W.S.

    1995-12-31

    The IQ Toxicity Test, which is a rapid screening toxicity test consisting of the observation of in-vivo inhibition of an enzymatic process using a fluorescent substrate, has proven successful for the determination of 24 and 48-hour EC50`s of D. magna, C. dubia, D. pulex and M. bahia. The application of this concept to utilize the freshwater amphipod Hyalella azteca may be an excellent way in which to reduce the standard 28-day chronic sediment toxicity test to possibly one hour`s time. This study incorporates an additive experimental design to explore the effects of and interactions between five specific variables: size ofmore » the amphipod, exposure time to the toxicant, concentration of substrate, exposure time to the substrate, and length of time starved prior to testing. The results of the IQ toxicity test were compared to those of a 28-day chronic sediment toxicity test. Preliminary data indicate that there is an optimal combination of these variables which results in a concise, reproducible toxicity test for use with Hyalella azteca, and would potentially be applicable to other freshwater amphipods in the future.« less

  6. [Investigation of metabolites of Triptergium wilfordii on liver toxicity by LC-MS].

    PubMed

    Zhao, Xiao-mei; Liu, Xin-ying; Xu, Chang; Ye, Tao; Jin, Cheng; Zhao, Kui-jun; Ma, Zhi-jie; Xiao, Xiao-he

    2015-10-01

    In this paper, biomarkers of liver toxicity of Triptergium wilfordii based on metabolomics was screened, and mechanism of liver toxicity was explored to provide a reference for the clinical diagnosis for liver toxicity of Triptergium wilfordii. MS method was carried on the analysis to metabolic fingerprint spectrum between treatment group and control group. The potential biomarkers were compared and screened using the multivariate statistical methods. As well, metabolic pathway would be detailed description. Combined with PCA and OPLS-DA pattern recognition analysis, 20 metabolites were selected which showed large differences between model group and blank group (VIP > 1.0). Seven possible endogenous biomarkers were analyzed and identified. They were 6-phosphate glucosamine, lysophospholipid, tryptophan, guanidine acetic acid, 3-indole propionic acid, cortisone, and ubiquinone. The level changes of above metabolites indicated that the metabolism pathways of amino acid, glucose, phospholipid and hormone were disordered. It is speculated that liver damage of T. wilfordii may be associated with the abnormal energy metabolism in citric acid cycle, amino acid metabolism in urea cycle, and glucose metabolism. It will be helpful to further research liver toxicity ingredients of Triptergium wilfordii.

  7. Engineering a functional three-dimensional human cardiac tissue model for drug toxicity screening.

    PubMed

    Lu, Hong Fang; Leong, Meng Fatt; Lim, Tze Chiun; Chua, Ying Ping; Lim, Jia Kai; Du, Chan; Wan, Andrew C A

    2017-05-11

    Cardiotoxicity is one of the major reasons for clinical drug attrition. In vitro tissue models that can provide efficient and accurate drug toxicity screening are highly desired for preclinical drug development and personalized therapy. Here, we report the fabrication and characterization of a human cardiac tissue model for high throughput drug toxicity studies. Cardiac tissues were fabricated via cellular self-assembly of human transgene-free induced pluripotent stem cells-derived cardiomyocytes in pre-fabricated polydimethylsiloxane molds. The formed tissue constructs expressed cardiomyocyte-specific proteins, exhibited robust production of extracellular matrix components such as laminin, collagen and fibronectin, aligned sarcomeric organization, and stable spontaneous contractions for up to 2 months. Functional characterization revealed that the cardiac cells cultured in 3D tissues exhibited higher contraction speed and rate, and displayed a significantly different drug response compared to cells cultured in age-matched 2D monolayer. A panel of clinically relevant compounds including antibiotic, antidiabetic and anticancer drugs were tested in this study. Compared to conventional viability assays, our functional contractility-based assays were more sensitive in predicting drug-induced cardiotoxic effects, demonstrating good concordance with clinical observations. Thus, our 3D cardiac tissue model shows great potential to be used for early safety evaluation in drug development and drug efficiency testing for personalized therapy.

  8. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology

    PubMed Central

    Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.

    2008-01-01

    The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021

  9. Significance of Intratracheal Instillation Tests for the Screening of Pulmonary Toxicity of Nanomaterials.

    PubMed

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujisawa, Yuri; Fujita, Katsuhide

    Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.

  10. Elucidation of Adverse Bioactivity Profiles as Predictors of Toxicity Potential

    EPA Science Inventory

    Toxicity testing in vitro remains a formidable challenge due to lack of understanding of key molecular targets and pathways underlying many pathological events. The combination of genome sequencing and widespread application of high-throughput screening tools have provided the me...

  11. ExpoCast: Exposure Science for Prioritization and Toxicity Testing (S)

    EPA Science Inventory

    The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCast. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize limi...

  12. ExpoCast: Exposure Science for Prioritization and Toxicity Testing

    EPA Science Inventory

    The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCastTM. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize l...

  13. THE DEVELOPMENTAL TOXICITY OF BROMOCHLOROACETONITRILE IN PREGNANT LONG-EVANS RATS

    EPA Science Inventory

    Bromochloroacetonitrile (BCAN) is a by-product of the chlorine disinfection of water containing natural organic material. Adverse effects of BCAN in an in vivo teratology screen (i.e. neonatal survival assay) gave reason for further investigation into the developmental toxicity o...

  14. In Vitro Toxicity Screening Technique for Volatile Substances ...

    EPA Pesticide Factsheets

    In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the challenge is that many of these chemicals are volatile and not amenable to HTS robotic liquid handling applications. We assembled an in vitro cell culture apparatus capable of screening volatile chemicals for toxicity with potential for miniaturization for high throughput. BEAS-2B lung cells were grown in an enclosed culture apparatus under air-liquid interface (ALI) conditions, and exposed to an array of xenobiotics in 5% CO2. Use of ALI conditions allows direct contact of cells with a gas xenobiotic, as well as release of endogenous gaseous molecules without interference by medium on the apical surface. To identify potential xenobiotic-induced perturbations in cell homeostasis, we monitored for alterations of endogenously-produced gaseous molecules in air directly above the cells, termed “headspace”. Alterations in specific endogenously-produced gaseous molecules (e.g., signaling molecules nitric oxide (NO) and carbon monoxide (CO) in headspace is indicative of xenobiotic-induced perturbations of specific cellular processes. Additionally, endogenously produced volatile organic compounds (VOCs) may be monitored in a nonspecific, discovery manner to determine whether cell processes are

  15. Hydrogel tissue construct-based high-content compound screening.

    PubMed

    Lam, Vy; Wakatsuki, Tetsuro

    2011-01-01

    Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)-based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds--rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)--for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.

  16. Environmental and risk screening for prioritizing pollution prevention opportunities in the U.S. printed wiring board manufacturing industry.

    PubMed

    Lam, Carl W; Lim, Seong-Rin; Schoenung, Julie M

    2011-05-15

    Modern manufacturing of printed wiring boards (PWBs) involves extensive use of various hazardous chemicals in different manufacturing steps such as board preparation, circuit design transfer, etching and plating processes. Two complementary environmental screening methods developed by the U.S. EPA, namely: (i) the Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) and (ii) Risk-Screening Environmental Indicators (RSEI), are used to quantify geographic and chemical environmental impacts in the U.S. PWB manufacturing industry based on Toxics Release Inventory (TRI) data. Although the release weight percentages of industrial chemicals such as methanol, glycol ethers and dimethylformamide comprise the larger fraction of reported air and water emissions, results indicate that lead, copper and their compounds' releases correspond to the highest environmental impact from toxicity potentials and risk-screening scores. Combining these results with further knowledge of PWB manufacturing, select alternative chemical processes and materials for pollution prevention are discussed. Examples of effective pollution prevention options in the PWB industry include spent etchant recovery technologies, and process and material substitutions. In addition, geographic assessment of environmental burden highlights states where promotion of pollution prevention strategies and emissions regulations can have the greatest effect to curb the PWB industry's toxic release impacts. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. [Interest of toxicological analysis for poisonings].

    PubMed

    Mégarbane, Bruno; Baud, Frédéric J

    2008-04-30

    The clinical approach of the poisoned patients is mainly based on the analysis of the circumstances of intoxication and the search for toxidromes. Toxicological analysis aims to detect the toxicants or measure their concentrations, in order to confirm the hypothesis of poisoning, to evaluate its severity and to help the follow-up regarding the treatment efficiency. Emergent toxicological analysis appears only useful if the method is specific and the results rapidly obtained. Therefore, systematic screening using immunochesmistry-based tests is not recommended in the situation of emergency. Measurement of blood concentrations of the toxicants is only indicated if it may influence the patient management. However, in the perspective of research, the study of toxicokinetic/toxicodynamic relationships, i.e. the relationships between the toxicant effects and its blood concentrations, may be helpful to understand the inter-individual variability of the response to a toxicant.

  18. Using the Drosophila Melanogaster Genetics Reference Panel to Identify Toxicity Pathways for Toluene

    EPA Science Inventory

    Mechanistic information is needed to link effects of chemicals at molecular targets in high­ throughput screening assays to adverse outcomes in whole organisms. This study was designed to use the Drosophila Genetic Reference Panel (DGRP), a set of genetically well...

  19. Developing a gene biomarker at the tipping point of adaptive and adverse responses in human bronchial epithelial cells

    EPA Science Inventory

    Determining mechanism-based biomarkers that distinguish adaptive and adverse cellular processes is critical to understanding the health effects of environmental exposures. Shifting from in vivo, low-throughput toxicity studies to high-throughput screening (HTS) paradigms and risk...

  20. INNOVATIVE SCREENING TECHNOLOGIES FOR DIOXINS IN SOIL

    EPA Science Inventory

    Dioxins are recognized as one of the most pervasive and toxic class of chemicals in the environment. They have been the focus of various human exposure studies and have been found at numerous Superfund and other hazardous waste sites. The cost of dioxin analysis represents a s...

  1. Identifying Metabolically Active Chemicals Using a Consensus Quantitative Structure Activity Relationship Model for Estrogen Receptor Binding

    EPA Science Inventory

    Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals acro...

  2. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure

    PubMed Central

    Nath, Anjali K.; Roberts, Lee D.; Liu, Yan; Mahon, Sari B.; Kim, Sonia; Ryu, Justine H.; Werdich, Andreas; Januzzi, James L.; Boss, Gerry R.; Rockwood, Gary A.; MacRae, Calum A.; Brenner, Matthew; Gerszten, Robert E.; Peterson, Randall T.

    2013-01-01

    Exposure to cyanide causes a spectrum of cardiac, neurological, and metabolic dysfunctions that can be fatal. Improved cyanide antidotes are needed, but the ideal biological pathways to target are not known. To understand better the metabolic effects of cyanide and to discover novel cyanide antidotes, we developed a zebrafish model of cyanide exposure and scaled it for high-throughput chemical screening. In a screen of 3120 small molecules, we discovered 4 novel antidotes that block cyanide toxicity. The most potent antidote was riboflavin. Metabolomic profiling of cyanide-treated zebrafish revealed changes in bile acid and purine metabolism, most notably by an increase in inosine levels. Riboflavin normalizes many of the cyanide-induced neurological and metabolic perturbations in zebrafish. The metabolic effects of cyanide observed in zebrafish were conserved in a rabbit model of cyanide toxicity. Further, humans treated with nitroprusside, a drug that releases nitric oxide and cyanide ions, display increased circulating bile acids and inosine. In summary, riboflavin may be a novel treatment for cyanide toxicity and prophylactic measure during nitroprusside treatment, inosine may serve as a biomarker of cyanide exposure, and metabolites in the bile acid and purine metabolism pathways may shed light on the pathways critical to reversing cyanide toxicity.—Nath, A. K., Roberts, L. D., Liu, Y., Mahon, S. B., Kim, S., Ryu, J. H., Werdich, A., Januzzi, J. L., Boss, G. R., Rockwood, G. A., MacRae, C. A., Brenner, M., Gerszten, R. E., Peterson, R. T. Chemical and metabolomic screens identify novel biomarkers and antidotes for cyanide exposure. PMID:23345455

  3. Suitability of a Saccharomyces cerevisiae-based assay to assess the toxicity of pyrimethanil sprayed soils via surface runoff: comparison with standard aquatic and soil toxicity assays.

    PubMed

    Gil, Fátima N; Moreira-Santos, Matilde; Chelinho, Sónia; Pereira, Carla; Feliciano, Joana R; Leitão, Jorge H; Sousa, José P; Ribeiro, Rui; Viegas, Cristina A

    2015-02-01

    The present study is aimed at evaluating whether a gene expression assay with the microbial eukaryotic model Saccharomyces cerevisiae could be used as a suitable warning tool for the rapid preliminary screening of potential toxic effects on organisms due to scenarios of soil and water contamination with pyrimethanil. The assay consisted of measuring changes in the expression of the selected pyrimethanil-responsive genes ARG3 and ARG5,6 in a standardized yeast population. Evaluation was held by assessing the toxicity of surface runoff, a major route of pesticide exposure in aquatic systems due to non-point-source pollution, which was simulated with a pyrimethanil formulation at a semifield scale mimicking worst-case scenarios of soil contamination (e.g. accident or improper disposal). Yeast cells 2-h exposure to the runoff samples led to a significant 2-fold increase in the expression of both indicator genes. These results were compared with those from assays with organisms relevant for the aquatic and soil compartments, namely the nematode Caenorhabditis elegans (reproduction), the freshwater cladoceran Daphnia magna (survival and reproduction), the benthic midge Chironomus riparius (growth), and the soil invertebrates Folsomia candida and Enchytraeus crypticus (survival and reproduction). Under the experimental conditions used to simulate accidental discharges into soil, runoff waters were highly toxic to the standard test organisms, except for C. elegans. Overall, results point out the usefulness of the yeast assay to provide a rapid preview of the toxicity level in preliminary screenings of environmental samples in situations of inadvertent high pesticide contamination. Advantages and limitations of this novel method are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. AOPs & Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making.

    EPA Science Inventory

    As high throughput screening (HTS) approaches play a larger role in toxicity testing, computational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models for this purpose are becoming increasingly more sophisticated...

  5. Functional Observational Battery Testing for Nervous System Effects of Drugs and Other Chemicals

    EPA Science Inventory

    Screening for behavioral toxicity, or neurotoxicity, has become standard practice in preclinical safety pharmacology and toxicology. Behavior represents the integrated sum of activities mediated by the nervous system. Current screening batteries, such as the functional observat...

  6. Cheminformatic Analysis of the US EPA ToxCast Chemical Library

    EPA Science Inventory

    The ToxCast project is employing high throughput screening (HTS) technologies, along with chemical descriptors and computational models, to develop approaches for screening and prioritizing environmental chemicals for further toxicity testing. ToxCast Phase I generated HTS data f...

  7. Response to “Accurate Risk-Based Chemical Screening Relies on Robust Exposure Estimates”

    EPA Science Inventory

    This is a correspondence (letter to the editor) with reference to comments by Rudel and Perovich on the article "Integration of Dosimetry, Exposure, and High-Throughput Screening Data in Chemical Toxicity Assessment". Article Reference: SI # 238882

  8. Utilizing high throughput screening data for predictive toxicology models: protocols and application to MLSCN assays

    NASA Astrophysics Data System (ADS)

    Guha, Rajarshi; Schürer, Stephan C.

    2008-06-01

    Computational toxicology is emerging as an encouraging alternative to experimental testing. The Molecular Libraries Screening Center Network (MLSCN) as part of the NIH Molecular Libraries Roadmap has recently started generating large and diverse screening datasets, which are publicly available in PubChem. In this report, we investigate various aspects of developing computational models to predict cell toxicity based on cell proliferation screening data generated in the MLSCN. By capturing feature-based information in those datasets, such predictive models would be useful in evaluating cell-based screening results in general (for example from reporter assays) and could be used as an aid to identify and eliminate potentially undesired compounds. Specifically we present the results of random forest ensemble models developed using different cell proliferation datasets and highlight protocols to take into account their extremely imbalanced nature. Depending on the nature of the datasets and the descriptors employed we were able to achieve percentage correct classification rates between 70% and 85% on the prediction set, though the accuracy rate dropped significantly when the models were applied to in vivo data. In this context we also compare the MLSCN cell proliferation results with animal acute toxicity data to investigate to what extent animal toxicity can be correlated and potentially predicted by proliferation results. Finally, we present a visualization technique that allows one to compare a new dataset to the training set of the models to decide whether the new dataset may be reliably predicted.

  9. Fourier-transform infrared spectroscopy for rapid screening and live-cell monitoring: application to nanotoxicology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Sacksteder, Colette A.; Weber, T. J.

    2013-01-01

    A significant challenge to realize the full potential of nanotechnology for therapeutic and diagnostic applications is to understand and evaluate how live-cells interact with an external stimulus, e.g., a nanosized particle (NSP), and the toxicity and broad risk associated with these stimuli. NSPs are increasingly used in medicine with largely undetermined hazards in complex cell dynamics and environments. It is difficult to capture the complexity and dynamics of these interactions by following an omics-based approach exclusively, which are expensive and time-consuming. Additionally, this approach needs destructive sampling methods. Live-cell attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry is well suited tomore » provide noninvasive approach to provide rapid screening of cellular responses to potentially toxic NSPs or any stimuli. Herein we review the technical basis of the approach, the instrument configuration and interface with the biological media, and various effects that impact the data, data analysis, and toxicity. Our preliminary results on live-cell monitoring show promise for rapid screening the NSPs.« less

  10. Screening of agelasine D and analogs for inhibitory activity against pathogenic protozoa; identification of hits for visceral leishmaniasis and Chagas disease.

    PubMed

    Vik, Anders; Proszenyák, Agnes; Vermeersch, Marieke; Cos, Paul; Maes, Louis; Gundersen, Lise-Lotte

    2009-01-08

    There is an urgent need for novel and improved drugs against several tropical diseases caused by protozoa. The marine sponge (Agelas sp.) metabolite agelasine D, as well as other agelasine analogs and related structures were screened for inhibitory activity against Plasmodium falciparum, Leishmania infantum, Trypanosoma brucei and T. cruzi, as well as for toxicity against MRC-5 fibroblast cells. Many compounds displayed high general toxicity towards both the protozoa and MRC-5 cells. However, two compounds exhibited more selective inhibitory activity against L. infantum (IC(50) <0.5 microg/mL) while two others displayed IC(50) <1 microg/mL against T. cruzi in combination with relatively low toxicity against MRC-5 cells. According to criteria set up by the WHO Special Programme for Research & Training in Tropical Diseases (TDR), these compounds could be classified as hits for leishmaniasis and for Chagas disease, respectively. Identification of the hits as well as other SAR data from this initial screening will be valuable for design of more potent and selective potential drugs against these neglected tropical diseases.

  11. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells.

    PubMed

    Ihry, Robert J; Worringer, Kathleen A; Salick, Max R; Frias, Elizabeth; Ho, Daniel; Theriault, Kraig; Kommineni, Sravya; Chen, Julie; Sondey, Marie; Ye, Chaoyang; Randhawa, Ranjit; Kulkarni, Tripti; Yang, Zinger; McAllister, Gregory; Russ, Carsten; Reece-Hoyes, John; Forrester, William; Hoffman, Gregory R; Dolmetsch, Ricardo; Kaykas, Ajamete

    2018-06-11

    CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells 1-3 . Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells 3-13 . Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction 3 . The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations 14 , cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.

  12. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity.

    PubMed

    Amacher, David E

    2010-05-15

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intended human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in biological fluids with varying immunoreactivity which can present bioanalytical challenges when first discovered. The potential success of these efforts is greatly enhanced by recent advances in two closely linked technologies, toxicoproteomics and targeted, quantitative mass spectrometry. This review focuses on the examination of the current status of these technologies as they relate to the discovery and development of novel preclinical biomarkers of hepatotoxicity. A critical assessment of the current literature reveals two distinct lines of safety biomarker investigation, (1) peripheral fluid biomarkers of organ toxicity and (2) tissue or cell-based toxicity signatures. Improved peripheral fluid biomarkers should allow the sensitive detection of potential organ toxicity prior to the onset of overt organ pathology. Advancements in tissue or cell-based toxicity biomarkers will provide sensitive in vitro or ex vivo screening systems based on toxicity pathway markers. An examination of the current practices in clinical pathology and the critical evaluation of some recently proposed biomarker candidates in comparison to the desired characteristics of an ideal toxicity biomarker lead this author to conclude that a combination of selected biomarkers will be more informative if not predictive of potential animal organ toxicity than any single biomarker, new or old. For the practical assessment of combinations of conventional and/or novel toxicity biomarkers in rodent and large animal preclinical species, mass spectrometry has emerged as the premier analytical tool compared to specific immunoassays or functional assays. Selected and multiple reaction monitoring mass spectrometry applications make it possible for this same basic technology to be used in the progressive stages of biomarker discovery, development, and more importantly, routine study applications without the use of specific antibody reagents. This technology combined with other "omics" technologies can provide added selectivity and sensitivity in preclinical drug safety testing.

  13. A FLUORESCENCE-BASED SCREENING ASSAY FOR DNA DAMAGE INDUCED BY GENOTOXIC INDUSTRIAL CHEMICALS

    EPA Science Inventory

    The possibility of deliberate or accidental release of toxic chemicals in industrial, commercial or residential settings has indicated a need for rapid, cost-effective and versatile monitoring methods to prevent exposures to humans and ecosystems. Because many toxic industrial c...

  14. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, rapid, cell based toxicity testing methods relevant to human health. Recent advances in robotics, automation, and miniaturization have been used to address these problems. However, one challenge is that ma...

  15. Integration into Big Data: First Steps to Support Reuse of Comprehensive Toxicity Model Modules (SOT)

    EPA Science Inventory

    Data surrounding the needs of human disease and toxicity modeling are largely siloed limiting the ability to extend and reuse modules across knowledge domains. Using an infrastructure that supports integration across knowledge domains (animal toxicology, high-throughput screening...

  16. ADAPTING THE MEDAKA EMBRYO ASSAY TO A HIGH-THROUGHPUT APPROACH FOR DEVELOPMENTAL TOXICITY TESTING.

    EPA Science Inventory

    Chemical exposure during embryonic development may cause persistent effects, yet developmental toxicity data exist for very few chemicals. Current testing procedures are time consuming and costly, underlining the need for rapid and low cost screening strategies. While in vitro ...

  17. ToxRefDB: Classifying ToxCast™ Phase I Chemicals Utilizing Structured Toxicity Information

    EPA Science Inventory

    There is an essential need for highly detailed chemicals classifications within the ToxCast™ research program. In order to develop predictive models and biological signatures utilizing high-throughput screening (HTS) and in vitro genomic data, relevant endpoints and toxicities m...

  18. In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System##

    EPA Science Inventory

    In 2007 the National Research Council envisioned the need for inexpensive, rapid, cell based toxicity testing methods relevant to human health. Recent advances in robotics, automation, and miniaturization have been used to address this challenge. However, one drawback to currentl...

  19. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  20. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  1. 40 CFR 257.25 - Assessment monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Minimum distance between upgradient edge of the unit and downgradient monitoring well screen (minimum... that is likely to be without appreciable risk of deleterious effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or...

  2. 40 CFR 258.55 - Assessment monitoring program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...

  3. 40 CFR 258.55 - Assessment monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...

  4. 40 CFR 258.55 - Assessment monitoring program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... upgradient edge of the MSWLF unit and downgradient monitoring well screen (minimum distance of travel); (5... effects during a lifetime. For purposes of this subpart, systemic toxicants include toxic chemicals that cause effects other than cancer or mutation. (ii) [Reserved] (j) In establishing ground-water protection...

  5. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    EPA Science Inventory

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  6. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.

    PubMed

    Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M

    2014-03-01

    Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  7. Lead toxicity thresholds in 17 Chinese soils based on substrate-induced nitrification assay.

    PubMed

    Li, Ji; Huang, Yizong; Hu, Ying; Jin, Shulan; Bao, Qiongli; Wang, Fei; Xiang, Meng; Xie, Huiting

    2016-06-01

    The influence of soil properties on toxicity threshold values for Pb toward soil microbial processes is poorly recognized. The impact of leaching on the Pb threshold has not been assessed systematically. Lead toxicity was screened in 17 Chinese soils using a substrate-induced nitrification (SIN) assay under both leached and unleached conditions. The effective concentration of added Pb causing 50% inhibition (EC50) ranged from 185 to >2515mg/kg soil for leached soil and 130 to >2490mg/kg soil for unleached soil. These results represented >13- and >19-fold variations among leached and unleached soils, respectively. Leaching significantly reduced Pb toxicity for 70% of both alkaline and acidic soils tested, with an average leaching factor of 3.0. Soil pH and CEC were the two most useful predictors of Pb toxicity in soils, explaining over 90% of variance in the unleached EC50 value. The relationships established in the present study predicted Pb toxicity within a factor of two of measured values. These relationships between Pb toxicity and soil properties could be used to establish site-specific guidance on Pb toxicity thresholds. Copyright © 2016. Published by Elsevier B.V.

  8. Comparative alternative materials assessment to screen toxicity hazards in the life cycle of CIGS thin film photovoltaics.

    PubMed

    Eisenberg, Daniel A; Yu, Mengjing; Lam, Carl W; Ogunseitan, Oladele A; Schoenung, Julie M

    2013-09-15

    Copper-indium-gallium-selenium-sulfide (CIGS) thin film photovoltaics are increasingly penetrating the market supply for consumer solar panels. Although CIGS is attractive for producing less greenhouse gas emissions than fossil-fuel based energy sources, CIGS manufacturing processes and solar cell devices use hazardous materials that should be carefully considered in evaluating and comparing net environmental benefits of energy products. Through this research, we present a case study on the toxicity hazards associated with alternative materials selection for CIGS manufacturing. We applied two numeric models, The Green Screen for Safer Chemicals and the Toxic Potential Indicator. To improve the sensitivity of the model outputs, we developed a novel, life cycle thinking based hazard assessment method that facilitates the projection of hazards throughout material life cycles. Our results show that the least hazardous CIGS solar cell device and manufacturing protocol consist of a titanium substrate, molybdenum metal back electrode, CuInS₂ p-type absorber deposited by spray pyrolysis, ZnS buffer deposited by spray ion layer gas reduction, ZnO:Ga transparent conducting oxide (TCO) deposited by sputtering, and the encapsulant polydimethylsiloxane. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Extraction of ethanol with higher carboxylic acid solvents and their toxicity to yeast

    USDA-ARS?s Scientific Manuscript database

    In a screening exercise for ethanol-selective extraction solvents, partitioning of ethanol and water from a 5 wt% aqueous solution into several C8 – C18 carboxylic acids was studied. Results for the acids are compared with those from alcohols of similar structure. In all cases studied, the acids exh...

  10. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Fan; Qin, Wei; Zhang, Jing-Pu; Hu, Chang-Qin

    2015-01-01

    Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10-1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.

  11. A systematic evaluation of chemicals in hydraulic-fracturing fluids and wastewater for reproductive and developmental toxicity.

    PubMed

    Elliott, Elise G; Ettinger, Adrienne S; Leaderer, Brian P; Bracken, Michael B; Deziel, Nicole C

    2017-01-01

    Hydraulic-fracturing fluids and wastewater from unconventional oil and natural gas development contain hundreds of substances with the potential to contaminate drinking water. Challenges to conducting well-designed human exposure and health studies include limited information about likely etiologic agents. We systematically evaluated 1021 chemicals identified in hydraulic-fracturing fluids (n=925), wastewater (n=132), or both (n=36) for potential reproductive and developmental toxicity to triage those with potential for human health impact. We searched the REPROTOX database using Chemical Abstract Service registry numbers for chemicals with available data and evaluated the evidence for adverse reproductive and developmental effects. Next, we determined which chemicals linked to reproductive or developmental toxicity had water quality standards or guidelines. Toxicity information was lacking for 781 (76%) chemicals. Of the remaining 240 substances, evidence suggested reproductive toxicity for 103 (43%), developmental toxicity for 95 (40%), and both for 41 (17%). Of these 157 chemicals, 67 had or were proposed for a federal water quality standard or guideline. Our systematic screening approach identified a list of 67 hydraulic fracturing-related candidate analytes based on known or suspected toxicity. Incorporation of data on potency, physicochemical properties, and environmental concentrations could further prioritize these substances for future drinking water exposure assessments or reproductive and developmental health studies.

  12. Computational approaches to screen candidate ligands with anti- Parkinson's activity using R programming.

    PubMed

    Jayadeepa, R M; Niveditha, M S

    2012-01-01

    It is estimated that by 2050 over 100 million people will be affected by the Parkinson's disease (PD). We propose various computational approaches to screen suitable candidate ligand with anti-Parkinson's activity from phytochemicals. Five different types of dopamine receptors have been identified in the brain, D1-D5. Dopamine receptor D3 was selected as the target receptor. The D3 receptor exists in areas of the brain outside the basal ganglia, such as the limbic system, and thus may play a role in the cognitive and emotional changes noted in Parkinson's disease. A ligand library of 100 molecules with anti-Parkinson's activity was collected from literature survey. Nature is the best combinatorial chemist and possibly has answers to all diseases of mankind. Failure of some synthetic drugs and its side effects have prompted many researches to go back to ancient healing methods which use herbal medicines to give relief. Hence, the candidate ligands with anti-Parkinson's were selected from herbal sources through literature survey. Lipinski rules were applied to screen the suitable molecules for the study, the resulting 88 molecules were energy minimized, and subjected to docking using Autodock Vina. The top eleven molecules were screened according to the docking score generated by Autodock Vina Commercial drug Ropinirole was computed similarly and was compared with the 11 phytochemicals score, the screened molecules were subjected to toxicity analysis and to verify toxic property of phytochemicals. R Programming was applied to remove the bias from the top eleven molecules. Using cluster analysis and Confusion Matrix two phytochemicals were computationally selected namely Rosmarinic acid and Gingkolide A for further studies on the disease Parkinson's.

  13. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    EPA Science Inventory

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  14. Toxicity Screening of Volatile Chemicals Using a Novel Air-Liquid Interface In Vitro Exposure System

    EPA Science Inventory

    Traditional in vitro dosing methods require, for example, the addition of particulate matter (PM), PM extracts, or chemicals in dimethyl sulfoxide (DMSO) or water into cell culture medium. However, about 10% of chemicals nominated for study in the U.S Environmental Protection Age...

  15. Proposed key characteristics of male reproductive toxicants as a method for organizing and screening mechanistic evidence for non-cancer outcomes.

    EPA Science Inventory

    The adoption of systematic review practices for risk assessment includes integration of evidence obtained from experimental, epidemiological, and mechanistic studies. Although mechanistic evidence plays an important role in mode of action analysis, the process of sorting and anal...

  16. MODELING FLUX PATHWAYS TO VEGETATION FOR VOLATILE AND SEMI-VOLATILE ORGANIC COMPOUNDS IN A MULTIMEDIA ENVIRONMENT

    EPA Science Inventory

    This study evaluates the treatment of gas-phase atmospheric deposition in a screening level model of the multimedia environmental distribution of toxics (MEND-TOX). Recent algorithmic additions to MEND-TOX for the estimation of gas-phase deposition velocity over vegetated surf...

  17. NCCT ToxCast Program for Nanomaterial Prioritization: High-Throughput Screening, Consideration of Exposure, and Bioactivity Profiling/Modeling

    EPA Science Inventory

    Find relationships between bioactivities and NM characteristics or testing conditions. Recommend a dose metric for NMs in vitro studies. Establish associations to in vivo toxicity or pathways identified from testing of conventional chemicals with ToxCast HTS methods. May be abl...

  18. Complementing in vitro hazard assessment with exposure and pharmacokinetics considerations for chemical prioritization

    EPA Science Inventory

    Traditional toxicity testing involves a large investment in resources, often using low-throughput in vivo animal studies for limited numbers of chemicals. An alternative strategy is the emergence of high-throughput (HT) in vitro assays as a rapid, cost-efficient means to screen t...

  19. In vitro approaches to evaluate toxicity induced by organotin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in neuroblastoma cells.

    PubMed

    Ferreira, Martiña; Blanco, Lucía; Garrido, Alejandro; Vieites, Juan M; Cabado, Ana G

    2013-05-01

    The toxic effects of the organotin compounds (OTCs) monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were evaluated in vitro in a neuroblastoma human cell line. Mechanisms of cell death, apoptosis versus necrosis, were studied by using several markers: inhibition of cell viability and proliferation, F-actin, and mitochondrial membrane potential changes as well as reactive oxygen species (ROS) production and DNA fragmentation. The most toxic effects were detected with DBT and TBT even at very low concentrations (0.1-1 μM). In contrast, MBT induced lighter cytotoxic changes at the higher doses tested. None of the studied compounds stimulated propidium iodide uptake, although the most toxic chemical, TBT, caused lactate dehydrogenase release at the higher concentrations tested. These findings suggest that in neuroblastoma, OTC-induced cytotoxicity involves different pathways depending on the compound, concentration, and incubation time. A screening method for DBT and TBT quantification based on cell viability loss was developed, allowing a fast detection alternative to complex methodology.

  20. Effect of heating rate on toxicity of pyrolysis gases from some synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Soriano, J. A.; Kosola, K. L.

    1977-01-01

    The effect of heating rate on the toxicity of the pyrolysis gases from some synthetic polymers was investigate, using a screening test method. The synthetic polymers were polyethylene, polystyrene, polymethyl methacrylate, polycarbonate, ABS, polyaryl sulfone, polyether sulfone, and polyphenylene sulfide. The toxicants from the sulfur-containing polymers appeared to act more rapidly than the toxicants from the other polymers. It is not known whether this effect is due primarily to differences in concentration or in the nature of the toxicants. The carbon monoxide concentrations found do not account for the observed results.

  1. Toxicity of electronic waste leachates to Daphnia magna: screening and toxicity identification evaluation of different products, components, and materials.

    PubMed

    Lithner, Delilah; Halling, Maja; Dave, Göran

    2012-05-01

    Electronic waste has become one of the fastest growing waste problems in the world. It contains both toxic metals and toxic organics. The aim of this study was to (1) investigate to what extent toxicants can leach from different electronic products, components, and materials into water and (2) identify which group of toxicants (metals or hydrophobic organics) that is causing toxicity. Components from five discarded electronic products (cell phone, computer, phone modem, keyboard, and computer mouse) were leached in deionised water for 3 days at 23°C in concentrations of 25 g/l for metal components, 50 g/l for mixed-material components, and 100 g/l for plastic components. The water phase was tested for acute toxicity to Daphnia magna. Eighteen of 68 leachates showed toxicity (with immobility of D. magna ≥ 50% after 48 h) and came from metal or mixed-material components. The 8 most toxic leachates, with 48 h EC(50)s ranging from 0.4 to 20 g/l, came from 2 circuit sheets (key board), integrated drive electronics (IDE) cable clips (computer), metal studs (computer), a circuit board (computer mouse), a cord (phone modem), mixed parts (cell phone), and a circuit board (key board). All 5 electronic products were represented among them. Toxicity identification evaluations (with C18 and CM resins filtrations and ethylenediaminetetraacetic acid addition) indicated that metals caused the toxicity in the majority of the most toxic leachates. Overall, this study has shown that electronic waste can leach toxic compounds also during short-term leaching with pure water.

  2. Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures and Short-term Toxicity Assay Data

    PubMed Central

    Rusyn, Ivan; Sedykh, Alexander; Guyton, Kathryn Z.; Tropsha, Alexander

    2012-01-01

    Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSAR–like quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage. PMID:22387746

  3. Chalcogenide Glass for Active and Passive Mid-IR Applications

    DTIC Science & Technology

    2010-09-01

    Reactive gas conversion • Chemical vapour deposition What is a Chalcogenide? – From Greek sulphur-loving for elements that frequently bond to sulphur...Predominately As or Se based (toxic!) ORC Research Focussed On – Gallium Lanthanum Sulphides (non-toxic) – Germanium Sulphides (non-toxic) – Capability to...770 2 hours Primary Screening 2 - 3 days Time Scale: one week Pioneering Technology: High Throughput Physical Vapour Deposition Material Discovery

  4. A Novel Inhibitor Of Topoisomerase I is Selectively Toxic For A Subset of Non-Small Cell Lung Cancer Cell Lines | Office of Cancer Genomics

    Cancer.gov

    SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.

  5. TOXICOLOGICAL HIGHLIGHT: SCREENING FOR DEVELOPMENTAL TOXICITY OF TOBACCO SMOKE CONSTITUENTS

    EPA Science Inventory

    Abstract
    Cigarette smoking is unrivaled among developmental toxicants in terms of total adverse impact on the human population. According to the American Lung Association, smoking during pregnancy is estimated to account for 20 to 30 percent of low-weight babies, up to 14 per...

  6. NEW METHODS TO SCREEN FOR DEVELOPMENTAL NEUROTOXICITY.

    EPA Science Inventory

    The development of alternative methods for toxicity testing is driven by the need for scientifically valid data (i.e. predictive of a toxic effect) that can be obtained in a rapid and cost-efficient manner. These predictions will enable decisions to be made as to whether further ...

  7. A Redox Sensitive Pathway in the Mouse ES Cell Assay Modeled From ToxCast HTS Data

    EPA Science Inventory

    The broad chemical landscape coupled with the lack of developmental toxicity information across most environmental chemicals has motivated the need for high- throughput screening methods and predictive models of developmental toxicity. Towards this end, we used the mouse embryoni...

  8. A Different Approach to Validating Screening Assays for Developmental Toxicity

    EPA Science Inventory

    BACKGROUND: There continues to be many efforts around the world to develop assays that are shorter than the traditional embryofetal developmental toxicity assay, or use fewer or no mammals, or use less compound, or have all three attributes. Each assay developer needs to test th...

  9. Modeling Reproductive Toxicity for Chemical Prioritization into an Integrated Testing Strategy

    EPA Science Inventory

    The EPA ToxCast research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I tested 309 well-characterized chemicals in over 500 assays of different molecular targets, cellular responses and cell-states. Of th...

  10. ToxiFly: Can Fruit Flies be Used to Identify Toxicity Pathways for Airborne Chemicals?

    EPA Science Inventory

    Current high-throughput and alternative screening assays for chemical toxicity are unable to test volatile organic compounds (VOCs), thus limiting their scope. Further, the data generated by these assays require mechanistic information to link effects at molecular targets to adve...

  11. Some possible reference materials for fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Solis, A. N.

    1977-01-01

    Suitable reference materials need to be selected in order to standardize any test method. The evaluation of cotton, polyethylene, polyether sulfone, polycarbonate, polystyrene, and polyurethane flexible and rigid foams as possible reference materials for the University of San Francisco/NASA toxicity screening test method is discussed.

  12. Water quality criteria for hexachloroethane: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, K.A.; Hovatter, P.S.; Ross, R.H.

    1988-03-01

    The available data regarding the environmental fate, aquatic toxicity, and mammalian toxicity of hexachloroethane, which is used in military screening smokes, were reviewed. The USEPA guidelines were used to generate water quality criteria for the protection of aquatic life and its uses and of human health. 16 tabs.

  13. [Preliminary study on effective components of Tripterygium wilfordii for liver toxicity based on spectrum-effect correlation analysis].

    PubMed

    Zhao, Xiao-Mei; Pu, Shi-Biao; Zhao, Qing-Guo; Gong, Man; Wang, Jia-Bo; Ma, Zhi-Jie; Xiao, Xiao-He; Zhao, Kui-Jun

    2016-08-01

    In this paper, the spectrum-effect correlation analysis method was used to explore the main effective components of Tripterygium wilfordii for liver toxicity, and provide reference for promoting the quality control of T. wilfordii. Chinese medicine T.wilfordii was taken as the study object, and LC-Q-TOF-MS was used to characterize the chemical components in T. wilfordii samples from different areas, and their main components were initially identified after referring to the literature. With the normal human hepatocytes (LO2 cell line)as the carrier, acetaminophen as positive medicine, and cell inhibition rate as testing index, the simple correlation analysis and multivariate linear correlation analysis methods were used to screen the main components of T. wilfordii for liver toxicity. As a result, 10 kinds of main components were identified, and the spectrum-effect correlation analysis showed that triptolide may be the toxic component, which was consistent with previous results of traditional literature. Meanwhile it was found that tripterine and demethylzeylasteral may greatly contribute to liver toxicity in multivariate linear correlation analysis. T. wilfordii samples of different varieties or different origins showed large difference in quality, and the T. wilfordii from southwest China showed lower liver toxicity, while those from Hunan and Anhui province showed higher liver toxicity. This study will provide data support for further rational use of T. wilfordii and research on its liver toxicity ingredients. Copyright© by the Chinese Pharmaceutical Association.

  14. High-Content, High-Throughput Screening for the Identification of Cytotoxic Compounds Based on Cell Morphology and Cell Proliferation Markers

    PubMed Central

    Martin, Heather L.; Adams, Matthew; Higgins, Julie; Bond, Jacquelyn; Morrison, Ewan E.; Bell, Sandra M.; Warriner, Stuart; Nelson, Adam; Tomlinson, Darren C.

    2014-01-01

    Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays. PMID:24505478

  15. Levels of selected carcinogens and toxicants in vapour from electronic cigarettes.

    PubMed

    Goniewicz, Maciej Lukasz; Knysak, Jakub; Gawron, Michal; Kosmider, Leon; Sobczak, Andrzej; Kurek, Jolanta; Prokopowicz, Adam; Jablonska-Czapla, Magdalena; Rosik-Dulewska, Czeslawa; Havel, Christopher; Jacob, Peyton; Benowitz, Neal

    2014-03-01

    Electronic cigarettes, also known as e-cigarettes, are devices designed to imitate regular cigarettes and deliver nicotine via inhalation without combusting tobacco. They are purported to deliver nicotine without other toxicants and to be a safer alternative to regular cigarettes. However, little toxicity testing has been performed to evaluate the chemical nature of vapour generated from e-cigarettes. The aim of this study was to screen e-cigarette vapours for content of four groups of potentially toxic and carcinogenic compounds: carbonyls, volatile organic compounds, nitrosamines and heavy metals. Vapours were generated from 12 brands of e-cigarettes and the reference product, the medicinal nicotine inhaler, in controlled conditions using a modified smoking machine. The selected toxic compounds were extracted from vapours into a solid or liquid phase and analysed with chromatographic and spectroscopy methods. We found that the e-cigarette vapours contained some toxic substances. The levels of the toxicants were 9-450 times lower than in cigarette smoke and were, in many cases, comparable with trace amounts found in the reference product. Our findings are consistent with the idea that substituting tobacco cigarettes with e-cigarettes may substantially reduce exposure to selected tobacco-specific toxicants. E-cigarettes as a harm reduction strategy among smokers unwilling to quit, warrants further study. (To view this abstract in Polish and German, please see the supplementary files online.).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amacher, David E.

    Biomarkers are biometric measurements that provide critical quantitative information about the biological condition of the animal or individual being tested. In drug safety studies, established toxicity biomarkers are used along with other conventional study data to determine dose-limiting organ toxicity, and to define species sensitivity for new chemical entities intended for possible use as human medicines. A continuing goal of drug safety scientists in the pharmaceutical industry is to discover and develop better trans-species biomarkers that can be used to determine target organ toxicities for preclinical species in short-term studies at dose levels that are some multiple of the intendedmore » human dose and again later in full development for monitoring clinical trials at lower therapeutic doses. Of particular value are early, predictive, noninvasive biomarkers that have in vitro, in vivo, and clinical transferability. Such translational biomarkers bridge animal testing used in preclinical science and human studies that are part of subsequent clinical testing. Although suitable for in vivo preclinical regulatory studies, conventional hepatic safety biomarkers are basically confirmatory markers because they signal organ toxicity after some pathological damage has occurred, and are therefore not well-suited for short-term, predictive screening assays early in the discovery-to-development progression of new chemical entities (NCEs) available in limited quantities. Efforts between regulatory agencies and the pharmaceutical industry are underway for the coordinated discovery, qualification, verification and validation of early predictive toxicity biomarkers. Early predictive safety biomarkers are those that are detectable and quantifiable prior to the onset of irreversible tissue injury and which are associated with a mechanism of action relevant to a specific type of potential hepatic injury. Potential drug toxicity biomarkers are typically endogenous macromolecules in biological fluids with varying immunoreactivity which can present bioanalytical challenges when first discovered. The potential success of these efforts is greatly enhanced by recent advances in two closely linked technologies, toxicoproteomics and targeted, quantitative mass spectrometry. This review focuses on the examination of the current status of these technologies as they relate to the discovery and development of novel preclinical biomarkers of hepatotoxicity. A critical assessment of the current literature reveals two distinct lines of safety biomarker investigation, (1) peripheral fluid biomarkers of organ toxicity and (2) tissue or cell-based toxicity signatures. Improved peripheral fluid biomarkers should allow the sensitive detection of potential organ toxicity prior to the onset of overt organ pathology. Advancements in tissue or cell-based toxicity biomarkers will provide sensitive in vitro or ex vivo screening systems based on toxicity pathway markers. An examination of the current practices in clinical pathology and the critical evaluation of some recently proposed biomarker candidates in comparison to the desired characteristics of an ideal toxicity biomarker lead this author to conclude that a combination of selected biomarkers will be more informative if not predictive of potential animal organ toxicity than any single biomarker, new or old. For the practical assessment of combinations of conventional and/or novel toxicity biomarkers in rodent and large animal preclinical species, mass spectrometry has emerged as the premier analytical tool compared to specific immunoassays or functional assays. Selected and multiple reaction monitoring mass spectrometry applications make it possible for this same basic technology to be used in the progressive stages of biomarker discovery, development, and more importantly, routine study applications without the use of specific antibody reagents. This technology combined with other 'omics' technologies can provide added selectivity and sensitivity in preclinical drug safety testing.« less

  17. High Throughput Exposure Prioritization of Chemicals Using a Screening-Level Probabilistic SHEDS-Lite Exposure Model

    EPA Science Inventory

    These novel modeling approaches for screening, evaluating and classifying chemicals based on the potential for biologically-relevant human exposures will inform toxicity testing and prioritization for chemical risk assessment. The new modeling approach is derived from the Stocha...

  18. Neuronal models for evaluation of proliferation in vitro using high content screening

    EPA Science Inventory

    In vitro test methods can provide a rapid approach for the screening of large numbers of chemicals for their potential to produce toxicity (hazard identification). In order to identify potential developmental neurotoxicants, a battery of in vitro tests for neurodevelopmental proc...

  19. Phenotypic Screening of Primary Human Cell Culture Systems to Identify Potential for Compound Toxicity (CHI Phenotypic Screening)

    EPA Science Inventory

    Addressing safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals needing assessment and the challenge of species extrapolation require development of alternative approaches. Assessing phenot...

  20. Gene Expression Changes in Developing Zebrafish as Potential Markers for Rapid Developmental Neurotoxicity Screening

    EPA Science Inventory

    Sparse information exists on many chemicals to guide developmental neurotoxicity (DNT) risk assessments. As DNT testing using rodents is laborious and expensive, alternative species such as zebrafish are being adapted for toxicity screening. Assessing the DNT potential of chem...

  1. Incorporating Human Dosimetry and Exposure into High-Throughput In Vitro Toxicity Screening

    EPA Science Inventory

    Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multip...

  2. AOPs and Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making

    EPA Science Inventory

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will b...

  3. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening**

    EPA Science Inventory

    The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. As such, we are exploring a behavioral testing paradigm, which can assess the effect of sublethal and subteratogenic concentrations of de...

  4. Functional Assays and Alternative Species: Using Larval Zebrafish in Developmental Neurotoxicity Screening

    EPA Science Inventory

    The U.S. Environmental Protection Agency is developing and evaluating methods to screen and prioritize large numbers of chemicals for developmental toxicity. Towards this goal, we are exploring methods to detect developmental neurotoxicants in very young larval zebrafish. We have...

  5. EPA's proposed land ban regulations. Hearing before the Subcommittee on Commerce, Transportation, and Tourism of the Committee on Energy and Commerce, House of Representatives, Ninety-Ninth Congress, Second Session, February 19, 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    Three representatives of the Environmental Protection Agency (EPA) testified in response to questions over the agency's apparent approval of the land disposal of toxic materials in contradiction to the ban implicit in the Hazardous and Solid Waste Amendments of 1984. In new regulations, EPA interprets the ban as applying only when migration of toxic materials exceeds its screening levels. EPA also cites its screening levels to place a cap on waste treatment. At issue was EPA's effort to avoid the mandate of the 1984 legislation and its acceptance of screening levels which may assume a lower threat than actually exists.more » EPA representatives explained the rulemaking, and defended the use of screening levels as a basis for treatment and exemption. Additional material submitted for the record by the agency and by the House committee follows the testimony.« less

  6. Cost-effectiveness analysis of HLA-B*58: 01 genetic testing before initiation of allopurinol therapy to prevent allopurinol-induced Stevens-Johnson syndrome/toxic epidermal necrolysis in a Malaysian population.

    PubMed

    Chong, Huey Yi; Lim, Yi Heng; Prawjaeng, Juthamas; Tassaneeyakul, Wichittra; Mohamed, Zahurin; Chaiyakunapruk, Nathorn

    2018-02-01

    Studies found a strong association between allopurinol-induced Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and the HLA-B*58:01 allele. HLA-B*58:01 screening-guided therapy may mitigate the risk of allopurinol-induced SJS/TEN. This study aimed to evaluate the cost-effectiveness of HLA-B*58:01 screening before allopurinol therapy initiation compared with the current practice of no screening for Malaysian patients with chronic gout in whom a hypouricemic agent is indicated. This cost-effectiveness analysis adopted a societal perspective with a lifetime horizon. A decision tree model coupled with Markov models were developed to estimate the costs and outcomes, represented by quality-adjusted life years (QALYs) gained, of three treatment strategies: (a) current practice (allopurinol initiation without HLA-B*58:01 screening); (b) HLA-B*58:01 screening before allopurinol initiation; and (c) alternative treatment (probenecid) without HLA-B*58:01 screening. The model was populated with data from literature review, meta-analysis, and published government documents. Cost values were adjusted for the year 2016, with costs and health outcomes discounted at 3% per annum. A series of sensitivity analysis including probabilistic sensitivity analysis were carried out to determine the robustness of the findings. Both HLA-B*58:01 screening and probenecid prescribing were dominated by current practice. Compared with current practice, HLA-B*58:01 screening resulted in 0.252 QALYs loss per patient at an additional cost of USD 322, whereas probenecid prescribing resulted in 1.928 QALYs loss per patient at an additional cost of USD 2203. One SJS/TEN case would be avoided for every 556 patients screened. At the cost-effectiveness threshold of USD 8695 per QALY, the probability of current practice being the best choice is 99.9%, in contrast with 0.1 and 0% in HLA-B*58:01 screening and probenecid prescribing, respectively. This is because of the low incidence of allopurinol-induced SJS/TEN in Malaysia and the lower efficacy of probenecid compared with allopurinol in gout control. This analysis showed that HLA-B*58:01 genetic testing before allopurinol initiation is unlikely to be a cost-effective intervention in Malaysia.

  7. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges

    PubMed Central

    Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061

  8. Should I get screened for sleeping sickness? A qualitative study in Kasai province, Democratic Republic of Congo.

    PubMed

    Mpanya, Alain; Hendrickx, David; Vuna, Mimy; Kanyinda, Albert; Lumbala, Crispin; Tshilombo, Valéry; Mitashi, Patrick; Luboya, Oscar; Kande, Victor; Boelaert, Marleen; Lefèvre, Pierre; Lutumba, Pascal

    2012-01-01

    Control of human African trypanosomiasis (sleeping sickness) in the Democratic Republic of Congo is based on mass population active screening by mobile teams. Although generally considered a successful strategy, the community participation rates in these screening activities and ensuing treatment remain low in the Kasai-Oriental province. A better understanding of the reasons behind this observation is necessary to improve regional control activities. Thirteen focus group discussions were held in five health zones of the Kasai-Oriental province to gain insights in the regional perceptions regarding sleeping sickness and the national control programme's activities. Sleeping sickness is well known among the population and is considered a serious and life-threatening disease. The disease is acknowledged to have severe implications for the individual (e.g., persistence of manic periods and trembling hands, even after treatment), at the family level (e.g., income loss, conflicts, separations) and for communities (e.g., disruption of community life and activities). Several important barriers to screening and treatment were identified. Fear of drug toxicity, lack of confidentiality during screening procedures, financial barriers and a lack of communication between the mobile teams and local communities were described. Additionally, a number of regionally accepted prohibitions related to sleeping sickness treatment were described that were found to be a strong impediment to disease screening and treatment. These prohibitions, which do not seem to have a rational basis, have far-reaching socio-economic repercussions and severely restrict the participation in day-to-day life. A mobile screening calendar more adapted to the local conditions with more respect for privacy, the use of less toxic drugs, and a better understanding of the origin as well as better communication about the prohibitions related to treatment would facilitate higher participation rates among the Kasai-Oriental population in sleeping sickness screening and treatment activities organized by the national HAT control programme.

  9. A toxicity-based method for evaluating safety of reclaimed water for environmental reuses.

    PubMed

    Xu, Jianying; Zhao, Chuntao; Wei, Dongbin; Du, Yuguo

    2014-10-01

    A large quantity of toxic chemical pollutants possibly remains in reclaimed water due to the limited removal efficiency in traditional reclamation processes. It is not enough to guarantee the safety of reclaimed water using conventional water quality criteria. An integrated assessment method based on toxicity test is necessary to vividly depict the safety of reclaimed water for reuse. A toxicity test battery consisting of lethality, genotoxicity and endocrine disrupting effect was designed to screen the multiple biological effects of residual toxic chemicals in reclaimed water. The toxicity results of reclaimed water were converted into the equivalent concentrations of the corresponding positive reference substances (EQC). Simultaneously, the predicted no-effect concentration (PNEC) of each positive reference substance was obtained by analyzing the species sensitivity distribution (SSD) of toxicity data. An index "toxicity score" was proposed and valued as 1, 2, 3, or 4 depending on the ratio of the corresponding EQC to PNEC. For vividly ranking the safety of reclaimed water, an integrated assessment index "toxicity rank" was proposed, which was classified into A, B, C, or D rank with A being the safest. The proposed method was proved to be effective in evaluating reclaimed water samples in case studies. Copyright © 2014. Published by Elsevier B.V.

  10. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization

    PubMed Central

    Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton

    2016-01-01

    Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972

  11. An Eco-Safety Assessment of Glyoxal-Containing Cellulose Ether on Freeze-Dried Microbial Strain, Cyanobacteria, Daphnia, and Zebrafish

    PubMed Central

    Park, Chang-Beom; Song, Min Ju; Choi, Nak Woon; Kim, Sunghoon; Jeon, Hyun Pyo; Kim, Sanghun; Kim, Youngjun

    2017-01-01

    The objective of this study was to investigate the aquatic-toxic effects of glyoxal-containing cellulose ether with four different glyoxal concentrations (0%, 1.4%, 2.3%, and 6.3%) in response to global chemical regulations, e.g., European Union Classification, Labeling and Packaging (EU CLP). Toxicity tests of glyoxal-containing cellulose ether on 11 different microbial strains, Microcystis aeruginosa, Daphnia magna, and zebrafish embryos were designed as an initial stage of toxicity screening and performed in accordance with standardized toxicity test guidelines. Glyoxal-containing cellulose ether showed no significant toxic effects in the toxicity tests of the 11 freeze-dried microbial strains, Daphnia magna, and zebrafish embryos. Alternatively, 6.3% glyoxal-containing cellulose ether led to a more than 60% reduction in Microcystis aeruginosa growth after 7 days of exposure. Approximately 10% of the developmental abnormalities (e.g., bent spine) in zebrafish embryos were also observed in the group exposed to 6.3% glyoxal-containing cellulose ether after 6 days of exposure. These results show that 6.3% less glyoxal-containing cellulose ether has no acute toxic effects on aquatic organisms. However, 6.3% less glyoxal-containing cellulose ether may affect the health of aquatic organisms with long-term exposure. In order to better evaluate the eco-safety of cellulosic products containing glyoxal, further studies regarding the toxic effects of glyoxal-containing cellulose ether with long-term exposure are required. The results from this study allow us to evaluate the aquatic-toxic effects of glyoxal-containing cellulosic products, under EU chemical regulations, on the health of aquatic organisms. PMID:28335565

  12. Comparative study of qualitative and quantitative methods to determine toxicity level of Aspergillus flavus isolates in maize.

    PubMed

    Shekhar, Meena; Singh, Nirupma; Dutta, Ram; Kumar, Shrvan; Mahajan, Vinay

    2017-01-01

    An attempt was made to compare between easy and inexpensive qualitative method (ammonia vapour test) and analytical methods (thin layer chromatography and enzyme-linked immunosorbent assay) for identification of aflatoxigenic isolates of Aspergillus flavus in maize. In this comparative study the toxicity level of A. flavus isolates exhibited 100% agreement among ammonia vapour test, ELISA and TLC for highly toxigenic (>2000 ppb) and toxigenic (501-2000 ppb) isolates while 88.5% agreement observed for least toxic (<20 ppb) isolates. In ammonia vapour test 51% of A. flavus isolates showed creamish or no colour change corresponding to least toxic/atoxic (<20ppb) category estimated by ELISA. Similarly 22% highly toxic isolates exhibited plum red colour, 12% moderately toxic indicated pink colour and 10% toxic isolates showed red colour. However, 11.5% isolates were found to be false positive in cream colour category (least toxic) and 28.5% false negatives in pink colour (moderately toxic) category. The isolates from different agroclimatic zones of maize in India showed high variability for aflatoxin B1 (AFB1) production potential ranging from 0.214-8116.61 ppb. Toxigenic potential of Aspergillus flavus isolates in culture was further validated by inoculating maize grain sample with four different isolates with varied toxin producing ability. With good agreement percentage between cultural and analytical methods the study concludes the ammonia vapour test to be easy, inexpensive, reliable and time saving method that can be used for segregating or pre-screening of contaminated samples from bulk food/feed stock.

  13. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2009-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. Because the toxicity of lunar dust is not known, NASA has tasked its toxicology laboratory to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal/intrapharyngeal instillation. This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies are in progress to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated (ground) lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The results from the instillation studies will be useful for choosing exposure concentrations for the animal inhalation study. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The experiment with the simulate will ensure that the study techniques used with actual lunar dust will be successful. The results of instillation and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  14. Toxicity of pyrolysis gases from synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Soriano, J. A.; Kosola, K. L.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    The screening test method was used to investigate toxicity in polyethylene, polystyrene, polymethyl methacrylate, polyaryl sulfone, polyether sulfone, polyphenyl sulfone, and polyphenylene sulfide. Changing from a rising temperature program to a fixed temperature program resulted on shorter times to animal responses. This effect was attributed in part to more rapid generation of toxicants. The toxicants from the sulfur containing polymers appeared to act more rapidly than the toxicants from the other polymers. It was not known whether this effect was due primarily to difference in concentration or in the nature of the toxicants. The carbon monoxide concentration found did not account for the results observed with the sulfur containing polymers. Polyphenyl sulfone appeared to exhibit the least toxicity among the sulfur containing polymers evaluated under these test conditions.

  15. EPA's ToxCast Program for Predicting Hazard and Prioritizing the Toxicity Testing of Environmental Chemicals

    EPA Science Inventory

    An alternative is to perform a set of relatively inexpensive and rapid high throughput screening (HTS) assays, derive signatures predictive of effects or modes of chemical toxicity from the HTS data, then use these predictions to prioritize chemicals for more detailed analysis. T...

  16. Evaluating the Zebrafish Embryo Toxicity Test for Pesticide Hazard Screening

    EPA Science Inventory

    Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more reso...

  17. EPA Project Updates: DSSTox and ToxCast Generating New Data and Data Linkages for Use in Predictive Modeling

    EPA Science Inventory

    EPAs National Center for Computational Toxicology is building capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized forms than tr...

  18. Computational Modeling and Simulation of Developmental Toxicity. What can we learn from a virtual embryo? (FDA-CFSAN workshop)

    EPA Science Inventory

    SYNOPSIS: The question of how tissues and organs are shaped during development is crucial for understanding human birth defects. Data from high-throughput screening assays on human stem cells may be utilized predict developmental toxicity with reasonable accuracy. Other types of ...

  19. DESIGN AND PERFORMANCE OF A XENOBIOTIC METABOLISM DATABASE MANAGER FOR METABOLIC SIMULATOR ENHANCEMENT AND CHEMICAL RISK ANALYSIS

    EPA Science Inventory

    A major uncertainty that has long been recognized in evaluating chemical toxicity is accounting for metabolic activation of chemicals resulting in increased toxicity. In silico approaches to predict chemical metabolism and to subsequently screen and prioritize chemicals for risk ...

  20. Perspectives on Validation of High-Throughput Assays Supporting 21st Century Toxicity Testing

    EPA Science Inventory

    In vitro high-throughput screening (HTS) assays are seeing increasing use in toxicity testing. HTS assays can simultaneously test many chemicals but have seen limited use in the regulatory arena, in part because of the need to undergo rigorous, time-consuming formal validation. ...

  1. Validation, acceptance, and extension of a predictive model of reproductive toxicity using ToxCast data

    EPA Science Inventory

    The EPA ToxCast research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I tested 309 well-characterized chemicals (mostly pesticides) in over 500 assays of different molecular targets, cellular responses an...

  2. EPA DSSTox and ToxCast Project Updates: Generating New Data and Linkages in Support of Public Toxico-Cheminformatics Efforts

    EPA Science Inventory

    EPA’s National Center for Computational Toxicology is generating data and capabilities to support a new paradigm for toxicity screening and prediction. The DSSTox project is improving public access to quality structure-annotated chemical toxicity information in less summarized fo...

  3. Framework for a Quantitative Systemic Toxicity Model (FutureToxII)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  4. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  5. In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project

    EPA Science Inventory

    Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency’s ToxCast program aims to address these concerns by ...

  6. The US EPAs ToxCast Program for the Prioritization and Prediction of Environmental Chemical Toxicity

    EPA Science Inventory

    To meet the need for evaluating large numbers of chemicals for potential toxicity, the U.S. Environmental Protection Agency has initiated a research project call ToxCast that makes use of recent advances in molecular biology and high-throughput screening. These technologies have ...

  7. Predictive Signatures of Developmental Toxicity Modeled with HTS Data from ToxCast™ Bioactivity Profiles

    EPA Science Inventory

    The EPA ToxCast™ research program uses a high-throughput screening (HTS) approach for predicting the toxicity of large numbers of chemicals. Phase-I contains 309 well-characterized chemicals which are mostly pesticides tested in over 600 assays of different molecular targets, cel...

  8. Predictive Modeling of Apical Toxicity Endpoints Using Data From ToxCast

    EPA Science Inventory

    The US EPA and other regulatory agencies face a daunting challenge of evaluating potential toxicity for tens of thousands of environmental chemicals about which little is currently known. The EPA’s ToxCast program is testing a novel approach to this problem by screening compounds...

  9. Skewed Riskscapes and Gentrified Inequities: Environmental Exposure Disparities in Seattle, Washington

    PubMed Central

    White, Jonah

    2011-01-01

    Objectives. Few studies have considered the sociohistorical intersection of environmental injustice and gentrification; a gap addressed by this case study of Seattle, Washington. This study explored the advantages of integrating air toxic risk screening with gentrification research to enhance proximity and health equity analysis methodologies. It was hypothesized that Seattle's industrial air toxic exposure risk was unevenly dispersed, that gentrification stratified the city's neighborhoods, and that the inequities of both converged. Methods. Spatial characterizations of air toxic pollution risk exposures from 1990 to 2007 were combined with longitudinal cluster analysis of census block groups in Seattle, Washington, from 1990 to 2000. Results. A cluster of air toxic exposure inequality and socioeconomic inequity converged in 1 area of south central Seattle. Minority and working class residents were more concentrated in the same neighborhoods near Seattle's worst industrial pollution risks. Conclusions. Not all pollution was distributed equally in a dynamic urban landscape. Using techniques to examine skewed riskscapes and socioeconomic urban geographies provided a foundation for future research on the connections among environmental health hazard sources, socially vulnerable neighborhoods, and health inequity. PMID:21836115

  10. Skewed riskscapes and gentrified inequities: environmental exposure disparities in Seattle, Washington.

    PubMed

    Abel, Troy D; White, Jonah

    2011-12-01

    Few studies have considered the sociohistorical intersection of environmental injustice and gentrification; a gap addressed by this case study of Seattle, Washington. This study explored the advantages of integrating air toxic risk screening with gentrification research to enhance proximity and health equity analysis methodologies. It was hypothesized that Seattle's industrial air toxic exposure risk was unevenly dispersed, that gentrification stratified the city's neighborhoods, and that the inequities of both converged. Spatial characterizations of air toxic pollution risk exposures from 1990 to 2007 were combined with longitudinal cluster analysis of census block groups in Seattle, Washington, from 1990 to 2000. A cluster of air toxic exposure inequality and socioeconomic inequity converged in 1 area of south central Seattle. Minority and working class residents were more concentrated in the same neighborhoods near Seattle's worst industrial pollution risks. Not all pollution was distributed equally in a dynamic urban landscape. Using techniques to examine skewed riskscapes and socioeconomic urban geographies provided a foundation for future research on the connections among environmental health hazard sources, socially vulnerable neighborhoods, and health inequity.

  11. Behavioral toxicology in the 21st century: challenges and opportunities for behavioral scientists. Summary of a symposium presented at the annual meeting of the neurobehavioral teratology society, June, 2009.

    PubMed

    Bushnell, Philip J; Kavlock, Robert J; Crofton, Kevin M; Weiss, Bernard; Rice, Deborah C

    2010-01-01

    The National Research Council (NRC) of the National Academies of Science recently published a report of its vision of toxicity testing in the 21st century. The report proposes that the current toxicity testing paradigm that depends upon whole-animal tests be replaced with a strategy based upon in vitro tests, in silico models and evaluations of toxicity at the human population level. These goals are intended to set in motion changes that will transform risk assessment into a process in which adverse effects on public health are predicted by quantitative structure-activity relationship (QSAR) models and data from suites of high-throughput in vitro tests. The potential roles for whole-animal testing in this futuristic vision are both various and undefined. A symposium was convened at the annual meeting of the Neurobehavioral Teratology Society in Rio Grande, Puerto Rico in June, 2009 to discuss the potential challenges and opportunities for behavioral scientists in developing and/or altering this strategy toward the ultimate goal of protecting public health from hazardous chemicals. R. Kavlock described the NRC vision, introduced the concept of the 'toxicity pathway' (a central guiding principle of the NRC vision), and described the current status of an initial implementation this approach with the EPA's ToxCast(R) program. K. Crofton described a pathway based upon disruption of thyroid hormone metabolism during development, including agents, targets, and outcomes linked by this mode of action. P. Bushnell proposed a pathway linking the neural targets and cellular to behavioral effects of acute exposure to organic solvents, whose predictive power is limited by our incomplete understanding of the complex CNS circuitry that mediates the behavioral responses to solvents. B. Weiss cautioned the audience regarding a pathway approach to toxicity testing, using the example of the developmental toxicity of phthalates, whose effects on mammalian sexual differentiation would be difficult to identify based on screening tests in vitro. Finally, D. Rice raised concerns regarding the use of data derived from toxicity screening tests to human health risk assessments. Discussion centered around opportunities and challenges for behavioral toxicologists regarding this impending paradigm shift. Opportunities include: identifying and characterizing toxicity pathways; informing the conditions and limits of extrapolation; addressing issues of susceptibility and variability; providing reality-checks on selected positives and negatives from screens; and performing targeted testing and dose-response assessments of chemicals flagged during screening. Challenges include: predicting behavior using models of complex neurobiological pathways; standardizing study designs and dependent variables to facilitate creation of databases; and managing the cost and efficiency of behavioral assessments. Thus, while progress is being made in approaching the vision of 21st century toxicology, we remain a long way from replacing whole-animal tests; indeed, some animal testing will be essential for the foreseeable future at least. Initial advances will likely provide better prioritization tools so that animal resources are used more efficiently and effectively.

  12. Amphibian (Xenopus sp.) iodothyronine deiodinase production for screening of thyroid-disrupting chemicals

    EPA Science Inventory

    The U.S. EPA-MED amphibian thyroid group is currently screening chemicals for inhibition of human iodothyronine deiodinase activity as components of the thyroid system important in human development. Amphibians are a bellwether taxonomic group to gauge toxicity of chemicals in th...

  13. Defining the taxonomic domain of applicability for mammalian-based high-throughput screening assays

    EPA Science Inventory

    Cell-based high throughput screening (HTS) technologies are becoming mainstream in chemical safety evaluations. The US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCastTM) and the multi-agency Tox21 Programs have been at the forefront in advancing this science, m...

  14. QUANTITATIVE IN VITRO MEASUREMENT OF CELLULAR PROCESSES CRITICAL TO THE DEVELOPMENT OF NEURAL CONNECTIVITY USING HCA.

    EPA Science Inventory

    New methods are needed to screen thousands of environmental chemicals for toxicity, including developmental neurotoxicity. In vitro, cell-based assays that model key cellular events have been proposed for high throughput screening of chemicals for developmental neurotoxicity. Whi...

  15. Behavorial Screens for Detecting Developmental Neurotoxicity in Larval Zebrafish

    EPA Science Inventory

    As part of the EPA's effort to develop an in vivo, vertebrate screen for toxic chemicals, we have characterized basic behaviors of 6-day post-fertilization (dpf) zebrafish (Danio rerio) larvae in a microtiter plate format. Our main goal is to develop a convenient, reproducible me...

  16. Aquatic Toxicity Screening of an ACWA Secondary Waste, GB-Hydrolysate

    DTIC Science & Technology

    2009-01-01

    Toxicity Comparison for GB-hydrolysates, Acetone, and Malathion Using O’Bryan and Ross Chemical Scoring System for Hazard and Exposure Identification ...hydrolysates, Acetone, and Malathion Using O’Bryan and Ross Chemical Scoring System for Hazard and Exposure Identification (5) and the U.S. Fish and...WWTF) or a TSDF. The toxicity results were ranked using the Chemical Scoring System for Hazard and Exposure Identification (5). This system is

  17. Ranking the in vivo toxicity of nanomaterials in Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Vecchio, G.; Galeone, A.; Malvindi, M. A.; Cingolani, R.; Pompa, P. P.

    2013-09-01

    In this work, we propose a quantitative assessment of nanoparticles toxicity in vivo. We show a quantitative ranking of several types of nanoparticles (AuNPs, AgNPs, cadmium-based QDs, cadmium-free QDs, and iron oxide NPs, with different coating and/or surface chemistries), providing a categorization of their toxicity outcomes. This strategy may offer an innovative high-throughput screening tool of nanomaterials, of potential and broad interest to the nanoscience community.

  18. PHYTOCHEMICAL SCREENING, ANTI-INFLAMMATORY AND ANALGESIC PROPERTIES OF PENTANISIA PRUNELLOIDES FROM THE EASTERN CAPE PROVINCE, SOUTH AFRICA.

    PubMed

    Mathews, Miya Gugulethu; Ajayi, Oyemitan Idris; Opeoluwa, Oyedeji Oyehan; Oluwatobi, Oluwafemi Samuel; Benedicta N, Nkeh-Chungag; Phindile, Songca Sandile; Oyedeji; Omowumi, Adebola

    2016-01-01

    Pentanisia prunelloides is a medicinal plant widely used to remedy various ailments including infections, fever and rheumatism in Eastern Cape Province of South Africa. There is scanty report on the phytochemical and biological properties of the plant; hence various solvent extracts of the dried plant materials were phytochemically screened, and its aqueous extract evaluated for acute toxicity effect, analgesic and antiinflammatory properties in rodents. Different extracts of both leaf and rhizome were obtained separately with ethanol, methanol and water. Portions of the filtrate were used for qualitative screening of secondary metabolites and remaining portions were concentrated and dried. Dried grounded leaf and rhizome of the plant were also used for quantitative screening for some major components. The aqueous extract of the leaf and rhizome were used for acute toxicity (LD 50 ) test, antiinflammatory and analgesic activities in rodents. The qualitative phytochemical screening showed the presence of several phytoconstituents with saponins, flavonoids and alkaloids constituting highest constituents in the leaf and rhizome. The LD50: of the aqueous extracts (from leaf or rhizome) was found to be ≥5000 mg/kg orally. The leaf and rhizome aqueous extract (250-500 mg/kg) significantly (p<0.01) reduced egg albumin-induced paw oedema and paw licking in mice induced by formalin, signifying antinociceptive and antiinflammatory activities respectively. It is concluded that the leaf and rhizome of P. prunelloides are rich in various phytochemicals which could be associated with their medicinal uses. The aqueous leaf and rhizome extracts are similarly non-toxic orally, showed antiinflammatory and analgesic potentials thus rationalizing its use in folkloric medicine.

  19. Discovery of a novel general anesthetic chemotype using high-throughput screening.

    PubMed

    McKinstry-Wu, Andrew R; Bu, Weiming; Rai, Ganesha; Lea, Wendy A; Weiser, Brian P; Liang, David F; Simeonov, Anton; Jadhav, Ajit; Maloney, David J; Eckenhoff, Roderic G

    2015-02-01

    The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-aminoanthracene-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. From an initial chemical library of more than 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-aminoanthracene binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based on a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. The authors demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype.

  20. Performance of Clinical Criteria for Screening of Possible Antiretroviral Related Mitochondrial Toxicity in HIV-Infected Children in Accra.

    PubMed

    Langs-Barlow, Allison; Renner, Lorna; Katz, Karol; Northrup, Veronika; Paintsil, Elijah

    2013-01-01

    Mitochondrial damage is implicated in highly active antiretroviral therapy (HAART) toxicity. HIV infection also causes mitochondrial toxicity (MT). Differentiating between the two is critical for HIV management. Our objective was to test the utility of the Mitochondrial Disease Criteria (MDC) and the Enquête Périnatale Française (EPF) to screen for possible HAART related MT in HIV-infected children in Ghana. The EPF and MDC are compilations of clinical symptoms, or criteria, of MT: a (+) score indicates possible MT. We applied these criteria retrospectively to 403 charts of HIV-infected children. Of those studied, 331/403 received HAART. Comparing HAART exposed and HAART naïve children, the difference in EPF score, but not MDC, approached significance (P = 0.1). Young age at HIV diagnosis or at HAART initiation was associated with (+) EPF (P ≤ 0.01). Adherence to HAART trended toward an association with (+) EPF (P = 0.09). Exposure to nevirapine, abacavir, or didanosine increased risk of (+) EPF (OR = 3.55 (CI = 1.99-6.33), 4.76 (2.39-9.43), 4.93 (1.29-18.87)). Neither EPF nor MDC identified a significant difference between HAART exposed or naïve children regarding possible MT. However, as indicators of HAART exposure are associated with (+) EPF, it may be a candidate for prospective study of possible HAART related MT in resource-poor settings.

  1. Linking ToxCast Signatures with Functional Consequences: Proof-of-Concept Study using Known Inhibitors of Vascular Development

    EPA Science Inventory

    The USEPA’s ToxCast program is developing a novel approach to chemical toxicity testing using high-throughput screening (HTS) assays to rapidly test thousands of chemicals against hundreds of in vitro molecular targets. This approach is based on the premise that in vitro HTS bioa...

  2. In Silico Prediction of Physicochemical Properties of Environmental Chemicals Using Molecular Fingerprints and Machine Learning

    EPA Science Inventory

    There are little available toxicity data on the vast majority of chemicals in commerce. High-throughput screening (HTS) studies, such as those being carried out by the U.S. Environmental Protection Agency (EPA) ToxCast program in partnership with the federal Tox21 research progra...

  3. Evaluating the Value of Augmenting In Vitro Hazard Assessment with Exposure and Pharmacokinetics Considerations for Chemical Prioritization

    EPA Science Inventory

    Over time, toxicity-testing paradigms have progressed from low-throughput in vivo animal studies for limited numbers of chemicals to high-throughput (HT) in vitro screening assays for thousands of chemicals. Such HT in vitro methods, along with HT in silico predictions of popula...

  4. Concentration-response data on toxicity of pyrolysis gases from some natural and synthetic polymers

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Huttlinger, N. V.

    1978-01-01

    Concentration-response data are presented on the toxic effects of the pyrolysis gases from some natural and synthetic polymers, using the toxicity screening test method developed at the University of San Francisco. The pyrolysis gases from wool, red oak, Douglas fir, polycaprolactam, polyether sulfone, polyaryl sulfone, and polyphenylene sulfide appeared to exhibit the concentration-response relationships commonly encountered in toxicology. Carbon monoxide seemed to be an important toxicant in the pyrolysis gases from red oak, Douglas fir, and polycaprolactam, but did not appear to have been the principal toxicant in the pyrolysis gases from polyether sulfone and polyphenylene sulfide.

  5. Current and future needs for developmental toxicity testing.

    PubMed

    Makris, Susan L; Kim, James H; Ellis, Amy; Faber, Willem; Harrouk, Wafa; Lewis, Joseph M; Paule, Merle G; Seed, Jennifer; Tassinari, Melissa; Tyl, Rochelle

    2011-10-01

    A review is presented of the use of developmental toxicity testing in the United States and international regulatory assessment of human health risks associated with exposures to pharmaceuticals (human and veterinary), chemicals (agricultural, industrial, and environmental), food additives, cosmetics, and consumer products. Developmental toxicology data are used for prioritization and screening of pharmaceuticals and chemicals, for evaluating and labeling of pharmaceuticals, and for characterizing hazards and risk of exposures to industrial and environmental chemicals. The in vivo study designs utilized in hazard characterization and dose-response assessment for developmental outcomes have not changed substantially over the past 30 years and have served the process well. Now there are opportunities to incorporate new technologies and approaches to testing into the existing assessment paradigm, or to apply innovative approaches to various aspects of risk assessment. Developmental toxicology testing can be enhanced by the refinement or replacement of traditional in vivo protocols, including through the use of in vitro assays, studies conducted in alternative nonmammalian species, the application of new technologies, and the use of in silico models. Potential benefits to the current regulatory process include the ability to screen large numbers of chemicals quickly, with the commitment of fewer resources than traditional toxicology studies, and to refine the risk assessment process through an enhanced understanding of the mechanisms of developmental toxicity and their relevance to potential human risk. As the testing paradigm evolves, the ability to use developmental toxicology data to meet diverse critical regulatory needs must be retained. © 2011 Wiley Periodicals, Inc.

  6. Interlaboratory study for the validation of an ecotoxicological procedure to monitor the quality of septic sludge received at a wastewater treatment plant.

    PubMed

    Robidoux, P Y; Choucri, A; Bastien, C; Sunahara, G I; López-Gastey, J

    2001-01-01

    Septic tank sludge is regularly hauled to the Montreal Urban Community (MUC) wastewater treatment plant. It is then discharged and mixed with the wastewater inflow before entering the primary chemical treatment process. An ecotoxicological procedure integrating chemical and toxicological analyses has been recently developed and applied to screen for the illicit discharge of toxic substances in septic sludge. The toxicity tests used were the Microtox, the bacterial-respiration, and the lettuce (Lactuca sativa) root elongation tests. In order to validate the applicability of the proposed procedure, a two-year interlaboratory study was carried out. In general, the results obtained by two independent laboratories (MUC and the Centre d'expertise en analyse environnementale du Quebec) were comparable and reproducible. Some differences were found using the Microtox test. Organic (e.g., phenol and formaldehyde) and inorganic (e.g., nickel and cyanide) spiked septic sludge were detected with good reliability and high efficiency. The relative efficiency to detect spiked substances was > 70% and confirms the results of previous studies. In addition, the respiration test was the most efficient toxicological tool to detect spiked substances, whereas the Microtox was the least efficient (< 15%). Efficiencies to detect spiked contaminants were also similar for both laboratories. These results support previous data presented earlier and contribute to the validation of the ecotoxicological procedure used by the MUC to screen toxicity in septic sludge.

  7. Lead.

    PubMed

    Bellinger, David C

    2004-04-01

    Children differ from adults in the relative importance of lead sources and pathways, lead metabolism, and the toxicities expressed. The central nervous system effects of lead on children seem not to be reversible. Periods of enhanced vulnerability within childhood have not consistently been identified. The period of greatest vulnerability might be endpoint specific, perhaps accounting for the failure to identify a coherent "behavioral signature" for lead toxicity. The bases for the substantial individual variability in vulnerability to lead are uncertain, although they might include genetic polymorphisms and contextual factors. The current Centers for Disease Control and Prevention screening guideline of 10 micro g/dL is a risk management tool and should not be interpreted as a threshold for toxicity. No threshold has been identified, and some data are consistent with effects well below 10. Historically, most studies have concentrated on neurocognitive effects of lead, but higher exposures have recently been associated with morbidities such as antisocial behavior and delinquency. Studies of lead toxicity in experimental animal models are critical to the interpretation of nonexperimental human studies, particularly in addressing the likelihood that associations observed in the latter studies can be attributed to residual confounding. Animal models are also helpful in investigating the behavioral and neurobiological mechanisms of the functional deficits observed in lead-exposed humans. Studies of adults who have been exposed to lead are of limited use in understanding childhood lead toxicity because developmental and acquired lead exposure differ in terms of the maturity of the organs affected, the presumed mechanisms of toxicity, and the forms in which toxicities are expressed.

  8. Bridging the gap between high-throughput genetic and transcriptional data reveals cellular pathways responding to alpha-synuclein toxicity

    PubMed Central

    Yeger-Lotem, Esti; Riva, Laura; Su, Linhui Julie; Gitler, Aaron D.; Cashikar, Anil; King, Oliver D.; Auluck, Pavan K.; Geddie, Melissa L.; Valastyan, Julie S.; Karger, David R.; Lindquist, Susan; Fraenkel, Ernest

    2009-01-01

    Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify components of these responses increasingly depend on mRNA profiling and genetic library screens, yet the functional roles of the genes identified by these assays often remain enigmatic. By comparing the results of these two assays across various cellular responses, we found that they are consistently distinct. Moreover, genetic screens tend to identify response regulators, while mRNA profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these data using known molecular interactions, thus highlighting major response pathways. We harnessed this approach to reveal cellular pathways related to alpha-synuclein, a small lipid-binding protein implicated in several neurodegenerative disorders including Parkinson disease. For this we screened an established yeast model for alpha-synuclein toxicity to identify genes that when overexpressed alter cellular survival. Application of our algorithm to these data and data from mRNA profiling provided functional explanations for many of these genes and revealed novel relations between alpha-synuclein toxicity and basic cellular pathways. PMID:19234470

  9. Prioritizing chemicals for environmental management in China based on screening of potential risks

    NASA Astrophysics Data System (ADS)

    Yu, Xiangyi; Mao, Yan; Sun, Jinye; Shen, Yingwa

    2014-03-01

    The rapid development of China's chemical industry has created increasing pressure to improve the environmental management of chemicals. To bridge the large gap between the use and safe management of chemicals, we performed a comprehensive review of the international methods used to prioritize chemicals for environmental management. By comparing domestic and foreign methods, we confirmed the presence of this gap and identified potential solutions. Based on our literature review, we developed an appropriate screening method that accounts for the unique characteristics of chemical use within China. The proposed method is based on an evaluation using nine indices of the potential hazard posed by a chemical: three environmental hazard indices (persistence, bioaccumulation, and eco-toxicity), four health hazard indices (acute toxicity, carcinogenicity, mutagenicity, and reproductive and developmental toxicity), and two environmental exposure hazard indices (chemical amount and utilization pattern). The results of our screening agree with results of previous efforts from around the world, confirming the validity of the new system. The classification method will help decisionmakers to prioritize and identify the chemicals with the highest environmental risk, thereby providing a basis for improving chemical management in China.

  10. Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition.

    PubMed

    Sørli, Jorid B; Huang, Yishi; Da Silva, Emilie; Hansen, Jitka S; Zuo, Yi Y; Frederiksen, Marie; Nørgaard, Asger W; Ebbehøj, Niels E; Larsen, Søren T; Hougaard, Karin S

    2018-01-01

    Private consumers and professionals may experience acute inhalation toxicity after inhaling aerosolized impregnation products. The distinction between toxic and non-toxic products is difficult to make for producers and product users alike, as there is no clearly described relationship between the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21 impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if the products inhibited surfactant function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e., the in vitro method predicted all the products that were toxic for mice to inhale. The specificity of the in vitro test was 63%, i.e., the in vitro method found three false positives in the 21 tested products. Six of the products had been involved in accidental human inhalation where they caused acute inhalation toxicity. All of these six products inhibited lung surfactant function in vitro and were toxic to mice.

  11. The protein transportation pathway from Golgi to vacuoles via endosomes plays a role in enhancement of methylmercury toxicity

    NASA Astrophysics Data System (ADS)

    Hwang, Gi-Wook; Murai, Yasutaka; Takahashi, Tsutomu; Naganuma, Akira

    2014-07-01

    Methylmercury causes serious damage to the central nervous system, but the molecular mechanisms of methylmercury toxicity are only marginally understood. In this study, we used a gene-deletion mutant library of budding yeast to conduct genome-wide screening for gene knockouts affecting the sensitivity of methylmercury toxicity. We successfully identified 31 genes whose deletions confer resistance to methylmercury in yeast, and 18 genes whose deletions confer hypersensitivity to methylmercury. Yeast genes whose deletions conferred resistance to methylmercury included many gene encoding factors involved in protein transport to vacuoles. Detailed examination of the relationship between the factors involved in this transport system and methylmercury toxicity revealed that mutants with loss of the factors involved in the transportation pathway from the trans-Golgi network (TGN) to the endosome, protein uptake into the endosome, and endosome-vacuole fusion showed higher methylmercury resistance than did wild-type yeast. The results of our genetic engineering study suggest that this vesicle transport system (proteins moving from the TGN to vacuole via endosome) is responsible for enhancing methylmercury toxicity due to the interrelationship between the pathways. There is a possibility that there may be proteins in the cell that enhance methylmercury toxicity through the protein transport system.

  12. SeqAPASS to evaluate conservation of high-throughput screening targets across non-mammalian species

    EPA Science Inventory

    Cell-based high-throughput screening (HTS) and computational technologies are being applied as tools for toxicity testing in the 21st century. The U.S. Environmental Protection Agency (EPA) embraced these technologies and created the ToxCast Program in 2007, which has served as a...

  13. DEVELOPMENT OF TOXICITY REFERENCE VALUES FOR ECOLOGICAL SOIL SCREENING LEVELS (ECO-SSLS) FOR TERRESTRIAL WILDLIFE

    EPA Science Inventory

    Ecological Soil Screening Levels (Eco-SSLs) protective of terrestrial wildlife were developed by the USEPA Superfund. The wildlife Eco-SSL is the soil contaminant concentration where the Effect Dose (TRV) and Exposure Dose are equal (amount of contaminant in the diet that is take...

  14. COMPARISON OF CHEMICAL SCREENING AND RANKING APPROACHES: THE WASTE MINIMIZATION PRIORITIZATION TOOL VERSUS TOXIC EQUIVALENCY POTENTIALS

    EPA Science Inventory

    Chemical screening in the United States is often conducted using scoring and ranking methodologies. Linked models accounting for chemical fate, exposure, and toxicological effects are generally preferred in Europe and in product Life Cycle Assessment. For the first time, a compar...

  15. COMPARISON OF NEUROSCREEN-1 AND CEREBELLAR GRANULE CELL CULTURES FOR EVALUATING NEURITE OUTGROWTH USING THE ARRAYSCAN HIGH CONTENT ANALYSIS SYSTEM

    EPA Science Inventory

    A major challenge facing the Environmental Protection Agency is the development of high-throughput screening assays amendable to resource-efficient developmental neurotoxicity for chemical screening and toxicity prioritization. One approach uses in vitro, cell-based assays which...

  16. Extrapolating toxicity data across species using U.S. EPA SeqAPASS tool

    EPA Science Inventory

    In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...

  17. Life-Stage Physiologically-Based Pharmacokinetic (PBPK) Model Applications to Screen Environmental Hazards.

    EPA Science Inventory

    This presentation discusses methods used to extrapolate from in vitro high-throughput screening (HTS) toxicity data for an endocrine pathway to in vivo for early life stages in humans, and the use of a life stage PBPK model to address rapidly changing physiological parameters. A...

  18. COMPARISON OF CHEMICAL-INDUCED CHANGES IN PROLIFERATION AND APOPTOSIS IN HUMAN AND MOUSE NEUROPROGENITOR CELLS.

    EPA Science Inventory

    There is a need to develop rapid and efficient models for screening chemicals for their potential to cause developmental neurotoxicity. Use of in vitro neuronal models, including human cells, is one approach that allows for timely, cost-effective toxicity screening. The present s...

  19. In vitro screening for population variability in toxicity of pesticide-containing mixtures

    PubMed Central

    Abdo, Nour; Wetmore, Barbara A.; Chappell, Grace A.; Shea, Damian; Wright, Fred A.; Rusyna, Ivan

    2016-01-01

    Population-based human in vitro models offer exceptional opportunities for evaluating the potential hazard and mode of action of chemicals, as well as variability in responses to toxic insults among individuals. This study was designed to test the hypothesis that comparative population genomics with efficient in vitro experimental design can be used for evaluation of the potential for hazard, mode of action, and the extent of population variability in responses to chemical mixtures. We selected 146 lymphoblast cell lines from 4 ancestrally and geographically diverse human populations based on the availability of genome sequence and basal RNA-seq data. Cells were exposed to two pesticide mixtures – an environmental surface water sample comprised primarily of organochlorine pesticides and a laboratory-prepared mixture of 36 currently used pesticides – in concentration response and evaluated for cytotoxicity. On average, the two mixtures exhibited a similar range of in vitro cytotoxicity and showed considerable inter-individual variability across screened cell lines. However, when in vitroto-in vivo extrapolation (IVIVE) coupled with reverse dosimetry was employed to convert the in vitro cytotoxic concentrations to oral equivalent doses and compared to the upper bound of predicted human exposure, we found that a nominally more cytotoxic chlorinated pesticide mixture is expected to have greater margin of safety (more than 5 orders of magnitude) as compared to the current use pesticide mixture (less than 2 orders of magnitude) due primarily to differences in exposure predictions. Multivariate genome-wide association mapping revealed an association between the toxicity of current use pesticide mixture and a polymorphism in rs1947825 in C17orf54. We conclude that a combination of in vitro human population-based cytotoxicity screening followed by dosimetric adjustment and comparative population genomics analyses enables quantitative evaluation of human health hazard from complex environmental mixtures. Additionally, such an approach yields testable hypotheses regarding potential toxicity mechanisms. PMID:26386728

  20. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay

    PubMed Central

    Keating, James E.; Zorn, Bryan T.; Kochar, Tavleen K.; Wolfgang, Matthew C.; Glish, Gary L.; Tarran, Robert

    2018-01-01

    The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography–mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition. PMID:29584716

  1. Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma.

    PubMed

    Matthews, G M; Lefebure, M; Doyle, M A; Shortt, J; Ellul, J; Chesi, M; Banks, K M; Vidacs, E; Faulkner, D; Atadja, P; Bergsagel, P L; Johnstone, R W

    2013-09-12

    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic.

  2. Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma

    PubMed Central

    Matthews, G M; Lefebure, M; Doyle, M A; Shortt, J; Ellul, J; Chesi, M; Banks, K-M; Vidacs, E; Faulkner, D; Atadja, P; Bergsagel, P L; Johnstone, R W

    2013-01-01

    Multiple myeloma (MM) is an incurable malignancy with an unmet need for innovative treatment options. Histone deacetylase inhibitors (HDACi) are a new class of anticancer agent that have demonstrated activity in hematological malignancies. Here, we investigated the efficacy and safety of HDACi (vorinostat, panobinostat, romidepsin) and novel combination therapies using in vitro human MM cell lines and in vivo preclinical screening utilizing syngeneic transplanted Vk*MYC MM. HDACi were combined with ABT-737, which targets the intrinsic apoptosis pathway, recombinant human tumour necrosis factor-related apoptosis-inducing ligand (rhTRAIL/MD5-1), that activates the extrinsic apoptosis pathway or the DNA methyl transferase inhibitor 5-azacytidine. We demonstrate that in vitro cell line-based studies provide some insight into drug activity and combination therapies that synergistically kill MM cells; however, they do not always predict in vivo preclinical efficacy or toxicity. Importantly, utilizing transplanted Vk*MYC MM, we report that panobinostat and 5-azacytidine synergize to prolong the survival of tumor-bearing mice. In contrast, combined HDACi/rhTRAIL-based strategies, while efficacious, demonstrated on-target dose-limiting toxicities that precluded prolonged treatment. Taken together, our studies provide evidence that the transplanted Vk*MYC model of MM is a useful screening tool for anti-MM drugs and should aid in the prioritization of novel drug testing in the clinic. PMID:24030150

  3. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells.

    PubMed

    Carmody, Leigh C; Germain, Andrew R; VerPlank, Lynn; Nag, Partha P; Muñoz, Benito; Perez, Jose R; Palmer, Michelle A J

    2012-10-01

    Cancer stem cells (CSCs) are resistant to standard cancer treatments and are likely responsible for cancer recurrence, but few therapies target this subpopulation. Due to the difficulty in propagating CSCs outside of the tumor environment, previous work identified CSC-like cells by inducing human breast epithelial cells into an epithelial-to-mesenchymal transdifferentiated state (HMLE_sh_ECad). A phenotypic screen was conducted against HMLE_sh_ECad with 300 718 compounds from the Molecular Libraries Small Molecule Repository to identify selective inhibitors of CSC growth. The screen yielded 2244 hits that were evaluated for toxicity and selectivity toward an isogenic control cell line. An acyl hydrazone scaffold emerged as a potent and selective scaffold targeting HMLE_sh_ECad. Fifty-three analogues were acquired and tested; compounds ranged in potency from 790 nM to inactive against HMLE_sh_ECad. Of the analogues, ML239 was best-in-class with an IC(50)= 1.18 µM against HMLE_sh_ECad, demonstrated a >23-fold selectivity over the control line, and was toxic to another CSC-like line, HMLE_shTwist, and a breast carcinoma cell line, MDA-MB-231. Gene expression studies conducted with ML239-treated cells showed altered gene expression in the NF-κB pathway in the HMLE_sh_ECad line but not in the isogenic control line. Future studies will be directed toward the identification of ML239 target(s).

  4. Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus.

    PubMed

    Kuperman, Roman G; Checkai, Ronald T; Simini, Michael; Phillips, Carlton T; Kolakowski, Jan E; Lanno, Roman

    2013-11-01

    The authors investigated individual toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the potworm Enchytraeus crypticus using the enchytraeid reproduction test. Studies were designed to generate ecotoxicological benchmarks that can be used for developing ecological soil-screening levels for ecological risk assessments of contaminated soils and to identify and characterize the predominant soil physicochemical parameters that can affect the toxicities of TNT and RDX to E. crypticus. Soils, which had a wide range of physicochemical parameters, included Teller sandy loam, Sassafras sandy loam, Richfield clay loam, Kirkland clay loam, and Webster clay loam. Analyses of quantitative relationships between the toxicological benchmarks for TNT and soil property measurements identified soil organic matter content as the dominant property mitigating TNT toxicity for juvenile production by E. crypticus in freshly amended soil. Both the clay and organic matter contents of the soil modulated reproduction toxicity of TNT that was weathered and aged in soil for 3 mo. Toxicity of RDX for E. crypticus was greater in the coarse-textured sandy loam soils compared with the fine-textured clay loam soils. The present studies revealed alterations in toxicity to E. crypticus after weathering and aging TNT in soil, and these alterations were soil- and endpoint-specific. © 2013 SETAC.

  5. UPLC-Q-TOF/MS-based metabolomic studies on the toxicity mechanisms of traditional Chinese medicine Chuanwu and the detoxification mechanisms of Gancao, Baishao, and Ganjiang.

    PubMed

    Dong, Hui; Yan, Guang-Li; Han, Ying; Sun, Hui; Zhang, Ai-Hua; Li, Xian-Na; Wang, Xi-Jun

    2015-09-01

    Chuanwu (CW), a famous traditional Chinese medicine (TCM) from the mother roots of Aconitum carmichaelii Debx.. (Ranunculaceae), has been used for the treatment of various diseases. Unfortunately, its toxicity is frequently reported because of its narrow therapeutic window. In the present study, a metabolomic method was performed to characterize the phenotypically biochemical perturbations and potential mechanisms of CW-induced toxicity. Meanwhile, the expression level of toxicity biomarkers in the urine were analyzed to evaluate the detoxification by combination with Gancao (Radix Glyeyrrhizae, CG), Baishao (Radix Paeoniae Alba, CS) and Ganjiang (Rhizoma Zingiberis, CJ), which were screened from classical TCM prescriptions. Urinary metabolomics was performed by UPLC-Q-TOF-HDMS, and the mass spectra signals of the detected metabolites were systematically analyzed using pattern recognition methods. As a result, seventeen biomarkers associated with CW toxicity were identified, which were associated with pentose and glucuronate interconversions, alanine, aspartate, and glutamate metabolism, among others. The expression levels of most toxicity biomarkers were effectively modulated towards the normal range by the compatibility drugs. It indicated that the three compatibility drugs could effectively detoxify CW. In summary, our work demonstrated that metabolomics was vitally significant to evaluation of toxicity and finding detoxification methods for TCM. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  6. Ocular toxicities associated with targeted anticancer agents: an analysis of clinical data with management suggestions

    PubMed Central

    Fu, Chen; Gombos, Dan S; Lee, Jared; George, Goldy C; Hess, Kenneth; Whyte, Andrew; Hong, David S

    2017-01-01

    Ocular toxicities are among the most common adverse events resulting from targeted anticancer agents and are becoming increasingly relevant in the management of patients on these agents. The purpose of this study is to provide a framework for management of these challenging toxicities based on objective data from FDA labels and from analysis of the literature. All oncologic drugs approved by the FDA up to March 14, 2015, were screened for inclusion. A total of 16 drugs (12 small-molecule drugs and 4 monoclonal antibodies) were analyzed for ocular toxicity profiles based on evidence of ocular toxicity. Trials cited by FDA labels were retrieved, and a combination search in Medline, Google Scholar, the Cochrane database, and the NIH Clinical Trials Database was conducted. The majority of ocular toxicities reported were low severity, and the most common were conjunctivitis and “visual disturbances.” However, severe events including incidents of blindness, retinal vascular occlusion, and corneal ulceration occurred. The frequency and severity at which ocular toxicities occur merits a more multidisciplinary approach to managing patients with agents that are known to cause ocular issues. We suggest a standardized methodology for referral and surveillance of patients who are potentially at risk of severe ocular toxicity. PMID:28938590

  7. Teratological Effects of a Panel of Sixty Water-Soluble Toxicants on Zebrafish Development

    PubMed Central

    Ali, Shaukat; Aalders, Jeffrey

    2014-01-01

    Abstract The zebrafish larva is a promising whole-animal model for safety pharmacology, environmental risk assessment, and developmental toxicity. This model has been used for the high-throughput toxicity screening of various compounds. Our aim here is to identify possible phenotypic markers of teratogenicity in zebrafish embryos that could be used for the assaying compounds for reproductive toxicity. We have screened a panel of 60 water-soluble toxicants to examine their effects on zebrafish development. A total of 22,080 wild-type zebrafish larvae were raised in 250 μL defined buffer in 96-well plates at a plating density of one embryo per well. They were exposed for a 96-h period starting at 24 h post-fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for developmental toxicity assessment. A total of 9017 survivors were analyzed at 5 days post-fertilization for nine phenotypes, namely, (1) normal, (2) pericardial oedema, (3) yolk sac oedema, (4) melanophores dispersed, (5) bent tail tip, (6) bent body axis, (7) abnormal Meckel's cartilage, (8) abnormal branchial arches, and (9) uninflated swim bladder. For each toxicant, the EC50 (concentration required to produce one or more of these abnormalities in 50% of embryos) was also calculated. For the majority of toxicants (55/60) there was, at the population level, a statistically significant, concentration-dependent increase in the incidence of abnormal phenotypes among survivors. The commonest abnormalities were pericardial oedema, yolk sac oedema, dispersed melanophores, and uninflated swim bladder. It is possible therefore that these could prove to be general indicators of reproductive toxicity in the zebrafish embryo assay. PMID:24650241

  8. Improving ecological risk assessment of persistent, bioaccumulative, and toxic (PBT) chemicals by using an integrated modeling system - An example assessing chloroparaffins in riverine environments.

    EPA Science Inventory

    Chemical risk assessment (CRA) is primarily carried out at the screening level relying on empirical relationships between chemical properties and tested toxicity effects. Ultimately, risk to aquatic ecosystems is strongly dependent on actual exposure, which depends on chemical pr...

  9. Optimization of DNA barcode method to assess altered chemical toxicity due to CYP-mediated metabolism

    EPA Science Inventory

    A drawback of current in vitro chemical testing is that many commonly used cell lines lack chemical metabolism. This hinders the use and relevance of cell culture in high throughput chemical toxicity screening. To address this challenge, we engineered HEK293T cells to overexpress...

  10. Identifying Functionally Linked Gene Modules Within Biological Pathways Assessed by ToxCast In Vitro Assays

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro high-throughput screening assays to profile the bioactivity of environmental chemicals, with the ultimate goal of predicting in vivo toxicity. We hypothesize that in modeling toxicity it will be more constructive to understand the pert...

  11. A Novel Two-Step Hierarchial Quantitative Structure-Activity Relationship Modeling Workflow for Predicting Acute Toxicity of Chemicals in Rodents

    EPA Science Inventory

    Background: Accurate prediction of in vivo toxicity from in vitro testing is a challenging problem. Large public–private consortia have been formed with the goal of improving chemical safety assessment by the means of high-throughput screening. Methods and results: A database co...

  12. Differentiating high priority pathway-based toxicity from non-specific effects in high throughput toxicity data: A foundation for prioritizing AOP development.

    EPA Science Inventory

    The ToxCast chemical screening approach enables the rapid assessment of large numbers of chemicals for biological effects, primarily at the molecular level. Adverse outcome pathways (AOPs) offer a means to link biomolecular effects with potential adverse outcomes at the level of...

  13. Human Pluripotent Stem Cell-Based Assay Predicts Developmental Toxicity Potential of ToxCast Chemicals (ACT meeting)

    EPA Science Inventory

    Worldwide initiatives to screen for toxicity potential among the thousands of chemicals currently in use require inexpensive and high-throughput in vitro models to meet their goals. The devTOX quickPredict platform is an in vitro human pluripotent stem cell-based assay used to as...

  14. Evaluation of 1066 ToxCast Chemicals in a human stem cell assay for developmental toxicity (SOT)

    EPA Science Inventory

    To increase the diversity of assays used to assess potential developmental toxicity, the ToxCast chemical library was screened in the Stemina devTOX quickPREDICT assay using human embryonic stem (hES) cells. A model for predicting teratogenicity was based on a training set of 23 ...

  15. 75 FR 22234 - Phosphate Ester, Tallowamine, Ethoxylated; Exemption from the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    .../Developmental Toxicity Screening Test, clinical signs of toxicity (abnormal respiratory sounds, dyspnea... the AAPs are carcinogenic. The Agency used a qualitative structure activity relationship (QSAR... = 10x MOE = 300 in rats (MRID FQPA SF = 3x 47600707) (10% Dermal absorption; LOAEL = 200 mg/kg/day 100...

  16. USE OF WHOLE BODY CHEMICAL RESIDUE ANALYSIS AND LASER SCREENING CONFOCAL MICROSCOPY TO DESCRIBE DISTRIBUTION OF PBTS IN FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages (ELS) are more sensitive than juveniles or adults to many persistent bioaccumulative toxicants (PBTs). To better understand the mechanisms by which these chemicals produce toxicity during fish ELS, dose-response relationships need to be determined in relat...

  17. High Throughput Prioritization for Integrated Toxicity Testing Based on ToxCast Chemical Profiling

    EPA Science Inventory

    The rational prioritization of chemicals for integrated toxicity testing is a central goal of the U.S. EPA’s ToxCast™ program (http://epa.gov/ncct/toxcast/). ToxCast includes a wide-ranging battery of over 500 in vitro high-throughput screening assays which in Phase I was used to...

  18. Quantitative Model of Systemic Toxicity Using ToxCast and ToxRefDB (SOT)

    EPA Science Inventory

    EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...

  19. Reproducibility of polycarbonate reference material in toxicity evaluation

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Huttlinger, P. A.

    1981-01-01

    A specific lot of bisphenol A polycarbonate has been used for almost four years as the reference material for the NASA-USF-PSC toxicity screening test method. The reproducibility of the test results over this period of time indicate that certain plastics may be more suitable reference materials than the more traditional cellulosic materials.

  20. Tutorial Video Series: Using Stakeholder Outreach to Increase Usage of ToxCast Data (SETAC EU)

    EPA Science Inventory

    The limited amount of toxicity data on thousands of chemicals found in consumer products has led to the development of research endeavors such as the U.S. EPA’s Toxicity Forecaster (ToxCast). ToxCast uses high-throughput screening technology to evaluate thousands of chemicals for...

  1. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  2. Evaluating the Effect of Peptoid Lipophilicity on Antimicrobial Potency, Cytotoxicity, and Combinatorial Library Design.

    PubMed

    Turkett, Jeremy A; Bicker, Kevin L

    2017-04-10

    Growing prevalence of antibiotic resistant bacterial infections necessitates novel antimicrobials, which could be rapidly identified from combinatorial libraries. We report the use of the peptoid library agar diffusion (PLAD) assay to screen peptoid libraries against the ESKAPE pathogens, including the optimization of assay conditions for each pathogen. Work presented here focuses on the tailoring of combinatorial peptoid library design through a detailed study of how peptoid lipophilicity relates to antibacterial potency and mammalian cell toxicity. The information gleaned from this optimization was then applied using the aforementioned screening method to examine the relative potency of peptoid libraries against Staphylococcus aureus, Acinetobacter baumannii, and Enterococcus faecalis prior to and following functionalization with long alkyl tails. The data indicate that overall peptoid hydrophobicity and not simply alkyl tail length is strongly correlated with mammalian cell toxicity. Furthermore, this work demonstrates the utility of the PLAD assay in rapidly evaluating the effect of molecular property changes in similar libraries.

  3. Relative toxicity of pyrolysis products of some materials used in home furnishings

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Furst, A.

    1976-01-01

    Seventy samples of cushioning and upholstery materials used in home furnishings were evaluated for relative toxicity by means of the USF/NASA toxicity screening test. The materials were variably toxic under pyrolysis conditions, and this test appeared suitable for discriminating among them on the bases of time to incapacitation and time to death. The addition of fire retardants to these materials to comply with flammability regulations either had no significant effect on toxicity, or resulted in a reduction in relative toxicity. The modification of materials to comply with California upholstered furniture flammability regulations appears to have resulted in desirable limitations on toxicity. Fifty percent of the 70 materials tested caused incapacitation earlier than did the materials in compliance, and 30 percent caused death earlier.

  4. Lead Toxicity in the Pediatric Patient with Sickle Cell Disease: Unique Risks and Management.

    PubMed

    Jung, Josephine Misun; Peddinti, Radhika

    2018-01-01

    Lead toxicity is the result of lead ingestion, one of the most common ingestions in the pediatric population. Nationwide and statewide efforts to recognize and curtail this epidemic have led to declining rates of toxicity. In patients with sickle cell disease (SCD), lead toxicity can be an elusive diagnosis due to overlapping symptom profiles, and inconsistent follow-up with a primary care physician can make the diagnosis even more difficult. In this article, two illustrative cases of lead toxicity in patients with SCD are described. The discussion reviews the current risk factors, screening, and inpatient management of lead toxicity, as well as describing the unique and sometimes confounding presentations of lead toxicity versus sickle cell crisis. [Pediatr Ann. 2018;47(1):e36-e40.]. Copyright 2018, SLACK Incorporated.

  5. Evaluation of Short-Term Bioassays to Predict Functional Impairment. Development of Hepatic Bioassays in Laboratory Animals, Directory of Institutions/Individuals.

    DTIC Science & Technology

    1980-10-01

    Organizations Compounds Tested Morphological Tests Toxic Substances Functional Tests rR ACT Cutlue OM v.a e sif nemooery ad Identify by block number) %MITRE has...demonstrated ability to evaluate and predict hepatic impairment rvsulting from toxicant exposures. This directory is a companion to Selected Short-Term...Hepatic Toxicity Tests, which describes the available hepatic testing protocols and assesses their suitability for a screening program. This direc

  6. Flow cytometric assay for analysis of cytotoxic effects of potential drugs on human peripheral blood leukocytes

    NASA Astrophysics Data System (ADS)

    Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila

    2014-03-01

    Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z

  7. Methylene Blue as a Diagnostic Aid in the Early Detection of Potentially Malignant and Malignant Lesions of Oral Mucosa.

    PubMed

    Lejoy, Abraham; Arpita, Rai; Krishna, Burde; Venkatesh, Naikmasur

    2016-05-01

    In vivo stains are the prompt resources, which have emerged in recent years to aid as clinical diagnostic tools in detecting early potentially malignant and malignant lesions. Toluidine blue, by its property of retaining in the increased DNA and RNA cellular activity areas, aids in delineating the suspicious areas. However, it is hazardous if swallowed, and has been shown to have toxicity to fibroblasts. Methylene blue has a similar chemical structure and exhibits similar physicochemical properties as toluidine blue. It is less toxic to the human body and has recently been proposed for screening some gastrointestinal or prostate tumors. The application of this material in detecting oral lesions has so far not been addressed. The objective of this study was to evaluate the sensitivity and reliability of in vivo staining with methylene blue as a diagnostic adjunct in screening for oral malignant or potentially malignant lesions. The present study involved the examination of 75 patients suspected of having oral malignant or potentially malignant lesions by methylene blue staining. The results of methylene blue uptake were compared with a simultaneous biopsy of these lesions. The overall sensitivity was 95% (100% for malignancy and 92% for potentially malignant lesions) and specificity was 70%. The positive predictive value was 91% and negative predictive value of 80% was observed in the study. We consider that methylene blue staining is a useful diagnostic adjunct in a large, community-based oral cancer screening program for high-risk individuals.

  8. Informing the Selection of Screening Hit Series with in Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity Profiles.

    PubMed

    Sanders, John M; Beshore, Douglas C; Culberson, J Christopher; Fells, James I; Imbriglio, Jason E; Gunaydin, Hakan; Haidle, Andrew M; Labroli, Marc; Mattioni, Brian E; Sciammetta, Nunzio; Shipe, William D; Sheridan, Robert P; Suen, Linda M; Verras, Andreas; Walji, Abbas; Joshi, Elizabeth M; Bueters, Tjerk

    2017-08-24

    High-throughput screening (HTS) has enabled millions of compounds to be assessed for biological activity, but challenges remain in the prioritization of hit series. While biological, absorption, distribution, metabolism, excretion, and toxicity (ADMET), purity, and structural data are routinely used to select chemical matter for further follow-up, the scarcity of historical ADMET data for screening hits limits our understanding of early hit compounds. Herein, we describe a process that utilizes a battery of in-house quantitative structure-activity relationship (QSAR) models to generate in silico ADMET profiles for hit series to enable more complete characterizations of HTS chemical matter. These profiles allow teams to quickly assess hit series for desirable ADMET properties or suspected liabilities that may require significant optimization. Accordingly, these in silico data can direct ADMET experimentation and profoundly impact the progression of hit series. Several prospective examples are presented to substantiate the value of this approach.

  9. Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.

    PubMed

    Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S

    2015-09-01

    Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Applications of patient-specific induced pluripotent stem cells; focused on disease modeling, drug screening and therapeutic potentials for liver disease.

    PubMed

    Chun, Yong Soon; Chaudhari, Pooja; Jang, Yoon-Young

    2010-12-14

    The recent advances in the induced pluripotent stem cell (iPSC) research have significantly changed our perspectives on regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. In this review, we describe the human iPSC generation from developmentally diverse origins (i.e. endoderm-, mesoderm-, and ectoderm- tissue derived human iPSCs) and multistage hepatic differentiation protocols, and discuss both basic and clinical applications of these cells including disease modeling, drug toxicity screening/drug discovery, gene therapy and cell replacement therapy.

  11. [Study on baking processing technology of hui medicine Aconitum flavum].

    PubMed

    Fu, Xue-yan; Zhang, Bai-tong; Li, Ting-ting; Dong, Lin; Hao, Wen-jing; Yu, Liang

    2013-12-01

    To screen and optimize the processing technology of Aconitum flavum. The acute-toxicity, anti-inflammatory and analgesic experiments were used as indexes. Four processing methods, including decoction, streaming, baking and processing with Chebulae Fructus decoction, were compared to screen the optimum processing method for Aconitum flavum. The baking time was also optimized. The optimal baked technology was that 1-2 mm decoction pieces was baked at 105 degrees C for 3 hours. The baking method is proved to be the optimal processing method of Aconitum flavum. It is shown that this method is simple and stable.

  12. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.

    PubMed

    Lai, David Y

    2012-01-01

    A challenge-facing hazard identification and safety evaluation of engineered nanomaterials being introduced to market is the diversity and complexity of the types of materials with varying physicochemical properties, many of which can affect their toxicity by different mechanisms. In general, in vitro test systems have limited usefulness for hazard identification of nanoparticles due to various issues. Meanwhile, conducting chronic toxicity/carcinogenicity studies in rodents for every new nanomaterial introduced into the commerce is impractical if not impossible. New toxicity testing systems which rely on predictive, high-throughput technologies may be the ultimate goal of evaluating the potential hazard of nanomaterials. However, at present, this approach alone is unlikely to succeed in evaluating the toxicity of the wide array of nanomaterials and requires validation from in vivo studies. This article proposes a paradigm for toxicity testing and elucidation of the molecular mechanisms of reference materials for specific nanomaterial classes/subclasses using short-term in vivo animal studies in conjunction with high-throughput screenings and mechanism-based short-term in vitro assays. The hazard potential of a particular nanomaterial can be evaluated by conducting only in vitro high-throughput assays and mechanistic studies and comparing the data with those of the reference materials in the specific class/subclass-an approach in line with the vision for 'Toxicity Testing in the 21st Century' of chemicals. With well-designed experiments, testing nanomaterials of varying/selected physicochemical parameters may be able to identify the physicochemical parameters contributing to toxicity. The data so derived could be used for the development of computer model systems to predict the hazard potential of specific nanoparticles based on property-activity relationships. Copyright © 2011 John Wiley & Sons, Inc.

  13. Relative toxicity of pyrolysis products of some polyurethane and polychloroprene foams

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Slattengren, C. L.; Kourtides, D. A.; Parker, J. A.

    1977-01-01

    Results of toxicity screening tests on some polyurethane and polychloroprene flexible foams are presented. The test method involves the exposure of four Swiss albino male mice in a 4.2-liter hemispherical chamber to the pyrolysis effluents from 1 g of sample exposed to temperatures rising from 200 to 800 C at a rate of 40 C/min. Mortality and times to incapacitation and to death are recorded. Comparisons indicate that flexible polyurethane foams without fire retardant are more toxic than the corresponding foams containing fire retardant, and polychloroprene foams are least toxic.

  14. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.; Taylor, Larry

    2008-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be useful for choosing an exposure concentration for the animal inhalation study on a selected lunar dust sample, which is included as a part of this proposal. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The simulant exposure will ensure that the study techniques used with actual lunar dust will be successful. The results of ITI and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  15. Stem cells: a model for screening, discovery and development of drugs.

    PubMed

    Kitambi, Satish Srinivas; Chandrasekar, Gayathri

    2011-01-01

    The identification of normal and cancerous stem cells and the recent advances made in isolation and culture of stem cells have rapidly gained attention in the field of drug discovery and regenerative medicine. The prospect of performing screens aimed at proliferation, directed differentiation, and toxicity and efficacy studies using stem cells offers a reliable platform for the drug discovery process. Advances made in the generation of induced pluripotent stem cells from normal or diseased tissue serves as a platform to perform drug screens aimed at developing cell-based therapies against conditions like Parkinson's disease and diabetes. This review discusses the application of stem cells and cancer stem cells in drug screening and their role in complementing, reducing, and replacing animal testing. In addition to this, target identification and major advances in the field of personalized medicine using induced pluripotent cells are also discussed.

  16. An update on the use of C. elegans for preclinical drug discovery: screening and identifying anti-infective drugs.

    PubMed

    Kim, Wooseong; Hendricks, Gabriel Lambert; Lee, Kiho; Mylonakis, Eleftherios

    2017-06-01

    The emergence of antibiotic-resistant and -tolerant bacteria is a major threat to human health. Although efforts for drug discovery are ongoing, conventional bacteria-centered screening strategies have thus far failed to yield new classes of effective antibiotics. Therefore, new paradigms for discovering novel antibiotics are of critical importance. Caenorhabditis elegans, a model organism used for in vivo, offers a promising solution for identification of anti-infective compounds. Areas covered: This review examines the advantages of C. elegans-based high-throughput screening over conventional, bacteria-centered in vitro screens. It discusses major anti-infective compounds identified from large-scale C. elegans-based screens and presents the first clinically-approved drugs, then known bioactive compounds, and finally novel small molecules. Expert opinion: There are clear advantages of using a C. elegans-infection based screening method. A C. elegans-based screen produces an enriched pool of non-toxic, efficacious, potential anti-infectives, covering: conventional antimicrobial agents, immunomodulators, and anti-virulence agents. Although C. elegans-based screens do not denote the mode of action of hit compounds, this can be elucidated in secondary studies by comparing the results to target-based screens, or conducting subsequent target-based screens, including the genetic knock-down of host or bacterial genes.

  17. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.

    PubMed

    Zhou, Yuexin; Zhu, Shiyou; Cai, Changzu; Yuan, Pengfei; Li, Chunmei; Huang, Yanyi; Wei, Wensheng

    2014-05-22

    Targeted genome editing technologies are powerful tools for studying biology and disease, and have a broad range of research applications. In contrast to the rapid development of toolkits to manipulate individual genes, large-scale screening methods based on the complete loss of gene expression are only now beginning to be developed. Here we report the development of a focused CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) lentiviral library in human cells and a method of gene identification based on functional screening and high-throughput sequencing analysis. Using knockout library screens, we successfully identified the host genes essential for the intoxication of cells by anthrax and diphtheria toxins, which were confirmed by functional validation. The broad application of this powerful genetic screening strategy will not only facilitate the rapid identification of genes important for bacterial toxicity but will also enable the discovery of genes that participate in other biological processes.

  18. In vitro transcriptomic prediction of hepatotoxicity for early drug discovery

    PubMed Central

    Cheng, Feng; Theodorescu, Dan; Schulman, Ira G.; Lee, Jae K.

    2012-01-01

    Liver toxicity (hepatotoxicity) is a critical issue in drug discovery and development. Standard preclinical evaluation of drug hepatotoxicity is generally performed using in vivo animal systems. However, only a small number of preselected compounds can be examined in vivo due to high experimental costs. A more efficient yet accurate screening technique which can identify potentially hepatotoxic compounds in the early stages of drug development would thus be valuable. Here, we develop and apply a novel genomic prediction technique for screening hepatotoxic compounds based on in vitro human liver cell tests. Using a training set of in vivo rodent experiments for drug hepatotoxicity evaluation, we discovered common biomarkers of drug-induced liver toxicity among six heterogeneous compounds. This gene set was further triaged to a subset of 32 genes that can be used as a multi-gene expression signature to predict hepatotoxicity. This multi-gene predictor was independently validated and showed consistently high prediction performance on five test sets of in vitro human liver cell and in vivo animal toxicity experiments. The predictor also demonstrated utility in evaluating different degrees of toxicity in response to drug concentrations which may be useful not only for discerning a compound’s general hepatotoxicity but also for determining its toxic concentration. PMID:21884709

  19. Causal Inferences from Mining ToxCast Data and the Biomedical Literature for Molecular Pathways and Cellular Processes in Cleft Palate (SOT)

    EPA Science Inventory

    Sixty-five chemicals in the ToxCast high-throughput screening (HTS) dataset have been linked to cleft palate based on data from ToxRefDB (rat or rabbit prenatal developmental toxicity studies) or from literature reports. These compounds are structurally diverse and thus likely to...

  20. Analysis of ToxCast data for food-relevant compounds by comparison with in vivo data using the RISK21 approach

    EPA Science Inventory

    The ToxCast program has generated a wealth of in vitro high throughput screening data, and best approaches for the interpretation and use of these data remain undetermined. We present case studies comparing the ToxCast and in vivo toxicity data for two food contact substances us...

  1. Cyclopiazonic acid is a pathogenicity factor for Aspergillus flavus and a promising target for screening germplasm for ear rot resistance

    USDA-ARS?s Scientific Manuscript database

    Aspergillus flavus, an opportunistic pathogen, contaminates maize and other key crops with carcinogenic aflatoxins (AF). Besides AF, A. flavus makes many more secondary metabolites (SMs), whose toxicity in insects or vertebrates has been studied. However, the role of SMs in the invasion of plant hos...

  2. PHYTOCHEMICAL SCREENING, ANTI-INFLAMMATORY AND ANALGESIC PROPERTIES OF PENTANISIA PRUNELLOIDES FROM THE EASTERN CAPE PROVINCE, SOUTH AFRICA

    PubMed Central

    Mathews, Miya Gugulethu; Ajayi, Oyemitan Idris; Opeoluwa, Oyedeji Oyehan; Oluwatobi, Oluwafemi Samuel; Benedicta N, Nkeh-Chungag; Phindile, Songca Sandile; Oyedeji; Omowumi, Adebola

    2016-01-01

    Background: Pentanisia prunelloides is a medicinal plant widely used to remedy various ailments including infections, fever and rheumatism in Eastern Cape Province of South Africa. There is scanty report on the phytochemical and biological properties of the plant; hence various solvent extracts of the dried plant materials were phytochemically screened, and its aqueous extract evaluated for acute toxicity effect, analgesic and antiinflammatory properties in rodents. Methods and Materials: Different extracts of both leaf and rhizome were obtained separately with ethanol, methanol and water. Portions of the filtrate were used for qualitative screening of secondary metabolites and remaining portions were concentrated and dried. Dried grounded leaf and rhizome of the plant were also used for quantitative screening for some major components. The aqueous extract of the leaf and rhizome were used for acute toxicity (LD50) test, antiinflammatory and analgesic activities in rodents. Results: The qualitative phytochemical screening showed the presence of several phytoconstituents with saponins, flavonoids and alkaloids constituting highest constituents in the leaf and rhizome. The LD50: of the aqueous extracts (from leaf or rhizome) was found to be ≥5000 mg/kg orally. The leaf and rhizome aqueous extract (250-500 mg/kg) significantly (p<0.01) reduced egg albumin-induced paw oedema and paw licking in mice induced by formalin, signifying antinociceptive and antiinflammatory activities respectively. Conclusion: It is concluded that the leaf and rhizome of P. prunelloides are rich in various phytochemicals which could be associated with their medicinal uses. The aqueous leaf and rhizome extracts are similarly non-toxic orally, showed antiinflammatory and analgesic potentials thus rationalizing its use in folkloric medicine. PMID:28480377

  3. Case Report: Linezolid Optic Neuropathy and Proposed Evidenced-based Screening Recommendation.

    PubMed

    Dempsey, Sean P; Sickman, Amy; Slagle, William Scott

    2018-05-01

    This case illustrates a novel screening protocol for linezolid-induced toxic optic neuropathy. To present a case report and analysis of linezolid-induced optic neuropathies in adult patients to develop screening recommendations. A case report of optic neuropathy from extended use of linezolid illustrates its potential effects on vision. We conduct a retrospective analysis of 39 reported cases to derive a recommended screening protocol for linezolid-induced toxic optic neuropathy in adult patients. Of 39 reported adult cases, 32 presented with optic neuropathy within 90 to 365 days of treatment. Within this subset, the duration of linezolid dosage to first symptoms is 235 ± 71 days. Seven outliers either experienced optic neuropathy within the first 28 days or between 600 and 1125 days. Of the 33 cases that quantified visual recovery, 30 reported final binocular visual acuity equivalent to 20/40 or better when the medication was discontinued from 0 to 268 days after symptom onset. Recovery potential was reported over a period of 2 weeks to approximately 6 months after cessation. To evaluate the effect of cumulative dose, the data were separated into patients taking 600 mg twice daily and those at 600 mg once daily. At the higher dosage, a mean of 180 ± 96 days with a mean cumulative dosage of 216 ± 115 g was noted at first symptom, whereas at lower dosage, a mean of 201 ± 102 days was noted with a mean cumulative dose of 138 ± 69 g. We recommend screening adult patients within 1 month after initiating linezolid, followed by a subsequent evaluation every 30 to 60 days beginning 3 months from initiation. Substantial visual recovery is reported when linezolid is discontinued. Toxicity appears to be correlated to duration of treatment, rather than cumulative dose.

  4. Discovery of a Novel General Anesthetic Chemotype Using High-throughput Screening

    PubMed Central

    McKinstry-Wu, Andrew R.; Bu, Weiming; Rai, Ganesha; Lea, Wendy A.; Weiser, Brian P.; Liang, David F.; Simeonov, Anton; Jadhav, Ajit; Maloney, David J.; Eckenhoff, Roderic G.

    2014-01-01

    Background The development of novel anesthetics has historically been a process of combined serendipity and empiricism, with most recent new anesthetics developed via modification of existing anesthetic structures. Methods Using a novel high-throughput screen employing the fluorescent anesthetic 1-aminoanthracene (1-AMA) and apoferritin as a surrogate for on-pathway anesthetic protein target(s), we screened a 350,000 compound library for competition with 1-AMA-apoferritin binding. Hit compounds meeting structural criteria had their binding affinities for apoferritin quantified with isothermal titration calorimetry and were tested for γ-aminobutyric acid type A-receptor binding using a flunitrazepam binding assay. Chemotypes with a strong presence in the top 700 and exhibiting activity via isothermal titration calorimetry were selected for medicinal chemistry optimization including testing for anesthetic potency and toxicity in an in vivo Xenopus laevis tadpole assay. Compounds with low toxicity and high potency were tested for anesthetic potency in mice. Results From an initial chemical library of over 350,000 compounds, we identified 2,600 compounds that potently inhibited 1-AMA binding to apoferritin. A subset of compounds chosen by structural criteria (700) was successfully reconfirmed using the initial assay. Based upon a strong presence in both the initial and secondary screens the 6-phenylpyridazin-3(2H)-one chemotype was assessed for anesthetic activity in tadpoles. Medicinal chemistry efforts identified four compounds with high potency and low toxicity in tadpoles, two were found to be effective novel anesthetics in mice. Conclusions We demonstrate the first use of a high-throughput screen to successfully identify a novel anesthetic chemotype and show mammalian anesthetic activity for members of that chemotype. PMID:25603205

  5. Hydroxychloroquine retinopathy.

    PubMed

    Yusuf, I H; Sharma, S; Luqmani, R; Downes, S M

    2017-06-01

    Hydroxychloroquine (HCQ; Plaquenil) is used increasingly in the management of a variety of autoimmune disorders, with well established roles in dermatology and rheumatology and emerging roles in oncology. Hydroxychloroquine has demonstrated a survival benefit in patients with systemic lupus erythematosus; some clinicians advocate its use in all such patients. However, Hydroxychloroquine and chloroquine (CQ) have been associated with irreversible visual loss due to retinal toxicity. Hydroxychloroquine retinal toxicity is far more common than previously considered; an overall prevalence of 7.5% was identified in patients taking HCQ for greater than 5 years, rising to almost 20% after 20 years of treatment. This review aims to provide an update on HCQ/CQ retinopathy. We summarise emerging treatment indications and evidence of efficacy in systemic disease, risk factors for retinopathy, prevalence among HCQ users, diagnostic tests, and management of HCQ retinopathy. We highlight emerging risk factors such as tamoxifen use, and new guidance on safe dosing, reversing the previous recommendation to use ideal body weight, rather than actual body weight. We summarise uncertainties and the recommendations made by existing HCQ screening programmes. Asian patients with HCQ retinopathy may demonstrate an extramacular or pericentral pattern of disease; visual field testing and retinal imaging should include a wider field for screening in this group. HCQ is generally safe and effective for the treatment of systemic disease but because of the risk of HCQ retinal toxicity, modern screening methods and ideal dosing should be implemented. Guidelines regarding optimal dosing and screening regarding HCQ need to be more widely disseminated.

  6. Hydroxychloroquine retinopathy

    PubMed Central

    Yusuf, I H; Sharma, S; Luqmani, R; Downes, S M

    2017-01-01

    Hydroxychloroquine (HCQ; Plaquenil) is used increasingly in the management of a variety of autoimmune disorders, with well established roles in dermatology and rheumatology and emerging roles in oncology. Hydroxychloroquine has demonstrated a survival benefit in patients with systemic lupus erythematosus; some clinicians advocate its use in all such patients. However, Hydroxychloroquine and chloroquine (CQ) have been associated with irreversible visual loss due to retinal toxicity. Hydroxychloroquine retinal toxicity is far more common than previously considered; an overall prevalence of 7.5% was identified in patients taking HCQ for greater than 5 years, rising to almost 20% after 20 years of treatment. This review aims to provide an update on HCQ/CQ retinopathy. We summarise emerging treatment indications and evidence of efficacy in systemic disease, risk factors for retinopathy, prevalence among HCQ users, diagnostic tests, and management of HCQ retinopathy. We highlight emerging risk factors such as tamoxifen use, and new guidance on safe dosing, reversing the previous recommendation to use ideal body weight, rather than actual body weight. We summarise uncertainties and the recommendations made by existing HCQ screening programmes. Asian patients with HCQ retinopathy may demonstrate an extramacular or pericentral pattern of disease; visual field testing and retinal imaging should include a wider field for screening in this group. HCQ is generally safe and effective for the treatment of systemic disease but because of the risk of HCQ retinal toxicity, modern screening methods and ideal dosing should be implemented. Guidelines regarding optimal dosing and screening regarding HCQ need to be more widely disseminated. PMID:28282061

  7. Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1.

    PubMed

    Kazemi-Esfarjani, Parsa; Benzer, Seymour

    2002-10-01

    The toxicity of an abnormally long polyglutamine [poly(Q)] tract within specific proteins is the molecular lesion shared by Huntington's disease (HD) and several other hereditary neurodegenerative disorders. By a genetic screen in Drosophila, devised to uncover genes that suppress poly(Q) toxicity, we discovered a Drosophila homolog of human myeloid leukemia factor 1 (MLF1). Expression of the Drosophila homolog (dMLF) ameliorates the toxicity of poly(Q) expressed in the eye and central nervous system. In the retina, whether endogenously or ectopically expressed, dMLF co-localized with aggregates, suggesting that dMLF alone, or through an intermediary molecular partner, may suppress toxicity by sequestering poly(Q) and/or its aggregates.

  8. In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisvert, Annie; Jones, Steven; Issop, Leeyah

    Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates targetmore » mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health. - Highlights: • Phthalate plasticizers exert toxic effects on male reproduction. • Reproductive toxicity of new plasticizers was assessed by functional assays. • Mouse Leydig and germ cell lines, and rat perinatal testis cultures were used. • Survival, proliferation, steroidogenesis, abnormal germ cell formation were examined. • Reproductive toxic and innocuous plasticizer candidates were identified.« less

  9. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data.

    PubMed

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2016-05-01

    Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Quantitative structure-activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro-in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634-641; http://dx.doi.org/10.1289/ehp.1509763.

  10. Mechanism Profiling of Hepatotoxicity Caused by Oxidative Stress Using Antioxidant Response Element Reporter Gene Assay Models and Big Data

    PubMed Central

    Kim, Marlene Thai; Huang, Ruili; Sedykh, Alexander; Wang, Wenyi; Xia, Menghang; Zhu, Hao

    2015-01-01

    Background: Hepatotoxicity accounts for a substantial number of drugs being withdrawn from the market. Using traditional animal models to detect hepatotoxicity is expensive and time-consuming. Alternative in vitro methods, in particular cell-based high-throughput screening (HTS) studies, have provided the research community with a large amount of data from toxicity assays. Among the various assays used to screen potential toxicants is the antioxidant response element beta lactamase reporter gene assay (ARE-bla), which identifies chemicals that have the potential to induce oxidative stress and was used to test > 10,000 compounds from the Tox21 program. Objective: The ARE-bla computational model and HTS data from a big data source (PubChem) were used to profile environmental and pharmaceutical compounds with hepatotoxicity data. Methods: Quantitative structure–activity relationship (QSAR) models were developed based on ARE-bla data. The models predicted the potential oxidative stress response for known liver toxicants when no ARE-bla data were available. Liver toxicants were used as probe compounds to search PubChem Bioassay and generate a response profile, which contained thousands of bioassays (> 10 million data points). By ranking the in vitro–in vivo correlations (IVIVCs), the most relevant bioassay(s) related to hepatotoxicity were identified. Results: The liver toxicants profile contained the ARE-bla and relevant PubChem assays. Potential toxicophores for well-known toxicants were created by identifying chemical features that existed only in compounds with high IVIVCs. Conclusion: Profiling chemical IVIVCs created an opportunity to fully explore the source-to-outcome continuum of modern experimental toxicology using cheminformatics approaches and big data sources. Citation: Kim MT, Huang R, Sedykh A, Wang W, Xia M, Zhu H. 2016. Mechanism profiling of hepatotoxicity caused by oxidative stress using antioxidant response element reporter gene assay models and big data. Environ Health Perspect 124:634–641; http://dx.doi.org/10.1289/ehp.1509763 PMID:26383846

  11. Subsite Awareness in Neuropathology Evaluation of National Toxicology Program (NTP) Studies: A Review of Select Neuroanatomical Structures with their Functional Significance in Rodents

    PubMed Central

    Rao, Deepa B.; Little, Peter B.; Sills, Robert

    2013-01-01

    This review manuscript is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The manuscript provides an overview of approximately 50 neuroanatomical subsites and their functional significance across seven coronal sections of the brain. Also reviewed are three sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin (H&E) stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies. PMID:24135464

  12. Comparison of diverse nanomaterial bioactivity profiles based on high-throughput screening (HTS) in ToxCast™ (FutureToxII)

    EPA Science Inventory

    Most nanomaterials (NMs) in commerce lack hazard data. Efficient NM testing requires suitable toxicity tests for prioritization of NMs to be tested. The EPA’s ToxCast program is screening NM bioactivities and ranking NMs by their bioactivities to inform targeted testing planning....

  13. Evaluation of Microelectrode Array Data using Bayesian Modeling as an Approach to Screening and Prioritization for Neurotoxicity Testing*

    EPA Science Inventory

    The need to assess large numbers of chemicals for their potential toxicities has resulted in increased emphasis on medium- and high-throughput in vitro screening approaches. For such approaches to be useful, efficient and reliable data analysis and hit detection methods are also ...

  14. Using In Vitro High-Throughput Screening Data for Predicting Benzo[k]Fluoranthene Human Health Hazards

    EPA Science Inventory

    Today there are more than 80,000 chemicals in commerce and the environment. The potential human health risks are unknown for the vast majority of these chemicals as they lack human health risk assessments, toxicity reference values and risk screening values. We aim to use computa...

  15. Larval Behavioral Toxicity Screening: Light Intensity and the Order of Stimulus Presentation Affect the Outcome

    EPA Science Inventory

    The U.S. Environmental Protection Agency is screening large numbers of chemicals using 6 day old zebrafish (Danio rerio). We use a behavioral testing paradigm that simultaneously tests individual zebrafish under both light and dark conditions in a 96-well plate using a video tr...

  16. Human iPSC-derived cardiomyocytes and tissue engineering strategies for disease modeling and drug screening

    PubMed Central

    Smith, Alec S.T.; Macadangdang, Jesse; Leung, Winnie; Laflamme, Michael A.; Kim, Deok-Ho

    2016-01-01

    Improved methodologies for modeling cardiac disease phenotypes and accurately screening the efficacy and toxicity of potential therapeutic compounds are actively being sought to advance drug development and improve disease modeling capabilities. To that end, much recent effort has been devoted to the development of novel engineered biomimetic cardiac tissue platforms that accurately recapitulate the structure and function of the human myocardium. Within the field of cardiac engineering, induced pluripotent stem cells (iPSCs) are an exciting tool that offer the potential to advance the current state of the art, as they are derived from somatic cells, enabling the development of personalized medical strategies and patient specific disease models. Here we review different aspects of iPSC-based cardiac engineering technologies. We highlight methods for producing iPSC-derived cardiomyocytes (iPSC-CMs) and discuss their application to compound efficacy/toxicity screening and in vitro modeling of prevalent cardiac diseases. Special attention is paid to the application of micro- and nano-engineering techniques for the development of novel iPSC-CM based platforms and their potential to advance current preclinical screening modalities. PMID:28007615

  17. Toxicity assessment strategies, data requirements, and risk assessment approaches to derive health based guidance values for non-relevant metabolites of plant protection products.

    PubMed

    Dekant, Wolfgang; Melching-Kollmuss, Stephanie; Kalberlah, Fritz

    2010-03-01

    In Europe, limits for tolerable concentrations of "non-relevant metabolites" for active ingredients (AI) of plant protection products in drinking water between 0.1 and 10 microg/L are discussed depending on the toxicological information available. "Non-relevant metabolites" are degradation products of AIs, which do not or only partially retain the targeted toxicities of AIs. For "non-relevant metabolites" without genotoxicity (to be confirmed by testing in vitro), the application of the concept of "thresholds of toxicological concern" results in a health-based drinking water limit of 4.5 microg/L even for Cramer class III compounds, using the TTC threshold of 90 microg/person/day (divided by 10 and 2). Taking into account the thresholds derived from two reproduction toxicity data bases a drinking water limit of 3.0 microg/L is proposed. Therefore, for "non-relevant metabolites" whose drinking water concentration is below 3.0 microg/L, no toxicity testing is necessary. This work develops a toxicity assessment strategy as a basis to delineate health-based limits for "non-relevant metabolites" in ground and drinking water. Toxicological testing is recommended to investigate, whether the metabolites are relevant or not, based on the hazard properties of the parent AIs, as outlined in the SANCO Guidance document. Also, genotoxicity testing of the water metabolites is clearly recommended. In this publication, tiered testing strategies are proposed for non-relevant metabolites, when drinking water concentrations >3.0 microg/L will occur. Conclusions based on structure-activity relationships and the detailed toxicity database on the parent AI should be included. When testing in animals is required for risk assessment, key aspects are studies along OECD-testing guidelines with "enhanced" study designs addressing additional endpoints such as reproductive toxicity and a developmental screening test to derive health-based tolerable drinking water limits with a limited number of animals. The testing strategies are similar to those used in the initial hazard assessment of high production volume (HPV) chemicals. For "non-relevant metabolites" which are also formed as products of the biotransformation of the parent AI in mammals, the proposed toxicity testing strategies uses the repeat-dose oral toxicity study combined with a reproductive/developmental screening as outlined in OECD test guidelines 407 and 422 with integration of determination of hormonal activities. For "non-relevant metabolites" not formed during biotransformation of the AI in mammals, the strategy relies on an "enhanced" 90-day oral study covering additional endpoints regarding hormonal effects and male and female fertility in combination with a prenatal developmental toxicity study (OECD test guideline 414). The integration of the results of these studies into the risk assessment process applies large minimal margins of exposure (MOEs) to compensate for the shorter duration of the studies. The results of the targeted toxicity testing will provide a science basis for setting tolerable drinking water limits for "non-relevant metabolites" based on their toxicology. Based on the recommendations given in the SANCO guidance document and the work described in this and the accompanying paper, a concise re-evaluation of the Guidance document is proposed. (c) 2009 Elsevier Inc. All rights reserved.

  18. PROLIFERATION AS A KEY EVENT IN DEVELOPMENTAL TOXICITY: "CHEMICAL SCREENING IN HUMAN NEURAL STEM CELLS USING HIGH CONTENT IMAGING

    EPA Science Inventory

    New toxicity testing approaches will rely on in vitro assays to assess chemical effects at the cellular and molecular level. Cell proliferation is imperative to normal development, and chemical disruption of this process can be detrimental to the organism. As part of an effort to...

  19. Assessing cross species conservation of ToxCast Assay targets using Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS)

    EPA Science Inventory

    US EPA’s ToxCast program has screened thousands of chemicals in hundreds of mammalian-based HTS assays for biological activity suggestive of potential toxic effects. These data are being used to prioritize toxicity testing to focus on chemicals likely to lead to adverse health ef...

  20. THE FUTURE OF TOXICOLOGY-PREDICTIVE TOXICOLOGY ...

    EPA Pesticide Factsheets

    A chemistry approach to predictive toxicology relies on structure−activity relationship (SAR) modeling to predict biological activity from chemical structure. Such approaches have proven capabilities when applied to well-defined toxicity end points or regions of chemical space. These approaches are less well-suited, however, to the challenges of global toxicity prediction, i.e., to predicting the potential toxicity of structurally diverse chemicals across a wide range of end points of regulatory and pharmaceutical concern. New approaches that have the potential to significantly improve capabilities in predictive toxicology are elaborating the “activity” portion of the SAR paradigm. Recent advances in two areas of endeavor are particularly promising. Toxicity data informatics relies on standardized data schema, developed for particular areas of toxicological study, to facilitate data integration and enable relational exploration and mining of data across both historical and new areas of toxicological investigation. Bioassay profiling refers to large-scale high-throughput screening approaches that use chemicals as probes to broadly characterize biological response space, extending the concept of chemical “properties” to the biological activity domain. The effective capture and representation of legacy and new toxicity data into mineable form and the large-scale generation of new bioassay data in relation to chemical toxicity, both employing chemical stru

  1. Molecular docking, synthesis and biological screening of mefenamic acid derivatives as anti-inflammatory agents.

    PubMed

    Savjani, Jignasa K; Mulamkattil, Suja; Variya, Bhavesh; Patel, Snehal

    2017-04-15

    Drug induced gastrointestinal ulceration, renal side effects and hepatotoxicity are the main causes of numerous Non-Steroidal Anti-inflammatory Drugs (NSAIDs). Cyclooxygenase-2 (COX-2) inhibitors discovered to decrease the gastrointestinal issues, but unfortunately, most of them are associated with major cardiovascular adverse effects. Along these lines, various new strategies and frameworks were developed wherein basic alterations of the present medications were accounted for. The aim of the study was to prepare derivatives of mefenamic acid to evaluate anti-inflammatory activity with fewer adverse reactions. In this study, molecular docking investigations of outlined derivatives were done utilizing Protein Data Bank (PDB ID-4PH9). Synthesis of heterocyclic compounds was carried out utilizing Dicyclohexylcarbodiimide/4-Dimethylaminopyridine (DCC/DMAP) coupling. Acute toxicity prediction was performed using free online GUSAR (General Unrestricted Structure-Activity Relationships) software. The study indicated most of the compounds under safe category. In-vitro pharmacological assessment of heterocyclic compounds was done for COX-1 and COX-2 enzymes for the determination of selectivity. In vivo pharmacological screening for anti-inflammatory activity and ED 50 value were determined utilizing carrageenan induced rat paw edema. Gastro intestinal safety study was carried out on selected compounds and found to be devoid of any gastric ulcer toxicity. Most of the compounds indicated high scores as compared to standard during molecular modelling, analysis and displayed interactions with active amino acids of a COX-2 enzyme. The pharmacological screening uncovered that compound substituted with p-bromophenyl indicated maximum potency. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Screening for toxic phorbol esters in jerky pet treat products using LC-MS.

    PubMed

    Nishshanka, Upul; Jayasuriya, Hiranthi; Chattopadhaya, Chaitali; Kijak, Philip J; Chu, Pak-Sin; Reimschuessel, Renate; Tkachenko, Andriy; Ceric, Olgica; De Alwis, Hemakanthi G

    2016-05-01

    Since 2007, the U.S. FDA's Center for Veterinary Medicine (CVM) has been investigating reports of pets becoming ill after consuming jerky pet treats. Jerky used in pet treats contains glycerin, which can be made from vegetable oil or as a byproduct of biodiesel production. Because some biodiesel is produced using oil from Jatropha curcas, a plant that contains toxic compounds including phorbol esters, CVM developed a liquid chromatography-mass spectrometry (LC-MS) screening method to evaluate investigational jerky samples for the presence of these toxins. Results indicated that the samples analyzed with the new method did not contain Jatropha toxins at or above the lowest concentration tested. Published by Elsevier B.V.

  3. Evaluating the zebrafish embryo toxicity test for pesticide hazard screening.

    PubMed

    Glaberman, Scott; Padilla, Stephanie; Barron, Mace G

    2017-05-01

    Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r 2  = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r 2  = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-operation and Development Fish Embryo Acute Toxicity Test for routine pesticide hazard assessment, although embryo testing could be used with other screening tools for testing prioritization. Environ Toxicol Chem 2017;36:1221-1226. © 2016 SETAC. © 2016 SETAC.

  4. LC-MS/MS screening strategy for unknown adducts to N-terminal valine in hemoglobin applied to smokers and nonsmokers.

    PubMed

    Carlsson, Henrik; von Stedingk, Hans; Nilsson, Ulrika; Törnqvist, Margareta

    2014-12-15

    Electrophilically reactive compounds have the ability to form adducts with nucleophilic sites in DNA and proteins, constituting a risk for toxic effects. Mass spectrometric detection of adducts to N-terminal valine in hemoglobin (Hb) after detachment by modified Edman degradation procedures is one approach for in vivo monitoring of exposure to electrophilic compounds/metabolites. So far, applications have been limited to one or a few selected reactive species, such as acrylamide and its metabolite glycidamide. This article presents a novel screening strategy for unknown Hb adducts to be used as a basis for an adductomic approach. The method is based on a modified Edman procedure, FIRE, specifically developed for LC-MS/MS analysis of N-terminal valine adducts in Hb detached as fluorescein thiohydantoin (FTH) derivatives. The aim is to detect and identify a priori unknown Hb adducts in human blood samples. Screening of valine adducts was performed by stepwise scanning of precursor ions in small mass increments, monitoring four fragments common for the FTH derivative of valine with different N-substitutions in the multiple-reaction mode, covering a mass range of 135 Da (m/z 503-638). Samples from six smokers and six nonsmokers were analyzed. Control experiments were performed to compare these results with known adducts and to check for artifactual formation of adducts. In all samples of smokers and nonsmokers, seven adducts were identified, of which six have previously been studied. Nineteen unknown adducts were observed, and 14 of those exhibited fragmentation patterns similar to earlier studied FTH derivatives of adducts to valine. Identification of the unknown adducts will be the focus of future work. The presented methodology is a promising screening tool using Hb adducts to indicate exposure to potentially toxic electrophilic compounds and metabolites.

  5. Exploiting PubChem for Virtual Screening

    PubMed Central

    Xie, Xiang-Qun

    2011-01-01

    Importance of the field PubChem is a public molecular information repository, a scientific showcase of the NIH Roadmap Initiative. The PubChem database holds over 27 million records of unique chemical structures of compounds (CID) derived from nearly 70 million substance depositions (SID), and contains more than 449,000 bioassay records with over thousands of in vitro biochemical and cell-based screening bioassays established, with targeting more than 7000 proteins and genes linking to over 1.8 million of substances. Areas covered in this review This review builds on recent PubChem-related computational chemistry research reported by other authors while providing readers with an overview of the PubChem database, focusing on its increasing role in cheminformatics, virtual screening and toxicity prediction modeling. What the reader will gain These publicly available datasets in PubChem provide great opportunities for scientists to perform cheminformatics and virtual screening research for computer-aided drug design. However, the high volume and complexity of the datasets, in particular the bioassay-associated false positives/negatives and highly imbalanced datasets in PubChem, also creates major challenges. Several approaches regarding the modeling of PubChem datasets and development of virtual screening models for bioactivity and toxicity predictions are also reviewed. Take home message Novel data-mining cheminformatics tools and virtual screening algorithms are being developed and used to retrieve, annotate and analyze the large-scale and highly complex PubChem biological screening data for drug design. PMID:21691435

  6. Performance of Clinical Criteria for Screening of Possible Antiretroviral Related Mitochondrial Toxicity in HIV-Infected Children in Accra

    PubMed Central

    Katz, Karol; Northrup, Veronika

    2013-01-01

    Mitochondrial damage is implicated in highly active antiretroviral therapy (HAART) toxicity. HIV infection also causes mitochondrial toxicity (MT). Differentiating between the two is critical for HIV management. Our objective was to test the utility of the Mitochondrial Disease Criteria (MDC) and the Enquête Périnatale Française (EPF) to screen for possible HAART related MT in HIV-infected children in Ghana. The EPF and MDC are compilations of clinical symptoms, or criteria, of MT: a (+) score indicates possible MT. We applied these criteria retrospectively to 403 charts of HIV-infected children. Of those studied, 331/403 received HAART. Comparing HAART exposed and HAART naïve children, the difference in EPF score, but not MDC, approached significance (P = 0.1). Young age at HIV diagnosis or at HAART initiation was associated with (+) EPF (P ≤ 0.01). Adherence to HAART trended toward an association with (+) EPF (P = 0.09). Exposure to nevirapine, abacavir, or didanosine increased risk of (+) EPF (OR = 3.55 (CI = 1.99–6.33), 4.76 (2.39–9.43), 4.93 (1.29–18.87)). Neither EPF nor MDC identified a significant difference between HAART exposed or naïve children regarding possible MT. However, as indicators of HAART exposure are associated with (+) EPF, it may be a candidate for prospective study of possible HAART related MT in resource-poor settings. PMID:23533730

  7. Efforts to standardize wildlife toxicity values remain unrealized.

    PubMed

    Mayfield, David B; Fairbrother, Anne

    2013-01-01

    Wildlife toxicity reference values (TRVs) are routinely used during screening level and baseline ecological risk assessments (ERAs). Risk assessment professionals often adopt TRVs from published sources to expedite risk analyses. The US Environmental Protection Agency (USEPA) developed ecological soil screening levels (Eco-SSLs) to provide a source of TRVs that would improve consistency among risk assessments. We conducted a survey and evaluated more than 50 publicly available, large-scale ERAs published in the last decade to evaluate if USEPA's goal of uniformity in the use of wildlife TRVs has been met. In addition, these ERAs were reviewed to understand current practices for wildlife TRV use and development within the risk assessment community. The use of no observed and lowest observed adverse effect levels culled from published compendia was common practice among the majority of ERAs reviewed. We found increasing use over time of TRVs established in the Eco-SSL documents; however, Eco-SSL TRV values were not used in the majority of recent ERAs and there continues to be wide variation in TRVs for commonly studied contaminants (e.g., metals, pesticides, PAHs, and PCBs). Variability in the toxicity values was driven by differences in the key studies selected, dose estimation methods, and use of uncertainty factors. These differences result in TRVs that span multiple orders of magnitude for many of the chemicals examined. This lack of consistency in TRV development leads to highly variable results in ecological risk assessments conducted throughout the United States. Copyright © 2012 SETAC.

  8. High-Throughput Screening for Identification of Blood-Brain Barrier Integrity Enhancers: A Drug Repurposing Opportunity to Rectify Vascular Amyloid Toxicity.

    PubMed

    Qosa, Hisham; Mohamed, Loqman A; Al Rihani, Sweilem B; Batarseh, Yazan S; Duong, Quoc-Viet; Keller, Jeffrey N; Kaddoumi, Amal

    2016-07-06

    The blood-brain barrier (BBB) is a dynamic interface that maintains brain homeostasis and protects it from free entry of chemicals, toxins, and drugs. The barrier function of the BBB is maintained mainly by capillary endothelial cells that physically separate brain from blood. Several neurological diseases, such as Alzheimer's disease (AD), are known to disrupt BBB integrity. In this study, a high-throughput screening (HTS) was developed to identify drugs that rectify/protect BBB integrity from vascular amyloid toxicity associated with AD progression. Assessing Lucifer Yellow permeation across in-vitro BBB model composed from mouse brain endothelial cells (bEnd3) grown on 96-well plate inserts was used to screen 1280 compounds of Sigma LOPAC®1280 library for modulators of bEnd3 monolayer integrity. HTS identified 62 compounds as disruptors, and 50 compounds as enhancers of the endothelial barrier integrity. From these 50 enhancers, 7 FDA approved drugs were identified with EC50 values ranging from 0.76-4.56 μM. Of these 7 drugs, 5 were able to protect bEnd3-based BBB model integrity against amyloid toxicity. Furthermore, to test the translational potential to humans, the 7 drugs were tested for their ability to rectify the disruptive effect of Aβ in the human endothelial cell line hCMEC/D3. Only 3 (etodolac, granisetron, and beclomethasone) out of the 5 effective drugs in the bEnd3-based BBB model demonstrated a promising effect to protect the hCMEC/D3-based BBB model integrity. These drugs are compelling candidates for repurposing as therapeutic agents that could rectify dysfunctional BBB associated with AD.

  9. High-throughput screening for identification of blood-brain barrier integrity enhancers: a drug repurposing opportunity to rectify vascular amyloid toxicity

    PubMed Central

    Qosa, Hisham; Mohamed, Loqman A.; Al Rihani, Sweilem B.; Batarseh, Yazan S.; Duong, Quoc-Viet; Keller, Jeffrey N.; Kaddoumi, Amal

    2016-01-01

    The blood-brain barrier (BBB) is a dynamic interface that maintains brain homeostasis and protects it from free entry of chemicals, toxins and drugs. The barrier function of the BBB is maintained mainly by capillary endothelial cells that physically separate brain from blood. Several neurological diseases, such as Alzheimer’s disease (AD), are known to disrupt BBB integrity. In this study, a high-throughput screening (HTS) was developed to identify drugs that rectify/protect BBB integrity from vascular amyloid toxicity associated with AD progression. Assessing Lucifer Yellow permeation across in-vitro BBB model composed from mouse brain endothelial cells (bEnd3) grown on 96-well plate inserts was used to screen 1280 compounds of Sigma LOPAC®1280 library for modulators of bEnd3 monolayer integrity. HTS identified 62 compounds as disruptors, and 50 compounds as enhancers of the endothelial barrier integrity. From these 50 enhancers, 7 FDA approved drugs were identified with EC50 values ranging from 0.76–4.56 μM. Of these 7 drugs, five were able to protect bEnd3-based BBB model integrity against amyloid toxicity. Furthermore, to test the translational potential to humans, the 7 drugs were tested for their ability to rectify the disruptive effect of Aβ in the human endothelial cell line hCMEC/D3. Only 3 (etodolac, granisetron and beclomethasone) out of the 5 effective drugs in the bEnd3-based BBB model demonstrated a promising effect to protect the hCMEC/D3-based BBB model integrity. These drugs are compelling candidates for repurposing as therapeutic agents that could rectify dysfunctional BBB associated with AD. PMID:27392852

  10. Ternary copper(II) complex: NCI60 screening, toxicity studies, and evaluation of efficacy in xenograft models of nasopharyngeal carcinoma.

    PubMed

    Ahmad, Munirah; Suhaimi, Shazlan-Noor; Chu, Tai-Lin; Abdul Aziz, Norazlin; Mohd Kornain, Noor-Kaslina; Samiulla, D S; Lo, Kwok-Wai; Ng, Chew-Hee; Khoo, Alan Soo-Beng

    2018-01-01

    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity.

  11. A new respirometric endpoint-based biosensor to assess the relative toxicity of chemicals on immobilized human cells.

    PubMed

    Dragone, Roberto; Frazzoli, Chiara; Grappelli, Claudio; Campanella, Luigi

    2009-01-01

    Several functional and biochemical parameters have been proposed as biomarkers of effect of environmental pollutants. A rapid biosensor working with immobilized human U-937 cells was developed and applied to environmentally relevant chemicals with different structures and toxicological pathways, i.e. benzalkonium chloride, clofibric acid, diclofenac, mercury nitrate, ofloxacin, and sodium dodecyl sulphate. Respiration of cells was relied upon as a comprehensive biochemical effect for screening purposes. Analytical parameter (DeltappmO(2)) and toxicological index (respiratory inhibition, delta%) measured after 1h of exposure were utilized for dose-response relationship study. Results (toxicity rating scales based on delta(50)% and steepness) were compared with those obtained by the same approach previously optimized on Saccharomyces cerevisiae. The toxicity rating scale obtained by the biomarker based on human mitochondrial and cell metabolic activities compared well with previous scale obtained on yeast cells and with available in-vivo acute toxicity indexes; respiration was confirmed as toxicological endpoint reliably measurable by the biosensor.

  12. myo-Inositol and Phytate Are Toxic to Formosan Subterranean Termites (Isoptera: Rhinotermitidae).

    PubMed

    Veillon, Lucas; Bourgeois, Jared; Leblanc, Amanda; Henderson, Gregg; Marx, Brian D; Muniruzzaman, Syed; Laine, Roger A

    2014-10-01

    Several rare and common monosaccharides were screened for toxic effects on the Formosan subterranean termite, Coptotermes formosanus Shiraki, with the aim of identifying environmentally friendly termiticides. myo-Inositol and phytic acid, which are nontoxic to mammals, were identified as potential termite control compounds. Feeding bioassays with termite workers, where both compounds were supplied on filter paper in concentrations from 160.2 to 1,281.7 μg/mm(3), showed concentration-dependent toxicity within 2 wk. Interestingly myo-inositol was nontoxic when administered to termites in agar (40 mg/ml) in the absence of a cellulosic food source, an unexplained phenomenon. In addition, decreased populations of termite hindgut protozoa were observed upon feeding on myo-inositol but not phytate-spiked filter paper. Radiotracer feeding studies using myo-inositol-[2-(3)H] with worker termites showed no metabolism after ingestion over a 2-d feeding period, ruling out metabolites responsible for the selective toxicity. © 2014 Entomological Society of America.

  13. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    NASA Astrophysics Data System (ADS)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  14. Mixtures, Metabolites, and Mechanisms: Understanding Toxicology Using Zebrafish.

    PubMed

    Gamse, Joshua T; Gorelick, Daniel A

    2016-10-01

    For more than 60 years, zebrafish have been used in toxicological studies. Due to their transparency, genetic tractability, and compatibility with high-throughput screens, zebrafish embryos are uniquely suited to study the effects of pharmaceuticals and environmental insults on embryonic development, organ formation and function, and reproductive success. This special issue of Zebrafish highlights the ways zebrafish are used to investigate the toxic effects of endocrine disruptors, pesticides, and heavy metals.

  15. Approaches to evaluating the toxicity and carcinogenicity of man-made fibers: summary of a workshop held November 11-13, 1991, Durham, North Carolina.

    PubMed

    McClellan, R O; Miller, F J; Hesterberg, T W; Warheit, D B; Bunn, W B; Kane, A B; Lippmann, M; Mast, R W; McConnell, E E; Reinhardt, C F

    1992-12-01

    The Workshop on Approaches to Evaluating the Toxicity and Carcinogenicity of Man-Made Fibers (MMF) was held in Durham, North Carolina, on November 11-13, 1991. The goal of the workshop was to reach a consensus, or to determine the extent to which a consensus existed, in two areas. Participants were asked to identify scientifically sound approaches for evaluating the toxicity and carcinogenicity of man-made fibers based on today's science and to determine research appropriate for study during the next 5 years that can provide an improved scientific basis for future revisions of approaches used to evaluate man-made fiber toxicity and carcinogenicity. During the first day, a series of "state of knowledge" presentations were made to provide all participants with a common data base from which to interact and discuss scientific issues. The workshop participants were assigned to one of four discussion groups, which met separately in three half-day sessions following the first day of presentations. All groups discussed the same topics: exposure assessment, hazard identification, and dose-response information needed to integrate to characterize risk in the first session; approaches to obtaining the needed information in the second session; and recommended approaches and guidelines for evaluating the toxicity and carcinogenicity of MMF and research needs in the third session. The workshop participants reconvened as a whole after each discussion session, and one member from each group reported the group's conclusions. A closure period was also included at the end of the workshop for review and discussion of items that had been considered during the workshop. The primary conclusions reached were the following: -All fiber types capable of depositing in the thorax are not alike in their pathogenic potential. -Only fiber samples with dimensions similar to those to which humans can inhale should be tested. -A complete characterization (i.e., dimensions, fiber number, mass, and aerodynamic diameter) of the fiber aerosol and retained dose is essential. -Appropriate aerosol generation methods must be used for inhalation studies in order to preserve fiber lengths. -A tiered approach to toxicity evaluation is recommended that includes: 1. In vitro screening for durability, surface properties, cytotoxicity, and similar properties, etc; 2. Short-term inhalation or other in vivo studies; 3. That chronic inhalation studies are the "gold standard" (i.e., provide most appropriate data for risk characterization). -The rat is the most appropriate species for inhalation studies. -In chronic inhalation studies, animals should be retained to at least 20% survival after 2-year exposure. -Serial lung burden analyses are an essential component of inhalation studies and are essential for understanding exposure-dose-response relationships. -Studies oriented to understanding mechanisms of toxicity and carcinogenicity are important adjuncts to traditional toxicity studies. -Histopathological analyses of tissues of the respiratory tract represent primary endpoints for evaluating effects of inhaled fibers. Major effects include pulmonary fibrosis, lung tumors, and mesotheliomas. Experimental tissues should be archived for future studies; wherever possible, handling and preservation of tissues should be done in a way that maximizes their future use in mechanistic studies. -Potential human exposures throughout the entire life-cycle of the fiber must be considered and fibrous material for toxicologic studies prepared accordingly. -Intracavity studies are inappropriate for risk characterization but can play a useful screening role in assessing fiber toxicity.(ABSTRACT TRUNCATED AT 400 WORDS)

  16. Safety evaluation of Elixir Paregorico in healthy volunteers: a phase I study.

    PubMed

    de Moraes, Mea; Bezerra, Mm; Bezerra, Faf; de Moraes, Ra; Cavalcanti, Pp; Uchoa, Cra; Lima, Fav; Odorico de Moraes, M

    2008-10-01

    A liquid alcoholic extract of Papaver somniferum named Elixir Paregorico is extensively used for diarrheal diseases in Brazil. Its increased popularity has brought concerns and fears over the safety of this herbal product. Given the lack of investigative clinical studies, in this regard, this study investigated whether Elixir Paregorico administration causes any noticeable toxic effects in healthy volunteers. In all, 28 middle-aged healthy male (n = 14) and female (n = 14) were enrolled. After screening and a washout period, eligible subjects received four oral doses per day of Elixir Paregorico (3 mL diluted in 30 mL of water) over a 10-day period. Altogether, all 28 participants completed the study. The results of hematological and biochemical tests performed pre and post-treatment were within the normal range. In both male and female volunteers, there were no statistical differences (P > 0.05) in the results of clinical and laboratory tests performed at screening, on 5th and 10th day visits, and at final assessment. Although mild adverse events were related, which subsided spontaneously, no serious untoward reactions were reported following Elixir Paregorico administration. To our knowledge, this is the first demonstration that Elixir Paregorico administered four times a day for 10 days is safe and does not cause any noticeable toxic effect in healthy volunteers.

  17. Fast method for the simultaneous quantification of toxic polyphenols applied to the selection of genotypes of yam bean (Pachyrhizus sp.) seeds.

    PubMed

    Lautié, E; Rozet, E; Hubert, P; Vandelaer, N; Billard, F; Felde, T Zum; Grüneberg, W J; Quetin-Leclercq, J

    2013-12-15

    The purpose of the research was to develop and validate a rapid quantification method able to screen many samples of yam bean seeds to determine the content of two toxic polyphenols, namely pachyrrhizine and rotenone. The analytical procedure described is based on the use of an internal standard (dihydrorotenone) and is divided in three steps: microwave assisted extraction, purification by solid phase extraction and assay by ultra high performance liquid chromatography (UHPLC). Each step was included in the validation protocol and the accuracy profiles methodology was used to fully validate the method. The method was fully validated between 0.25 mg and 5 mg pachyrrhizin per gram of seeds and between 0.58 mg/g and 4 mg/g for rotenone. More than one hundred samples from different accessions, locations of growth and harvest dates were screened. Pachyrrhizine concentrations ranged from 3.29 mg/g to lower than 0.25 mg/g while rotenone concentrations ranged from 3.53 mg/g to lower than 0.58 mg/g. This screening along with principal component analysis (PCA) and discriminant analysis (DA) analyses allowed the selection of the more interesting genotypes in terms of low concentrations of these two toxic polyphenols. © 2013 Elsevier B.V. All rights reserved.

  18. Application of toxicogenomic profiling to evaluate effects of benzene and formaldehyde: from yeast to human

    PubMed Central

    McHale, Cliona M.; Smith, Martyn T.; Zhang, Luoping

    2014-01-01

    Genetic variation underlies a significant proportion of the individual variation in human susceptibility to toxicants. The primary current approaches to identify gene–environment (GxE) associations, genome-wide association studies (GWAS) and candidate gene association studies, require large exposed and control populations and an understanding of toxicity genes and pathways, respectively. This limits their application in the study of GxE associations for the leukemogens benzene and formaldehyde, whose toxicity has long been a focus of our research. As an alternative approach, we applied innovative in vitro functional genomics testing systems, including unbiased functional screening assays in yeast and a near-haploid human bone marrow cell line (KBM7). Through comparative genomic and computational analyses of the resulting data, we have identified human genes and pathways that may modulate susceptibility to benzene and formaldehyde. We have validated the roles of several genes in mammalian cell models. In populations occupationally exposed to low levels of benzene, we applied peripheral blood mononuclear cell transcriptomics and chromosome-wide aneuploidy studies (CWAS) in lymphocytes. In this review of the literature, we describe our comprehensive toxicogenomic approach and the potential mechanisms of toxicity and susceptibility genes identified for benzene and formaldehyde, as well as related studies conducted by other researchers. PMID:24571325

  19. Toxicity characterization of urban stormwater with bioanalytical tools.

    PubMed

    Tang, Janet Y M; Aryal, Rupak; Deletic, Ana; Gernjak, Wolfgang; Glenn, Eva; McCarthy, David; Escher, Beate I

    2013-10-01

    Stormwater harvesting has become an attractive alternative strategy to address the rising demand for urban water supply due to limited water sources and population growth. Nevertheless, urban stormwater is also a major source of surface water pollution. Runoff from different urban catchments with source contributions from anthropogenic activities and various land uses causes variable contaminant profiles, thus posing a challenging task for environmental monitoring and risk assessment. A thorough understanding of raw stormwater quality is essential to develop appropriate treatment facilities for potential indirect potable reuse of stormwater. While some of the key chemical components have previously been characterized, only scarce data are available on stormwater toxicity. We benchmarked stormwater samples from urban, residential and industrial sites across various Australian capital cities against samples from the entire water cycle, from sewage to drinking water. Six biological endpoints, targeting groups of chemicals with modes of toxic action of particular relevance for human and environmental health, were investigated: non-specific toxicity (Microtox and combined algae test), the specific modes of action of phytotoxicity (combined algae test), dioxin-like activity (AhR-CAFLUX), and estrogenicity (E-SCREEN), as well as reactive toxicity encompassing genotoxicity (umuC) and oxidative stress (AREc32). Non-specific toxicity was highly variable across sites. The baseline toxicity equivalent concentrations of the most polluted samples were similar to secondary treated effluent from wastewater treatment plants. Phytotoxicity results correlated well with the measured herbicide concentrations at all sites. High estrogenicity was found in two sampling events and could be related to sewage overflow. Genotoxicity, dioxin-like activity, and oxidative stress response were evident in only three of the samples where the stormwater drain was beside a heavy traffic road, confirming that road runoff is the potential source of contaminants, while the bioanalytical equivalent concentrations (BEQ) of these samples were similar to those of raw sewage. This study demonstrates the benefit of bioanalytical tools for screening-level stormwater quality assessment, forming the basis for the evaluation of future stormwater treatment and reuse schemes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Editor's Highlight: Transgenic Zebrafish Reporter Lines as Alternative In Vivo Organ Toxicity Models.

    PubMed

    Poon, Kar Lai; Wang, Xingang; Lee, Serene G P; Ng, Ashley S; Goh, Wei Huang; Zhao, Zhonghua; Al-Haddawi, Muthafar; Wang, Haishan; Mathavan, Sinnakaruppan; Ingham, Philip W; McGinnis, Claudia; Carney, Tom J

    2017-03-01

    Organ toxicity, particularly liver toxicity, remains one of the major reasons for the termination of drug candidates in the development pipeline as well as withdrawal or restrictions of marketed drugs. A screening-amenable alternative in vivo model such as zebrafish would, therefore, find immediate application in the early prediction of unacceptable organ toxicity. To identify highly upregulated genes as biomarkers of toxic responses in the zebrafish model, a set of well-characterized reference drugs that cause drug-induced liver injury (DILI) in the clinic were applied to zebrafish larvae and adults. Transcriptome microarray analysis was performed on whole larvae or dissected adult livers. Integration of data sets from different drug treatments at different stages identified common upregulated detoxification pathways. Within these were candidate biomarkers which recurred in multiple treatments. We prioritized 4 highly upregulated genes encoding enzymes acting in distinct phases of the drug metabolism pathway. Through promoter isolation and fosmid recombineering, eGFP reporter transgenic zebrafish lines were generated and evaluated for their response to DILI drugs. Three of the 4 generated reporter lines showed a dose and time-dependent induction in endodermal organs to reference drugs and an expanded drug set. In conclusion, through integrated transcriptomics and transgenic approaches, we have developed parallel independent zebrafish in vivo screening platforms able to predict organ toxicities of preclinical drugs. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

Top