Kim, Insu; Lee, Minhee
2012-11-30
A pilot scale test for a process combining in-situ chemical oxidation using H(2)O(2) solution with biodegradation was performed to remove TPH from a diesel contaminated military site. In batch experiments, when 20% H(2)O(2) solution was used for TPH contaminated soil, TPH removal efficiency was 63.5%. Batch experiments investigating biodegradation by adding indigenous microorganisms in pre-H(2)O(2)-treated soil were also performed, and TPH removal efficiency of biodegradation was 48.5%, showing an improvement of 19.4% by biodegradation even after chemical oxidation. For a pilot scale feasibility test, a site contaminated with diesel (2.5 m × 2.7 m × 1 m) in Korea was selected, and five injection wells and one extraction well were installed in the site. After 0.3 pore volumes of 17.5% H(2)O(2) solution flushing for 15 days, TPH removal efficiency of the site was 51.5%. Seven days after the H(2)O(2) solution flushing was finished, a mixed indigenous microorganism cultured solution (43 L) was injected into the wells two times. After the injection of the cultured solution, the average concentration of TPH in the site decreased to 777 mg/kg, showing that an additional 19.6% of TPH was removed by biodegradation (total TPH removal efficiency: 71.1%). Copyright © 2012 Elsevier B.V. All rights reserved.
Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi
2017-07-01
Due to the health and environmental risks posed by the presence of petroleum-contaminated areas around the world, remediation of petroleum-contaminated soil has drawn much attention from researchers. Combining Fenton reaction with a solvent has been proposed as a novel way to remediate contaminated soils. In this study, a green solvent, ethyl lactate (EL), has been used in conjunction with Fenton's reagents for the remediation of diesel-contaminated soil. The main aim of this research is to determine how the addition of EL affects Fenton reaction for the destruction of total petroleum hydrocarbons (TPHs) within the diesel range. Specifically, the effects of different parameters, including liquid phase volume-to-soil weight (L/S) ratio, hydrogen peroxide (H 2 O 2 ) concentration and EL% on the removal efficiency, have been studied in batch experiments. The results showed that an increase in H 2 O 2 resulted in an increase in removal efficiency of TPH from 68.41% at H 2 O 2 = 0.1 M to 90.21% at H 2 O 2 = 2 M. The lowest L/S, i.e. L/S = 1, had the highest TPH removal efficiency of 85.77%. An increase in EL% up to 10% increased the removal efficiency to 96.74% for TPH, and with further increase in EL%, the removal efficiency of TPH decreased to 89.6%. EL with an optimum value of 10% was found to be best for TPH removal in EL-based Fenton reaction. The power law and pseudo-first order equations fitted well to the experimental kinetic data of Fenton reactions.
NASA Astrophysics Data System (ADS)
Hong, U.; Park, S.; Lim, J.; Lee, W.; Kwon, S.; Kim, Y.
2009-12-01
In this study, we examined the removal efficiency of a volatile compound (e.g. toluene) and a less volatile compound [e.g. total petroleum hydrocarbon (TPH)] using an air stripping packed bed combined with a biofilm-type biological process. We hypothesized that this system might be effective and economical to simultaneously remove both volatile and less volatile compounds. The gas-tight reactor has 5.9-inch-diameter and 48.8-inch-height. A spray nozzle was installed at the top cover to distribute the liquid evenly through reactor. The reactor was filled with polypropylene packing media for the increase of volatilization surface area and the growth of TPH degrading facultative aerobic bacteria on the surface of the packing media. In air stripping experiments, 45.6%, 71.7%, 72.0%, and 75.4% of toluene was removed at air injection rates of 0 L/min, 2.5 L/min, 4 L/min, and 6 L/min, respectively. Through the result, we confirmed that toluene removal efficiency increased by injecting higher amounts of air. TPH removal by stripping was minimal. To remove a less volatile TPH by commercial TPH degrading culture (BIO-ZYME B-52), 15-times diluted culture was circulated through the reactor for 2-3 days to build up a biofilm on the surface of packing media with 1 mg-soluble nitrogen source /L-water per 1 ppm of TPH. Experiments evaluating the degree of TPH biodegradation in this system are carrying out.
An evaluation of the urban stormwater pollutant removal efficiency of catch basin inserts.
Morgan, Robert A; Edwards, Findlay G; Brye, Kristofor R; Burian, Stephen J
2005-01-01
In a storm sewer system, the catch basin is the interface between surface runoff and the sewer. Responding to the need to improve the quality of stormwater from urban areas and transportation facilities, and spurred by Phase I and II Stormwater Rules from the U.S. Environmental Protection Agency, several companies market catch basin inserts as best management practices for urban water quality management. However, little data have been collected under controlled tests that indicate the pollutant removal efficiency of these inserts when the inflow is near what can be expected to occur in the field. A stormwater simulator was constructed to test inserts under controlled and replicable conditions. The inserts were tested for removal efficiency of total suspended solids (TSS) and total petroleum hydrocarbons (TPH) at an inflow rate of 757 to 814 L/min, with influent pollutant concentrations of 225 mg/L TSS and 30 mg/L TPH. These conditions are similar to stormwater runoff from small commercial sites in the southeastern United States. Results from the tests indicate that at the test flowrate and pollutant concentration, average TSS removal efficiencies ranged from 11 to 42% and, for TPH, the removal efficiency ranged from 10 to 19%.
Lee, Hwan; Lee, Yoonjin; Kim, Jaeyoung; Kim, Choltae
2014-01-01
In this study the full-scale operation of soil flushing with air sparging to improve the removal efficiency of petroleum at depths of less than 7 m at a military site in Korea was evaluated. The target area was polluted by multiple gasoline and diesel fuel sources. The soil was composed of heterogeneous layers of granules, sand, silt and clay. The operation factors were systemically assessed using a column test and a pilot study before running the full-scale process at the site. The discharged TPH and BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations in the water were highest at 20 min and at a rate of 350 L/min, which was selected as the volume of air for the full-scale operation in the pilot air sparging test. The surfactant-aid condition was 1.4 times more efficient than the non-surfactant condition in the serial operations of modified soil flushing followed by air sparging. The hydraulic conductivity (3.13 × 10−3 cm/s) increased 4.7 times after the serial operation of both processes relative to the existing condition (6.61 × 10−4 cm/s). The removal efficiencies of TPH were 52.8%, 57.4%, and 61.8% for the soil layers at 6 to 7, 7 to 8 and 8 to 9 m, respectively. Therefore, the TPH removal was improved at depth of less than 7 m by using this modified remediation system. The removal efficiencies for the areas with TPH and BTEX concentrations of more than 500 and 80 mg/kg, were 55.5% and 92.9%, respectively, at a pore volume of 2.9. The total TPH and BTEX mass removed during the full-scale operation was 5109 and 752 kg, respectively. PMID:25166919
Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian
2014-12-01
A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.
Asgari, Alireza; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Dehghani, Mohammad Hadi; Nazmara, Shahrokh; Yaghmaeian, Kamyar
2017-01-01
In Iran, re-refinery industry has been developed many years ago based on the acid-clay treatment. Acidic sludge with high concentration of total petroleum hydrocarbon (TPH) is the final products of some facilities. In this study removal of TPH by aerated in-vessel composting was investigated. In order to microorganisms seeding and nutrient providing, urban immature compost was added as an amendment to acidic sludge. The ratios of acidic sludge (AS) to compost were, 1:0 (as control), 1:5, 1:8, 1:10, 1:15, 1:20, 1:30, 1:40, 1:50, 1:75 and 1:100 (as dry basis) at a C: N: P ratio of 100:5:1 and 45-65% moisture content for 70 days. The removal efficiency in all reactors was more than 48%. The highest and lowest TPH removal was observed in 1:5 (71.56%) and 1:100 (48.53%) mixing ratios, respectively. The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. Experimental data was fitted second order kinetic model ( R 2 > 0.8006). Degradation of TPH in 1:5 mixing ratio (k 2 = 0.0038 gmg -1 d -1 ; half-life = 3.08d) was nearly three times faster than 1:100 mixing ratio (k 2 = 0.0238; half-life = 8.96d). The results of the control reactors showed that biological treatment was the main mechanism for TPH removal. The results of this study revealed in-vessel composting with immature urban compost as the amendment maybe recommended as an effective method for TPH remediation.
Escobar-Alvarado, L F; Vaca-Mier, M; López, R; Rojas-Valencia, M N
2018-02-01
Used lubricant oils and metals can be common soil pollutants in abandoned sites. When soil is contaminated with various hazardous wastes, the efficiency of biological treatments could be affected. The purpose of this work was to investigate the effect of combining phytoremediation and composting on the efficiency of hydrocarbon degradation and lead solubility in a soil contaminated with 31,823 mg/kg of total petroleum hydrocarbon (TPH) from used motor oil and 8260 mg/kg of lead. Mexican cactus (Opuntia ficus indica) and yard trimmings were added in the composting process, and lucerne (Medicago sativa) was used in the phytoremediation process. After a 9 week composting process, only 13% of the initial TPH concentration was removed. The following 20 week phytoremediation process removed 48% of TPH. The highest TPH degradation percentage (66%), was observed in the experiment with phytoremediation only. This work demonstrates sustainable technologies, such as biological treatments, represent low-cost options for remediation; however, they are not frequently used because they require long periods of time for success.
Studies on crude oil removal from pebbles by the application of biodiesel.
Xia, Wen-xiang; Xia, Yan; Li, Jin-cheng; Zhang, Dan-feng; Zhou, Qing; Wang, Xin-ping
2015-02-15
Oil residues along shorelines are hard to remove after an oil spill. The effect of biodiesel to eliminate crude oil from pebbles alone and in combination with petroleum degrading bacteria was investigated in simulated systems. Adding biodiesel made oil detach from pebbles and formed oil-biodiesel mixtures, most of which remained on top of seawater. The total petroleum hydrocarbon (TPH) removal efficiency increased with biodiesel quantities but the magnitude of augment decreased gradually. When used with petroleum degrading bacteria, the addition of biodiesel (BD), nutrients (NUT) and BD+NUT increased the dehydrogenase activity and decreased the biodegradation half lives. When BD and NUT were replenished at the same time, the TPH removal efficiency was 7.4% higher compared to the total improvement of efficiency when BD and NUT was added separately, indicating an additive effect of biodiesel and nutrients on oil biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Ning; Wang, Peng; Kong, Xia; Shi, Rongfu; Yuan, Zhi; Wang, Chunhong
2012-01-01
The hydrolysis reaction of ester groups in vinyl acetate (VAc) was used to introduce hydroxyl groups into the matrix of a macroporous adsorbent, which was itself prepared by free radical suspension copolymerization of triallyl isocyanurate (TAIC) and VAc. Therefore, the copolymerization incompatibility between the hydrophilic and the hydrophobic monomer was overcome successfully and the hydrophobic matrix of the polymeric adsorbent containing a polyvinyl alcohol (PVA) segment was obtained. Introduction of the PVA segment decreased the hydrophobic adsorption affinity of the adsorbent while producing the hydrogen-bonding interaction. When isolating the two active components, polyphenols (TPh) and caffeine (CAF), from green tea extracts, this polymeric adsorbent, namely poly(TAIC-co-VA), exhibited good adsorption selectivity towards TPh over CAF. The adsorption mechanism leading to this selectivity involved a hydrophobic interaction mechanism for CAF and multiple weak hydrophobic and hydrogen-bonding interactions for TPh. The adsorption thermodynamics for TPh on poly(TAIC-co-VA) were studied. The effects of adsorbent structure and gradient desorption conditions on isolation were investigated. The result showed that adsorbent, with 20% TAIC content, was able to efficiently remove CAF from different tea extracts with different ratios of TPh and CAF. Finally, almost no CAF was detected in the TPh fraction and the recovery of TPh was greater than 95%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bioremediation of diesel and lubricant oil-contaminated soils using enhanced landfarming system.
Wang, Sih-Yu; Kuo, Yu-Chia; Hong, Andy; Chang, Yu-Min; Kao, Chih-Ming
2016-12-01
Lubricant and diesel oil-polluted sites are difficult to remediate because they have less volatile and biodegradable characteristics. The goal of this research was to evaluate the potential of applying an enhanced landfarming to bioremediate soils polluted by lubricant and diesel. Microcosm study was performed to evaluate the optimal treatment conditions with the addition of different additives (nutrients, addition of activated sludge from oil-refining wastewater facility, compost, TPH-degrading bacteria, and fern chips) to enhance total petroleum hydrocarbon (TPH) removal. To simulate the aerobic landfarming biosystem, air in the microcosm headspace was replaced once a week. Results demonstrate that the additives of activated sludge and compost could result in the increase in soil microbial populations and raise TPH degradation efficiency (up to 83% of TPH removal with 175 days of incubation) with initial (TPH = 4100 mg/kg). The first-order TPH degradation rate reached 0.01 1/d in microcosms with additive of activated sludge (mass ratio of soil to inocula = 50:1). The soil microbial communities were determined by nucleotide sequence analyses and 16S rRNA-based denatured gradient gel electrophoresis. Thirty-four specific TPH-degrading bacteria were detected in microcosm soils. Chromatograph analyses demonstrate that resolved peaks were more biodegradable than unresolved complex mixture. Results indicate that more aggressive remedial measures are required to enhance the TPH biodegradation, which included the increase of (1) microbial population or TPH-degrading bacteria, (2) biodegradable carbon sources, (3) nutrient content, and (4) soil permeability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Al-Baldawi, Israa Abdulwahab; Sheikh Abdullah, Siti Rozaimah; Anuar, Nurina; Suja, Fatihah; Idris, Mushrifah
2013-01-01
One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
Mousa, Ibrahim E
2016-08-15
The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1min and the energy consumption was 32.6mA/cm(2). However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20L/h. Pseudo steady state was achieved after 30min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Effects and Biological Response on Bioremediation of Petroleum Contaminated Soil].
Yang, Qian; Wu, Man-li; Nie, Mai-qian; Wang, Ting-ting; Zhang, Ming-hui
2015-05-01
Bioaugmentation and biostimulation were used to remediate petroleum-contaminated soil which were collected from Zichang city in North of Shaanxi. The optimal bioremediation method was obtained by determining the total petroleum hydrocarbon(TPH) using the infrared spectroscopy. During the bioremediation, number of degrading strains, TPH catabolic genes, and soil microbial community diversity were determined by Most Probable Number (MPN), polymerase chain reaction (PCR) combined agarose electrophoresis, and PCR-denaturing gradient electrophoresis (DGGE). The results in different treatments showed different biodegradation effects towards total petroleum hydrocarbon (TPH). Biostimulation by adding N and P to soils achieved the best degradation effects towards TPH, and the bioaugmentation was achieved by inoculating strain SZ-1 to soils. Further analysis indicated the positive correlation between catabolic genes and TPH removal efficiency. During the bioremediation, the number of TPH and alkanes degrading strains was higher than the number of aromatic degrading strains. The results of PCR-DGGE showed microbial inoculums could enhance microbial community functional diversity. These results contribute to understand the ecologically microbial effects during the bioremediation of petroleum-polluted soil.
Namkoong, Wan; Park, Joon-Seok; VanderGheynst, Jean S
2004-11-01
This study was conducted to evaluate the effects of gas inlet concentration and velocity on the biofiltration of gasoline vapor. Gasoline vapor was treated using a compost biofilter operated in an upflow mode for about 3 months. The inlet concentration of gasoline total petroleum hydrocarbon (TPH) ranged from about 300 to 7000 mgm(-3) and gas was injected at velocities of 6 and 15 mh(-1) (empty bed residence time (EBRT)=10 and 4 min, respectively). The maximum elimination capacities of TPH at 6 and 15 mh(-1) found in this research were over 24 and 19 gm(-3) of filling material h(-1), respectively. TPH removal data was fit using a first-order kinetic relationship. In the low concentration range of 300-3000 mg m(-3), the first-order kinetic constants varied between about 0.10 and 0.29 min(-1) regardless of gas velocities. At TPH concentrations greater than 3000 mgm(-3), the first-order kinetic constants were about 0.09 and 0.07 min(-1) at gas velocities of 6 mh(-1) and 15 mh(-1), respectively. To evaluate microbial dynamics, dehydrogenase activity, CO2 generation and microbial species diversity were analyzed. Dehydrogenase activity could be used as an indicator of microbial activity. TPH removal corresponded well with CO2 evolution. The average CO2 recovery efficiency for the entire biofilter ranged between 60% and 70%. When the gas velocity was 6 mh(-1), most of the microbial activity and TPH removal occurred in the first quarter of the biofilter. However, when the gas velocity was 15 mh(-1), the entire column contributed to removal. Spatial and temporal variations in the biofilter microbial population were also observed. Nearly 60% of the colonies isolated from the compost media prior to biofiltration were Bacillus. After 90 days of biofiltration, the predominant species in the lower portion (0-50 cm) of the filter were Rhodococcus, while Pseudomonas and Acinetobacter dominated the upper portion (75-100 cm). copyright 2004 Elsevier Ltd.
Al-Baldawi, Israa Abdul Wahab; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Suja, Fatihah; Anuar, Nurina; Mushrifah, Idris
2014-07-01
This study investigated the optimum conditions for total petroleum hydrocarbon (TPH) removal from diesel-contaminated water using phytoremediation treatment with Scirpus grossus. In addition, TPH removal from sand was adopted as a second response. The optimum conditions for maximum TPH removal were determined through a Box-Behnken Design. Three operational variables, i.e. diesel concentration (0.1, 0.175, 0.25% Vdiesel/Vwater), aeration rate (0, 1 and 2 L/min) and retention time (14, 43 and 72 days), were investigated by setting TPH removal and diesel concentration as the maximum, retention time within the given range, and aeration rate as the minimum. The optimum conditions were found to be a diesel concentration of 0.25% (Vdiesel/Vwater), a retention time of 63 days and no aeration with an estimated maximum TPH removal from water and sand of 76.3 and 56.5%, respectively. From a validation test of the optimum conditions, it was found that the maximum TPH removal from contaminated water and sand was 72.5 and 59%, respectively, which was a 5 and 4.4% deviation from the values given by the Box-Behnken Design, providing evidence that S. grossus is a Malaysian native plant that can be used to remediate wastewater containing hydrocarbons. Copyright © 2014 Elsevier Ltd. All rights reserved.
Koolivand, Ali; Rajaei, Mohammad Sadegh; Ghanadzadeh, Mohammad Javad; Saeedi, Reza; Abtahi, Hamid; Godini, Kazem
2017-07-01
The effect of mixing ratio and nutrients addition on the efficiency of a two-stage composting system in removal of total petroleum hydrocarbons (TPH) from storage tank bottom sludge (STBS) was investigated. The system consisted of ten windrow piles as primary composting (PC) followed by four in-vessel reactors as secondary composting (SC). Various initial C/N/P and mixing ratios of STBS to immature compost (IC) were examined in the PC and SC for 12 and 6weeks, respectively. The removal rates of TPH in the two-stage system (93.72-95.24%) were higher than those in the single-stage one. Depending on the experiments, TPH biodegradation fitted to the first- and second-order kinetics with the rate constants of 0.051-0.334d -1 and 0.002-0.165gkg -1 d -1 , respectively. The bacteria identified were Pseudomonas sp., Bacillus sp., Klebsiella sp., Staphylococcus sp., and Proteus sp. The study verified that a two-stage composting system is effective in treating the STBS. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moussavi, Gholamreza; Bagheri, Amir
2012-09-01
Groundwater contaminated with petroleum hydrocarbons was treated using a combined system of adsorption onto powdered expanded perlite (PEP) followed by the O3/H2O2 process. The pretreatment investigations indicated a high capacity for PEP to remove petroleum hydrocarbons from the contaminated water. An experimental total petroleum hydrocarbon (TPH) adsorption capacity of 275 mg/g PEP was obtained at the natural pH of water. The experimental data fit best with the Freundlich isotherm model and pseudo-second-order adsorption model. The second phase of the experiment evaluated the performance of the O3/H2O2 process in the removal of residual TPH from pretreated water and compared the results with that of raw water. The O3/H202 process attained a maximum TPH removal rate for the pretreated water after 70 min, when 93% of the residual TPH in the effluent of the adsorption system was removed. Overall, the combination of adsorption onto PEP for 100 min and the subsequent treatment with the O3/H2O2 process for 70min eliminated over 99% of the TPH of highly petroleum-contaminated groundwater, with initial values of 162 mg/L. Therefore, we can conclude that the developed treatment system is an appropriate method of remediation for petroleum-contaminated waters.
Esteves, Bruno M; Rodrigues, Carmen S D; Madeira, Luís M
2017-11-04
Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe 2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe 2+ ] = 100 ppm, [H 2 O 2 ] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD 5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD 5 /COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.
NASA Astrophysics Data System (ADS)
Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.
2016-02-01
Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.
Chemometric assessment of enhanced bioremediation of oil contaminated soils.
Soleimani, Mohsen; Farhoudi, Majid; Christensen, Jan H
2013-06-15
Bioremediation is a promising technique for reclamation of oil polluted soils. In this study, six methods for enhancing bioremediation were tested on oil contaminated soils from three refinery areas in Iran (Isfahan, Arak, and Tehran). The methods included bacterial enrichment, planting, and addition of nitrogen and phosphorous, molasses, hydrogen peroxide, and a surfactant (Tween 80). Total petroleum hydrocarbon (TPH) concentrations and CHEMometric analysis of Selected Ion Chromatograms (SIC) termed CHEMSIC method of petroleum biomarkers including terpanes, regular, diaromatic and triaromatic steranes were used for determining the level and type of hydrocarbon contamination. The same methods were used to study oil weathering of 2 to 6 ring polycyclic aromatic compounds (PACs). Results demonstrated that bacterial enrichment and addition of nutrients were most efficient with 50% to 62% removal of TPH. Furthermore, the CHEMSIC results demonstrated that the bacterial enrichment was more efficient in degradation of n-alkanes and low molecular weight PACs as well as alkylated PACs (e.g. C₃-C₄ naphthalenes, C₂ phenanthrenes and C₂-C₃ dibenzothiophenes), while nutrient addition led to a larger relative removal of isoprenoids (e.g. norpristane, pristane and phytane). It is concluded that the CHEMSIC method is a valuable tool for assessing bioremediation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhuang, Haifeng; Han, Hongjun; Shan, Shengdao
2016-06-01
A novel integrated system of anoxic-pure oxygen microbubble-activated sludge reactor-moving bed biofilm reactor was employed in treatment of real coal gasification wastewater. The results showed the integrated system had efficient performance of pollutants removal in short hydraulic retention time. While pure oxygen microbubble with the flow rate of 1.5 L/h and NaHCO3 dosage ratio of 2:1 (amount NaHCO3 to NH4 (+)-N ratio, mol: mol) were used, the removal efficiencies of COD, total phenols (TPh) and NH4 (+)-N reached 90, 95, and 95 %, respectively, with the influent loading rates of 3.4 kg COD/(m(3) d), 0.81 kg TPh/(m(3) d), and 0.28 kg NH4 (+)-N/(m(3) d). With the recycle ratio of 300 %, the concentrations of NO2 (-)-N and NO3 (-)-N in effluent decreased to 12 and 59 mg/L, respectively. Meanwhile, pure oxygen microbubble significantly improved the enzymatic activities and affected the effluent organic compositions and reduced the foam expansion. Thus, the novel integrated system with efficient, stable, and economical advantages was suitable for engineering application.
Optimizing photo-Fenton like process for the removal of diesel fuel from the aqueous phase
2014-01-01
Background In recent years, pollution of soil and groundwater caused by fuel leakage from old underground storage tanks, oil extraction process, refineries, fuel distribution terminals, improper disposal and also spills during transferring has been reported. Diesel fuel has created many problems for water resources. The main objectives of this research were focused on assessing the feasibility of using photo-Fenton like method using nano zero-valent iron (nZVI/UV/H2O2) in removing total petroleum hydrocarbons (TPH) and determining the optimal conditions using Taguchi method. Results The influence of different parameters including the initial concentration of TPH (0.1-1 mg/L), H2O2 concentration (5-20 mmole/L), nZVI concentration (10-100 mg/L), pH (3-9), and reaction time (15-120 min) on TPH reduction rate in diesel fuel were investigated. The variance analysis suggests that the optimal conditions for TPH reduction rate from diesel fuel in the aqueous phase are as follows: the initial TPH concentration equals to 0.7 mg/L, nZVI concentration 20 mg/L, H2O2 concentration equals to 5 mmol/L, pH 3, and the reaction time of 60 min and degree of significance for the study parameters are 7.643, 9.33, 13.318, 15.185 and 6.588%, respectively. The predicted removal rate in the optimal conditions was 95.8% and confirmed by data obtained in this study which was between 95-100%. Conclusion In conclusion, photo-Fenton like process using nZVI process may enhance the rate of diesel degradation in polluted water and could be used as a pretreatment step for the biological removal of TPH from diesel fuel in the aqueous phase. PMID:24955242
Bajagain, Rishikesh; Lee, Sojin; Jeong, Seung-Woo
2018-09-01
This study investigated a persulfate-bioaugmentation serial foam spraying technique to remove total petroleum hydrocarbons (TPHs) present in diesel-contaminated unsaturated soil. Feeding of remedial agents by foam spraying increased the infiltration/unsaturated hydraulic conductivity of reagents into the unsaturated soil. Persulfate mixed with a surfactant solution infiltrated the soil faster than peroxide, resulting in relatively even soil moisture content. Persulfate had a higher soil infiltration tendency, which would facilitate its distribution over a wide soil area, thereby enhancing subsequent biodegradation efficiency. Nearly 80% of soil-TPHs were degraded by combined persulfate-bioaugmentation foam spraying, while bioaugmentation foam spraying alone removed 52%. TPH fraction analysis revealed that the removal rate for the biodegradation recalcitrant fraction (C 18 to C 22 ) in deeper soil regions was higher for persulfate-bioaugmentation serial foam application than for peroxide-bioaugmentation foam application. Persulfate-foam spraying may be superior to peroxide for TPH removal even at a low concentration (50 mN) because persulfate-foam is more permeable, persistent, and does not change soil pH in the subsurface. Although the number of soil microbes declines by oxidation pretreatment, bioaugmentation-foam alters the microbial population exponentially. Copyright © 2018 Elsevier Ltd. All rights reserved.
Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza
2017-07-31
In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.
Optimization of the anaerobic treatment of a waste stream from an enhanced oil recovery process.
Alimahmoodi, Mahmood; Mulligan, Catherine N
2011-01-01
The aim of this work was to optimize the anaerobic treatment of a waste stream from an enhanced oil recovery (EOR) process. The treatment of a simulated waste water containing about 150 mg chemical oxygen demand (COD)/L of total petroleum hydrocarbons (TPH) and the saturation level of CO2 was evaluated. A two-step anaerobic system was undertaken in the mesophilic temperature range (30-40°C). The method of evolutionary operation EVOP factorial design was used to optimize pH, temperature and organic loading rate with the target parameters of CO2 reduction and CH4 production in the first reactor and TPH removal in the second reactor. The results showed 98% methanogenic removal of CO2 and CH4 yield of 0.38 L/gCOD in the first reactor and 83% TPH removal in the second reactor. In addition to enhancing CO2 and TPH removal and CH4 production, application of this method showed the degree of importance of the operational variables and their interactive effects for the two reactors in series. Copyright © 2010 Elsevier Ltd. All rights reserved.
Park, Soyoung; Kim, Ki Seob; Kim, Jeong-Tae; Kang, Daeseok; Sung, Kijune
2011-01-01
The use of humic acid (HA) to enhance the efficiency of phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel was evaluated in this study. A sample of soil was artificially contaminated with commercially available diesel fuel to an initial total petroleum hydrocarbons (TPH) concentration of 2300 mg/kg and four heavy metals with concentrations of 400 mg/kg for Pb, 200 mg/kg for Cu, 12 mg/kg for Cd, and 160 mg/kg for Ni. Three plant species, Brassica campestris, Festuca arundinacea, and Helianthus annuus, were selected for the phytodegradation experiment. Percentage degradation of TPH in the soil in a control pot supplemented with HA increased to 45% from 30% without HA. The addition of HA resulted in an increases in the removal of TPH from the soil in pots planted with B. campestris, E arundinacea, and H. annuus, enhancing percentage degradation to 86%, 64%, and 85% from 45%, 54%, and 66%, respectively. The effect of HA was also observed in the degradation of n-alkanes within 30 days. The rates of removal of n-alkanes in soil planted with B. campestris and H. annuus were high for n-alkanes in the range of C11-C28. A dynamic increase in dehydrogenase activity was observed during the last 15 days of a 30-day experimental period in all the pots amended with HA. The enhanced biodegradation performance for TPHs observed might be due to an increase in microbial activities and bioavailable TPH in soils caused by combined effects of plants and HA. The results suggested that HA could act as an enhancing agent for phytodegradation of petroleum hydrocarbons in soil contaminated with diesel fuel and heavy metals.
Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions.
Jeong, Seung-Woo; Jeong, Jongshin; Kim, Jaisoo
2015-04-09
Landfarming of oil-contaminated soil is ineffective at low temperatures, because the number and activity of micro-organisms declines. This study presents a simple and versatile technique for bioremediation of diesel-contaminated soil, which involves spraying foam on the soil surface without additional works such as tilling, or supply of water and air. Surfactant foam containing psychrophilic oil-degrading microbes and nutrients was sprayed twice daily over diesel-contaminated soil at 6 °C. Removal efficiencies in total petroleum hydrocarbon (TPH) at 30 days were 46.3% for landfarming and 73.7% for foam-spraying. The first-order kinetic biodegradation rates for landfarming and foam-spraying were calculated as 0.019 d(-1) and 0.044 d(-1), respectively. Foam acted as an insulating medium, keeping the soil 2 °C warmer than ambient air. Sprayed foam was slowly converted to aqueous solution within 10-12h and infiltrated the soil, providing microbes, nutrients, water, and air for bioaugmentation. Furthermore, surfactant present in the aqueous solution accelerated the dissolution of oil from the soil, resulting in readily biodegradable aqueous form. Significant reductions in hydrocarbon concentration were simultaneously observed in both semi-volatile and non-volatile fractions. As the initial soil TPH concentration increased, the TPH removal rate of the foam-spraying method also increased. Copyright © 2014 Elsevier B.V. All rights reserved.
Silva-Castro, Gloria Andrea; Rodelas, Belén; Perucha, Carlos; Laguna, Jaime; González-López, Jesús; Calvo, Concepción
2013-02-15
The present study focuses on the remediation of diesel-polluted soil using modified Fenton treatment coupled with inorganic NPK fertilizer ("Fenton+NPK"). Studies were carried out in a pilot plant containing 1 m(3) of sandy soil contaminated with 20,000 mg kg(-1) of diesel, placed outdoors at a temperature ranging between 5 and 10 °C. Results showed that NPK-fertilizer as post-treatment stimulated culturable degrading bacteria and enhanced dehydrogenase activity. Fenton+NPK treatment increased total petroleum hydrocarbon (TPH) removal efficacy. Natural attenuation removed 49% of TPH in the surface layer, 23% of TPH in the non-saturated layer and 4% of the TPH in the saturated layer, while the percentage removed of TPH after Fenton+NPK treatment was 58%, 57% and 32% respectively. The results from our study showed that, immediately after soil contamination, occurred a specialization and differentiation of the bacterial community, but after this initial modification, no significant changes of bacterial diversity was observed under natural attenuation conditions. In contrast, when the Fenton's reagent was applied a reduction of the bacterial biodiversity was observed. However, the post-biostimulation did enhance the degrading microbiota and stimulated their degrading biological activity. In conclusion, biostimulation, as a post-treatment step in chemical oxidation, is an effective solution to remediate hydrocarbon-polluted sites. Copyright © 2012 Elsevier B.V. All rights reserved.
Ma, Jie; Yang, Yongqi; Dai, Xiaoli; Chen, Yetong; Deng, Hanmei; Zhou, Huijun; Guo, Shaohui; Yan, Guangxu
2016-05-01
Contamination from oil-field drilling waste is a worldwide environmental problem. This study investigated the performance of four bench-scale biopiles in treating drilling waste: 1) direct biopile (DW), 2) biopile plus oil-degrading microbial consortium (DW + M), 3) biopile plus microbial consortium and bulking agents (saw dust) (DW + M + BA), 4) biopile plus microbial consortium, bulking agents, and inorganic nutrients (Urea and K2HPO4) (DW + M + BA + N). Ninety days of biopiling removed 41.0%, 44.0%, 55.7% and 87.4% of total petroleum hydrocarbon (TPH) in the pile "DW", "DW + M", "DW + M + BA", and "DW + M + BA + N" respectively. Addition of inorganic nutrient and bulking agents resulted in a 56.9% and 26.6% increase in TPH removal efficiency respectively. In contrast, inoculation of hydrocarbon-degrading microorganisms only slightly enhanced the contaminant removal (increased 7.3%). The biopile with stronger contaminant removal also had higher pile temperature and lower pile pH (e.g., in "DW + M + BA + N"). GC-MS analysis shows that biopiling significantly reduced the total number of detected contaminants and changed the chemical composition. Overall, this study shows that biopiling is an effective remediation technology for drilling waste. Adding inorganic nutrients and bulking agents can significantly improve biopile performance while addition of microbial inocula had minimal positive impacts on contaminant removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Escobar-Alvarado, Luisa F; Vaca-Mier, Mabel; López-Callejas, Raymundo; Rojas-Valencia, Ma Neftalí
2018-01-28
Industrial pollutants such as heavy metals and hydrocarbons in soils represent a serious concern due to their persistence and negative effects on the environment, affecting cellular processes in living organisms and even causing mutations and cancer. The main objectives of this work were to evaluate the efficiency of Opuntia ficus in the phytoremediation of a soil polluted with used motor oil. Two other species, one with different and one with similar characteristics, relatively, were used for comparison purposes: Lolium perenne and Aloe barbadensis. The effect of the plants on lead solubility and bioaccumulation, the biomass production of each specie and the microbial counts and bacterial identification for each experiment was studied. Total petroleum hydrocarbons (TPH) were measured every 5 weeks throughout the 20-week phytoremediation experiment. At the end of the experiment soluble Pb, Pb extracted by the plant species, microbiological counts, total biomass and bacterial species in soil were analyzed. Even though Lolium perenne showed the highest TPH removal (47%), Opuntia ficus produced the highest biomass and similar removal (46%). Since Opuntia ficus requires low amounts of water and grows fast, it would be a suitable option in the remediation of soils polluted with hydrocarbons and/or heavy metals.
Margesin, Rosa; Hämmerle, Marion; Tscherko, Dagmar
2007-02-01
We investigated the influence of three factors-diesel oil concentration [2500, 5000, 10,000, 20,000 mg total petroleum hydrocarbons (TPH) kg(-1) soil], biostimulation (unfertilized, inorganic fertilization with NPK nutrients, or oleophilic fertilization with Inipol EAP22), and incubation time-on hydrocarbon removal, enzyme activity (lipase), and microbial community structure [phospholipid fatty acids (PLFA)] in a laboratory soil bioremediation treatment. Fertilization enhanced TPH removal and lipase activity significantly (P < or = 0.001). The higher the initial contamination, the more marked was the effect of fertilization. Differences between the two fertilizers were not significant (P > 0.05). Microbial communities, as assessed by PLFA patterns, were primarily influenced by the TPH content, followed by fertilization, and the interaction of these two factors, whereas incubation time was of minor importance. This was demonstrated by three-factorial analysis of variance and multidimensional scaling analysis. Low TPH content had no significant effect on soil microbial community, independent of the treatment. High TPH content generally resulted in increased PLFA concentrations, whereby a significant increase in microbial biomass with time was only observed with inorganic fertilization, whereas oleophilic fertilization (Inipol EAP22) tended to inhibit microbial activity and to reduce PLFA contents with time. Among bacteria, PLFA indicative of the Gram-negative population were significantly (P < or = 0.05) increased in soil samples containing high amounts of diesel oil and fertilized with NPK after 21-38 days of incubation at 20 degrees C. The Gram-positive population was not significantly influenced by TPH content or biostimulation treatment.
Bioremediation of petroleum-contaminated soil using aged refuse from landfills.
Liu, Qingmei; Li, Qibin; Wang, Ning; Liu, Dan; Zan, Li; Chang, Le; Gou, Xuemei; Wang, Peijin
2018-05-10
This study explored the effects and mechanisms of petroleum-contaminated soil bioremediation using aged refuse (AR) from landfills. Three treatments of petroleum-contaminated soil (47.28 mg·g -1 ) amended with AR, sterilized aged refuse (SAR) and petroleum-contaminated soil only (as a control) were tested. During 98 days of incubation, changes in soil physicochemical properties, residual total petroleum hydrocarbon (TPH), biodegradation kinetics, enzyme activities and the microbial community were investigated. The results demonstrated that AR was an effective soil conditioner and biostimulation agent that could comprehensively improve the quality of petroleum-contaminated soil and promote microbial growth, with an 74.64% TPH removal rate, 22.36 day half-life for SAR treatment, compared with the control (half-life: 138.63 days; TPH removal rate: 22.40%). In addition, the petroleum-degrading bacteria isolation results demonstrated that AR was also a petroleum-degrading microbial agent containing abundant microorganisms. AR addition significantly improved both the biotic and abiotic conditions of petroleum-contaminated soil without other additives. The cooperation of conditioner addition, biostimulation and bioaugmentation in AR treatment led to better bioremediation effects (half-life: 13.86 days; TPH removal rate: 89.83%). In conclusion, AR amendment is a cost-effective, easy-to-use method facilitating in situ large-scale application while simultaneously recycling huge amounts of AR from landfills. Copyright © 2018 Elsevier Ltd. All rights reserved.
Palma-Cruz, Felipe de J; Pérez-Vargas, Josefina; Rivera Casado, Noemí Araceli; Gómez Guzmán, Octavio; Calva-Calva, Graciano
2016-08-01
Pioneer native plant species from weathered oil spill-affected sites were selected to study their potential for phytoremediation on the basis of their ecological and phenological changes during the phytoremediation process. Experiments were conducted in field and in greenhouse. In field, native plants from aged oil spill-impacted sites with up 400 g of weathered petroleum hydrocarbons per kilogram soil were selected. In the impacted sites, the principal dominant plant species with potential for hydrocarbons removal were Cyperus laxus, Cyperus esculentus, and Ludwigia peploides. In greenhouse, the phenology of the selected plant species was drastically affected by the hydrocarbons level above 325 g total petroleum hydrocarbons (TPH) per kilogram soil after 2 years of phytoremediation of soils from the aged oil spill-impacted sites. From the phytoremediation treatments, a mix-culture of C. laxus, C. esculentus, and L. peploides in soil containing 325 g TPH/kg soil, from which 20.3 % were polyaromatic hydrocarbons (PAH) and 34.2 % were asphaltenes (ASF), was able to remove up 93 % of the TPH, while in unvegetated soil the TPH removal was 12.6 %. Furthermore, evaluation of the biodiversity and life forms of plant species in the impacted sites showed that phytoremediation with C. esculentus, alone or in a mix-culture with C. laxus and L. peploides, reduces the TPH to such extent that the native plant community was progressively reestablished by replacing the cultivated species resulting in the ecological recovery of the affected soil. These results demonstrate that native Cyperus species from weathered oil spill-affected sites, specifically C. esculentus and C. laxus, alone or in a mix-culture, have particular potential for phytoremediation of soils from tropical wetlands contaminated with weathered oil hydrocarbons.
Degradation of Total Petroleum Hydrocarbon (TPH) in Contaminated Soil Using Bacillus pumilus MVSV3.
Varma, Surendra Sheeba; Lakshmi, Mahalingam Brinda; Rajagopal, Perumalsam; Velan, Manickam
2017-01-01
A study on bioremediation of soil contaminated with petroleum sludge was performed using Bacillus pumilus/MVSV3 (Accession number JN089707). In this study, 5 kg of agricultural soil was mixed well with 5% oil sludge and fertilizers containing nitrogen, phosphorus and potassium (N:P:K). The treatment resulted in 97% removal of total petroleum hydrocarbon (TPH) in 122 d in bacteria mixed contaminated soil when compared to 12% removal of TPH in uninoculated contaminated soil. The population of the microorganism remained stable after introduced into the oil environment. The physical and chemical parameters of the soil mixed with sludge showed variation indicating improvement and the pH level decreased during the experiment period. Elemental analysis and Gas Chromatography-Mass Spectroscopy (GC-MS) analysis revealed the bacterial ability to degrade oil sludge components. Growth experiments with Trigonellafoenumgraecum (Fenugreek) showed the applicability of bioremediated soil for the production.
Optimal conditions for bioremediation of oily seawater.
Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Mohajeri, Leila; Mohajeri, Soraya
2010-12-01
To determine the influence of nutrients on the rate of biodegradation, a five-level, three-factor central composite design (CCD) was employed for bioremediation of seawater artificially contaminated with crude oil. Removal of total petroleum hydrocarbons (TPH) was the dependent variable. Samples were extracted and analyzed according to US-EPA protocols. A significant (R(2)=0.9645, P<0.0001) quadratic polynomial mathematical model was generated. Removal from samples not subjected to optimization and removal by natural attenuation were 53.3% and 22.6%, respectively. Numerical optimization was carried out based on desirability functions for maximum TPH removal. For an initial crude oil concentration of 1g/L supplemented with 190.21 mg/L nitrogen and 12.71 mg/L phosphorus, the Design-Expert software predicted 60.9% hydrocarbon removal; 58.6% removal was observed in a 28-day experiment. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities
Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593
Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.
Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.
Remediation of heavy hydrocarbon impacted soil using biopolymer and polystyrene foam beads.
Wilton, Nicholas; Lyon-Marion, Bonnie A; Kamath, Roopa; McVey, Kevin; Pennell, Kurt D; Robbat, Albert
2018-05-05
A green chemistry solution is presented for the remediation of heavy hydrocarbon impacted soils. The two-phase recovery system relies on a plant-based biopolymer, which releases hydrocarbons from soil, and polystyrene foam beads, which recover them from solids and water. The efficiency of the process was demonstrated by comparisons with control experiments, where water, biopolymer, or beads alone yielded total petroleum hydrocarbon (TPH) reductions of 25%, 52%, and 58%, respectively, compared to 94% when 1.25 mL of 1% biopolymer and 15 mg beads per gram of soil were agitated for 30 min. Reductions in TPH content were substantial regardless of soil fraction, with removals of 97%, 91%, and 75% from sand, silt, and clay size fractions, respectively. Additionally, treatment efficiency was independent of carbon number, C 13 to C 43 , as demonstrated by reductions in both diesel fuel (C 13 -C 28 ) and residual-range organics (C 25 -C 43 ) of ∼90%. Compared to other published polymer- and surfactant-based treatment methods, this system requires less mobilizing agent, sorbent, and mixing time. The remediation process is both efficient and sustainable because the biopolymer is re-useable and sourced from renewable crops and polystyrene beads are obtained from recycled materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Eriksson, Mikael; Ka, Jong-Ok; Mohn, William W.
2001-01-01
Degradation of petroleum hydrocarbons was monitored in microcosms with diesel fuel-contaminated Arctic tundra soil incubated for 48 days at low temperatures (−5, 0, and 7°C). An additional treatment was incubation for alternating 24-h periods at 7 and −5°C. Hydrocarbons were biodegraded at or above 0°C, and freeze-thaw cycles may have actually stimulated hydrocarbon biodegradation. Total petroleum hydrocarbon (TPH) removal over 48 days in the 7, 0, and 7 and −5°C treatments, respectively, was 450, 300, and 600 μg/g of soil. No TPH removal was observed at −5°C. Total carbon dioxide production suggested that TPH removal was due to biological mineralization. Bacterial metabolic activity, indicated by RNA/DNA ratios, was higher in the middle of the experiment (day 21) than at the start, in agreement with measured hydrocarbon removal and carbon dioxide production activities. The total numbers of culturable heterotrophs and of hydrocarbon degraders did not change significantly over the 48 days of incubation in any of the treatments. At the end of the experiment, bacterial community structure, evaluated by ribosomal intergenic spacer length analysis, was very similar in all of the treatments but the alternating 7 and −5°C treatment. PMID:11679333
The effect of soil type on the bioremediation of petroleum contaminated soils.
Haghollahi, Ali; Fazaelipoor, Mohammad Hassan; Schaffie, Mahin
2016-09-15
In this research the bioremediation of four different types of contaminated soils was monitored as a function of time and moisture content. The soils were categorized as sandy soil containing 100% sand (type I), clay soil containing more than 95% clay (type II), coarse grained soil containing 68% gravel and 32% sand (type III), and coarse grained with high clay content containing 40% gravel, 20% sand, and 40% clay (type IV). The initially clean soils were contaminated with gasoil to the concentration of 100 g/kg, and left on the floor for the evaporation of light hydrocarbons. A full factorial experimental design with soil type (four levels), and moisture content (10 and 20%) as the factors was employed. The soils were inoculated with petroleum degrading microorganisms. Soil samples were taken on days 90, 180, and 270, and the residual total petroleum hydrocarbon (TPH) was extracted using soxhlet apparatus. The moisture content of the soils was kept almost constant during the process by intermittent addition of water. The results showed that the efficiency of bioremediation was affected significantly by the soil type (Pvalue < 0.05). The removal percentage was the highest (70%) for the sandy soil with the initial TPH content of 69.62 g/kg, and the lowest for the clay soil (23.5%) with the initial TPH content of 69.70 g/kg. The effect of moisture content on bioremediation was not statistically significant for the investigated levels. The removal percentage in the clay soil was improved to 57% (within a month) in a separate experiment by more frequent mixing of the soil, indicating low availability of oxygen as a reason for low degradation of hydrocarbons in the clay soil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Do your extractable TPH concentrations represent dissolved petroleum? An update on applied research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemo, D.A.
1997-12-31
Elevated concentrations of {open_quotes}dissolved-phase{close_quotes} extractable total petroleum hydrocarbons (TPH) in groundwater samples can be a significant impediment to site closure in states that regulate groundwater using TPH criteria. These analytical results are inconsistent with petroleum chemistry because of the relatively low water solubility of petroleum products. This paper presents an update of our research into the source of medium- to high-boiling TPH detections in groundwater samples and application of the results to multiple projects. This work follows from a 1995 publication in which positive interferences to the Method 8015M (GC-FID) TPH measurement by soluble, non-petroleum hydrocarbons resulting from intrinsic bioremediationmore » or non-dissolved petroleum adhered to particulates was described. The 1995 paper was largely theoretical and focused on one case study. Since 1995, we have evaluated the source of TPH detections in groundwater at numerous petroleum sites and have demonstrated the significance of interferences to the Method 8015M measurement to the California regulatory community. Our work has shown conclusively that elevated concentrations of extractable TPH are not representative of dissolved petroleum constituents. We have shown that a sample cleanup prior to analysis using silica gel cleanup (to remove polar non-petroleum hydrocarbons) and/or laboratory filtration (to reduce petroleum-affected particulates) is required to overcome the false positives caused by interferences to the Method 8015M measurement.« less
Siles, José A; Margesin, Rosa
2018-05-01
The study of microbial communities involved in soil bioremediation is important to identify the specific microbial characteristics that determine improved decontamination rates. Here, we characterized bacterial, archaeal, and fungal communities in terms of (i) abundance (using quantitative PCR) and (ii) taxonomic diversity and structure (using Illumina amplicon sequencing) during the bioremediation of long-term hydrocarbon-contaminated soil from an Alpine former military site during 15 weeks comparing biostimulation (inorganic NPK fertilization) vs. natural attenuation and considering the effect of temperature (10 vs. 20 °C). Although a considerable amount of total petroleum hydrocarbon (TPH) loss could be attributed to natural attenuation, significantly higher TPH removal rates were obtained with NPK fertilization and at increased temperature, which were related to the stimulation of the activities of indigenous soil microorganisms. Changing structures of bacterial and fungal communities significantly explained shifts in TPH contents in both natural attenuation and biostimulation treatments at 10 and 20 °C. However, archaeal communities, in general, and changing abundances and diversities in bacterial and fungal communities did not play a decisive role on the effectiveness of soil bioremediation. Gammaproteobacteria and Bacteroidia classes, within bacterial community, and undescribed/novel groups, within fungal community, proved to be actively involved in TPH removal in natural attenuation and biostimulation at both temperatures.
Jalilian Ahmadkalaei, Seyedeh Pegah; Gan, Suyin; Ng, Hoon Kiat; Abdul Talib, Suhaimi
2016-11-01
Treatment of oil-contaminated soil is a major environmental concern worldwide. The aim of this study is to examine the applicability of a green solvent, ethyl lactate (EL), in desorption of diesel aliphatic fraction within total petroleum hydrocarbons (TPH) in contaminated soil and to determine the associated desorption kinetics. Batch desorption experiments were carried out on artificially contaminated soil at different EL solvent percentages (%). In analysing the diesel range of TPH, TPH was divided into three fractions and the effect of solvent extraction on each fraction was examined. The experimental results demonstrated that EL has a high and fast desorbing power. Pseudo-second order rate equation described the experimental desorption kinetics data well with correlation coefficient values, R 2 , between 0.9219 and 0.9999. The effects of EL percentage, initial contamination level of soil and liquid to solid ratio (L/S (v/w)) on initial desorption rate have also been evaluated. The effective desorption performance of ethyl lactate shows its potential as a removal agent for remediation of TPH-contaminated soil worldwide.
Gomes, Arlindo C; Silva, Lúcia; Albuquerque, António; Simões, Rogério; Stefanakis, Alexandros I
2018-09-01
The feasibility and treatment efficiency of horizontal subsurface flow constructed wetlands (HSFCW) was assessed for the first time for cork boiling wastewater (CBW) through laboratory experiments. CBW is known for its high content of phenolic compounds, complex composition of biorecalcitrant and toxic nature. Two lab-scale units, one planted with Phragmites australis (CWP) and one unplanted (CWC), were used to evaluate the removals of COD, BOD, total phenolic compounds (TPh) and decolourization over a 2.5-years monitoring period under Mediterranean climatic conditions. Seven organic and hydraulic loading rates ranging from 2.6 to 11.5 g COD/m 2 /d and 5.7-9.1 L/m 2 /d were tested under average hydraulic retention time (HRT) of 5 ± 1 days required due to the CWB limited biodegradability (i.e., BOD 5 /COD of 0.19). Average removals of the CWP exceeded those of the CWC and reached 74.6%, 91.7% and 69.1% for COD, BOD 5 and TPh, respectively, with respective mass removals rates up to 7.0, 1.7 and 0.5 (in g/m 2 /d). Decolourization was limited to 35%, since it mainly depends on physical processes rather than biodegradation. CBW concentration of nine phenolic compounds ranged from 1.2 to 38.4 mg/L (for the syringic and ellagic acids, respectively) in the raw CBW, with respective removals in the CWP unit ranging from 41.8 to 76.3%, higher than those in the control unit. Despite CBW high concentration of TPhs (average of 116.3 mg/L), the HSFCW reached organic load removals higher than those of conventional biological treatment methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Patowary, Kaustuvmani; Patowary, Rupshikha; Kalita, Mohan C.; Deka, Suresh
2016-01-01
The intrinsic biodegradability of hydrocarbons and the distribution of proficient degrading microorganisms in the environment are very crucial for the implementation of bioremediation practices. Among others, one of the most favorable methods that can enhance the effectiveness of bioremediation of hydrocarbon-contaminated environment is the application of biosurfactant producing microbes. In the present study, the biodegradation capacities of native bacterial consortia toward total petroleum hydrocarbons (TPH) with special emphasis to poly aromatic hydrocarbons were determined. The purpose of the study was to isolate TPH degrading bacterial strains from various petroleum contaminated soil of Assam, India and develop a robust bacterial consortium for bioremediation of crude oil of this native land. From a total of 23 bacterial isolates obtained from three different hydrocarbons contaminated samples five isolates, namely KS2, PG1, PG5, R1, and R2 were selected as efficient crude oil degraders with respect to their growth on crude oil enriched samples. Isolates KS2, PG1, and R2 are biosurfactant producers and PG5, R1 are non-producers. Fourteen different consortia were designed involving both biosurfactant producing and non-producing isolates. Consortium 10, which comprises two Bacillus strains namely, Bacillus pumilus KS2 and B. cereus R2 (identified by 16s rRNA sequencing) has shown the best result in the desired degradation of crude oil. The consortium showed degradation up to 84.15% of TPH after 5 weeks of incubation, as revealed from gravimetric analysis. FTIR (Fourier transform infrared) and GCMS (Gas chromatography-mass spectrometer) analyses were correlated with gravimetric data which reveals that the consortium has removed a wide range of petroleum hydrocarbons in comparison with abiotic control including different aliphatic and aromatic hydrocarbons. PMID:27471499
A field trial for an ex-situ bioremediation of a drilling mud-polluted site.
Rojas-Avelizapa, N G; Roldán-Carrillo, T; Zegarra-Martínez, H; Muñoz-Colunga, A M; Fernández-Linares, L C
2007-01-01
The remediation of drilling mud-polluted sites in the Southeast of Mexico is a top priority for Mexican oil industry. The objective of this work was to find a technology to remediate these sites. A field trial was performed by composting in biopiles, where four 1ton soil-biopiles were established, one treatment in triplicate and one unamended biopile. Amended biopiles were added with nutrients to get a C/N/P ratio of 100/3/0.5 plus a bulking agent (straw) at a soil/straw ratio of 97/3. Moisture content was maintained around 30-35%. Results showed that, after 180 d, total petroleum hydrocarbon (TPH) concentrations decreased from 99300+/-23000mgTPHkg(-1) soil to 5500+/-770mgTPHkg(-1) for amended biopiles and to 22900+/-7800mgTPHkg(-1) for unamended biopile. An undisturbed soil control showed no change in TPH concentrations. Gas chromatographic analysis showed residual alkyl dibenzothiophene type compounds. Highest bacterial counts were observed during the first 30 d which correlated with highest TPH removal, whereas fungal count increased at the end of the experimentation period. Results suggested an important role of the straw, nutrient addition and water content in stimulating aerobic microbial activity and thus hydrocarbon removal. This finding opens an opportunity to remediate old polluted sites with recalcitrant and high TPH concentration.
Wu, Manli; Li, Wei; Dick, Warren A; Ye, Xiqiong; Chen, Kaili; Kost, David; Chen, Liming
2017-02-01
Bioremediation of hydrocarbon degradation in petroleum-polluted soil is carried out by various microorganisms. However, little information is available for the relationships between hydrocarbon degradation rates in petroleum-contaminated soil and microbial population and activity in laboratory assay. In a microcosm study, degradation rate and efficiency of total petroleum hydrocarbons (TPH), alkanes, and polycyclic aromatic hydrocarbons (PAH) in a petroleum-contaminated soil were determined using an infrared photometer oil content analyzer and a gas chromatography mass spectrometry (GC-MS). Also, the populations of TPH, alkane, and PAH degraders were enumerated by a modified most probable number (MPN) procedure, and the hydrocarbon degrading activities of these degraders were determined by the Biolog (MT2) MicroPlates assay. Results showed linear correlations between the TPH and alkane degradation rates and the population and activity increases of TPH and alkane degraders, but no correlation was observed between the PAH degradation rates and the PAH population and activity increases. Petroleum hydrocarbon degrading microbial population measured by MPN was significantly correlated with metabolic activity in the Biolog assay. The results suggest that the MPN procedure and the Biolog assay are efficient methods for assessing the rates of TPH and alkane, but not PAH, bioremediation in oil-contaminated soil in laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.
TPH detection in groundwater: Identification and elimination of positive interferences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemo, D.A.; Synowiec, K.A.
1996-01-01
Groundwater assessment programs frequently require total petroleum hydrocarbon (TPH) analyses (Methods 8015M and 418.1). TPH analyses are often unreliable indicators of water quality because these methods are not constituent-specific and are vulnerable to significant sources of positive interferences. These positive interferences include: (a) non-dissolved petroleum constituents; (b) soluble, non-petroleum hydrocarbons (e.g., biodegradation products); and (c) turbidity, commonly introduced into water samples during sample collection. In this paper, we show that the portion of a TPH concentration not directly the result of water-soluble petroleum constituents can be attributed solely to these positive interferences. To demonstrate the impact of these interferences, wemore » conducted a field experiment at a site affected by degraded crude oil. Although TPH was consistently detected in groundwater samples, BTEX was not detected. PNAs were not detected, except for very low concentrations of fluorene (<5 ug/1). Filtering and silica gel cleanup steps were added to sampling and analyses to remove particulates and biogenic by-products. Results showed that filtering lowered the Method 8015M concentrations and reduced the Method 418.1 concentrations to non-detectable. Silica gel cleanup reduced the Method 8015M concentrations to non-detectable. We conclude from this study that the TPH results from groundwater samples are artifacts of positive interferences caused by both particulates and biogenic materials and do not represent dissolved-phase petroleum constituents.« less
TPH detection in groundwater: Identification and elimination of positive interferences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemo, D.A.; Synowiec, K.A.
1996-12-31
Groundwater assessment programs frequently require total petroleum hydrocarbon (TPH) analyses (Methods 8015M and 418.1). TPH analyses are often unreliable indicators of water quality because these methods are not constituent-specific and are vulnerable to significant sources of positive interferences. These positive interferences include: (a) non-dissolved petroleum constituents; (b) soluble, non-petroleum hydrocarbons (e.g., biodegradation products); and (c) turbidity, commonly introduced into water samples during sample collection. In this paper, we show that the portion of a TPH concentration not directly the result of water-soluble petroleum constituents can be attributed solely to these positive interferences. To demonstrate the impact of these interferences, wemore » conducted a field experiment at a site affected by degraded crude oil. Although TPH was consistently detected in groundwater samples, BTEX was not detected. PNAs were not detected, except for very low concentrations of fluorene (<5 ug/1). Filtering and silica gel cleanup steps were added to sampling and analyses to remove particulates and biogenic by-products. Results showed that filtering lowered the Method 8015M concentrations and reduced the Method 418.1 concentrations to non-detectable. Silica gel cleanup reduced the Method 8015M concentrations to non-detectable. We conclude from this study that the TPH results from groundwater samples are artifacts of positive interferences caused by both particulates and biogenic materials and do not represent dissolved-phase petroleum constituents.« less
Migliarini, Sara; Pacini, Giulia; Pasqualetti, Massimo
2015-01-01
Serotonin has been gaining increasing attention during the last two decades due to the dual function of this monoamine as key regulator during critical developmental events and as neurotransmitter. Importantly, unbalanced serotonergic levels during critical temporal phases might contribute to the onset of neuropsychiatric disorders, such as schizophrenia and autism. Despite increasing evidences from both animal models and human genetic studies have underpinned the importance of serotonin homeostasis maintenance during central nervous system development and adulthood, the precise role of this molecule in time-specific activities is only beginning to be elucidated. Serotonin synthesis is a 2-step process, the first step of which is mediated by the rate-limiting activity of Tph enzymes, belonging to the family of aromatic amino acid hydroxylases and existing in two isoforms, Tph1 and Tph2, responsible for the production of peripheral and brain serotonin, respectively. In the present study, we generated and validated a conditional knockout mouse line, Tph2 flox/flox, in which brain serotonin can be effectively ablated with time specificity. We demonstrated that the Cre-mediated excision of the third exon of Tph2 gene results in the production of a Tph2 null allele in which we observed the near-complete loss of brain serotonin, as well as the growth defects and perinatal lethality observed in serotonin conventional knockouts. We also revealed that in mice harbouring the Tph2 null allele, but not in wild-types, two distinct Tph2 mRNA isoforms are present, namely Tph2Δ3 and Tph2Δ3Δ4, with the latter showing an in-frame deletion of amino acids 84–178 and coding a protein that could potentially retain non-negligible enzymatic activity. As we could not detect Tph1 expression in the raphe, we made the hypothesis that the Tph2Δ3Δ4 isoform can be at the origin of the residual, sub-threshold amount of serotonin detected in the brain of Tph2 null/null mice. Finally, we set up a tamoxifen administration protocol that allows an efficient, time-specific inactivation of brain serotonin synthesis. On the whole, we generated a suitable genetic tool to investigate how serotonin depletion impacts on time-specific events during central nervous system development and adulthood life. PMID:26291320
Ioannou-Ttofa, L; Michael-Kordatou, I; Fattas, S C; Eusebio, A; Ribeiro, B; Rusan, M; Amer, A R B; Zuraiqi, S; Waismand, M; Linder, C; Wiesman, Z; Gilron, J; Fatta-Kassinos, D
2017-05-01
Olive mill wastewater (OMW) is a major waste stream resulting from numerous operations that occur during the production stages of olive oil. The resulting effluent contains various organic and inorganic contaminants and its environmental impact can be notable. The present work aims at investigating the efficiency of (i) jet-loop reactor with ultrafiltration (UF) membrane system (Jacto.MBR), (ii) solar photo-Fenton oxidation after coagulation/flocculation pre-treatment and (iii) integrated membrane filtration processes (i.e. UF/nanofiltration (NF)) used for the treatment of OMW. According to the results, the efficiency of the biological treatment was high, equal to 90% COD and 80% total phenolic compounds (TPh) removal. A COD removal higher than 94% was achieved by applying the solar photo-Fenton oxidation process as post-treatment of coagulation/flocculation of OMW, while the phenolic fraction was completely eliminated. The combined UF/NF process resulted in very high conductivity and COD removal, up to 90% and 95%, respectively, while TPh were concentrated in the NF concentrate stream (i.e. 93% concentration). Quite important is the fact that the NF concentrate, a valuable and polyphenol rich stream, can be further valorized in various industries (e.g. food, pharmaceutical, etc.). The above treatment processes were found also to be able to reduce the initial OMW phytotoxicity at greenhouse experiments; with the effluent stream of solar photo-Fenton process to be the least phytotoxic compared to the other treated effluents. A SWOT (Strength, Weakness, Opportunities, Threats) analysis was performed, in order to determine both the strengths of each technology, as well as the possible obstacles that need to overcome for achieving the desired levels of treatment. Finally, an economic evaluation of the tested technologies was performed in an effort to measure the applicability and viability of these systems at real scale; highlighting that the cost cannot be regarded as a 'cut off criterion', since the most cost-effective option in not always the optimum one. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shekoohiyan, Sakine; Moussavi, Gholamreza; Naddafi, Kazem
2016-08-05
A bacterial peroxidase-mediated oxidizing process was developed for biodegrading total petroleum hydrocarbons (TPH) in a sequencing batch reactor (SBR). Almost complete biodegradation (>99%) of high TPH concentrations (4g/L) was attained in the bioreactor with a low amount (0.6mM) of H2O2 at a reaction time of 22h. A specific TPH biodegradation rate as high as 44.3mgTPH/gbiomass×h was obtained with this process. The reaction times required for complete biodegradation of TPH concentrations of 1, 2, 3, and 4g/L were 21, 22, 28, and 30h, respectively. The catalytic activity of hydrocarbon catalyzing peroxidase was determined to be 1.48U/mL biomass. The biodegradation of TPH in seawater was similar to that in fresh media (no salt). A mixture of bacteria capable of peroxidase synthesis and hydrocarbon biodegradation including Pseudomonas spp. and Bacillus spp. were identified in the bioreactor. The GC/MS analysis of the effluent indicated that all classes of hydrocarbons could be well-degraded in the H2O2-induced SBR. Accordingly, the peroxidase-mediated process is a promising method for efficiently biodegrading concentrated TPH-laden saline wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.
Lab-scale investigation on remediation of diesel-contaminated aquifer using microwave energy.
Falciglia, Pietro P; Maddalena, Riccardo; Mancuso, Giuseppe; Messina, Valeria; Vagliasindi, Federico G A
2016-02-01
Aquifer contamination with diesel fuel is a worldwide environmental problem, and related available remediation technologies may not be adequately efficient, especially for the simultaneous treatment of both solid and water phases. In this paper, a lab-scale 2.45 GHz microwave (MW) treatment of an artificially diesel-contaminated aquifer was applied to investigate the effects of operating power (160, 350 and 500 W) and time on temperature profiles and contaminant removal from both solid and water phases. Results suggest that in diesel-contaminated aquifer MW remediation, power significantly influences the final reachable temperature and, consequently, contaminant removal kinetics. A maximum temperature of about 120 °C was reached at 500 W. Observed temperature values depended on the simultaneous irradiation of both aquifer grains and groundwater. In this case, solid phase heating is limited by the maximum temperature that interstitial water can reach before evaporation. A minimal residual diesel concentration of about 100 mg kg(-1) or 100 mg L(-1) was achieved by applying a power of 500 W for a time of 60 min for the solid or water phase, respectively. Measured residual TPH fractions showed that MW heating resulted in preferential effects of the removal of different TPH molecular weight fractions and that the evaporation-stripping phenomena plays a major role in final contaminant removal processes. The power low kinetic equation shows an excellent fit (r(2) > 0.993) with the solid phase residual concentration observed for all the powers investigated. A maximum diesel removal of 88 or 80% was observed for the MW treatment of the solid or water phase, respectively, highlighting the possibility to successfully and simultaneously remediate both the aquifer phases. Consequently, MW, compared to other biological or chemical-physical treatments, appears to be a better choice for the fast remediation of diesel-contaminated aquifers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Park, In-Sun; Park, Jae-Woo
2011-01-30
Total petroleum hydrocarbon (TPH) is an important environmental contaminant that is toxic to human and environmental receptors. However, human health risk assessment for petroleum, oil, and lubricant (POL)-contaminated sites is especially challenging because TPH is not a single compound, but rather a mixture of numerous substances. To address this concern, this study recommends a new human health risk assessment strategy for POL-contaminated sites. The strategy is based on a newly modified TPH fractionation method and includes an improved analytical protocol. The proposed TPH fractionation method is composed of ten fractions (e.g., aliphatic and aromatic EC8-10, EC10-12, EC12-16, EC16-22 and EC22-40). Physicochemical properties and toxicity values of each fraction were newly defined in this study. The stepwise ultrasonication-based analytical process was established to measure TPH fractions. Analytical results were compared with those from the TPH Criteria Working Group (TPHCWG) Direct Method. Better analytical efficiencies in TPH, aliphatic, and aromatic fractions were achieved when contaminated soil samples were analyzed with the new analytical protocol. Finally, a human health risk assessment was performed based on the developed tiered risk assessment framework. Results showed that a detailed quantitative risk assessment should be conducted to determine scientifically and economically appropriate cleanup target levels, although the phase II process is useful for determining the potency of human health risks posed by POL-contamination. Copyright © 2010 Elsevier B.V. All rights reserved.
Markett, Sebastian; de Reus, Marcel A; Reuter, Martin; Montag, Christian; Weber, Bernd; Schoene-Bake, Jan-Christoph; van den Heuvel, Martijn P
2017-03-01
The rich club comprises a densely mutually connected set of hub regions in the brain, thought to serve as a processing and integration core. We assessed the impact of normal variation of the tryptophane hydroxylase 2 gene's promotor region (TPH2 rs4570625) on structural connectivity of the rich club pathways by means of a candidate gene association design. Tryptophane hydroxylase 2 (TPH2) is a rate-limiting enzyme in the biosynthesis of serotonin and is known to inhibit, in addition to its role as a trans-synaptic messenger, axonal and dendritic growth. The TPH2 T-variant has been associated with reduced mRNA expression and reduced serotonin levels, which may particularly influence the development of macroscale anatomical connectivity. Here, we show larger mean connectivity in the rich club in carriers of the T-variant, suggesting potential effects of upregulation of neural connectivity growth in this central core system. In addition, by edge-removal statistics, we show that the TPH2-associated higher levels of rich club connectivity are of importance for the functioning of the total structural network. The observed association is speculated to result from an effect of serotonin levels on brain development, potentially leading to stronger structural connectivity in heavily interconnected hubs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jiao, Haihua; Luo, Jinxue; Zhang, Yiming; Xu, Shengjun; Bai, Zhihui; Huang, Zhanbin
2015-09-01
Bio-augmentation is a promising technique for remediation of polluted soils. This study aimed to evaluate the bio-augmentation effect of Rhodobacter sphaeroides biofertilizer (RBF) on the bioremediation of total petroleum hydrocarbons (TPH) contaminated soil. A greenhouse pot experiment was conducted over a period of 120 days, three methods for enhancing bio-augmentation were tested on TPH contaminated soils, including single addition RBF, planting, and combining of RBF and three crop species, such as wheat (W), cabbage (C) and spinach (S), respectively. The results demonstrated that the best removal of TPH from contaminated soil in the RBF bio-augmentation rhizosphere soils was found to be 46.2%, 65.4%, 67.5% for W+RBF, C+RBF, S+RBF rhizosphere soils respectively. RBF supply impacted on the microbial community diversity (phospholipid fatty acids, PLFA) and the activity of soil enzymes, such as dehydrogenase (DH), alkaline phosphatase (AP) and urease (UR). There were significant difference among the soil only containing crude oil (CK), W, C and S rhizosphere soils and RBF bio-augmentation soils. Moreover, the changes were significantly distinct depended on crops species. It was concluded that the RBF is a valuable material for improving effect of remediation of TPH polluted soils.
Fate of hydrocarbon pollutants in source and non-source control sustainable drainage systems.
Roinas, Georgios; Mant, Cath; Williams, John B
2014-01-01
Sustainable drainage (SuDs) is an established method for managing runoff from developments, and source control is part of accepted design philosophy. However, there are limited studies into the contribution source control makes to pollutant removal, especially for roads. This study examines organic pollutants, total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs), in paired source and non-source control full-scale SuDs systems. Sites were selected to cover local roads, trunk roads and housing developments, with a range of SuDs, including porous asphalt, swales, detention basins and ponds. Soil and water samples were taken bi-monthly over 12 months to assess pollutant loads. Results show first flush patterns in storm events for solids, but not for TPH. The patterns of removal for specific PAHs were also different, reflecting varying physico-chemical properties. The potential of trunk roads for pollution was illustrated by peak runoff for TPH of > 17,000 μg/l. Overall there was no significant difference between pollutant loads from source and non-source control systems, but the dynamic nature of runoff means that longer-term data are required. The outcomes of this project will increase understanding of organic pollutants behaviour in SuDs. This will provide design guidance about the most appropriate systems for treating these pollutants.
Ex situ bioremediation of oil-contaminated soil.
Lin, Ta-Chen; Pan, Po-Tsen; Cheng, Sheng-Shung
2010-04-15
An innovative bioprocess method, Systematic Environmental Molecular Bioremediation Technology (SEMBT) that combines bioaugmentation and biostimulation with a molecular monitoring microarray biochip, was developed as an integrated bioremediation technology to treat S- and T-series biopiles by using the landfarming operation and reseeding process to enhance the bioremediation efficiency. After 28 days of the bioremediation process, diesel oil (TPH(C10-C28)) and fuel oil (TPH(C10-C40)) were degraded up to approximately 70% and 63% respectively in the S-series biopiles. When the bioaugmentation and biostimulation were applied in the beginning of bioremediation, the microbial concentration increased from approximately 10(5) to 10(6) CFU/g dry soil along with the TPH biodegradation. Analysis of microbial diversity in the contaminated soils by microarray biochips revealed that Acinetobacter sp. and Pseudomonas aeruginosa were the predominant groups in indigenous consortia, while the augmented consortia were Gordonia alkanivorans and Rhodococcus erythropolis in both series of biopiles during bioremediation. Microbial respiration as influenced by the microbial activity reflected directly the active microbial population and indirectly the biodegradation of TPH. Field experimental results showed that the residual TPH concentration in the complex biopile was reduced to less than 500 mg TPH/kg dry soil. The above results demonstrated that the SEMBT technology is a feasible alternative to bioremediate the oil-contaminated soil. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.
Yang, Fu-zhong; Wu, Yan; Zhang, Wei-guo; Cai, Yi-yun; Shi, Shen-xun
2010-07-20
To investigate the effect of estradiol (E2) on tryptophan hydroxylase (TPH) and 5-hydroxytryptamine (5-HT) content in raphe nuclei of rats under forced swimming stress and explore the role of estrogen and stress in disease mechanism of depression in women. At Week 3 post-ovariectomy, 35 ovariectomized (OVX) female SD rats were randomly divided into 5 groups (n = 7): non-stress group, control group, estradiol (E2) group and fluoxetine (FLX) group and E2 plus FLX group. Animals were administered with different drugs for 2 weeks. At Day 14, animals except those in the non-stress group were subjected to the 15 min forced swimming test (FST). At 2 hours post-FST, all animals including those in the non-stress group were perfused with 4% paraformaldehyde and brains removed for TPH and 5-HT immunofluorescence staining. We compared the content of TPH and 5-HT by observing and calculating the integrated optical density (IOD) of immunofluorescent-positive signals in raphe nuclei. (1) The IOD value of TPH- and 5-HT-positive region in raphe nuclei of rats in the control group was significantly lower than that of the non-stress group (P < 0.01); (2) the IOD value of TPH- and 5-HT-positive region in raphe nuclei of rats in the E2, FLX and E2 plus FLX groups was significantly higher than that in the control group (P < 0.05). Forced swimming stress can decrease the TPH and 5-HT content in raphe nuclei. Such changes can be prevented by a pre-administration of estradiol. Similar results are observed with antidepressant fluoxetine. These effects may underlie the role of estradiol and stress in the disease mechanism of depression in women.
Moreira, Icaro T A; Oliveira, Olivia M C; Triguis, Jorge A; Queiroz, Antonio F S; Ferreira, Sergio L C; Martins, Cintia M S; Silva, Ana C M; Falcão, Brunno A
2013-02-15
This study evaluated the efficiency of Avicennia schaueriana in the implementation of phytoremediation compared with intrinsic bioremediation in mangrove sediments contaminated by total petroleum hydrocarbons (TPHs). The experiment was conducted for 3months at a pilot scale under conditions similar to a mangrove: the dynamics of the tides were simulated, and physical, chemical, microbiological and biogeochemical parameters were monitored. After the 90 days, it was found that the phytoremediation was more efficient in the degradation of the TPHs compared to bioremediation, reducing the initial concentration of 32.2-4.2 mg/g. A. schaueriana was also more efficient in mediating the degradation of different fractions of hydrocarbons, achieving a removal efficiency of 87%. The microbiological results consisted of a higher growth in the model with the plants, demonstrating the phytostimulation ability of the plants. Finally, the experiment showed that phytoremediation is a promising alternative in mangrove impacted by oil. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chandrasekhar, K; Venkata Mohan, S
2012-04-01
Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency. Copyright © 2012 Elsevier Ltd. All rights reserved.
Slurry-phase biodegradation of weathered oily sludge waste.
Machín-Ramírez, C; Okoh, A I; Morales, D; Mayolo-Deloisa, K; Quintero, R; Trejo-Hernández, M R
2008-01-01
We assessed the biodegradation of a typical oily sludge waste (PB401) in Mexico using several regimes of indigenous microbial consortium and relevant bioremediation strategies in slurry-phase system. Abiotic loss of total petroleum hydrocarbons (TPH) in the PB401 was insignificant, and degradation rates under the various treatment conditions ranged between 666.9 and 2168.7 mg kg(-1) day(-1) over a 15 days reaction period, while viable cell count peaked at between log(10)5.7 and log(10)7.4 cfu g(-1). Biostimulation with a commercial fertilizer resulted in 24% biodegradation of the TPH in the oily waste and a corresponding peak cell density of log(10)7.4 cfu g(-1). Addition of non-indigenous adapted consortium did not appear to enhance the removal of TPH from the oily waste. It would appear that the complexities of the components of the alkylaromatic fraction of the waste limited biodegradation rate even in a slurry system.
SURFACTANT FLUSH: HOW WELL DID IT WORK?
The Oklahoma Corporation Commission through a contract with Surbec-Art, Inc. of Norman Oklahoma has remediated TPH contamination at a gasoline spill at Golden, Oklahoma. Residual gasoline was removed from the subsurface using a flush of surfactant, followed by in situ bioremedia...
Gurska, Jolanta; Wang, Wenxi; Gerhardt, Karen E; Khalid, Aaron M; Isherwood, David M; Huang, Xiao-Dong; Glick, Bernard R; Greenberg, Bruce M
2009-06-15
Phytoremediation of total petroleum hydrocarbons (TPH) has the potential to be a sustainable waste management technology if it can be proven to be effective in the field. Over the past decade, our laboratory has developed a system which utilizes plant growth promoting rhizobacteria (PGPR) enhanced phytoremediation (PEP) that, following extensive greenhouse testing, was shown to be effective at remediating TPH from soils. This system consists of physical soil manipulation and plant growth following seed inoculation with PGPR. PGPR elicit biomass increases, particularly in roots, by minimizing plant stress in highly contaminated soils. Extensive development of the root system enhances degradation of contaminants by the plants and supports an active rhizosphere that effectively promotes TPH degradation by a broad microbial consortium. Following promising greenhouse trials, field tests of PEP were performed over a period of three years at a Southern Ontario site (approximately 130 g kg(-1) TPH) used for land farming of refinery hydrocarbon waste for many years. The low molecular weight fractions (the Canadian Council of Ministers of the Environment (CCME) fractions 1 and 2) were removed through land farming and bioremediation; the high molecular weight, recalcitrant fractions (CCME fractions 3 and 4) remained at high levels in the soil. Using PEP, we substantially remediated fractions 3 and 4, and lowered TPH from 130 g kg(-1) to approximately 50 g kg(-1) over a three year period. The amount of plant growth and extent of oil remediation were consistently enhanced by PGPR.
Płociniczak, Tomasz; Fic, Ewa; Pacwa-Płociniczak, Magdalena; Pawlik, Małgorzata; Piotrowska-Seget, Zofia
2017-07-03
The aim of this study was to assess the impact of soil inoculation with the Rhodococcus erythropolis CD 106 strain on the effectiveness of the phytoremediation of an aged hydrocarbon-contaminated [approx. 1% total petroleum hydrocarbon (TPH)] soil using ryegrass (Lolium perenne). The introduction of CD 106 into the soil significantly increased the biomass of ryegrass and the removal of hydrocarbons in planted soil. The fresh weight of the shoots and roots of plants inoculated with CD 106 increased by 49% and 30%, respectively. After 210 days of the experiment, the concentration of TPH was reduced by 31.2%, whereas in the planted, non-inoculated soil, it was reduced by 16.8%. By contrast, the concentration of petroleum hydrocarbon decreased by 18.7% in non-planted soil bioaugmented with the CD 106 strain. The rifampicin-resistant CD 106 strain survived after inoculation into soil and was detected in the soil during the entire experimental period, but the number of CD 106 cells decreased constantly during the enhanced phytoremediation and bioaugmentation experiments. The plant growth-promoting and hydrocarbon-degrading properties of CD 106, which are connected with its long-term survival and limited impact on autochthonous microflora, make this strain a good candidate for improving the phytoremediation efficiency of soil contaminated with hydrocarbons.
Brown, David M; Okoro, Samson; van Gils, Juami; van Spanning, Rob; Bonte, Matthijs; Hutchings, Tony; Linden, Olof; Egbuche, Uzoamaka; Bruun, Kim Bye; Smith, Jonathan W N
2017-10-15
Large scale landfarming experiments, using an extensive range of treatments, were conducted in the Niger-Delta, Nigeria to study the degradation of oil in contaminated soils. In this work the effect of nutrient addition, biosurfactant, Eisenia fetida (earthworm) enzyme extract, bulking and sorption agents and soil neutralization were tested. It was found that these treatments were successful in removing up to 53% of the total petroleum hydrocarbon in the soil within 16 weeks. A comparison between treatments demonstrated that most were no more effective than agricultural fertilizer addition alone. One strategy that did show better performance was a combination of nutrients, biochar and biosurfactant, which was found to remove 23% more Total Petroleum Hydrocarbons (TPH) than fertilizer alone. However, when performance normalized costs were considered, this treatment became less attractive as a remedial option. Based on this same analysis it was concluded that fertilizer only was the most cost effective treatment. As a consequence, it is recommended that fertilizer is used to enhance the landfarming of hydrocarbon contaminated soils in the Niger Delta. The attenuation rates of both bulk TPH and Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) fractions are also provided. These values represent one of the first large scale and scientifically tested datasets for treatment of contaminated soil in the Niger Delta region. An inverse correlation between attenuation rates and hydrocarbon molecular weight was observed with heavy fractions showing much slower degradation rates than lighter fractions. Despite this difference, the bioremediation process resulted in significant removal of all TPH compounds independent of carbon number. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara
2009-11-01
The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds
Biodegradation of effluent contaminated with diesel fuel and gasoline.
Vieira, P A; Vieira, R B; de França, F P; Cardoso, V L
2007-02-09
We studied the effects of fuel concentration (diesel and gasoline), nitrogen concentration and culture type on the biodegradation of synthetic effluent similar to what was found at inland fuel distribution terminals. An experimental design with two levels and three variables (2(3)) was used. The mixed cultures used in this study were obtained from lake with a history of petroleum contamination and were named culture C(1) (collected from surface sediment) and C(2) (collected from a depth of approximately 30cm). Of the parameters studied, the ones that had the greatest influence on the removal of total petroleum hydrocarbons (TPH) were a nitrogen concentration of 550mg/L and a fuel concentration of 4% (v/v) in the presence of culture C(1). The biodegradability study showed a TPH removal of 90+/-2% over a process period of 49 days. Analysis using gas chromatography identified 16 hydrocarbons. The aromatic compounds did not degrade as readily as the other hydrocarbons that were identified.
Sutton, Nora B; van Gaans, Pauline; Langenhoff, Alette A M; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M
2013-07-01
While bioremediation of total petroleum hydrocarbons (TPH) is in general a robust technique, heterogeneity in terms of contaminant and environmental characteristics can impact the extent of biodegradation. The current study investigates the implications of different soil matrix types (anthropogenic fill layer, peat, clay, and sand) and bioavailability on bioremediation of an aged diesel contamination from a heterogeneous site. In addition to an uncontaminated sample for each soil type, samples representing two levels of contamination (high and low) were also used; initial TPH concentrations varied between 1.6 and 26.6 g TPH/kg and bioavailability between 36 and 100 %. While significant biodegradation occurred during 100 days of incubation under biostimulating conditions (64.4-100 % remediation efficiency), low bioavailability restricted full biodegradation, yielding a residual TPH concentration. Respiration levels, as well as the abundance of alkB, encoding mono-oxygenases pivotal for hydrocarbon metabolism, were positively correlated with TPH degradation, demonstrating their usefulness as a proxy for hydrocarbon biodegradation. However, absolute respiration and alkB presence were dependent on soil matrix type, indicating the sensitivity of results to initial environmental conditions. Through investigating biodegradation potential across a heterogeneous site, this research illuminates the interplay between soil matrix type, bioavailability, and bioremediation and the implications of these parameters for the effectiveness of an in situ treatment.
Bajagain, Rishikesh; Park, Yoonsu; Jeong, Seung-Woo
2018-06-01
This study evaluated surface foam spraying technology, which avoids disturbing the soil, to deliver chemical oxidant and oil-degrading microbes to unsaturated soil for 30 days. Hydrogen peroxide foam was sprayed once onto diesel contaminated soil for oxidation of soil total petroleum hydrocarbon (TPH). Periodic bioaugmentation foam was sprayed every three days for biodegradation of soil TPH. Foam spraying employing oxidation-bioaugmentation serial application significantly reduced soil TPH concentrations to 550 mg·kg -1 from an initial 7470 mg·kg -1 . This study selected an optimal hydrogen peroxide concentration of 5%, which is capable of treating diesel oil contaminated soil following biodegradation without supplementary iron. Application of hydrogen peroxide by foam spraying increased the infiltration of hydrogen peroxide into the unsaturated soil. Surface foam spraying provided the aqueous phase of remediation agents evenly to the unsaturated soil and resulted in relatively similar soil water content throughout the soil. The easy and even infiltration of remediation reagents increased their contact with contaminants, resulting in enhanced oxidation and biodegradation. Fractional analysis of TPH showed C18-C22 present in diesel as biodegradation recalcitrant hydrocarbons. Recalcitrant hydrocarbons were reduced by 92% using oxidation-biodegradation serial foam, while biodegradation alone only reduced the recalcitrant fraction by 25%. Copyright © 2018 Elsevier B.V. All rights reserved.
Sakowski, Stacey A; Geddes, Timothy J; Thomas, David M; Levi, Edi; Hatfield, James S; Kuhn, Donald M
2006-04-26
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme in the synthesis of the neurotransmitter serotonin. Once thought to be a single-gene product, TPH is now known to exist in two isoforms-TPH1 is found in the pineal and gut, and TPH2 is selectively expressed in brain. Heretofore, probes used for localization of TPH protein or mRNA could not distinguish between the TPH isoforms because of extensive homology shared by them at the nucleotide and amino acid level. We have produced monospecific polyclonal antibodies against TPH1 and TPH2 using peptide antigens from nonoverlapping sequences in the respective proteins. These antibodies allow the differentiation of TPH1 and TPH2 upon immunoblotting, immunoprecipitation, and immunocytochemical staining of tissue sections from brain and gut. TPH1 and TPH2 antibodies do not cross-react with either tyrosine hydroxylase or phenylalanine hydroxylase. Analysis of mouse tissues confirms that TPH1 is the predominant form expressed in pineal gland and in P815 mastocytoma cells with a molecular weight of 51 kDa. TPH2 is the predominant enzyme form expressed in brain extracts from mesencephalic tegmentum, striatum, and hippocampus with a molecular weight of 56 kDa. Antibody specificity against TPH1 and TPH2 is retained across mouse, rat, rabbit, primate, and human tissues. Antibodies that distinguish between the isoforms of TPH will allow studies of the differential regulation of their expression in brain and periphery.
Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M
2015-10-01
With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant.
Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions.
McIntosh, Patrick; Schulthess, Cristian P; Kuzovkina, Yulia A; Guillard, Karl
2017-08-03
Remediation of contaminated soils is often studied using fine-textured soils rather than low-fertility sandy soils, and few studies focus on recontamination events. This study compared aerobic and anaerobic treatments for remediation of freshly introduced used motor oil on a sandy soil previously phytoremediated and bioacclimated (microorganisms already adapted in the soil environment) with some residual total petroleum hydrocarbon (TPH) contamination. Vegetated and unvegetated conditions to remediate anthropogenic fill containing residual TPH that was spiked with nonaqueous phase liquids (NAPLs) were evaluated in a 90-day greenhouse pot study. Vegetated treatments used switchgrass (Panicum virgatum). The concentration of aerobic bacteria were orders of magnitude higher in vegetated treatments compared to unvegetated. Nevertheless, final TPH concentrations were low in all saturated soil treatments, and high in the presence of switchgrass. Concentrations were also low in unvegetated pots with fertilizer. Acclimated indigenous microbial communities were shown to be more effective in breaking down hydrocarbons than introducing microbes from the addition of plant treatments in sandy soils. Remediation of fresh introduced NAPLs on pre-phytoremediated and bioacclimated soil was most efficient in saturated, anaerobic environments, probably due to the already pre-established microbial associations, easily bioavailable contaminants, and optimized soil conditions for microbial establishment and survival.
Torres, Luis G; Rojas, Neftalí; Iturbe, Rosario
2004-01-01
In a surfactant assisted biodegradation process, the choice of surfactant(s) is of crucial importance. The question is: does the type of surfactant (i.e. chemical family) affect the biodegradation process at fixed hidrophillic-lypofillic balance (HLB) values? Microcosm assessments were developed using contaminated soil, with around of 5000 mg/kg of hydrocarbons as TPH-diesel. Mixtures of three nonionic surfactants were employed to get a wide range of specific HLB values. Tween20 and Span20 were mixed in the appropriate proportions to get HLB values between 8.6 and 16.7. Tween/Span60 mixtures reached HLB values between 4.7 and 14.9. Finally, Tween/Span80 combinations yielded HLB values between 4.3 and 15. TPH-diesel biodegradation was measured at the beginning, and after 8 weeks, as well as the FCU/gr(soil), as a measure of microorganisms' development during the biodegradation period. A second aim of this work was to assess the use of guar gum as a biodegradation enhancer instead of synthetic products. The conclusions of this work are that surfactant chemical family, and not only the HLB value clearly affects the assisted biodegradation rate. Surfactant's synergism was clearly observed. Regarding the use of guar gum, no biodegradation enhancement was observed for the three assessed concentrations, i.e., 2, 20, and 200 mg/kg, respectively. On the contrary, TPH-diesel removal was lower as the gum concentration increased. It is quite possible that guar gum was used as a microbial substrate.
Sarkar, Poulomi; Roy, Ajoy; Pal, Siddhartha; Mohapatra, Balaram; Kazy, Sufia K; Maiti, Mrinal K; Sar, Pinaki
2017-10-01
Intrinsic biodegradation potential of bacteria from petroleum refinery waste was investigated through isolation of cultivable strains and their characterization. Pseudomonas and Bacillus spp. populated the normal cultivable taxa while prolonged enrichment with hydrocarbons and crude oil yielded hydrocarbonoclastic bacteria of genera Burkholderia, Enterobacter, Kocuria, Pandoraea, etc. Strains isolated through enrichment showed assemblages of superior metabolic properties: utilization of aliphatic (C6-C22) and polyaromatic compounds, anaerobic growth with multiple terminal electron acceptors and higher biosurfactant production. Biodegradation of dodecane was studied thoroughly by GC-MS along with detection of gene encoding alkane hydroxylase (alkB). Microcosms bioaugmented with Enterobacter, Pandoraea and Burkholderia strains showed efficient biodegradation (98% TPH removal) well fitted in first order kinetic model with low rate constants and decreased half-life. This study proves that catabolically efficient bacteria resides naturally in complex petroleum refinery wastes and those can be useful for bioaugmentation based bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Machackova, Jirina; Wittlingerova, Zdena; Vlk, Kvetoslav; Zima, Jaroslav
2012-01-01
Biodegradation of petroleum hydrocarbons (TPH), mainly jet fuel, had taken place at the former Soviet Army air base in the Czech Republic. The remediation of large-scale petroleum contamination of soil and groundwater has provided valuable information about biosparging efficiency in the sandstone sedimentary bedrock. In 1997 petroleum contamination was found to be present in soil and groundwater across an area of 28 hectares, divided for the clean-up purpose into smaller clean-up fields (several hectares). The total estimated quantity of TPH released to the environment was about 7,000 metric tons. Biosparging was applied as an innovative clean-up technology at the site and was operated over a 10-year period (1997-2008). Importance of a variety of factors that affect bacterial activity in unsaturated and saturated zones was widely studied on the site and influence of natural and technological factors on clean-up efficiency in heavily contaminates areas of clean-up fields (initial contaminant mass 111-452 metric ton/ha) was evaluated. Long-term monitoring of the groundwater temperature has shown seasonal rises and falls of temperature which have caused a fluctuation in biodegradation activity during clean-up. By contrast, an overall rise of average groundwater temperature was observed in the clean-up fields, most probably as a result of the biological activity during the clean-up process. The significant rise of biodegradation rates, observed after air sparging intensification, and strong linear correlation between the air injection rates and biodegradation activities have shown that the air injection rate is the principal factor in biodegradation efficiency in heavily contaminated areas. It has a far more important role for achieving a biodegradation activity than the contamination content which appeared to have had only a slight effect after the removal of about 75% of initial contamination.
NASA Astrophysics Data System (ADS)
Pei, Jun; Liu, Xinbao; Pardalos, Panos M.; Fan, Wenjuan; Wang, Ling; Yang, Shanlin
2016-03-01
Motivated by applications in manufacturing industry, we consider a supply chain scheduling problem, where each job is characterised by non-identical sizes, different release times and unequal processing times. The objective is to minimise the makespan by making batching and sequencing decisions. The problem is formalised as a mixed integer programming model and proved to be strongly NP-hard. Some structural properties are presented for both the general case and a special case. Based on these properties, a lower bound is derived, and a novel two-phase heuristic (TP-H) is developed to solve the problem, which guarantees to obtain a worst case performance ratio of ?. Computational experiments with a set of different sizes of random instances are conducted to evaluate the proposed approach TP-H, which is superior to another two heuristics proposed in the literature. Furthermore, the experimental results indicate that TP-H can effectively and efficiently solve large-size problems in a reasonable time.
Gentile, Maria Teresa; Nawa, Yukino; Lunardi, Gianluigi; Florio, Tullio; Matsui, Hiroaki; Colucci-D'Amato, Luca
2012-12-01
Serotonin (5-HT) is a neurotransmitter involved in many aspects of the neuronal function. The synthesis of 5-HT is initiated by the hydroxylation of tryptophan, catalyzed by tryptophan hydroxylase (TPH). Two isoforms of TPH (TPH1 and TPH2) have been identified, with TPH2 almost exclusively expressed in the brain. Following TPH2 discovery, it was reported that polymorphisms of both gene and non-coding regions are associated with a spectrum of psychiatric disorders. Thus, insights into the mechanisms that specifically regulate TPH2 expression and its modulation by exogenous stimuli may represent a new therapeutic approach to modify serotonergic neurotransmission. To this aim, a CNS-originated cell line expressing TPH2 endogenously represents a valid model system. In this study, we report that TPH2 transcript and protein are modulated by neuronal differentiation in the cell line A1 mes-c-myc (A1). Moreover, we show luciferase activity driven by the human TPH2 promoter region and demonstrate that upon mutation of the NRSF/REST responsive element, the promoter activity strongly increases with cell differentiation. Our data suggest that A1 cells could represent a model system, allowing an insight into the mechanisms of regulation of TPH2 and to identify novel therapeutic targets in the development of drugs for the management of psychiatric disorders. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Zhang, Zhen; Lo, Irene M C; Yan, Dickson Y S
2015-10-15
This study developed a novel integrated bioremediation process for the removal of petroleum hydrocarbons and the mitigation of odor induced by reduced sulfur from contaminated marine sediment. The bioremediation process consisted of two phases. In Phase I, acetate was dosed into the sediment as co-substrate to facilitate the sulfate reduction process. Meanwhile, akaganeite (β-FeOOH) was dosed in the surface layer of the sediment to prevent S(2-) release into the overlying seawater. In Phase II, NO3(-) was injected into the sediment as an electron acceptor to facilitate the denitrification process. After 20 weeks of treatment, the sequential integration of the sulfate reduction and denitrification processes led to effective biodegradation of total petroleum hydrocarbons (TPH), in which about 72% of TPH was removed. In Phase I, the release of S(2-) was effectively controlled by the addition of akaganeite. The oxidation of S(2-) by Fe(3+) and the precipitation of S(2-) by Fe(2+) were the main mechanisms for S(2-) removal. In Phase II, the injection of NO3(-) completely inhibited the sulfate reduction process. Most of residual AVS and S(0) were removed within 4 weeks after NO3(-) injection. The 16S rRNA clone library-based analysis revealed a distinct shift of bacterial community structure in the sediment over different treatment phases. The clones affiliated with Desulfobacterales and Desulfuromonadales were the most abundant in Phase I, while the clones related to Thioalkalivibrio sulfidophilus, Thiohalomonas nitratireducens and Sulfurimonas denitrificans predominated in Phase II. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, Yuqi; Chang, Zaohuo; Chen, Jionghua; Ling, Yang; Liu, Xiaowei; Feng, Zhang; Chen, Caixia; Xia, Minghua; Zhao, Xingfu; Ying, Wang; Qing, Xu; Li, Guilin; Zhang, Changsong
2015-08-01
Tryptophan hydroxylase-2 (TPH2) contributes to alterations in the function of neuronal serotonin (5-HT), which are associated with various psychopathologies, including major depressive disorder (MDD) or suicidal behavior. The methylation of a single CpG site in the promoter region of TPH2 affects gene expression. Suicide and MDD are strongly associated and genetic factors are at least partially responsible for the variability in suicide risk. The aim of the present study was to investigate whether variations in TPH2 methylation in peripheral blood samples may predispose patients with MDD to suicide attempts. TPH2 mRNA expression levels differed significantly between 50 patients with MDD who had attempted suicide (MDD + suicide group) and 75 control patients with MDD (MDD group); TPH2 expression levels were significantly decreased (P=0.0005) in the patients who had attempted suicide. Furthermore, the frequency of TPH2 methylation was 36.0% in the MDD + suicide group, while it was 13.0% in the MDD group. The results of the present study demonstrated that methylation in the promoter region of TPH2 significantly affected the mRNA expression levels of TPH2, thus suggesting that methylation of the TPH2 promoter may silence TPH2 mRNA expression in MDD patients with or without suicidal behavior. In addition, there was a significant correlation between the methylation status of the TPH2 promoter and depression, hopelessness and cognitive impairment in the MDD + suicide group. In conclusion, the present study demonstrated that TPH2 expression was regulated by DNA methylation of the TPH2 promoter region in patients with MDD.
Morecroft, Ian; White, Katie; Caruso, Paola; Nilsen, Margaret; Loughlin, Lynn; Alba, Raul; Reynolds, Paul N; Danilov, Sergei M; Baker, Andrew H; MacLean, Margaret R
2012-01-01
Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted. PMID:22525513
Maddela, Naga Raju; Scalvenzi, Laura; Venkateswarlu, Kadiyala
2017-10-01
A field-level feasibility study was conducted to determine total petroleum hydrocarbon (TPH)-degrading potential of two bacterial strains, Bacillus thuringiensis B3 and B. cereus B6, and two fungi, Geomyces pannorum HR and Geomyces sp. strain HV, all soil isolates obtained from an oil field located in north-east region of Ecuador. Crude oil-treated soil samples contained in wooden boxes received a mixture of all the four microorganisms and were incubated for 90 days in an open low-land area of Amazon rainforest. The percent removal of TPHs in soil samples that received the mixed microbial inoculum was 87.45, indicating the great potential of the soil isolates in field-scale removal of crude oil. The TPHs-degrading efficiency was verified by determining the toxicity of residues, remained in soil after biodegradation, toward viability of Artemia salina or seed germination and plant growth of cowpea. Our results clearly suggest that the selected soil isolates of bacteria and fungi could be effectively used for large-scale bioremediation of sites contaminated with crude oil.
Jampasri, Kongkeat; Pokethitiyook, Prayad; Kruatrachue, Maleeya; Ounjai, Puey; Kumsopa, Acharaporn
2016-10-02
Phytoremediation is widely promoted as a cost-effective technology for treating heavy metal and total petroleum hydrocarbon (TPH) co-contaminated soil. This study investigated the concurrent removal of TPHs and Pb in co-contaminated soil (27,000 mg kg(-1) TPHs, 780 mg kg(-1) Pb) by growing Siam weed (Chromolaena odorata) in a pot experiment for 90 days. There were four treatments: co-contaminated soil; co-contaminated soil with C. odorata only; co-contaminated soil with C. odorata and Micrococcus luteus inoculum; and co-contaminated soil with M. luteus only. C. odorata survived and grew well in the co-contaminated soil. C. odorata with M. luteus showed the highest Pb accumulation (513.7 mg kg(-1)) and uptake (7.7 mg plant(-1)), and the highest reduction percentage of TPHs (52.2%). The higher TPH degradation in vegetated soils indicated the interaction between the rhizosphere microorganisms and plants. The results suggested that C. odorata together with M. luteus and other rhizosphere microorganisms is a promising candidate for the removal of Pb and TPHs in co-contaminated soils.
Mathematical model simulation of a diesel spill in the Potomac River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, S.S.; Nicolette, J.P.; Markarian, R.K.
1995-12-31
A mathematical modeling technique was used to simulate the transport and fate of approximately 400,000 gallons of spilled diesel fuel and its impact on the aquatic biota in the Potomac River and Sugarland Run. Sugarland Run is a tributary about 21 miles upstream from Washington, DC. The mass balance model predicted the dynamic (spatial and temporal) distribution of spilled oil. The distributions were presented in terms of surface oil slick and sheen, dissolved and undissolved total petroleum hydrocarbons (TPH) in the water surface, water column, river sediments, shoreline and atmosphere. The processes simulated included advective movement, dispersion, dissolution, evaporation, volatilization,more » sedimentation, shoreline deposition, biodegradation, and removal of oil from cleanup operations. The model predicted that the spill resulted in a water column dissolved TPH concentration range of 0.05 to 18.6 ppm in Sugarland Run. The spilled oil traveled 10 miles along Sugarland Run before it reached the Potomac River. At the Potomac River, the water column TPH concentration was predicted to have decreased to the range of 0.0 to 0.43 ppm. These levels were consistent with field samples. To assess biological injury, the model used 4, 8, 24, 48, and 96-hr LC values in computing the fish injury caused by the fuel oil. The model used the maximum running average of dissolved TPH and exposure time to predict levels of fish mortality in the range of 38 to 40% in Sugarland Run. This prediction was consistent with field fisheries surveys. The model also computed the amount of spilled oil that adsorbed and settled into the river sediments.« less
Soil sampling strategies for site assessments in petroleum-contaminated areas.
Kim, Geonha; Chowdhury, Saikat; Lin, Yen-Min; Lu, Chih-Jen
2017-04-01
Environmental site assessments are frequently executed for monitoring and remediation performance evaluation purposes, especially in total petroleum hydrocarbon (TPH)-contaminated areas, such as gas stations. As a key issue, reproducibility of the assessment results must be ensured, especially if attempts are made to compare results between different institutions. Although it is widely known that uncertainties associated with soil sampling are much higher than those with chemical analyses, field guides or protocols to deal with these uncertainties are not stipulated in detail in the relevant regulations, causing serious errors and distortion of the reliability of environmental site assessments. In this research, uncertainties associated with soil sampling and sample reduction for chemical analysis were quantified using laboratory-scale experiments and the theory of sampling. The research results showed that the TPH mass assessed by sampling tends to be overestimated and sampling errors are high, especially for the low range of TPH concentrations. Homogenization of soil was found to be an efficient method to suppress uncertainty, but high-resolution sampling could be an essential way to minimize this.
NASA Astrophysics Data System (ADS)
Rinanti, A.; Nainggolan, I. J.
2018-01-01
This research is about petroleum bioremediation experiment to obtain bacterial isolate from mangrove ecosystem which potentially degrade petroleum. It was conducted in an Erlenmeyer batch system filled with growth medium of Stone Mineral Salt Solution (SMSS) plus petroleum residue, placed in an incubator shaker with a rotation speed of 120 rpm, temperature 3000C, for 14 research days. Indigenous bacteria that have been isolated and identified from the roots of mangrove plants are Ochrobactrum anthropi and Bacillus sp., Ralstonia pickettii and Bacillus circulans. Those bacteriain both monoculture and consortium form (mixed culture) are incorporated into erlenmeyer as remediator agents. All bacteria can utilize hydrocarbon compounds, but Ralstonia pickettii and Bacillus circulans reached exponential phase faster with more cell count than other bacteria. Compared to single cultures, petroleum degradation by a bacterial consortium provides a higher TPH reduction efficiency, i.e. at 5%, 10%, and 15% of initial TPH of 94.4%, 72%, and 80.3%, respectively. This study proved that all bacteria could optimize hydrocarbon compounds up to 15% TPH load.
Anoxic biodegradation of petroleum hydrocarbons in saline media using denitrifier biogranules.
Moussavi, Gholamreza; Shekoohiyan, Sakine; Naddafi, Kazem
2016-07-01
The total petroleum hydrocarbons (TPH) biodegradation was examined using biogranules at different initial TPH concentration and contact time under anoxic condition in saline media. The circular compact biogranules having the average diameter between 2 and 3mm were composed of a dense population of Bacillus spp. capable of biodegrading TPH under anoxic condition in saline media were formed in first step of the study. The biogranules could biodegrade over 99% of the TPH at initial concentration up to 2g/L at the contact time of 22h under anoxic condition in saline media. The maximum TPH biodegradation rate of 2.6 gTPH/gbiomass.d could be obtained at initial TPH concentration of 10g/L. Accordingly, the anoxic biogranulation is a possible and promising technique for high-rate biodegradation of petroleum hydrocarbons in saline media. Copyright © 2016 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... enable the TPH to meet its existing obligations to customers. In addition, such procedures must address the TPH's existing relationships with other broker-dealers and third parties. The business continuity... business continuity plan if such TPH has public customers. If the TPH does not have public customers, the...
Roxo, Sónia; de Almeida, José António; Matias, Filipa Vieira; Mata-Lima, Herlander; Barbosa, Sofia
2016-03-01
This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.
Al-Mansoory, Asia Fadhile; Idris, Mushrifah; Abdullah, Siti Rozaimah Sheikh; Anuar, Nurina
2017-05-01
Greenhouse experiments were carried out to determine the phytotoxic effects on the plant Ludwigia octovalvis in order to assess its applicability for phytoremediation gasoline-contaminated soils. Using plants to degrade hydrocarbons is a challenging task. In this study, different spiked concentrations of hydrocarbons in soil (1, 2, and 3 g/kg) were tested. The results showed that the mean efficiency of total petroleum hydrocarbon (TPH) removal over a 72-day culture period was rather high. The maximum removal of 79.8 % occurred for the 2 g/kg concentration, while the removal rate by the corresponding unplanted controls was only (48.6 %). The impact of gasoline on plants included visual symptoms of stress, yellowing, growth reduction, and perturbations in the developmental parameters. The dry weight and wet weight of the plant slightly increased upon exposure to gasoline until day 42. Scanning electron microscopy (SEM) indicated change to the root and stem structure in plant tissue due to the direct attachment with gasoline contaminated compared to the control sample. The population of living microorganisms in the contaminated soil was found to be able to adapt to different gasoline concentrations. The results showed that L. octovalvis and rhizobacteria in gasoline-contaminated soil have the potential to degrade organic pollutants.
Patriquin, Michelle A; Hamon, Sara C; Harding, Mark J; Nielsen, Ellen M; Newton, Thomas F; De La Garza, Richard; Nielsen, David A
2017-10-01
This study investigated variants of tryptophan hydroxylase (TPH)1, TPH2, and SLC6A4 in the moderation of the subjective effects of cocaine. Non-treatment-seeking cocaine-dependent individuals (N=66) were intravenously administered saline and cocaine (40 mg) in a randomized order. Participants self-reported subjective effects of cocaine using a visual analog scale starting before administration of saline or cocaine (-15 min) to up to 20 min after infusion. Self-report ratings on the visual analog scale ranged from 0 (no effect) to 100 (greatest effect). Participants were genotyped for the TPH1 rs1799913, TPH2 rs4290270, and SLC6A4 5-HTTLPR variants. Repeated-measures analysis of covariance was used to examine changes in subjective effect scores over time while controlling for population structure. Participants carrying the TPH1 rs1799913 A allele reported greater subjective response to cocaine for 'stimulated' and 'access' relative to the CC genotype group. Those carrying the TPH2 rs4290270 A allele reported higher 'good effect' and lower 'depressed' effect relative to the TT genotype group. Those carrying the SLC6A4 5-HTTLPR S' allele reported greater 'desire' and 'access' compared with the L'L' genotype group. These findings indicate that TPH1, TPH2, and SLC6A4 variants moderate the subjective effects of cocaine in non-treatment-seeking cocaine-dependent participants.
Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William
2015-11-01
Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.
Cho, Ii-Hyoung; Kim, Young-Gyu; Yang, Jae-Kyu; Lee, Nae-Hyun; Lee, Seung-Mok
2006-01-01
Groundwater samples contaminated by BTEX (benzene, toluene, ethylbenzene, xylene isomers and TPHs (total petroleum hydrocarbons) were treated with advanced oxidation processes (AOPs), such as TiO(2) photocatalysis and Fe(2+)/H(2)O(2) exposed to solar light (37 degrees N and 128 degrees E) with an average intensity of 1.7 mW/cm(2) at 365 nm. These AOP processes showed feasibility in the treatment of groundwater contaminated with BTEX, TPH and TOC (Total Organic Carbon). Outdoor field tests showed that the degradation efficiency of each contaminant was higher in the Fe(2+)/H(2)O(2) system without solar light compared to the TiO(2)/solar light and H(2)O(2)/solar light systems. However, the TiO(2)/solar light and the Fe(2+)/H(2)O(2)/solar light systems showed significantly enhanced efficiencies in the degradation of BTEX, TPH and TOC with the additional use of H(2)O(2). Near complete degradation of BTEX and TPH was observed within 2 and 4 hrs, respectively, however, that of TOC was slower. Without pretreatment of the groundwater, fouling of the TiO(2), due to the ionic species present, was observed within 1 hr of operation, which resulted in the inhibition of further BTEX, TPH and TOC destruction. The degradation rate of n-alkanes with carbon numbers ranging from C10 to C15 was relatively greater than that of n-alknaes with carbon numbers ranging from C16 to C20. From this work, the AOP process (Fe(2+)/H(2)O(2)/solar light and TiO(2)/H(2)O(2)/solar light) illuminated with solar light was identified as an effective ex situ technique in the remediation of groundwater contaminated with petroleum.
Tributyltin and triphenyltin induce spermatogenesis in ovary of female abalone, Haliotis gigantea.
Horiguchi, T; Kojima, M; Kaya, M; Matsuo, T; Shiraishi, H; Morita, M; Adachi, Y
2002-01-01
Two-month flow-through exposure experiments of tributyltin (TBT) and triphenyltin (TPhT) were conducted with abalone, Haliotis gigantea. Nominal concentrations of 100 ng TBT/l and 100 ng TPhT/l caused significant spermatogenesis in ovaries of exposed females. There were also significantly more contracted primary oocytes observed in females exposed to either TBT or TPhT than controls. The incidence of two types of unknown cells was also significant in females exposed to TPhT. No significant histological changes were observed in testis of exposed males. This ovarian spermatogenesis caused by TBT and/or TPhT resembles gastropod imposex. Remarkably high concentrations of TBT and TPhT were observed in the head (including central nervous system ganglia), compared to muscles concentrations. Accumulation of TBT and TPhT in the head may disturb reproductive hormonal regulators through neuropeptides released from ganglia. This, as well as possible aromatase inhibition, may be one of the inducers for spermatogenesis in the abalone ovaries.
Gargouri, Boutheina; Karray, Fatma; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami
2011-05-15
A continuously stirred tank bioreactor (CSTR) was used to optimize feasible and reliable bioprocess system in order to treat hydrocarbon-rich industrial wastewaters. A successful bioremediation was developed by an efficient acclimatized microbial consortium. After an experimental period of 225 days, the process was shown to be highly efficient in decontaminating the wastewater. The performance of the bioaugmented reactor was demonstrated by the reduction of COD rates up to 95%. The residual total petroleum hydrocarbon (TPH) decreased from 320 mg TPH l(-1) to 8 mg TPH l(-1). Analysis using gas chromatography-mass spectrometry (GC-MS) identified 26 hydrocarbons. The use of the mixed cultures demonstrated high degradation performance for hydrocarbons range n-alkanes (C10-C35). Six microbial isolates from the CSTR were characterized and species identification was confirmed by sequencing the 16S rRNA genes. The partial 16S rRNA gene sequences demonstrated that 5 strains were closely related to Aeromonas punctata (Aeromonas caviae), Bacillus cereus, Ochrobactrum intermedium, Stenotrophomonas maltophilia and Rhodococcus sp. The 6th isolate was affiliated to genera Achromobacter. Besides, the treated wastewater could be considered as non toxic according to the phytotoxicity test since the germination index of Lepidium sativum ranged between 57 and 95%. The treatment provided satisfactory results and presents a feasible technology for the treatment of hydrocarbon-rich wastewater from petrochemical industries and petroleum refineries. Copyright © 2011 Elsevier B.V. All rights reserved.
Strong Electron Self-Cooling in the Cold-Electron Bolometers Designed for CMB Measurements
NASA Astrophysics Data System (ADS)
Kuzmin, L. S.; Pankratov, A. L.; Gordeeva, A. V.; Zbrozhek, V. O.; Revin, L. S.; Shamporov, V. A.; Masi, S.; de Bernardis, P.
2018-03-01
We have realized cold-electron bolometers (CEB) with direct electron self-cooling of the nanoabsorber by SIN (Superconductor-Insulator-Normal metal) tunnel junctions. This electron self-cooling acts as a strong negative electrothermal feedback, improving noise and dynamic properties. Due to this cooling the photon-noise-limited operation of CEBs was realized in array of bolometers developed for the 345 GHz channel of the OLIMPO Balloon Telescope in the power range from 10 pW to 20 pW at phonon temperature Tph =310 mK. The negative electrothermal feedback in CEB is analogous to TES but instead of artificial heating we use cooling of the absorber. The high efficiency of the electron self-cooling to Te =100 mK without power load and to Te=160 mK under power load is achieved by: - a very small volume of the nanoabsorber (0.02 μm3) and a large area of the SIN tunnel junctions, - effective removal of hot quasiparticles by arranging double stock at both sides of the junctions and close position of the normal metal traps, - self-protection of the 2D array of CEBs against interferences by dividing them between N series CEBs (for voltage interferences) and M parallel CEBs (for current interferences), - suppression of Andreev reflection by a thin layer of Fe in the AlFe absorber. As a result even under high power load the CEBs are working at electron temperature Te less than Tph . To our knowledge, there is no analogue in the bolometers technology in the world for bolometers working at electron temperature colder than phonon temperature.
Comparative study of rhizobacterial community structure of plant species in oil-contaminated soil.
Lee, Eun-Hee; Cho, Kyong-Suk; Kim, Jaisoo
2010-09-01
In this study, the identity and distribution of plants and the structure of their associated rhizobacterial communities were examined in an oil-contaminated site. The number of plant species that formed a community or were scattered was 24. The species living in soil highly contaminated with total petroleum hydrocarbon (TPH) (9,000-4,5000 mg/g-soil) were Cynodon dactylon, Persicaria lapathifolia, and Calystegia soldanella (a halophytic species). Among the 24 plant species, the following have been known to be effective for oil removal: C. dactylon, Digitaria sanguinalis, and Cyperus orthostachyus. Denaturing gradient gel electrophoresis (DGGE) profile analysis showed that the following pairs of plant species had highly similar (above 70%) rhizobacterial community structures: Artemisia princeps and Hemistepta lyrata; C. dactylon and P. lapathifolia; Carex kobomugi and Cardamine flexuosa; and Equisetum arvense and D. sanguinalis. The major groups of rhizobacteria were Betaproteobacteria, Gamma-proteobacteria, Chloroflexi, Actinobacteria, and unknown. Based on DGGE analysis, P. lapathifolia, found for the first time in this study growing in the presence of high TPH, may be a good species for phytoremediation of oil-contaminated soils and in particular, C. soldanella may be useful for soils with high TPH and salt concentrations. Overall, this study suggests that the plant roots, regardless of plant species, may have a similar influence on the bacterial community structure in oil-contaminated soil.
Del'Guidice, Thomas; Lemay, Francis; Lemasson, Morgane; Levasseur-Moreau, Jean; Manta, Stella; Etievant, Adeline; Escoffier, Guy; Doré, François Y; Roman, François S; Beaulieu, Jean-Martin
2014-01-01
Polymorphisms in the gene encoding the serotonin synthesis enzyme Tph2 have been identified in mental illnesses, including bipolar disorder, major depression, autism, schizophrenia, and ADHD. Deficits in cognitive flexibility and perseverative behaviors are shared common symptoms in these disorders. However, little is known about the impact of Tph2 gene variants on cognition. Mice expressing a human TPH2 variant (Tph2-KI) were used to investigate cognitive consequences of TPH2 loss of function and pharmacological treatments. We applied a recently developed behavioral assay, the automated H-maze, to study cognitive functions in Tph2-KI mice. This assay involves the consecutive discovery of three different rules: a delayed alternation task, a non-alternation task, and a delayed reversal task. Possible contribution of locomotion, reward, and sensory perception were also investigated. The expression of loss-of-function mutant Tph2 in mice was associated with impairments in reversal learning and cognitive flexibility, accompanied by perseverative behaviors similar to those observed in human clinical studies. Pharmacological restoration of 5-HT synthesis with 5-hydroxytryptophan or treatment with the 5-HT2C receptor agonist CP809.101 reduced cognitive deficits in Tph2-KI mice and abolished perseveration. In contrast, treatment with the psychostimulant methylphenidate exacerbated cognitive deficits in mutant mice. Results from this study suggest a contribution of TPH2 in the regulation of cognition. Furthermore, identification of a role for a 5-HT2 receptor agonist as a cognition-enhancing agent in mutant mice suggests a potential avenue to explore for the personalized treatment of cognitive symptoms in humans with reduced 5-HT synthesis and TPH2 polymorphisms. PMID:24196946
Bratland, Eirik; Magitta, Ng'weina Francis; Bøe Wolff, Anette Susanne; Ekern, Trude; Knappskog, Per Morten; Kämpe, Olle; Haavik, Jan; Husebye, Eystein Sverre
2013-06-01
Patients with autoimmune polyendocrine syndrome type 1 (APS-1) frequently have autoantibodies directed against the aromatic amino acid hydroxylases tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH). We aimed to characterize these autoantibodies with regard to their antigenic determinants, their influence on enzymatic activity and their clinical associations. In particular, we wanted to compare autoantibodies against the two different isoforms of TPH, which display different tissue distribution. Using sera from 48 Scandinavian APS-1 patients we identified 36 patients (75%) with antibodies against one or more of these three enzymes. Antibodies against TPH1, but not TPH2, were associated with malabsorption in the whole Scandinavian cohort, while TH antibodies were associated with dental enamel hypoplasia in Norwegian patients. Subsequent experiments with selected patient sera indicated that while the C-terminal domain was the immunodominant part of TPH1, the epitopes of TPH2 and TH were mainly located in the N-terminal regulatory domains. We also identified a TPH1 specific epitope involved in antibody mediated inhibition of enzyme activity, a finding that provides new insight into the enzymatic mechanisms of the aromatic amino acid hydroxylases and knowledge about structural determinants of enzyme autoantigens. In conclusion, TPH1, TPH2 and TH all have unique antigenic properties in spite of their structural similarity. Copyright © 2012 Elsevier GmbH. All rights reserved.
Sumita, Masato; Morihashi, Kenji
2015-02-05
Singlet-oxygen [O2((1)Δg)] generation by valence-excited thiophene (TPH) has been investigated using multireference Møller-Plesset second-order perturbation (MRMP2) theory of geometries optimized at the complete active space self-consistent field (CASSCF) theory level. Our results indicate that triplet TPH(1(3)B2) is produced via photoinduced singlet TPH(2(1)A1) because 2(1)A1 TPH shows a large spin-orbit coupling constant with the first triplet excited state (1(3)B2). The relaxed TPH in the 1(3)B2 state can form an exciplex with O2((3)Σg(-)) because this exciplex is energetically more stable than the relaxed TPH. The formation of the TPH(1(3)B2) exciplex with O2((3)Σg(-)) whose total spin multiplicity is triplet (T1 state) increases the likelihood of transition from the T1 state to the singlet ground or first excited singlet state. After the transition, O2((1)Δg) is emitted easily although the favorable product is that from a 2 + 4 cycloaddition reaction.
Rapid Estimation of TPH Reduction in Oil-Contaminated Soils Using the MED Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edenborn, H.M.; Zenone, V.A.
2007-09-01
Oil-contaminated soil and sludge generated during federal well plugging activities in northwestern Pennsylvania are currently remediated on small landfarm sites in lieu of more expensive landfill disposal. Bioremediation success at these sites in the past has been gauged by the decrease in total petroleum hydrocarbon (TPH) concentrations to less than 10,000 mg/kg measured using EPA Method 418.1. We tested the “molarity of ethanol droplet” (MED) water repellency test as a rapid indicator of TPH concentration in soil at one landfarm near Bradford, PA. MED was estimated by determining the minimum ethanol concentration (0 – 6 M) required to penetrate air-driedmore » and sieved soil samples within 10 sec. TPH in soil was analyzed by rapid fluorometric analysis of methanol soil extracts, which correlated well with EPA Method 1664. Uncontaminated landfarm site soil amended with increasing concentrations of waste oil sludge showed a high correlation between MED and TPH. MED values exceeded the upper limit of 6 M as TPH estimates exceed ca. 25,000 mg/kg. MED and TPH at the land farm were sampled monthly during summer months over two years in a grid pattern that allowed spatial comparisons of site remediation effectiveness. MED and TPH decreased at a constant rate over time and remained highly correlated. Inexpensive alternatives to reagent-grade ethanol gave comparable results. The simple MED approach served as an inexpensive alternative to the routine laboratory analysis of TPH during the monitoring of oily waste bioremediation at this landfarm site.« less
Autoantibodies to human tryptophan hydroxylase and aromatic L-amino acid decarboxylase.
Dal Pra, Chiara; Chen, Shu; Betterle, Corrado; Zanchetta, Renato; McGrath, Vivienne; Furmaniak, Jadwiga; Rees Smith, Bernard
2004-03-01
To assess the prevalence of autoantibodies (Abs) to tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC) in patients with different autoimmune diseases and to analyse their respective epitopes. TPH and AADC Abs were measured in an immunoprecipitation assay using (35)S-labelled full-length and fragments of TPH and AADC. Patients with different autoimmune adrenal diseases (n=84), non-adrenal autoimmune diseases (n=37), idiopathic vitiligo (n=8) and 56 healthy blood donors were studied. Fourteen of twenty-three (61%) of patients with autoimmune polyglandular syndrome (APS) type I and 1/34 (3%) of patients with isolated Addison's disease (AD) were positive for TPH Abs. None of the patients with APS type II (n=27), coeliac disease (n=10), autoimmune thyroid disease (AITD) (n=11), type 1 diabetes mellitus (DM) (n=16) or idiopathic vitiligo (n=8) was positive for TPH Abs. AADC Abs were detected in 12/23 (52%) patients with APS type I, in 1/29 (3%) patients with APS type II and 1/34 (3%) patients with isolated AD. None of the patients with coeliac disease, type 1 DM, AITD or idiopathic vitiligo was positive for AADC Abs. TPH Abs were found to interact with the C-terminal amino acids (aa) 308-423, central aa 164-205 and N-terminal aa 1-105 of the TPH molecule. AADC Ab binding epitopes were within the C-terminal aa 382-483, the central aa 243-381 and the N-terminal aa 1-167. Our study suggests that TPH Abs and AADC Abs react with several different epitopes and that different epitopes are recognized by different sera. The prevalence of TPH Abs and AADC Abs in patients with APS type I in our study is in agreement with previous reports. TPH Abs and AADC Abs were found very rarely in patients with other forms of autoimmune adrenal disease and were not detected in patients with non-adrenal autoimmune diseases.
Leewis, Mary-Cathrine; Reynolds, Charles M.; Leigh, Mary Beth
2014-01-01
Phytoremediation is a potentially inexpensive method of detoxifying contaminated soils using plants and associated soil microorganisms. The remote locations and cold climate of Alaska provide unique challenges associated with phytoremediation such as finding effective plant species that can achieve successful site clean-up despite the extreme environmental conditions and with minimal site management. A long-term assessment of phytoremediation was performed which capitalized on a study established in Fairbanks in 1995. The original study sought to determine how the introduction of plants (Festuca rubra, Lolium multiflorum), nutrients (fertilizer), or their combination would affect degradation of petroleum hydrocarbon (TPH) contaminated soils (crude oil or diesel) over time. Within the year following initial treatments, the plots subjected to both planting and/or fertilization showed greater overall decreases in TPH concentrations in both the diesel and crude oil contaminated soils relative to untreated plots. We re-examined this field site after 15 years with no active site management to assess the long-term effects of phytoremediation on colonization by native and non-native plants, their rhizosphere microbial communities and on petroleum removal from soil. Native and non-native vegetation had extensively colonized the site, with more abundant vegetation found on the diesel contaminated soils than the more nutrient-poor, more coarse, and acidic crude oil contaminated soils. TPH concentrations achieved regulatory clean up levels in all treatment groups, with lower TPH concentrations correlating with higher amounts of woody vegetation (trees & shrubs). In addition, original treatment type has affected vegetation recruitment to each plot with woody vegetation and more native plants in unfertilized plots. Bacterial community structure also varies according to the originally applied treatments. This study suggests that initial treatment with native tree species in combination with grasses could be an effective means for phytoremediating petroleum contaminated soils and promoting ecological recovery in cold regions. PMID:24501438
Neuronal Tryptophan Hydroxylase Expression in BALB/cJ and C57Bl/6J Mice
Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J. John; Underwood, Mark D.
2014-01-01
BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared to other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei (DRN) was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-HIAA were determined by high pressure liquid chromatography (HPLC). BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral DRN (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain of BALB/cJ compared to C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. PMID:21740442
Neuronal tryptophan hydroxylase expression in BALB/cJ and C57Bl/6J mice.
Bach, Helene; Arango, Victoria; Huang, Yung-Yu; Leong, Sharlene; Mann, J John; Underwood, Mark D
2011-09-01
BALB/c is an inbred stress-sensitive mouse strain exhibiting low brain serotonin (5-HT) content and a 5-HT biosynthetic enzyme tryptophan hydroxylase (Tph2) variant reported to have lower catalytic activity compared with other inbred base strains. To evaluate other mechanisms that may explain low 5-HT, we compared BALB/cJ mice and a control inbred strain C57Bl/6J mice, for expression of Tph2 mRNA, TPH2 protein and regional levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid. Tph2 mRNA and TPH2 protein in brainstem dorsal raphe nuclei was assayed by in situ hybridization and immunocytochemistry respectively. 5-HT and 5-hydroxyindoleacetic acid were determined by HPLC. BALB/cJ mice had 20% less Tph2 mRNA and 28% fewer TPH2 immunolabeled neurons than C57Bl/6J mice (t = -2.59, p = 0.02). The largest difference in Tph2 transcript expression was in rostral dorsal raphe nuclei (t = 2.731, p = 0.008). 5-HT was 15% lower in the midbrain and 18% lower in the cerebral cortex of BALB/cJ compared with C57Bl/6J mice (p < 0.05). The behavioral differences in BALB/cJ mice relative to the C57Bl/6J strain may be due in part, to fewer 5-HT neurons and lower Tph2 gene expression resulting in less 5-HT neurotransmission. Future studies quantifying expression per neuron are needed to determine whether less expression is explained by fewer neurons or also less expression per neuron, or both. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Kuhn, Donald M.; Sykes, Catherine E.; Geddes, Timothy J.; Jaunarajs, Karen L. Eskow; Bishop, Christopher
2010-01-01
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopamine neurons of the nigrostriatal system, resulting in severe motor disturbances. Although much less appreciated, non-motor symptoms are also very common in PD and many can be traced to serotonin neuronal deficits. Tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in the serotonin biosynthesis, is a phenotypic marker for serotonin neurons and is known to be extremely labile to oxidation. Therefore, the oxidative processes that prevail in PD could cause TPH2 misfolding and modify 5HT neuronal function much as is seen in dopamine neurons. Oxidation of TPH2 inhibits enzyme activity and leads to the formation of high molecular weight aggregates in a dithiothreitol-reversible manner. Cysteine-scanning mutagenesis shows that as long as a single cysteine residue (out of a total of 13 per monomer) remains in TPH2, it cross-links upon oxidation and only cysteine-less mutants are resistant to this effect. The effects of oxidants on TPH2 catalytic function and cross-linking are also observed in intact TPH2-expressing HEK293 cells. Oxidation shifts TPH2 from the soluble compartment into membrane fractions and large inclusion bodies. Sequential non-reducing/reducing two-dimensional SDS-PAGE and immunoblotting confirmed that TPH2 was one of a small number of cytosolic proteins that form disulfide-bonded aggregates. The propensity of TPH2 to misfold upon oxidation of its cysteine residues is responsible for its catalytic lability and may be related to loss of serotonin neuronal function in PD and the emergence of non-motor (psychiatric) symptoms. PMID:21105877
TBT and TPhT persistence in a sludged soil.
Marcic, Christophe; Le Hecho, Isabelle; Denaix, Laurence; Lespes, Gaëtane
2006-12-01
The persistence of tributyltin (TBT) and triphenyltin (TPhT) in soils was studied, taking into consideration the quantity of sewage sludge, TBT and TPhT concentrations in soil as well as the soil pH. The organotin compounds (OTC) were introduced into the soil via a spiked urban sludge, simulating agricultural practise. OTC speciation was achieved after acidic extraction of soil samples followed by gas chromatography-pulsed flame photometric analysis (GC-PFPD). Leaching tests conducted on a spiked sludge showed that more than 98% of TBT are sorbed on the sludge. TBT persistence in soil appeared to depend on its initial concentration in sludge. Thus, it was more important when concentration is over 1000 microg(Sn) kg(-1) of sludge. More than 50% of the initial TBT added into the soil were still present after 2 months, whatever the experimental conditions. The main degradation product appeared to be dibutyltin. About 90% of TPhT were initially sorbed on sludge, whatever the spiking concentration in sludge was. However, TPhT seemed to be quantitatively exchangeable at the solid/liquid interface, according to the leaching tests. It was also significantly degraded in sludged soil as only about 20% of TPhT remain present after 2 months, the monophenyltin being the main degradation product. pH had a significant positive effect on TBT and particularly TPhT persistence, according to the initial amounts introduced into the soil. Thus, at pH over 7 and triorganotin concentration over 100 microg(Sn) kg(-1), less than 10% of TBT but about 60% of TPhT were degraded. When the sludge was moderately contaminated by triorganotins (typically 50 microg(Sn) kg(-1) in our conditions) the pH had no effect on TBT and TPhT persistence.
TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes.
Henkhaus, Rebecca S; Bittel, Douglas C; Butler, Merlin G
2010-09-01
Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process.
NASA Astrophysics Data System (ADS)
Leu, J.
2012-12-01
A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone sparging wells. Startup test was conducted to optimize sparging pressure and flow rate and evaluate radius of influence (ROI) and pulsed sparging frequency. The startup test results indicated the system is optimized at 6 psi pressure and 3 cfm flow rate at ozone sparging rate of 2 lbs/day at each sparging location. The results also indicated a maximized ROI of 20 ft was reached and pulsed sparging frequency was estimated to be 60 minutes. The results at the completion of the pilot test concluded that TPH concentrations in groundwater decreased by 97% during the two months of ozone sparging, but did rebound to near baseline levels for most groundwater monitoring wells. Concentrations of hexavalent chromium and bromate increased from non-detect to 44 and 110 μg/L, respectively, during the ozone sparging but attenuated to non-detect concentrations within three months following the system shut down. Field measurements during the pilot study displayed an increasing trend of both oxidation-reduction potential (ORP) and dissolved oxygen (DO). After ozone sparging was complete, the ORP and DO in the saturated zone returned to near baseline levels. Based on the results of the pilot study, a full scale ISCO using ozone system was recommended.
Kaplan, Kara; Echert, Ashley E; Massat, Ben; Puissant, Madeleine M; Palygin, Oleg; Geurts, Aron M; Hodges, Matthew R
2016-05-01
Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DA(Tph2-/-)) rats. DA(Tph2-/-) rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DA(Tph2-/-) rats. Body temperature was also maintained in adult DA(Tph2-/-) rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DA(Tph2-/-) rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. Copyright © 2016 the American Physiological Society.
Dong, Zhi-Yong; Huang, Wen-Hui; Xing, Ding-Feng; Zhang, Hong-Feng
2013-09-15
Successful remediation of soil co-contaminated with high levels of organics and heavy metals is a challenging task, because that metal pollutants in soil can partially or completely suppress normal heterotrophic microbial activity and thus hamper biodegradation of organics. In this study, the benefits of integrating electrokinetic (EK) remediation with biodegradation for decontaminating soil co-contaminated with crude oil and Pb were evaluated in laboratory-scale experiments lasting for 30 days. The treated soil contained 12,500 mg/kg of total petroleum hydrocarbons (TPH) and 450 mg/kg Pb. The amendments of EDTA and Tween 80, together with a regular refreshing of electrolyte showed the best performance to remediate this contaminated soil. An important function of EDTA-enhanced EK treatment was to eliminate heavy metal toxicity from the soil, thus activating microbial degradation of oil. Although Tween 80 reduced current, it could serve as a second substrate for enhancing microbial growth and biodegradation. It was found that oil biodegradation degree and microbial numbers increased toward the anode and cathode. Microbial metabolism was found to be beneficial to metal release from the soil matrix. Under the optimum conditions, the soil Pb and TPH removal percentages after 30 days of running reached 81.7% and 88.3%, respectively. After treatment, both the residual soil Pb and TPH concentrations met the requirement of the Chinese soil environmental quality standards. Copyright © 2013 Elsevier B.V. All rights reserved.
Rezaei Somee, Maryam; Shavandi, Mahmoud; Dastgheib, Seyed Mohammad Mehdi; Amoozegar, Mohammad Ali
2018-05-01
Oil-based drill cuttings are hazardous wastes containing complex hydrocarbons, heavy metals, and brine. Their remediation is a crucial step before release to the environment. In this work, we enriched a halophilic consortium, from oil-polluted saline soil, which is capable of degrading diesel as the main pollutant of oil-based drill cuttings. The degradation ability of the consortium was evaluated in microcosms using two different diluting agents (fine sand and biologically active soil). During the bioremediation process, the bacterial community dynamics of the microcosms was surveyed using PCR amplification of a fragment of 16S rRNA gene followed by denaturing gradient gel electrophoresis (DGGE). The diesel degradation rates were monitored by total petroleum hydrocarbon (TPH) measurement and the total count of heterotrophic and diesel-degrading bacteria. After 3 months, the microcosm containing fine sand and drill cuttings with the ratio of 1:1 (initial TPH of 36,000 mg/kg) showed the highest TPH removal (40%) and its dominant bacterial isolates belonged to the genera Dietzia, Arthrobacter , and Halomonas . DGGE results also confirmed the role of these genera in drill cuttings remediation. DGGE analysis of the bacterial diversity showed that Propionibacterium, Salinimicrobium, Marinobacter , and Dietzia are dominant in active soil microcosm; whereas Bacillus, Salinibacillus , and Marinobacter are abundant in sand microcosm. Our results suggest that the bioaugmentation strategy would be more successful if the diluting agent does not contain a complex microbial community.
Donner, Nina C; Siebler, Philip H; Johnson, Danté T; Villarreal, Marcos D; Mani, Sofia; Matti, Allison J; Lowry, Christopher A
2016-01-01
Anxiety and affective disorders are often associated with hypercortisolism and dysfunctional serotonergic systems, including increased expression of TPH2, the gene encoding the rate-limiting enzyme of neuronal serotonin synthesis. We previously reported that chronic glucocorticoid exposure is anxiogenic and increases rat Tph2 mRNA expression, but it was still unclear if this also translates to increased TPH2 protein levels and in vivo activity of the enzyme. Here, we found that adult male rats treated with corticosterone (CORT, 100 μg/ml) via the drinking water for 21 days indeed show increased TPH2 protein expression in the dorsal and ventral part of the dorsal raphe nucleus (DRD, DRV) during the light phase, abolishing the enzyme's diurnal rhythm. In a second study, we systemically blocked the conversion of 5-hydroxytryptophan (5-HTP) to serotonin immediately before rats treated with CORT or vehicle were either exposed to 30 min acoustic startle stress or home cage control conditions. This allowed us to measure 5-HTP accumulation as a direct readout of basal versus stress-induced in vivo TPH2 activity. As expected, basal TPH2 activity was elevated in the DRD, DRV and MnR of CORT-treated rats. In response to stress, a multitude of serotonergic systems reacted with increased TPH2 activity, but the stress-, anxiety-, and learned helplessness-related dorsal and caudal DR (DRD/DRC) displayed stress-induced increases in TPH2 activity only after chronic CORT-treatment. To address the mechanisms underlying this region-specific CORT-dependent sensitization, we stereotaxically implanted CORT-treated rats with cannulae targeting the DR, and pharmacologically blocked either corticotropin-releasing hormone receptor type 1 (CRHR1) or type 2 (CRHR2) 10 min prior to acoustic startle stress. CRHR2 blockade prevented stress-induced increases of TPH2 activity within the DRD/DRC, while blockade of CRHR1 potentiated stress-induced TPH2 activity in the entire DR. Stress-induced TPH2 activity in the DRD/DRC furthermore predicted TPH2 activity in the amygdala and in the caudal pontine reticular nucleus (PnC), while serotonin synthesis in the PnC was strongly correlated with the maximum startle response. Our data demonstrate that chronically elevated glucocorticoids sensitize stress- and anxiety-related serotonergic systems, and for the first time reveal competing roles of CRHR1 and CRHR2 on stress-induced in vivo serotonin synthesis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Donner, Nina C.; Siebler, Philip H.; Johnson, Danté T.; Villarreal, Marcos D.; Mani, Sofia; Matti, Allison J.; Lowry, Christopher A.
2015-01-01
Anxiety and affective disorders are often associated with hypercortisolism and dysfunctional serotonergic systems, including increased expression of TPH2, the gene encoding the rate-limiting enzyme of neuronal serotonin synthesis. We previously reported that chronic glucocorticoid exposure is anxiogenic and increases rat Tph2 mRNA expression, but it was still unclear if this also translates to increased TPH2 protein levels and in vivo activity of the enzyme. Here, we found that adult male rats treated with corticosterone (CORT, 100 μg/ml) via the drinking water for 21 days indeed show increased TPH2 protein expression in the dorsal and ventral part of the dorsal raphe nucleus (DRD, DRV) during the light phase, abolishing the enzyme’s diurnal rhythm. In a second study, we systemically blocked the conversion of 5-hydroxytryptophan (5-HTP) to serotonin immediately before rats treated with CORT or vehicle were either exposed to 30 min acoustic startle stress or home cage control conditions. This allowed us to measure 5-HTP accumulation as a direct readout of basal versus stress-induced in vivo TPH2 activity. As expected, basal TPH2 activity was elevated in the DRD, DRV and MnR of CORT-treated rats. In response to stress, a multitude of serotonergic systems reacted with increased TPH2 activity, but the stress-, anxiety-, and learned helplessness-related dorsal and caudal DR (DRD/DRC) displayed stress-induced increases in TPH2 activity only after chronic CORT-treatment. To address the mechanisms underlying this region-specific CORT-dependent sensitization, we stereotaxically implanted CORT-treated rats with cannulae targeting the DR, and pharmacologically blocked either corticotropin-releasing hormone receptor type 1 (CRHR1) or type 2 (CRHR2) 10 min prior to acoustic startle stress. CRHR2 blockade prevented stress-induced increases of TPH2 activity within the DRD/DRC, while blockade of CRHR1 potentiated stress-induced TPH2 activity in the entire DR. Stress-induced TPH2 activity in the DRD/DRC furthermore predicted TPH2 activity in the amygdala and in the caudal pontine reticular nucleus (PnC), while serotonin synthesis in the PnC was strongly correlated with the maximum startle response. Our data demonstrate that chronically elevated glucocorticoids sensitize stress- and anxiety-related serotonergic systems, and for the first time reveal competing roles of CRHR1 and CRHR2 on stress-induced in vivo serotonin synthesis. PMID:26454419
Tellechea, Fernando Reynel Fundora; Martins, Marco Antônio; da Silva, Alexsandro Araujo; da Gama-Rodrigues, Emanuela Forestieri; Martins, Meire Lelis Leal
2016-09-01
This study evaluated the use of sugarcane filter cake and nitrogen, phosphorus and potassium (NPK) fertilization in the bioremediation of a soil contaminated with diesel fuel using a completely randomized design. Five treatments (uncontaminated soil, T1; soil contaminated with diesel, T2; soil contaminated with diesel and treated with 15 % (wt) filter cake, T3; soil contaminated with diesel and treated with NPK fertilizer, T4; and soil contaminated with diesel and treated with 15 % (wt) filter cake and NPK fertilizer, T5) and four evaluation periods (1, 60, 120, and 180 days after the beginning of the experiment) were used according to a 4 × 5 factorial design to analyze CO2 release. The variables total organic carbon (TOC) and total petroleum hydrocarbons (TPH) remaining in the soil were analyzed using a 5 × 2 factorial design, with the same treatments described above and two evaluation periods (1 and 180 days after the beginning of the experiment). In T3 and T5, CO2 release was significantly higher, compared with the other treatments. Significant TPH removal was observed on day 180, when percent removal values were 61.9, 70.1, 68.2, and 75.9 in treatments T2, T3, T4, and T5, respectively, compared with the initial value (T1).
Han, Tao; Zhao, Zhipeng; Bartlam, Mark; Wang, Yingying
2016-11-01
Remediation of soils contaminated with petroleum is a challenging task. Four different bioremediation strategies, including natural attenuation, biochar amendment, phytoremediation with ryegrass, and a combination of biochar and ryegrass, were investigated with greenhouse pot experiments over a 90-day period. The results showed that planting ryegrass in soil can significantly improve the removal rate of total petroleum hydrocarbons (TPHs) and the number of microorganisms. Within TPHs, the removal rate of total n-alkanes (45.83 %) was higher than that of polycyclic aromatic hydrocarbons (30.34 %). The amendment of biochar did not result in significant improvement of TPH removal. In contrast, it showed a clear negative impact on the growth of ryegrass and the removal of TPHs by ryegrass. The removal rate of TPHs was significantly lower after the amendment of biochar. The results indicated that planting ryegrass is an effective remediation strategy, while the amendment of biochar may not be suitable for the phytoremediation of soil contaminated with petroleum hydrocarbons.
Etiological classification of depression based on the enzymes of tryptophan metabolism.
Fukuda, Katsuhiko
2014-12-24
Viewed in terms of input and output, the mechanisms of depression are still akin to a black box. However, there must be main pivots for diverse types of depression. From recent therapeutic observations, both the serotonin (5-HT) and kynurenine pathways of tryptophan metabolism may be of particular importance to improved understanding of depression. Here, I propose an etiological classification of depression, based on key peripheral and central enzymes of tryptophan metabolism. Endogenous depression is caused by a larger genetic component than reactive depression. Besides enterochromaffin and mast cells, tryptophan hydroxylase 1 (TPH1), primarily expressed in the gastrointestinal tract, is also found in 5-hydroxytryptophan-producing cells (5-HTP cells) in normal intestinal enterocytes, which are thought to essentially shunt 5-HT production in 5-HT-producing cells. Genetic studies have reported an association between TPH1 and depression, or the responsiveness of depression to antidepressive medication. Therefore, it is possible that hypofunctional 5-HTP cells (reflecting TPH1 dysfunction) in the periphery lead to deficient brain 5-HT levels. Additionally,it has been reported that higher TPH2 expression in depressed suicides may reflect a homeostatic response to deficient 5-HT levels. Subsequently, endogenous depression may be caused by TPH1 dysfunction combined with compensatory TPH2 activation. Reactive depression results from life stresses and involves the hypothalamic-pituitary-adrenal axis, with resulting cortisol production inducing tryptophan 2,3-dioxygenase (TDO) activation. In secondary depression, caused by inflammation, infection, or oxidative stress, indoleamine 2,3-dioxygenase (IDO) is activated. In both reactive and secondary depression, the balance between 3-hydroxykynurenine (3-HK) and kynurenic acid may shift towards 3-HK production via kynurenine-3-monooxygenase (KMO) activation. By shifting the equilibrium position of key enzymes of tryptophan metabolism, the classical classification of depression can be reorganized, as below. Peripheral classification of depression by key enzymes: TPH1 dysfunction, TDO activation, IDO activation. Central classification: TPH2 activation, KMO activation. Etiological classification of depression expressed by peripheral (TPH1, TDO, IDO) and central (TPH2, KMO)enzymes of tryptophan metabolism may enable depression to be viewed as a clear box, with the inner components available for inspection and treatment.
Dutra Filho, J A; Junior, T C; Simões Neto, D E
2015-10-05
In the present study, we assessed the agro-industrial performance of 22 sugarcane genotypes adaptable to edaphoclimatic conditions in production microregions in the State of Pernambuco, Brazil, and we recommended the commercial cultivation of select genotypes. The variables analyzed were as follows: sucrose percentage in cane juice, tonnage of saccharose per hectare (TPH), sugarcane tonnage per hectare (TCH), fiber, solid soluble contents, total recoverable sugar tonnage (ATR), and total recoverable sugar tonnage per hectare (ATR t/ha). A randomized block design with 4 repeats was used. Combined variance of the experiments, genetic parameter estimates, and environment stratification were analyzed. Phenotypic adaptability and stability were analyzed using the Annicchiarico and Wricke methods and analysis of variance. Genetic gain was estimated using the classic index and sum of ranks. Genotype selection was efficient for TPH, TCH, and ATR t/ha. Genotypes presented a great potential for improvement and a similar response pattern in Litoral Norte and Mata Sul microregions for TPH and TCH and Litoral Norte and Litoral Sul microregions for ATR t/ha. Genotypes SP78-4764, RB813804, and SP79-101 showed better productivity and phenotypic adaptability and stability, according to the Wricke and Annicchiarico methods. These genotypes can be recommended for cultivation in the sugarcane belt in the State of Pernambuco.
NASA Astrophysics Data System (ADS)
Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim
2014-05-01
The root systems of most terrestrial plants are confronted to various abiotic and biotic stresses. One of these abiotic stresses is contamination of soil with petroleum hydrocarbon, which the efficiency of phytoremediation of petroleum hydrocarbons in soils is dependent on the ability of plant roots to development into the contaminated soils. Piriformospora indica represents a recently discovered fungus that transfers considerable beneficial impact to its host plants. A rhizotron experiment was conducted to study the effects of P. Indica inoculation on root distribution and root and shoot development of maize (Zea mays L.) in the presence of three patterns of petroleum contamination in the soil (subsurface contamination, continuous contamination and without contamination (control)). Root distribution and root and shoot development were monitored over time. The final root and shoot biomass and the final TPH concentration in the rhizosphere were determined. Analysis of digitized images which were prepared of the tracing of the appeared roots along the front rhizotrons showed the depth and total length of root network in the contamination treatments were significantly decreased. Although the degradation of TPH in the rhizosphere of maize was significant, but there were no significant differences between degradation of TPH in the rhizosphere of +P. indica plants in comparison to -P. indica plants.
Wu, Manli; Ye, Xiqiong; Chen, Kaili; Li, Wei; Yuan, Jing; Jiang, Xin
2017-04-01
A laboratory study was conducted to evaluate the impact of bioaugmentation plus biostimulation (BR, added both nutrients and bacterial consortia), and natural attenuation (NA) on hydrocarbon degradation efficiency and microflora characterization during remediation of a freshly contaminated soil. After 112 days of remediation, the initial level of total petroleum hydrocarbon (TPH) (61,000 mg/kg soil) was reduced by 4.5% and 5.0% in the NA and BR treatments, respectively. Bioremediation did not significantly enhance TPH biodegradation compared to natural attenuation. The degradation of the aliphatic fraction was the most active with the degradation rate of 30.3 and 28.7 mg/kg/day by the NA and BR treatments, respectively. Soil microbial activities and counts in soil were generally greater for bioremediation than for natural attenuation. MiSeq sequencing indicated that the diversity and structure of microbial communities were affected greatly by bioremediation. In response to bioremediation treatment, Promicromonospora, Pseudomonas, Microcella, Mycobacterium, Alkanibacter, and Altererythrobacter became dominant genera in the soil. The result indicated that combining bioaugmentation with biostimulation did not improve TPH degradation, but soil microbial activities and structure of microbial communities are sensitive to bioremediation in short-term and heavily oil-contaminated soil. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gutknecht, Lise; Popp, Sandy; Waider, Jonas; Sommerlandt, Frank M J; Göppner, Corinna; Post, Antonia; Reif, Andreas; van den Hove, Daniel; Strekalova, Tatyana; Schmitt, Angelika; Colaςo, Maria B N; Sommer, Claudia; Palme, Rupert; Lesch, Klaus-Peter
2015-07-01
While brain serotonin (5-HT) function is implicated in gene-by-environment interaction (GxE) impacting the vulnerability-resilience continuum in neuropsychiatric disorders, it remains elusive how the interplay of altered 5-HT synthesis and environmental stressors is linked to failure in emotion regulation. Here, we investigated the effect of constitutively impaired 5-HT synthesis on behavioral and neuroendocrine responses to unpredictable chronic mild stress (CMS) using a mouse model of brain 5-HT deficiency resulting from targeted inactivation of the tryptophan hydroxylase-2 (Tph2) gene. Locomotor activity and anxiety- and depression-like behavior as well as conditioned fear responses were differentially affected by Tph2 genotype, sex, and CMS. Tph2 null mutants (Tph2(-/-)) displayed increased general metabolism, marginally reduced anxiety- and depression-like behavior but strikingly increased conditioned fear responses. Behavioral modifications were associated with sex-specific hypothalamic-pituitary-adrenocortical (HPA) system alterations as indicated by plasma corticosterone and fecal corticosterone metabolite concentrations. Tph2(-/-) males displayed increased impulsivity and high aggressiveness. Tph2(-/-) females displayed greater emotional reactivity to aversive conditions as reflected by changes in behaviors at baseline including increased freezing and decreased locomotion in novel environments. However, both Tph2(-/-) male and female mice were resilient to CMS-induced hyperlocomotion, while CMS intensified conditioned fear responses in a GxE-dependent manner. Our results indicate that 5-HT mediates behavioral responses to environmental adversity by facilitating the encoding of stress effects leading to increased vulnerability for negative emotionality.
Common variants in the TPH2 promoter confer susceptibility to paranoid schizophrenia.
Yi, Zhenghui; Zhang, Chen; Lu, Weihong; Song, Lisheng; Liu, Dentang; Xu, Yifeng; Fang, Yiru
2012-07-01
Serotonergic system-related genes may be good candidates in investigating the genetic basis of schizophrenia. Our previous study suggested that promoter region of tryptophan hydroxylase 2 gene (TPH2) may confer the susceptibility to paranoid schizophrenia. In this study, we investigated whether common variants within TPH2 promoter may predispose to paranoid schizophrenia in Han Chinese. A total of 509 patients who met DSM-IV criteria for paranoid schizophrenia and 510 matched healthy controls were recruited for this study. Five polymorphisms within TPH2 promoter region were tested. No statistically significant differences were found in allele or genotype frequencies between schizophrenic patients and healthy controls. The frequency of the rs4448731T-rs6582071A-rs7963803A-rs4570625T-rs11178997A haplotype was significantly higher in cases compared to the controls (P = 0.003; OR = 1.49; 95% CI, 1.15-1.95). Our results suggest that the common variants within TPH2 promoter are associated with paranoid schizophrenia in Han Chinese. Further studies in larger samples are warranted to elucidate the role of TPH2 in the etiology of paranoid schizophrenia.
Polymorphism of the Tryptophan Hydroxylase 2 (TPH2) Gene Is Associated with Chimpanzee Neuroticism
Morimura, Naruki; Udono, Toshifumi; Hayasaka, Ikuo; Humle, Tatyana; Murayama, Yuichi; Ito, Shin'ichi; Inoue-Murayama, Miho
2011-01-01
In the brain, serotonin production is controlled by tryptophan hydroxylase 2 (TPH2), a genotype. Previous studies found that mutations on the TPH2 locus in humans were associated with depression and studies of mice and studies of rhesus macaques have shown that the TPH2 locus was involved with aggressive behavior. We previously reported a functional single nucleotide polymorphism (SNP) in the form of an amino acid substitution, Q468R, in the chimpanzee TPH2 gene coding region. In the present study we tested whether this SNP was associated with neuroticism in captive and wild-born chimpanzees living in Japan and Guinea, respectively. Even after correcting for multiple tests (Bonferroni p = 0.05/6 = 0.008), Q468R was significantly related to higher neuroticism (β = 0.372, p = 0.005). This study is the first to identify a genotype linked to a personality trait in chimpanzees. In light of the prior studies on humans, mice, and rhesus macaques, these findings suggest that the relationship between neuroticism and TPH2 has deep phylogenetic roots. PMID:21765945
Moyer, Richard A; Hummer, Kim E; Finn, Chad E; Frei, Balz; Wrolstad, Ronald E
2002-01-30
Fruits from 107 genotypes of Vaccinium L., Rubus L., and Ribes L., were analyzed for total anthocyanins (ACY), total phenolics (TPH), and antioxidant capacities as determined by oxygen radical absorbing capacity (ORAC) and ferric reducing antioxidant power (FRAP). Fruit size was highly correlated (r = 0.84) with ACY within Vaccinium corymbosum L., but was not correlated to ACY across eight other Vaccinium species, or within 27 blackberry hybrids. Certain Vaccinium and Ribes fruits with pigmented flesh were lower in ACY, TPH, ORAC, and FRAP compared to those values in berries with nonpigmented flesh. ORAC values ranged from 19 to 131 micromol Trolox equivalents/g in Vaccinium, from 13 to 146 in Rubus, and from 17 to 116 in Ribes. Though ACY may indicate TPH, the range observed in ACY/TPH ratios precludes prediction of ACY from TPH and vice versa for a single genotype. In general, TPH was more highly correlated to antioxidant capacity than ACY was. This study demonstrates the wide diversity of phytochemical levels and antioxidant capacities within and across three genera of small fruit.
Zubair, Abdulrazaq; Pappoe, Michael; James, Lesley A; Hawboldt, Kelly
2015-12-18
This paper presents an important new approach to improving the timeliness of Total Petroleum Hydrocarbon (TPH) analysis in the soil by Gas Chromatography - Flame Ionization Detector (GC-FID) using the CCME Canada-Wide Standard reference method. The Canada-Wide Standard (CWS) method is used for the analysis of petroleum hydrocarbon compounds across Canada. However, inter-laboratory application of this method for the analysis of TPH in the soil has often shown considerable variability in the results. This could be due, in part, to the different gas chromatography (GC) conditions, other steps involved in the method, as well as the soil properties. In addition, there are differences in the interpretation of the GC results, which impacts the determination of the effectiveness of remediation at hydrocarbon-contaminated sites. In this work, multivariate experimental design approach was used to develop and validate the analytical method for a faster quantitative analysis of TPH in (contaminated) soil. A fractional factorial design (fFD) was used to screen six factors to identify the most significant factors impacting the analysis. These factors included: injection volume (μL), injection temperature (°C), oven program (°C/min), detector temperature (°C), carrier gas flow rate (mL/min) and solvent ratio (v/v hexane/dichloromethane). The most important factors (carrier gas flow rate and oven program) were then optimized using a central composite response surface design. Robustness testing and validation of model compares favourably with the experimental results with percentage difference of 2.78% for the analysis time. This research successfully reduced the method's standard analytical time from 20 to 8min with all the carbon fractions eluting. The method was successfully applied for fast TPH analysis of Bunker C oil contaminated soil. A reduced analytical time would offer many benefits including an improved laboratory reporting times, and overall improved clean up efficiency. The method was successfully applied for the analysis of TPH of Bunker C oil in contaminated soil. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Zhou, Ai-xia; Zhang, Yu-ling; Dong, Tian-zi; Lin, Xue-yu; Su, Xiao-si
2015-07-01
The effects of seasonal groundwater level fluctuations on the contamination characteristics of total petroleum hydrocarbons (TPH) in soils, groundwater, and the microbial community were investigated at a typical petrochemical site in northern China. The measurements of groundwater and soil at different depths showed that significant TPH residue was present in the soil in this study area, especially in the vicinity of the pollution source, where TPH concentrations were up to 2600 mg kg(-1). The TPH concentration in the groundwater fluctuated seasonally, and the maximum variation was 0.8 mg L(-1). The highest TPH concentrations were detected in the silty clay layer and lied in the groundwater level fluctuation zones. The groundwater could reach previously contaminated areas in the soil, leading to higher groundwater TPH concentrations as TPH leaches into the groundwater. The coincident variation of the electron acceptors and TPH concentration with groundwater-table fluctuations affected the microbial communities in groundwater. The microbial community structure was significantly different between the wet and dry seasons. The canonical correspondence analysis (CCA) results showed that in the wet season, TPH, NO3(-), Fe(2+), TMn, S(2-), and HCO3(-) were the major factors correlating the microbial community. A significant increase in abundance of operational taxonomic unit J1 (97% similar to Dechloromonas aromatica sp.) was also observed in wet season conditions, indicating an intense denitrifying activity in the wet season environment. In the dry season, due to weak groundwater level fluctuations and low temperature of groundwater, the microbial activity was weak. But iron and sulfate-reducing were also detected in dry season at this site. As a whole, groundwater-table fluctuations would affect the distribution, transport, and biodegradation of the contaminants. These results may be valuable for the control and remediation of soil and groundwater pollution at this site and in other petrochemical-contaminated areas. Furthermore, they are probably helpful for reducing health risks to the general public from contaminated groundwater.
Couto, M Nazaré P F S; Monteiro, Emanuela; Vasconcelos, M Teresa S D
2010-08-01
Contamination with petroleum hydrocarbons (PHC) is a global problem with environmental implications. Physico-chemical treatments can be used for soil cleanup, but they are expensive, and can have implications for soil structure and environment. Otherwise, biological remediation treatments are cost-effective and restore soil structure. Several remediation experiments have been carried out in the lab and in the field; however, there is the challenge to achieve as good or better results in the field as in the laboratory. In the ambit of a project aiming at investigating suitable biological remediation approaches for recovering a refinery contaminated soil, we present here results obtained in bioremediation trials. The approaches biostimulation and bioaugmentation were tested, in parallel, and compared with natural attenuation. For this purpose, mesocosm experiments were carried out inside the refinery area, which constitutes a real asset of this work. Soil contaminated with crude oil was excavated, re-contaminated with turbine oil, homogenised and used to fill several 0.5 m(3) high-density polyethylene containers. The efficiency of procedures as follows: (1) natural attenuation; (2) manual aeration; (3) biostimulation by adding (3.1) only nutrients; and (3.2) nutrients and a non-ionic surfactant; and (4) bioaugmentation in the presence of added (4.1) nutrients or (4.2) nutrients and a non-ionic surfactant were evaluated after a 9-month period of experiment. For bioaugmentation, a commercial bacterial product was used. In addition to physico-chemical characterization, initial and final soil contents in total petroleum hydrocarbons (TPH) (by Fourier transform infrared spectrophotometry) and the total number of bacteria (by total cell counts) were carried out. For TPH degradation evaluation the soil was divided in four fractions corresponding to different depths: 0-5; 5-10; 10-15; and 15-20 cm. Mean values of percentages of PHC degradation varied between 20 and 50% at surface and between 10 and 35% below 5-cm depth. Natural attenuation was as efficient as most of the tested treatments (about 30% TPH degradation) being exceeded only by bioaugmentation combined with nutrient and surfactant amendments (about 50% TPH degradation). Higher TPH degradation at surface suggests that a combination of sufficient dioxygen, propitious for aerobically degradation, with sunlight required for production of strong photochemical oxidants like ozone, contributed for enhancing degradation. Indeed, the atmosphere of the refineries is relatively rich in volatile organic compounds and nitrogen dioxide (a side-product of the combustion of residual volatile PHC released by the chimneys), which are precursors of O(3) and other photochemical oxidants produced in sunny days, which are very common in Portugal. The fact that natural attenuation was as efficient as most of the soil treatments tested was very probably a result of the presence, in the initial soil, of physiologically adapted native microorganisms, which could be efficient in degrading PHC. A cost-effective way to reduce half-life for the degradation of PHC of contaminated soil of the refinery will be a periodic revolving of the soil, like tillage, in order to expose to the oxidative atmosphere the different layers of contaminated soil. A combination of soil revolving with bioaugmentation together with nutrients and surfactant amendments may result in an additional improvement of PHC degradation rate. However, this last procedure will raise markedly the price of the remediation treatment.
Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice
Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph
2013-01-01
The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271
Montgomery, Jacob E.; Wiggin, Timothy D.; Rivera-Perez, Luis M.; Lillesaar, Christina; Masino, Mark A.
2015-01-01
Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question. Because the pet1 and tph2 promoters drive transgene expression in the spinal cord, we hypothesized that tph2 is expressed in spinal cords of zebrafish larvae. We confirmed this hypothesis through in situ hybridization. Next, we used 5-HT antibody labeling and transgenic markers of tph2-expressing neurons to identify a transient population of ISNs in embryos that was distinct from ISNs that appeared later in development. The existence of separate ISN populations may not have been recognized previously due to their shared location in the ventral spinal cord. Finally, we used transgenic markers and immunohistochemical labeling to identify the transient ISN population as GABAergic Kolmer-Agduhr double-prime (KA″) neurons. Altogether, this study revealed a novel developmental paradigm in which KA″ neurons are transiently serotonergic before the appearance of a stable population of tph2-expressing ISNs. PMID:26437856
Yu, Qi; Xie, Hong-Bin; Chen, Jingwen
2016-11-15
Many studies have been performed to evaluate the environmental risk caused by alternative flame retardants (AFRs) of polybrominated diphenyl ethers due to their ubiquitous occurrence in the environment. However, as an indispensable component of the environmental risk assessment, the information on atmospheric fate of AFRs is limited although some AFRs have been frequently and highly detected in the atmosphere. Here, a combined quantum chemical method and kinetics modeling were used to investigate atmospheric transformation mechanism and kinetics of AFRs initiated by OH in the presence of O2, taking triphenyl phosphate (TPhP) as a case. Results show that the pathway involving initial OH addition to phenyl of TPhP to form TPhP-OH adduct, and subsequent reaction of the TPhP-OH adduct with O2 to finally form phenol phosphate, is the most favorable for the titled reaction. The calculated overall reaction rate constant is 1.6×10(-12)cm(3) molecule(-1)s(-1), translating 7.6days atmospheric lifetime of TPhP. This clarifies that gaseous TPhP has atmospheric persistence. In addition, it was found that ice surface, as a case of ubiquitous water in the atmosphere, has little effect on the kinetics of the rate-determining step in the OH-initiated TPhP reaction. Copyright © 2016 Elsevier B.V. All rights reserved.
Baek, Ji Hyun; Kim, Byeong Jo; Han, Gill Sang; Hwang, Sung Won; Kim, Dong Rip; Cho, In Sun; Jung, Hyun Suk
2017-01-18
Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO 4 /WO 3 /SnO 2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO 2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO 3 deposition, leading to the formation of a double layer of dense WO 3 and a WO 3 /SnO 2 mixture at the bottom. Subsequently, a BiVO 4 nanoparticle film was deposited by spin coating. Importantly, the WO 3 /(WO 3 +SnO 2 ) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO 4 /WO 3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm 2 at 1.23 V vs RHE) compared to the previously reported BiVO 4 /WO 3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoO x electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).
Heredia, Dante J; Gershon, Michael D; Koh, Sang Don; Corrigan, Robert D; Okamoto, Takanubu; Smith, Terence K
2013-12-01
Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1(-/-) mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT. We used video analysis of faecal pellet propulsion, tension transducers to record colonic migrating motor complexes (CMMCs) and intracellular microelectrodes to record circular muscle activity occurring spontaneously or following intraluminal distension. When compared with control (Tph1(+/+)) mice, Tph1(-/-) animals exhibited: (1) an elongated colon; (2) larger faecal pellets; (3) orthograde propulsion followed by retropulsion (not observed in Tph1(+/+) colon); (4) slower in vitro propulsion of larger faecal pellets (28% of Tph1(+/+)); (5) CMMCs that infrequently propagated in an oral to anal direction because of impaired descending inhibition; (6) reduced CMMCs and inhibitory responses to intraluminal balloon distension; (7) an absence of reflex activity in response to mucosal stimulation. In addition, (8) thin pellets that propagated along the control colon failed to do so in Tph1(-/-) colon; and (9) the 5-HT3 receptor antagonist ondansetron, which reduced CMMCs and blocked their propagation in Tph1(+/+) mice, failed to alter CMMCs in Tph1(-/-) animals. Our observations suggest that mucosal 5-HT is essential for reflexes driven by mucosal stimulation and is also important for normal propagation of CMMCs and propulsion of pellets in the isolated colon.
Berger, Stefan M; Weber, Tillmann; Perreau-Lenz, Stephanie; Vogt, Miriam A; Gartside, Sarah E; Maser-Gluth, Christiane; Lanfumey, Laurence; Gass, Peter; Spanagel, Rainer; Bartsch, Dusan
2012-01-01
The association of single-nucleotide polymorphisms (SNPs) in the human tryptophan hydroxylase 2 (TPH2) gene with anxiety traits and depression has been inconclusive. Observed inconsistencies might result from the fact that TPH2 polymorphisms have been studied in a genetically heterogeneous human population. A defined genetic background, control over environmental factors, and the ability to analyze the molecular and neurochemical consequences of introduced genetic alterations constitute major advantages of investigating SNPs in inbred laboratory mouse strains. To investigate the behavioral and neurochemical consequences of a functional C1473G SNP in the mouse Tph2 gene, we generated congenic C57BL/6N mice homozygous for the Tph2 1473G allele. The Arg447 substitution in the TPH2 enzyme resulted in a significant reduction of the brain serotonin (5-HT) in vivo synthesis rate. Despite decreased 5-HT synthesis, we could detect neither a reduction of brain region-specific 5-HT concentrations nor changes in baseline and stress-induced 5-HT release using a microdialysis approach. However, using a [35S]GTP-γ-S binding assay and 5-HT1A receptor autoradiography, a functional desensitization of 5-HT1A autoreceptors could be identified. Furthermore, behavioral analysis revealed a distinct anxiety phenotype in homozygous Tph2 1473G mice, which could be reversed with chronic escitalopram treatment. Alterations in depressive-like behavior could not be detected under baseline conditions or after chronic mild stress. These findings provide evidence for an involvement of functional Tph2 polymorphisms in anxiety-related behaviors, which are likely not caused directly by alterations in 5-HT content or release but are rather due to compensatory changes during development involving functional desensitization of 5-HT1A autoreceptors. PMID:22491354
Physical Weight Loading Induces Expression of Tryptophan Hydroxylase 2 in the Brain Stem
Shim, Joon W.; Dodge, Todd R.; Hammond, Max A.; Wallace, Joseph M.; Zhou, Feng C.; Yokota, Hiroki
2014-01-01
Sustaining brain serotonin is essential in mental health. Physical activities can attenuate mental problems by enhancing serotonin signaling. However, such activity is not always possible in disabled individuals or patients with dementia. Knee loading, a form of physical activity, has been found to mimic effects of voluntary exercise. Focusing on serotonergic signaling, we addressed a question: Does local mechanical loading to the skeleton elevate expression of tryptophan hydroxylase 2 (tph2) that is a rate-limiting enzyme for brain serotonin? A 5 min knee loading was applied to mice using 1 N force at 5 Hz for 1,500 cycles. A 5-min treadmill running was used as an exercise (positive) control, and a 90-min tail suspension was used as a stress (negative) control. Expression of tph2 was determined 30 min – 2 h in three brain regions ––frontal cortex (FC), ventromedial hypothalamus (VMH), and brain stem (BS). We demonstrated for the first time that knee loading and treadmill exercise upregulated the mRNA level of tph2 in the BS, while tail suspension downregulated it. The protein level of tph2 in the BS was also upregulated by knee loading and downregulated by tail suspension. Furthermore, the downregulation of tph2 mRNA by tail suspension can be partially suppressed by pre-application of knee loading. The expression of tph2 in the FC and VMH was not significantly altered with knee loading. In this study we provided evidence that peripheral mechanical loading can activate central tph2 expression, suggesting that physical cues may mediate tph2-cathalyzed serotonergic signaling in the brain. PMID:24416346
Zhang, Wen; Li, Jianbing; Huang, Guohe; Song, Weikun; Huang, Yuefei
2011-01-01
The effect of bio-surfactant (rhamnolipid) on the remediation of crude oil and salt contaminated soil was investigated in this study. The experimental results indicated that there was a distinct decline of total petroleum hydrocarbon (TPH) concentration within the soil when using rhamnolipid during a remediation period of 30 days, with maximum TPH reduction of 86.97%. The most effective remediation that was observed was with rhamnolipid at a concentration of 2 CMC in soil solution, and a first-order TPH degradation rate constant of 0.0866 d(-1). The results also illustrated that salts in soil had a negative impact on TPH reduction, and the degradation rate was negatively correlated with NaCl concentration in soil solution. The analysis of soil TPH fractions indicated that there was a significant reduction of C13-C30 during the remediation process when using bio-surfactant.
Akamatsu, Masaaki; Mori, Taizo; Okamoto, Ken; Komatsu, Hirokazu; Kumagai, Ken; Shiratori, Seimei; Yamamura, Masaki; Nabeshima, Tatsuya; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko
2015-03-25
An alcohol sensor was developed using the solid-state fluorescence emission of terphenyl-ol (TPhOH) derivatives. Admixtures of TPhOH and sodium carbonate exhibited bright sky-blue fluorescence in the solid state upon addition of small quantities of ethanol. A series of terphenol derivatives was synthesized, and the effects of solvent polarities and the structures of these π-conjugated systems on their fluorescence were systematically investigated by using fluorescence spectroscopy. In particular, π-extended TPhOHs and TPhOHs containing electron-withdrawing groups exhibited significant solvatochromism, and fluorescence colors varied from blue to red. Detection of ethanol contents in alcohol beverages (detection limit ∼ 5 v/v %) was demonstrated using different TPhOHs revealing the effect of molecular structure on sensing properties. Ethanol contents in alcoholic beverages could be estimated from the intensity of the fluorescence elicited from the TPhOHs. Moreover, when terphenol and Na2CO3 were combined with a water-absorbent polymer, ethanol could be detected at lower concentrations. Detection of ethanol vapor (8 v/v % in air) was also accomplished using a nanofibrous polymer scaffold as the immobilized sensing film.
Xu, X M; Ding, M; Pang, H; Wang, B J
2014-03-12
In the last years, serotonin (5-HT) has been related with the pathophysiology of several psychiatric disorders, including schizophrenia. Thus, genes related to the serotonergic (5-HTergic) system are good candidate genes for schizophrenia. The rate-limiting enzyme of 5-HT synthesis is tryptophan hydroxylase 2 (TPH2). Single nucleotide polymorphisms (SNPs) in the regulatory regions of TPH2 gene may affect gene expression and biosynthesis of 5-HT triggering to various neuropsychiatric disorders related to 5-HT dysfunction. The present study explored the association of SNPs within the TPH2 gene with paranoid schizophrenia in Han Chinese. A total of 164 patients with schizophrenia and 244 healthy controls were genotyped for six TPH2 SNPs (rs4570625, rs11178997, rs11178998, rs41317118, rs17110747, and rs41317114). Significant group differences were observed in the allele and genotype frequencies of rs4570625 and in the frequencies of GTA and TTA haplotypes corresponding to rs4570625-rs11178997-rs11178998. Our findings suggest that common genetic variations of TPH2 are likely to contribute to genetic susceptibility to paranoid schizophrenia in Han Chinese. Further studies in larger samples are needed to replicate this association.
Rajathei, David Mary; Preethi, Jayakumar; Singh, Hemant K; Rajan, Koilmani Emmanuvel
2014-08-01
Tryptophan hydroxylase (TPH) catalyses l-tryptophan into 5-hydroxy-l-tryptophan, which is the first and rate-limiting step of serotonin (5-HT) biosynthesis. Earlier, we found that TPH2 up-regulated in the hippocampus of postnatal rats after the oral treatment of Bacopa monniera leaf extract containing the active compound bacosides. However, the knowledge about the interactions between bacosides with TPH is limited. In this study, we take advantage of in silico approach to understand the interaction of bacoside-TPH complex using three different docking algorithms such as HexDock, PatchDock and AutoDock. All these three algorithms showed that bacoside A and A3 well fit into the cavity consists of active sites. Further, our analysis revealed that major active compounds bacoside A3 and A interact with different residues of TPH through hydrogen bond. Interestingly, Tyr235, Thr265 and Glu317 are the key residues among them, but none of them are either at tryptophan or BH4 binding region. However, its note worthy to mention that Tyr 235 is a catalytic sensitive residue, Thr265 is present in the flexible loop region and Glu317 is known to interacts with Fe. Interactions with these residues may critically regulate TPH function and thus serotonin synthesis. Our study suggested that the interaction of bacosides (A3/A) with TPH might up-regulate its activity to elevate the biosynthesis of 5-HT, thereby enhances learning and memory formation.
Ha, Xiaoqin; Peng, Junhua; Zhao, Hongbin; Deng, Zhiyun; Dong, Juzi; Fan, Hongyan; Zhao, Yong; Li, Bing; Feng, Qiangsheng; Yang, Zhihua
2017-02-01
The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 10⁹ cfu), vehicle (TP, 1 × 10⁹ cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm², which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm², respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm², which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site.
2017-01-01
The present study developed an oral hepatocyte growth factor (HGF) gene therapy strategy for gastric ulcers treatment. An attenuated Salmonella typhimurium that stably expressed high HGF (named as TPH) was constructed, and the antiulcerogenic effect of TPH was evaluated in a rat model of gastric ulcers that created by acetic acid subserosal injection. From day 5 after injection, TPH (1 × 109 cfu), vehicle (TP, 1 × 109 cfu), or sodium bicarbonate (model control) was administered orally every alternate day for three times. Then ulcer size was measured at day 21 after ulcer induction. The ulcer area in TPH-treated group was 10.56 ± 3.30 mm2, which was smaller when compared with those in the TP-treated and model control groups (43.47 ± 4.18 and 56.25 ± 6.38 mm2, respectively). A higher level of reepithelialization was found in TPH-treated group and the crawling length of gastric epithelial cells was significantly longer than in the other two groups (P < 0.05). The microvessel density in the ulcer granulation tissues of the TPH-treated rats was 39.9 vessels/mm2, which was greater than in the TP-treated and model control rats, with a significant statistical difference. These results suggest that TPH treatment significantly accelerates the healing of gastric ulcers via stimulating proliferation of gastric epithelial cells and enhancing angiogenesis on gastric ulcer site. PMID:28049228
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
... Holder firm. Each FBW user has an FBW Login ID. The Exchange proposes to charge a Requesting TPH $100 per Login ID per month. There will be a cap of $2,000 per month for any Requesting TPH. Therefore, any TPH that requests access to the FBW Market Access Controls Window for more than 20 login IDs will not be...
Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances.
Pinedo, J; Ibáñez, R; Lijzen, J P A; Irabien, Á
2013-11-30
Different oil products like gasoline, diesel or heavy oils can cause soil contamination. The assessment of soils exposed to oil products can be conducted through the comparison between a measured concentration and an intervention value (IV). Several national policies include the IV based on the so called total petroleum hydrocarbons (TPH) measure. However, the TPH assessment does not indicate the individual substances that may produce contamination. The soil quality assessment can be improved by including common hazardous compounds as polycyclic aromatic hydrocarbons (PAHs) and aromatic volatile hydrocarbons like benzene, toluene, ethylbenzene and xylenes (BTEX). This study, focused on 62 samples collected from different sites throughout The Netherlands, evaluates TPH, PAH and BTEX concentrations in soils. Several indices of pollution are defined for the assessment of individual variables (TPH, PAH, B, T, E, and X) and multivariables (MV, BTEX), allowing us to group the pollutants and simplify the methodology. TPH and PAH concentrations above the IV are mainly found in medium and heavy oil products such as diesel and heavy oil. On the other hand, unacceptable BTEX concentrations are reached in soils contaminated with gasoline and kerosene. The TPH assessment suggests the need for further action to include lighter products. The application of multivariable indices allows us to include these products in the soil quality assessment without changing the IV for TPH. This work provides useful information about the soil quality assessment methodology of oil products in soils, focussing the analysis into the substances that mainly cause the risk. Copyright © 2013 Elsevier Ltd. All rights reserved.
Saidi, Sami; Ben Amar, Raja
2016-10-01
The enzymatic hydrolysis using Prolyve BS coupled to membrane process (Ultrafiltration (UF) and nanofiltration (NF)) is a means of biotransformation of tuna protein waste to Tuna protein hydrolysate (TPH) with higher added values. This method could be an effective solution for the production of bioactive compounds used in various biotechnological applications and minimizing the pollution problems generated by the seafood processing industries. The amino acid composition, functional and antioxidant properties of produced TPH were evaluated. The results show that the glutamic acid, aspartic acid, glycine, alaline, valine and leucine were the major amino acids detected in the TPH profile. After membrane fractionation process, those major amino acids were concentrated in the NF retentate (NFR). The NFR and NF permeate (NFP) have a higher protein solubility (>95 %) when compared to TPH (80 %). Higher oil and water binding capacity were observed in TPH and higher emulsifying and foam stability was found in UF retentate. The NFP showed the highest DPPH radical scavenging activity (65 %). The NFR contained antioxidant amino acid (30.3 %) showed the highest superoxide radical and reducing power activities. The TPH showed the highest iron chelating activity (75 %) compared to other peptide fractions. The effect of the membrane fractionation on the molecular weight distribution of the peptide and their bioactivities was underlined. We concluded that the TPH is a valuable source of bioactive peptides and their peptide fractions may serve as useful ingredients for application in food industry and formulation of nutritional products.
Heredia, Dante J; Gershon, Michael D; Koh, Sang Don; Corrigan, Robert D; Okamoto, Takanubu; Smith, Terence K
2013-01-01
Although there is general agreement that mucosal 5-hydroxytryptamine (5-HT) can initiate peristaltic reflexes in the colon, recent studies have differed as to whether or not the role of mucosal 5-HT is critical. We therefore tested the hypothesis that the secretion of 5-HT from mucosal enterochromaffin (EC) cells is essential for the manifestation of murine colonic peristaltic reflexes. To do so, we analysed the mechanisms underlying faecal pellet propulsion in isolated colons of mice lacking tryptophan hydroxylase 1 (Tph1−/− mice), which is the rate-limiting enzyme in the biosynthesis of mucosal but not neuronal 5-HT. We used video analysis of faecal pellet propulsion, tension transducers to record colonic migrating motor complexes (CMMCs) and intracellular microelectrodes to record circular muscle activity occurring spontaneously or following intraluminal distension. When compared with control (Tph1+/+) mice, Tph1−/− animals exhibited: (1) an elongated colon; (2) larger faecal pellets; (3) orthograde propulsion followed by retropulsion (not observed in Tph1+/+ colon); (4) slower in vitro propulsion of larger faecal pellets (28% of Tph1+/+); (5) CMMCs that infrequently propagated in an oral to anal direction because of impaired descending inhibition; (6) reduced CMMCs and inhibitory responses to intraluminal balloon distension; (7) an absence of reflex activity in response to mucosal stimulation. In addition, (8) thin pellets that propagated along the control colon failed to do so in Tph1−/− colon; and (9) the 5-HT3 receptor antagonist ondansetron, which reduced CMMCs and blocked their propagation in Tph1+/+ mice, failed to alter CMMCs in Tph1−/− animals. Our observations suggest that mucosal 5-HT is essential for reflexes driven by mucosal stimulation and is also important for normal propagation of CMMCs and propulsion of pellets in the isolated colon. PMID:24127620
Maeda, Toshihisa; Miura, Yasushi; Fukuda, Koji; Hayashi, Shinya; Kurosaka, Masahiro
2015-10-01
Decoy receptor 3 (DcR3) is expressed in rheumatoid arthritis fibroblast‑like synoviocytes (RA‑FLS) and downregulates the expression of tryptophan hydroxylase 1 (TPH1), which is the rate‑limiting enzyme in serotonin synthesis. The aim of the present study was to determine the specificity of the effects of DcR3 on TPH1 in RA‑FLS, and therefore determine whether DcR3 had the potential to modulate the pathogenesis of RA. The present study also aimed to compare the effects of DcR3 and inflammatory cytokines on the expression of TPH1 in RA‑FLS and osteoarthritis (OA)‑FLS. Primary cultured RA‑ or OA‑FLS were incubated with 1.0 µg/ml DcR3‑Fc protein or 1.0 µg/ml control immunoglobulin G (IgG)1 for 12 h, or with 1.0 ng/ml tumor necrosis factor (TNF)α, 1.0 ng/ml interleukin (IL)‑1β or serum‑free Opti‑MEM only, for 24 h. The relative mRNA expression levels of TPH1 were subsequently quantified using reverse transcription‑polymerase chain reaction. The expression of serotonin in RA or OA synovial tissue was detected using immunohistochemistry. The mRNA expression of TPH1 was observed in both RA‑ and OA‑FLS and was significantly decreased following treatment with DcR3 in the RA‑FLS, however, not in the OA‑FLS. The mRNA expression of TPH1 was significantly decreased following treatment with TNFα or IL‑1β in both the RA‑ and OA‑FLS. The expression of serotonin in the multi‑layered lining synovial cells of RA and the outer layer lining synovial cells of OA was detected using immunohistochemistry. The present study is the first, to the best of our knowledge, to demonstrate that the expression of TPH1 in FLS is downregulated by inflammatory cytokines, and that DcR3 suppressed the expression of TPH1 in RA‑FLS in a disease‑specific manner. These results suggested that synovial serotonin may be involved in the pathogenesis of RA, and that TPH1 and DcR3 may be potential therapeutic targets for the treatment of RA.
Ebadi, Ali; Khoshkholgh Sima, Nayer Azam; Olamaee, Mohsen; Hashemi, Maryam; Ghorbani Nasrabadi, Reza
2018-08-01
The negative impact of salinity on plant growth and the survival of rhizosphere biota complicates the application of bioremediation to crude oil-contaminated saline soils. Here, a comparison was made between the remedial effect of treating the soil with Pseudomonas aeruginosa, a salinity tolerant hydrocarbon-degrading consortium in conjunction with either the halophyte Salicornia persica or the non-halophyte Festuca arundinacea. The effect of the various treatments on salinized soils was measured by assessing the extent of total petroleum hydrocarbon (TPH) degradation, the soil's dehydrogenase activity, the abundance of the bacteria and the level of phytotoxicity as measured by a bioassay. When a non-salinized soil was assessed after a treatment period of 120 days, the ranking for effectiveness with respect to TPH removal was F. arundinacea > P. aeruginosa > S. persica > no treatment control, while in the presence of salinity, the ranking changed to S. persica > P. aeruginosa > F. arundinacea > no treatment control. Combining the planting of S. persica or F. arundinacea with P. aeruginosa inoculation ("bioaugmentation") boosted the degradation of TPH up to 5-17%. Analyses of the residual oil contamination revealed that long chain alkanes (above C20) were particularly strongly degraded following the bioaugmentation treatments. The induced increase in dehydrogenase activity and the abundance of the bacteria (3.5 and 10 fold respectively) achieved in the bioaugmentation/S. persica treatment resulted in 46-76% reduction in soil phytotoxicity in a saline soil. The indication was that bioaugmentation of halophyte can help to mitigate the adverse effects on the effectiveness of bioremediation in a crude oil-contaminated saline soil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Liduino, Vitor S; Servulo, Eliana F C; Oliveira, Fernando J S
2018-06-07
This study evaluated the use of commercial rhamnolipid biosurfactant supplementation in the phytoremediation of a soil via sunflower (Helianthus annuus L.) cultivation. The soil, obtained from an industrial area, was co-contaminated with heavy metals and petroleum hydrocarbons. The remediation tests were monitored for 90 days. The best results for removal of contaminants were obtained from the tests in which the sunflower plants were cultivated in soil with 4 mg kg -1 of the rhamnolipid. Under these conditions, reductions of 58% and 48% were obtained in the total petroleum hydrocarbon (TPH) and polycyclic aromatic hydrocarbon (PAH) concentrations, respectively; reductions in the concentrations of the following metals were also achieved: Ni (41%), Cr (30%), Pb (29%), and Zn (20%). The PCR-DGGE analysis of soil samples collected before and after the treatments verified that the plant cultivation and biosurfactants supplementation had little effect on the structure of the dominant bacterial community in the soil. The results indicated that sunflower cultivation with the addition of a biosurfactant is a viable and efficient technology to treat soils co-contaminated with heavy metals and petroleum hydrocarbons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korenkova, Eva; Matisova, Eva; Slobodnik, Jaroslav
2006-07-01
Organic solvent and water extracts of fly ash from a Milan (Italy) municipal solid waste incinerator (MSWI) were analyzed by large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) with programmable temperature vaporizer (PTV). Using injection volumes of 10-100 {mu}l, typically over a hundred compounds were detected in organic solvent extracts and ca. 35% of them could be tentatively identified from their electron impact ionization mass spectra. A protocol for the determination of the maximum amount of a potential environmental pollutant available for leaching (availability test) was developed for four selected target compounds: pentachlorobenzene (PeCB), hexachlorobenzene (HxCB), o-terphenyl (o-TPH) and m-terphenyl (m-TPH). Keymore » parameters, extraction time and liquid-to-solid ratio (L/S), were studied in more detail. Recoveries of PeCB, HxCB and o-TPH spiked into the fly ash samples at two concentration levels ranged from 38% to 53% for freshly spiked and from 14% to 40% for 40-day aged fly ash. Recoveries of m-TPH were 8% to 11% from freshly spiked and less than 3% from aged spiked fly ash. The native amounts in Milan MSWI fly ash, determined in an interlaboratory exercise using the developed protocol, were 31 ng/g PeCB, 34 ng/g HxCB, 72 ng/g o-TPH and 4.4 ng/g m-TPH. A separate methodology was developed for the determination of compounds extracted from fly ash by water (leaching test). Following 8-h sonication at L/S 20, the leached amounts of PeCB, HxCB and o-TPH were 1.1, 3.1 and 6.0 ng/g fly ash, respectively.« less
Association of TPH1 with suicidal behaviour and psychiatric disorders in the Chinese population
Liu, X; Li, H; Qin, W; He, G; Li, D; Shen, Y; Shen, J; Gu, N; Feng, G; He, L
2006-01-01
Tryptophan hydroxylase (TPH), the rate limiting enzyme in serotonin biosynthesis, is one of the most important regulating factors in the serotonergic system. Recently, polymorphisms of the TPH gene have been identified as being associated with suicide, but the evidence is inconsistent. To investigate the role in suicide of one of the isoforms, TPH1, we examined the association of five single nucleotide polymorphisms (SNPs) in the promoter region and in intron 7 of the TPH1 gene based on a sample from the Chinese population of 810 subjects, of whom 329 had made no suicide attempts (NSA), 297 had made suicide attempts (SA), and 184 were healthy subjects (HS). In this study, we observed statistically significant differences between NSA and HS subjects in allele distributions on one marker, −6526A (p = 0.0329; odds ratio (OR) 1.36; 95% confidence interval (CI) 1.01 to 1.81). No significant difference in genotype distribution or allele frequencies of other polymorphisms was found between the suicide victims and the controls. The overall haplotype frequency was significantly different between cases and healthy controls (p = 0.000024 NSA v HS; p<0.000001, SA v HS; p<0.000001, cases v HS). We found the haplotype TCAAA of −7180/−7065/−6526/218/779 to be strongly associated with suicidal behaviour and psychiatric disorders (p = 0.00243; OR = 1.62; 95% CI 1.17 to 2.24 and p = 0.018; OR = 1.41; 95% CI 1.05 to 1.91), which suggests an association of TPH1 with suicidal behaviour and indicates that TPH1 may play a significant role in the aetiology of psychiatric disorders in the Han Chinese population. PMID:16467214
Petrassi, Mike; Barber, Rob; Be, Celine; Beach, Sarah; Cox, Brian; D’Souza, Anne-Marie; Duggan, Nick; Hussey, Martin; Fox, Roy; Hunt, Peter; Jarai, Gabor; Kosaka, Takatoshi; Oakley, Paul; Patel, Viral; Press, Neil; Rowlands, David; Scheufler, Clemens; Schmidt, Oliver; Srinivas, Honnappa; Turner, Mary; Turner, Rob; Westwick, John; Wolfreys, Alison; Pathan, Nuzhat; Watson, Simon; Thomas, Matthew
2017-01-01
Pulmonary arterial hypertension (PAH) has demonstrated multi-serotonin receptor dependent pathologies, characterized by increased tone (5-HT1B receptor) and complex lesions (SERT, 5-HT1B, 5-HT2B receptors) of the pulmonary vasculature together with right ventricular hypertrophy, ischemia and fibrosis (5-HT2B receptor). Selective inhibitors of individual signaling elements – SERT, 5-HT2A, 5HT2B, and combined 5-HT2A/B receptors, have all been tested clinically and failed. Thus, inhibition of tryptophan hydroxylase 1 (TPH1), the rate limiting step in 5-HT synthesis, has been suggested as a more broad, and thereby more effective, mode of 5-HT inhibition. However, selectivity over non-pathogenic enzyme family members, TPH2, phenylalanine hydroxylase, and tyrosine hydroxylase has hampered therapeutic development. Here we describe the site/sequence, biochemical, and biophysical characterization of a novel allosteric site on TPH1 through which selectivity over TPH2 and related aromatic amino acid hydroxylases is achieved. We demonstrate the mechanism of action by which novel compounds selectively inhibit TPH1 using surface plasma resonance and enzyme competition assays with both tryptophan ligand and BH4 co-factor. We demonstrate 15-fold greater potency within a human carcinoid cell line versus the most potent known TPH1/2 non-specific inhibitor. Lastly, we detail a novel canine in vivo system utilized to determine effective biologic inhibition of newly synthesized 5-HT. These findings are the first to demonstrate TPH1-selective inhibition and may pave the way to a truly effective means to reduce pathologic 5-HT and thereby treat complex remodeling diseases such as PAH. PMID:28529483
Holman, Hoi-Ying N; Goth-Goldstein, Regine; Aston, David; Yun, Mao; Kengsoontra, Jenny
2002-03-15
Petroleum hydrocarbon residues in weathered soils may pose risks to humans through the ingestion pathway. To understand the factors controlling their gastrointestinal (GI) absorption, a newly developed experimental extraction protocol was used to model the GI solubility of total petroleum hydrocarbon (TPH) residues in highly weathered soils from different sites. The GI solubility of TPH residues was significantly higher for soil contaminated with diesel than with crude oil. Compared to the solubility of TPH residues during fasted state,the solubility of TPH residues during fat digestion was much greater. Diesel solubility increased from an average of 8% during the "gallbladder empty" phase of fasting (and less than 0.2% during the otherfasting phase) to an average of 16% during fat digestion. For crude oil, the solubility increased from an average of 1.2% during the gallbladder empty phase of fasting (and undetectable during the other fasting phase) to an average of 4.5% during fat digestion. Increasing the concentration of bile salts also increased GI solubility. GI solubility was reduced by soil organic carbon but enhanced by the TPH content.
Mao, Debin; Lookman, Richard; Van De Weghe, Hendrik; Vanermen, Guido; De Brucker, Nicole; Diels, Ludo
2009-04-03
An assessment of aqueous solubility (leaching potential) of soil contaminations with petroleum hydrocarbons (TPH) is important in the context of the evaluation of (migration) risks and soil/groundwater remediation. Field measurements using monitoring wells often overestimate real TPH concentrations in case of presence of pure oil in the screened interval of the well. This paper presents a method to calculate TPH equilibrium concentrations in groundwater using soil analysis by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography (HPLC-GCXGC). The oil in the soil sample is divided into 79 defined hydrocarbon fractions on two GCXGC color plots. To each of these fractions a representative water solubility is assigned. Overall equilibrium water solubility of the non-aqueous phase liquid (NAPL) present in the sample and the water phase's chemical composition (in terms of the 79 fractions defined) are then calculated using Raoult's law. The calculation method was validated using soil spiked with 13 different TPH mixtures and 1 field-contaminated soil. Measured water solubilities using a column recirculation equilibration experiment agreed well to calculated equilibrium concentrations and water phase TPH composition.
Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Quej-Aké, L; Marín-Cruz, J; Olguín-Lora, P
2009-12-01
Microcosm assays and Taguchi experimental design was used to assess the biodegradation of an oil sludge produced by a gas processing unit. The study showed that the biodegradation of the sludge sample is feasible despite the high level of pollutants and complexity involved in the sludge. The physicochemical and microbiological characterization of the sludge revealed a high concentration of hydrocarbons (334,766+/-7001 mg kg(-1) dry matter, d.m.) containing a variety of compounds between 6 and 73 carbon atoms in their structure, whereas the concentration of Fe was 60,000 mg kg(-1) d.m. and 26,800 mg kg(-1) d.m. of sulfide. A Taguchi L(9) experimental design comprising 4 variables and 3 levels moisture, nitrogen source, surfactant concentration and oxidant agent was performed, proving that moisture and nitrogen source are the major variables that affect CO(2) production and total petroleum hydrocarbons (TPH) degradation. The best experimental treatment yielded a TPH removal of 56,092 mg kg(-1) d.m. The treatment was carried out under the following conditions: 70% moisture, no oxidant agent, 0.5% of surfactant and NH(4)Cl as nitrogen source.
Disintegration in the biogas sector--technologies and effects.
Schumacher, Britt; Wedwitschka, Harald; Hofmann, Josephine; Denysenko, Velina; Lorenz, Helge; Liebetrau, Jan
2014-09-01
Pretreatment of organic material prior to anaerobic digestion is seen as an option to increase the overall efficiency of the process. An overview of physical, chemical, and biological disintegration (DT) of substrates in the biogas sector is given. The energy demands DT were surveyed. The technologies were evaluated by reference to the Technology Readiness Assessment Guide of the U.S. Department of Energy. The evaluation focuses on ligno-cellulosic substrates like straw. Data of a survey among biogas plant operators were analyzed regarding the prevalence of disintegration technology classes in Germany. Furthermore, biochemical methane potential tests were conducted in laboratory scale to determine the specific methane yields of un-/treated barley straw (thermal pressure hydrolysis (TPH)). A methane potential of 228 ml CH4/g VS was measured for untreated barley straw; and of 251 ml CH4/g VS for TPH-straw (190 °C, 30 min). The reaction rates in BMP were calculated between 0.0976 and 0.1443 d(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.
Gargouri, Boutheina; Gargouri, Olfa Dridi; Gargouri, Bochra; Trabelsi, Souhel Kallel; Abdelhedi, Ridha; Bouaziz, Mohamed
2014-12-01
Although diverse methods exist for treating polluted water, the most promising and innovating technology is the electrochemical remediation process. This paper presents the anodic oxidation of real produced water (PW), generated by the petroleum exploration of the Petrobras plant-Tunisia. Experiments were conducted at different current densities (30, 50 and 100 mA cm(-2)) using the lead dioxide supported on tantalum (Ta/PbO2) and boron-doped diamond (BDD) anodes in an electrolytic batch cell. The electrolytic process was monitored by the chemical oxygen demand (COD) and the residual total petroleum hydrocarbon [TPH] in order to know the feasibility of electrochemical treatment. The characterization and quantification of petroleum wastewater components were performed by gas chromatography mass spectrometry. The COD removal was approximately 85% and 96% using PbO2 and BDD reached after 11 and 7h, respectively. Compared with PbO2, the BDD anode showed a better performance to remove petroleum hydrocarbons compounds from produced water. It provided a higher oxidation rate and it consumed lower energy. However, the energy consumption and process time make useless anodic oxidation for the complete elimination of pollutants from PW. Cytotoxicity has shown that electrochemical oxidation using BDD could be efficiently used to reduce more than 90% of hydrocarbons compounds. All results suggest that electrochemical oxidation could be an effective approach to treat highly concentrated organic pollutants present in the industrial petrochemical wastewater and significantly reduce the cost and time of treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536more » Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure« less
Baskar, Kannan; Sur, Swastika; Selvaraj, Vithyalakashmi; Agrawal, Devendra K.
2015-01-01
Human coronary artery smooth muscle cells (HCASMCs) play an important role in the pathogenesis of coronary atherosclerosis and coronary artery diseases (CAD). Serotonin is a mediator known to produce vascular smooth muscle cell (VSMC) mitogenesis and contribute to coronary atherosclerosis. We hypothesize that the human coronary artery smooth muscle cell possesses certain functional constituents of the serotonergic system such as: tryptophan hydroxylase and serotonin transporter. Our aim was to examine the presence of functional tryptophan hydroxylase-1 (TPH1) and serotonin transporter (SERT) in HCASMCs. The mRNA transcripts by qPCR and protein expression by Western blot of TPH1 and SERT were examined. The specificity and accuracy of the primers were verified using DNA gel electrophoresis and sequencing of qPCR products. The functionality of SERT was examined using a fluorescence dye-based serotonin transporter assay. The enzymatic activity of TPH was evaluated using UPLC. The HCASMCs expressed both mRNA transcripts and protein of SERT and TPH. The qPCR showed a single melt curve peak for both transcripts and in sequence analysis the amplicons were aligned with the respective genes. SERT and TPH enzymatic activity was present in the HCASMCs. Taken together, both TPH and SERT are functionally expressed in HCASMCs. These findings are novel and represent an initial step in examining the clinical relevance of the serotonergic system in HCASMCs and its role in the pathogenesis of coronary atherosclerosis and CAD. PMID:25861735
Lemay, Francis; Doré, François Y; Beaulieu, Jean-Martin
2015-11-16
Polymorphisms in the gene encoding the brain serotonin synthesis enzyme Tph2 have been identified in mental illnesses, with co-morbidity of substance use disorder. However, little is known about the impact of Tph2 gene variants on addiction. Mice expressing a human Tph2 loss of function variant were used to investigate consequences of aversive conditions on ethanol intake. Mice were familiarized either with ethanol or a solution containing both ethanol and the bittering agent quinine. Effect of familiarization to ethanol or an ethanol-quinine solution was then evaluated using a two-bottles preference test in Tph2-KI and control littermates. Mice from both genotypes displayed similar levels of ethanol consumption and quinine avoidance when habituated to ethanol alone. In contrast, addition of quinine to ethanol during the familiarization period resulted in a reduction of avoidance for the quinine-ethanol solution only in mutant mice. These results indicate that loss of function mutation in Tph2 results in greater motivation for ethanol consumption under aversive conditions and may confer enhanced sensitivity to alcohol use disorder. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
RAGAN, C. M.; LONSTEIN, J. S.
2014-01-01
In female mammals, the postpartum period involves dramatic shifts in many socioemotional behaviors. This includes a suppression of anxiety-related behaviors that requires recent physical contact with offspring. Factors contributing to differences among females in their susceptibility to the anxiety-modulating effect of offspring contact are unknown, but could include their innate anxiety and brain monoaminergic activity. Anxiety behavior was assessed in a large group of nulliparous female rats and the least-anxious and most-anxious tertiles were mated. Anxiety was assessed again postpartum after females were permitted or prevented from contacting their offspring 4 h before testing. Levels of dopamine β-hydroxylase (DBH, norepinephrine synthesizing enzyme) and tryptophan hydroxylase- 2 (TPH2, serotonin synthesizing enzyme) were measured in the brainstem and dorsal raphe, respectively. It was found that anxiety-related behavior in the two groups did not differ when dams were permitted contact with offspring before testing. Removal of the offspring before testing, however, differentially affected anxiety based on dams’ innate anxiety. Specifically, dams reverted back to their pre-mating levels of anxiety such that offspring removal slightly increased anxiety in the most-anxious females but greatly lowered anxiety in the least-anxious females. This reduction in anxiety in the least-anxious females after litter removal was associated with lower brainstem DBH. There was no relationship between females’ anxiety and dorsal raphe TPH2. Thus, a primary effect of recent contact with offspring on anxiety-related behavior in postpartum rats is to shift females away from their innate anxiety to a more moderate level of responding. This effect is particularly true for females with the lowest anxiety, may be mediated by central noradrenergic systems, and has implications for their ability to attend to their offspring. PMID:24161285
Functional Role of Serotonin in Insulin Secretion in a Diet-Induced Insulin-Resistant State
Kim, Kyuho; Oh, Chang-Myung; Ohara-Imaizumi, Mica; Park, Sangkyu; Namkung, Jun; Yadav, Vijay K.; Tamarina, Natalia A.; Roe, Michael W.; Philipson, Louis H.; Karsenty, Gerard; Nagamatsu, Shinya
2015-01-01
The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic β-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases β-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in β-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of β-cell-specific Htr2b−/− (Htr2b βKO), Htr3a−/− (Htr3a knock-out [KO]), and β-cell-specific tryptophan hydroxylase 1 (Tph1)−/− (Tph1 βKO) mice on a high-fat diet (HFD). Htr2b βKO, Htr3a KO, and Tph1 βKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 βKO mice developed glucose intolerance, but Htr2b βKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 βKO mice, and 5-HT treatment improved insulin secretion from Tph1 βKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in β-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state. PMID:25426873
NASA Astrophysics Data System (ADS)
Ishihara, Masamichi
2018-04-01
We studied the effects of nonextensivity on the phase transition for the system of finite volume V in the ϕ4 theory in the Tsallis nonextensive statistics of entropic parameter q and temperature T, when the deviation from the Boltzmann-Gibbs (BG) statistics, |q ‑ 1|, is small. We calculated the condensate and the effective mass to the order q ‑ 1 with the normalized q-expectation value under the free particle approximation with zero bare mass. The following facts were found. The condensate Φ divided by v, Φ/v, at q (v is the value of the condensate at T = 0) is smaller than that at q‧ for q > q‧ as a function of Tph/v which is the physical temperature Tph divided by v. The physical temperature Tph is related to the variation of the Tsallis entropy and the variation of the internal energies, and Tph at q = 1 coincides with T. The effective mass decreases, reaches minimum, and increases after that, as Tph increases. The effective mass at q > 1 is lighter than the effective mass at q = 1 at low physical temperature and heavier than the effective mass at q = 1 at high physical temperature. The effects of the nonextensivity on the physical quantity as a function of Tph become strong as |q ‑ 1| increases. The results indicate the significance of the definition of the expectation value, the definition of the physical temperature, and the constraints for the density operator, when the terms including the volume of the system are not negligible.
1983-05-01
ELE ENTM. PRO ECT. TASK AREA 4 WORK LIN IT kuldElS WASTE ENERGY TECHNOLOGY CORPORATION Y0817-006-01-211 Bedford, MA 01730 I P CONTROLLING OFFICE NAME...Louis Miller-Hoft. 150 Augers 1 50 Missouri Live bottom, Tons TPH rectangular Ames Atlas. 500 Sweep bucket 4 14 Iowa Tons and drag con - TPH veyor Each...Monroe County a. Trailers 17 Hyd. Rams NewYork Tons Each b. Atlas 450 Sweep bucket 8 6 Tons and drag con - TPH veyor Each . Milwaukee Atlas 900 Sweep
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-01-01
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency.
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-07-08
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer's disease and Parkinson's disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.
Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency
NASA Astrophysics Data System (ADS)
Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei
2015-07-01
Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.
Risk-Based Evaluation of Total Petroleum Hydrocarbons in Vapor Intrusion Studies
Brewer, Roger; Nagashima, Josh; Kelley, Michael; Heskett, Marvin; Rigby, Mark
2013-01-01
This paper presents a quantitative method for the risk-based evaluation of Total Petroleum Hydrocarbons (TPH) in vapor intrusion investigations. Vapors from petroleum fuels are characterized by a complex mixture of aliphatic and, to a lesser extent, aromatic compounds. These compounds can be measured and described in terms of TPH carbon ranges. Toxicity factors published by USEPA and other parties allow development of risk-based, air and soil vapor screening levels for each carbon range in the same manner as done for individual compounds such as benzene. The relative, carbon range makeup of petroleum vapors can be used to develop weighted, site-specific or generic screening levels for TPH. At some critical ratio of TPH to a targeted, individual compound, the overwhelming proportion of TPH will drive vapor intrusion risk over the individual compound. This is particularly true for vapors associated with diesel and other middle distillate fuels, but can also be the case for low-benzene gasolines or even for high-benzene gasolines if an adequately conservative, target risk is not applied to individually targeted chemicals. This necessitates a re-evaluation of the reliance on benzene and other individual compounds as a stand-alone tool to evaluate vapor intrusion risk associated with petroleum. PMID:23765191
Angoa-Pérez, Mariana; Kane, Michael J; Briggs, Denise I; Sykes, Catherine E; Shah, Mrudang M; Francescutti, Dina M; Rosenberg, David R; Thomas, David M; Kuhn, Donald M
2012-06-01
Neuropsychiatric disorders characterized by behavioral disinhibition, including disorders of compulsivity (e.g. obsessive-compulsive disorder; OCD) and impulse-control (e.g. impulsive aggression), are severe, highly prevalent and chronically disabling. Treatment options for these diseases are extremely limited. The pathophysiological bases of disorders of behavioral disinhibition are poorly understood but it has been suggested that serotonin dysfunction may play a role. Mice lacking the gene encoding brain tryptophan hydroxylase 2 (Tph2-/-), the initial and rate-limiting enzyme in the synthesis of serotonin, were tested in numerous behavioral assays that are well known for their utility in modeling human neuropsychiatric diseases. Mice lacking Tph2 (and brain 5HT) show intense compulsive and impulsive behaviors to include extreme aggression. The impulsivity is motor in form and not cognitive because Tph2-/- mice show normal acquisition and reversal learning on a spatial learning task. Restoration of 5HT levels by treatment of Tph2-/- mice with its immediate precursor 5-hydroxytryptophan attenuated compulsive and impulsive-aggressive behaviors. Surprisingly, in Tph2-/- mice, the lack of 5HT was not associated with anxiety-like behaviors. The results indicate that 5HT mediates behavioral disinhibition in the mammalian brain independent of anxiogenesis. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
... or TPH organization is appropriate and reasonable to ensure it is in congruence with that level of... Broker fee to each Trading Permit Holder or TPH organizations is reasonable to ensure it is in congruence...
Photoenhanced toxicity of weathered oil to Mysidopsis bahia
Cleveland, L.; Little, E.E.; Calfee, R.D.; Barron, M.G.
2000-01-01
The toxicity of a water-accommodated fraction (WAF) prepared from weathered oil was assessed in a 7-day static renewal test with Mysidopsis bahia. Weathered oil was collected from the 5 x monitoring well at the Guadalupe oil field. Solar ultraviolet and visible light intensities were measured in various habitats in the vicinity of the weathered oil sample collection site, and the resultant measurements were used to produce laboratory light treatments that were representative of the on-site quality and intensity of natural solar radiation. Each of five WAF dilutions and a control without WAF was tested under three different simulated solar radiation intensities. During the test, survival and growth of the mysids, irradiance, and total petroleum hydrocarbon (TPH) concentrations in the test treatments were measured. Significant increases (P ??? 0.05) in mortality occurred among mysids exposed to 0.57 and 1.30 mg TPH/l and the effects were potentiated as irradiance increased. Seven-day LC50 (0.92-0.42 mg TPH/l) and LC20 (0.58-0.15 mg TPH/l) values decreased as the simulated solar irradiance increased. Calculated EC20 and EC50 values for mysid growth indicate that surviving mysids exposed to 0.1-1.0 mg TPH/l would incur significant reductions (P ??? 0.05) in productivity (biomass). Results of the present study indicate that effects elicited through the interaction of WAF of weathered oil and solar radiation will substantially increase the toxicity of weathered oil. Further, the photomediated effects of petroleum compounds measured as TPH on mysid survival and growth demonstrate a need to consider the interactions of ultraviolet light and contaminant to avoid under estimating toxicity that might occur in the environment. (C) 2000 Elsevier Science B.V.
Komnenov, Dragana; Solarewicz, Julia Z; Afzal, Fareeza; Nantwi, Kwaku D; Kuhn, Donald M; Mateika, Jason H
2016-08-01
We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2(+/+)) and tryptophan hydroxylase 2 knockout (Tph2(-/-)) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.e., twelve 4-min episodes of 10% oxygen interspersed with 4-min normoxic periods followed by a 90-min end-recovery period) or normoxia (i.e., sham protocol, 21% oxygen) for 10 consecutive days. Diaphragm activity recovered to prehemisection levels in the Tph2(+/+) and Tph2(-/-) mice following exposure to IH but not normoxia [Tph2(+/+) 1.3 ± 0.2 (SE) vs. 0.3 ± 0.2; Tph2(-/-) 1.06 ± 0.1 vs. 0.3 ± 0.1, standardized to prehemisection values, P < 0.01]. Likewise, recovery of tidal volume and breathing frequency was evident, although breathing frequency values did not return to prehemisection levels within the time frame of the protocol. Partial recovery of limb motor function was also evident 2 wk after spinal cord hemisection. However, recovery was not dependent on IH or the presence of serotonin in the central nervous system. We conclude that IH promotes recovery of respiratory function but not basic motor tasks. Moreover, we conclude that spontaneous or treatment-induced recovery of respiratory and motor limb function is not dependent on serotonin in the central nervous system in a mouse model of spinal cord injury.
Markus, C Rob; Verschoor, Ellen; Smeets, Tom
2012-04-01
Stress and negative moods, which are thought to be partly mediated by reduced brain serotonin function, often increase emotional eating in dieting women (restrainers). Because the short (S) allele polymorphism in the serotonin transporter gene (5-HTTLPR) is associated with serotonin dysfunction, S allele compared to long (L) allele 5-HTTLPR genotypes may be more susceptible to stress-induced emotional eating. Consequently, serotonin challenge via tryptophan (TRP)-rich protein hydrolysate (TPH) may alleviate stress-induced emotional eating particularly in S/S allele carriers. We tested whether acute stress affects emotional eating in women with high or low dietary restraints depending on their 5-HTTLPR genotype and TPH intake. Nineteen female subjects who were homozygous for the short-allele 5-HTTLPR genotype (S'/S'=S/L(G), L(G)/L(G): restrainers vs. nonrestrainers) and 23 female subjects who were homozygous for the long-allele 5-HTTLPR genotype (L'/L'=L(A)/L(A): restrainers vs. nonrestrainers) were tested in a double-blind, placebo-controlled crossover study of stress-induced emotional eating following intake of TPH or a placebo. TPH intake significantly increased the plasma TRP/large neutral amino acid ratio (P<.0001) in the L'/L' group (70%) compared to the S'/S' group (30%). TPH reduced food intake in both groups, but in the L'/L' group, it also reduced stress-induced negative mood (P=.037) and the desire for sweet, high-fat foods (P=.011) regardless of dietary restraint. Since TPH caused a greater increase in the plasma TRP/large neutral amino acid ratio in the L'/L' group compared to S'/S' group, the exclusive beneficial effects of L'/L' genotype may be due to enhanced brain 5-HT function. Copyright © 2012 Elsevier Inc. All rights reserved.
Bai, Yang; Wang, Han-Ming; Liu, Ming; Wang, Yun; Lian, Guo-Chao; Zhang, Xin-Hua; Kang, Jian; Wang, Huai-Liang
2014-02-01
The present study was performed to investigate the effects of 4-chloro-DL-phenylalanine (PCPA), a tryptophan hydroxylase (Tph) inhibitor (TphI), on pulmonary vascular remodeling and lung inflammation in monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) in rats. Animal models of PAH were established using Sprague-Dawley (SD) rats by a single intraperitoneal injection of MCT (60 mg/kg). PCPA (50 or 100 mg/kg/day) was administered to the rats with PAH. On day 22, hemodynamic measurements and morphological observations of the lung tissues were performed. The levels of Tph-1 and serotonin transporter (SERT) in the lungs were analyzed by immunohistochemistry and western blot analysis. The expression of matrix metalloproteinase (MMP)-2 and MMP-9, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 and inflammatory cytokines were assayed by western blot analysis. The activity of MMP-2 and MMP-9 was evaluated by gelatin zymography (GZ). MCT markedly promoted PAH, increased the right ventricular hypertrophy index, pulmonary vascular remodeling, lung inflammation and mortality, which was associated with the increased expression of Tph-1, SERT, MMP-2/-9, TIMP-1/-2 and inflammatory cytokines. PCPA markedly attenuated MCT-induced pulmonary vascular remodeling and lung inflammation, inhibited the expression of Tph-1 and SERT and suppressed the expression of MMP-2/-9, TIMP-1/-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1). These findings suggest that the amelioration of MCT-induced pulmonary vascular remodeling and lung inflammation by PCPA is associated with the downregulation of Tph-1, SERT, MMP/TIMP and inflammatory cytokine expression in rats.
Benyahia, Farid; Embaby, Ahmed Shams
2016-01-01
This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation. PMID:26891314
Benyahia, Farid; Embaby, Ahmed Shams
2016-02-15
This work was aimed at evaluating the relative merits of bioaugmentation, biostimulation and surfactant-enhanced bioavailability of a desert soil contaminated by crude oil through biopile treatment. The results show that the desert soil required bioaugmentation and biostimulation for bioremediation of crude oil. The bioaugmented biopile system led to a total petroleum hydrocarbon (TPH) reduction of 77% over 156 days while the system with polyoxyethylene (20) sorbitan monooleate (Tween 80) gave a 56% decrease in TPH. The biostimulated system with indigenous micro-organisms gave 23% reduction in TPH. The control system gave 4% TPH reduction. The addition of Tween 80 led to a respiration rate that peaked in 48 days compared to 88 days for the bioaugmented system and respiration declined rapidly due to nitrogen depletion. The residual hydrocarbon in the biopile systems studied contained polyaromatics (PAH) in quantities that may be considered as hazardous. Nitrogen was found to be a limiting nutrient in desert soil bioremediation.
Remediation of Petroleum-Contaminated Soil and Simultaneous Recovery of Oil by Fast Pyrolysis.
Li, De-Chang; Xu, Wan-Fei; Mu, Yang; Yu, Han-Qing; Jiang, Hong; Crittenden, John C
2018-05-01
Petroleum-contaminated soil (PCS) caused by the accidental release of crude oil into the environment, which occurs frequently during oil exploitation worldwide, needs efficient and cost-effective remediation. In this study, a fast pyrolysis technology was implemented to remediate the PCS and concurrently recover the oil. The remediation effect related to pyrolytic parameters, the recovery rate of oil and its possible formation pathway, and the physicochemical properties of the remediated PCS and its suitability for planting were systematically investigated. The results show that 50.9% carbon was recovered in oil, whose quality even exceeds that of crude oil. Both extractable total petroleum hydrocarbon (TPH) and water-soluble organic matter (SOM) in PCS were completely removed at 500 °C within 30 min. The remaining carbon in remediated PCS was determined to be in a stable and innocuous state, which has no adverse effect on wheat growth. On the basis of the systematically characterizations of initial PCS and pyrolytic products, a possible thermochemical mechanism was proposed which involves evaporation, cracking and polymerization. In addition, the energy consumption analysis and remediation effect of various PCSs indicate that fast pyrolysis is a viable and cost-effective method for PCS remediation.
Hiroi, Ryoko; Carbone, David L.; Zuloaga, Damian G.; Bimonte-Nelson, Heather A.; Handa, Robert J.
2016-01-01
Prenatal stress and overexposure to glucocorticoids (GC) during development may be associated with an increased susceptibility to a number of diseases in adulthood including neuropsychiatric disorders, such as depression and anxiety. In animal models, prenatal overexposure to GC results in hyper-responsiveness to stress in adulthood, and females appear to be more susceptible than males. Here, we tested the hypothesis that overexposure to GC during fetal development has sex-specific programming effects on the brain, resulting in altered behaviors in adulthood. We examined the effects of dexamethasone (DEX; a synthetic GC) during prenatal life on stress-related behaviors in adulthood and on the tryptophan hydroxylase-2 (TpH2) gene expression in the adult dorsal raphe nucleus (DRN). TpH2 is the rate-limiting enzyme for serotonin (5-HT) synthesis and has been implicated in the etiology of human affective disorders. Timed-pregnant rats were treated with DEX from gestational days 18–22. Male and female offspring were sacrificed on the day of birth (postnatal day 0; P0), P7, and in adulthood (P80-84) and brains were examined for changes in TpH2 mRNA expression. Adult animals were also tested for anxiety- and depressive- like behaviors. In adulthood, prenatal DEX increased anxiety- and depressive- like behaviors selectively in females, as measured by decreased time spent in the center of the open field and increased time spent immobile in the forced swim test, respectively. Prenatal DEX increased TpH2 mRNA selectively in the female caudal DRN at P7, whereas it decreased TpH2 mRNA selectively in the female caudal DRN in adulthood. In animals challenged with restraint stress in adulthood, TpH2 mRNA was significantly lower in rostral DRN of prenatal DEX treated females compared to vehicle treated females. These data demonstrated that prenatal overexposure to GC alters the development of TpH2 gene expression and these alterations correlated with lasting behavioral changes found in adult female offspring. PMID:26844389
Feasibility Process for Remediation of the Crude Oil Contaminated Soil
NASA Astrophysics Data System (ADS)
Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.
2015-12-01
More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program
Pollino, Carmel A; Holdway, Douglas A
2002-07-01
The toxicity of petroleum hydrocarbons to marine aquatic organisms has been widely investigated; however, the effects on freshwater environments have largely been ignored. In the Australian freshwater environment, the potential impacts of petroleum hydrocarbons are virtually unknown. The toxicity of crude oil and related compounds were measured in the sensitive early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Waterborne petroleum hydrocarbons crossed the chorion of embryonic rainbowfish, reducing survival and hatchability. Acute exposures resulted in developmental abnormalities at and above 0.5 mg/L total petroleum hydrocarbons (TPH). Deformities included pericardial edema, disturbed axis formation, and abnormal jaw development. When assessing the acute toxicities of the water-accommodated fraction (WAF) of crude oil, dispersants, dispersant-oil mixtures, and naphthalene to larval rainbowfish, the lowest to highest 96-h median lethal concentrations for day of hatch larvae were naphthalene (0.51 mg/L), dispersed crude oil WAF (DCWAF)-9527 (0.74 mg/L TPH), WAF (1.28 mg/L TPH), DCWAF-9500 (1.37 mg/L TPH), Corexit 9500 (14.5 mg/L TPH), and Corexit 9527 (20.1 mg/L). Using naphthalene as a reference toxicant, no differences were found between the sensitivities of larval rainbowfish collected from adults exposed to petroleum hydrocarbons during embryonic development and those collected from unexposed adults.
Kim, Moonkoo; Hong, Sang Hee; Won, Jongho; Yim, Un Hyuk; Jung, Jee-Hyun; Ha, Sung Yong; An, Joon Geon; Joo, Changkyu; Kim, Eunsic; Han, Gi Myung; Baek, Seongho; Choi, Hyun-Woo; Shim, Won Joon
2013-02-01
In December 2007, the oil tanker Hebei Spirit released approximately 12,547,000 L of crude oil off the west coast of Korea, impacting more than 375 km of coastline. The seawater TPH concentrations immediately after the spill ranged from 1.5 to 7310 μg L⁻¹, with an average of 732 μg L⁻¹. The concentrations appeared to decrease drastically to 2.0-224 μg L⁻¹ in one month after the spill. The TPH concentrations in seawater fluctuated with time thereafter because of the remobilization of oil by continuing shoreline cleanup activities and subsequent wave/tidal actions. Seawater TPH concentrations were much higher during high tide than during low tide due to the resuspension of stranded oil. The variation of TPH levels in seawater also matched the spring-neap tidal cycle in the study areas for the first three weeks of the study. Comparisons of the gas chromatograms of the seawater with the water accommodated fraction and the cargo oil indicated that seawater samples were contaminated mainly by the dispersed droplets of spilled oil. One year of monitoring revealed that the oil content in seawater had clearly decreased at most sites, although some regional fluctuations of oil contamination were noted until June 2008. Copyright © 2012 Elsevier Ltd. All rights reserved.
Galaktionova, D Iu; Gareeva, A E; Khusnutdinova, E K; Nasedkina, T V
2014-01-01
We have developed a biochip for the analysis of polymorphisms in candidate genes for schizophrenia: DISC1, RELN, ZNF804A, PLXNA2, COMT, SLC18A41, CACNA1C, ANK3, TPH1, PLAA and SNAP-25. Using biochip the allele and genotype frequencies in 198 patients with schizophrenia and 192 healthy individuals have been obtained. For SLC18A1 polymorphism rs2270641 A>C, the frequencies of A allele (p = 0.007) and AA genotype (p = 0.002) were lower in patients compared with healthy individuals. A significant association was found between AA genotype (p = 0.036) of the TPH1 polymorphism rs1800532 C>A and schizophrenia. The C allele (p = 0.039) of the RELNpolymorphism rs7341475 C>T were lower in patients with schizophrenia compared with healthy individuals in a tatar population. Genotype AA of the TPH1 polymorphism rs1800532 C>A were more frequent in patients with schizophrenia compared with healthy individuals. Ithas been shown that the C allele (p = 0.0001) and GC (p = = 0.0001) genotype of the PLXNA2 polymorphism rs1327175 G>C are associated with the family history in patients with paranoid schizophrenia. The obtained data suggest that SLC18A1, TPH1 and RELN gene polymorphisms are associated with the risk of paranoid schizophrenia.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-31
... Rule Change Regarding Rule 4.20--Anti-Money Laundering Compliance Program January 25, 2011. I... Rule 4.20, Anti-Money Laundering Compliance Program, to require all Trading Permit Holders or TPH... or TPH organization's existence to ensure anti-money laundering compliance is in place and...
SETTING A GOAL FOR TPH THAT ELIMINATES FREE PRODUCT IN WELLS
The U.S. EPA expects that remedial action at UST sites will reduce free product in monitoring wells to the maximum extent practicable. How much active treatment is necessary to ensure that free product will not accumulate in a monitoring well? The concentration of TPH that will...
Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.
Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun
2010-03-10
The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... Clearing and Outsourcing Solutions, Inc. (``Apex Clearing''), as a CHX Participant and TPH. The text of... as it pertains to the application approval process of a CHX Participant \\5\\ and TPH \\6\\ in order to...'').\\9\\ \\8\\ Prior to the Transaction, Apex Clearing's name was Ridge Clearing & Outsourcing Solutions...
The hifracal' TOG/TPH Analyzer developed by Wilks Enterprise, Inc. (Wilks), was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Hueneme, California. The pu...
Schallreuter, Karin U; Salem, Mohamed A E L; Gibbons, Nick C J; Martinez, Aurora; Slominski, Radomir; Lüdemann, Jürgen; Rokos, Hartmut
2012-06-01
Vitiligo is characterized by a progressive loss of inherited skin color. The cause of the disease is still unknown. To date, there is accumulating in vivo and in vitro evidence for massive oxidative stress via hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)) in the skin of affected individuals. Autoimmune etiology is the favored theory. Since depletion of the essential amino acid L-tryptophan (Trp) affects immune response mechanisms, we here looked at epidermal Trp metabolism via tryptophan hydroxylase (TPH) with its downstream cascade, including serotonin and melatonin. Our in situ immunofluorescence and Western blot data reveal significantly lower TPH1 expression in patients with vitiligo. Expression is also low in melanocytes and keratinocytes under in vitro conditions. Although in vivo Fourier transform-Raman spectroscopy proves the presence of 5-hydroxytryptophan, epidermal TPH activity is completely absent. Regulation of TPH via microphthalmia-associated transcription factor and L-type calcium channels is severely affected. Moreover, dopa decarboxylase (DDC) expression is significantly lower, in association with decreased serotonin and melatonin levels. Computer simulation supports H(2)O(2)/ONOO(-)-mediated oxidation/nitration of TPH1 and DDC, affecting, in turn, enzyme functionality. Taken together, our data point to depletion of epidermal Trp by Fenton chemistry and exclude melatonin as a relevant contributor to epidermal redox balance and immune response in vitiligo.
Xu, Zhi; Reynolds, Gavin P; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-11-01
Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks' antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. © The Author 2016. Published by Oxford University Press on behalf of CINP.
Reynolds, Gavin P.; Yuan, Yonggui; Shi, Yanyan; Pu, Mengjia; Zhang, Zhijun
2016-01-01
Background: Variation in genes implicated in monoamine neurotransmission may interact with environmental factors to influence antidepressant response. We aimed to determine how a range of single nucleotide polymorphisms in monoaminergic genes influence this response to treatment and how they interact with childhood trauma and recent life stress in a Chinese sample. An initial study of monoaminergic coding region single nucleotide polymorphisms identified significant associations of TPH2 and HTR1B single nucleotide polymorphisms with treatment response that showed interactions with childhood and recent life stress, respectively (Xu et al., 2012). Methods: A total of 47 further single nucleotide polymorphisms in 17 candidate monoaminergic genes were genotyped in 281 Chinese Han patients with major depressive disorder. Response to 6 weeks’ antidepressant treatment was determined by change in the 17-item Hamilton Depression Rating Scale score, and previous stressful events were evaluated by the Life Events Scale and Childhood Trauma Questionnaire-Short Form. Results: Three TPH2 single nucleotide polymorphisms (rs11178998, rs7963717, and rs2171363) were significantly associated with antidepressant response in this Chinese sample, as was a haplotype in TPH2 (rs2171363 and rs1487278). One of these, rs2171363, showed a significant interaction with childhood adversity in its association with antidepressant response. Conclusions: These findings provide further evidence that variation in TPH2 is associated with antidepressant response and may also interact with childhood trauma to influence outcome of antidepressant treatment. PMID:27521242
Wong, Peiyan; Sze, Ying; Gray, Laura Jane; Chang, Cecilia Chin Roei; Cai, Shiwei; Zhang, Xiaodong
2015-01-01
Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT) mice and mice with deficient tryptophan hydroxylase 2 (TPH2) function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI) mice. Whereas, maternal separation (MS) stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A). The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex), will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7–11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7–11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7–11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive-like behaviors. PMID:25964750
Gassó, Patricia; Rodríguez, Natalia; Boloc, Daniel; Blázquez, Ana; Torres, Teresa; Gortat, Ana; Plana, Maria Teresa; Lafuente, Amalia; Mas, Sergi; Arnaiz, Joan Albert; Lázaro, Luisa
2017-07-03
Genetic variability related to the brain serotonergic system has a significant impact on both the susceptibility to psychiatric disorders, such as major depressive disorder (MDD), and the response to antidepressant drugs, such as fluoxetine. TPH2 is one of the most important serotonergic candidate genes in selective serotonin reuptake inhibitors (SSRIs) pharmacogenetic studies. The aim of the present study was to evaluate the influence of regulatory polymorphisms that are specifically located in human TPH2 transcription factor binding sites (TFBSs), and therefore could be functional by altering gene expression, on clinical improvement in children and adolescents treated with fluoxetine. The selection of SNPs was also based on their linkage disequilibrium with TPH2 rs4570625, a genetic variant with questionable functionality, which was previously associated with clinical response in our pediatric population. A total of 83 children and adolescents were clinically evaluated 12weeks after initiating antidepressant treatment with fluoxetine for the first time. Clinical improvement was assessed by reductions in depressive symptoms measured using the Children's Depression Inventory (CDI) scale. The polymorphisms rs11179002, rs60032326 and rs34517220 were, for the first time in the literature, significantly associated with higher clinical improvement. The strongest association was found for rs34517220. In particular, minor allele homozygotes showed higher score reductions on the CDI scale compared with the major allele carriers. Interestingly, this polymorphism is located in a human TPH2 TFBS for two relevant transcription factors in the serotoninergic neurons, Foxa1 and Foxa2, which together with the high level of significance found for this SNP, could indicate that rs34517220 is in fact the crucial functional genetic variant related to the fluoxetine response. These results provide new evidence for the role of regulatory genetic variants that could modulate human TPH2 expression in the SSRI antidepressant response. Copyright © 2017 Elsevier Inc. All rights reserved.
Koh, Kyung Bong; Kim, Chan Hyung; Choi, Eun Hee; Lee, Young-joon; Seo, Won Youl
2012-05-01
Aggression and anger have been linked with depression, and anger suppression has been linked with somatic symptoms of somatoform disorders. However, the relationship between aggression or anger and genes in patients with depression and somatoform disorders has not been clearly elucidated. The objective of this study was to examine the effect of serotonin-related gene polymorphism on aggression in depressive disorders and somatoform disorders. A serotonin-related polymorphic marker was assessed by using single nucleotide polymorphism (SNP) genotyping. 106 outpatients with major depressive disorder (MDD), 102 outpatients with undifferentiated somatoform disorder, and 133 healthy subjects were enrolled between October 2005 and May 2008. Diagnoses were made according to the Korean version of the Structured Clinical Interview Schedule for DSM-IV. The allele and genotype frequencies of tryptophan hydroxylase-1 (TPH1) A218C were compared between groups. The Hamilton Depression Rating Scale and the Aggression Questionnaire were used for psychological assessment. Each of the 2 disorder groups scored significantly higher on all the Aggression Questionnaire subscales and on the total Aggression Questionnaire score than the healthy subjects (P < .001). Patients with MDD had significantly higher frequencies of TPH1 C allele (P = .0002) and CC homozygote (P = .0003) than healthy subjects, regardless of sex and age. However, no significant differences were found in TPH1 C allele and CC homozygote frequencies between the undifferentiated somatoform disorder patients and the healthy subjects. TPH1 CC homozygote in the MDD group scored significantly higher in terms of verbal aggression (P = .03) and total Aggression Questionnaire score (P = .04) than A-carrier genotypes, regardless of sex and age. However, no significant differences were found in the scores of all the Aggression Questionnaire subscales and the total Aggression Questionnaire score between TPH1 CC homozygote and A-carrier genotypes in the undifferentiated somatoform disorder group and the control group, respectively. Aggression in MDD patients is more susceptible to an excess of TPH1 CC homozygote than in undifferentiated somatoform disorder patients, though the 2 disorders are high risk groups for aggression. In addition, TPH1 gene is most likely to have a shared effect on aggression and MDD. © Copyright 2012 Physicians Postgraduate Press, Inc.
Kim, Jihun; Lee, Aslan Hwanhwi; Chang, Wonjae
2018-01-15
A pilot-scale biopile field experiment for nutrient-amended petroleum-contaminated fine-grained soils was performed over the winter at a cold-climate site. The rate and extent of hydrocarbon biodegradation and microbial responses were determined and corresponded to the on-site soil phase changes (from unfrozen to partially frozen, deeply frozen, and thawed) associated with natural seasonal freeze-thaw conditions. Treated and untreated biopiles were constructed (~3500kg each) on an open outdoor surface at a remediation facility in Saskatoon, Canada. The treated biopile received N-P-K-based nutrient and humate amendments before seasonal freezing. Real-time field monitoring indicated significant unfrozen water content in the treated and untreated biopiles throughout the freezing period, from the middle of November to early March. Unfrozen water was slightly more available in the treated biopile due to the aqueous nutrient supply. Soil CO 2 production and O 2 consumption in the treated biopile were generally greater than in the untreated biopile. Total removal percentages for F2 (>C10-C16), F3 (>C16-C34), and total petroleum hydrocarbons (TPH) in the treated biopile were 57, 58, and 58%, respectively, of which 26, 39, and 33% were removed during seasonal freezing and early thawing between November to early March. F3 degradation largely occurred during freezing while F2 hydrocarbons were primarily removed during thawing. Biomarker-based hydrocarbon analyses confirmed enhanced biodegradation in the treated biopile during freezing. The soil treatment increased the first-order rate constants for F2, F3, and TPH degradation by a factor of 2 to 7 compared to the untreated biopile. Shifts in bacterial community appeared in both biopiles as the biopile soils seasonally froze and thawed. Increased alkB1 gene copy numbers in the treated biopile, especially in the partially thawed phase during early thawing, suggest extended hydrocarbon biodegradation to the seasonal freeze-thaw season, due to the nutrients supplied prior to seasonal freezing. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-05
... overlap. In addition, unrelated FLEX Orders may not be submitted to the electronic book for the duration... available an electronic book). Public customers and non-TPH broker-dealers RFR responses and FLEX Orders... AIM Auction price locks a public customer or non-TPH broker-dealer order in the electronic book on the...
Association between Tryptophan Hydroxylase 2 Gene Polymorphism and Completed Suicide
ERIC Educational Resources Information Center
Fudalej, Sylwia; Ilgen, Mark; Fudalej, Marcin; Kostrzewa, Grazyna; Barry, Kristen; Wojnar, Marcin; Krajewski, Pawel; Blow, Frederic; Ploski, Rafal
2010-01-01
The association between suicide and a single nucleotide polymorphism (rs1386483) was examined in the recently identified tryptophan hydroxylase 2 (TPH2) gene. Blood samples of 143 suicide victims and 162 age- and sex-matched controls were examined. The frequency of the TT genotype in the TPH2 polymorphism was higher in suicide victims than in…
Bond strength to dentin with artificial carious lesions: influence of caries detecting dye.
Palma, R G; Turbino, M L; Matson, E; Powers, J M
1998-06-01
To evaluate the influence of dyes for caries detection on tensile bond strength of adhesive materials to artificial carious dentin. Buccal and lingual enamel of human molars were removed leaving intact dentin surfaces. The entire surface of each specimen was covered with nail varnish, keeping a window area of 4 x 4 mm. Artificial carious lesions were induced with acidified gel. Three dyes (0.5% basic fuchsin; Caries Finder and Cari-D-Tect) were used according to manufacturers' recommendations. Specimens were etched with 35% phosphoric acid for 20 s, washed and dried, leaving a wet dentin surface. The adhesive system (Prime & Bond 2.0) was applied in two layers and light-cured. Restorative materials (TPH Spectrum, Dyract, Advance) were bonded using a 3-mm diameter inverted-cone mold. Control groups were made without dye. Eight samples were tested for each group. After 24 hrs of storage in distilled water, the samples were debonded using a testing machine at 0.5 mm/min crosshead speed. ANOVA and Tukey-Kramer test showed that TPH Spectrum (0.73 MPa) and Dyract (0.74 MPa) had similar bond strengths, and both were higher than Advance (0.0 MPa), which was statistically different (P < 0.01). The use of the dyes did not cause any changes in tensile bond strength for any tested materials.
NASA Astrophysics Data System (ADS)
Oseni, O.
2016-12-01
This paper explores the impacts of oil spill on the physical environment with particular attention paid to the NNPC/PPMC pipeline system. It focuses on the environmental impacts of oil pollution in Nigeria, and discusses the increasing environmental contradictions of the area, and its influence on global warming. Nigeria's economy is highly dependent on earnings from the oil sector, which provides 20% of GDP, 95% of foreign exchange earnings, and about 65% of budgetary revenues. Since the discovery of oil in Nigeria in 1956, the country has been suffering the negative environmental consequences of oil exploration and exploitation. Between 1976 and 1996 a total of 4647 incidents resulted in the spill of approximately 2,369,470 barrels of oil into the environment. The study traces the effects of the oil spillage on the environment to determine whether oil spill is a major factor responsible for environmental pollution. By the use of remotely sensed data and other ancillary data, the major causes of oil spill in the region were identified; the presence of total petroleum hydrocarbon (TPH) in the environment, and it also determined the environmental impacts on land and water. Field observation and laboratory analysis of soil and water were used. Gas chromatography was used to determine the TPH concentration in soil extract and water extracts. Liquid-liquid extraction method was used for water and spectro-radiometer which is a very efficient process commonly used to determine spectral signature of various soil, water and plant samples obtained from the study area. Based largely on the GIS analysis, the findings showed that the main cause of oil spill is vandalism along the pipeline right of way; Vandalism which is an act of sabotage had the highest percentage compared to equipment failure, accident from oil tankers and accidental discharge during pipeline repairs. TPH were present at the site with soil samples having the high values, and the environmental impact on soil and water is due to poor resource management and control. Satellite imagery (Ikonos and Landsat series) helped in monitoring oil spill by providing the spill position. The petroleum industries should work with government agencies, universities and research centers to prevent oil spill incidents. Keywords: Environment, Pollution, GIS, TPH, Analysis, Vandalism.
Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland.
Piesiewicz, Aneta; Kedzierska, Urszula; Turkowska, Elzbieta; Adamska, Iwona; Majewski, Pawel M
2015-02-01
Previously, we have demonstrated the postembryonic development of chicken (Gallus gallus domesticus L.) pineal gland functions expressed as changes in melatonin (MEL) biosynthesis. Pineal concentrations of MEL and its precursor serotonin (5-HT) were shown to increase between the 2nd and 16th day of life. We also found that levels of the mRNAs encoding the enzymes participating in the final two steps of MEL biosynthesis from 5-HT: arylalkylamine-N-acetyltransferase (AANAT) and hydroxyindole-O-methyltransferase (HIOMT), as well as their enzymatic activities, were raised during postembryonic development. Moreover, the manner of these changes was season-of-hatch dependent, even in animals kept under constant laboratory conditions (L:D 12:12). The most pronounced changes were seen in the concentrations of 5-HT and MEL, as well as in Aanat mRNA level and its enzymatic activity. The high daily variability in 5-HT content suggested that season- and age-dependent changes in the activity of the chicken pineal gland might rely on the availability of 5-HT, i.e. it may be limited by changes in pineal tryptophan (TRP) and/or 5-hydroxytryptophan (5-HTP) levels as well as by the activity of tryptophan hydroxylase (TPH) and aromatic l-amino acid decarboxylase (AADC): two enzymes participating in the conversion of TRP to 5-HT. The present study was undertaken with the following objectives: (1) to examine whether the pineal concentration of the 5-HT precursors TRP and 5-HTP exhibit age- and season-related changes; (2) to look for season-related differences in the transcription of the Tph1 and Ddc genes encoding enzymes TPH and AADC; (3) to identify the step(s) in postembryonic development in which these season-related variations in pineal gland function are most pronounced. Male Hy-line chickens hatched in the summer or winter, from eggs laid by hens held in L:D 16:8 conditions were kept from the day of hatch in L:D 12:12 conditions. At the age of 2 or 9 days, animals were sacrificed every 2 or 4 h over a 24-h period and their pineal glands were isolated under dim red light and processed for the measurement of (i) the pineal content of TRP, 5-HTP and 5-HT, and (ii) the level of Tph1 and Ddc mRNAs. Circadian rhythmicity of all the measured parameters was evaluated by the cosinor method. The pineal levels of TRP and 5-HT as well as the Tph1 and Ddc transcripts changed during postembryonic development in a season-related way. Whereas, the 5-HTP concentration did not vary between animals from both age groups, regardless of the season. Circadian rhythmicity of all the measured parameters was dependent on both the age and the season of hatch, and was greatest in older animals in the summer. These findings indicated that the efficiency of season-related MEL biosynthesis, reported previously, is limited by 5-HT availability and this limitation depends on the transcription of both the Tph1 and Ddc genes. Moreover, Ddc mRNA level in 9-d-old birds changed rhythmically, even though this gene is generally considered to be arrhythmic.
Remediation of aged diesel contaminated soil by alkaline activated persulfate.
Lominchar, M A; Santos, A; de Miguel, E; Romero, A
2018-05-01
The present work studies the efficiency of alkaline activated persulfate (PS) to remediate an aged diesel fuel contaminated soil from a train maintenance facility. The Total Petroleum Hydrocarbon (TPH) concentration in soil was approximately 5000mgkg -1 with a ratio of aliphatic:aromatic compounds of 70:30. Aromatic compounds were mainly naphtalenes and phenanthrenes. The experiments were performed in batch mode where different initial concentrations of persulfate (105mM, 210mM and 420mM) and activator:persulfate ratios (2 and 4) were evaluated, with NaOH used as activator. Runs were carried out during 56days. Complete TPH conversion was obtained with the highest concentration of PS and activator, whereas in the other runs the elimination of fuel ranged between 60 and 77%. Besides, the abatement of napthalenes and phenantrenes was faster than aliphatic reduction (i. e. after 4days of treatment, the conversions of the aromatic compounds were around 0.8 meanwhile the aliphatic abatements were 0.55) and no aromatic oxidation intermediates from naphtalenes or phenantrenes were detected. These results show that this technology is effective for the remediation of aged diesel in soil with alkaline pH. Copyright © 2017 Elsevier B.V. All rights reserved.
Theophilus, Stephen C; Mbanaso, Fredrick U; Nnadi, Ernest O; Onyedeke, Kingsley T
2017-11-14
Filter drains are usually laid along the margins of highways. Highway runoffs are polluted with hydrocarbons and high levels of total dissolved solids. Therefore, effective pollution removal mechanism is necessary in order to avoid contamination of surrounding soils and groundwater. Biodegradation is amongst pollution removal mechanisms in filter drains, but it is a relatively slow process which is dependent on wide range of factors including the type of pollutant and availability of nutrients. This paper reports on a study conducted to investigate the impact of slow-release fertilizer and struvite in enhancement of biodegradation of hydrocarbon in filter drains. Filter drain models incorporated with geotextile were challenged with cumulative oil loading of 178 mg/m 2 /week with a view to comparing the efficiency of these two nutrient sources under high oil pollution loading and realistic rainfall conditions of 13 mm/week. Nutrients and street dust were applied at one-off rate of 17 g/m 2 and 1.55 g/rig to provide nutrient enhancement and simulate field conditions respectively. The impact of the nutrients was studied by monitoring bacterial and fungal growth using nutrient agar, Rose Bengal Agar media and CO2 evolution. EC, pH, heavy metals, TPH, elemental analysis and SAR were used to investigate water quality of effluent of filter drains for potential application as irrigation fluid for trees and flowers planted on road verges. The results show that nutrient application encouraged microbial activities and enhanced biodegradation rates with differences in type of nutrient applied. Also, it was observed that incorporation of geotextiles in filter drains improved pollution retention efficiency and there is a potential opportunity for utilization of struvite in SuDS systems as sustainable nutrient source.
Impact of tributyltin and triphenyltin on ivory shell (Babylonia japonica) populations.
Horiguchi, Toshihiro; Kojima, Mitsuhiro; Hamada, Fumihiko; Kajikawa, Akira; Shiraishi, Hiroaki; Morita, Masatoshi; Shimizu, Makoto
2006-04-01
We histopathologically examined gonads and chemically determined organotin compounds in tissues of the ivory shell, Babylonia japonica. Imposex (a superimposition of male-type genital organs on females) occurred in approximately 80-90% of B. japonica specimens that we examined, with the penis and vas deferens both well developed. No oviduct blockage by vas deferens formation was observed. Ovarian spermatogenesis and suppressed ovarian maturation were observed in the females that exhibited imposex, although no histopathological abnormalities were found in males. Tissue distributions of organotin compounds [tributyltin (TBT), triphenyltin (TPhT), and their metabolites] were different for butyltins and phenyltins; a remarkably high accumulation of TBT was observed in the ctenidium, osphradium, and heart, whereas high concentrations of TPhT were detected in the ovary and digestive gland. More than one-third of TBT accumulated in the digestive glands of both males and females, followed by the testis, ctenidium, muscle, and heart tissues in males and in the muscle, ovary, ctenidium, and head tissues (including the central nervous system ganglia) in females. In both males and females, more than half of total TPhT accumulated in the digestive glands, followed by the gonads. The next highest values were in the muscle, ctenidium, and heart tissues in males and in the muscle, oviduct, and head tissues in females. Both TBT and TPhT concentrations in the gonads were positively correlated with penis length in females. Our findings strongly suggest that reproductive failure in adult females accompanied by imposex, possibly induced by TBT and TPhT from antifouling paints, may have caused the marked decline of B. japonica populations in Japan.
Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K
2012-07-15
The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain. Copyright © 2012 Elsevier B.V. All rights reserved.
Kirkpatrick, W D; White, P M; Wolf, D C; Thoma, G J; Reynolds, C M
2008-01-01
Phytoremediation can be a cost-effective and environmentally acceptable method to clean up crude oil-contaminated soils in situ. Our research objective was to determine the effects of nitrogen (N) additions and plant growth on the number of total hydrocarbon (TH)-, alkane-, and polycyclic aromatic hydrocarbon (PAH)-degrading microorganisms in weathered crude oil-contaminated soil. A warm-season grass, sudangrass (Sorghum sudanense (Piper) Stapf), was grown for 7 wk in soil with a total petroleum hydrocarbon (TPH) level of 16.6 g TPH/kg soil. Nitrogen was added based upon TPH-C:added total N (TPH-C:TN) ratios ranging from 44:1 to 11:1. Unvegetated and unamended controls were also evaluated. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil were enumerated from rhizosphere and non-rhizosphere soil for vegetated pots and non-rhizosphere soil populations were enumerated from non-vegetated pots. Total petroleum-degrading microbial numbers were also calculated for each pot. The TH-, alkane-, and PAH-degrading microbial numbers per gram of dry soil in the sudangrass rhizosphere were 3.4, 2.6, and 4.8 times larger, respectively, than those in non-rhizosphere soil across all N rates. The presence of sudangrass resulted in significantly more TH-degrading microorganisms per pot when grown in soil with a TPH-C:TN ratio of 11:1 as compared to the control. Increased plant root growth in a crude oil-contaminated soil and a concomitant increase in petroleum-degrading microbial numbers in the rhizosphere have the potential to enhance phytoremediation.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... CBOE and CBOE Stock Exchange, LLC (``CBSX''). In addition, the PULSe workstation provides a user with... the national best bid or offer (``NBBO''), regardless of size or time, but allows any user to manually... available to Non-TPH User A. To the extent that orders originating from Non-TPH User A's PULSe workstation...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... elect to have CBOE perform certain marketing services and/or billing services on behalf of the... Participating CBOE TPH, if a Participating Non-CBOE TPH elects to have CBOE perform marketing services on its... default destination for an order to be the U.S. options exchange with the best bid or offer, except CBOE...
Hentati, Olfa; Lachhab, Radhia; Ayadi, Mariem; Ksibi, Mohamed
2013-04-01
The assessment of soil quality after a chemical or oil spill and/or remediation effort may be measured by evaluating the toxicity of soil organisms. To enhance our understanding of the soil quality resulting from laboratory and oil field spill remediation, we assessed toxicity levels by using earthworms and springtails testing and plant growth experiments. Total petroleum hydrocarbons (TPH)-contaminated soil samples were collected from an oilfield in Sfax, Tunisia. Two types of bioassays were performed. The first assessed the toxicity of spiked crude oil (API gravity 32) in Organization for Economic Co-operation and Development artificial soil. The second evaluated the habitat function through the avoidance responses of earthworms and springtails and the ability of Avena sativa to grow in TPH-contaminated soils diluted with farmland soil. The EC50 of petroleum-contaminated soil for earthworms was 644 mg of TPH/kg of soil at 14 days, with 67 % of the earthworms dying after 14 days when the TPH content reached 1,000 mg/kg. The average germination rate, calculated 8 days after sowing, varied between 64 and 74 % in low contaminated soils and less than 50 % in highly contaminated soils.
Improvement in pinch function after surgical treatment for thumb in the plane of the hand.
Iba, K; Wada, T; Aoki, M; Yamashita, T
2012-02-01
Thumb in the plane of the hand (TPH) is a congenital deformity in which the nail plane of the radial-most digit is parallel to that of other digits, but structurally the digit retains the characteristics of a thumb. Four hands from four patients were retrospectively diagnosed as having TPH, with the underlying congenital conditions being symbrachydactyly, cleft hand and constriction band syndrome. Thumb web-plasty was carried out in all hands; one required additional rotation osteotomy of the metacarpal. Postoperative hand function was markedly improved and pinch function was possible in all cases. In most cases of TPH, the thumb has the potential to act in opposition, indicating that a thumb web-plasty is worth considering as an initial procedure.
Blyth, Warren; Shahsavari, Esmaeil; Morrison, Paul D; Ball, Andrew S
2015-10-01
Polycyclic aromatic hydrocarbons (PAHs) are persistent contaminants that accumulate in soil, sludge and on vegetation and are produced through activities such as coal burning, wood combustion and in the use of transport vehicles. Naturally occurring surfactants have been known to enhance PAH-removal from soil by improving PAH solubilization thereby increasing PAH-microbe interactions. The aim of this research was to determine if a biosurfactant derived from the leaves of the Australian red ash (Alphitonia excelsa) would enhance bioremediation of a heavily PAH-contaminated soil and to determine how the microbial community was affected. Results of GC-MS analysis show that the extracted biosurfactant was significantly more efficient than the control in regards to the degradation of total 16 US EPA priority PAHs (78.7% degradation compared to 62.0%) and total petroleum hydrocarbons (TPH) (92.9% degradation compared to 44.3%). Furthermore the quantification of bacterial genes by qPCR analysis showed that there was an increase in the number of gene copies associated with Gram positive PAH-degrading bacteria. The results suggest a commercial potential for the use of the Australian red ash tree as a source of biosurfactant for use in the accelerated degradation of hydrocarbons. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Jinlan; Kong, Fanxing; Song, Shaohua; Cao, Qianqian; Huang, Tinglin; Cui, Yiwei
2017-08-01
Fenton pre-oxidation and a subsequent bioremediation phase of 80 days were used to investigate the importance of matching concentration of residual indigenous bacteria and nutrient levels on subsequent bioremediation of crude oil. Experiments were performed using either high (>10 7.7 ± 0.2 CFU/g soil) or low (<10 5.9 ± 0.1 CFU/g soil) concentrations of bacteria and three different nutrient levels: enough (C/N > 9.8), moderate (C/N:5-9.8), and lacking nutrient level (C/N < 5) conditions. Weak Fenton pre-oxidation (225 mM H 2 O 2 and 2.9 mM Fe 2+ ) resulted in highly matching between nutrient level and the population of residual indigenous bacteria. Up to 53% of total petroleum hydrocarbon (TPH) and 58% of main hydrocarbon (C 15 C 25 , during the first 10 days) were removed from the soil. Under matching conditions, the activity of indigenous bacteria and nutrient mobilization were enhanced, promoting the bioremediation of crude oil. In addition, the biodegradation of long chain molecules (C 26 C 30 ) required a high level of NH 4 + -N. Copyright © 2017 Elsevier Ltd. All rights reserved.
Meier, Marc A; Ottiger, Manuel; Vögeli, Alaadin; Steuer, Christian; Bernasconi, Luca; Thomann, Robert; Christ-Crain, Mirjam; Henzen, Christoph; Hoess, Claus; Zimmerli, Werner; Huber, Andreas; Mueller, Beat; Schuetz, Philipp
2017-06-01
Indoleamine 2,3-dioxygenase (IDO) metabolizes tryptophan to kynurenine. An increase of its activity is associated with severity in patients with pneumonia. In chronic obstructive pulmonary disease (COPD) patients, an elevation of serotonin has been reported. Experimental models showed that cigarette smoke inhibits monoamine oxidase (MAO) leading to higher levels of serotonin. We investigated the prognostic ability of tryptophan, serotonin, kynurenine, IDO, and tryptophan hydroxylase (TPH) to predict short- and long-term outcomes in patients with a COPD exacerbation. We measured tryptophan, serotonin, and kynurenine on admission plasma samples in patients with a COPD exacerbation from a previous trial by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). IDO and TPH were calculated as ratios of kynurenine over tryptophan, and serotonin over tryptophan, respectively. We studied their association with parameters measured in clinical routine at emergency department admission representing inflammation (C-reactive protein [CRP]), infection (procalcitonin [PCT]), oxygenation (SpO 2 ), as well as patients' clinical outcome, confirmed by structured phone interviews. Mortality in the 149 included patients was 53.7% within six years of follow-up. While IDO activity showed strong positive correlations, tryptophan was negatively correlated with CRP and PCT. For 30-day adverse outcome defined as death and/or intensive care unit (ICU) admission, a multivariate regression analysis adjusted for age and comorbidities found strong associations for IDO activity (adjusted odds ratios of 31.4 (95%CI 1.1-857), p = 0.041) and TPH (adjusted odds ratios 27.0 (95%CI 2.2-327), p = 0.010). TPH also showed a significant association with mortality at 18 months, (hazard ratio 2.61 (95%CI 1.2-5.8), p = 0.020). In hospitalized patients with a COPD exacerbation, higher IDO and TPH activities independently predicted adverse short-term outcomes and TPH levels were also predictive of 18-month mortality. Whether therapeutic modulation of the serotonin pathway has positive effects on outcome needs further investigation.
Donner, Nina C; Handa, Robert J
2009-01-01
Dysfunctions of the brain serotonin (5-HT) system are often associated with affective disorders, such as depression. The raphe nuclei target the limbic system and most forebrain areas and constitute the main source of 5-HT in the brain. All 5-HT neurons express tryptophan hydroxylase-2 (TPH2), the brain specific, rate-limiting enzyme for 5-HT synthesis. ERbeta agonists have been shown to attenuate anxiety-and despair-like behaviors in rodent models. Therefore, we tested the hypothesis that ERbeta may contribute to the regulation of gene expression in 5-HT neurons of the dorsal raphe nuclei (DRN) by examining the effects of systemic and local application of the selective ERbeta agonist diarylpropionitrile (DPN) on tph2 mRNA expression. Ovariectomized (OVX) female rats were injected subcutaneously (s.c.) with DPN or vehicle once daily for 8 days. In situ hybridization revealed that systemic DPN-treatment elevated basal tph2 mRNA expression in the caudal and mid-dorsal DRN. Behavioral testing of all animals in the open field (OF) and on the elevated plus maze (EPM) on days 6 and 7 of treatment confirmed the anxiolytic nature of ERbeta activation. Another cohort of female OVX rats was stereotaxically implanted bilaterally with hormone-containing wax pellets flanking the DRN. Pellets contained either 17-beta-estradiol (E), DPN, or no hormone. Both DPN and E significantly enhanced tph2 mRNA expression in the mid-dorsal DRN. DPN also increased tph2 mRNA in the caudal DRN. DPN- and E-treated rats displayed a more active stress-coping behavior in the forced-swim test (FST). No behavioral differences were found in the OF or on the EPM. These data indicate that ERbeta acts at the level of the rat DRN to modulate tph2 mRNA expression and thereby influence 5-HT synthesis in DRN subregions. Our results also suggest that local activation of ERbeta neurons in the DRN may be sufficient to decrease despair-like behavior, but not anxiolytic behaviors. PMID:19559077
Impact of Tributyltin and Triphenyltin on Ivory Shell (Babylonia japonica) Populations
Horiguchi, Toshihiro; Kojima, Mitsuhiro; Hamada, Fumihiko; Kajikawa, Akira; Shiraishi, Hiroaki; Morita, Masatoshi; Shimizu, Makoto
2006-01-01
We histopathologically examined gonads and chemically determined organotin compounds in tissues of the ivory shell, Babylonia japonica. Imposex (a superimposition of male-type genital organs on females) occurred in approximately 80–90% of B. japonica specimens that we examined, with the penis and vas deferens both well developed. No oviduct blockage by vas deferens formation was observed. Ovarian spermatogenesis and suppressed ovarian maturation were observed in the females that exhibited imposex, although no histopathological abnormalities were found in males. Tissue distributions of organotin compounds [tributyltin (TBT), triphenyltin (TPhT), and their metabolites] were different for butyltins and phenyltins; a remarkably high accumulation of TBT was observed in the ctenidium, osphradium, and heart, whereas high concentrations of TPhT were detected in the ovary and digestive gland. More than one-third of TBT accumulated in the digestive glands of both males and females, followed by the testis, ctenidium, muscle, and heart tissues in males and in the muscle, ovary, ctenidium, and head tissues (including the central nervous system ganglia) in females. In both males and females, more than half of total TPhT accumulated in the digestive glands, followed by the gonads. The next highest values were in the muscle, ctenidium, and heart tissues in males and in the muscle, oviduct, and head tissues in females. Both TBT and TPhT concentrations in the gonads were positively correlated with penis length in females. Our findings strongly suggest that reproductive failure in adult females accompanied by imposex, possibly induced by TBT and TPhT from antifouling paints, may have caused the marked decline of B. japonica populations in Japan. PMID:16818241
Cilia, Roberto; Benfante, Roberta; Asselta, Rosanna; Marabini, Laura; Cereda, Emanuele; Siri, Chiara; Pezzoli, Gianni; Goldwurm, Stefano; Fornasari, Diego
2016-08-01
Impulse control disorders and compulsive medication intake may occur in a minority of patients with Parkinson's disease (PD). We hypothesize that genetic polymorphisms associated with addiction in the general population may increase the risk for addictive behaviors also in PD. Sixteen polymorphisms in candidate genes belonging to five neurotransmitter systems (dopaminergic, catecholaminergic, serotonergic, glutamatergic, opioidergic) and the BDNF were screened in 154 PD patients with addictive behaviors and 288 PD control subjects. Multivariate analysis investigated clinical and genetic predictors of outcome (remission vs. persistence/relapse) after 1 year and at the last follow-up (5.1 ± 2.5 years). Addictive behaviors were associated with tryptophan hydroxylase type 2 (TPH2) and dopamine transporter gene variants. A subsequent analysis within the group of cases showed a robust association between TPH2 genotype and the severity of addictive behaviors, which survived Bonferroni correction for multiple testing. At multivariate analysis, TPH2 genotype resulted the strongest predictor of no remission at the last follow-up (OR[95%CI], 7.4[3.27-16.78] and 13.2[3.89-44.98] in heterozygous and homozygous carriers, respectively, p < 0.001). The extent of medication dose reduction was not a predictor. TPH2 haplotype analysis confirmed the association with more severe symptoms and lower remission rates in the short- and the long-term (p < 0.005 for all analyses). The serotonergic system is likely to be involved in the pathophysiology of addictive behaviors in PD, modulating the severity of symptoms and the rate of remission at follow-up. If confirmed in larger independent cohorts, TPH2 genotype may become a useful biomarker for the identification of at-risk individuals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dykens, Elisabeth M.; Roof, Elizabeth; Bittel, Douglas; Butler, Merlin G.
2010-01-01
Background Prader-Willi syndrome (PWS) is a genetic, neurodevelopmental disorder characterized by intellectual disabilities, growth hormone dysregulation, hyperphagia, increased risks of morbid obesity, compulsive behaviors, and irritability. As aberrant serotonergic functioning is strongly implicated in PWS, we examined associations between the PWS phenotype and polymorphisms in tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in the biosynthesis of serotonin in the brain. Methods 92 individuals with PWS aged 4 to 50 years (M = 21.97) were genotyped for the TPH2 G703-T polymorphism. IQ testing was conducted in offspring, and parents completed questionnaires that tapped their child’s compulsivity, hyperphagia, and other behavior problems. Results As expected, the frequency of G/T or T/T polymorphisms in participants with PWS (39%) was similar to rates found in the general population (38%). Compared to those with a homozygous (G/G) genotype, individuals with a T allele had significantly higher hyperphagic behavior, drive, and severity scores, and they also had a younger age of onset of hyperphagia. Those with a T allele also had higher IQ scores than their counterparts. Females with a T allele had significantly higher internalizing symptoms, primarily anxiety and depression, than all others. Conclusions TPH2 G/T polymorphisms, and presumed loss of enzyme function, were associated with specific aspects of the PWS phenotype. Aberrant serotonergic functioning is strongly implicated in hyperphagia in PWS, and females with TPH2 T alleles may be at higher risk for affective or mood disorders. Findings hold promise for examining other serotonin-altering genes in PWS, and for future serotonin-altering treatment trials. PMID:21418060
Dykens, Elisabeth M; Roof, Elizabeth; Bittel, Douglas; Butler, Merlin G
2011-05-01
Prader-Willi syndrome (PWS) is a genetic, neurodevelopmental disorder characterized by intellectual disabilities, growth hormone dysregulation, hyperphagia, increased risks of morbid obesity, compulsive behaviors, and irritability. As aberrant serotonergic functioning is strongly implicated in PWS, we examined associations between the PWS phenotype and polymorphisms in tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in the biosynthesis of serotonin in the brain. Ninety-two individuals with PWS aged 4 to 50 years (M = 21.97) were genotyped for the TPH2 G703-T polymorphism. IQ testing was conducted in offspring, and parents completed questionnaires that tapped their child's compulsivity, hyperphagia, and other behavior problems. As expected, the frequency of G/T or T/T polymorphisms in participants with PWS (39%) was similar to rates found in the general population (38%). Compared to those with a homozygous (G/G) genotype, individuals with a T allele had significantly higher hyperphagic behavior, drive, and severity scores, and they also had a younger age of onset of hyperphagia. Those with a T allele also had higher IQ scores than their counterparts. Females with a T allele had significantly higher internalizing symptoms, primarily anxiety and depression, than all others. TPH2 G/T polymorphisms, and presumed loss of enzyme function, were associated with specific aspects of the PWS phenotype. Aberrant serotonergic functioning is strongly implicated in hyperphagia in PWS, and females with TPH2 T alleles may be at higher risk for affective or mood disorders. Findings hold promise for examining other serotonin-altering genes in PWS, and for future serotonin-altering treatment trials. © 2011 The Authors. Journal of Child Psychology and Psychiatry © 2011 Association for Child and Adolescent Mental Health.
Cicchetti, Dante; Rogosch, Fred A.; Thibodeau, Eric
2013-01-01
Gene-environment interaction effects in predicting antisocial behavior in late childhood were investigated among maltreated and nonmaltreated low-income children (N = 627, M age = 11.27). Variants in three genes, TPH1, 5-HTTLPR, and MAOA uVNTR, were examined. In addition to child maltreatment status, we also considered the impact of maltreatment subtypes, developmental timing of maltreatment, and chronicity. Indicators of antisocial behavior were obtained from self-, peer-, and adult counselor-reports. In a series of ANCOVAs, child maltreatment and its parameters demonstrated strong main effects on early antisocial behavior as assessed by all forms of report. Genetic effects operated primarily in the context of gene-environment interactions, moderating the impact of child maltreatment on outcomes. Across the three genes, among nonmaltreated children no differences in antisocial behavior were found based on genetic variation. In contrast, among maltreated children specific polymorphisms of TPH1, 5-HTTLPR, and MAOA were each related to heightened self-report of antisocial behavior; the interaction of 5-HTTLPR and developmental timing of maltreatment also indicated more severe antisocial outcomes for children with early onset and recurrent maltreatment based on genotype. TPH1 and 5-HTTLPR interacted with maltreatment subtype to predict peer-report of antisocial behavior; genetic variation contributed to larger differences in antisocial behavior among abused children. TPH1 and 5-HTTLPR polymorphisms also moderated the effects of maltreatment subtype on adult report of antisocial behavior; again genetic effects were strongest for children who were abused. Additionally, TPH1 moderated the effect of developmental timing of maltreatment and chronicity on adult report of antisocial behavior. The findings elucidate how genetic variation contributes to identifying which maltreated children are most vulnerable to antisocial development. PMID:22781862
Wang, Chuanyuan; Liu, Xing; Guo, Jie; Lv, Yingchun; Li, Yuanwei
2018-09-15
Bioremediation, mainly by indigenous bacteria, has been regarded as an effective way to deal with the petroleum pollution after an oil spill accident. The biodegradation of crude oil by microorganisms co-incubated from sediments collected from the Penglai 19-3 oil platform, Bohai Sea, China, was examined. The relative susceptibility of the isomers of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene to biodegradation was also discussed. The results showed that the relative degradation values of total petroleum hydrocarbon (TPH) are 43.56% and 51.29% for sediments with untreated microcosms (S-BR1) and surfactant-treated microcosms (S-BR2), respectively. TPH biodegradation results showed an obvious decrease in saturates (biodegradation rate: 67.85-77.29%) and a slight decrease in aromatics (biodegradation rate: 47.13-57.21%), while no significant difference of resins and asphaltenes was detected. The biodegradation efficiency of alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophene for S-BR1 and S-BR2 samples reaches 1.28-84.43% and 42.56-86.67%, respectively. The efficiency of crude oil degradation in sediment with surfactant-treated microcosms cultures added Tween 20, was higher than that in sediment with untreated microcosms. The biodegradation and selective depletion is not only controlled by thermodynamics but also related to the stereochemical structure of individual isomer compounds. Information on the biodegradation of oil spill residues by the bacterial community revealed in this study will be useful in developing strategies for bioremediation of crude oil dispersed in the marine ecosystem. Copyright © 2018 Elsevier Inc. All rights reserved.
Tornini, Valerie A; Thompson, John D; Allen, Raymond L; Poss, Kenneth D
2017-08-15
The blastema is a mass of progenitor cells responsible for regeneration of amputated salamander limbs and fish fins. Previous studies have indicated that resident cell sources producing the blastema contribute lineage-restricted progeny to regenerating tissue. However, these studies have labeled general cell types rather than granular cell subpopulations, and they do not explain the developmental transitions that must occur for distal structures to arise from cells with proximal identities in the appendage stump. Here, we find that regulatory sequences of tph1b , which encodes an enzyme that synthesizes serotonin, mark a subpopulation of fibroblast-like cells restricted to the joints of uninjured adult zebrafish fins. Amputation stimulates serotonin production in regenerating fin fibroblasts, yet targeted tph1b mutations abrogating this response do not disrupt fin regeneration. In uninjured animals, tph1b -expressing cells contribute fibroblast progeny that remain restricted to joints throughout life. By contrast, upon amputation, tph1b + joint cells give rise to fibroblasts that distribute across the entire lengths of regenerating fin rays. Our experiments visualize and quantify how incorporation into an appendage blastema broadens the progeny contributions of a cellular subpopulation that normally has proximodistal restrictions. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Mark J
This document constitutes an addendum to the Closure Report for Corrective Action Unit 165: Area 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada as described in the document Recommendations and Justifications To Remove Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office Federal Facility Agreement and Consent Order dated September 2013. The Use Restriction Removal document was approved by the Nevada Division of Environmental Protection on October 16, 2013. The approval of the UR Removal document constituted approval of each of the recommended UR removals. In conformance with themore » UR Removal document, this addendum consists of: This page that refers the reader to the UR Removal document for additional information The cover, title, and signature pages of the UR Removal document The NDEP approval letter The corresponding section of the UR Removal document This addendum provides the documentation justifying the cancellation of the UR for CAS 25-20-01, Lab Drain Dry Well. This UR was established as part of FFACO corrective actions and was based on the presence of tetrachloroethene contamination at concentrations greater than the action level established at the time of the initial investigation. Although total petroleum hydrocarbon diesel-range organics contamination at concentrations greater than the NDEP action level was present at the site, no hazardous constituents of TPH-DRO exceeded the U.S. Environmental Protection Agency (EPA) Region 9 preliminary remediation goals established at the time of the initial investigation.« less
25 years monitoring of PAHs and petroleum hydrocarbons biodegradation in soil.
Harmsen, Joop; Rietra, René P J J
2018-05-10
Biodegradation of polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPH) in sediment and soil has been monitored on seven experimental fields during periods up to 25 years. With this unique dataset, we investigated long-term very slow biodegradation under field conditions. . The data show that three biodegradation rates can be distinguished for PAHs: 1) rapid degradation during the first year, 2) slow degradation during the following 6 years and 3), subject of this paper, a very slow degradation after 7 years until at least 25 years. Beside 2-, 3- and 4-ring PAHs, also 5- and 6-ring PAHs (aromatic rings) were degraded, all at the same rate during very slow degradation. In the period of very slow degradation, 6% yr -1 of the PAHs present were removed in five fields and 2% yr -1 in two other fields, while in the same period no very slow degradation of TPH could be observed. The remaining petroleum hydrocarbons were high boiling and non-toxic. Using the calculated degradation rates and the independently measured bioavailability of the PAHs (Tenax-method), the PAHs degradation curves of all seven monitored fields could be modelled. Applying the model and data obtained with the Tenax-method for fresh contaminated material, results of long-term biodegradation can be predicted, which can support the use of bioremediation in order to obtain a legally acceptable residual concentration. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
2003-08-29
analyzed for total volatile solids, total organic carbon, oil and grease/total petroleum hydrocarbons , grain size distribution, metals, polycyclic...TBT Tri-Butyltin TOC Total Organic Carbon TPCB Total Polychlorinated Biphenyls TPH Total Petroleum Hydrocarbons USACE U.S. Army Corps of Engineers U.S...Health PQL Practical Quantitation Limit RCRA Resource Conservation and Recovery Act SIM Selected Ion Monitoring TPH Total Petroleum Hydrocarbons tr Trace
Assessing soil and groundwater contamination in a metropolitan redevelopment project.
Yun, Junki; Lee, Ju Young; Khim, Jeehyeong; Ji, Won Hyun
2013-08-01
The purpose of this study was to assess contaminated soil and groundwater for the urban redevelopment of a rapid transit railway and a new mega-shopping area. Contaminated soil and groundwater may interfere with the progress of this project, and residents and shoppers may be exposed to human health risks. The study area has been remediated after application of first remediation technologies. Of the entire area, several sites were still contaminated by waste materials and petroleum. For zinc (Zn) contamination, high Zn concentrations were detected because waste materials were disposed in the entire area. For petroleum contamination, high total petroleum hydrocarbon (TPH) and hydrocarbon degrading microbe concentrations were observed at the depth of 7 m because the underground petroleum storage tank had previously been located at this site. Correlation results suggest that TPH (soil) concentration is still related with TPH (groundwater) concentration. The relationship is taken into account in the Spearman coefficient (α).
Nyman, J A; Klerks, P L; Bhattacharyya, S
2007-09-01
We determined how a cleaner and a dispersant affected hydrocarbon biodegradation in wetland soils dominated by the plant Panicum hemitomon, which occurs throughout North and South America. Microcosms received no hydrocarbons, South Louisiana crude, or diesel; and no additive, a dispersant, or a cleaner. We determined the concentration of four total petroleum hydrocarbon (TPH) measures and 43 target hydrocarbons in water and sediment fractions 1, 7, 31, and 186 days later. Disappearance was distinguished from biodegradation via hopane-normalization. After 186 days, TPH disappearance ranged from 24% to 97%. There was poor correlation among the four TPH measures, which indicated that each quantified a different suite of hydrocarbons. Hydrocarbon disappearance and biodegradation were unaltered by these additives under worse-case scenarios. Any use of these additives must generate benefits that outweigh the lack of effect on biodegradation demonstrated in this report, and the increase in toxicity that we reported earlier.
NASA Astrophysics Data System (ADS)
Huang, Wei
2018-05-01
The temporal and spatial distribution of total petroleum hydrocarbons (TPH) and four heavy metals in the surface sediments of Caofeidian Sea Area during 2011–2016 was investigated. The sediment concentration of TPH, Cu, Zn, Pb and Cd were 10.07-186.4 mg/L, 16.5-84.9 mg/L, 11.1-135 mg/L, 6.8-24.6 mg/L, and 0.07-0.199 mg/L, respectively. The pollution level in Caofeidian sea area is lower than those in other area in China. These results reached the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. In addition, TPH at all stations decreased during 2011-2016. The highest values obtained were at stations near the port areas and estuary region.
Layec, Gwenael; Haseler, Luke J; Richardson, Russell S
2012-03-01
To better understand the metabolic implications of a higher ATP cost of contraction in chronic obstructive pulmonary disease (COPD), we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to examine muscle energetics and pH in response to graded exercise. Specifically, in six patients and six well-matched healthy controls, we determined the intracellular threshold for pH (T(pH)) and inorganic phosphate-to-phosphocreatine ratio (T(Pi/PCr)) during progressive dynamic plantar flexion exercise with work rate expressed as both absolute and relative intensity. Patients with COPD displayed a lower peak power output (WRmax) compared with controls (controls 25 ± 4 W, COPD 15 ± 5 W, P = 0.01) while end-exercise pH (controls 6.79 ± 0.15, COPD 6.76 ± 0.21, P = 0.87) and PCr consumption (controls 82 ± 10%, COPD 70 ± 18%, P = 0.26) were similar between groups. Both T(pH) and T(Pi/PCr) occurred at a significantly lower absolute work rate in patients with COPD compared with controls (controls: 14.7 ± 2.4 W for T(pH) and 15.3 ± 2.4 W for T(Pi/PCr); COPD: 9.7 ± 4.5 W for T(pH) and 10.0 ± 4.6 W for T(Pi/PCr), P < 0.05), but these thresholds occurred at the same percentage of WRmax (controls: 63 ± 11% WRmax for T(pH) and 67 ± 18% WRmax for T(Pi/PCr); COPD: 59 ± 9% WRmax for T(pH) and 61 ± 12% WRmax for T(Pi/PCr), P > 0.05). Indexes of mitochondrial function, the PCr recovery time constant (controls 42 ± 7 s, COPD 45 ± 11 s, P = 0.66) and the PCr resynthesis rate (controls 105 ± 21%/min, COPD 91 ± 31%/min, P = 0.43) were similar between groups. In combination, these results reveal that when energy demand is normalized to WRmax, as a consequence of higher ATP cost of contraction, patients with COPD display the same metabolic pattern as healthy subjects, suggesting that skeletal muscle energy production is well preserved in these patients.
1992-01-01
except TPH, which was detected at 0.06 mg/l in Monitor Well 01-MW-02. Some metals (arsenic, cadmium , chromium, lead, silver, and zinc ) were detected at...extraction. Trace quantities of some priority pollutant metals were detected in the surface water samples. Arsenic, cadmium , and zinc were detected at...storage tank. TPH was detected in all five groundwater samples. Arsenic, beryllium, cadmium , chromium, copper, lead, nickel, silver, and zinc were also
Hadden, Coedy; Fahmi, Tariq; Cooper, Anthonya; Savenka, Alena V; Lupashin, Vladimir V; Roberts, Drucilla J; Maroteaux, Luc; Hauguel-de Mouzon, Sylvie; Kilic, Fusun
2017-12-01
Serotonin (5-HT) and its specific transporter, SERT play important roles in pregnancy. Using placentas dissected from 18d gestational SERT-knock out (KO), peripheral 5-HT (TPH1)-KO, and wild-type (WT) mice, we explored the role of 5-HT and SERT in placental functions in detail. An abnormal thick band of fibrosis and necrosis under the giant cell layer in SERT-KO placentas appeared only moderately in TPH1-KO and minimally present in WT placentas. The majority of the changes were located at the junctional zone of the placentas in SERT. The etiology of these findings was tested with TUNEL assays. The placentas from SERT-KO and TPH1-KO showed 49- and 8-fold increase in TUNEL-positive cells without a concurrent change in the DNA repair or cell proliferation compared to WT placentas. While the proliferation rate in the embryos of TPH1-KO mice was 16-fold lower than the rate in gestational age matched embryos of WT or SERT-KO mice. These findings highlight an important role of continuous 5-HT signaling on trophoblast cell viability. SERT may contribute to protecting trophoblast cells against cell death via terminating the 5-HT signaling which changes cell death ratio in trophoblast as well as proliferation rate in embryos. However, the cell death in SERT-KO placentas is in caspase 3-independent pathway. © 2017 Wiley Periodicals, Inc.
Kulikov, Alexander V; Tikhonova, Maria A; Osipova, Daria V; Kulikov, Victor A; Popova, Nina K
2011-10-01
Tryptophan hydroxylase-2 (TPH2) is the rate limiting enzyme of serotonin synthesis in the brain. The 1473G allele of the C1473G polymorphism in mTPH2 gene is associated with reduced enzyme activity and serotonin synthesis rate in the mouse brain. Here, the influence of the 1473G allele on the antidepressant effect of selective serotonin reuptake inhibitors (SSRIs), citalopram (2.5 or 5.0mg/kg) and paroxetine (5.0 or 10.0mg/kg), in the forced swim test was studied using B6-1473G and B6-1473C congenic mouse lines with the 1473G (decreased TPH2 activity) or 1473C (normal TPH2 activity) alleles, respectively, transferred to the genome of C57BL/6 mouse strain. Paroxetine (5.0 or 10.0mg/kg) and citalopram (2.5 or 5.0mg/kg) decreased immobility time in B6-1473C mice, while both doses of paroxetine and 2.5mg/kg of citaloprame did not alter immobility time in B6-1473G mice. However, 5.0mg/kg of citalopram reduced immobility in B6-1473G mice. The results provided genetic evidence of moderate association between 1473G allele and reduced sensitivity to SSRIs in mice. Copyright © 2011 Elsevier Inc. All rights reserved.
Effect of phloretin on the permeability of thin lipid membranes
1976-01-01
Phloretin dramatically increases cation conductances and decreases anion conductances of membranes treated with ion carriers (nonactin, valinomycin, carbonyl-cyanide-m-chlorophenylhydrazone [CCCP], and Hg(C6F5)2) or lipophilic ions (tetraphenylarsonium [tphAs+] and tetraphenylborate [TPhB-]). For example, on phosphatidylethanolamine membranes, 10(-4) M phloretin increases K+ -nonactin and TPhAs+ conductances and decreases CCCP- and TPhB- conductances 10(3)-fold; on lecithin: cholesterol membranes, it increases K+-nonactin conductance 10(5)-fold and decreases CCCP- conductance 10(3)-fold. Similar effects are obtained with p- and m-nitrophenol at 10(-2) M. These effects are produced by the un-ionized form of phloretin and the nitrophenols. We believe that phloretin, which possesses a large dipole moment, adsorbs and orients at the membrane surface to introduce a dipole potential of opposite polarity to the preexisting positive one, thus increasing the partition coefficient of cations into the membrane interior and decreasing the partition coefficient of anions. (Phloretin may also increase the fluidity of cholesterol-containing membranes; this is manifested by its two- to three-fold increase in nonelectrolyte permeability and its asymmetrical effect on cation and anion conductances in cholesterol-containing membranes.) It is possible that pholoretin's inhibition of chloride, urea, and glucose transport in biological membranes results from the effects of these intense intrafacial dipole fields on the translocator(s) of these molecules. PMID:946975
Nazree, Nur Elia; Loke, Ai Chin; Zainal, Nor Zuraida; Mohamed, Zahurin
2015-03-01
Numerous association studies of candidate genes studies with major depressive disorder (MDD) have been conducted for many years; however, the evidence of association between genes and the risk of developing MDD still remains inconclusive. In this study, we aimed to investigate the association between the tryptophan hydroxylase 2 (TPH2) gene and MDD in three ethnic groups (Malay, Chinese and Indian) within the Malaysian population. Two hundred and sixty five MDD patients who fulfilled the Diagnostic and Statistical Manual of Mental Disorders-IV criteria for MDD and 332 healthy controls were recruited for the study. All cases and controls were then genotyped for TPH2 polymorphisms rs1386494, rs1386495 and rs7305115. Single locus analysis in pooled and ethnically stratified subjects revealed no association between each of the three variants of the TPH2 gene with susceptibility to MDD. Strong linkage disequilibrium was detected between rs1386495 and rs1386494 in pooled subjects; however, no significant association was found in the haplotype analysis. In this study, we suggest that in both the Chinese and Indian populations, gender distribution differ significantly between cases and controls, showing that women are more at risk of developing MDD compared with men. Therefore, we suggest that the occurrence of MDD in both Chinese and Indians in the Malaysian population may be influenced by gender. Copyright © 2013 Wiley Publishing Asia Pty Ltd.
INNOVATIVE TECHNOLOGY VERIFICATION REPORT " ...
The EnSys Petro Test System developed by Strategic Diagnostics Inc. (SDI), was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Hueneme, California. The purpose of the demonstration was to collect reliable performance and cost data for the EnSys Petro Test System and six other field measurement devices for total petroleum hydrocarbons (TPH) in soil. In addition to assessing ease of device operation, the key objectives of the demonstration included determining the (1) method detection limit, (2) accuracy and precision, (3) effects of interferents and soil moisture content on TPH measurement, (4) sample throughput, and (5) TPH measurement costs for each device. The demonstration involved analysis of both performance evaluation samples and environmental samples collected in four areas contaminated with gasoline, diesel, or other petroleum products. The performance and cost results for a given field measurement device were compared to those for an off-site laboratory reference method,
INNOVATIVE TECHNOLOGY VERIFICATION REPORT " ...
The Synchronous Scanning Luminoscope (Luminoscope) developed by the Oak Ridge National Laboratory in collaboration with Environmental Systems Corporation (ESC) was demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in June 2000 at the Navy Base Ventura County site in Port Hueneme, California. The purpose of the demonstration was to collect reliable performance and cost data for the Luminoscope and six other field measurement devices for total petroleum hydrocarbons (TPH) in soil. In addition to assessing ease of device operation, the key objectives of the demonstration included determining the (1) method detection limit, (2) accuracy and precision, (3) effects of interferents and soil moisture content on TPH measurement, (4) sample throughput, and (5) TPH measurement costs for each device. The demonstration involved analysis of both performance evaluation samples and environmental samples collected in five areas contaminated with gasoline, diesel, lubricating oil, or other petroleum products. The performance and cost results for a given field measurement device were compared to those for an off-site laboratory reference method,
Rietschel, M; Schorr, A; Albus, M; Franzek, E; Kreiner, R; Held, T; Knapp, M; Müller, D J; Schulze, T G; Propping, P; Maier, W; Nöthen, M M
2000-06-12
The tryptophan hydroxylase (TPH) gene encodes for the rate-limiting enzyme of the serotonin metabolism and, therefore, has to be considered a major candidate for association studies in affective disorders. Recently, an association between this gene and bipolar affective disorder has been reported in a French population. We sought to replicate this finding in a German sample. Allele frequencies of a biallelic polymorphism (A218C) of the TPH gene were determined in 95 bipolar I patients and their parents. Preferential transmission of alleles from heterozygous parents to bipolar offspring was tested with the "transmission disequilibrium test" (TDT), which eliminates the contribution of population stratification to an association finding. Our sample yielded a power >90% to detect the originally reported effect. Neither allele 218A nor allele 218C were preferentially transmitted from heterozygous parents to bipolar offspring. Our results, therefore, do not support the hypothesis that the TPH gene is involved in the etiology of bipolar disorder.
Bazhenova, Ekaterina Y; Sinyakova, Nadezhda A; Kulikova, Elizabeth A; Kazarinova, Irina A; Bazovkina, Daria V; Gainetdinov, Raul R; Kulikov, Alexander V
2017-07-13
Selective serotonin reuptake inhibitors (SSRIs) are antidepressants that block serotonin transporter (SERT) and increase serotonin (5-HT) level in the synaptic cleft. The interaction between SERT and the key enzyme of 5-HT synthesis in the brain, tryptophan hydroxylase 2 (TPH2), is essential to maintain the brain 5-HT level. The G allele of C1473G polymorphism in Tph2 gene decreases enzyme activity by half in mouse brain. Here we studied effect of C1473G polymorphism on the reaction of brain 5-HT system to chronic fluoxetine treatment (120mg/l in drinking water, for 3 weeks) in adult males of the congenic B6-1473C and B6-1473G mouse lines with high and low enzyme activity, respectively. The polymorphism did not affect the levels of 5-HT, its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) and Tph2 gene mRNA in the brain. Fluoxetine significantly attenuated 5-HT levels in the cortex and striatum, 5-HIAA concentrations in the cortex, hippocampus, striatum and midbrain, and Tph2 gene expression in the midbrain. However, we did not observed any effect of the genotype x treatment interaction on these neurochemical characteristics. Therefore, C1473G polymorphism does not seem to play an essential role in the reaction of the brain 5-HT system to chronic fluoxetine treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
Okoh, A. I.
2017-01-01
Petroleum hydrocarbon status of the Buffalo River Estuary in East London, South Africa, was evaluated from January to May, 2016. Surface water and sediment samples were collected from five points in the estuary and extracted using standard methods. The extracts were subsequently analyzed by gas chromatography-flame ionization detection. Results showed that total petroleum hydrocarbon (TPH) varied from 7.65 to 477 μg/L in the water and 12.59 to 1,100 mg/kg in the sediments, with mean values of 146.50 ± 27.96 μg/L and 209.81 ± 63.82 mg/kg, respectively. Concentrations of TPH in the sediments correlated significantly with organic carbon (OC) in both seasons. TPH and OC levels were slightly lower in summer than in autumn in the two environmental matrices, and the average amount of TPH in the water samples collected from all the sampling stations was generally lower than the EU standard limit of 300 μg/L. However, the levels in the sediments exceeded the EGASPIN target value (50 mg/kg) for mineral oil but were below the intervention value (5,000 mg/kg), indicating a serious impact of industrial growth and urbanization on the area, although the n-alkane ratios and indexes used for source tracking revealed excessive flow from both natural and anthropogenic sources. PMID:28638675
Perez-Rodriguez, M. Mercedes; Weinstein, Shauna; New, Antonia S.; Bevilacqua, Laura; Yuan, Qiaoping; Zhou, Zhifeng; Hodgkinson, Colin; Goodman, Marianne; Koenigsberg, Harold W.; Goldman, David; Siever, Larry J.
2010-01-01
Background There is decreased serotonergic function in impulsive aggression and borderline personality disorder (BPD), and genetic association studies suggest a role of serotonergic genes in impulsive aggression and BPD. Only one study has analyzed the association between the tryptophan-hydroxylase 2 (TPH2) gene and BPD. A TPH2 “risk” haplotype has been described that is associated with anxiety, depression and suicidal behavior. Methods We assessed the relationship between the previously identified “risk” haplotype at the TPH2 locus and BPD diagnosis, impulsive aggression, affective lability, and suicidal/parasuicidal behaviors, in a well-characterized clinical sample of 103 healthy controls (HCs) and 251 patients with personality disorders (109 with BPD). A logistic regression including measures of depression, affective lability and aggression scores in predicting “risk” haplotype was conducted. Results The prevalence of the “risk” haplotype was significantly higher in patients with BPD compared to HCs. Those with the “risk” haplotype have higher aggression and affect lability scores and more suicidal/parasuicidal behaviors than those without it. In the logistic regression model, affect lability was the only significant predictor and it correctly classified 83.1% of the subjects as “risk” or “non-risk” haplotype carriers. Conclusions We found an association between the previously described TPH2 “risk” haplotype and BPD diagnosis, affective lability, suicidal/parasuicidal behavior, and aggression scores. PMID:20451217
Choi, Woo-Jung; Chang, Scott X
2009-07-01
Hydrocarbon-contaminated wastes generated from oil and gas drilling activities may be used as a soil amendment once composted and further decomposition of residual hydrocarbons can be accomplished after the composts are applied to soils. To test if N fertilization may enhance hydrocarbon decomposition, we investigated the effects of N application on hydrocarbon degradation in different-aged composts (1-, 2-, 3-, and 4-year-old composts, coded as 1Y, 2Y, 3Y, and 4Y composts, respectively) through a pot experiment planted with white spruce (Picea glauca [Moench] Voss) seedlings. The percentage degradation of total petroleum hydrocarbon (TPH, C11 to C40) in the composts without N fertilization was correlated to initial NH4+ concentrations (R = 0.99, P < 0.001). The percentage degradation of TPH was highest in the 3Y compost (41.1%) that had an initial level of 325.3 mg NH4+ -N kg(-1) and the lowest in the IY compost (9.3%) that had an initial level of 8.3 mg NH4+ -N kg(-1). The degradation of TPH was enhanced by Nfertilization in the 1Y (from 9.3 to 15.3%) and 4Y composts (from 14.3 to 22.6%) that had low initial NH4+ concentrations. Our results show that application of NH4+ -based fertilizers may enhance the degradation of TPH when initial NH4+ concentrations in the compost are low.
Lesch, Klaus-Peter; Araragi, Naozumi; Waider, Jonas; van den Hove, Daniel; Gutknecht, Lise
2012-09-05
Aggression, which comprises multi-faceted traits ranging from negative emotionality to antisocial behaviour, is influenced by an interaction of biological, psychological and social variables. Failure in social adjustment, aggressiveness and violence represent the most detrimental long-term outcome of neurodevelopmental disorders. With the exception of brain-specific tryptophan hydroxylase-2 (Tph2), which generates serotonin (5-HT) in raphe neurons, the contribution of gene variation to aggression-related behaviour in genetically modified mouse models has been previously appraised (Lesch 2005 Novartis Found Symp. 268, 111-140; Lesch & Merschdorf 2000 Behav. Sci. Law 18, 581-604). Genetic inactivation of Tph2 function in mice led to the identification of phenotypic changes, ranging from growth retardation and late-onset obesity, to enhanced conditioned fear response, increased aggression and depression-like behaviour. This spectrum of consequences, which are amplified by stress-related epigenetic interactions, are attributable to deficient brain 5-HT synthesis during development and adulthood. Human data relating altered TPH2 function to personality traits of negative emotionality and neurodevelopmental disorders characterized by deficits in cognitive control and emotion regulation are based on genetic association and are therefore not as robust as the experimental mouse results. Mouse models in conjunction with approaches focusing on TPH2 variants in humans provide unexpected views of 5-HT's role in brain development and in disorders related to negative emotionality, aggression and antisocial behaviour.
Ríos, Stella Maris; Barquin, Mercedes; Katusich, Ofelia; Nudelman, Norma
2014-01-01
Oil spill in the Central Patagonian zone was studied to evaluate if any relationship exists between the parameters used to characterize weathering spilled oil and soil toxicity for two plant species and to evaluate if the phytotoxicity to local species would be a good index for the soil contamination. Nuclear magnetic resonance (NMR) structural indexes and column chromatography compositional indexes were determined to characterize the oil spill in the soil samples. Bioassays were also carried out using Lactuca sativa L (reference) and Atriplex lampa (native species) as test organisms. Measurements of the total petroleum hydrocarbon (TPH) and the electrical conductivity (EC) of the soil were carried out to evaluate the effect on the bioassays. The principal components analysis of the parameters determined by NMR, compositional indexes, EC, TPH, and toxicology data shows that the first three principal components accounted for the 78% of the total variance (40%, 25%, and 13% for the first, second, and third PC, respectively). A good agreement was found between information obtained by compositional indexes and NMR structural indexes. Soil toxicity increases with the increase of EC and TPH. Other factors, such as, the presence of branched and aromatic hydrocarbons is also significant. The statistical evaluation showed that the Euclidean distances (3D) between the background and each one of the samples might be a better indicator of the soil contamination, compared with chemical criterion of TPH.
Serotonin Control of Thermotaxis Memory Behavior in Nematode Caenorhabditis elegans
Guo, Yuling; Wang, Daoyong; Li, Chaojun; Wang, Dayong
2013-01-01
Caenorhabditis elegans is as an ideal model system for the study of mechanisms underlying learning and memory. In the present study, we employed C. elegans assay system of thermotaxis memory to investigate the possible role of serotonin neurotransmitter in memory control. Our data showed that both mutations of tph-1, bas-1, and cat-4 genes, required for serotonin synthesis, and mutations of mod-5 gene, encoding a serotonin reuptake transporter, resulted in deficits in thermotaxis memory behavior. Exogenous treatment with serotonin effectively recovered the deficits in thermotaxis memory of tph-1 and bas-1 mutants to the level of wild-type N2. Neuron-specific activity assay of TPH-1 suggests that serotonin might regulate the thermotaxis memory behavior by release from the ADF sensory neurons. Ablation of ADF sensory neurons by expressing a cell-death activator gene egl-1 decreased the thermotaxis memory, whereas activation of ADF neurons by expression of a constitutively active protein kinase C homologue (pkc-1(gf)) increased the thermotaxis memory and rescued the deficits in thermotaxis memory in tph-1 mutants. Moreover, serotonin released from the ADF sensory neurons might act through the G-protein-coupled serotonin receptors of SER-4 and SER-7 to regulate the thermotaxis memory behavior. Genetic analysis implies that serotonin might further target the insulin signaling pathway to regulate the thermotaxis memory behavior. Thus, our results suggest the possible crucial role of serotonin and ADF sensory neurons in thermotaxis memory control in C. elegans. PMID:24223727
Zhang, Yunshu; Zhao, Qingliang; Jiang, Junqiu; Wang, Kun; Wei, Liangliang; Ding, Jing; Yu, Hang
2017-11-01
Conversion of biomass energy of dewatered oily sludge to electricity is the rate-limiting process in bioelectrochemical system (BES). In this study, 2mgg -1 rhamnolipids were added to dewatered oily sludge, resulting in a significant enhancement in maximum power density from 3.84±0.37 to 8.63±0.81Wm -3 , together with an increase in total organic carbon (TOC) and total petroleum hydrocarbon (TPH) removal from 24.52±4.30 to 36.15±2.79mgg -1 and 29.51±3.30 to 39.80±2.47mgg -1 , respectively. Rhamnolipids can also enhance the solubilization and promote the hydrolysis of dewatered oily sludge with increases in SOCD from 14.93±2.44 to 18.40±0.08mgg -1 and VFAs from 1.02±0.07 to 1.39±0.12mgg -1 . Furthermore, bacteria related to substrate degradation were predominant in dewatered oily sludge, and bacteria related to the sulfate/sulfide cycle were significantly enriched by rhamnolipid addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sacco, Roberto; Papaleo, Veruska; Hager, Jorg; Rousseau, Francis; Moessner, Rainald; Militerni, Roberto; Bravaccio, Carmela; Trillo, Simona; Schneider, Cindy; Melmed, Raun; Elia, Maurizio; Curatolo, Paolo; Manzi, Barbara; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Reichelt, Karl-Ludvig; Persico, Antonio M
2007-03-08
The TPH2 gene encodes the enzyme responsible for serotonin (5-HT) synthesis in the Central Nervous System (CNS). Stereotypic and repetitive behaviors are influenced by 5-HT, and initial studies report an association of TPH2 alleles with childhood-onset obsessive-compulsive disorder (OCD) and with autism. GLO1 encodes glyoxalase I, the enzyme which detoxifies alpha-oxoaldehydes such as methylglyoxal in all living cells. The A111E GLO1 protein variant, encoded by SNP C419A, was identified in autopsied autistic brains and proposed to act as an autism susceptibility factor. Hyperserotoninemia, macrocephaly, and peptiduria represent some of the best-characterized endophenotypes in autism research. Family-based and case-control association studies were performed on clinical samples drawn from 312 simplex and 29 multiplex families including 371 non-syndromic autistic patients and 156 unaffected siblings, as well as on 171 controls. TPH2 SNPs rs4570625 and rs4565946 were genotyped using the TaqMan assay; GLO1 SNP C419A was genotyped by PCR and allele-specific restriction digest. Family-based association analyses were performed by TDT and FBAT, case-control by chi2, endophenotypic analyses for 5-HT blood levels, cranial circumference and urinary peptide excretion rates by ANOVA and FBAT. TPH2 alleles and haplotypes are not significantly associated in our sample with autism (rs4570625: TDT P = 0.27, and FBAT P = 0.35; rs4565946: TDT P = 0.45, and FBAT P = 0.55; haplotype P = 0.84), with any endophenotype, or with the presence/absence of prominent repetitive and stereotyped behaviors (motor stereotypies: P = 0.81 and 0.84, verbal stereotypies: P = 0.38 and 0.73 for rs4570625 and rs4565946, respectively). Also GLO1 alleles display no association with autism (191 patients vs 171 controls, P = 0.36; TDT P = 0.79, and FBAT P = 0.37), but unaffected siblings seemingly carry a protective gene variant marked by the A419 allele (TDT P < 0.05; patients vs unaffected siblings TDT and FBAT P < 0.00001). TPH2 gene variants are unlikely to contribute to autism or to the presence/absence of prominent repetitive behaviors in our sample, although an influence on the intensity of these behaviors in autism cannot be excluded. GLO1 gene variants do not confer autism vulnerability in this sample, but allele A419 apparently carries a protective effect, spurring interest into functional correlates of the C419A SNP.
Sacco, Roberto; Papaleo, Veruska; Hager, Jorg; Rousseau, Francis; Moessner, Rainald; Militerni, Roberto; Bravaccio, Carmela; Trillo, Simona; Schneider, Cindy; Melmed, Raun; Elia, Maurizio; Curatolo, Paolo; Manzi, Barbara; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Reichelt, Karl-Ludvig; Persico, Antonio M
2007-01-01
Background The TPH2 gene encodes the enzyme responsible for serotonin (5-HT) synthesis in the Central Nervous System (CNS). Stereotypic and repetitive behaviors are influenced by 5-HT, and initial studies report an association of TPH2 alleles with childhood-onset obsessive-compulsive disorder (OCD) and with autism. GLO1 encodes glyoxalase I, the enzyme which detoxifies α-oxoaldehydes such as methylglyoxal in all living cells. The A111E GLO1 protein variant, encoded by SNP C419A, was identifed in autopsied autistic brains and proposed to act as an autism susceptibility factor. Hyperserotoninemia, macrocephaly, and peptiduria represent some of the best-characterized endophenotypes in autism research. Methods Family-based and case-control association studies were performed on clinical samples drawn from 312 simplex and 29 multiplex families including 371 non-syndromic autistic patients and 156 unaffected siblings, as well as on 171 controls. TPH2 SNPs rs4570625 and rs4565946 were genotyped using the TaqMan assay; GLO1 SNP C419A was genotyped by PCR and allele-specific restriction digest. Family-based association analyses were performed by TDT and FBAT, case-control by χ2, endophenotypic analyses for 5-HT blood levels, cranial circumference and urinary peptide excretion rates by ANOVA and FBAT. Results TPH2 alleles and haplotypes are not significantly associated in our sample with autism (rs4570625: TDT P = 0.27, and FBAT P = 0.35; rs4565946: TDT P = 0.45, and FBAT P = 0.55; haplotype P = 0.84), with any endophenotype, or with the presence/absence of prominent repetitive and stereotyped behaviors (motor stereotypies: P = 0.81 and 0.84, verbal stereotypies: P = 0.38 and 0.73 for rs4570625 and rs4565946, respectively). Also GLO1 alleles display no association with autism (191 patients vs 171 controls, P = 0.36; TDT P = 0.79, and FBAT P = 0.37), but unaffected siblings seemingly carry a protective gene variant marked by the A419 allele (TDT P < 0.05; patients vs unaffected siblings TDT and FBAT P < 0.00001). Conclusion TPH2 gene variants are unlikely to contribute to autism or to the presence/absence of prominent repetitive behaviors in our sample, although an influence on the intensity of these behaviors in autism cannot be excluded. GLO1 gene variants do not confer autism vulnerability in this sample, but allele A419 apparently carries a protective effect, spurring interest into functional correlates of the C419A SNP. PMID:17346350
Kanemaru, Kazuya; Nishi, Kyoko; Diksic, Mirko
2009-01-01
The neurotransmitter, serotonin, is involved in several brain functions, including both normal, physiological functions, and pathophysiological functions. Alterations in any of the normal parameters of serotonergic neurotransmission can produce several different psychiatric disorders, including major depression. In many instances, brain neurochemical variables are not able to be studied properly in humans, thus making the use of good animal models extremely valuable. One of these animal models is the Flinders Sensitive Line (FSL) of rats, which has face, predictive and constructive validities in relation to human depression. The objective of this study was to quantify the effect of the tryptophan hydroxylase (TPH) activation inhibitor, AGN-2979, on the FSL rats (rats with depression-like behaviour), and compare it to the effect on the Flinders Resistant Line (FRL) of rats used as the control rats. The effect was evaluated by measuring changes in regional serotonin synthesis in the vehicle treated rats (FSL-VEH and FRL-VEH) relative to those measured in the AGN-2979 treated rats (FSL-AGN and FRL-AGN). Regional serotonin synthesis was measured autoradiographically in more than thirty brain regions. The measurements were performed using α-[14C]methyl-L-tryptophan as the tracer. The results indicate that AGN-2979 did not produce a significant reduction of TPH activity in the AGN-2979 group relative to the vehicle group (a reduction would have been observed if there had been an activation of TPH by the experimental set up) in the FSL rats. On the other hand, there was a highly significant reduction of synthesis in the FRL rats treated by AGN-2979, relative to the vehicle group. Together, the results demonstrate that in the FSL rats, AGN-2979 does not affect serotonin synthesis. This suggests that there was no activation of TPH in the FSL rats during the experimental procedure, but such activation did occur in the FRL rats. Because of this finding, it could be hypothesised that TPH in the FSL rats cannot be easily activated. This may contribute to the development of depressive-like symptoms in the FSL rats (“depressed” rats), as they cannot easily modulate their need for elevated amounts of this neurotransmitter, and possibly other neurotransmitters. Further, because these rats represent a very good model of human depression, one can hypothesize that humans who do not have readily activated TPH may be more prone to develop depression. PMID:19463878
Arias-Trinidad, Alfredo; Rivera-Cruz, María del Carmen; Roldán-Garrigós, Antonio; Aceves-Navarro, Lorenzo Armando; Quintero-Lizaola, Roberto; Hernández-Guzmán, Javier
2017-03-01
The oil industry has generated chronic oil spills and their accumulation in wetlands of the state of Tabasco, in Southeastern Mexico. Waterlogging is a factor that limits the use of remediation technologies because of its high cost and low levels of oil degradation. However, Leersia hexandra is a grass that grows in these contaminated areas with weathered oil. The aim of the study was to evaluate the bacteria density, plant biomass production and phytoremediation of L. hexandra in contaminated soil. For this, two experiments in plastic tunnel were performed with fresh (E1) and weathered petroleum (E2) under waterlogging experimental conditions. The E1 was based on eight doses: 6 000, 10 000, 30 000, 60 000, 90 000, 120 000, 150 000 and 180 000 mg.kg-1 dry basis (d. b.) of total petroleum hydrocarbons fresh (TPH-F), and the E2, that evaluated five doses: 14 173, 28 400, 50 598, 75 492 and 112 142 mg. kg-1 d. b. of total petroleum hydrocarbons weathered (TPH-W); a control treatment with 2 607 mg.kg-1 d. b. was used. Each experiment, with eight replicates per treatment, evaluated after three and six months: a) microbial density of total free-living nitrogen-fixing bacteria (NFB) of Azospirillum (AZP) and Azotobacter group (AZT), for viable count in serial plate; b) dry matter production (DMP), quantified gravimetrically as dry weight of L. hexandra; and c) the decontamination percentage of hydrocarbons (PDH) by Soxhlet extraction. In soil with TPH-F, the NFB, AZP y AZT populations were stimulated five times more than the control both at the three and six months; however, concentrations of 150 000 and 180 000 mg.kg-1 d. b. inhibited the bacterial density between 70 and 89 %. Likewise, in soil with TPH-W, the FNB, AZP and AZT inhibitions were 90 %, with the exception of the 14 173 mg.kg-1 d. b. treatment, which stimulated the NFB and AZT in 2 and 0.10 times more than the control, respectively. The DMP was continued at the six months in the experiments, with values of 63 and 89 g in fresh and weathered petroleum, respectively; had no significant differences with the control (p≤0.05). The PDH reached values of 66 to 87 % both TPH-F and TPH-W at six months, respectively. These results demonstrated the ability the L. hexandra rhizosphere to stimulate the high NFB density, vegetal biomass production and phytoremediation of contaminated soils (with fresh and weathered petroleum), in a tropical waterlogging environment.
Yoon, Ho-Kyoung; Kim, Yong-Ku
2009-04-30
Serotonergic system-related genes can be good candidate genes for both major depressive disorder (MDD) and suicidal behavior. In this study, we aimed to investigate the association of serotonin 2A receptor gene -1438A/G SNP (HTR2A -1438A/G), tryptophan hydroxylase 2 gene -703G/T SNP (TPH2 -703G/T) and serotonin 1A receptor C-1019G (HTR1A C-1019G) with suicidal behavior. One hundred and eighty one suicidal depressed patients and 143 non-suicidal depressed patients who met DSM-IV criteria for major depressive disorder were recruited from patients who were admitted to Korea University Ansan Hospital. One hundred seventy six normal controls were healthy volunteers who were recruited by local advertisement. Patients and normal controls were genotyped for HTR2A -1438A/G, TPH2 -703G/T and 5-HT1A C-1019G. The suicidal depressed patients were evaluated by the lethality of individual suicide attempts using Weisman and Worden's risk-rescue rating (RRR) and the Lethality Suicide Attempt Rating Scale-updated (LSARS-II). In order to assess the severity of depressive symptoms of patients, Hamilton's Depression Rating Scale (HDRS) was administered. Genotype and allele frequencies were compared between groups by chi(2) statistics. Association of genotype of the candidate genes with the lethality of suicidal behavior was examined with ANOVA by comparing the mean scores of LSARS and RRR according to the genotype. There were statistically significant differences in the genotype distributions and allele frequencies of TPH2 -703G/T between the suicidal depressive group and the normal control group. The homozygous allele G (G/G genotype) frequency was significantly higher in suicidal depressed patients than in controls. However, no differences in either genotype distribution or in allele frequencies of HTR2A -1438A/G and HTR1A C-1019G were observed between the suicidal depressed patients, the non-suicidal depressed patients, and the normal controls. There were no differences in the lethality of suicidal behavior in suicidal depressed patients according to the genotypes of three polymorphisms. Our results suggest that TPH2 -703G/T SNP may have an important effect on susceptibility to suicidal behavior. Furthermore, an increased frequency of G allele of TPH2 SNP may be associated with elevated suicidal behavior itself rather than with the diagnosis of major depression and may increase risk of suicidality, independent of diagnosis.
NASA Astrophysics Data System (ADS)
Yihdego, Yohannes; Al-Weshah, Radwan A.
2017-11-01
The transport groundwater modelling has been undertaken to assess potential remediation scenarios and provide an optimal remediation options for consideration. The purpose of the study was to allow 50 years of predictive remediation simulation time. The results depict the likely total petroleum hydrocarbon migration pattern in the area under the worst-case scenario. The remediation scenario simulations indicate that do nothing approach will likely not achieve the target water quality within 50 years. Similarly, complete source removal approach will also likely not achieve the target water quality within 50 years. Partial source removal could be expected to remove a significant portion of the contaminant mass, but would increase the rate of contaminant recharge in the short to medium term. The pump-treat-reinject simulation indicates that the option appears feasible and could achieve a reduction in the area of the 0.01 mg/L TPH contour area for both Raudhatain and Umm Al-Aish by 35 and 30%, respectively, within 50 years. The rate of improvement and the completion date would depend on a range of factors such as bore field arrangements, pumping rates, reinjection water quality and additional volumes being introduced and require further optimisation and field pilot trials.
Virupakshappa, Praveen Kumar Siddalingappa; Mishra, Gaurav; Mehkri, Mohammed Ameenuddin
2016-01-01
The present paper describes the process optimization study for crude oil degradation which is a continuation of our earlier work on hydrocarbon degradation study of the isolate Stenotrophomonas rhizophila (PM-1) with GenBank accession number KX082814. Response Surface Methodology with Box-Behnken Design was used to optimize the process wherein temperature, pH, salinity, and inoculum size (at three levels) were used as independent variables and Total Petroleum Hydrocarbon, Biological Oxygen Demand, and Chemical Oxygen Demand of crude oil and PAHs as dependent variables (response). The statistical analysis, via ANOVA, showed coefficient of determination R 2 as 0.7678 with statistically significant P value 0.0163 fitting in second-order quadratic regression model for crude oil removal. The predicted optimum parameters, namely, temperature, pH, salinity, and inoculum size, were found to be 32.5°C, 9, 12.5, and 12.5 mL, respectively. At this optimum condition, the observed and predicted PAHs and crude oil removal were found to be 71.82% and 79.53% in validation experiments, respectively. The % TPH results correlate with GC/MS studies, BOD, COD, and TPC. The validation of numerical optimization was done through GC/MS studies and % removal of crude oil. PMID:28116165
Kinetic modeling and half life study on bioremediation of crude oil dispersed by Corexit 9500.
Zahed, Mohammad Ali; Aziz, Hamidi Abdul; Isa, Mohamed Hasnain; Mohajeri, Leila; Mohajeri, Soraya; Kutty, Shamsul Rahman Mohamed
2011-01-30
Hydrocarbon pollution in marine ecosystems occurs mainly by accidental oil spills, deliberate discharge of ballast waters from oil tankers and bilge waste discharges; causing site pollution and serious adverse effects on aquatic environments as well as human health. A large number of petroleum hydrocarbons are biodegradable, thus bioremediation has become an important method for the restoration of oil polluted areas. In this research, a series of natural attenuation, crude oil (CO) and dispersed crude oil (DCO) bioremediation experiments of artificially crude oil contaminated seawater was carried out. Bacterial consortiums were identified as Acinetobacter, Alcaligenes, Bacillus, Pseudomonas and Vibrio. First order kinetics described the biodegradation of crude oil. Under abiotic conditions, oil removal was 19.9% while a maximum of 31.8% total petroleum hydrocarbons (TPH) removal was obtained in natural attenuation experiment. All DCO bioreactors demonstrated higher and faster removal than CO bioreactors. Half life times were 28, 32, 38 and 58 days for DCO and 31, 40, 50 and 75 days for CO with oil concentrations of 100, 500, 1000 and 2000 mg/L, respectively. The effectiveness of Corexit 9500 dispersant was monitored in the 45 day study; the results indicated that it improved the crude oil biodegradation rate. Copyright © 2010 Elsevier B.V. All rights reserved.
Identification and applications of the Petunia class II Act1/dTph1 transposable element system.
Gerats, Tom; Zethof, Jan; Vandenbussche, Michiel
2013-01-01
Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia. Representatives of all three major groups of class II elements, viz., hAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we focus on the research "history" of the Petunia two-element Act1-dTph1 system and the development of its application in forward- and reverse-genetics studies.
Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was censored and, therefore, only 7 of the 71 samplers were reported as detecting TPH. In addition, benzene, toluene, ethylbenzene, and total xylene were detected above the method detection level in 22 samplers. Other compounds detected above the method detection level included naphthalene, octane, undecane, tridecane, 1,2,4-trimethylbenzene, trichloroethylene, perchloroethylene, chloroform, and 1,4-dichlorobenzene. Subsequent to the soil-gas survey, five locations with elevated contaminant mass were selected and a passive sampler was deployed at those locations to detect the presence of organic compounds classified as explosives or chemical agents. No explosives or chemical agents were detected above the method detection level, but some compounds were detected below the method detection level but above the nondetection level. Dimethyl disulfide, benzothiazole, chloroacetophenones, and para-chlorophenyl methyl sulfide were all detected below the method detection level but above the nondetection level. The compounds 2,4-dinitrotoluene, and para-chlorophenyl methyl sulfone were detected in samplers but also were detected in trip blanks and are not considered as present in the MCTA. The same five locations that were selected for sampling of explosives and chemical agents were selected for soil sampling. Metal concentrations in composite soil samples collected at five locations from land surface to a depth of 6 inches did not exceed the U.S. Environmental Protection Agency Regional Screening Levels for Industrial Soil. Concentrations in some compounds were higher than the South Carolina Department of Health and Environmental Control background levels for nearby South Carolina, including aluminum, arsenic, barium, beryllium, chromium, copper, iron, lead, manganese, nickel, and potassium. A surface-water sample was collected from McCoys Creek and analyzed for volatile organic compounds, semivolatile organic compounds, and inorganic compounds (metals). No volatile organic compounds and (or) semivolatile organic compounds were detected at levels above the maximum contaminant level of the U.S. Environmental Protection Agency (USEPA) National Primary Drinking Water Standard, and no inorganic compounds exceeded the maximum contaminant level of the USEPA National Primary Drinking Water Standard or the Georgia In-Stream Water-Quality Standard. Iron was the only inorganic compound detected in the surface-water sample (578 micrograms per liter) that exceeded the USEPA National Secondary Drinking Water Standard of 300 micrograms per liter.
Properties and reactivity of aquatic organic matter from an Amazonian floodplain system
NASA Astrophysics Data System (ADS)
Perez, M. A. P.; Benedetti, M. F.; Moreira-Turcq, P.
2009-04-01
The aim of this study was to characterize the nature of the bulk dissolved organic matter (DOM) in different types of environments in the Amazon River-floodplain system and determine the importance of two different fractions of dissolved organic matter onto adsorption processes that occurs through the transport of organic matter in the Amazon Basin. Seven samples were collected in the Amazon River - "Lago Grande de Curuai" floodplain system, in rising water levels cruise (March 2006). The samples were taken in the Amazon main stem, in white and black floodplain waters, and in the middle of a phytoplaktonic bloom. The bulk, dissolved (i.e. < 0.22 micrometer), hydrophobic (HPO) and transphilic (TPH) fractions extracted by XAD-8 and XAD-4 columns chromatography respectively were isolated. Organic carbon (OC) and total nitrogen (TN) concentrations, Specific UV absorbance (SUVA), Size-Exclusion Chromatography (SEC), d13C and d15N isotopes, and reactivity (acid-base titration) were characterized for these fractions. Adsorption experiments onto mineral phase from de surface sediment of the Curuai floodplain lake (rich in smectite and kaolinite) were realized with HPO and TPH fractions. The OC concentrations in the natural organic matter (Bulk and < 0.22 micrometer fractions) varied between 3.7-5.7 mg/L. The OC and TN concentrations varied between 510 - 528 mg C/g in the HPO fraction, and 408 - 462 mg C/g in the TPH compounds and between 14.3 - 17.6 mg N/g (HPO), and 22.1 - 30.0 mg N/g (TPH). The molecular weight of both fractions (HPO and TPH) didn't present significant variation. Both fractions presented high aromaticity and they were rich in carboxylic groups, although smaller values are systematically reported for the HPO fractions. The OM of the main stem was the most adsorbed, followed by the white water lake, the phytoplanktonic bloom, and black water lake sample. These results helped us to strengthen the hypothesis that the organic matter carried from the river and sediment in the floodplain is closely associated with mineral phase.
Polymerization Stress Development in Dental Composites: Effect of Cavity Design Factor
Antonucci, Joseph M.; Giuseppetti, Anthony A.; O’Donnell, Justin N.R.; Schumacher, Gary E.; Skrtic, Drago
2009-01-01
The objective of the study was to assess the effect of the cavity design factor (C-factor) on polymerization stress development (PSD) in resin composites. An experimental resin (BT resin) was prepared, which contained 2,2-bis[p-(2’-hydroxy-3’-methacryloxypropoxy)phenylene]propane (B) and triethylene glycol dimethacrylate (T) in 1:1 mass ratio, and an activator for visible light polymerization. An experimental composite with demonstrated remineralizing potential was also formulated by inclusion into the BT resin of zirconia-hybridized amorphous calcium phosphate (ACP) filler at a mass fraction of 40 % (BT/ACP composite). A commercial glass-filled composite (TPH) was used as a control. To assess the effect of the test geometry on PSD, C-factor was systematically varied between 0.8 and 6.0 by varying the height of the cylindrical composite specimens. The measured PSD values obtained by cantilever beam tensometry for specimens with variable C-factors were normalized for mass to specimens with a C-factor of 1.33 (h=2.25 mm) as controls to give calculated PSD values. Degrees of vinyl conversions (DC) attained in the TPH control and in the experimental BT/ACP composites were measured by near-infrared spectroscopy. In both the TPH and BT/ACP composite series, PSDcalc increased with the increasing C-factor, confirming the hypothesis that the C-factor value influences PSD values. The higher PSDmeas and PSDcalc values for the experimental BT/ACP composite compared to the commercial TPH composite probably reflect differences in the type and mass of the resin and filler phases in the two types of composite. These differences also account for the observed variation (21 %) in DC attained in a BT/ACP composite 2 h after cure (69.5 %) and in the DC of the TPH composite (57.5 %) having the same C-factor. The cavity design factor seems to play a key role in influencing the PSD of bonded composites, but other factors such as composite mass and composition also must be considered for their effects on PSD. PMID:26413236
Bazovkina, D V; Tsybko, A S; Filimonova, E A; Ilchibaeva, T V; Naumenko, V S
2016-01-01
Tryptophan hydroxylase 2 (Tph-2) is the key enzyme in serotonin biosynthesis. Serotonin is one of the main neurotransmitters involved in the regulation of various physiological functions and behavior patterns. The influence of chronic ethanol consumption on the expression of the Bdnf, Bax, Bcl-xL, and CASP3 genes was studied in the brain structures of B6-1473C (C/C) and B6-1473G (G/G) mice that had been obtained on the base of the C57BL/6 strain. The strains differed in the genotype for the C1473G single nucleotide polymorphism in the Tph-2 gene and in Tph-2 enzyme activity. It was found that chronic alcohol treatment led to a significant increase in the expression of the Bdnf gene in the midbrain of B6-1473G mice, but not in B6-1473С. Chronic alcohol treatment considerably decreased the expression of the ultimate brain apoptosis effector, caspase 3, in the frontal cortex, but increased it in the hippocampus of B6-1473G mice. At the same time, chronic ethanol administration reduced the level of the antiapoptotic Bcl-xL mRNA in the midbrain of B6-1473C mice. Thus, the C1473G polymorphism in the Tph-2 gene considerably influenced the changes in the expression patterns of genes involved in the regulation of neurogenesis and neural apoptosis induced by chronic ethanol treatment.
Kogbara, Reginald B; Ogar, Innocent; Okparanma, Reuben N; Ayotamuno, Josiah M
2016-07-28
This study sought to compare the effectiveness of bioaugmentation and biostimulation, as well as the combination of both techniques, supplemented with phytoremediation, in the decontamination of petroleum drill cuttings. Drill cuttings with relatively low concentration of total petroleum hydrocarbons (TPH) and metals were mixed with soil in the ratio 5:1 and treated with three different combinations of the bioremediation options. Option A entailed bioaugmentation supplemented with phytoremediation. Option B had the combination of biostimulation and bioaugmentation supplemented with phytoremediation. While biostimulation supplemented with phytoremediation was deployed in option C. Option O containing the drill cuttings-soil mixture without treatment served as untreated control. Fertilizer application, tillage and watering were used for biostimulation treatment, while spent mushroom substrate (Pleurotus ostreatus) and elephant grass (Pennisetum purpureum) were employed for bioaugmentation and phytoremediation treatment, respectively. The drill cuttings-soil mixtures were monitored for TPH, organic carbon, total nitrogen, pH, metal concentrations, and fungal counts, over time. After 56 days of treatment, there was a decline in the initial TPH concentration of 4,114 mg kg(-1) by 5.5%, 68.3%, 75.6% and 48% in options O, A, B and C, respectively. Generally, higher TPH loss resulted from the phytoremediation treatment stage. The treated options also showed slight reductions in metal concentrations ranging from 0% to 16% of the initial low concentrations. The results highlight the effectiveness of bioaugmentation supplemented with phytoremediation. The combination of bioaugmentation and biostimulation supplemented with phytoremediation, however, may prove better in decontaminating petroleum drill cuttings to environmentally benign levels.
Sachs, Benjamin D; Rodriguiz, Ramona M; Siesser, William B; Kenan, Alexander; Royer, Elizabeth L; Jacobsen, Jacob P R; Wetsel, William C; Caron, Marc G
2013-10-01
Aberrant serotonin (5-HT) signalling and exposure to early life stress have both been suggested to play a role in anxiety- and impulsivity-related behaviours. However, whether congenital 5-HT deficiency × early life stress interactions influence the development of anxiety- or impulsivity-like behaviour has not been established. Here, we examined the effects of early life maternal separation (MS) stress on anxiety-like behaviour and behavioural disinhibition, a type of impulsivity-like behaviour, in wild-type (WT) and tryptophan hydroxylase 2 (Tph2) knock-in (Tph2KI) mice, which exhibit ~60-80% reductions in the levels of brain 5-HT due to a R439H mutation in Tph2. We also investigated the effects of 5-HT deficiency and early life stress on adult hippocampal neurogenesis, plasma corticosterone levels and several signal transduction pathways in the amygdala. We demonstrate that MS slightly increases anxiety-like behaviour in WT mice and induces behavioural disinhibition in Tph2KI animals. We also demonstrate that MS leads to a slight decrease in cell proliferation within the hippocampus and potentiates corticosterone responses to acute stress, but these effects are not affected by brain 5-HT deficiency. However, we show that 5-HT deficiency leads to significant alterations in SGK-1 and GSK3β signalling and NMDA receptor expression in the amygdala in response to MS. Together, these findings support a potential role for 5-HT-dependent signalling in the amygdala in regulating the long-term effects of early life stress on anxiety-like behaviour and behavioural disinhibition.
Thumb in the plane of the hand: characterization and results of surgical treatment.
Langer, Jakub S; Manske, Paul R; Steffen, Jennifer A; Hu, Calvin; Goldfarb, Charles
2009-12-01
The purpose of this retrospective investigation is to characterize a congenital deformity, the thumb in the plane of the hand (TPH), and to evaluate the results of abduction-rotation osteotomy of the thumb metacarpal with thumb web space deepening (WSD). We performed a comprehensive analysis of the medical records, hand therapy notes, and radiographs to evaluate clinical features of the TPH deformity. We evaluated clinical and radiographic outcomes and incidence of deformity recurrence after abduction-rotation osteotomy and thumb WSD. Thirteen patients (7 girls and 6 boys) with 14 affected hands treated with an abduction-rotation osteotomy of the thumb metacarpal and formation of a deepened thumb-index web space met inclusion criteria. All TPH deformities were associated with other congenital conditions, including symbrachydactyly, syndactyly, central deficiency, and ulnar deficiency. During the course of treatment, patients had a mean of 4 surgeries per hand; 3 hands required osteotomy revision with or without revision WSD, and 6 additional hands required revision of thumb WSD alone. None of the affected hands were capable of thumb opposition to any finger before surgery, whereas after surgery, all 14 hands could actively perform key pinch, and 9 of the 14 hands could actively oppose the thumb to at least 1 finger. The TPH deformity occurs in association with other congenital abnormalities of the hand. An abduction-rotation osteotomy of the thumb metacarpal with thumb WSD can restore thumb opposition and improve function; nonetheless, multiple surgical procedures are often required, and thumb function may remain limited. Therapeutic IV.
Assessment of organic pollutants in the offshore sediments of Dubai, United Arab Emirates
NASA Astrophysics Data System (ADS)
Darwish, H. A. Al; El-Gawad, E. A. Abd; Mohammed, F. H.; Lotfy, M. M.
2005-08-01
Fifteen stations (st) were selected along Dubai coastal region to delineate the distribution and the source of total petroleum hydrocarbon (TPH), total organic carbon (TOC), total Kjeldhal nitrogen (TKN), polycyclic aromatic hydrocarbon (PAHs) and polychlorinated biphenyls. The concentrations of TPH fluctuated between 2 μg g -1 and 48018 μg g -1 and the values of TOC were in the range of 0.16-5.9 wt%, while TPAHs ranged from 0.09 μg g -1 to 161.72 μg g -1. On the other hand, TPCBs showed values between 0.8 μg kg-1 and 93.3 μg kg-1 and TKN values varied from 218 μg g-1 to 2457 μg g -1. Distribution of oil and organic compounds in Dubai sediments are safe compared with previous studies except for limited areas at the northeastern offshore. These readings are probably due to: (1) presence of commercial or industrial ports, dry docks and fishing harbours and (2) population centers mainly concentrated at the northern part of the study area. Results indicate that TOC can be used as indicator of oil pollution only in heavily oiled sediments. The highest values of TOC, TPH, TPAHs and TPCBs corresponded to the stations covered with fine sand, due to adsorption properties and larger surface area. The evaporation of low boiling point compounds from surface layers led to enrichment of sediments with the thick residual. Al-Hamriya St 3 exhibited the highest values of TPH, TOC, TPAHs and TPCBs and the second highest value of TKN.
Song, Sunmi; Marcum, Christopher Steven; Wilkinson, Anna V; Shete, Sanjay; Koehly, Laura M
2018-04-24
Despite prevalent binge drinking and alcohol-dependent symptoms among Hispanics, few studies have examined how multidimensional factors influence Hispanic adolescents' binge drinking. Purpose This study examines the effects of genetic, psychological, and social network factors on binge drinking over time among Mexican heritage adolescents in the USA and whether there are correlations among genetic variants that are associated with binge drinking and psychological and network characteristics. Mexican heritage adolescents (n = 731) participated in a longitudinal study, which included genetic testing at baseline, alcohol use assessments at first and second follow-ups, and questionnaires on sensation seeking, impulsivity, and peer and family network characteristics at second follow-up. Logistic regression and Spearman correlation analyses were performed. After adjusting for demographic characteristics, underlying genetic clustering, and binge drinking at first follow-up, two genetic variants on tryptophan hydroxylase 2 (TPH2; rs17110451, rs7963717), sensation seeking and impulsivity, and having a greater fraction of peers who drink or encourage drinking alcohol were associated with greater risk whereas another genetic variant on TPH2 (rs11178999) and having a greater fraction of close family relationships were associated with reduced risk for binge drinking at second follow-up. Genetic variants in TPH1 (rs591556) were associated with sensation seeking and impulsivity, while genetic variants in TPH2 (rs17110451) were associated with the fraction of drinkers in family. Results reveal that genetic variants in the serotonin pathway, behavioral disinhibition traits, and social networks exert joint influences on binge drinking in Mexican heritage adolescents in the USA.
Leucanthemum vulgare Lam. crude oil phytoremediation.
Noori, Azam; Maivan, Hassan Zare; Alaie, Ebrahim; Newman, Lee A
2015-06-29
Sites with crude oil pollution have been successfully treated using phytoremediation, but expanding the range of plants that can be used and understanding how exposure impacts the plants are two areas of study that are important to continue. Leucanthemum vulgare has been shown to grow well under a variety of stressful conditions. To examine L. vulgare's ability to both survive crude oil exposure and to reduce crude oil concentrations in soil, plants were placed in soil containing 0, 2.5%, 5%, 7.5% or 10% w/w crude oil. Total Petroleum Hydrocarbons (TPH) concentration, peroxidase and catalase activity, proline and phenol content in roots and leaves were determined at the start of planting and every 2 months for six months. L. vulgare roots were successfully colonized with mycorrhizae under all conditions. Results showed positive correlation between antioxidant compound concentration and crude oil contamination. Also, a significant reduction occurred in TPH content of soil over time in planted pots as compared to controls. The lowest TPH content was recorded after 6 months under all treatments. Results showed L. vulgare could survive crude oil exposure and enhance reducing of crude oil from soil.
Kim, A W; Vane, C H; Moss-Hayes, V; Engelhart, S E; Kemp, A C
2018-04-01
Surface sediment concentrations of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB), total petroleum hydrocarbons (TPH) and mercury, were compared from two areas with contrasting land use history, the industrial Delaware Estuary and the rural Delmarva Peninsula (USA). TPH in the Delaware (38-616mg/kg) and saturate/aromatic fractions suggested petroleum/industrial sources compared to biogenic sources in the Delmarva coastal control (<34-159mg/kg). Within the Delaware the ∑PAH18 ranged from 3749 to 22,324μg/kg with isomeric ratios indicative of petroleum combustion source/s, conversely, those in the Delmarva (5-2139μg/kg) also yielded relatively higher perylene that were consistent with natural background levels derived from vegetation/coal combustion source/s. ∑PCB(tri-hepta) concentrations in the Delmarva (0.6-6.5μg/kg) were less than the threshold effect concentration (TEC), whereas the Delaware had received much higher PCB loading (18.1-136.8μg/kg) as evidenced by a significantly higher amounts in some samples (>TEC). Copyright © 2017 Elsevier Ltd. All rights reserved.
Caldwell, Andral W.; Falls, W. Fred; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Soil gas was assessed for contaminants at three former fuel-dispensing sites at Fort Gordon, Georgia, from October 2010 to September 2011. The assessment included delineation of organic contaminants using soil-gas samplers collected from the former fuel-dispensing sites at 8th Street, Chamberlain Avenue, and 12th Street. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers installed and retrieved during June and August 2011 at the 8th Street site had detections above the method detection level (MDL) for the mass of total petroleum hydrocarbons (TPH), benzene, toluene, ortho-xylene, undecane, tridecane, pentadecane, and chloroform. Total petroleum hydrocarbons soil-gas mass exceeded the MDL of 0.02 microgram in 54 of the 55 soil-gas samplers. The highest detection of TPH soil-gas mass was 146.10 micrograms, located in the central part of the site. Benzene mass exceeded the MDL of 0.01 microgram in 23 soil-gas samplers, whereas toluene was detected in only 10 soil-gas samplers. Ortho-xylene was detected above the MDL in only one soil-gas sampler. The highest soil-gas mass detected for undecane, tridecane, and pentadecane was located in the northeastern corner of the 8th Street site. Chloroform mass greater than the MDL of 0.01 microgram was detected in less than one-third of the soil-gas samplers. Soil-gas masses above the MDL were identified for TPH, gasoline-related compounds, diesel-range alkanes, trimethylbenzenes, naphthalene, 2-methyl-napthalene, octane, and tetrachloroethylene for the July 2011 soil-gas survey at the Chamberlain Avenue site. All 30 of the soil-gas samplers contained TPH mass above the MDL. The highest detection of TPH mass, 426.36 micrograms, was for a soil-gas sampler located near the northern boundary of the site. Gasoline-related compounds and diesel-range alkanes were detected in multiple soil-gas samplers, and the highest detections of these compounds were located near the central part of the site near existing, nonoperational, fuel-dispensing pumps. Trimethylbenzenes were detected in less than half of the soil-gas samplers. Naphthalene soil-gas mass was detected above the MDL in 10 soil-gas samplers, whereas 2-methyl-napthalene was detected above the MDL in half of the soil-gas samplers. Octane mass was detected above the MDL in one soil-gas sampler located near the central part of the site. Tetrachloroethylene soil-gas mass was detected above the MDL in more than half of the soil-gas samplers, and the highest tetrachloroethylene soil-gas mass of 0.90 microgram was located in the northeastern part of the site. Soil-gas samplers collected at the 12th Street site during July 2011 contained soil-gas mass above the MDL for TPH, toluene, undecane, tridecane, and pentadecane (diesel-range alkanes), trichloroethylene, 1,4-dichlorobenzene, chloroform, and 1,2,4-trimethylbenzene. The highest detected TPH mass was 24.37 micrograms in a soil-gas sampler located in the northern part of the site. The highest detection of toluene soil-gas mass was from a soil-gas sampler located near the southern boundary of the site. The diesel-range alkanes were detected above the MDL in five soil-gas samplers; the highest detection of soil-gas diesel mass, 0.65 microgram, was located in the southern part of the site. Trichloroethylene and 1,4-dichlorobenzene were detected above the MDL in the northern part of the site in one soil-gas sampler that also had one of the highest detections of TPH. Chloroform was detected above the MDL in three soil-gas samplers, whereas 1,2,4-trimethylbenzene soil-gas mass was detected above the MDL in two soil-gas samplers.
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir B.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2011-01-01
Soil gas, soil, and water were assessed for organic and inorganic constituents at the former 19th Street landfill at Fort Gordon, Georgia, from February to September 2010. Passive soil-gas samplers were analyzed to evaluate organic constituents in the hyporheic zone and flood plain of a creek and soil gas within the estimated boundaries of the former landfill. Soil and water samples were analyzed to evaluate inorganic constituents in soil samples, and organic and inorganic constituents in the surface water of a creek adjacent to the landfill, respectively. This assessment was conducted to provide environmental constituent data to Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. The passive soil-gas samplers deployed in the water-saturated hyporheic zone and flood plain of the creek adjacent to the former landfill indicated the presence of total petroleum hydrocarbon (TPH) and octane above method detection levels in groundwater beneath the creek bed and flood plain at all 12 soil-gas sampler locations. The TPH concentrations ranged from 51.4 to 81.4 micrograms per liter. Octane concentrations ranged from 1.78 to 2.63 micrograms per liter. These detections do not clearly identify specific source areas in the former landfill; moreover, detections of TPH and octane in a soil-gas sampler installed at a seep on the western bank of the creek indicated the potential for these constituents to be derived from source areas outside the estimated boundaries of the former landfill. A passive soil-gas sampler survey was conducted in the former landfill from June 30 to July 5, 2010, and involved 56 soil-gas samplers that were analyzed for petroleum and halogenated compounds not classified as chemical agents or explosives. The TPH soil-gas mass exceeded 2.0 micrograms in 21 samplers. Most noticeable are the two sites with TPH detections which are located in and near the hyporheic zone and are likely to affect the creek. However, most TPH detections were located in and immediately adjacent to a debris field located within the former landfill and in areas where debris was not visible, including the northwestern and southeastern parts of the study area. Two of the four soil-gas samplers installed within a former military training area adjacent to the landfill also had TPH detections above the method detection level. Benzene, toluene, ethylbenzene, and xylene (as combined BTEX mass) were detected at 0.02 microgram or greater in three soil-gas samplers installed at the northwestern boundary and in five samplers installed in the southeastern part of the study area. There was no BTEX mass detected above the method detection level in samplers installed in the debris field. Toluene was the most frequently detected BTEX compound. Compounds indicative of diesel-range organics were detected above 0.04 microgram in 12 soil-gas samplers and had a distribution similar to that of TPH, including being detected in the debris field. Undecane was the most frequently detected diesel compound. Chloroform and naphthalene were detected in eight and two soil-gas samplers, respectively. Five soil-gas samplers deployed during September 2010 were analyzed for organic compounds classified as chemical agents and explosives, but none exceeded the method detection levels. Five composite soil samples collected from within the estimated boundaries of the former landfill were analyzed for 35 inorganic constituents, but none of the constituents detected exceeded regional screening levels for industrial soils. The sample collected in the debris field exceeded background levels for aluminum, barium, calcium, chromium, lead, nickel, potassium, sodium, and zinc. Three surface-water samples were collected in September 2010 from a stormwater outfall culvert that drains to the creek and from the open channel of the creek at upstream and downstream locations relative to the outfall. Toluene was detected at 0.661 mi
Smith, Kirk P.
2011-01-01
Stormwater mobilizes litter and other debris along the roadway where it is transported to the highway drainage systems. Initial treatment for stormwater runoff typically is provided by catch basins in highway settings. Modification of catch basins to include hoods that cover the catch-basin outlet is intended to enhance catch-basin performance by retaining floatable debris and various hydrophobic organic compounds that tend to float on the water surface within the sump of the catch basin. The effectiveness of six deep-sump off-line catch basins equipped with hoods in reducing the mass of gross solids greater than 0.25 inches in diameter and concentrations of oil and grease (OG) and total petroleum hydrocarbons (TPH) was examined along the Southeast Expressway, in Boston, Massachusetts. Two deep-sump catch basins were equipped with cast-iron hoods. Three were equipped with molded plastic hoods, known as an Eliminator, and a single catch basin was equipped with a fiberglass anti-siphoning hood, known as a Snout. Samples of gross solids greater than 0.25 inches in diameter, excluding gravel and metallic materials, were routinely collected for a 6-month period from a collection structure mounted at the end of each catch-basin outlet pipe. After about 6 months, all floatable, saturated low-density and high-density solids were removed from each catch basin. In addition to the collection of samples of gross solids, samples of sump water from five catch basins and flow-weighted composite samples of stormwater from the outlet of one catch basin were collected and analyzed for concentrations of OG and TPH. A mass balance approach was used to assess the effectiveness of each catch basin equipped with a hood in retaining gross solids. The effectiveness of the deep-sump catch basins fitted with one of three types of hoods in retaining gross solids ranged from 27 to 52 percent. From 45 to 90 percent of the gross solids collected from the catch-basin sumps were composed of materials made of high-density plastics that did not float in water, and as a result, the effect that the catch-basin hoods had on these materials likely was marginal. The effectiveness for the deep-sump hooded catch basins, excluding the mass of high-density materials identified in the solids collected from the outlet pipe and the sump of the catch basins, ranged from 13 to 38 percent. The effectiveness for each catch basin, based solely on the material that remained floating at the end of the monitoring period, was less than 11 percent; however, these values likely underestimate the effectiveness of the hooded catch basins because much of the low-density material collected from the sumps may have been retained as floatable material before it was saturated and settled during non-storm conditions. The effectiveness of the catch basins equipped with hoods in reducing gross solids was not greatly different among the three types of hoods tested in this study. Concentrations of OG and TPH collected from the water surface of the catch-basins varied from catch basin to catch basin and were similar to concentrations of flow-weighted composite samples collected during storms. Comparisons indicate concentrations of OG and TPH in flow-weighted composite samples collected at the outlet of a catch basin equipped with an Eliminator hood were not substantially different from concentrations of the respective constituents in flow-weighted composite samples collected during a previous study from catch basins containing cast-iron hoods in the same study area. The similarity between these flow-weighted concentrations and the concentrations of the respective constituents in a vertical profile sample collected from the catch-basin sump indicates that OG and TPH are emulsified in the sump of each catch basin during storms and circumvent the hoods.
Furmark, Tomas; Marteinsdottir, Ina; Frick, Andreas; Heurling, Kerstin; Tillfors, Maria; Appel, Lieuwe; Antoni, Gunnar; Hartvig, Per; Fischer, Håkan; Långström, Bengt; Eriksson, Elias; Fredrikson, Mats
2016-10-01
It is disputed whether anxiety disorders, like social anxiety disorder, are characterized by serotonin over- or underactivity. Here, we evaluated whether our recent finding of elevated neural serotonin synthesis rate in patients with social anxiety disorder could be reproduced in a separate cohort, and whether allelic variation in the tryptophan hydroxylase-2 (TPH2) G-703T polymorphism relates to differences in serotonin synthesis assessed with positron emission tomography. Eighteen social anxiety disorder patients and six healthy controls were scanned during 60 minutes in a resting state using positron emission tomography and 5-hydroxy-L-[β -(11)C]tryptophan, [(11)C]5-HTP, a substrate of the second enzymatic step in serotonin synthesis. Parametric images were generated, using the reference Patlak method, and analysed using Statistical Parametric Mapping (SPM8). Blood samples for genotyping of the TPH2 G-703T polymorphism were obtained from 16 social anxiety disorder patients (T carriers: n=5, GG carriers: n=11). A significantly elevated [(11)C]5-HTP accumulation rate, indicative of enhanced decarboxylase activity and thereby serotonin synthesis capacity, was detected in social anxiety disorder patients compared with controls in the hippocampus and basal ganglia nuclei and, at a more lenient (uncorrected) statistical threshold, in the amygdala and anterior cingulate cortex. In patients, the serotonin synthesis rate in the amygdala and anterior cingulate cortex was significantly elevated in TPH2 T carriers in comparison with GG homozygotes. Our results support that social anxiety disorder entails an overactive presynaptic serotonergic system that, in turn, seems functionally influenced by the TPH2 G-703T polymorphism in emotionally relevant brain regions. © The Author(s) 2016.
Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee
2015-03-01
Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function.
Kannen, Vinicius; Sakita, Juliana Y; Carneiro, Zumira A; Bader, Michael; Alenina, Natalia; Teixeira, Regina R; de Oliveira, Enio C; Brunaldi, Mariângela O; Gasparotto, Bianca; Sartori, Daniela C; Fernandes, Cleverson R; Silva, João S; Andrade, Marcus V; Silva, Wilson A; Uyemura, Sergio A; Garcia, Sérgio B
2018-06-01
Trypanosoma cruzi (T. cruzi) infects millions of Latin Americans each year and can induce chagasic megacolon. Little is known about how serotonin (5-HT) modulates this condition. Aim We investigated whether 5-HT synthesis alters T. cruzi infection in the colon. Forty-eight paraffin-embedded samples from normal colon and chagasic megacolon were histopathologically analyzed (173/2009). Tryptophan hydroxylase 1 (Tph1) knockout (KO) mice and c-Kit W-sh mice underwent T. cruzi infection together with their wild-type counterparts. Also, mice underwent different drug treatments (16.1.1064.60.3). In both humans and experimental mouse models, the serotonergic system was activated by T. cruzi infection (p < 0.05). While treating Tph1KO mice with 5-HT did not significantly increase parasitemia in the colon (p > 0.05), rescuing its synthesis promoted trypanosomiasis (p < 0.01). T. cruzi-related 5-HT release (p < 0.05) seemed not only to increase inflammatory signaling, but also to enlarge the pericryptal macrophage and mast cell populations (p < 0.01). Knocking out mast cells reduced trypanosomiasis (p < 0.01), although it did not further alter the neuroendocrine cell number and Tph1 expression (p > 0.05). Further experimentation revealed that pharmacologically inhibiting mast cell activity reduced colonic infection (p < 0.01). A similar finding was achieved when 5-HT synthesis was blocked in c-Kit W-sh mice (p > 0.05). However, inhibiting mast cell activity in Tph1KO mice increased colonic trypanosomiasis (p < 0.01). We show that mast cells may modulate the T. cruzi-related increase of 5-HT synthesis in the intestinal colon.
Neuronal serotonin regulates growth of the intestinal mucosa in mice.
Gross, Erica R; Gershon, Michael D; Margolis, Kara G; Gertsberg, Zoya V; Li, Zhishan; Cowles, Robert A
2012-08-01
The enteric abundance of serotonin (5-HT), its ability to promote proliferation of neural precursors, and reports that 5-HT antagonists affect crypt epithelial proliferation led us to investigate whether 5-HT affects growth and maintenance of the intestinal mucosa in mice. cMice that lack the serotonin re-uptake transporter (SERTKO mice) and wild-type mice were given injections of selective serotonin re-uptake inhibitors (gain-of-function models). We also analyzed mice that lack tryptophan hydroxylase-1 (TPH1KO mice, which lack mucosal but not neuronal 5-HT) and mice deficient in tryptophan hydroxylase-2 (TPH2KO mice, which lack neuronal but not mucosal 5-HT) (loss-of-function models). Wild-type and SERTKO mice were given ketanserin (an antagonist of the 5-HT receptor, 5-HT(2A)) or scopolamine (an antagonist of the muscarinic receptor). 5-HT(2A) receptors and choline acetyltransferase were localized by immunocytochemical analysis. Growth of the mucosa and proliferation of mucosal cells were significantly greater in SERTKO mice and in mice given selective serotonin re-uptake inhibitors than in wild-type mice, but were diminished in TPH2KO (but not in TPH1KO) mice. Ketanserin and scopolamine each prevented the ability of SERT knockout or inhibition to increase mucosal growth and proliferation. Cholinergic submucosal neurons reacted with antibodies against 5-HT(2A). 5-HT promotes growth and turnover of the intestinal mucosal epithelium. Surprisingly, these processes appear to be mediated by neuronal, rather than mucosal, 5-HT. The 5-HT(2A) receptor activates cholinergic neurons, which provide a muscarinic innervation to epithelial effectors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.
Sustainable Horizontal Bioventing and Vertical Biosparging Implementation (Invited)
NASA Astrophysics Data System (ADS)
Leu, J.; Lin, J.; Ferris, S.
2013-12-01
A former natural gas processing site with total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylene (BTEX) impacts in both soil and groundwater was partially excavated to remove 2,400 cubic yards of impacted soil. However, due to active natural gas pipelines within the impacted footprint, excavation was discontinued and an area of impacted soil containing maximum concentrations of 5,000 mg/kg gasoline-range organics (GRO), 8,600 mg/kg diesel-range organics (DRO), and 130 mg/kg motor oil-range organics (ORO). Groundwater was impacted with concentrations up to 2,300 μg/L GRO and 4,200 μg/L DRO remained in place. Taking advantage of the open excavation, horizontal-screened piping was placed in the backfill to deliver air for bioventing, which resulted in successful remediation of soil in a physically inaccessible area. The combined use of excavation of the source area, bioventing of surrounding inaccessible soil, and biosparging of the groundwater and smear zone resulted in nearing a no-further-action status at the site. The sustainable bioventing system consisted of one 3-HP blower and eight horizontal air injection wells. Five dual-depth nested vapor monitoring points (VMPs) were installed at 5 feet and 10 feet below ground surface as part of the monitoring system for human health and system performance. The bioventing system operated for one year followed by a three-month rebound test. During the one-year operation, air flow was periodically adjusted to maximize removal of volatile organic compounds (VOCs) from the vent wells with elevated photo-ionization detector readings. After the bioventing successfully remediated the inaccessible impacted soil, the biosparging system incorporated the pre-existing bioventing unit with an upgraded 5-HP blower and three vertical biosparging wells to biodegrade dissolved phase impacts in the groundwater. The subsequent monitoring system includes the VMPs, the air injection wells, and four groundwater monitoring wells including three existing wells. The system is scheduled to operate for at least one year followed by a three-month rebound test. The flow rate was adjusted between 5 and 10 scfm during operations to focus the biosparging in the impacted area of the site. After the bioventing system was operated and optimized for a year, average VOC concentrations were reduced from approximately 120 to 5 ppmv in the vadose zone. TPH gasoline and BTEX concentrations experienced reductions up to 99%. Fugitive VOCs were not detected outside the property boundary or at possible fugitive gas monitoring points. During the rebound test, no significant rebound of VOC concentrations was observed. The average hydrocarbon biodegradation rate was estimated to be approximately 2.5 mg TPH/kg soil/day. During biosparging, the migration of injected air also stimulated biodegradation in the vadose zone. Within six months of operation, the groundwater GRO and DRO concentrations decreased approximately 70% and 50%, respectively, at the monitoring well within the excavation/backfill area. Bioventing followed by biosparging has proven to be successful in decreasing soil vapor chemicals of concern in the native soil of the inaccessible area and in groundwater of the excavation/backfill area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manos Mavrikakis; James A. Dumesic; Amit A. Gokhale
2006-03-03
Efforts during this second year focused on four areas: (1) continued searching and summarizing of published Fischer-Tropsch synthesis (FTS) mechanistic and kinetic studies of FTS reactions on iron catalysts; (2) investigation of CO adsorption/desorption and temperature programmed hydrogenation (TPH) of carbonaceous species after FTS on unsupported iron and alumina-supported iron catalysts; (3) activity tests of alumina-supported iron catalysts in a fixed bed reactor; (4) sequential design of experiments, for the collection of rate data in a Berty CSTR reactor, and nonlinear-regression analysis to obtain kinetic parameters. Literature sources describing mechanistic and kinetic studies of Fischer-Tropsch synthesis on iron catalysts weremore » compiled in a review. Temperature-programmed desorption/reaction methods (the latter using mass-spectrometry detection and also thermogravimetric analyzer (TGA)) were utilized to study CO adsorption/-desorption on supported and unsupported iron catalysts. Molecular and dissociative adsorptions of CO occur on iron catalysts at 25-150 C. The amounts adsorbed and bond strengths of adsorption are influenced by supports and promoters. That CO adsorbs dissociatively on polycrystalline Fe at temperatures well below those of FT reaction indicates that CO dissociation is facile and unlikely to be the rate-limiting step during FTS. Carbonaceous species formed after FT reaction for only 5 minutes at 200 C were initially hydrogenated under mild, isothermal condition (200 C and 1 atm), followed by TPH to 800 C. During the mild, isothermal hydrogenation, only about 0.1-0.2 mL of atomic carbon is apparently removed, while during TPH to 800 C multilayer equivalents of atomic, polymeric, carbidic, and graphitic carbons are removed. Rates of CO conversion on alumina-supported iron catalysts at 220-260 C and 20 atm are correlated well by a Langmuir-Hinshelwood expression, derived assuming carbon hydrogenation to CH and OH recombination to water to be rate-determining steps. In the coming year, studies will focus on quantitative determination of the rates of kinetically-relevant elementary steps on Fe catalysts with/without K and Pt promoters and at various levels of Al{sub 2}O{sub 3} support, providing a database for understanding (1) effects of promoter and support on elementary kinetic parameters and (2) for validation of computational models that incorporate effects of surface structure and promoters. Kinetic parameters will be incorporated into a microkinetics model, enabling prediction of rate without invoking assumptions, e.g. of a rate-determining step or a most-abundant surface intermediate. Calculations using periodic, self-consistent Density Functional Theory (DFT) methods were performed on two model surfaces: (1) Fe(110) with 1/4 ML subsurface carbon, and (2) Fe(110) with 1/4 ML Pt adatoms. Reaction networks for FTS on these systems were characterized in full detail by evaluating the thermodynamics and kinetics of each elementary step. We discovered that subsurface C stabilizes all the reactive intermediates, in contrast to Pt, which destabilizes most of them. A comparative study of the reactivities of the modified-Fe surfaces against pure Fe is expected to yield a more comprehensive understanding of promotion mechanisms for FTS on Fe.« less
Kriipsalu, Mait; Marques, Marcia; Nammari, Diauddin R; Hogland, William
2007-09-30
The objective was to investigate the aerobic biodegradation of oily sludge generated by a flotation-flocculation unit (FFU) of an oil refinery wastewater treatment plant. Four 1m(3) pilot bioreactors with controlled air-flow were filled with FFU sludge mixed with one of the following amendments: sand (M1); matured oil compost (M2); kitchen waste compost (M3) and shredded waste wood (M4). The variables monitored were: pH, total petroleum hydrocarbons (TPHs), polycyclic aromatic hydrocarbons (PAHs), total carbon (C(tot)), total nitrogen (N(tot)) and total phosphorus (P(tot)). The reduction of TPH based on mass balance in M1, M2, M3 and M4 after 373 days of treatment was 62, 51, 74 and 49%; the reduction of PAHs was 97%, +13% (increase), 92 and 88%, respectively. The following mechanisms alone or in combination might explain the results: (i) most organics added with amendments biodegrade faster than most petroleum hydrocarbons, resulting in a relative increase in concentration of these recalcitrant contaminants; (ii) some amendments result in increased amounts of TPH and PAHs to be degraded in the mixture; (iii) sorption-desorption mechanisms involving hydrophobic compounds in the organic matrix reduce bioavailability, biodegradability and eventually extractability; (iv) mixture heterogeneity affecting sampling. Total contaminant mass reduction seems to be a better parameter than concentration to assess degradation efficiency in mixtures with high content of biodegradable amendments.
Fate and degradation of petroleum hydrocarbons in stormwater bioretention cells
NASA Astrophysics Data System (ADS)
LeFevre, Gregory Hallett
This dissertation describes the investigation of the fate of hydrocarbons in stormwater bioretention areas and those mechanisms that affect hydrocarbon fate in such systems. Seventy-five samples from 58 bioretention areas were collected and analyzed to measure total petroleum hydrocarbon (TPH) residual and biodegradation functional genes. TPH residual in bioretention areas was greater than background sites but low overall (<3 µg/kg), and well below either the TPH concentration of concern or the expected concentration, assuming no losses. Bioretention areas with deep-root vegetation contained significantly greater quantites of bacterial 16S rRNA genes and two functional genes involved in hydrocarbon biodegradation. Field soils were capable of mineralizing naphthalene, a polycyclic aromatic hydrocarbon (PAH) when incubated in the laboratory. In an additional laboratory investigation, a column study was initiated to comprehensively determine naphthalene fate in a simulated bioretention cell using a 14C-labeled tracer. Sorption to soil was the greatest sink of naphthalene in the columns, although biodegradation and vegetative uptake were also important loss mechanisms. Little leaching occurred following the first flush, and volatilization was insignificant. Significant enrichment of naphthalene degrading bacteria occurred over the course of the experiment as a result of naphthalene exposure. This was evident from enhanced naphthalene biodegradation kinetics (measured via batch tests), significant increases in naphthalene dioxygenase gene quantities, and a significant correlation observed between naphthalene residual and biodegradation functional genes. Vegetated columns outperformed the unplanted control column in terms of total naphthalene removal and biodegradation kinetics. As a result of these experiments, a final study focused on why planted systems outperform unplanted systems was conducted. Plant root exudates were harvested from hydroponic setups for three types of plants. Additionally, a solution of artificial root exudates (AREs) as prepared. Exudates were digested using soil bacteria to create metabolized exudates. Raw and metabolized exudates were characterized for dissolved organic carbon, specific UV absorbance, spectral slope, florescence index, excitation-emission matrices, and surface tension. Significant differences on character were observed between the harvested exudates and the AREs, as well as between the raw and metabolized exudates. Naphthalene desorption from an aged soil was enhanced in the presence of raw exudates. The surface tension in samples containing raw harvested exudates was reduced compared to samples containing the metabolized exudates. Plant root exudates may therefore facilitate phytoremediation by enhancing contaminant desorption and improving bioavailability. Overall, this research concludes that heavily planted bioretention systems are a sustainable solution to mitigating stormwater hydrocarbon pollution as a result of likely enhanced contaminant desorption, and improved biodegradation and plant uptake in such systems.
Šmitran, Aleksandra; Vuković, Dragana; Opavski, Nataša; Gajić, Ina; Marinković, Jelena; Božić, Ljiljana; Živanović, Irena; Kekić, Dušan; Popović, Sunčica; Ranin, Lazar
2018-06-01
In this study, the focus was on the effects of sub-MICs of the antibiotics on adherence, hydrophobicity, and biofilm formation by two groups of Streptococcus pyogenes strains, which were responsible for different clinical cases. The aim of this study was to explore the effects of sub-MICs of penicillin, ceftriaxone, erythromycin, and clindamycin on adherence, surface hydrophobicity, and biofilm biomass in two selected collections of group A streptococcus (GAS): strains isolated from carriers (CA) and strains isolated from patients with tonsillopharyngitis (TPh). Isolates were tested for hydrophobicity to xylene, adherence, and biofilm production in uncoated microtiter plates before and after treatment with 1/2 and 1/4 MICs of antibiotics. Penicillin reduced adherence and biofilm production in TPh strains, whereas ceftriaxone diminished adherence and biofilm formation in CA group. On the contrary, clindamycin enhanced adherence and biofilm production in both groups of strains. Erythromycin did not significantly alter adherence, but triggered biofilm production in both groups of isolates. Hydrophobicity of both groups of strains was significantly reduced after exposure to all antibiotics. Beta-lactams displayed anti-biofilm activity; penicillin diminished both adherence and biofilm production in TPh strains, whereas ceftriaxone reduced it in strains isolated from CA.
Zhou, Ran; Qin, Xuebo; Peng, Shitao; Deng, Shihuai
2014-06-15
Surface sediments collected from 2001 to 2011 were analyzed for total petroleum hydrocarbons (TPH) and five heavy metals. The sediment concentration ranges of TPH, Zn, Cu, Pb, Cd and Hg were 6.3-535 μg/g, 58-332 μg/g, 7.2-63 μg/g, 4.3-138 μg/g, 0-0.98μg/g, and 0.10-0.68 μg/g, respectively. These results met the highest marine sediment quality standards in China, indicating that the sediment was fairly clean. However, based on the effects range-median (ERM) quotient method, the calculated values for all of the sampling sites were higher than 0.10, suggesting that there was a potential adverse biological risk in Bohai Bay. According to the calculated results, the biological risk decreased from 2001 to 2007 and increased afterwards. High-risk sites were mainly distributed along the coast. This study suggests that anthropogenic influences might be responsible for the potential risk of adverse biological effects from TPH and heavy metals in Bohai Bay. Copyright © 2014 Elsevier Ltd. All rights reserved.
Assessment of soil-gas contamination at the 17th Street landfill, Fort Gordon, Georgia, 2011
Falls, W. Fred; Caldwell, Andral W.; Guimaraes, Wladmir G.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.
2012-01-01
Assessments of contaminants in soil gas were conducted in two study areas at Fort Gordon, Georgia, in July and August of 2011 to supplement environmental contaminant data for previous studies at the 17th Street landfill. The two study areas include northern and eastern parts of the 17th Street landfill and the adjacent wooded areas to the north and east of the landfill. These study areas were chosen because of their close proximity to the surface water in Wilkerson Lake and McCoys Creek. A total of 48 soil-gas samplers were deployed for the July 28 to August 3, 2011, assessment in the eastern study area. The assessment mostly identified detections of total petroleum hydrocarbons (TPH), and gasoline- and diesel-range compounds, but also identified the presence of chlorinated solvents in six samplers, chloroform in three samplers, 2-methyl naphthalene in one sampler, and trimethylbenzene in one sampler. The TPH masses exceeded 0.02 microgram (μg) in all 48 samplers and exceeded 0.9 μg in 24 samplers. Undecane, one of the three diesel-range compounds used to calculate the combined mass for diesel-range compounds, was detected in 17 samplers and is the second most commonly detected compound in the eastern study area, exceeded only by the number of TPH detections. Six samplers had detections of toluene, but other gasoline compounds were detected with toluene in three of the samplers, including detections of ethylbenzene, meta- and para-xylene, and octane. All detections of chlorinated organic compounds had soil-gas masses equal to or less than 0.08 μg, including three detections of trichloroethene, three detections of perchloroethene, three chloroform detections, one 1,4-dichlorobenzene detection, and one 1,1,2-trichloroethane detection. Three methylated compounds were detected in the eastern study area, but were detected at or below method detection levels. A total of 32 soil-gas samplers were deployed for the August 11–24, 2011, assessment in the northern study area. All samplers in the survey had detections of TPH, but only eight of the samplers had detections of TPH greater than 0.9 mg. Four samplers had TPH detections greater than 9 mg; the only other fuel-related compounds detected in these four samplers included toluene in three of the samplers and undecane in the fourth sampler. Three samplers deployed along the western margin of the northern landfill had detections of both diesel-and gasoline-related compounds; however, the diesel-related compounds were detected at or below method detection levels. Seven samplers in the northern study area had detections of chlorinated compounds, including three perchloroethene detections, three chloroform detections, and one 1,4-dichloro-benzene detection. One sampler on the western margin of the landfill had detections of 1,2,4-trimethylbenzene and 1,3,5-tr-methylbenene below method detection levels.
NASA Astrophysics Data System (ADS)
Oseni, O.
2017-12-01
This paper explores the impacts of oil spill on the physical environment (soil, water and plants) with particular attention paid to the NNPC/PPMC pipeline system. It focuses on the environmental impacts of oil pollution in Nigeria, and discusses the increasing environmental contradictions of the area, and its influence on global warming. The discovery of oil in Nigeria in 1956, the country has been suffering the negative environmental consequences of oil exploration and exploitation. Between 1976 and 1996 a total of 4647 incidents resulted in the spill of approximately 2,369,470 barrels of oil into the environment. In addition, between 1997 and 2001, Nigeria also recorded a total number of 2,097 oil spill incidents. The study traces the effects of the oil spillage on the environment in order to determine whether oil spill is a major factor responsible for environmental pollution. By the use of remotely sensed data and other ancillary data, it identified the major causes of oil spill in the region; the presence of total petroleum hydrocarbon (TPH) in the environment, and it also determined the environmental impacts on land and water. Personal interview, field observation and laboratory analysis of soil and water were used. Gas chromatography was used to determine the TPH concentration in soil extract and water extracts. Liquid-liquid extraction method was used for water and spectro-radiometer which is a very efficient process commonly used to determine spectral signature of various soil, water and plant samples obtained from the study area.Values of analyzed soil and water samples in the oil impacted area were compared to the control area (region with no spill). Based largely onthe GISanalysis, the findings showed that the main cause of oil spill is vandalism along the pipeline right of way; Vandalism which is an act of sabotage had the highest percentage compared to equipment failure, accident from oil tankers and accidental discharge during pipeline repairs.TPH were present at the site with soil samples having the high values, and the environmental impact onsoil and water is due to poor resource management and control. Satellite imagery (Ikonos and Landsat series)helped in monitoring oil spill by providing the spill position.
DEVELOPMENT, TESTING, AND DEMONSTRATION OF AN OPTIMAL FINE COAL CLEANING CIRCUIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven R. Hadley; R. Mike Mishra; Michael Placha
1999-01-27
The objective of this project was to improve the efficiency of the fine coal froth flotation circuit in commercial coal preparation plants. The plant selected for this project, Cyprus Emerald Coal Preparation Plant, cleans 1200-1400 tph of Pittsburgh seam raw coal and uses conventional flotation cells to clean the minus 100-mesh size fraction. The amount of coal in this size fraction is approximately 80 tph with an average ash content of 35%. The project was carried out in two phases. In Phase I, four advanced flotation cells, i.e., a Jameson cell, an Outokumpu HG tank cell, an open column, andmore » a packed column cell, were subjected to bench-scale testing and demonstration. In Phase II, two of these flotation cells, the Jameson cell and the packed column, were subjected to in-plant, proof-of-concept (POC) pilot plant testing both individually and in two-stage combination in order to ascertain whether a two-stage circuit results in lower levelized production costs. The bench-scale results indicated that the Jameson cell and packed column cell would be amenable to the single- and two-stage flotation approach. POC tests using these cells determined that single-stage coal matter recovery (CMR) of 85% was possible with a product ash content of 5.5-7%. Two-stage operation resulted in a coal recovery of 90% with a clean coal ash content of 6-7.5%. This compares favorably with the plant flotation circuit recovery of 80% at a clean coal ash of 11%.« less
Guo, Shuhai; Fan, Ruijuan; Li, Tingting; Hartog, Niels; Li, Fengmei; Yang, Xuelian
2014-08-01
The present study evaluated the coupling interactions between bioremediation (BIO) and electrokinetics (EK) in the remediation of total petroleum hydrocarbons (TPH) by using bio-electrokinetics (BIO-EK) with a rotatory 2-D electric field. The results demonstrated an obvious positive correlation between the degradation extents of TPH and electric intensity both in the EK and BIO-EK tests. The use of BIO-EK showed a significant improvement in degradation of TPH as compared to BIO or EK alone. The actual degradation curve in BIO-EK tests fitted well with the simulated curve obtained by combining the degradation curves in BIO- and EK-only tests during the first 60 d, indicating a superimposed effect of biological degradation and electrochemical stimulation. The synergistic effect was particularly expressed during the later phase of the experiment, concurrent with changes in the microbial community structure. The community composition changed mainly according to the duration of the electric field, leading to a reduction in diversity. No significant spatial shifts in microbial community composition and bacterial numbers were detected among different sampling positions. Soil pH was uniform during the experimental process, soil temperature showed no variations between the soil chambers with and without an electric field. Copyright © 2014 Elsevier Ltd. All rights reserved.
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-01-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe. PMID:28503522
Treadmill exercise alleviates depressive symptoms in rotenone-induced Parkinson disease rats.
Shin, Mal-Soon; Kim, Tae-Woon; Lee, Jae-Min; Sung, Yun-Hee; Lim, Baek-Vin
2017-04-01
Parkinson disease (PD) is characterized by selective loss of the dopaminergic neurons. The symptoms of depression following PD are closely associated with reduced activity of the serotonergic system in the dorsal raphe. We explored the antidepressive effect of exercise and its possible mechanism using the rotenone-induced PD rats. PD rats were induced by subcutaneously injection with rotenone for 14 days. The rats in the exercise groups were made to run on a treadmill for 30 min once a day during 14 consecutive days. Forced swimming test, immunohistochemistry for serotonin (5-hydroxytryptamine, 5-HT), tryptophan hydroxylase (TPH), and western blot for serotonin 1A (5-HT1A) receptor were conducted. Injection of rotenone induced PD rats. PD rats showed depressive state and treadmill exercise ameliorated this depressive state. 5-HT, TPH, and 5-HT1A receptor expressions in the dorsal raphe were suppressed by rotenone injection and treadmill exercise increased the expressions of 5-HT, TPH, and 5-HT1A receptor in the rotenone-injected rats. The present results show that treadmill exercise ameliorated depressive symptoms in the rotenone-induced PD rats. The antidepressive effect of treadmill exercise might be ascribed to the enhancement of serotonergic function through upregulation of 5-HT1A expression in the dorsal raphe.
Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F
2014-01-01
Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.
Tejeda, L; Dębiec, M; Nilsson, L; Peñarrieta, J M; Alvarado, J A
2012-01-01
The objective of this study was to evaluate the proximal composition, as well as Total Antioxidant Capacity (TAC) and Total Phenols (TPH) in meals that represent a complex food matrix, from different hospitals in Bolivia and Sweden. Protein, fat, ash, dietary fiber and carbohydrate contents were measured in 29 samples: 20 from two Bolivian hospitals and 9 from the university hospital in Lund, Sweden. The antioxidant capacity was measured by three spectrophotometric methods: the ferric reducing antioxidant power (FRAP) method, the 2, 2'- azinobis-3-ethylbenzotiazoline-6-sulfonic acid (ABTS) method and Total Phenolic Compounds (TPH) using the Folin-Ciocalteu reagent. The results show that fat, protein, carbohydrate and dietary fiber in Bolivian and Swedish hospital meals are following internationally established recommendations. Regarding the main courses, TPH contents in both countries were in the same range. However, TAC and dietary fiber content were higher in Swedish meals than in Bolivian meals and the TAC was far lower, in both cases, in comparison with the value obtained from individual food items reported from literature. The results show that antioxidant levels can be easily overestimated by considering only individual uncooked ingredients. An interesting consideration is, the fiber content in the meals, which can be an important source of antioxidants and non-extractable phenolic compounds.
Guarino, C; Spada, V; Sciarrillo, R
2017-03-01
Contamination with total petroleum hydrocarbons (TPH) subsequent to refining activities, is currently one of the major environmental problems. Among the biological remediation approaches, landfarming and in situ bioremediation strategies are of great interest. Purpose of this study was to verify the feasibility of a remediation process wholly based on biological degradation applied to contaminated soils from a decommissioned refinery. This study evaluated through a pot experiment three bioremediation strategies: a) Natural Attenuation (NA), b) Landfarming (L), c) Bioaugmentation-assisted Landfarming (LB) for the treatment of a contaminated soil with petroleum hydrocarbons (TPHs). After a 90-days trial, Bioagumentation - assistited Landfarming approach produced the best results and the greatest evident effect was shown with the most polluted samples reaching a reduction of about 86% of total petroleum hydrocarbons (TPH), followed by Landfarming (70%), and Natural Attenuation (57%). The results of this study demonstrated that the combined use of bioremediation strategies was the most advantageous option for the treatment of contaminated soil with petroleum hydrocarbons, as compared to natural attenuation, bioaugmentation or landfarming applied alone. Besides, our results indicate that incubation with an autochthonous bacterial consortium may be a promising method for bioremediation of TPH-contaminated soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells
Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette
2016-01-01
Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells. PMID:26901633
Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy
Schraenen, A.; Lemaire, K.; de Faudeur, G.; Hendrickx, N.; Granvik, M.; Van Lommel, L.; Mallet, J.; Vodjdani, G.; Gilon, P.; Binart, N.; in’t Veld, P.
2010-01-01
Aims/hypothesis Upregulation of the functional beta cell mass is required to match the physiological demands of mother and fetus during pregnancy. This increase is dependent on placental lactogens (PLs) and prolactin receptors, but the mechanisms underlying these events are only partially understood. We studied the mRNA expression profile of mouse islets during pregnancy to gain a better insight into these changes. Methods RNA expression was measured ex vivo via microarrays and quantitative RT-PCR. In vivo observations were extended by in vitro models in which ovine PL was added to cultured mouse islets and MIN6 cells. Results mRNA encoding both isoforms of the rate-limiting enzyme of serotonin biosynthesis, tryptophan hydroxylase (TPH), i.e. Tph1 and Tph2, were strongly induced (fold change 25- to 200-fold) during pregnancy. This induction was mimicked by exposing islets or MIN6 cells to ovine PLs for 24 h and was dependent on janus kinase 2 and signal transducer and activator of transcription 5. Parallel to Tph1 mRNA and protein induction, islet serotonin content increased to a peak level that was 200-fold higher than basal. Interestingly, only a subpopulation of the beta cells was serotonin-positive in vitro and in vivo. The stored serotonin pool in pregnant islets and PL-treated MIN6 cells was rapidly released (turnover once every 2 h). Conclusions/interpretation A very strong lactogen-dependent upregulation of serotonin biosynthesis occurs in a subpopulation of mouse islet beta cells during pregnancy. Since the newly formed serotonin is rapidly released, this lactogen-induced beta cell function may serve local or endocrine tasks, the nature of which remains to be identified. Electronic supplementary material The online version of this article (doi:10.1007/s00125-010-1913-7) contains supplementary material, which is available to authorised users. PMID:20938637
Osipova, Daria V; Kulikov, Alexander V; Popova, Nina K
2009-04-01
Tryptophan hydroxylase-2 (TPH2) is the rate-limiting enzyme of brain serotonin synthesis. The C1473G polymorphism in the mouse tryptophan hydroxylase-2 gene affects the enzyme's activity. In the present study, we investigated the linkage between the C1473G polymorphism, enzyme activity in the brain, and behavior in the forced swim, intermale aggression, and open field tests using mice of the C57BL/6 (C/C) and CC57BR/Mv (G/G) strains and the B6-1473C (C/C) and B6-1473G (G/G) lines created by three successive backcrossings on C57BL/6. Mice of the CC57BR/Mv strain had decreased brain enzyme activity, aggression intensity, and immobility in the forced swim test, but increased locomotor activity and time spent in the central part of the open field arena compared with animals of the C57BL/6 strain. Mice of the B6-1473G line homozygous for the 1473G allele had lower TPH2 activity in the brain, aggression intensity, and immobility time in the forced swim test compared with animals of the B6-1473C line homozygous for the 1473C allele. No differences were found between the B6-1473G and B6-1473C mice in locomotor activity and time spent in the central part of the arena in the open field test. Thus, the C1473G polymorphism is involved in the determination of TPH2 activity and is linked to aggression intensity and forced-swim immobility in mice. At the same time, the polymorphism does not affect locomotion and anxiety-related behavior in the open field test. The B6-1473C and B6-1473G mice represent a valuable experimental model for investigating molecular mechanisms of serotonin-related behavior.
Kwon, Man Jae; O'Loughlin, Edward J; Ham, Baknoon; Hwang, Yunho; Shim, Moojoon; Lee, Soonjae
2018-01-15
Subsurface biogeochemistry and contaminant dynamics during the remediation of diesel-contamination by in-situ soil flushing were investigated at a site located in a coastal region. An in-situ sampler containing diesel-contaminated soils separated into two size fractions (<0.063- and <2-mm) was utilized in two monitoring wells: DH1 (located close to the injection and extraction wells for in-situ soil flushing) and DH2 (located beyond sheet piles placed to block the transport of leaked diesel). Total petroleum hydrocarbon (TPH) concentrations and biogeochemical properties were monitored both in soil and groundwater for six months. A shift occurred in the groundwater type from Ca-HCO 3 to Na-Cl due to seawater intrusion during intense pumping, while the concentrations of Ni, Cu, Co, V, Cr, and Se increased substantially following surfactant (TWEEN 80) injection. The in-situ sampler with fine particles was more sensitive to variations in conditions during the remedial soil flushing process. In both wells, soil TPH concentrations in the <0.063-mm fraction were much higher than those in the <2-mm fraction. Increases in soil TPH in DH1 were consistent with the expected outcomes following well pumping and surfactant injection used to enhance TPH extraction. However, the number of diesel-degrading microorganisms decreased after surfactant injection. 16S-rRNA gene-based analysis also showed that the community composition and diversity depended on both particle size and diesel contamination. The multidisciplinary approach to the contaminated site assessments showed that soil flushing with surfactant enhanced diesel extraction, but negatively impacted in-situ diesel biodegradation as well as groundwater quality. The results also suggest that the in-situ sampler can be an effective monitoring tool for subsurface biogeochemistry as well as contaminant dynamics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Tae Woon; Lim, Baek Vin; Baek, Dongjin; Ryu, Dong-Soo; Seo, Jin Hee
2015-01-01
Purpose: Stress is associated with depression, which induces many psychiatric disorders. Serotonin, also known as 5-hydroxy-tryptamine (5-HT), acts as a biochemical messenger and regulator in the brain. It also mediates several important physiological functions. Depression is closely associated with an overactive bladder. In the present study, we investigated the effect of treadmill exercise on stress-induced depression while focusing on the expression of 5-HT 1A (5-H1A) receptors in the dorsal raphe. Methods: Stress was induced by applying a 0.2-mA electric foot shock to rats. Each set of electric foot shocks comprised a 6-second shock duration that was repeated 10 times with a 30-second interval. Three sets of electric foot shocks were applied each day for 7 days. For the confirmation of depressive state, a forced swimming test was performed. To visualize the expression of 5-HT and tryptophan hydroxylase (TPH), immunohistochemistry for 5-HT and TPH in the dorsal raphe was performed. Expression of 5-H1A receptors was determined by western blot analysis. Results: A depressive state was induced by stress, and treadmill exercise alleviated the depression symptoms in the stress-induced rats. Expressions of 5-HT, TPH, and HT 1A in the dorsal raphe were reduced by the induction of stress. Treadmill exercise increased 5-HT, TPH, and HT 1A expressions in the stress-induced rats. Conclusions: Treadmill exercise enhanced 5-HT synthesis through the up-regulation of 5-HT1A receptors, and improved the stress-induced depression. In the present study, treadmill exercise improved depression symptoms by enhancing 5-HT1A receptor expression. The present results suggest that treadmill exercise might be helpful for the alleviation of overactive bladder and improve sexual function. PMID:25833478
Koh, Kyung Bong; Choi, Eun Hee; Lee, Young-joon; Han, Mooyoung; Choi, Sang-Sup; Kim, So Won; Lee, Min Goo
2012-02-01
It has been suggested that patients with schizophrenia might be involved in criminal behavior, such as homicidal and violent behavior. However, the relationship between criminal behavior and genes in patients with schizophrenia has not been clearly elucidated. The objective of this study was to examine the relation between criminal behavior and serotonin-related gene or catechol-O-methyltransferase (COMT) gene polymorphisms in patients with schizophrenia. Serotonin-related and COMT polymorphic markers were assessed by using single nucleotide polymorphism (SNP) genotyping. Ninety-nine crime-related inpatients with schizophrenia (57 homicidal and 42 nonhomicidal violent) and 133 healthy subjects were enrolled between October 2005 and May 2008. Diagnoses were made according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. The genotype frequencies of tryptophan hydroxylase-1 (TPH1) A218C and COMT V158M were compared between groups. The TPH1 CC genotype had 2.7-fold higher odds of crime-related schizophrenia compared with A-carrier genotype after the analysis was controlled for sex and age (OR, 2.69; 95% CI, 1.22 - 5.91; P = .01). In addition, the TPH1 CC genotype had 3.4-fold higher odds of homicidal schizophrenia compared with A-carrier genotype after the analysis was controlled for sex and age (OR, 3.38; 95% CI, 1.40 - 8.18; P = .007). However, no significant differences were found in the frequencies of genotype of COMT polymorphism between criminal schizophrenics and healthy subjects, nor were any significant differences found between nonhomicidal schizophrenics and healthy subjects. These results indicate that the TPH1 CC recessive genotype is likely to be a genetic risk factor for criminal behavior, especially homicidal behavior in patients with schizophrenia. However, COMT gene polymorphisms were not associated with criminal behavior in schizophrenic patients. © Copyright 2012 Physicians Postgraduate Press, Inc.
Bojes, Heidi K; Pope, Peter G
2007-04-01
The purpose of this study was to determine the concentration and types of polycyclic aromatic hydrocarbons (PAHs), a group of environmentally toxic and persistent chemicals, at contaminated oil exploration and production (E&P) sites located in environmentally sensitive and geographically distinct areas throughout Texas. Samples of tank bottom solids, the oily sediment that collects at the bottom of the tanks, were collected from inactive crude oil storage tanks at E&P sites and hydrocarbon contaminated soil samples were collected from the area surrounding each tank that was sampled. All samples were analyzed for the 16 PAH priority pollutant listed by US EPA and for total petroleum hydrocarbons (TPH). The results demonstrate that overall average PAH concentrations were significantly higher in tank bottom solids than in contaminated soils. Total PAH concentrations decreased predictably with diminishing hydrocarbon concentrations; but the percent fraction of carcinogenic PAHs per total measured PAH content increased from approximately 12% in tank bottom solids to about 46% in the contaminated soils. These results suggest that the PAH content found in tank bottom solids cannot reliably be used to predict the PAH content in associated contaminated soil. Comparison of PAHs to conservative risk-based screening levels for direct exposure to soil and leaching from soil to groundwater indicate that PAHs are not likely to exceed default risk-based thresholds in soils containing TPH of 1% (10,000mg/kg) or less. These results show that the magnitude of TPH concentration may be a useful indicator of potential risk from PAHs in crude oil-contaminated soils. The results also provide credibility to the 1% (10,000mg/kg) TPH cleanup level, used in Texas as a default management level at E&P sites located in non-sensitive areas, with respect to PAH toxicity.
Tarfarosh, Shah Faisal Ahmad; Dar, Mohammad Maqbool; Hussain, Arshad; Shoib, Sheikh; Shah, Tabindah; Shah, Sahil; Manzoor, Mushbiq
2016-01-01
Background The progress that man has made in all domains of life, during all these years of reign over the earth, is utterly remarkable. However, it always came at a price. Each epoch of progress has seen human beings inflicted with trauma and cynical consequences. During the last two decades, Kashmiri (Indian) people have experienced continuous violence, a reign of terror, and political turmoil. Each of these disastrous events has contributed to the increase in psychiatric disorders in this part of the world, especially major depressive disorders. We can observe that besides the environmental influences, gene polymorphism also plays a crucial role in the development of depressive disorders. The role of Tryptophan Hydroxylase 1 (TPH1) gene is implicated in various psychiatric disorders, including depression. However, no study has investigated TPH1 A779C gene polymorphism in depressive disorders in a distressed society like Kashmir (India). Aims To study TPH1 A779C single nucleotide polymorphism in depressive disorders in Kashmiri (Indian) population. Materials and Methods Two hundred and forty patients diagnosed with depressive disorder, and 160 unrelated healthy volunteers (control), were studied in a case-control study design. Polymorphism was determined using polymerase chain reaction (PCR) and agarose gel electrophoresis, after digestion with HAP II enzyme. Genotypes and allele frequencies were compared using Chi-square tests, Fisher’s exact test, odds ratio, 95% confidence interval (C.I.) and a p-value of <0.05 was considered to be statistically significant. Results The mean age ± standard deviation (SD) of depression and control group was 32.02±10.99 and 31.75±9.93, respectively (p= 0.512). It was found that the patients from depression group had AA genotype (51.7%) in comparison to control group (17.5%) and these results were statistically significant (p≤0.0001). Calculation of allelic frequency revealed a stronger association of A allele with depression group (70.83%) than with the control group (41.25%), and it was also found to be statistically significant (p≤0.0001) with C.I. of 3.459 (1.909-6.266). Conclusion TPH1 A779C A gene was found to be associated with a major depressive disorder (MDD) in Kashmiri (Indian) population. There were high HAM-A as well as HAM-D scores in depressive patients of Kashmir (India). PMID:27672527
Closure Report for Corrective Action Unit 516: Septic Systems and Discharge Points
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
Corrective Action Unit (CAU) 516 is located in Areas 3, 6, and 22 of the Nevada Test Site. CAU 516 is listed in the Federal Facility Agreement and Consent Order of 1996 as Septic Systems and Discharge Points, and is comprised of six Corrective Action Sites (CASs): {sm_bullet} CAS 03-59-01, Bldg 3C-36 Septic System {sm_bullet} CAS 03-59-02, Bldg 3C-45 Septic System {sm_bullet} CAS 06-51-01, Sump and Piping {sm_bullet} CAS 06-51-02, Clay Pipe and Debris {sm_bullet} CAS 06-51-03, Clean Out Box and Piping {sm_bullet} CAS 22-19-04, Vehicle Decontamination Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASsmore » 06-51-02 and 22-19-04 is no further action. The NDEP-approved corrective action alternative for CASs 03-59-01, 03-59-02, 06-51-01, and 06-51-03 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)-impacted septic tank contents, septic tanks, distribution/clean out boxes, and piping. CAU 516 was closed in accordance with the NDEP-approved CAU 516 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 516 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 516 closure activities. During closure activities, approximately 186 tons of hydrocarbon waste in the form of TPH-impacted soil and debris, as well as 89 tons of construction debris, were generated and managed and disposed of appropriately. Waste minimization techniques, such as field screening of soil samples and the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure work.« less
USA's Black Thunder mine: a truck and shovel operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorling, I.
During 1966/1967, ARCO obtained over 2,631 hectares (6,500 acres) of federal and state coal leases, and initial exploration was started. A total of 312 coal core holes were drilled and logged to determine the reserves and quality of the coal. The results indicated that a large surface mine could be developed to exploit the substantial reserves. The application procedure for permits was started early in 1974. Thunder Basin Coal Company is mining the Wyodak-Anderson Seam where the coal is about 21 meters (69 feet) thick. It has been estimated that a total of 750,000,000 tons of coal exist with amore » 0.3 to 0.4 percent sulfur content and a heating value of about 8,600 Btu per pound. The seam is mined in one lift using electric shovels and trucks. There are many factors which govern the choice of either a dragline or a truck and shovel operation for removing overburden. At the Black Thunder mine the conditions which favored the choice of the truck and shovel method were topography and pit geometry. The run-of-mine coal is dumped into two 540-ton hoppers. Underground vibrating grizzly feeders (2,500 tph capacity) pass the coal into 2,500 tph primary single-roll crushers, where the ROM coal is reduced to minus 8 inches. A 72-inch-wide elevating conveyor carries the coal to a 110-ton surge hopper, and is then fed into two secondary crushers where the coal is further reduced to minus-2 inches. The system is able to handle 5,000 tons of ROM coal per hour. The total production of coal from the mine in 1978 is expected to be about 3,000,000 tons, depending on customer requirements. It is expected that in 1979 the output will rise to 8,000,000 tons, and by 1983 the full planned production of 20,000,000 tons a year will be reached. (LTN)« less
Large scale treatment of total petroleum-hydrocarbon contaminated groundwater using bioaugmentation.
Poi, Gregory; Shahsavari, Esmaeil; Aburto-Medina, Arturo; Mok, Puah Chum; Ball, Andrew S
2018-05-15
Bioaugmentation or the addition of microbes to contaminated sites has been widely used to treat contaminated soil or water; however this approach is often limited to laboratory based studies. In the present study, large scale bioaugmentation has been applied to total petroleum hydrocarbons (TPH)-contaminated groundwater at a petroleum facility. Initial TPH concentrations of 1564 mg L -1 in the field were reduced to 89 mg L -1 over 32 days. This reduction was accompanied by improved ecotoxicity, as shown by Brassica rapa germination numbers that increased from 52 at day 0 to 82% by the end of the treatment. Metagenomic analysis indicated that there was a shift in the microbial community when compared to the beginning of the treatment. The microbial community was dominated by Proteobacteria and Bacteroidetes from day 0 to day 32, although differences at the genus level were observed. The predominant genera at the beginning of the treatment (day 0 just after inoculation) were Cloacibacterium, Sediminibacterium and Brevundimonas while at the end of the treatment members of Flavobacterium dominated, reaching almost half the population (41%), followed by Pseudomonas (6%) and Limnobacter (5.8%). To the author's knowledge, this is among the first studies to report the successful large scale biodegradation of TPH-contaminated groundwater (18,000 L per treatment session) at an offshore petrochemical facility. Copyright © 2018 Elsevier Ltd. All rights reserved.
Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.
Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J
2006-01-01
An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.
Bento, Fatima M; Camargo, Flávio A O; Okeke, Benedict C; Frankenberger, William T
2005-06-01
Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.
Bazovkina, Darya V; Lichman, Daria V; Kulikov, Alexander V
2015-03-04
Tryptophan hydroxylase-2 (Tph2) is the rate limiting enzyme of serotonin synthesis in the brain. The functional (C1473G) polymorphism in the mouse Tph2 gene affecting the enzymatic activity was suspected to be involved in behavioral actions of ethanol (EtOH). Congenic B6-1473C (C/C) and B6-1473G (G/G) lines bred from C57BL/6 mice were not different in EtOH-induced sleep time and hypothermia. B6-1473C mice displayed increased EtOH preference on the second and third days compared to that of the first day, but no differences in this parameter was found across genotypes. Both lines demonstrated the same responsiveness to hypothermic and hypnotic effect of acute EtOH treatment after repeated alcohol exposure. However, acute EtOH administration led to reduction of locomotor activity in B6-1473C, but not in B6-1473G animals and to increase of time spent in the center of open-field arena in B6-1473G, but not in B6-1473C mice. Thus, the present study indicates the involvement of C1473G polymorphism in mTph2 gene in the regulation of EtOH-induced effects on locomotor activity and anxiety-like behavior in mice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Huang, Hui; Zhu, Zheng-Qiu; Zhou, Zheng-Guo; Chen, Ling-Shan; Zhao, Ming; Zhang, Yang; Li, Hong-Bo; Yin, Li-Ping
2016-12-08
To assess the role of time-intensity curves (TICs) of the normal peripheral zone (PZ) in the identification of biopsy-proven prostate nodules using contrast-enhanced transrectal ultrasound (CETRUS). This study included 132 patients with 134 prostate PZ nodules. Arrival time (AT), peak intensity (PI), mean transit time (MTT), area under the curve (AUC), time from peak to one half (TPH), wash in slope (WIS) and time to peak (TTP) were analyzed using multivariate linear logistic regression and receiver operating characteristic (ROC) curves to assess whether combining nodule TICs with normal PZ TICs improved the prediction of prostate cancer (PCa) aggressiveness. The PI, AUC (p < 0.001 for both), MTT and TPH (p = 0.011 and 0.040 respectively) values of the malignant nodules were significantly higher than those of the benign nodules. Incorporating the PI and AUC values (both, p < 0.001) of the normal PZ TIC, but not the MTT and TPH values (p = 0.076 and 0.159 respectively), significantly improved the AUC for prediction of malignancy (PI: 0.784-0.923; AUC: 0.758-0.891) and assessment of cancer aggressiveness (p < 0.001). Thus, all these findings indicate that incorporating normal PZ TICs with nodule TICs in CETRUS readings can improve the diagnostic accuracy for PCa and cancer aggressiveness assessment.
Li, Yanming; Hu, Yongjie; Liu, Jinhua; Guo, Yuliang; Wang, Guiqin
2011-04-01
A gas chromatography-mass spectrometry (GC-MS) method has been developed for the determination of dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPhT) in textile auxiliaries. The sample was first extracted with n-hexane in acetate buffer solution (pH 4.0) under ultrasonication (for hydrophobic sample) or oscillation extraction (for hydrophilic sample) and then derivatized with sodium tetraethylborate in tetrahydrofuran. The derivative was determined by GC-MS in selected ion monitoring (SIM) mode. The separation and quantification were achieved using a Rxi-5 ms silica capillary column (30 m x 0.25 mm x 0.25 microm). The linear ranges were 0.1-8.0 mg/L for both DBT and TBT, and 0.1-4.0 mg/L for TPhT. There were good linear relationships between the peak area and concentration in the linear ranges and the correlation coefficients (r2) were 0.9994-0.9998. The detection limits (LOD) were from 0.003 mg/L to 0.005 mg/L. The average recoveries of these organotin compounds at the three spiked levels of 4.0, 10.0 and 40.0 mg/kg were 92.6%-108.0% with the relative standard deviations (RSDs) of 2.5%-10.2%. The method is simple and accurate for simultaneous analysis of the DBT, TBT and TPhT in textile auxiliaries.
Ndimele, Prince Emeka; Jenyo-Oni, Adetola; Chukwuka, Kanayo S; Ndimele, Chinatu Charity; Ayodele, Ibukunoluwa Augustine
2015-01-01
This study investigated the effects of inorganic fertilizer (N15P15K15) amendments on crude oil uptake by water hyacinth. Experimental units (water hyacinth grown in fresh water) were spiked with 0, 20, 40 and 60 mg/L crude oil. After 24 h, they were randomly assigned fertilizer (N15P15K15) at three different concentrations; 0, 6 and 10 mg/L. Crude oil degradation and absorption were determined by measuring total petroleum hydrocarbon (TPH) in the water column and water hyacinth, respectively. The measurements were taken monthly for six months (February-August 2010). The results showed that TPH concentration in the water column in the treatment amended at 6 mg/L (0.30 ± 0.01 mg/L) was significantly lower (p < .05) than the treatment amended at 10 mg/L (0.76 ± 0.15 mg/L) but was similar to the control (0.33 ± 0.03 mg/L). The water hyacinth in the control (phytoremediation) absorbed significantly higher (p < .05) TPH than the fertilizer-amended treatments. The first-order kinetic model gave a better description of the degradation of petroleum hydrocarbons. The study showed that phytoremediation of crude oil by water hyacinth and biostimulation with fertilizer (N15P15K15) is possible.
Liu, Yan; Jiang, Yun’ai; Si, Yunxia; Kim, Ji-Young; Chen, Zhou-Feng; Rao, Yi
2014-01-01
To whom should a male directs his mating? While it is a critical social interaction, little is known about molecular and cellular mechanisms controlling mammalian sexual preference. Here we report that the neurotransmitter 5-HT is required for male sexual preference. Male mice lacking central serotonergic neurons lost sexual preference but were not generally defective in olfaction. A role for 5-hydroxytryptamine (5-HT) was demonstrated by the phenotype of mice unable to synthesize 5-HT in the brain when lacking tryptophan hydroxylase 2 (Tph2). 5-hydroxytryptophan (5-HTP) injection rescued the phenotype of adult Tph2 knockout mice within 35 minutes. These results indicate that 5-HT and serotonergic neurons in the adult brain regulate mammalian sexual preference. PMID:21441904
Natural attenuation of aged tar-oil in soils: A case study from a former gas production site
NASA Astrophysics Data System (ADS)
Ivanov, Pavel; Eickhorst, Thilo; Wehrer, Markus; Georgiadis, Anna; Rennert, Thilo; Eusterhues, Karin; Totsche, Kai Uwe
2017-04-01
Contamination of soils with tar oil occurred on many industrial sites in Europe. The main source of such contamination has been former manufactured gas plants (MGP). As many of them were destroyed during the World War II or abandoned in the second half of the XXth century, the contamination is depleted in volatile and degradable hydrocarbons (HC) but enriched in the heavy oil fractions due to aging processes. We studied a small tar-oil spill in a former MGP reservoir basin. The tar-oil had a total petroleum hydrocarbon (TPH) content of 245 mg/g. At the margin of the spill, vegetation has started to overgrow and intensively root the tar-oil layer. This zone comprised the uppermost 5-7 cm of our profile and contained 28 mg/g of TPH (A-layer)- The layer below the root zone (7-15 cm) was the most contaminated, with 90 mg/g TPH (B-layer). The layer underneath (15-22 cm) had smaller concentrations of 16 mg/g TPH (C-layer). Further down in the profile (D-layer) we found only slightly higher TPH content than in the control samples (1,4 mg/g vs 0,6 mg/g). The polycyclic aromatic hydrocarbons analysis showed the same distribution throughout all layers with highest contents of the PAHs with 4-6 condensed aromatic rings. Direct cell count and extraction of microbial biomass showed that the highly contaminated soil layers A and B had 2-3 times more bacteria than the control soils. CARD-FISH analysis revealed that in samples from layers A and B Archaea were more abundant (12% opposing to 6-7% in control soil). Analysis of bacteria (tested for Alpha-, Beta-, Gamma- and Epsilonproteobacteria and Actinobacteria) showed the dominance of Alphaproteobacteria in the layer A and C both beneath and above the most contaminated layer B. The primers covered the whole microbial consortia in these two layers, leaving almost no unidentified cells. In the most contaminated layer B Alphaproteobacteria amounted only to 20% of the microbial consortium, and almost 40% of the cells remained unidentified, suggesting the presence of other microorganisms using high-molecular weight HC as carbon source. All contaminated layers were found to be enriched in total Fe and both dithionite-extractable and oxalate-extractable Fe. Besides, siderite crystals were identified using FTIR microscopy. The presence of secondary crystalline and poorly crystalline Fe(III)-oxides and secondary Fe(II)-carbonates in the same horizons suggests simultaneous occurrence of oxic and anoxic zones within the porous system of the contaminated layers. Although HC pollution is often considered to inhibit microbial activity in soil, in our study the layers with highest TPH-amounts were the most "alive". We assume that aging processes (the sum of volatilization, dissolution, microbial degradation, chemical oxidation, polymerization and migration) and eventually a long-term microbial adaption to the HC carbon source resulted in the development of a microbial consortium, capable of transforming high-molecular weight HC. Presumably, iron-compounds in the tar oil act as an electron acceptor and trigger HC degradation. However, to unravel natural attenuation processes and degradation pathways it seems mandatory to take into account the soil structure and spatial distribution of microbes.
Beškoski, Vladimir P; Gojgić-Cvijović, Gordana; Milić, Jelena; Ilić, Mila; Miletić, Srdjan; Solević, Tatjana; Vrvić, Miroslav M
2011-03-01
Mazut (heavy residual fuel oil)-polluted soil was exposed to bioremediation in an ex situ field-scale (600 m(3)) study. Re-inoculation was performed periodically with biomasses of microbial consortia isolated from the mazut-contaminated soil. Biostimulation was conducted by adding nutritional elements (N, P and K). The biopile (depth 0.4m) was comprised of mechanically mixed polluted soil with softwood sawdust and crude river sand. Aeration was improved by systematic mixing. The biopile was protected from direct external influences by a polyethylene cover. Part (10 m(3)) of the material prepared for bioremediation was set aside uninoculated, and maintained as an untreated control pile (CP). Biostimulation and re-inoculation with zymogenous microorganisms increased the number of hydrocarbon degraders after 50 d by more than 20 times in the treated soil. During the 5 months, the total petroleum hydrocarbon (TPH) content of the contaminated soil was reduced to 6% of the initial value, from 5.2 to 0.3 g kg(-1) dry matter, while TPH reduced to only 90% of the initial value in the CP. After 150 d there were 96%, 97% and 83% reductions for the aliphatic, aromatic, and nitrogen-sulphur-oxygen and asphaltene fractions, respectively. The isoprenoids, pristane and phytane, were more than 55% biodegraded, which indicated that they are not suitable biomarkers for following bioremediation. According to the available data, this is the first field-scale study of the bioremediation of mazut and mazut sediment-polluted soil, and the efficiency achieved was far above that described in the literature to date for heavy fuel oil. Copyright © 2011 Elsevier Ltd. All rights reserved.
Douglas, R K; Nawar, S; Alamar, M C; Mouazen, A M; Coulon, F
2018-03-01
Visible and near infrared spectrometry (vis-NIRS) coupled with data mining techniques can offer fast and cost-effective quantitative measurement of total petroleum hydrocarbons (TPH) in contaminated soils. Literature showed however significant differences in the performance on the vis-NIRS between linear and non-linear calibration methods. This study compared the performance of linear partial least squares regression (PLSR) with a nonlinear random forest (RF) regression for the calibration of vis-NIRS when analysing TPH in soils. 88 soil samples (3 uncontaminated and 85 contaminated) collected from three sites located in the Niger Delta were scanned using an analytical spectral device (ASD) spectrophotometer (350-2500nm) in diffuse reflectance mode. Sequential ultrasonic solvent extraction-gas chromatography (SUSE-GC) was used as reference quantification method for TPH which equal to the sum of aliphatic and aromatic fractions ranging between C 10 and C 35 . Prior to model development, spectra were subjected to pre-processing including noise cut, maximum normalization, first derivative and smoothing. Then 65 samples were selected as calibration set and the remaining 20 samples as validation set. Both vis-NIR spectrometry and gas chromatography profiles of the 85 soil samples were subjected to RF and PLSR with leave-one-out cross-validation (LOOCV) for the calibration models. Results showed that RF calibration model with a coefficient of determination (R 2 ) of 0.85, a root means square error of prediction (RMSEP) 68.43mgkg -1 , and a residual prediction deviation (RPD) of 2.61 outperformed PLSR (R 2 =0.63, RMSEP=107.54mgkg -1 and RDP=2.55) in cross-validation. These results indicate that RF modelling approach is accounting for the nonlinearity of the soil spectral responses hence, providing significantly higher prediction accuracy compared to the linear PLSR. It is recommended to adopt the vis-NIRS coupled with RF modelling approach as a portable and cost effective method for the rapid quantification of TPH in soils. Copyright © 2017 Elsevier B.V. All rights reserved.
Bejarano, Adriana C; Levine, Edwin; Mearns, Alan J
2013-12-01
The Special Monitoring of Applied Response Technologies (SMART) program was used during the Deepwater Horizon oil spill as a strategy to monitor the effectiveness of sea surface dispersant use. Although SMART was implemented during aerial and vessel dispersant applications, this analysis centers on the effort of a special dispersant missions onboard the M/V International Peace, which evaluated the effectiveness of surface dispersant applications by vessel only. Water samples (n = 120) were collected from background sites, and under naturally and chemically dispersed oil slicks, and were analyzed for polycyclic aromatic hydrocarbons (TPAHs), total petroleum hydrocarbons (TPH), and a chemical marker of Corexit (dipropylene glycol n-butyl ether, DPnB). Water chemistry results were analyzed relative to SMART field assessments of dispersant effectiveness ("not effective," "effective," and "very effective"), based on in situ fluorometry. Chemistry data were also used to indirectly determine if the use of dispersants increased the risk of acute effects to water column biota, by comparison to toxicity benchmarks. TPAH and TPH concentrations in background, and naturally and chemically dispersed samples were extremely variable, and differences were not statistically detected across sample types. Ratios of TPAH and TPH between chemically and naturally dispersed samples provided a quantitative measure of dispersant effectiveness over natural oil dispersion alone, and were in reasonable agreement with SMART field assessments of dispersant effectiveness. Samples from "effective" and "very effective" dispersant applications had ratios of TPAH and TPH up to 35 and 64, respectively. In two samples from an "effective" dispersant application, TPHs and TPAHs exceeded acute benchmarks (0.81 mg/L and 8 μg/L, respectively), while none exceeded DPnB's chronic value (1,000 μg/L). Although the primary goal of the SMART program is to provide near real-time effectiveness data to the response, and not to address concerns regarding acute biological effects, the analyses presented here demonstrate that SMART can generate information of value to a larger scientific audience. A series of recommendations for future SMART planning are also provided.
NASA Astrophysics Data System (ADS)
Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.
2010-06-01
Tropical aerosol (PM10) samples (n = 49) collected from southeast coast of India were studied for water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal), together with analyses of total carbon (TC) and water-soluble organic carbon (WSOC). Their distributions were characterized by a predominance of oxalic acid followed by terephthalic (t-Ph), malonic, and succinic acids. Total concentrations of diacids (227-1030 ng m-3), ketoacids (16-105 ng m-3), and dicarbonyls (4-23 ng m-3) are comparative to those from other Asian megacities such as Tokyo and Hong Kong. t-Ph acid was found as the second most abundant diacid in the Chennai aerosols. This feature has not been reported previously in atmospheric aerosols. t-Ph acid is most likely derived from the field burning of plastics. Water-soluble diacids were found to contribute 0.4%-3% of TC and 4%-11% of WSOC. Based on molecular distributions and backward air mass trajectories, we found that diacids and related compounds in coastal South Indian aerosols are influenced by South Asian and Indian Ocean monsoons. Organic aerosols are also suggested to be significantly transported long distances from North India and the Middle East in early winter and from Southeast Asia in late winter, but some originate from photochemical reactions over the Bay of Bengal. In contrast, the Arabian Sea, Indian Ocean, and South Indian continent are suggested as major source regions in summer. We also found daytime maxima of most diacids, except for C9 and t-Ph acids, which showed nighttime maxima in summer. Emissions from marine and terrestrial plants, combined with land/sea breezes and in situ photochemical oxidation, are suggested especially in summer as an important factor that controls the composition of water-soluble organic aerosols over the southeast coast of India. Regional emissions from anthropogenic sources are also important in megacity Chennai, but their influence is weakened due to the dispersion caused by dynamic land/sea breeze on the coast.
The role of the serotonergic system in suicidal behavior
Sadkowski, Marta; Dennis, Brittany; Clayden, Robert C; ElSheikh, Wala; Rangarajan, Sumathy; DeJesus, Jane; Samaan, Zainab
2013-01-01
Serotonin is a widely investigated neurotransmitter in several psychopathologies, including suicidal behavior (SB); however, its role extends to several physiological functions involving the nervous system, as well as the gastrointestinal and cardiovascular systems. This review summarizes recent research into ten serotonergic genes related to SB. These genes – TPH1, TPH2, SLC6A4, SLC18A2, HTR1A, HTR1B, HTR2A, DDC, MAOA, and MAOB – encode proteins that are vital to serotonergic function: tryptophan hydroxylase; the serotonin transporter 5-HTT; the vesicular transporter VMAT2; the HTR1A, HTR1B, and HTR2A receptors; the L-amino acid decarboxylase; and the monoamine oxidases. This review employed a systematic search strategy and a narrative research methodology to disseminate the current literature investigating the link between SB and serotonin. PMID:24235834
Pseudogap Behavior of the Nuclear Spin-Lattice Relaxation Rate in FeSe Probed by 77Se-NMR
NASA Astrophysics Data System (ADS)
Shi, Anlu; Arai, Takeshi; Kitagawa, Shunsaku; Yamanaka, Takayoshi; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas; Hirata, Michihiro; Sasaki, Takahiko
2018-01-01
We conducted 77Se-nuclear magnetic resonance studies of the iron-based superconductor FeSe in magnetic fields of 0.6 to 19 T to investigate the superconducting and normal-state properties. The nuclear spin-lattice relaxation rate divided by the temperature (T1T)-1 increases below the structural transition temperature Ts but starts to be suppressed below T*, well above the superconducting transition temperature Tc(H), resulting in a broad maximum of (T1T)-1 at Tp(H). This is similar to the pseudogap behavior in optimally doped cuprate superconductors. Because T* and Tp(H) decrease in the same manner as Tc(H) with increasing H, the pseudogap behavior in FeSe is ascribed to superconducting fluctuations, which presumably originate from the theoretically predicted preformed pair above Tc(H).
Kaplan, Kara; Echert, Ashley E.; Massat, Ben; Puissant, Madeleine M.; Palygin, Oleg; Geurts, Aron M.
2016-01-01
Genetic deletion of brain serotonin (5-HT) neurons in mice leads to ventilatory deficits and increased neonatal mortality during development. However, it is unclear if the loss of the 5-HT neurons or the loss of the neurochemical 5-HT led to the observed physiologic deficits. Herein, we generated a mutant rat model with constitutive central nervous system (CNS) 5-HT depletion by mutation of the tryptophan hydroxylase 2 (Tph2) gene in dark agouti (DATph2−/−) rats. DATph2−/− rats lacked TPH immunoreactivity and brain 5-HT but retain dopa decarboxylase-expressing raphe neurons. Mutant rats were also smaller, had relatively high mortality (∼50%), and compared with controls had reduced room air ventilation and body temperatures at specific postnatal ages. In adult rats, breathing at rest and hypoxic and hypercapnic chemoreflexes were unaltered in adult male and female DATph2−/− rats. Body temperature was also maintained in adult DATph2−/− rats exposed to 4°C, indicating unaltered ventilatory and/or thermoregulatory control mechanisms. Finally, DATph2−/− rats treated with the 5-HT precursor 5-hydroxytryptophan (5-HTP) partially restored CNS 5-HT and showed increased ventilation (P < 0.05) at a developmental age when it was otherwise attenuated in the mutants. We conclude that constitutive CNS production of 5-HT is critically important to fundamental homeostatic control systems for breathing and temperature during postnatal development in the rat. PMID:26869713
Cross, Sarah; Kim, Soo-Jeong; Weiss, Lauren A.; Delahanty, Ryan J.; Sutcliffe, James S.; Leventhal, Bennett L.; Cook, Edwin H.; Veenstra-VanderWeele, Jeremy
2009-01-01
Elevated platelet serotonin (5-HT) is found in a subset of children with autism and in some of their first-degree relatives. Indices of the platelet serotonin system, including whole blood serotonin (5-HT), 5-HT binding affinity for the serotonin transporter (Km), 5-HT uptake (Vmax), and lysergic acid diethylamide (LSD) receptor binding, were previously studied in twenty-four first-degree relatives of probands with autism, half of whom were selected for elevated whole blood 5-HT levels. All subjects were then genotyped for selected polymorphisms at the SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 loci. Previous studies allowed an a priori prediction of SLC6A4 haplotypes that separated the subjects into three groups that showed significantly different 5-HT binding affinity (Km, p = 0.005) and 5-HT uptake rate (Vmax, p = 0.046). Genotypes at four individual polymorphisms in SLC6A4 were not associated with platelet 5-HT indices. Haplotypes at SLC6A4 and individual genotypes of polymorphisms at SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 showed no significant association with whole blood 5-HT. Haplotype analysis of two polymorphisms in TPH1 revealed a nominally significant association with whole blood 5-HT (p = 0.046). These initial studies of indices of the 5-HT system with several SNPs at loci in this system generate hypotheses for testing in other samples. PMID:17406648
Cho, Jung-Wan; Jung, Sun-Young; Lee, Sang-Won; Lee, Sam-Jun; Seo, Tae-Beom; Kim, Young-Pyo; Kim, Dae-Young
2017-12-01
Social isolation is known to induce emotional and behavioral changes in animals and humans. The effect of treadmill exercise on depression was investigated using social isolated rat pups. The rat pups in the social isolation groups were housed individually. The rat pups in the exercise groups were forced to run on treadmill for 30 min once a day from postnatal day 21 to postnatal day 34. In order to evaluate depression state of rat pups, forced swimming test was performed. Newly generated cells in the hippocampal dentate gyrus were determined by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry. We examined the expression of 5-hydroxytryptamine (5-HT) and tryptophan hydroxylase (TPH) in the dorsal raphe using immunofluorescence. The expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) was detected by Western blot analysis. The present results demonstrated that social isolation increased resting time and decreased mobility time. Expression of 5-HT and TPH in the dorsal raphe and expression of BDNF and TrkB in the hippocampus were decreased by social isolation. The number of BrdU-positive cells in the hippocampal dentate gyrus was suppressed by social isolation. Treadmill exercise decreased resting time and increased mobility in the social isolated rat pups. Expression of 5-HT, TPH, BDNF, and TrkB was increased by treadmill exercise. The present results suggested that treadmill exercise may ameliorates social isolation-induced depression through increasing neuronal generation.
Rath, Martin F; Coon, Steven L; Amaral, Fernanda G; Weller, Joan L; Møller, Morten; Klein, David C
2016-05-01
The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes.
Kim, Won Tae; Yun, Seok Joong; Yan, Chunri; Jeong, Pildu; Kim, Ye Hwan; Lee, Il Seok; Kang, Ho Won; Park, Sunghyouk; Moon, Sung Kwon; Choi, Yung Hyun; Choi, Young Deuk; Kim, Isaac Yi; Kim, Jayoung; Kim, Wun Jae
2016-07-01
Our previous high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry study identified bladder cancer (BCA)-specific urine metabolites, including carnitine, acylcarnitines, and melatonin. The objective of the current study was to determine which metabolic pathways are perturbed in BCA, based on our previously identified urinary metabolome. A total of 135 primary BCA samples and 26 control tissue samples from healthy volunteers were analyzed. The association between specific urinary metabolites and their related encoding genes was analyzed. Significant alterations in the carnitine-acylcarnitine and tryptophan metabolic pathways were detected in urine specimens from BCA patients compared to those of healthy controls. The expression of eight genes involved in the carnitine-acylcarnitine metabolic pathway (CPT1A, CPT1B, CPT1C, CPT2, SLC25A20, and CRAT) or tryptophan metabolism (TPH1 and IDO1) was assessed by RT-PCR in our BCA cohort (n=135). CPT1B, CPT1C, SLC25A20, CRAT, TPH1, and IOD1 were significantly downregulated in tumor tissues compared to normal bladder tissues (p<0.05 all) of patients with non-muscle invasive BCA, whereas CPT1B, CPT1C, CRAT, and TPH1 were downregulated in those with muscle invasive BCA (p<0.05), with no changes in IDO1 expression. Alterations in the expression of genes associated with the carnitine-acylcarnitine and tryptophan metabolic pathways, which were the most perturbed pathways in BCA, were determined.
Rehman, Abdur; Amin, Faiza; Abbas, Muhammad
2014-11-01
To examine the effect of distilled water, artificial saliva and ethanol on the tensile strength of direct tooth-coloured restorative material. The study was conducted at Dr. Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences (DUHS), Karachi, from April 2011 to September 2012. The testing was performed at the Pakistan Council of Scientific and Industrial Research (PCSIR) laboratories. Two composite resins Filtek Z250 and Spectrum TPH were tested. Specimens (13 mm x 3 mm x 2 mm) of each material were prepared in the stainless steel mould according to the manufacturers' instructions and distributed into 3 equal groups: one immersed in distilled water, the other in artificial saliva, and the last one in ethanol for 24 hours. Tensile strength was determined after 24 hours in universal Instron Testing Machine. There were 72 specimens in all; 36 (50%) each for Filtek Z250 and Spectrum TPH. The three sub-groups in each case had 12 (33.3%) specimens. For the Filtek Z250, there was no statistically significant difference between immersion in distilled water and artificial saliva, but the ethanol group presented lower tensile strength (p<0.05). For the Spectrum TPH, samples immersed in ethanol and artificial saliva presented lower tensile strength compared to distilled water (p<0.05). The tested composite resins were affected by the immersion media and adversely affected the mechanical properties of composite resins.
Gao, Jun-Min; Zhang, Ke; Chen, You-Peng; Guo, Jin-Song; Wei, Yun-Mei; Jiang, Wen-Chao; Zhou, Bin; Qiu, Hui
2015-06-01
The Three Gorges Project is the largest hydro project in the world, and the water level of the Three Gorges Reservoir (TGR) is dynamic and adjustable with the aim of flood control and electrical power generation. It is necessary to investigate the pollutants and their underlying contamination processes under dynamic water levels to determine their environmental behaviors in the Three Gorges Reservoir Area (TGRA). Here, we report the assessment of organotin compounds (OTs) pollution in the river sediments of the TGRA. Surface sediment samples were collected in the TGRA at low and high water levels. Tributyltin (TBT), triphenyltin (TPhT), and their degradation products in sediments were quantified by gas chromatography-mass spectrometry. Butyltins (BTs) and phenyltins (PhTs) were detected in sediments, and BTs predominated over PhTs in the whole study area under dynamic water level conditions. The concentrations of OTs in sediments varied markedly among locations, and significant concentrations were found in river areas with high levels of boat traffic and wastewater discharge. Sediments at all stations except Cuntan were lightly contaminated with TBT, and total organic carbon (TOC) was a significant factor affecting the fate of TBT in the TGRA. The butyltin and phenyltin degradation indices showed no recent inputs of TBT or TPhT into this region, with the exception of fresh TPhT input at Xiakou Town. Shipping activity, wastewater discharge, and agriculture are the most likely sources of OTs in the TGRA.
Coon, Steven L.; Amaral, Fernanda G.; Weller, Joan L.; Møller, Morten; Klein, David C.
2016-01-01
The rat pineal gland has been extensively used in studies of melatonin synthesis. However, the cellular localization of melatonin synthesis in this species has not been investigated. Here we focus on the localization of melatonin synthesis using immunohistochemical methods to detect the last enzyme in melatonin synthesis, acetylserotonin O-methyltransferase (ASMT), and in situ hybridization techniques to study transcripts encoding ASMT and two other enzymes in melatonin synthesis, tryptophan hydroxylase (TPH)-1 and aralkylamine N-acetyltransferase. In sections of the rat pineal gland, marked cell-to-cell differences were found in ASMT immunostaining intensity and in the abundance of Tph1, Aanat, and Asmt transcripts. ASMT immunoreactivity was localized to the cytoplasm in pinealocytes in the parenchyma of the superficial pineal gland, and immunopositive pinealocytes were also detected in the pineal stalk and in the deep pineal gland. ASMT was found to inconsistently colocalize with S-antigen, a widely used pinealocyte marker; this colocalization was seen in cells throughout the pineal complex and also in displaced pinealocyte-like cells of the medial habenular nucleus. Inconsistent colocalization between ASMT and TPH protein was also detected in the pineal gland. ASMT protein was not detected in extraepithalamic parts of the central nervous system or in peripheral tissues. The findings in this report are of special interest because they provide reason to suspect that melatonin synthesis varies significantly among individual pinealocytes. PMID:26950199
SURFACE DEGRADATION OF COMPOSITE RESINS BY ACIDIC MEDICINES AND pH-CYCLING
Valinoti, Ana Carolina; Neves, Beatriz Gonçalves; da Silva, Eduardo Moreira; Maia, Lucianne Cople
2008-01-01
This study evaluated the effects of acidic medicines (Dimetapp® and Claritin®), under pH-cycling conditions, on the surface degradation of four composite resins (microhybrid: TPH, Concept, Opallis and Nanofilled: Supreme). Thirty disc-shaped specimens (Ø = 5.0 mm / thickness = 2.0 mm) of each composite were randomly assigned to 3 groups (n = 10): a control and two experimental groups, according to the acidic medicines evaluated. The specimens were finished and polished with aluminum oxide discs, and the surface roughness was measured by using a profilometer. After the specimens were submitted to a pH-cycling regimen and immersion in acidic medicines for 12 days, the surface roughness was measured again. Two specimens for each material and group were analyzed by scanning electron microscopy (SEM) before and after pH-cycling. Data were analyzed by the Student's-t test, ANOVA, Duncan's multiple range test and paired t-test (α=0.05). Significant increase in roughness was found only for TPH in the control group and TPH and Supreme immersed in Claritin® (p<0.05). SEM analyses showed that the 4 composite resins underwent erosion and surface degradation after being subjected to the experimental conditions. In conclusion, although the roughness was slightly affected, the pH-cycling and acidic medicines caused surface degradation of the composite resins evaluated. Titratable acidity seemed to play a more crucial role on surface degradation of composite resins than pH. PMID:19089257
Okparanma, Reuben N; Azuazu, Ikeabiama; Ayotamuno, Josiah M
2017-12-15
This study was conducted to quantify and rank the effectiveness of onsite exsitu remediation by enhanced natural attenuation using soil quality index. The investigation was conducted at three oil spill sites in the Niger Delta (5.317°N, 6.467°E), Nigeria with a predominance of Oxisols. Baseline assessment and a two-step post-remediation monitoring of the sites were conducted. Target contaminants including total petroleum hydrocarbon (TPH) and BTEX (benzene, toluene, ethylbenzene, and xylene) were analyzed by gas chromatography-mass spectrometry. Results of the baseline assessment showed that TPH concentrations across the study sites averaged between 5113 and 7640 mg/kg at 0- to 1-m depth, which was higher than the local regulatory value of 5000 mg/kg. The soil quality index across the sites ranged between 68 and 45, suggesting medium to high potential ecological health risks with medium to high priority for remediation. BTEX concentrations followed a similar trend. However, after remediation TPH degraded rapidly initially and then slowly but asymptotically during the post-remediation monitoring period. Then, soil quality index across the study sites ranged between 100 and 58, indicating very low to medium potential ecological health risks. This demonstrates the effectiveness of onsite exsitu remediation by enhanced natural attenuation as a remediation strategy for petroleum-contaminated soils, which holds great promise for the Niger Delta province. Copyright © 2017 Elsevier Ltd. All rights reserved.
Total Petroleum Hydrocarbons (TPH): ToxFAQs
... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Page last reviewed: February 4, 2014 Page ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Contact Us: Agency for Toxic Substances and ...
Boosting serotonin in the brain: is it time to revamp the treatment of depression?
Torrente, Mariana P; Gelenberg, Alan J; Vrana, Kent E
2012-05-01
Abnormalities in serotonin systems are presumably linked to various psychiatric disorders including schizophrenia and depression. Medications intended for these disorders aim to either block the reuptake or the degradation of this neurotransmitter. In an alternative approach, efforts have been made to enhance serotonin levels through dietary manipulation of precursor levels with modest clinical success. In the last 30 years, there has been little improvement in the pharmaceutical management of depression, and now is the time to revisit therapeutic strategies for the treatment of this disease. Tryptophan hydroxylase (TPH) catalyzes the first and rate-limiting step in the biosynthesis of serotonin. A recently discovered isoform, TPH2, is responsible for serotonin biosynthesis in the brain. Learning how to activate this enzyme (and its polymorphic versions) may lead to a new, more selective generation of antidepressants, able to regulate the levels of serotonin in the brain with fewer side effects.
Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan
2012-03-01
The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office
This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 214 under the Federal Facility Agreement and Consent Order. Located in Areas 5, 11, and 25 of the Nevada Test Site, CAU 214 consists of nine Corrective Action Sites (CASs): 05-99-01, Fallout Shelters; 11-22-03, Drum; 25-99-12, Fly Ash Storage; 25-23-01, Contaminated Materials; 25-23-19, Radioactive Material Storage; 25-99-18, Storage Area; 25-34-03, Motor Dr/Gr Assembly (Bunker); 25-34-04, Motor Dr/Gr Assembly (Bunker); and 25-34-05, Motormore » Dr/Gr Assembly (Bunker). These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). The suspected contaminants and critical analyte s for CAU 214 include oil (total petroleum hydrocarbons-diesel-range organics [TPH-DRO], polychlorinated biphenyls [PCBs]), pesticides (chlordane, heptachlor, 4,4-DDT), barium, cadmium, chronium, lubricants (TPH-DRO, TPH-gasoline-range organics [GRO]), and fly ash (arsenic). The land-use zones where CAU 214 CASs are located dictate that future land uses will be limited to nonresidential (i.e., industrial) activities. The results of this field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the corrective action decision document.« less
Cross, Sarah; Kim, Soo-Jeong; Weiss, Lauren A; Delahanty, Ryan J; Sutcliffe, James S; Leventhal, Bennett L; Cook, Edwin H; Veenstra-Vanderweele, Jeremy
2008-01-01
Elevated platelet serotonin (5-hydroxytryptamine, 5-HT) is found in a subset of children with autism and in some of their first-degree relatives. Indices of the platelet serotonin system, including whole blood 5-HT, 5-HT binding affinity for the serotonin transporter (K(m)), 5-HT uptake (V(max)), and lysergic acid diethylamide (LSD) receptor binding, were previously studied in 24 first-degree relatives of probands with autism, half of whom were selected for elevated whole blood 5-HT levels. All subjects were then genotyped for selected polymorphisms at the SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 loci. Previous studies allowed an a priori prediction of SLC6A4 haplotypes that separated the subjects into three groups that showed significantly different 5-HT binding affinity (K(m), p=0.005) and 5-HT uptake rate (V(max), p=0.046). Genotypes at four individual polymorphisms in SLC6A4 were not associated with platelet 5-HT indices. Haplotypes at SLC6A4 and individual genotypes of polymorphisms at SLC6A4, HTR7, HTR2A, ITGB3, and TPH1 showed no significant association with whole blood 5-HT. Haplotype analysis of two polymorphisms in TPH1 revealed a nominally significant association with whole blood 5-HT (p=0.046). These initial studies of indices of the 5-HT system with several single-nucleotide polymorphisms at loci in this system generate hypotheses for testing in other samples.
Sorption and desorption of organophosphate esters with different hydrophobicity by soils.
Cristale, Joyce; Álvarez-Martín, Alba; Rodríguez-Cruz, Sonia; Sánchez-Martín, María J; Lacorte, Silvia
2017-12-01
Organophosphate esters (OPEs) are ubiquitous contaminants with potentially hazardous effects on both the environment and human health. Knowledge about the soil sorption-desorption process of organic chemicals is important in order to understand their fate, mobility, and bioavailability, enabling an estimation to be made of possible risks to the environment and biota. The aim of this study was to use the batch equilibrium technique to evaluate the sorption-desorption behavior of seven OPEs (TCEP, TCPP, TBEP, TDCP, TBP, TPhP, and EHDP) in soils with distinctive characteristics (two unamended soils and a soil amended with sewage sludge). The equilibrium concentrations of the OPEs were determined by high performance liquid chromatography coupled to a triple quadrupole mass spectrometer (HPLC-MS/MS). All the compounds were sorbed by the soils, and soil organic carbon (OC) played an important role in this process. The sorption of the most soluble OPEs (TCEP, TCPP, and TBEP) depended on soil OC content, although desorption was ≥ 58.1%. The less water-soluble OPEs (TDCP, TBP, TPhP, and EHDP) recorded total sorption (100% for TPhP and EHDP) or very high sorption (≥ 34.9%) by all the soils and were not desorbed, which could be explained by their highly hydrophobic nature, as indicated by the logarithmic octanol/water partition coefficient (K ow ) values higher than 3.8, resulting in a high affinity for soil OC. The results of the sorption-desorption of the OPEs by soils with different characteristics highlighted the influence of these compounds' physicochemical properties and the content and nature of soil OC in this process.
Impact of environmental adaptation on tear film assessments.
Fagehi, R
2018-03-01
The purpose of this study was to investigate the effect of ocular environmental adaptation on clinical tear film assessment. Thirty subjects (male, mean age 23±2.5) participated in this study. A number of clinical tear film tests were applied, including: fluorescein tear break-up time (FTBUT), Schirmer test and tear prism height test (TPH). The tear physiology of each subject was evaluated twice, once immediately when they arrived from the external environment, and then after 30minutes adaptation in the exam room environment. The mean values were: Schirmer test A (22.1±2.99), Schirmer test B (24.2±2.63), FTBUT A (8.00±1.94), FTBUT B (9.13±2.04), TPH A (0.179±0.026) and TPH B* (0.187±0.023). Statistical testing using Wilcoxon-signed rank test showed a significant difference between the Schirmer test results measured at the different times (P=0.008). Also, the FTBUT and tear prism height test results showed significant differences between the two evaluation times, (P=0.001, 0.011, respectively) (A: tear assessed when the subject comes from the outside environment, B: tear film assessed after 30min adaptation in the clinical environment). This study showed a significant difference between the tear film test results evaluated when the subjects were assessed immediately from the outside environment and after an adaptation time in the clinic environment. Practitioners must consider the effect of differences between external and clinical environment adaptation on clinical tear film physiology. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Jaffer, F; Finer, Y; Santerre, J P
2002-04-01
Cholesterol esterase (CE) and pseudocholinesterase (PCE) have been reported to degrade commercial and model composite resins containing bisphenylglycidyl dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) or the latter in combination with urethane modified BisGMA monomer systems. In addition, human saliva has been shown to contain esterase like activities similar to CE and PCE. Hence, it was the aim of the current study to determine to what extent human saliva could degrade two common commercial composite resins (Z250 from 3M Inc. and Spectrum TPH from L.D. Caulk) which contain the above monomer systems. Saliva samples from different volunteers were collected, processed, pooled, and freeze-dried. TEGDMA and BisGMA monomers were incubated with human saliva derived esterase activity (HSDEA) and their respective hydrolysis was monitored using high performance liquid chromatography (HPLC). Both monomers were completely hydrolyzed within 25 h by HSDEA. Photopolymerized composites were incubated with buffer or human saliva (pH 7.0 and 37 C) for 2, 8 and 16 days. The incubation solutions were analyzed using HPLC and mass spectrometry. Surface morphology characterization was carried out using scanning electron microscopy. Upon biodegradation, the Z250 composite yielded higher amounts of BisGMA and TEGDMA related products relative to the TPH composite. However, there were higher amounts of ethoxylated bis-phenol A released from the TPH material. In terms of total mass of products released, human saliva demonstrated a greater ability to degrade Z250. In summary, HSDEA has been shown to contain esterase activities that can readily catalyze the biodegradation of current commercial composite resins.
Effect of sex steroid hormones on the number of serotonergic neurons in rat dorsal raphe nucleus.
Kunimura, Yuyu; Iwata, Kinuyo; Iijima, Norio; Kobayashi, Makito; Ozawa, Hitoshi
2015-05-06
Disorders caused by the malfunction of the serotonergic system in the central nervous system show sex-specific prevalence. Many studies have reported a relationship between sex steroid hormones and the brain serotonergic system; however, the interaction between sex steroid hormones and the number of brain neurons expressing serotonin has not yet been elucidated. In the present study, we determined whether sex steroid hormones altered the number of serotonergic neurons in the dorsal raphe nucleus (DR) of adult rat brains. Animals were divided into five groups: ovariectomized (OVX), OVX+low estradiol (E2), OVX+high E2, castrated males, and intact males. Antibodies against 5-hydroxytryptamine (5-HT, serotonin) and tryptophan hydroxylase (Tph), an enzyme for 5-HT synthesis, were used as markers of 5-HT neurons, and the number of 5-HT-immunoreactive (ir) or Tph-ir cells was counted. We detected no significant differences in the number of 5-HT-ir or Tph-ir cells in the DR among the five groups. By contrast, the intensity of 5-HT-ir showed significant sex differences in specific subregions of the DR independent of sex steroid levels, suggesting that the manipulation of sex steroid hormones after maturation does not affect the number and intensive immunostaining of serotonergic neurons in rat brain. Our results suggest that, the sexual dimorphism observed in the serotonergic system is due to factors such as 5-HT synthesis, transportation, and degradation but not to the number of serotonergic neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Winn, Shelley R; Scherer, Tanja; Thöny, Beat; Harding, Cary O
2016-01-01
Central nervous system (CNS) deficiencies of the monoamine neurotransmitters, dopamine and serotonin, have been implicated in the pathophysiology of neuropsychiatric dysfunction in phenylketonuria (PKU). Increased brain phenylalanine concentration likely competitively inhibits the activities of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH), the rate limiting steps in dopamine and serotonin synthesis respectively. Tetrahydrobiopterin (BH4) is a required cofactor for TH and TPH activity. Our hypothesis was that treatment of hyperphenylalaninemic Pah(enu2/enu2) mice, a model of human PKU, with sapropterin dihydrochloride, a synthetic form of BH4, would stimulate TH and TPH activities leading to improved dopamine and serotonin synthesis despite persistently elevated brain phenylalanine. Sapropterin (20, 40, or 100mg/kg body weight in 1% ascorbic acid) was administered daily for 4 days by oral gavage to Pah(enu2/enu2) mice followed by measurement of brain biopterin, phenylalanine, tyrosine, tryptophan and monoamine neurotransmitter content. A significant increase in brain biopterin content was detected only in mice that had received the highest sapropterin dose, 100mg/kg. Blood and brain phenylalanine concentrations were unchanged by sapropterin therapy. Sapropterin therapy also did not alter the absolute amounts of dopamine and serotonin in brain but was associated with increased homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA), dopamine and serotonin metabolites respectively, in both wild type and Pah(enu2/enu2) mice. Oral sapropterin therapy likely does not directly affect central nervous system monoamine synthesis in either wild type or hyperphenylalaninemic mice but may stimulate synaptic neurotransmitter release and subsequent metabolism. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.9323 Section 63.9323 Protection of Environment... determine the add-on control device emission destruction or removal efficiency? You must use the procedures... removal efficiency as part of the performance test required by § 63.9310. You must conduct three test runs...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4166 Section 63.4166 Protection of Environment....4166 How do I determine the add-on control device emission destruction or removal efficiency? (a) For... device organic emissions destruction or removal efficiency, using Equation 2 of this section. ER23JY02...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4965 Section 63.4965 Protection of Environment....4965 How do I determine the add-on control device emission destruction or removal efficiency? You must... destruction or removal efficiency as part of the performance test required by § 63.4960. You must conduct...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.3966 Section 63.3966 Protection of Environment... or removal efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-07
... affiliated with a single TPH organization proves attractive to market participants on other exchanges, such... Commission summarily may temporarily suspend such rule change if it appears to the Commission that such...
Managing Exposure to Benzene and Total Petroleum Hydrocarbons at Two Oil Refineries 1977-2014.
Tuomi, Tapani; Veijalainen, Henna; Santonen, Tiina
2018-01-24
Air concentrations of and inhalation exposure to total petroleum hydrocarbons (TPH) and benzene was monitored separately at two oil refineries from 1977 to 2014. Prevention policies and control measures that may explain changes were surveyed. The aim was to evaluate how the application of of Occupational Health and Safety Assessment Series OHSAS 18001.04 principles as well as Environmental protection Agency EPA and European Oil Company Organisation for Environment, Health and Safety CONCAWE practices have influenced air concentrations. Benzene air concentrations declined in 11 of 17 units, six of which were associated with declining exposures. Benzene air concentrations declined across all units on average by 46%. This amounts to an average yearly decline of 1.7%. TPH air concentrations declined in 10 of 17 units, seven of which were associated with declining exposures. The average decline in TPH air concentrations was 49%, corresponding to 1.3% per year. As a result, average working day exposure in 10 of 17 units have declined significantly and today, benzene and TPH exposure in most units are well below 10% of the current Occupational Exposure Limit (OEL 8h :s). A decline in air concentrations have coincided with consistent implementation of control measures. Such measures include on-line monitoring of leaks; benzene recovery; floating container roofs; improved valves and seals; hermetic pumps; recovery of loading gases and instalment of torches in terminals; cutback in coke combustion; a new production line spanning directly from the dock to aromatics production; and recovery of loading gases in the doc. Other tools in exposure management include personal leak monitors, on-line measurements, monitoring campaigns, risk assessment, and availability and user training of protective equipment. However, improvements are still needed. Hydrocarbon or benzene air concentrations have not declined in 8 of 17 units, in some of which concentrations exceed 10% of the relevant OEL 8h value. In addition, for benzene even 10% of the current OEL, 0.1 ppm, might still possess a risk. With this in mind, methods to estimate exposure at the refineries need to be improved to enable measuring benzene concentrations <0.1 ppm. Shut downs of the refinery have been associated with peaks in exposure concentrations. Consequently, effort should be placed on safe working methods pertaining to shutdowns. Also, the connection and detachment of hoses continues to be problematic from the point of view of controlling exposure.
Response of soil microorganisms to radioactive oil waste: results from a leaching experiment
NASA Astrophysics Data System (ADS)
Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.
2015-01-01
Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and other properties. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The toxicity and effects on various microbial parameters of raw waste (H) containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 kBq kg-1 of 226Ra, 2.8 kBq kg-1 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (R) (1.6 g kg-1 of TPH, 7.9 kBq kg-1 of 226Ra, 3.9 kBq kg-1 of 232Th, and 183 kBq kg-1 of 40K) were estimated in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The disposal of H waste samples on the soil surface led to an increase of the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60 cm) layers respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R-columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5-1.4 times in comparison to control ones. Changes of soil functional characteristics caused by the treated waste containing mainly radionuclides were not observed. PCR-SSCP (polymerase chain reaction - single strand conformation polymorphism) analysis followed by MDS (metric multidimensional scaling) and clustering analysis revealed that the shifts in microbial community structure were affected by both hydrocarbons and radioactivity.
Sood, Nitu; Patle, Sonali; Lal, Banwari
2010-03-01
Primitive wax refining techniques had resulted in almost 50,000 tonnes of acidic oily sludge (pH 1-3) being accumulated inside the Digboi refinery premises in Assam state, northeast India. A novel yeast species Candida digboiensis TERI ASN6 was obtained that could degrade the acidic petroleum hydrocarbons at pH 3 under laboratory conditions. The aim of this study was to evaluate the degradation potential of this strain under laboratory and field conditions. The ability of TERI ASN6 to degrade the hydrocarbons found in the acidic oily sludge was established by gravimetry and gas chromatography-mass spectroscopy. Following this, a feasibility study was done, on site, to study various treatments for the remediation of the acidic sludge. Among the treatments, the application of C. digboiensis TERI ASN6 with nutrients showed the highest degradation of the acidic oily sludge. This treatment was then selected for the full-scale bioremediation study conducted on site, inside the refinery premises. The novel yeast strain TERI ASN6 could degrade 40 mg of eicosane in 50 ml of minimal salts medium in 10 days and 72% of heneicosane in 192 h at pH 3. The degradation of alkanes yielded monocarboxylic acid intermediates while the polycyclic aromatic hydrocarbon pyrene found in the acidic oily sludge yielded the oxygenated intermediate pyrenol. In the feasibility study, the application of TERI ASN6 with nutrients showed a reduction of solvent extractable total petroleum hydrocarbon (TPH) from 160 to 28.81 g kg(-1) soil as compared to a TPH reduction from 183.85 to 151.10 g kg(-1) soil in the untreated control in 135 days. The full-scale bioremediation study in a 3,280-m(2) area in the refinery showed a reduction of TPH from 184.06 to 7.96 g kg(-1) soil in 175 days. Degradation of petroleum hydrocarbons by microbes is a well-known phenomenon, but most microbes are unable to withstand the low pH conditions found in Digboi refinery. The strain C. digboiensis could efficiently degrade the acidic oily sludge on site because of its robust nature, probably acquired by prolonged exposure to the contaminants. This study establishes the potential of novel yeast strain to bioremediate hydrocarbons at low pH under field conditions. Acidic oily sludge is a potential environmental hazard. The components of the oily sludge are toxic and carcinogenic, and the acidity of the sludge further increases this problem. These results establish that the novel yeast strain C. digboiensis was able to degrade hydrocarbons at low pH and can therefore be used for bioremediating soils that have been contaminated by acidic hydrocarbon wastes generated by other methods as well.
Sato, Itaru; Kudo, Hiroaki; Tsuda, Shuji
2011-01-01
The severe incident of Fukushima Daiichi Nuclear Power Station has caused radioactive contamination of environment including drinking water. Radioactive iodine, cesium, strontium, barium and zirconium are hazardous fission products because of the high yield and/or relatively long half-life. In the present study, 4 pot-type water purifiers and several adsorbents were examined for the removal effects on these elements from drinking water. Iodide, iodate, cesium and barium were removed by all water purifiers with efficiencies about 85%, 40%, 75-90% and higher than 85%, respectively. These efficiencies lasted for 200 l, which is near the recommended limits for use of filter cartridges, without decay. Strontium was removed with initial efficiencies from 70% to 100%, but the efficiencies were slightly decreased by use. Zirconium was removed by two models, but hardly removed by the other models. Synthetic zeolite A4 efficiently removed cesium, strontium and barium, but had no effect on iodine and zirconium. Natural zeolite, mordenite, removed cesium with an efficiency as high as zeolite A4, but the removal efficiencies for strontium and barium were far less than those of zeolite A4. Activated carbon had little removal effects on these elements. In case of radioactive contamination of tap water, water purifiers may be available for convenient decontamination of drinking water in the home.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.3166 Section 63.3166 Protection of Environment... Limitations § 63.3166 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.3160. You must...
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4766 Section 63.4766 Protection of Environment... Option § 63.4766 How do I determine the add-on control device emission destruction or removal efficiency... emission destruction or removal efficiency as part of the performance test required by § 63.4760. You must...
Chikere, Chioma Blaise; Azubuike, Christopher Chibueze; Fubara, Evan Miebaka
2017-06-01
Acute and chronic pollution of environments with crude oil does not bode well for biota living within the vicinity of polluted environments. This is due to environmental and public health concerns on the negative impact of crude oil pollution on living organisms. Enhancing microbial activities by adding nutrients and other amendments had proved effective in pollutant removal during bioremediation. This study was carried out to determine how microbial group respond during remediation by enhanced natural attenuation (RENA) during a field-scale bioremediation. Crude oil-polluted soil samples were collected (before, during, and after remediation) from a site undergoing remediation by enhanced natural attenuation (RENA) at Ikarama Community, Bayelsa State, Nigeria, and were analyzed for total petroleum hydrocarbon (TPH), polyaromatic hydrocarbon (PAH), and a shift in microbial community. The gas chromatography-flame ionization detector (GC-FID) results showed that the pollutant concentrations (TPH and PAH) reduced by 98 and 85%, respectively, after the remediation. Culturable hydrocarbon utilizing bacteria (CHUB) was highest (8.3 × 10 4 cfu/g) for sample collected during the remediation studies, whilst sample collected after remediation had low CHUB (6.1 × 10 4 cfu/g) compared to that collected before remediation (7.7 × 10 4 cfu/g). Analysis of 16S rRNA of the isolated CHUB showed they belonged to eight bacterial genera namely: Achromobacter, Alcaligenes, Azospirillus, Bacillus, Lysinibacillus, Ochrobactrum, Proteus, and Pusillimonas, with Alcaligenes as the dominant genus. In this study, it was observed that the bacterial community shifted from mixed group (Gram-positive and -negative) before and during the remediation, to only the latter group after the remediation studies. The betaproteobacteria groups were the dominant isolated bacterial phylotype. This study showed that RENA is an effective method of reducing pollutant concentration in crude oil-polluted sites, and could be applied to other polluted sites in the Niger Delta region of Nigeria to mitigate the devastating effects of crude oil pollution.
Virus removal efficiency of Cambodian ceramic pot water purifiers.
Salsali, Hamidreza; McBean, Edward; Brunsting, Joseph
2011-06-01
Virus removal efficiency is described for three types of silver-impregnated, ceramic water filters (CWFs) produced in Cambodia. The tests were completed using freshly scrubbed filters and de-ionized (DI) water as an evaluation of the removal efficiency of the virus in isolation with no other interacting water quality variables. Removal efficiencies between 0.21 and 0.45 log are evidenced, which is significantly lower than results obtained in testing of similar filters by other investigators utilizing surface or rain water and a less frequent cleaning regime. Other experiments generally found virus removal efficiencies greater than 1.0 log. This difference may be because of the association of viruses with suspended solids, and subsequent removal of these solids during filtration. Variability in virus removal efficiencies between pots of the same manufacturer, and observed flow rates outside the manufacturer's specifications, suggest tighter quality control and consistency may be needed during production.
Liang, Wen; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei
2014-01-01
Application of zero-valent iron nanoparticles (nZVI) for Zn2+ removal and its mechanism were discussed. It demonstrated that the uptake of Zn2+ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn2+ could be removed within 2 h. The pH value and dissolved oxygen (DO) were the important factors of Zn2+ removal by nZVI. The DO enhanced the removal efficiency of Zn2+. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxy)hydroxide, which could show high adsorption affinity. The removal efficiency of Zn2+ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn2+ by nZVI because the existing H+ inhibited the formation of iron (oxy)hydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn2+ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn2+ were higher than Cd2+. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn2+. PMID:24416439
Takahashi, Fumitake; Kida, Akiko; Shimaoka, Takayuki
2010-10-15
Although representative removal efficiencies of gaseous mercury for air pollution control devices (APCDs) are important to prepare more reliable atmospheric emission inventories of mercury, they have been still uncertain because they depend sensitively on many factors like the type of APCDs, gas temperature, and mercury speciation. In this study, representative removal efficiencies of gaseous mercury for several types of APCDs of municipal solid waste incineration (MSWI) were offered using a statistical method. 534 data of mercury removal efficiencies for APCDs used in MSWI were collected. APCDs were categorized as fixed-bed absorber (FA), wet scrubber (WS), electrostatic precipitator (ESP), and fabric filter (FF), and their hybrid systems. Data series of all APCD types had Gaussian log-normality. The average removal efficiency with a 95% confidence interval for each APCD was estimated. The FA, WS, and FF with carbon and/or dry sorbent injection systems had 75% to 82% average removal efficiencies. On the other hand, the ESP with/without dry sorbent injection had lower removal efficiencies of up to 22%. The type of dry sorbent injection in the FF system, dry or semi-dry, did not make more than 1% difference to the removal efficiency. The injection of activated carbon and carbon-containing fly ash in the FF system made less than 3% difference. Estimation errors of removal efficiency were especially high for the ESP. The national average of removal efficiency of APCDs in Japanese MSWI plants was estimated on the basis of incineration capacity. Owing to the replacement of old APCDs for dioxin control, the national average removal efficiency increased from 34.5% in 1991 to 92.5% in 2003. This resulted in an additional reduction of about 0.86Mg emission in 2003. Further study using the methodology in this study to other important emission sources like coal-fired power plants will contribute to better emission inventories. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.
PHYTOREMEDIATION OF TPH IN SOILS: AN RTDF PROJECT
The Remediation Technology Development Forum has undertaken a project to investigate the use of plants in remediation of sites contaminated by petroleum hydrocarbons. Since sites have been established at a number of locations the project will be able to consider climate, contain...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... all TPHs and TPH organizations are required to pass a qualification exam as outline in Rule 3.6A and... on the subject line. Paper Comments Send paper comments in triplicate to Elizabeth M. Murphy...
NASA Astrophysics Data System (ADS)
Mohammed, Avryl; Ramnath, Kelvin; Dyal, Shyam; Lalla, Francesca; Roopchand, Jaipersad
2007-12-01
The Petroleum Company of Trinidad and Tobago Limited operates in a wide diversity of tropical habitats in South Trinidad one of which is a brackish water environment known as the Godineau Swamp. Historically this field was operated by predecessor multinational companies, who at that time employed operational practices based on the absence of legal requirements, that were not environmentally considerate. Following a detailed environmental audit of the field (also known as the Oropouche Field), seven (7) contaminated sites were found, that presented a risk to the lagoon and its associated mangrove swamp ecology. Remediation of the seven (7) sites was done in two (2) phases; phase 1 being sampling and characterization of the waste inclusive of migration and phase 2 the actual on-site soil remediation. Phase 1 conducted during the period December 2004 to February 2005, indicated a total of 19,484 m3 of contaminated material with TPH being the main contaminant. The average concentration of TPH was 3.25%. Phase 2 remediation was initiated in October 2005 and involved the following three (3) aspects to achieve a TPH concentration of less than 1%: ▪ Preparation of waste remediation sites adjacent to contaminated sites and excavation and spreading onto cells ▪ Bioremediation onsite using naturally occurring bacteria and rototilling ▪ Rehabilitation and closure of the site following accepted lab results. The benefits of conducting this project in the petroleum industry are to ensure compliance to the national Sensitive Areas Rules and Draft Waste Management Rules, conformance to ISO 14001 Certification requirements and conservation of biodiversity in the mangrove swamp.
Hsueh, Pei-Tan; Wang, Hsuan-Han; Liu, Chiu-Lin; Ni, Wei-Fen
2017-01-01
Prenatal exposure to lipopolysaccharide (LPS), which likely occurs due to infection or contact with environmental allergens during pregnancy, is a proposed risk factor that induces anxiety- and autism spectrum disorder-like behaviors in offspring. However, the molecular and behavioral changes in offspring after maternal immune activation have not been completely identified. We hypothesized that a subcutaneous injection of LPS in a pregnant mouse would induce changes in cerebral serotonin (5-HT) in parallel to the appearance of anxiety-like behaviors in the dam’s offspring. After LPS injections (total, 100 μg/Kg), the time spent in the central region during the open field test and the number of times that the mice moved between the light and dark boxes and between the open and closed arms on the elevated plus maze test revealed anxiety-like behaviors in offspring at 5, 6 and 9 weeks of age. The mRNA expression levels of tph2 (5-HT synthesizing enzyme) and slc6a4 (5-HT transporter) were down-regulated in both adolescent (5 weeks of age) and adult (8 weeks of age) brains. Immunohistochemistry revealed that the numbers and sizes of tph2-expressing cells were notably decreased in the raphe nuclei of the midbrain of adults. Moreover, compared with controls (phosphate-buffered saline-treated offspring), the cerebral 5-HT concentration at adolescence and adulthood in LPS-induced offspring was significantly decreased. We concluded that maternal immune activation induced by exposure to a low dose of LPS decreased cerebral 5-HT levels in parallel to the down-regulation of the tph2 and slc6a4 genes and in conjunction with anxiety-like behaviors in offspring. PMID:28650979
Kane, Michael J; Angoa-Peréz, Mariana; Briggs, Denise I; Sykes, Catherine E; Francescutti, Dina M; Rosenberg, David R; Kuhn, Donald M
2012-01-01
Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2)) for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/-) showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.
Ekperusi, O A; Aigbodion, F I
2015-12-01
A study on the bioremediation potentials of the earthworm Hyperiodrilus africanus (Beddard) in soil contaminated with crude oil was investigated. Dried and sieved soils were contaminated with 5 ml each of crude oil with replicates and inoculated with earthworms and monitored daily for 12 weeks. Physicochemical parameters such as pH, total organic carbon, sulfate, nitrate, phosphate, sodium, potassium, calcium and magnesium were determined using standard procedures. Total petroleum hydrocarbon (TPH) was determined using atomic absorption spectrophotometer (AAS), while BTEX constituents and earthworms tissues were analyzed using Gas Chromatography with Flame Ionization Detector (GC-FID). The results showed that the earthworm significantly enhanced the physicochemical parameters of the contaminated soil resulting in a decrease of the total organic carbon (56.64 %), sulfate (57.66 %), nitrate (57.69 %), phosphate (57.73 %), sodium (57.69 %), potassium (57.68 %), calcium (57.69 %) and magnesium (57.68 %) except pH (3.90 %) that slightly increased. There was a significant decrease in the TPH (84.99 %), benzene (91.65 %), toluene (100.00 %), ethylbenzene (100.00 %) and xylene (100.00 %). Analyses of the tissues of the earthworm at the end of the experiment showed that the earthworms bioaccumulated/biodegraded 57.35/27.64 % TPH, 38.91/52.73 % benzene, 27.76/72.24 % toluene, 42.16/57.85 % ethylbenzene and 09.62/90.38 % xylene. The results showed that the earthworms H. africanus could be used to bioremediate moderately polluted soil with crude oil contamination in the Niger Delta region of Nigeria.
Bazhenova, Ekaterina Y; Bazovkina, Daria V; Kulikova, Elizabeth A; Fursenko, Dariya V; Khotskin, Nikita V; Lichman, Daria V; Kulikov, Alexander V
2017-02-15
Neurotransmitter serotonin (5-HT) is involved in the regulation of stress response. Tryptophan hydroxylase-2 (TPH2) is the key enzyme of serotonin (5-HT) synthesis in the brain. C1473G polymorphism in Tph2 gene is the main factor defining the enzyme activity in the brain of laboratory mice. The effect of interaction between C1473G polymorphism and 30min restriction stress on the behavior in the open field test, c-Fos gene expression and 5-HT metabolism in the brain in adult male of B6-1473C and B6-1473G congenic mouse lines with high and low TPH2 activity was investigated. A significant effect of genotype x stress interaction on c-Fos mRNA in the hypothalamus (F 1,21 =10.66, p<0.001) and midbrain (F 1,21 =9.18, p<0.01) was observed. The stress-induced rise of c-Fos mRNA in these structures is more intensive in B6-1473G than in B6-1473C mice. A marked effect of genotype x stress interaction on 5-HT level in the cortex (F 1,18 =9.38, p<0.01) and 5-HIAA/5-HT turnover rate in the hypothalamus (F 1,18 =9.01, p<0.01) was revealed. The restriction significantly decreased 5-HT level in the cortex (p<0.01) and increased 5-HIAA/5-HT rate (p<0.001) in the hypothalamus in B6-1473C mice, but not in B6-1473G mice. The present result is the first experimental evidence that C1473G polymorphism is involved in the regulation of the reaction to emotional stress in mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K
2013-12-01
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Karatchevtseva, Inna; Bhadbhade, Mohan
With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3Dmore » channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.« less
Electron-phonon heat exchange in quasi-two-dimensional nanolayers
NASA Astrophysics Data System (ADS)
Anghel, Dragos-Victor; Cojocaru, Sergiu
2017-12-01
We study the heat power P transferred between electrons and phonons in thin metallic films deposited on free-standing dielectric membranes. The temperature range is typically below 1 K, such that the wavelengths of the excited phonon modes in the system is large enough so that the picture of a quasi-two-dimensional phonon gas is applicable. Moreover, due to the quantization of the components of the electron wavevectors perpendicular to the metal film's surface, the electrons spectrum forms also quasi two-dimensional sub-bands, as in a quantum well (QW). We describe in detail the contribution to the electron-phonon energy exchange of different electron scattering channels, as well as of different types of phonon modes. We find that heat flux oscillates strongly with thickness of the film d while having a much smoother variation with temperature (Te for the electrons temperature and Tph for the phonons temperature), so that one obtains a ridge-like landscape in the two coordinates, (d, Te) or (d, Tph), with crests and valleys aligned roughly parallel to the temperature axis. For the valley regions we find P ∝ Te3.5 - Tph3.5. From valley to crest, P increases by more than one order of magnitude and on the crests P cannot be represented by a simple power law. The strong dependence of P on d is indicative of the formation of the QW state and can be useful in controlling the heat transfer between electrons and crystal lattice in nano-electronic devices. Nevertheless, due to the small value of the Fermi wavelength in metals, the surface imperfections of the metallic films can reduce the magnitude of the oscillations of P vs. d, so this effect might be easier to observe experimentally in doped semiconductors.
Germaine, Kieran J.; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D.; Kiwanuka, Samuel; Ryan, David; Dowling, David N.
2015-01-01
Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg-1 soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg-1 soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing. PMID:25601875
Germaine, Kieran J; Byrne, John; Liu, Xuemei; Keohane, Jer; Culhane, John; Lally, Richard D; Kiwanuka, Samuel; Ryan, David; Dowling, David N
2014-01-01
Biopiling is an ex situ bioremediation technology that has been extensively used for remediating a wide range of petrochemical contaminants in soils. Biopiling involves the assembling of contaminated soils into piles and stimulating the biodegrading activity of microbial populations by creating near optimum growth conditions. Phytoremediation is another very successful bioremediation technique and involves the use of plants and their associated microbiomes to degrade, sequester or bio-accumulate pollutants from contaminated soil and water. The objective of this study was to investigate the effectiveness of a combined phytoremediation/biopiling system, termed Ecopiling, to remediate hydrocarbon impacted industrial soil. The large scale project was carried out on a sandy loam, petroleum impacted soil [1613 mg total petroleum hydrocarbons (TPHs) kg(-1) soil]. The contaminated soil was amended with chemical fertilizers, inoculated with TPH degrading bacterial consortia and then used to construct passive biopiles. Finally, a phyto-cap of perennial rye grass (Lolium perenne) and white clover (Trifolium repens) was sown on the soil surface to complete the Ecopile. Monitoring of important physico-chemical parameters was carried out at regular intervals throughout the trial. Two years after construction the TPH levels in the petroleum impacted Ecopiles were below detectable limits in all but one subsample (152 mg TPH kg(-1) soil). The Ecopile system is a multi-factorial bioremediation process involving bio-stimulation, bio-augmentation and phytoremediation. One of the key advantages to this system is the reduced costs of the remediation process, as once constructed, there is little additional cost in terms of labor and maintenance (although the longer process time may incur additional monitoring costs). The other major advantage is that many ecological functions are rapidly restored to the site and the process is esthetically pleasing.
Angoa-Pérez, Mariana; Kane, Michael J.; Herrera-Mundo, Nieves; Francescutti, Dina M.; Kuhn, Donald M.
2013-01-01
Aims Mephedrone is a stimulant drug of abuse with close structural and mechanistic similarities to methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Although mephedrone does not damage dopamine nerve endings it increases the neurotoxicity of amphetamine, methamphetamine and MDMA. The effects of mephedrone on serotonin (5HT) nerve endings are not fully understood, with some investigators reporting damage while others conclude it does not. Presently, we investigate if mephedrone given alone or with methamphetamine or MDMA damages 5HT nerve endings of the hippocampus. Main methods The status of 5HT nerve endings in hippocampus of female C57BL mice was assessed through measures of 5HT by HPLC and by immunoblot analysis of serotonin transporter (SERT) and tryptophan hydroxylase 2 (TPH2), selective markers of 5HT nerve endings. Astrocytosis was assessed through measures of glial fibrillary acidic protein (GFAP) (immunoblotting) and microglial activation was determined by histochemical staining with Isolectin B4. Key findings Mephedrone alone did not cause persistent reductions in the levels of 5HT, SERT or TPH2. Methamphetamine and MDMA alone caused mild reductions in 5HT but did not change SERT and TPH2 levels. Combined treatment with mephedrone and methamphetamine or MDMA did not change the status of 5HT nerve endings to an extent that was different from either drug alone. Significance Mephedrone does not cause toxicity to 5HT nerve endings of the hippocampus. When co-administered with methamphetamine or MDMA, drugs that are often co-abused with mephedrone by humans, toxicity is not increased as is the case for dopamine nerve endings when these drugs are taken together. PMID:23892197
Megharaj, M; Singleton, I; McClure, N C; Naidu, R
2000-05-01
Petroleum hydrocarbons are widespread environmental pollutants. Although biodegradation of petroleum hydrocarbons has been the subject of numerous investigations, information on their toxicity to microorganisms in soil is limited, with virtually no work conducted on soil algae. We carried out a screening experiment for total petroleum hydrocarbons (TPH) and their toxicity to soil algal populations, microbial biomass, and soil enzymes (dehydrogenase and urease) in a long-term TPH-polluted site with reference to an adjacent unpolluted site. Microbial biomass, soil enzyme activity, and microalgae declined in medium to high-level (5,200-21,430 mg kg(-1) soil) TPH-polluted soils, whereas low-level (<2,120 mg kg(-1) soil) pollution stimulated the algal populations and showed no effect on microbial biomass and enzymes. However, inhibition of all the tested parameters was more severe in soil considered to have medium-level pollution than in soils that were highly polluted. This result could not be explained by chemical analysis alone. Of particular interest was an observed shift in the species composition of algae in polluted soils with elimination of sensitive species in the medium to high polluted soils. Also, an algal growth inhibition test carried out using aqueous eluates prepared from polluted soils supported these results. Given the sensitivity of algae to synthetic pollutants, alteration in the algal species composition can serve as a useful bioindicator of pollution. The results of this experiment suggest that chemical analysis alone is not adequate for toxicological estimations and should be used in conjunction with bioassays. Furthermore, changes in species composition of algae proved to be more sensitive than microbial biomass and soil enzyme activity measurements.
Genetic and Non-genetic Factors Associated With Constipation in Cancer Patients Receiving Opioids.
Laugsand, Eivor A; Skorpen, Frank; Kaasa, Stein; Sabatowski, Rainer; Strasser, Florian; Fayers, Peter; Klepstad, Pål
2015-06-18
To examine whether the inter-individual variation in constipation among patients receiving opioids for cancer pain is associated with genetic or non-genetic factors. Cancer patients receiving opioids were included from 17 centers in 11 European countries. Intensity of constipation was reported by 1,568 patients on a four-point categorical scale. Non-genetic factors were included as covariates in stratified regression analyses on the association between constipation and 75 single-nucleotide polymorphisms (SNPs) within 15 candidate genes related to opioid- or constipation-signaling pathways (HTR3E, HTR4, HTR2A, TPH1, ADRA2A, CHRM3, TACR1, CCKAR, KIT, ARRB2, GHRL, ABCB1, COMT, OPRM1, and OPRD1). The non-genetic factors significantly associated with constipation were type of laxative, mobility and place of care among patients receiving laxatives (N=806), in addition to Karnofsky performance status and presence of metastases among patients not receiving laxatives (N=762) (P<0.01). Age, gender, body mass index, cancer diagnosis, time on opioids, opioid dose, and type of opioid did not contribute to the inter-individual differences in constipation. Five SNPs, rs1800532 in TPH1, rs1799971 in OPRM1, rs4437575 in ABCB1, rs10802789 in CHRM3, and rs2020917 in COMT were associated with constipation (P<0.01). Only rs2020917 in COMT passed the Benjamini-Hochberg criterion for a 10% false discovery rate. Type of laxative, mobility, hospitalization, Karnofsky performance status, presence of metastases, and five SNPs within TPH1, OPRM1, ABCB1, CHRM3, and COMT may contribute to the variability in constipation among cancer patients treated with opioids. Knowledge of these factors may help to develop new therapies and to identify patients needing a more individualized approach to treatment.
Wu, Hsiao-Huei; Choi, Sera; Levitt, Pat
2016-01-01
Introduction Serotonin (5-HT) is an important neuromodulator, but recently has been shown to be involved in neurodevelopment. Although previous studies have demonstrated that the placenta is a major source of forebrain 5-HT during early forebrain development, the processes of how 5-HT production, metabolism, and transport from placenta to fetus are regulated are unknown. As an initial step in determining the mechanisms involved, we investigated the expression patterns of genes critical for 5-HT system function in mouse extraembryonic tissues. Methods Mid- through late gestation expression of 5-HT system-related enzymes, Tph1, Ddc, Maoa, and 5-HT transporters, Sert/Slc6a4, Oct3/Slc22a3, Vmat2/Slc18a2, and 5-HT in placenta and yolk sac were examined, with cell type-specific resolution, using multiplex fluorescent in situ hybridization to co-localize transcripts and immunocytochemistry to co-localize the corresponding proteins and neurotransmitter. Results Tph1 and Ddc are found in the syncytiotrophoblast I (SynT-I) and sinusoidal trophoblast giant cells (S-TGC), whereas Maoa is expressed in SynT-I, syncytiotrophoblast II (SynT-II) and S-TGC. Oct3 expression is observed in the SynT-II only, while Vmat2 is mainly expressed in S-TGC. Surprisingly, there were comparatively high expression of Tph1, Ddc, and Maoa in the yolk sac visceral endoderm. Discussion In addition to trophoblast cells, visceral endoderm cells in the yolk sac may contribute to fetal 5-HT production. The findings raise the possibility of a more complex regulation of 5-HT access to the fetus through the differential roles of trophoblasts that surround maternal and fetal blood space and of yolk sac endoderm prior to normal degeneration. PMID:27238716
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium. Copyright © 2017 Elsevier B.V. All rights reserved.
Laboratory testing protocol for the impact of dispersed petrochemicals on seagrass.
Wilson, K G; Ralph, P J
2012-11-01
To improve the effectiveness of oil spill mitigation, we developed a rapid, logistically simple protocol to detect petrochemical stress on seagrass. Sections of leaf blades from Zostera muelleri subsp. capricorni were exposed to the water accommodated fraction (WAF) of non-dispersed and dispersed Tapis crude oil and fuel oil (IFO-380) for 5h. Photosynthetic health was monitored by assessing changes in effective quantum yield of photosystem II (ΔF/F(m)(')) and chlorophyll a pigment concentrations. Loss of total petroleum hydrocarbons (TPH) was measured using an oil-in-water fluorometer, whilst GC-MS analyses quantified the hydrocarbon components within each treatment. Few significant differences were detected in the chlorophyll a pigment analyses; however, ΔF/F(m)(') appeared sensitive to petrochemical exposure. Dispersing both types of oil resulted in a substantial increase in the TPH of the WAF and was generally correlated with a greater physiological impact to the seagrass health, compared with the oil alone. Copyright © 2012 Elsevier Ltd. All rights reserved.
Adsorption of SO2 and NO from incineration flue gas onto activated carbon fibers.
Liu, Zhen-Shu
2008-11-01
Activated carbon fibers (ACFs) were used to remove SO2 and NO from incineration flue gas. Three types of ACFs in their origin state and after pretreatment with HNO3, NaOH, and KOH were investigated. The removal efficiencies of SO2 and NO were determined experimentally at defined SO2 and NO concentrations and at temperatures of 150, 200 and 260 degrees C. Experimental results indicated that the removal efficiencies of SO2 and NO using the original ACFs were < 56% and < 27%, respectively. All ACFs modified with HNO3, NaOH, and KOH solution could increase the removal efficiencies of SO(2) and NO. The mesopore volumes and functional groups of ACFs are important in determining the removal of SO2 and NO. When the mesopore volumes of the ACFs are insufficient for removing SO2 and NO, the functional groups on the ACFs are not important in determining the removal of SO2 and NO. On the contrary, the effects of the functional groups on the removal of SO2 and NO are more important than the mesopore volumes as the amount of mesopores on the ACFs is sufficient to remove SO2 and NO. Moreover, the removal efficiencies of SO2 and NO were greatest at 200 degrees C. When the inlet concentration of SO2 increased to 600 ppm, the removal efficiency of SO2 increased slightly and the removal efficiency of NO decreased.
Removal of Cu2+ and turbidity from wastewater by mercaptoacetyl chitosan.
Chang, Qing; Zhang, Min; Wang, Jinxi
2009-09-30
A macromolecule heavy metal flocculant mercaptoacetyl chitosan (MAC) was prepared by reacting chitosan with mercaptoacetic acid. In preliminary experiments, the flocculation performance of MAC was evaluated by using wastewater containing Cu(2+) or/and turbidity. Some factors which affect the removal of Cu(2+) and turbidity were also studied. The experimental results showed that: (1) MAC can remove both Cu(2+) and turbidity from wastewater. The removal efficiency of Cu(2+) by using MAC combined with hydrolyzed polyacrylamide is higher than that by only using MAC, the removal efficiency of Cu(2+) reaches above 98%; (2) when water sample containing not only Cu(2+) but also turbidity-causing substance, the removal efficiency of both Cu(2+) and turbidity will be promoted by the cooperation effect of each other, the residual concentration of Cu(2+) reaches below 0.5 mg L(-1) and the turbidity reaches below 3NTU, Cu(2+) is more easily removed by MAC when turbidity is higher; (3) the removal efficiency of Cu(2+) increases with the increase in pH value, contrarily removal efficiency of turbidity decreases with the increase in pH value.
Kocatürk-Schumacher, Nazlı Pelin; Zwart, Kor; Bruun, Sander; Brussaard, Lijbert; Jensen, Lars Stoumann
2017-05-01
Concentrating nutrients on biochar and clinoptilolite and subsequently using the nutrient-enriched sorbents as a fertiliser could be an alternative way to manage nutrients in digestate. In this study, we investigated the use of biochar and clinoptilolite columns in removing ammonium, potassium, orthophosphate and dissolved organic carbon (DOC) from the liquid fraction of digestate. Our objectives were to investigate the effect of the initial loading ratio between liquid and biochar on nutrient removal, and to investigate the effect of combining biochar with clinoptilolite on nutrient and DOC removal efficiency. Increasing the initial loading ratios increased nutrient concentrations on biochar to 8.61 mg NH 4 -N g -1 , 1.95 mg PO 4 -P g -1 and 13.01 mg DOC g -1 , but resulted in decreasing removal efficiencies. The combination of biochar and clinoptilolite resulted in improved ammonium, potassium and DOC removal efficiencies compared to biochar alone, but did not significantly change PO 4 -P removal efficiencies. Removal efficiencies with combined sorbents were up to 67% for ammonium, 58% for DOC and 58% for potassium. Clinoptilolite showed higher removal efficiencies compared to biochar alone, and combining clinoptilolite with biochar improved only total P removal efficiency. Concentrating nutrients with clinoptilolite and biochar may be an option when both sorbents are available at low cost.
Wu, Dong; Wang, Chao; Dolfing, Jan; Xie, Bing
2015-04-15
Landfills implemented with onsite leachate recirculation can efficiently remove pollutants, but currently they are reckoned as N2O emission hot spots. In this project, we evaluated the relationship between N2O emission and nitrogen (N) removal efficiency with different types of leachate recirculated. Nitrate supplemented leachate showed low N2O emission rates with the highest N removal efficiency (~70%), which was equivalent to ~1% nitrogen emitted as N2O. Although in nitrite containing leachates' N removal efficiencies also reached to ~60%, their emitted N2O comprised ~40% of total removed nitrogen. Increasing nitrogen load promoted N2O emission and N removal efficiency, except in ammonia type leachate. When the ratio of BOD to total nitrogen increased from 0.2 to 0.4, the N2O emission flux from nitrate supplemented leachate decreased from ~25 to <0.5 μg N/kg-soil·h. We argue prior to leachate in situ recirculation, sufficient pre-aeration is critical to mitigate N2O surges and simultaneously enhance nitrogen removal efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... device emission destruction or removal efficiency? 63.4566 Section 63.4566 Protection of Environment... efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.4560...
Code of Federal Regulations, 2010 CFR
2010-07-01
... device emission destruction or removal efficiency? 63.4566 Section 63.4566 Protection of Environment... efficiency? You must use the procedures and test methods in this section to determine the add-on control device emission destruction or removal efficiency as part of the performance test required by § 63.4560...
40 CFR Table 1 to Subpart Jjjjj of... - Emission Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Existing large tunnel kiln (design capacity ≥10 tph of fired product), excluding any process stream that is... July 22, 2002; each new or reconstructed small tunnel kiln (design capacity product...) National Emission Standards for Hazardous Air Pollutants for Brick and Structural Clay Products...
Liu, Jun-xin; van Groenestijn, J W; Doddema, H J; Wang, Bao-zhen
2002-04-01
The oxidation ditch has been used for many years all over the world as an economic and efficient wastewater treatment technology. It can remove COD, nitrogen and a part of phosphorus efficiently. In the experiment described, a pilot scale Pasveer oxidation ditch system has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that influent total phosphorus(TP) was removed for 35%-50%. After this, two anaerobic tanks with total volume of 11 m3 were added to the system to release phosphorus. As a result, the TP removal efficiency increased by about 20%. At an anaerobic HRT of about 6 hours, a TP removal efficiency of 71% was achieved.
Salim, R; Al-Subu, M; Dawod, E
2008-05-01
Removal of cadmium from aqueous solutions using 20 species of plant leaves and combinations of these leaves have been studied. Several factors affecting the removal efficiency have been studied. The most efficient types of plant leaves for the removal of cadmium are those of styrax, plum, pomegranate and walnut. The interaction effect of the combined leaf samples on the efficiency of removal of cadmium has been found to be additive in combinations involving styrax plant leaves but seems to be antagonistic in all other combinations. The optimum experimental conditions for removal of cadmium have been found to be at pH 4.1, using high concentrations of naturally dried plant leaves, using ground leaves and to remove cadmium from agitated aqueous solutions. The percentage of metal removed at an initial cadmium concentration of 10mg/l by the most efficient types of leaves have been found to be 85% for styrax leaves, 85% for plum leaves, 80% for pomegranate leaves, 78% for walnut leaves and 77% for meddler leaves. The presence of foreign ions or complexing agents has been found to reduce the efficiency of removal of cadmium by plant leaves. About 80-85% of the cadmium in charged plant leaves has been released under the influence of changing the pH of the solution, addition of competing ions and the addition of EDTA. The results of removal of cadmium by plant leaves have been found to follow the Freundlich adsorption isotherm, first-order reaction with respect to cadmium and to have intra-pore diffusion as the rate-limiting step.
Kim, S O; Kim, K W
2001-08-17
This research focused on the monitoring of the electrokinetic removal of heavy metals from tailing-soils, and emphasizes the dependency of removal efficiencies upon their physico-chemical states, as demonstrated by the different extraction methods adopted, which included aqua regia and sequential extraction. The tailing-soils examined contained high concentrations of target metal contaminants (Cd=179mgkg(-1), Cu=207mgkg(-1), Pb=5175mgkg(-1), and Zn=7600mgkg(-1)). The removal efficiencies of the different metals were significantly influenced by their speciations, mobilities and affinities (adsorption capacities) in the soil matrix. The removal efficiencies of mobile and weakly bound fractions, such as the exchangeable fraction were more than 90% by electrokinetic treatment, but strongly bound fractions, such as the organically bound species and residual fraction were not significantly removed (less than 30% removal efficiencies). In accordance with the general sequence of mobilities of heavy metals in soils, the removal efficiencies of more mobile heavy metals (Cd, Cu, and Zn) were higher than that of less mobile heavy metal (Pb).
Wastewater treatment for nutrient removal with Ecuadorian native microalgae.
Benítez, María Belén; Champagne, Pascale; Ramos, Ana; Torres, Andres F; Ochoa-Herrera, Valeria
2018-04-12
The aim of this project was to study the feasibility of utilizing native microalgae for the removal of nitrogen and phosphorus, as a potential secondary wastewater treatment process in Ecuador. Agitation and aeration batch experiments were conducted using synthetic secondary wastewater effluent, to determine nitrogen and phosphorus removal efficiencies by a native Ecuadorian microalgal strain. Experimental results indicated that microalgal cultures could successfully remove nitrogen and phosphorus. [Formula: see text] and [Formula: see text] removal efficiencies of 52.6 and 55.6%, and 67.0 and 20.4%, as well as [Formula: see text] production efficiencies of 87.0 and 93.1% were reported in agitation and aeration photobioreactors, respectively. Aeration was not found to increase the nutrient removal efficiency of [Formula: see text]. Moreover, in the case of [Formula: see text], a negative impact was observed, where removal efficiencies decreased by a factor of 3.3 at higher aeration rates. To the best of our knowledge, this is the first report of the removal of nutrients by native Ecuadorian Chlorella sp., hence the results of this study would indicate that this native microalgal strain could be successfully incorporated in a potential treatment process for nutrient removal in Ecuador.
Removal of inhibitors from lignocellulosic hydrolyzates by vacuum membrane distillation.
Chen, Jingwen; Zhang, Yaqin; Wang, Yafei; Ji, Xiaosheng; Zhang, Lin; Mi, Xigeng; Huang, He
2013-09-01
In this study, vacuum membrane distillation (VMD) was used to remove two prototypical fermentation inhibitors (acetic acid and furfural) from lignocellulose hydrolyzates. The effect of operating parameters, such as feed temperature and feed velocity, on the removal efficiencies of inhibitors was investigated. Under optimal conditions, more than 98% of furfural could be removed by VMD. However, the removal efficiency of acetic acid was considerably lower. After furfural and acetic acid were selectively removed from hydrolyzates by VMD, ethanol production efficiency increased by 17.8% compared to original hydrolyzates. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ling, Zhen; Li, Jie
2018-03-01
Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.
Zhang, Dong Qing; Gersberg, Richard M; Hua, Tao; Zhu, Junfei; Tuan, Nguyen Anh; Tan, Soon Keat
2012-04-01
Determining the fate of emerging organic contaminants in an aquatic ecosystem is important for developing constructed wetlands (CWs) treatment technology. Experiments were carried out in subsurface flow CWs in Singapore to evaluate the fate and transport of eight pharmaceutical compounds. The CW system included three parallel horizontal subsurface flow CWs and three parallel unplanted beds fed continuously with synthetic wastewater at different hydraulic retention times (HRTs). The findings of the tests at 2-6 d HRTs showed that the pharmaceuticals could be categorized as (i) efficiently removed compounds with removal higher than 85% (ketoprofen and salicylic acid); (ii) moderately removed compounds with removal efficiencies between 50% and 85% (naproxen, ibuprofen and caffeine); and (iii) poorly removed compounds with efficiency rate lower than 50% (carbamazepine, diclofenac, and clofibric acid). Except for carbamazepine and salicylic acid, removal efficiencies of the selected pharmaceuticals showed significant (p<0.05) enhancement in planted beds as compared to the unplanted beds. Removal of caffeine, ketoprofen and clofibric acid were found to follow first order decay kinetics with decay constants higher in the planted beds than the unplanted beds. Correlations between pharmaceutical removal efficiencies and log K(ow) were not significant (p>0.05), implying that their removal is not well related to the compound's hydrophobicity. Copyright © 2011 Elsevier Ltd. All rights reserved.
78 FR 69805 - Periodic Reporting (Proposals Six Through Nine)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-21
... MODS Operation Groups for Productivity Calculations The Postal Service states that Proposal Eight would... MODS productivity data (TPF or TPH per workhour) for a variety of operation groups related to letter, flat, parcel, and bundle sorting. The MODS productivity data are used to parameterize a number of cost...
Propellant Surveillance Report LGM-30 F and G Stage 1, Phase E, Series IV, TP-H1011.
1978-02-01
regression analysis. From the statistical analysis of all data tested to date (twelve and one half years for F and G), significant degradation of the propellant does not appear likely for at least two years past the oldest data point.
ERIC Educational Resources Information Center
Dykens, Elisabeth M.; Roof, Elizabeth; Bittel, Douglas; Butler, Merlin G.
2011-01-01
Background: Prader-Willi syndrome (PWS) is a genetic, neurodevelopmental disorder characterized by intellectual disabilities, growth hormone dysregulation, hyperphagia, increased risks of morbid obesity, compulsive behaviors, and irritability. As aberrant serotonergic functioning is strongly implicated in PWS, we examined associations between the…
Tense and Agreement Impairment in Ibero-Romance
ERIC Educational Resources Information Center
Gavarro, Anna; Martinez-Ferreiro, Silvia
2007-01-01
We examine the inflectional productions of seven Catalan, seven Galician, and seven Spanish speaking agrammatic subjects in an elicitation and a sentence repetition task and consider them in the light of the Tree Pruning Hypothesis (TPH). The results show relatively spared subject person/number agreement with the verb and impaired tense marking…
Park, Taejun; Ampunan, Vanvimol; Maeng, Sungkyu; Chung, Eunhyea
2017-01-01
Phosphorus removal has been studied for decades to reduce the environmental impact of phosphorus in natural waterbodies. Slag has been applied for the phosphorus removal by several mechanisms. In this study, sodium hydroxide coating was applied on the slag surface to enhance the efficiency of precipitation-coagulation process. In the batch test, it was found that the capacity of the slag to maintain high pH decreases with increasing its exposure time to the aqueous solution. In the column test, the coarse-grained coated slag showed higher phosphorus removal efficiency than the fine-grained uncoated slag. The coated slag maintained pH higher than uncoated slag and, accordingly, the removal efficiency of phosphorus was higher. Especially, when pH was less than 8, the removal efficiency decreased significantly. However, coated slag provided an excess amount of aluminum and sodium. Thus, a return process to reuse aluminum and sodium as a coagulant was introduced. The return process yields longer lifespan of slag with higher phosphorus removal and lower concentration of cations in the effluent. With the return process, the phosphorus removal efficiency was kept higher than 60% until 150 bed volumes; meanwhile, the efficiency without return process became lower than 60% at 25 bed volumes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor
NASA Astrophysics Data System (ADS)
Pratiwi, R.; Notodarmojo, S.; Helmy, Q.
2018-01-01
The desizing and dyeing processes in the textile industries produces wastewaster containing high concentration of organic matter and colour, so it needs treatment before released to environment. In this research, removal of azo dye (Remazol Black 5/RB 5) and organic as COD was performed using Moving Bed Biofilm Reactor (MBBR). MBBR is biological treatment process with attached growth media system that can increase removal of organic matter in textile wastewater. The effectiveness of ozonation as pre-treatment process to increase the removal efficiency in MBBR was studied. The results showed that in MBBR batch system with detention time of 1 hour, pre-treatment with ozonation prior to MBBR process able to increase the colour removal efficiency of up to 86.74%. While on the reactor without ozone pre-treatment, the colour removal efficiency of up to 68.6% was achieved. From the continuous reactor experiments found that both colour and COD removal efficiency depends on time detention of RB-5 dyes in the system. The higher of detention time, the higher of colour and COD removal efficiency. It was found that optimum removal of colour and COD was achieved in 24 hour detention time with its efficiency of 96.9% and 89.13%, respectively.
Using Wet-FGD systems for mercury removal.
Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G
2005-09-01
A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.
Removal of particulate matter emitted from a subway tunnel using magnetic filters.
Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun
2014-01-01
We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.
Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan
2013-08-01
A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan
2018-06-01
A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.
NASA Astrophysics Data System (ADS)
Roy, Sukumar; Ghosh, Subrata; Bhowmick, Niranjan
2018-05-01
A mechanism to remove the Pseudomonas bacteria from contaminated water by using textile fibrous media has been proposed in this article. The attachment of Pseudomonas bacteria on nylon fibrous media was studied in laboratory column experiment. A systematic study was carried out to investigate the attachment of bacteria on the fibrous material as a function of fiber orientation to the direction of the liquid flow. Three types of textiles media with different orientation fiber were selected for the experiment (i.e. 0°, 45° and 90°). It was found that the bacteria removal efficiency was comparatively higher at 90° orientation as compared to that of 45° and 0° orientation of fibrous media, suggesting that the removal efficiency of bacteria (1 - Fp) was depended on fiber orientation. The removal trends were explained on the basis of colloidal filtration theory. This is due to the higher single collector contact efficiency and attachment/collision efficiency as observed from the experimental data of removal efficiency.
Xu, Jie; Wang, Xue; Sun, Shiqing; Zhao, Yongjun; Hu, Changwei
2017-09-07
Three different treatment technologies, namely mono-algae culture, algal-bacterial culture, and algal-fungal culture, were applied to remove pollutants form synthetic domestic sewage and to remove CO 2 from biogas in a photobioreactor. The effects of different initial influent C/N ratios on microalgal growth rates and pollutants removal efficiencies by the three microalgal cultures were investigated. The best biogas upgrading and synthetic domestic sewage pollutants removal effect was achieved in the algal-fungal system at the influent C/N ratio of 5:1. At the influent C/N ratio of 5:1, the algal-fungal system achieved the highest mean chemical oxygen demand (COD) removal efficiency of 81.92% and total phosphorus (TP) removal efficiency of 81.52%, respectively, while the algal-bacterial system demonstrated the highest mean total nitrogen (TN) removal efficiency of 82.28%. The average CH 4 concentration in upgraded biogas and the removal efficiencies of COD, TN, and TP were 93.25 ± 3.84% (v/v), 80.23 ± 3.92%, 75.85 ± 6.61%, and 78.41 ± 3.98%, respectively. These results will provide a reference for wastewater purification ad biogas upgrading with microalgae based technology.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance.
Behavior of pharmaceuticals in waste water treatment plant in Japan.
Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R
2011-07-01
The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).
2014-01-01
Arsenic contamination of drinking water is a global problem that will likely become more apparent in future years as scientists and engineers measure the true extent of the problem. Arsenic poisoning is preventable though as there are several methods for easily removing even trace amounts of arsenic from drinking water. In the present study, electrocoagulation was evaluated as a treatment technology for arsenic removal from aqueous solutions. The effects of parameters such as initial pH, current density, initial concentration, supporting electrolyte type and stirring speed on removal efficiency were investigated. It has been observed that initial pH was highly effective on the arsenic removal efficiency. The highest removal efficiency was observed at initial pH = 4. The obtained experimental results showed that the efficiency of arsenic removal increased with increasing current density and decreased with increasing arsenic concentration in the solution. Supporting electrolyte had not significant effects on removal, adding supporting electrolyte decreased energy consumption. The effect of stirring speed on removal efficiency was investigated and the best removal efficiency was at the 150 rpm. Under the optimum conditions of initial pH 4, current density of 0.54 mA/cm2, stirring speed of 150 rpm, electrolysis time of 30 minutes, removal was obtained as 99.50%. Energy consumption in the above conditions was calculated as 0.33 kWh/m3. Electrocoagulation with iron electrodes was able to bring down 50 mg/L arsenic concentration to less than 10 μg/L at the end of electrolysis time of 45 minutes with low electrical energy consumption as 0.52 kWh/m3. PMID:24991426
Code of Federal Regulations, 2014 CFR
2014-07-01
... native AOI concentration (ppm) of the effluent during stable conditions. (14) Post-test calibration. At... or removal efficiencies must be determined while etching a substrate (product, dummy, or test). For... curves for the subsequent destruction or removal efficiency tests. (8) Mass location calibration. A...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... Effectiveness of a Proposed Rule Change To Increase the Class Quoting Limit for Options on Facebook June 21... Limit (``CQL'') for options on Facebook. The text of the proposed rule change is available on the... the Exchange recently began electronically trading options on Facebook, trading volume and TPH...
ERIC Educational Resources Information Center
Burchert, Frank; Meissner, Nadine; De Bleser, Ria
2008-01-01
The study reported here compares two linguistically informed hypotheses on agrammatic sentence production, the TPH [Friedmann, N., & Grodzinsky, Y. (1997). "Tense and agreement in agrammatic production: Pruning the syntactic tree." "Brain and Language," 56, 397-425.] and the DOP [Bastiaanse, R., & van Zonneveld, R. (2005). "Sentence production…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-30
... Fingerprint Processing Fee is included as part of this fee. The New Trading Permit Holder Orientation & Exam... Application and related documentation, one Responsible Person's Orientation & Exam Fee and Fingerprint Fee... individuals on a TPH organization's Form BD. This fee includes the related Fingerprint Processing Fee. This...
Tense and Agreement Dissociations in German Agrammatic Speakers: Underspecification Vs. Hierarchy
ERIC Educational Resources Information Center
Burchert, F.; Swoboda-Moll, M.; Bleser, R.D.
2005-01-01
The aim of the present paper was to investigate whether German agrammatic production data are compatible with the Tree-Pruning-Hypothesis (TPH; Friedmann & Grodzinsky, 1997). The theory predicts unidirectional patterns of dissociation in agrammatic production data with respect to Tense and Agreement. However, there was evidence of a double…
da Silva, Gisele Rodrigues; Simamoto-Júnior, Paulo Cezar; da Mota, Adérito Soares; Soares, Carlos José
2007-03-01
This study aimed to analyze the microhardness (KHN) and diametral tensile strength (DTS) of two hybrid resin composites (TPH Spectrum and Filtek Z250). To this end, the composites were polymerized with six laboratory photo-curing units (LPUs) and the results compared with an alternative polymerization method using conventional halogen light source in conjunction with additional polymerization in an autoclave (15 minutes/100 degrees C). LPUs were used following the manufacturers' instructions. Diametral tensile strength and Knoop hardness tests were conducted for all groups (n=5). Data were statistically compared using ANOVA and Tukey's test (alpha = 0.05). Among the LPUs, the one that provided light curing in conjunction with heat and nitrogen pressure resulted in a significant increase in KHN and DTS of resin composites. Between the resin composites, Filtek Z250 showed higher hardness values than TPH Spectrum. It was concluded that the use of alternative polymerization with conventional light polymerization and autoclave was feasible with a wide implication for the general public in terms of reduced dental treatment cost.
Colla, Tatiana Simonetto; Andreazza, Robson; Bücker, Francielle; de Souza, Marcela Moreira; Tramontini, Letícia; Prado, Gerônimo Rodrigues; Frazzon, Ana Paula Guedes; Camargo, Flávio Anastácio de Oliveira; Bento, Fátima Menezes
2014-02-01
This study investigated the effectiveness of successive bioaugmentation, conventional bioaugmentation, and biostimulation of biodegradation of B10 in soil. In addition, the structure of the soil microbial community was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis. The consortium was inoculated on the initial and the 11th day of incubation for successive bioaugmentation and only on the initial day for bioaugmentation and conventional bioaugmentation. The experiment was conducted for 32 days. The microbial consortium was identified based on sequencing of 16S rRNA gene and consisted as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Ochrobactrum intermedium. Nutrient introduction (biostimulation) promoted a positive effect on microbial populations. The results indicate that the edaphic community structure and dynamics were different according to the treatments employed. CO2 evolution demonstrated no significant difference in soil microbial activity between biostimulation and bioaugmentation treatments. The total petroleum hydrocarbon (TPH) analysis indicated a biodegradation level of 35.7 and 32.2 % for the biostimulation and successive bioaugmentation treatments, respectively. Successive bioaugmentation displayed positive effects on biodegradation, with a substantial reduction in TPH levels.
Del Carmen Cuevas-Díaz, María; Vázquez-Luna, Dinora; Martínez-Hernández, Sergio; Guzmán-López, Oswaldo; Ortíz-Ceballos, Angel I
2017-08-01
Contamination of soil with petroleum is common in oil-producing areas across the tropical regions of the world. There is limited knowledge on the sensitivity of endogeic tropical earthworms to the contamination of soil with total petroleum hydrocarbons (TPH) present in crude oil. Pontoscolex corethrurus is a dominant species in tropical agroecosystems around oil-processing facilities. The sensitivity of P. corethrurus to soil artificially contaminated with "Maya" Mexican heavy crude oil was investigated through avoidance and acute ecotoxicity tests, using the following measured concentrations: 0 (reference soil), 551, 969, 4845, 9991 and 14,869 mg/kg. The avoidance test showed that P. corethrurus displayed a significant avoidance behavior to heavy crude oil at a concentration of 9991 mg/kg or higher. In contrast, acute toxicity tests indicate that the median lethal concentration (LC 50 ) was 3067.32 mg/kg; however, growth (weight loss) was more sensitive than mortality. Our study revealed that P. corethrurus is sensitive to TPH, thus highlighting the importance of P. corethrurus for petroleum ecotoxicological tests.
Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.
Patrick, Rhonda P; Ames, Bruce N
2014-06-01
Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder. © FASEB.
Yang, Zeyu; Hollebone, Bruce P; Laforest, Sonia; Lambert, Patrick; Brown, Carl E; Yang, Chun; Shah, Keval; Landriault, Mike; Goldthorp, Michael
2017-09-15
The occurrence, source and ecological assessment of baseline hydrocarbons in the intertidal zone along the northern British shoreline were evaluated based on analyzing total petroleum hydrocarbons (TPH), n-alkanes, petroleum related biomarkers such as terpanes and steranes, and polycyclic aromatic hydrocarbons (PAHs) including non-alkylated and alkylated homologues (APAHs). The TPH levels, n-alkanes, petroleum biomarkers and PAHs in all the sampling sites, except for Masset Harbor/York Point at Gil Island were low, without obvious unresolved complex mixture (UCM) and petroleum contamination input. Specifically, n-alkanes showed a major terrestrial plants input; PAHs with abundant non-alkylated PAHs but minor APAHs showed a major pyrogenic input. However, obvious petroleum-derived hydrocarbons have impacted Masset Harbor. A historical petroleum input was found in York Point at Gil Island, due to the presence of the low level of petroleum biomarkers. Ecological assessment of 13 non-alkylated PAHs in Masset Harbor indicated no potential toxicity to the benthic organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Hong; Zhang, Lanying; Deng, Haijing; Liu, Na; Liu, Cuizhu
2011-10-01
A multi-media bio-PRB reactor was designed to treat groundwater contaminated with petroleum hydrocarbons. After a 208-day bioremediation, combined with the total petroleum hydrocarbons content in the groundwater flowed through the reactor, microbiological characteristics of the PRB reactor including microbes immobilized and its dehydrogenase activity were investigated. TPH was significantly reduced by as much as 65% in the back of the second media layer, whereas in the third layer, the TPH content reached lower than 1 mg l⁻¹. For microbes immobilized on the media, the variations with depth in different media were significantly the same and the regularity was obvious in the forepart of the media, which increased with depth at first and then reduced gradually, while in the back-end, the microbes almost did not have any variations with depth but decreased with the distance. The dehydrogenase activity varied from 2.98 to 16.16 mg TF L⁻¹ h⁻¹ and its distribution illustrated a similar trend with numbers of microbial cell, therefore, the noticeable correlation was found between them.
Jamrah, Ahmad; Al-Futaisi, Ahmed; Hassan, Hossam; Al-Oraimi, Salem
2007-01-01
This paper presents a study that aims at evaluating the leaching characteristics of petroleum contaminated soils as well as their application in hot mix asphalt concrete. Soil samples are environmentally characterized in terms of their total heavy metals and hydrocarbon compounds and leachability. The total petroleum hydrocarbon (TPH) present in the PCS before and after treatment was determined to be 6.8% and 5.3% by dry weight, indicating a reduction of 1% in the TPH of PCS due to the current treatment employed. Results of the total heavy metal analysis on soils indicate that the concentrations of heavy metals are lower when extraction of the soil samples is carried out using hexane in comparison to TCE. The results show that the clean soils present in the vicinity of contaminated sites contain heavy metals in the following decreasing order: nickel (Ni), followed by chromium (Cr), zinc (Zn), copper (Cu), lead (Pb), and vanadium (V). The current treatment practice employed for remediation of the contaminated soil reduces the concentrations of nickel and chromium, but increases the concentrations of all remaining heavy metals.
Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani
2014-01-01
A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.
Campos, Camila H; Ribeiro, Giselle R; Rodrigues Garcia, Renata C M
2018-05-01
Alzheimer disease (AD) can affect masticatory function, affecting oral health-related quality of life (OHRQoL). Whether oral rehabilitation with conventional removable prostheses can restore masticatory function and improve OHRQoL in these individuals is unknown. The purpose of this clinical study was to evaluate the influence of oral rehabilitation with removable prostheses on masticatory efficiency and OHRQoL in elders with and without AD. Thirty-two elders with mild AD (n=16, mean age=76.7 ±6.3 years) or without AD (n=16, mean age=75.2 ±4.4 years) were recruited. All participants first underwent masticatory efficiency and OHRQoL evaluations, and 2 months after insertion of new removable prostheses, the variables were reassessed. Masticatory efficiency was determined using the sieving method, and OHRQoL was measured by applying the Geriatric Oral Health Assessment Index (GOHAI). The data from the baseline and after insertion of the new removable prostheses were compared by paired t test. Group differences at each time point were assessed by t test (α=.05). After insertion of the new removable prostheses, masticatory efficiency and OHRQoL improved in both the elders with AD and the control. At baseline, elders with AD had lower masticatory efficiency and higher OHRQoL than controls (P<.05). After removable prosthesis insertion, elders with AD continued to show lower masticatory efficiency values than controls, but their OHRQoL was similar. Oral rehabilitation with new removable prostheses improved the masticatory efficiency and OHRQoL of elders with and without AD, although masticatory efficiency did not reach control levels in elders with AD. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester
2013-07-01
To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment resulted in removal efficiencies of >90% for clofibric acid and >98% for carbamazepine and diclofenac, while the remaining compounds were reduced to levels below the LOD. For ibuprofen, naproxen, ketoprofen and diclofenac the highest contribution to overall removal was attributed to biological treatment, for clofibric acid UV treatment was the most efficient, while for carbamazepine hydrodynamic cavitation/hydrogen peroxide process and UV treatment were equally efficient. Copyright © 2012 Elsevier B.V. All rights reserved.
Spray scrubbing of particulate-laden SO(2) using a critical flow atomizer.
Bandyopadhyay, Amitava; Biswas, Manindra Nath
2008-08-01
The performance of a spray tower using an energy efficient two-phase critical flow atomizer on the scrubbing of particulate-laden SO(2) using water and dilute NaOH is reported in this article. Experimentation revealed that SO(2) removal was enhanced due to presence of particles (fly-ash) and almost 100% removal efficiency was achieved in water scrubbing. The removal efficiency is elucidated in reference to atomizing air pressure, droplet diameter and droplet velocity besides other pertinent variables of the system studied. The presence of fly-ash particles improved the removal efficiency to about 20% within the range of variables studied. Empirical and semi-empirical correlations were developed for predicting the removal efficiency in water and dilute NaOH respectively. Predicted data fitted excellently well with experimental values. The performance of the spray tower is compared with the performances of existing systems and very encouraging results are obtained.
[Efficiency of photodecomposition of trace NDMA in water by UV irradiation].
Xu, Bing-Bing; Chen, Zhong-Lin; Qi, Fei; Ma, Jun
2008-07-01
Efficiency of photodecomposition of trace NDMA by UV irradiation was investigated with analyzing the initial concentration of NDMA, solution pH, irradiation area, irradiation intensity and water quality effect on NDMA photolysis. NDMA could be effectively photodegraded by UV irradiation. The removal efficiency of NDMA was 97.5% after 5 min of UV irradiation. Effect of initial NDMA concentration on photodecomposition of NDMA was not remarkable. With pH value ascending, the removal rate of NDMA photodecomposition decreased. The yields of photoquantum were more under lower solution pH than that under higher pH. NDMA had fastest reaction rate at solution pH = 2.2. Removal efficiency of NDMA increased with the available irradiation area ascending. Increscent ultraviolet irradiation intensity was good for NDMA degradation. Water quality affected the removal of NDMA slightly. The removal efficiency of NDMA in tap water and Songhua River raw water were 96.7% and 94.8%, respectively.
Treatment of emulsified oils by electrocoagulation: pulsed voltage applications.
Genc, Ayten; Bakirci, Busra
2015-01-01
The effect of pulsed voltage application on energy consumption during electrocoagulation was investigated. Three voltage profiles having the same arithmetic average with respect to time were applied to the electrodes. The specific energy consumption for these profiles were evaluated and analyzed together with oil removal efficiencies. The effects of applied voltages, electrode materials, electrode configurations, and pH on oil removal efficiency were determined. Electrocoagulation experiments were performed by using synthetic and real wastewater samples. The pulsed voltages saved energy during the electrocoagulation process. In continuous operation, energy saving was as high as 48%. Aluminum electrodes used for the treatment of emulsified oils resulted in higher oil removal efficiencies in comparison with stainless steel and iron electrodes. When the electrodes gap was less than 1 cm, higher oil removal efficiencies were obtained. The highest oil removal efficiencies were 95% and 35% for the batch and continuous operating modes, respectively.
An, Taicheng; Wan, Shungang; Li, Guiying; Sun, Lei; Guo, Bin
2010-11-15
This study aims to compare the biological degradation performance of ethanethiol using strain RG-1 and B350 commercial mixed microorganisms, which were inoculated and immobilized on ceramic particles in twin-biotrickling filter columns. The parameters affecting the removal efficiency, such as empty bed residence time (EBRT) and inlet concentration, were investigated in detail. When EBRT ranged from 332 to 66 s at a fixed inlet concentration of 1.05 mg L(-1), the total removal efficiencies for RG-1 and B350 both decreased from 100% to 70.90% and 47.20%, respectively. The maximum elimination capacities for RG-1 and B350 were 38.36 (removal efficiency=89.20%) and 25.82 g m(-3) h(-1) (removal efficiency=57.10%), respectively, at an EBRT of 83 s. The variation of the inlet concentration at a fixed EBRT of 110 s did not change the removal efficiencies which remained at 100% for RG-1 and B350 at concentrations of less than 1.05 and 0.64 mg L(-1), respectively. The maximum elimination capacities were 39.93 (removal efficiency=60.30%) and 30.34 g m(-3) h(-1) (removal efficiency=46.20%) for RG-1 and B350, respectively, at an inlet concentration of 2.03 mg L(-1). Sulfate was the main metabolic product of sulfur in ethanethiol. Based the results, strain RG-1 would be a better choice than strain B350 for the biodegradation of ethanethiol. Copyright © 2010 Elsevier B.V. All rights reserved.
Liu, Tongzhou; Zhang, Zhen; Mao, Yanqing; Yan, Dickson Y S
2016-04-01
In situ sediment remediation using Ca(NO3)2 or CaO2 for odor mitigation and acid volatile sulfide (AVS) and organic pollutant (such as TPH and PAHs) removal was reported in many studies and fieldwork. Yet, the associated effects on metal mobilization and potential distortion in bioavailability were not well documented. In this study, contaminated river sediment was treated by Ca(NO3)2 and CaO2 in bench studies. Through the investigation of AVS removal, organic matter removal, the changes in sediment oxidation-reduction potential (ORP), microbial activity, and other indigenous parameters, the effects on metal bioavailability, bioaccessibility, and fraction redistribution in sediment were evaluated. The major mechanisms for sediment treated by Ca(NO3)2 and CaO2 are biostimulation with indigenous denitrifying bacteria and chemical oxidation, respectively. After applying Ca(NO3)2 and CaO2, the decreases of metal concentrations in the treated sediment were insignificant within a 35-day incubation period. However, the [SEMtot-AVS]/f OC increased near to the effective boundary of toxicity (100 μmol g(-1) organic carbon (OC)), indicating that both bioavailability and bioaccessibility of metals (Cu, Zn, and Ni) to benthic organisms are enhanced after remediation. Metals were found redistributed from relatively stable fractions (oxidizable and residual fractions) to weakly bound fractions (exchangeable and reducible fractions), and the results are in line with the enhanced metal bioavailability. Compared with Ca(NO3)2, CaO2 led to higher enhancement in metal bioavailability and bioaccessibility, and more significant metal redistribution, probably due to its stronger chemical reactive capacity to AVS and sediment organic matter. The reactions in CaO2-treated sediment would probably shift from physicochemical to biochemical heterotrophic oxidation for sediment organic matter degradation. Therefore, further investigation on the long-term metal redistribution and associated mobility as well as bioavailability is recommended.
Jiang, Yu; Wang, Hongyu; Shang, Yu; Yang, Kai
2016-05-01
The high removal efficiencies of traditional biological aniline-degrading systems always lead to accumulation of ammonium. In this study, simultaneous removal of aniline, nitrogen and phosphorus in a single sequencing batch reactor was achieved by using anaerobic/aerobic/anoxic (A/O/A) operational process. The removal efficiencies of COD, NH4(+)-N, TN, TP were over 95.80%, 83.03%, 87.13%, 90.95%, respectively in most cases with 250mgL(-1) of initial aniline at 6h cycle when DO was 5.5±0.5mgL(-1). Aniline was able to be completely degraded when initial concentrations were less than 750mgL(-1). When DO increased, the removal rate of NH4(+)-N and TP slightly increased along with the moderate decrease of removal efficiencies of TN. The variation of HRT had obvious influence on removal performance of pollutants. The system showed high removal efficiencies of aniline, COD and nutrients during the variation of operating conditions, which might contribute to disposal of aniline-rich industrial wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kothawala, Dolly N; Köhler, Stephan J; Östlund, Anna; Wiberg, Karin; Ahrens, Lutz
2017-09-15
Drinking water treatment plants (DWTPs) are constantly adapting to a host of emerging threats including the removal of micro-pollutants like perfluoroalkyl substances (PFASs), while concurrently considering how background levels of dissolved organic matter (DOM) influences their removal efficiency. Two adsorbents, namely anion exchange (AE) and granulated active carbon (GAC) have shown particular promise for PFAS removal, yet the influence of background levels of DOM remains poorly explored. Here we considered how the removal efficiency of 13 PFASs are influenced by two contrasting types of DOM at four concentrations, using both AE (Purolite A-600 ® ) and GAC (Filtrasorb 400 ® ). We placed emphasis on the pre-equilibrium conditions to gain better mechanistic insight into the dynamics between DOM, PFASs and adsorbents. We found AE to be very effective at removing both PFASs and DOM, while largely remaining resistant to even high levels of background DOM (8 mg carbon L -1 ) and surprisingly found that smaller PFASs were removed slightly more efficiently than longer chained counterparts, In contrast, PFAS removal efficiency with GAC was highly variable with PFAS chain length, often improving in the presence of DOM, but with variable response based on the type of DOM and PFAS chain length. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro
2013-10-15
The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozelle, P.
1995-12-31
This report describes the progress made during this reporting period of a two-year project to demonstrate that the air pollution from a traveling-grate stoker being used to heat water at one of MPEC`s central heating plants in Krakow, Poland can be reduced significantly by (1) substituting the unwashed, unsized coal currently being used with a mechanically cleaned, double-sized stoker fuel and by (2) optimizing the operating parameters of the stoker. It is anticipated that these improvements will prove to be cost-effective and hence will be adopted by the other central heating plants in Krakow and, ideally, throughout Eastern European citiesmore » where coal continues to be the primary source of fuel. EFH Coal Company has formed a partnership with two Polish institutions--MPEC, a central heating company in Krakow, and Naftokrak-Naftobudowa, preparation plant designers and fabricators--for the execution of this effort. A long- term contract for the procurement of 750,000 tons of 20 mm. {times} 0 raw coal for the new plant has been negotiated with the Katowice Coal Holding Company. This long-term lease includes a site near the defunct Kazimierz-Julius preparation plant that has all of the infrastructure needed to build and operate the proposed 300 tph stoker coal preparation plant. The search for markets for utilizing surplus production from the new plant continues. Bid prices for a prefabricated (modular) 300-tph turnkey preparation plant delivered to Poland for preparing a stoker coal ranged from $3.2 to $3.5 million dollars (US). A commitment has been negotiated with Bank PKO S.A. to provide $2 million in cost-share financing toward the capital cost of the project. This sum, when added to the $2.4 million in DOE- BPU funds will be adequate to meet the $3 to $3.5 million needed to finance the purchase, erection and start-up of the 300 tph processing plant.« less
Khudur, Leadin Salah; Shahsavari, Esmaeil; Miranda, Ana F; Morrison, Paul D; Nugegoda, Dayanthi; Ball, Andrew S
2015-10-01
Diesel represents a common environmental contaminant as a result of operation, storage, and transportation accidents. The bioremediation of diesel in a contaminated soil is seen as an environmentally safe approach to treat contaminated land. The effectiveness of the remediation process is usually assessed by the degradation of the total petroleum hydrocarbon (TPH) concentration, without considering ecotoxicological effects. The aim of this study was to assess the efficacy of two bioremediation strategies in terms of reduction in TPH concentration together with ecotoxicity indices and changes in the bacterial diversity assessed using PCR-denaturing gradient gel electrophoresis (DGGE). The biostimulation strategy resulted in a 90 % reduction in the TPH concentration versus 78 % reduction from the natural attenuation strategy over 12 weeks incubation in a laboratory mesocosm-containing diesel-contaminated soil. In contrast, the reduction in the ecotoxicity resulting from the natural attenuation treatment using the Microtox and earthworm toxicity assays was more than double the reduction resulting from the biostimulation treatment (45 and 20 % reduction, respectively). The biostimulated treatment involved the addition of nitrogen and phosphorus in order to stimulate the microorganisms by creating an optimal C:N:P molar ratio. An increased concentration of ammonium and phosphate was detected in the biostimulated soil compared with the naturally attenuated samples before and after the remediation process. Furthermore, through PCR-DGGE, significant changes in the bacterial community were observed as a consequence of adding the nutrients together with the diesel (biostimulation), resulting in the formation of distinctly different bacterial communities in the soil subjected to the two strategies used in this study. These findings indicate the suitability of both bioremediation approaches in treating hydrocarbon-contaminated soil, particularly biostimulation. Although biostimulation represents a commercially viable bioremediation technology for use in diesel-contaminated soils, further research is required to determine the ecotoxicological impacts of the intervention.
Burchert, Frank; Meissner, Nadine; De Bleser, Ria
2008-02-01
The study reported here compares two linguistically informed hypotheses on agrammatic sentence production, the TPH [Friedmann, N., & Grodzinsky, Y. (1997). Tense and agreement in agrammatic production: Pruning the syntactic tree. Brain and Language, 56, 397-425.] and the DOP [Bastiaanse, R., & van Zonneveld, R. (2005). Sentence production with verbs of alternating transitivity in agrammatic Broca's aphasia. Journal of Neurolinguistics, 18, 59-66]. To explain impaired production of non-canonical sentences in agrammatism, the TPH basically relies on deleted or pruned clause structure positions in the left periphery, whereas the DOP appeals to limitations in the application of movement rules. Certain non-canonical sentences such as object-questions and object-relative clauses require the availability of nodes in the left periphery as well as movement to these nodes. In languages with relatively fixed word order such as English, the relevant test cases generally involve a coincidence of left periphery and movement, such that the predictions of the TPH and the DOP are identical although for different reasons. In languages with relatively free word order such as German, on the other hand, it is possible to devise specific tests of the different predictions due to the availability of scrambling. Scrambled object sentences, for example, do not involve the left periphery but do require application of movement in a domain below the left periphery. A study was conducted with German agrammatic subjects which elicited canonical sentences without object movement and non-canonical scrambled sentences with object movement. The results show that agrammatic speakers have a particular problem with the production of scrambled sentences. Further evidence reported in the study from spontaneous speech, elicitation of object relatives, questions and passives and with different agrammatic subjects confirms that non-canonical sentences are generally harder to produce for agrammatics. These findings provide evidence in favor of the DOP and it will be argued that a cross-modal explanation of agrammatic deficits is possible if two factors--movement and canonicity--are taken into consideration.
Purinergic receptor immunoreactivity in the rostral ventromedial medulla.
Close, L N; Cetas, J S; Heinricher, M M; Selden, N R
2009-01-23
The rostral ventromedial medulla (RVM) has long been recognized to play a pivotal role in nociceptive modulation. Pro-nociception within the RVM is associated with a distinct functional class of neurons, ON-cells that begin to discharge immediately before nocifensive reflexes. Anti-nociceptive function within the RVM, including the analgesic response to opiates, is associated with another distinct class, OFF-cells, which pause immediately prior to nocifensive reflexes. A third class of RVM neurons, NEUTRAL-cells, does not alter firing in association with nocifensive reflexes. ON-, OFF- and NEUTRAL-cells show differential responsiveness to various behaviorally relevant neuromodulators, including purinergic ligands. Iontophoresis of semi-selective P2X ligands, which are associated with nociceptive transmission in the spinal cord and dorsal root ganglia, preferentially activate ON-cells. By contrast, P2Y ligands activate OFF-cells and P1 ligands suppress the firing of NEUTRAL cells. The current study investigates the distribution of P2X, P2Y and P1 receptor immunoreactivity in RVM neurons of Sprague-Dawley rats. Co-localization with tryptophan hydroxylase (TPH), a well-established marker for serotonergic neurons was also studied. Immunoreactivity for the four purinergic receptor subtypes examined was abundant in all anatomical subdivisions of the RVM. By contrast, TPH-immunoreactivity was restricted to a relatively small subset of RVM neurons concentrated in the nucleus raphe magnus and pallidus, as expected. There was a significant degree of co-localization of each purinergic receptor subtype with TPH-immunoreactivity. This co-localization was most pronounced for P2Y1 receptor immunoreactivity, although this was the least abundant among the different purinergic receptor subtypes examined. Immunoreactivity for multiple purinergic receptor subtypes was often co-localized in single neurons. These results confirm the physiological finding that purinergic receptors are widely expressed in the RVM. Purinergic neurotransmission in this region may play an important role in nociception and/or nociceptive modulation, as at other levels of the neuraxis.
Pérez-Hernández, I; Ochoa-Gaona, S; Adams, R H; Rivera-Cruz, M C; Pérez-Hernández, V; Jarquín-Sánchez, A; Geissen, V; Martínez-Zurimendi, P
2017-01-01
Under greenhouse conditions, we evaluated establishment of four tree species and their capacity to degrade crude oil recently incorporated into the soil; the species were as follows: Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany), and Tabebuia rosea (macuilis). Three-month-old plants were planted in soil with three treatments of heavy petroleum and a control (C0 0 mg kg -1 ; C1 18,000 mg kg -1 ; C2 31,700 mg kg -1 ; C3 47,100 mg kg -1 ) with four repetitions per treatment and species; the experiment was carried out for 245 days. Height and biomass of all species significantly diminished as petroleum concentration increased, although plant survival was not affected. The quantity of colony-forming units (CFU) of rhizospheric bacteria varied among tree species and treatments; petroleum stimulated bacterial CFU for S. macrophylla. The number of fungi CFU for S. macrophylla and T. rosea was significantly greater in C0 than in soil with petroleum, but among species and among different concentrations, no significant differences were found. The greatest percentage of total petroleum hydrocarbon (TPH) degradation was found in C1 for soil without plants (45 %). Differences from the remaining treatments (petroleum concentrations in soil and plant species) were not significant (P < 0.05). Among all trees, H. campechianum had the greatest TPH degradation (32.5 % in C2). T. rosea (C1) and H. campechianum (C2) resulted in petroleum degradation at levels ranging from 20.5 to 32.5 %. On the basis of this experiment, the tree species used did not improve TPH degradation. However, all of them showed high rates of survival and vigor. So, as tree species provide goods and services, experiments with inoculation of hydrocarbonclastic microorganisms, addition of fertilizers, and mixture of tree and grasses are recommended.
Genetic and Non-genetic Factors Associated With Constipation in Cancer Patients Receiving Opioids
Laugsand, Eivor A; Skorpen, Frank; Kaasa, Stein; Sabatowski, Rainer; Strasser, Florian; Fayers, Peter; Klepstad, Pål
2015-01-01
Objectives: To examine whether the inter-individual variation in constipation among patients receiving opioids for cancer pain is associated with genetic or non-genetic factors. Methods: Cancer patients receiving opioids were included from 17 centers in 11 European countries. Intensity of constipation was reported by 1,568 patients on a four-point categorical scale. Non-genetic factors were included as covariates in stratified regression analyses on the association between constipation and 75 single-nucleotide polymorphisms (SNPs) within 15 candidate genes related to opioid- or constipation-signaling pathways (HTR3E, HTR4, HTR2A, TPH1, ADRA2A, CHRM3, TACR1, CCKAR, KIT, ARRB2, GHRL, ABCB1, COMT, OPRM1, and OPRD1). Results: The non-genetic factors significantly associated with constipation were type of laxative, mobility and place of care among patients receiving laxatives (N=806), in addition to Karnofsky performance status and presence of metastases among patients not receiving laxatives (N=762) (P<0.01). Age, gender, body mass index, cancer diagnosis, time on opioids, opioid dose, and type of opioid did not contribute to the inter-individual differences in constipation. Five SNPs, rs1800532 in TPH1, rs1799971 in OPRM1, rs4437575 in ABCB1, rs10802789 in CHRM3, and rs2020917 in COMT were associated with constipation (P<0.01). Only rs2020917 in COMT passed the Benjamini–Hochberg criterion for a 10% false discovery rate. Conclusions: Type of laxative, mobility, hospitalization, Karnofsky performance status, presence of metastases, and five SNPs within TPH1, OPRM1, ABCB1, CHRM3, and COMT may contribute to the variability in constipation among cancer patients treated with opioids. Knowledge of these factors may help to develop new therapies and to identify patients needing a more individualized approach to treatment. PMID:26087058
Genetics of Aggression in Alzheimer’s Disease (AD)
Lukiw, Walter J.; Rogaev, Evgeny I.
2017-01-01
Alzheimer’s disease (AD) is a terminal, age-related neurological syndrome exhibiting progressive cognitive and memory decline, however AD patients in addition exhibit ancillary neuropsychiatric symptoms (NPSs) and these include aggression. In this communication we provide recent evidence for the mis-regulation of a small family of genes expressed in the human hippocampus that appear to be significantly involved in expression patterns common to both AD and aggression. DNA array- and mRNA transcriptome-based gene expression analysis and candidate gene association and/or genome-wide association studies (CGAS, GWAS) of aggressive attributes in humans have revealed a surprisingly small subset of six brain genes that are also strongly associated with altered gene expression patterns in AD. These genes encoded on five different chromosomes (chr) include the androgen receptor (AR; chrXq12), brain-derived neurotrophic factor (BDNF; chr11p14.1), catechol-O-methyl transferase (COMT; chr22q11.21), neuronal specific nitric oxide synthase (NOS1; chr12q24.22), dopamine beta-hydroxylase (DBH chr9q34.2) and tryptophan hydroxylase (TPH1, chr11p15.1 and TPH2, chr12q21.1). Interestingly, (i) the expression of three of these six genes (COMT, DBH, NOS1) are highly variable; (ii) three of these six genes (COMT, DBH, TPH1) are involved in DA or serotonin metabolism, biosynthesis and/or neurotransmission; and (iii) five of these six genes (AR, BDNF, COMT, DBH, NOS1) have been implicated in the development, onset and/or propagation of schizophrenia. The magnitude of the expression of genes implicated in aggressive behavior appears to be more pronounced in the later stages of AD when compared to MCI. These recent genetic data further indicate that the extent of cognitive impairment may have some bearing on the degree of aggression which accompanies the AD phenotype. PMID:28443016
NASA Astrophysics Data System (ADS)
Beazley, M. J.; Martinez, R.; Rajan, S.; Powell, J.; Piceno, Y.; Tom, L.; Andersen, G. L.; Hazen, T. C.; Van Nostrand, J. D.; Zhou, J.; Mortazavi, B.; Sobecky, P. A.
2011-12-01
Microbial community responses of an Alabama coastal salt marsh environment to the Deepwater Horizon oil spill were studied by 16S rRNA (PhyloChip) and functional gene (GeoChip) microarray-based analysis. Oil and tar balls associated with the oil spill arrived along the Alabama coast in June 2010. Marsh and inlet sediment samples collected in June, July, and September 2010 from a salt marsh ecosystem at Point Aux Pines Alabama were analyzed to determine if bacterial community structure changed as a result of oil perturbation. Sediment total petroleum hydrocarbon (TPH) concentrations ranged from below detection to 189 mg kg-1 and were randomly dispersed throughout the salt marsh sediments. Total DNA extracted from sediment and particulates were used for PhyloChip and GeoChip hybridization. A total of 4000 to 8000 operational taxonomic units (OTUs) were detected in marsh and inlet samples. Distinctive changes in the number of detectable OTUs were observed between June, July, and September 2010. Surficial inlet sediments demonstrated a significant increase in the total number of OTUs between June and September that correlated with TPH concentrations. The most significant increases in bacterial abundance were observed in the phyla Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. Bacterial richness in marsh sediments also correlated with TPH concentrations with significant changes primarily in Acidobacteria, Actinobacteria, Firmicutes, Fusobacteria, Nitrospirae, and Proteobacteria. GeoChip microarray analysis detected 5000 to 8300 functional genes in marsh and inlet samples. Surficial inlet sediments demonstrated distinctive increases in the number of detectable genes and gene signal intensities in July samples compared to June. Signal intensities increased (> 1.5-fold) in genes associated with petroleum degradation. Genes related to metal resistance, stress, and carbon cycling also demonstrated increases in oiled sediments. This study demonstrates the value of applying phylogenetic and functional gene microarray technology to characterize the extensive microbial diversity of marsh environments. Moreover, this technology provides significant insight into bacterial community responses to anthropogenic oil events.
Brown, Philip M.; Drossman, Douglas A.; Wood, Alastair J. J.; Cline, Gary A.; Frazier, Kenny S.; Jackson, Jessica I.; Bronner, Johanna; Freiman, Joel; Zambrowicz, Brian; Sands, Arthur; Gershon, Michael D.
2016-01-01
BACKGROUND & AIMS Serotonin (5-hydroxytryptamine [5-HT]) has an important role in gastrointestinal function. LX1031 is an oral, locally acting, small molecule inhibitor of tryptophan hydroxylase (TPH). Local inhibition of TPH in the gastrointestinal tract might reduce mucosal production of serotonin (5-HT) and be used to treat patients with nonconstipating irritable bowel syndrome (IBS). METHODS We evaluated 2 dose levels of LX1031 (250 mg or 1000 mg, given 4 times/day) in a 28-day, multicenter, randomized, double-blind, placebo-controlled study of 155 patients with nonconstipating IBS. 5-hydroxyindoleacetic acid (5-HIAA), a biomarker of pharmacodynamic activity, was measured in urine samples at baseline (24 hours after LX1031 administration), and at weeks 4 and 6 (n = 76). RESULTS Each dose of LX1031 was safe and well-tolerated. The primary efficacy end point, relief of IBS pain and discomfort, improved significantly in patients given 1000 mg LX1031 (25.5%), compared with those given placebo, at week 1 (P = .018); with nonsignificant improvements at weeks 2, 3, and 4 (17.9%, 16.3%, and 11.6%, respectively). Symptom improvement correlated with a dose-dependent reduction in 5-HIAA, a marker for TPH inhibition, from baseline until week 4. This suggests the efficacy of LX1031 is related to the extent of inhibition of 5-HT biosynthesis. Stool consistency significantly improved, compared with the group given placebo, at weeks 1 and 4 (P < .01) and at week 2 (P < .001). CONCLUSIONS In a phase 2 study, LX1031 was well tolerated, relieving symptoms and increasing stool consistency in patients with nonconstipating IBS. Symptom relief was associated with reduced levels of 5-HIAA in urine samples. This marker might be used to identify patients with nonconstipating IBS who respond to inhibitors of 5-HT synthesis. PMID:21684281
NASA Astrophysics Data System (ADS)
Alpar, Bedri; Unlu, Selma; Altinok, Yildiz; Ongen, Sinan
2014-05-01
For assessing anthropogenic pollution, magnetic susceptibility profiles and accompanying data were measured along three short cores recovered at the southern part of an urban lagoon; Kucukcekmece, Istanbul, Turkey. This marine inlet, connected to the Sea of Marmara by a very narrow channel, was used as a drinking water reservoir 40-50 years ago before it was contaminated by municipal, agricultural and industrial activities, mainly carried by three streams feeding the lagoon. The magnetic signals decrease gradually from the lake bottom towards the core base showing some characteristic anomalies. These signatures were tested as an environmental magnetic parameter against the lithological diversity (silici-clastic, total organic matter and carbonate), metal enrichments with larger variations (Pb, Mn, Zn, Ni, Co, Cr, U and Al) and probable hydrocarbon contamination. Mineral assemblage was determined by a computer driven X-ray diffractometer. The heavy metal concentrations and total petroleum hydrocarbons (TPH) were measured by ICP-MS and UVF spectrometry, respectively. Magnetic susceptibility shows slightly higher values in interlayers containing higher silici-clastic material and organic content which may suggest first-order changes in the relative supplies of terrigenous and biogenic materials. On the basis of cluster analyses, enhanced magnetic signals could be correlated with the elevated concentrations of Co, Zn, U, Pb and TPH along the cores. The Pb concentrations at the upper parts of the cores were higher than the "Severe Effect Level" and could pose a potential risk for living organisms. Greater amounts of organic carbon tend to accumulate in muddy sediments. In fact, there are a few studies reporting some relationship between enhanced magnetic signals and organic contamination mainly due to petroleum aromatic hydrocarbons. In conclusion, the magnetic susceptibility changes in sedimentary depositional environments could be used as a rapid and cost-effective tool in identification of silici-clastic content, enrichment of some metals (iron cycling and bacterial activity) and increased TPH concentrations in hydrocarbon contaminated sediments along the cores.
Jacob, Christian P; Nguyen, Thuy Trang; Dempfle, Astrid; Heine, Monika; Windemuth-Kieselbach, Christine; Baumann, Katarina; Jacob, Florian; Prechtl, Julian; Wittlich, Maike; Herrmann, Martin J; Gross-Lesch, Silke; Lesch, Klaus-Peter; Reif, Andreas
2010-06-01
While an interactive effect of genes with adverse life events is increasingly appreciated in current concepts of depression etiology, no data are presently available on interactions between genetic and environmental (G x E) factors with respect to personality and related disorders. The present study therefore aimed to detect main effects as well as interactions of serotonergic candidate genes (coding for the serotonin transporter, 5-HTT; the serotonin autoreceptor, HTR1A; and the enzyme which synthesizes serotonin in the brain, TPH2) with the burden of life events (#LE) in two independent samples consisting of 183 patients suffering from personality disorders and 123 patients suffering from adult attention deficit/hyperactivity disorder (aADHD). Simple analyses ignoring possible G x E interactions revealed no evidence for associations of either #LE or of the considered polymorphisms in 5-HTT and TPH2. Only the G allele of HTR1A rs6295 seemed to increase the risk of emotional-dramatic cluster B personality disorders (p = 0.019, in the personality disorder sample) and to decrease the risk of anxious-fearful cluster C personality disorders (p = 0.016, in the aADHD sample). We extended the initial simple model by taking a G x E interaction term into account, since this approach may better fit the data indicating that the effect of a gene is modified by stressful life events or, vice versa, that stressful life events only have an effect in the presence of a susceptibility genotype. By doing so, we observed nominal evidence for G x E effects as well as main effects of 5-HTT-LPR and the TPH2 SNP rs4570625 on the occurrence of personality disorders. Further replication studies, however, are necessary to validate the apparent complexity of G x E interactions in disorders of human personality.
Chen, Qingcai; Li, Zebing; Hua, Xiaoyu
2018-05-01
The control measures for estrogens in the aquatic environment are topics of growing concern. It is a meaningful issue to finding optimal process parameters for efficient removal of estrogens with the purpose of efficient total nitrogen (TN) or total phosphorus (TP) removal in sewage treatment plants. The present paper is concerned with the relationships between the estrogen removal and TN or TP removal in a pilot-scale three-stage anoxic/oxic (A/O) system treating real municipal wastewater. The total removal efficiency for estrone (E1) and 17β-estradiol (E2) and their sulfate and glucuronide conjugates were on average 87% in the pilot-scale system. The concentrations of the sulfate and glucuronide conjugates of estrogens (E1 and E2) in the system were much lower than the estrogens, which might be caused by the rapid degradation of conjugates in the pilot-scale system. The average removal efficiencies of E1 and E2 and their sulfate and glucuronide conjugates were significantly lower under high TP removal conditions than those under high TN removal conditions that suggested that the ammonia oxidation promotes estrogen degradation. When the system achieved efficient TN removal, the concentrations of both E1 and E2 were generally lower in the aerobic zones than those in the anoxic zones. Instead, when the system achieved efficient TP removal conditions, the estrogen concentrations were higher in the aerobic zones than in the anoxic zones. However, it was thought that the variation of the concentrations of the estrogen conjugates had weak influence on concentrations of the free estrogens. The increase of the free estrogens in the aerobic zones could be attributed to the release of the estrogens adsorbed on the sludge. The variation of estrogens in a three-stage A/O system can be properly estimated and measured by a binary linear regression model with the variables of TP and TON (NO 2 - -N and NO 3 - -N), which is probably the important information for the improvement and optimization of wastewater treatment processes to obtain higher removal efficiency for estrogens.
Li, Qiuying; Pham, Hoang
2017-01-01
In this paper, we propose a software reliability model that considers not only error generation but also fault removal efficiency combined with testing coverage information based on a nonhomogeneous Poisson process (NHPP). During the past four decades, many software reliability growth models (SRGMs) based on NHPP have been proposed to estimate the software reliability measures, most of which have the same following agreements: 1) it is a common phenomenon that during the testing phase, the fault detection rate always changes; 2) as a result of imperfect debugging, fault removal has been related to a fault re-introduction rate. But there are few SRGMs in the literature that differentiate between fault detection and fault removal, i.e. they seldom consider the imperfect fault removal efficiency. But in practical software developing process, fault removal efficiency cannot always be perfect, i.e. the failures detected might not be removed completely and the original faults might still exist and new faults might be introduced meanwhile, which is referred to as imperfect debugging phenomenon. In this study, a model aiming to incorporate fault introduction rate, fault removal efficiency and testing coverage into software reliability evaluation is developed, using testing coverage to express the fault detection rate and using fault removal efficiency to consider the fault repair. We compare the performance of the proposed model with several existing NHPP SRGMs using three sets of real failure data based on five criteria. The results exhibit that the model can give a better fitting and predictive performance. PMID:28750091
Phosphorous removal from aqueous solution can be enhanced through the calcination of lime sludge.
Bal Krishna, K C; Niaz, Mohamed R; Sarker, Dipok C; Jansen, Troy
2017-09-15
Water treatment plants generate an enormous amount of the sludge which is normally treated as waste. In the recent past, many investigations have been focused on developing an economical adsorbent using water treatment sludge to remove phosphorous (P) from aqueous solutions. However, the great extents of the studies have been limited in the use of alum- and iron-based sludges. This study, therefore, investigated the P removal performance of the calcined lime sludge. Calcined lime sludge at 700 °C significantly enhanced the P removal efficiency whereas marginal improvement was noted when the sludge calcined at 400 °C was tested. With increase P removal efficiency, final pH values of the solution also significantly increased. P removal efficiency of the calcined sludge decreased with increasing the initial P concentrations. However, the removal efficiency could be improved by increasing the weight of the sludge. Further analysis demonstrated that P removal trend followed both pseudo-second order and diffusion-chemisorption kinetics signifying the P removal is potentially due to a multi-mechanistic reaction in which, the process is controlled by intra-particle diffusion followed by chemisorptions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anthropogenic pollution indicators in marine environment of the Eastern Part of the Gulf of Finland
NASA Astrophysics Data System (ADS)
Zhakovskaya, Zoya; Nikiforov, Vladimir; Mamontova, Varvara; Khoroshko, Larisa; Chernova, Ekaterina; Russkikh, Iana
2014-05-01
Pollution involving hazardous substances is considered one of the major problems affecting the state of the Baltic marine environment. However, assessment of the vast majority of the hazardous substances (including accepted as pollution indicators) in the environment have not been monitored in Russian Federation yet. Moreover there are no official guideline values for their presence or release in environment. For our investigation we have selected the organotin biocides and widespread pharmaceutical diclofenac. The study is focused on surface marine water and bottom sediments, collected from the eastern part of the Gulf of Finland during the navigation seasons of 2012-2013. Organotin compounds belong to a large group of key marine contaminants. They had been widely used in the world industry as antifouling paints, fungicides and biocides until the middle of 1980s. Tributyltin (TBT) and triphenyltin (TPhT) are the most hazardous of all organotin compounds, causing such biological effects as shell deformation, endocrine disruption, imposex and intersex phenomena at the concentration of 2 ng/L. The use of TBT in antifouling paints was banned within EU in 2003 and within Russian Federation in 2008. Monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPhT) were analysed as ethyl derivatives using electron impact gas chromatography-mass spectrometry (GC-MS-EI) in single ion monitoring mode (SIM). TBT and TPhT were frequently found above MAC of 1.5 ng/L and 2 ng/g dw respectively in both water and bottom sediment samples collected from the Gulf of Finland water basin. The highest detected concentration detected mainly in coastal areas with dense ship traffic were 670 ng/L (TBT) in water samples, 440 ng/g dw (TBT), 160 ng/g dw (TPhT) in sediment samples. Potential risks from the environmental presence of pharmaceuticals and personal care products (PPCP), such as medicine, hormones, means of personal hygiene, etc. reveal in abnormal physiological processes and reproductive impairment, increasing number of cancer incidences and increasing of bacterial antibiotic resistance. Diclofenac one of anthropogenic markers, was analyzed by the method of liquid chromatography high-resolution mass-spectrometry, using LTQ Orbitrap (Thermo Finnigan) in natural water and sediment samples. Mass spectra were recorded in several modes: full scan, SIM and MRM using positive and negative ionization. Resolution was 30000. Diclofenac were detected in several water samples (in the range of 3,9-270,0 ng/L). The obtained results are using for "Biota spatial distribution/Geological diversity/Pollution" model validation. This study was supported by projects TOPCONS («Transboundary tool for spatial planning and conservation of the Gulf of Finland»), HELCOM projects BALTHAZAR Phase II and BASE.
Response of soil microorganisms to radioactive oil waste: results from a leaching experiment
NASA Astrophysics Data System (ADS)
Galitskaya, P.; Biktasheva, L.; Saveliev, A.; Ratering, S.; Schnell, S.; Selivanovskaya, S.
2015-06-01
Oil wastes produced in large amounts in the processes of oil extraction, refining, and transportation are of great environmental concern because of their mutagenicity, toxicity, high fire hazardousness, and hydrophobicity. About 40% of these wastes contain radionuclides; however, the effects of oil products and radionuclides on soil microorganisms are frequently studied separately. The effects on various microbial parameters of raw waste containing 575 g of total petroleum hydrocarbons (TPH) kg-1 waste, 4.4 of 226Ra, 2.8 of 232Th, and 1.3 kBq kg-1 of 40K and its treated variant (1.6 g kg-1 of TPH, 7.9 of 226Ra, 3.9 of 232Th, and 183 kBq kg-1 of 40K) were examined in a leaching column experiment to separate the effects of hydrocarbons from those of radioactive elements. The raw waste sample (H) was collected from tanks during cleaning and maintenance, and a treated waste sample (R) was obtained from equipment for oil waste treatment. Thermal steam treatment is used in the production yard to reduce the oil content. The disposal of H waste samples on the soil surface led to an increase in the TPH content in soil: it became 3.5, 2.8, and 2.2 times higher in the upper (0-20 cm), middle (20-40 cm), and lower (40-60cm) layers, respectively. Activity concentrations of 226Ra and 232Th increased in soil sampled from both H- and R- columns in comparison to their concentrations in control soil. The activity concentrations of these two elements in samples taken from the upper and middle layers were much higher for the R-column compared to the H-column, despite the fact that the amount of waste added to the columns was equalized with respect to the activity concentrations of radionuclides. The H waste containing both TPH and radionuclides affected the functioning of the soil microbial community, and the effect was more pronounced in the upper layer of the column. Metabolic quotient and cellulase activity were the most sensitive microbial parameters as their levels were changed 5-1.4 times in comparison to control ones. Changes in soil functional characteristics caused by the treated waste containing mainly radionuclides were not observed. PCR-SSCP (polymerase chain reaction - single strand conformation polymorphism) analysis followed by MDS (metric multidimensional scaling) and clustering analysis revealed that the shifts in microbial community structure were affected by both hydrocarbons and radioactivity. Thus, molecular methods permitted to reveal the effects on soil microbial community not only from hydrocarbons, which significantly altered functional characteristics of soil microbiome, but also from radioactive elements.
Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester
2015-09-15
Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.
Removal of trace metal contaminants from potable water by electrocoagulation.
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K
2016-06-21
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
NASA Astrophysics Data System (ADS)
Amri, N.; Hashim, M. I.; Ismail, N.; Rohman, F. S.; Bashah, N. A. A.
2017-09-01
Electrocoagulation (EC) is a promising technology that extensively used to remove fluoride ions efficiently from industrial wastewater. However, it has received very little consideration and understanding on mechanism and factors that affecting the fluoride removal process. In order to determine the efficiency of fluoride removal in EC process, the effect of operating parameters such as voltage and electrolysis time were investigated in this study. A batch experiment with monopolar aluminium electrodes was conducted to identify the model of fluoride removal using empirical model equation. The EC process was investigated using several parameters which include voltage (3 - 12 V) and electrolysis time (0 - 60 minutes) at a constant initial fluoride concentration of 25 mg/L. The result shows that the fluoride removal efficiency increased steadily with increasing voltage and electrolysis time. The best fluoride removal efficiency was obtained with 94.8 % removal at 25 mg/L initial fluoride concentration, voltage of 12 V and 60 minutes electrolysis time. The results indicated that the rate constant, k and number of order, n decreased as the voltage increased. The rate of fluoride removal model was developed based on the empirical model equation using the correlation of k and n. Overall, the result showed that EC process can be considered as a potential alternative technology for fluoride removal in wastewater.
Removal of trace metal contaminants from potable water by electrocoagulation
NASA Astrophysics Data System (ADS)
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-06-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency.
BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...
Shokoohi, Reza; Torkshavand, Zahra; Zolghadnasab, Hassan; Alikhani, Mohammad Yousef; Hemmat, Meisam Sedighi
2017-04-01
Detergents are considered one of the important pollutants in hospital wastewater. Achieving efficient and bio-friendly methods for the removal of these pollutants is considered as a concern for environmental researchers. This study aims at studying the efficiency of a moving bed biofilm reactor (MBBR) system for removing linear alkyl benzene sulfonate (LAS) from hospital wastewater with utilization of response surface methodology (RSM). The present study was carried out on a reactor with continuous hydraulic flow using media k 1 at pilot scale to remove detergent from hospital wastewater. The effect of independent variables including contact time, percentage of media filling and mixed liquor suspended solids (MLSS) concentration of 1000-3000 mg/l on the system efficiency were assessed. Methylene blue active substances (MBAS) and chemical oxygen demand (COD) 750-850 mg/l were used by closed laboratory method in order to measure the concentration of LAS. The results revealed that the removal efficiency of LAS detergent and COD using media k 1 , retention time of 24 hours, and MLSS concentration of around 3,000 mg/l were 92.3 and 95.8%, respectively. The results showed that the MBBR system as a bio-friendly compatible method has high efficiency in removing detergents from hospital wastewater and can achieve standard output effluent in acceptable time.
NASA Astrophysics Data System (ADS)
Edwards, Nicholas W. M.; Best, Emma L.; Connell, Simon D.; Goswami, Parikshit; Carr, Chris M.; Wilcox, Mark H.; Russell, Stephen J.
2017-12-01
Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.
Underwater Sediment Sampling Research
2017-01-01
resolved through further experimentation . Underwater Sediment Sampling Research vi UNCLAS//Public | CG-926 RDC | A. Hanson, et al. Public...Chemical Oceanographer, and In situ Chemical Analysis Subject Matter Expert (SME). 2 LABORATORY TEST SET UP The experimental research and laboratory... methodology involved using a fluorescence oil sensor (Turner Designs Cyclops-7) to measure the TPH contained in the interstitial waters (i.e., pore
Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management
2015-05-01
feasibility studies. ................... 30 Table 5. Compounds screened in the laboratory for IS2 sampling...tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental Protection Agency UST...underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material contained in this report has
ABSTRACT: Total Petroleum hydrocarbons (TPH) as a lumped parameter can be easily and rapidly measured or monitored. Despite interpretational problems, it has become an accepted regulatory benchmark used widely to evaluate the extent of petroleum product contamination. Three cu...
Yang, Shangyuan; Liang, Zhiwei; Yu, Huadong; Wang, Yunlong; Chen, Yingxu
2014-02-01
Micro-electrolysis was applied in the present study to investigate the effect of pH, iron-carbon mass ratio, contact time, and treatment batch on the removal efficiency of chemical oxygen demand (COD) within an aminosilicone emulsion. The results exhibited that the removal efficiency of COD decreased linearly with the batch increase, and this tendency was consistent under the various conditions. The adsorption of activated carbons contributes a large portion to the elimination of COD within the aminosilicone emulsion. The oxidation action of iron-carbon micro-electrolysis was proven and the aminosilicone emulsion's COD removal contribution was approximately 16%. Aminosilicone polymers were adsorbed on the surface of activated carbons and iron chips, which contributes to the decline of COD removal efficiency and limits the contribution of oxidation action.
Behnajady, Mohammad A; Dadkhah, Hojjat; Eskandarloo, Hamed
2018-04-01
In this study, a horizontally rotating disc recirculated (HRDR) photoreactor equipped with two UV lamps (6 W) was designed and fabricated for photocatalytic removal of p-nitrophenol (PNP). Photocatalyst (TiO 2 ) nanoparticles were immobilized onto a high-density polyethylene (HDPE) disc, and PNP containing solution was allowed to flow (flow rate of 310 mL min -1 ) in radial direction along the surface of the rotating disc illuminated with UV light. The efficiency of direct photolysis and photocatalysis and the effect of rotating speed on the removal of PNP were studied in the HRDR photoreactor. It was found that TiO 2 -P25 nanoparticles are needed for the effective removal of PNP and there was an optimum rotating speed (450 rpm) for the efficient performance of the HRDR photoreactor. Then effects of operational variables on the removal efficiency were optimized using response surface methodology. The results showed that the predicted values of removal efficiency are consistent with experimental results with an R 2 of 0.9656. Optimization results showed that maximum removal percent (82.6%) was achieved in the HRDR photoreactor at the optimum operational conditions. Finally, the reusability of the HRDR photoreactor was evaluated and the results showed high reusability and stability without any significant decrease in the photocatalytic removal efficiency.
Yang, Jianping; Zhao, Yongchun; Zhang, Junying; Zheng, Chuguang
2014-12-16
To remove Hg(0) in coal combustion flue gas and eliminate secondary mercury pollution of the spent catalyst, a new regenerable magnetic catalyst based on cobalt oxide loaded magnetospheres from fly ash (Co-MF) was developed. The catalyst, with an optimal loading of 5.8% cobalt species, attained approximately 95% Hg(0) removal efficiency at 150 °C under simulated flue gas atmosphere. O2 could enhance the Hg(0) removal activity of magnetospheres catalyst via the Mars-Maessen mechanism. SO2 displayed an inhibitive effect on Hg(0) removal capacity. NO with lower concentration could promote the Hg(0) removal efficiency. However, when increasing the NO concentration to 300 ppm, a slightly inhibitive effect of NO was observed. In the presence of 10 ppm of HCl, greater than 95.5% Hg(0) removal efficiency was attained, which was attributed to the formation of active chlorine species on the surface. H2O presented a seriously inhibitive effect on Hg(0) removal efficiency. Repeated oxidation-regeneration cycles demonstrated that the spent Co-MF catalyst could be regenerated effectively via thermally treated at 400 °C for 2 h.
Liao, Hanpeng; Lu, Xiaomei; Rensing, Christopher; Friman, Ville Petri; Geisen, Stefan; Chen, Zhi; Yu, Zhen; Wei, Zhong; Zhou, Shungui; Zhu, Yongguan
2018-01-02
Composting is an efficient way to convert organic waste into fertilizers. However, waste materials often contain large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) that can reduce the efficacy of antibiotic treatments when transmitted to humans. Because conventional composting often fails to remove these compounds, we evaluated if hyperthermophilic composting with elevated temperature is more efficient at removing ARGs and MGEs and explored the underlying mechanisms of ARG removal of the two composting methods. We found that hyperthermophilic composting removed ARGs and MGEs more efficiently than conventional composting (89% and 49%, respectively). Furthermore, the half-lives of ARGs and MGEs were lower in hyperthermophilic compositing compared to conventional composting (67% and 58%, respectively). More-efficient removal of ARGs and MGEs was associated with a higher reduction in bacterial abundance and diversity of potential ARG hosts. Partial least-squares path modeling suggested that reduction of MGEs played a key role in ARG removal in hyperthermophilic composting, while ARG reduction was mainly driven by changes in bacterial community composition under conventional composting. Together these results suggest that hyperthermophilic composting can significantly enhance the removal of ARGs and MGEs and that the mechanisms of ARG and MGE removal can depend on composting temperature.
Kazemipour, Maryam; Ansari, Mehdi; Tajrobehkar, Shabnam; Majdzadeh, Majdeh; Kermani, Hamed Reihani
2008-01-31
In this work, adsorption of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) that exist in industrial wastewater onto the carbon produced from nutshells of walnut, hazelnut, pistachio, almond, and apricot stone has been investigated. All the agricultural shell or stone used were ground, sieved to a defined size range, and carbonized in an oven. Time and temperature of heating were optimized at 15 min and 800 degrees C, respectively, to reach maximum removal efficiency. Removal efficiency was optimized regarding to the initial pH, flow rate, and dose of adsorbent. The maximum removal occurred at pH 6-10, flow rate of 3 mL/min, and 0.1g of the adsorbent. Capacity of carbon sources for removing cations will be considerably decreased in the following times of passing through them. Results showed that the cations studied significantly can be removed by the carbon sources. Efficiency of carbon to remove the cations from real wastewater produced by copper industries was also studied. Finding showed that not only these cations can be removed considerably by the carbon sources noted above, but also removing efficiency are much more in the real samples. These results were in adoption to those obtained by standard mixture synthetic wastewater.
Khezri, Seyed Mostafa; Biati, Aida; Erfani, Zeynab
2012-01-01
In the present study, a pilot-scale sedimentation tank was used to determine the effect of wind velocity and direction on the removal efficiency of particles. For this purpose, a 1:20 scale pilot simulated according to Frude law. First, the actual efficiency of total suspended solids (TSS) removal was calculated in no wind condition. Then, the wind was blown in the same and the opposite directions of water flow. At each direction TSS removal was calculated at three different velocities from 2.5 to 7 m/s. Results showed that when the wind was in the opposite direction of water flow, TSS removal efficiency initially increased with the increase of wind velocity from 0 to 2.5 m/s, then it decreased with the increase of velocity to 5 m/s. This mainly might happen because the opposite direction of wind can increase particles' retention time in the sedimentation tank. However, higher wind velocities (i.e. 3.5 and 5.5 m/s) could not increase TSS removal efficiency. Thus, if sedimentation tanks are appropriately exposed to the wind, TSS removal efficiency increases by approximately 6%. Therefore, energy consumption will be reduced by a proper site selection for sedimentation tank unit in water and waste water treatment plants.
Salmani, M H; Mokhtari, M; Raeisi, Z; Ehrampoush, M H; Sadeghian, H A
2017-09-01
Wastewater containing pharmaceutical residual components must be treated before being discharged to the environment. This study was conducted to investigate the efficiency of tungsten-carbon nanocomposite in diclofenac removal using design of experiment (DOE). The 27 batch adsorption experiments were done by choosing three effective parameters (pH, adsorbent dose, and initial concentration) at three levels. The nanocomposite was prepared by tungsten oxide and activated carbon powder in a ratio of 1 to 4 mass. The remaining concentration of diclofenac was measured by a spectrometer with adding reagents of 2, 2'-bipyridine, and ferric chloride. Analysis of variance (ANOVA) was applied to determine the main and interaction effects. The equilibrium time for removal process was determined as 30 min. It was observed that the pH had the lowest influence on the removal efficiency of diclofenac. Nanocomposite gave a high removal at low concentration of 5.0 mg/L. The maximum removal for an initial concentration of 5.0 mg/L was 88.0% at contact time of 30 min. The results of ANOVA showed that adsorbent mass was among the most effective variables. Using DOE as an efficient method revealed that tungsten-carbon nanocomposite has high efficiency in the removal of residual diclofenac from the aqueous solution.
Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin
2015-12-01
Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Zijun; Xu, Peng; Cao, Xiuyun; Zhou, Yiyong; Song, Chunlei
2016-10-01
Stromwater biofilter technology was greatly improved through adding iron-rich soil, plant detritus and eutrophic lake sediment. Significant ammonium and phosphate removal efficiencies (over 95%) in treatments with iron-rich soil were attributed to strong adsorption capability resulting in high available phosphorus (P) in media, supporting the abundance and activity of nitrifiers and denitrifiers as well as shaping compositions, which facilitated nitrogen (N) removal. Aquatic and terrestrial plant detritus was more beneficial to nitrification and denitrification by stimulating the abundance and activity of nitrifiers and denitrifiers respectively, which increased total nitrogen (TN) removal efficiencies by 17.6% and 22.5%. In addition, bioaugmentation of nitrifiers and denitrifiers from eutrophic sediment was helpful to nutrient removal. Above all, combined application of these materials could reach simultaneously maximum effects (removal efficiencies of P, ammonium and TN were 97-99%, 95-97% and 60-63% respectively), suggesting reasonable selection of materials has important contribution and application prospect in stormwater biofilters. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Xiaomeng; Jing, Ruiying; Feng, Xu; Dai, Yunyu; Tao, Ran; Vymazal, Jan; Cai, Nan; Yang, Yang
2018-10-15
To better understand the performance of constructed wetlands (CWs) to remove acidic pharmaceuticals (APs) in wastewaters in subtropical areas and to optimize CW design criteria, six small-scale CWs under different design configurations were operated. The factors (environmental parameters, water quality, and seasonality) influencing the APs removal were also analyzed to illustrate the removal mechanisms. The results indicated that the best performances of CWs were up to 80-90%. Subsurface flow (SSF) CWs showed high removal efficiency for ibuprofen, gemfibrozil and naproxen, but surface flow (SF) CWs performed better for ketoprofen and diclofenac. The positive relationship between the removal efficiencies of ibuprofen, gemfibrozil, and naproxen with dissolved oxygen and ammonia nitrogen reveals that SSF CWs under aerobic conditions benefit the biodegradation, while the favorable conditions created by SF CWs for receiving solar radiation promote the effective photolysis of ketoprofen and diclofenac. Planted SSF CWs had significantly higher removal efficiencies of ibuprofen and gemfibrozil than the unplanted controls had in all seasons. The removal of all APs was higher in summer and autumn than those in winter. Furthermore, an inverse relationship between removal efficiency and the distribution coefficient (logDow) was observed in SF CWs. Overall, CWs that provide aerobic degradation and photolysis would benefit APs removal in subtropical areas in the south of China. Copyright © 2018 Elsevier B.V. All rights reserved.
Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha
2014-04-01
The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.
Removal of trace metal contaminants from potable water by electrocoagulation
Heffron, Joe; Marhefke, Matt; Mayer, Brooke K.
2016-01-01
This study investigated the effects of four operational and environmental variables on the removal of trace metal contaminants from drinking water by electrocoagulation (EC). Removal efficiencies for five metals (arsenic, cadmium, chromium, lead and nickel) were compared under varying combinations of electrode material, post-treatment, water composition and pH. Iron electrodes out-performed aluminum electrodes in removing chromium and arsenic. At pH 6.5, aluminum electrodes were slightly more effective at removing nickel and cadmium, while at pH 8.5, iron electrodes were more effective for these metals. Regardless of electrode, cadmium and nickel removal efficiencies were higher at pH 8.5 than at pH 6.5. Post-EC treatment using membrane filtration (0.45 μm) enhanced contaminant removal for all metals but nickel. With the exception of lead, all metals exhibited poorer removal efficiencies as the ionic strength of the background electrolyte increased, particularly in the very high-solids synthetic groundwaters. Residual aluminum concentrations were lowest at pH 6.5, while iron residuals were lowest in low ionic strength waters. Both aluminum and iron residuals required post-treatment filtration to meet drinking water standards. EC with post-treatment filtration appears to effectively remove trace metal contaminants to potable water standards, but both reactor and source water parameters critically impact removal efficiency. PMID:27324564
Kashitarash, Zahra Esfahani; Taghi, Samadi Mohammad; Kazem, Naddafi; Abbass, Afkhami; Alireza, Rahmani
2012-12-27
This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants.
2012-01-01
This study was performed with the objective of determining the efficiency of iron nanoparticles for reducing chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total solids (TS) and color of Hamadan city landfill leachate. Experiments were performed in a batch reactor and the main effective factors of pH, reaction time and concentration of iron nanoparticles were investigated. The obtained data were analyzed with One-Way ANOVA statistical test and SPSS-13 software. Maximum removal efficiencies were 47.94%, 35%, 55.62% and 76.66% for COD, BOD5, TS and color, respectively (for 2.5 g/L iron nanoparticles dosage, pH = 6.5 and 10 min reaction time). The results showed that the removal of COD, BOD5 and color had reverse relationship with contact time and TS removal followed a direct relationship (P < 0.05). Iron nanoparticles could remove averagely 53% of leachate COD, BOD5, TS and color in a short contact time (10 min) increasing pH up to 6.5, increased the removal efficiency for COD, BOD5, TS and color and then removal efficiency decreased with increasing pH to 8.5. Increasing the dosage of nanoparticles to 2.5 g/L increased the efficiency of process. High compatibility and efficiency of this process was proven by landfill leachate pre-treatment or post-treatment, so this removal method may be recommended for municipal solid waste landfill leachate treatment plants. PMID:23369361
Heavy metal tolerance and removal potential in mixed-species biofilm.
Grujić, Sandra; Vasić, Sava; Čomić, Ljiljana; Ostojić, Aleksandar; Radojević, Ivana
2017-08-01
The aim of the study was to examine heavy metal tolerance (Cd 2+ , Zn 2+ , Ni 2+ and Cu 2+ ) of single- and mixed-species biofilms (Rhodotorula mucilaginosa and Escherichia coli) and to determine metal removal efficiency (Cd 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Pb 2+ and Hg 2+ ). Metal tolerance was quantified by crystal violet assay and results were confirmed by fluorescence microscopy. Metal removal efficiency was determined by batch biosorption assay. The tolerance of the mixed-species biofilm was higher than the single-species biofilms. Single- and mixed-species biofilms showed the highest sensitivity in the presence of Cu 2+ (E. coli-MIC 4 mg/ml, R. mucilaginosa-MIC 8 mg/ml, R. mucilaginosa/E. coli-MIC 64 mg/ml), while the highest tolerance was observed in the presence of Zn 2+ (E. coli-MIC 80 mg/ml, R. mucilaginosa-MIC 161 mg/ml, R. mucilaginosa-E. coli-MIC 322 mg/ml). The mixed-species biofilm exhibited better efficiency in removal of all tested metals than single-species biofilms. The highest efficiency in Cd 2+ removal was shown by the E. coli biofilm (94.85%) and R. mucilaginosa biofilm (97.85%), individually. The highest efficiency in Cu 2+ (99.88%), Zn 2+ (99.26%) and Pb 2+ (99.52%) removal was shown by the mixed-species biofilm. Metal removal efficiency was in the range of 81.56%-97.85% for the single- and 94.99%-99.88% for the mixed-species biofilm.
Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M
2016-10-01
The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.
Denitrification-Efficiencies of Alternate Carbon Sources
1984-07-01
carbon source evaluated, while sweet whey, corn steep liquor , acid whey and soluble potato solids followed in order of decreasing efficiency. Three of...denitrification and total organic carbon removal with ’I. sweet whey 11 3. Percent denitrification and total organic carbon removal with corn steep liquor ...and total organic carbon removal with hydrolyzed sludge 18 10. Percent denitrification and total organic carbon removal with fish stick 19 11
Zhang, Hangjun; Zhu, Guoying; Jia, Xiuying; Ding, Ying; Zhang, Mi; Gao, Qing; Hu, Ciming; Xu, Shuying
2011-01-01
A new kind of low-cost syntactic adsorbent from bamboo charcoal and chitosan was developed for the removal of microcystin-LR from drinking water. Removal efficiency was higher for the syntactic adsorbent when the amount of bamboo charcoal was increased. The optimum dose ratio of bamboo charcoal to chitosan was 6:4, and the optimum amount was 15 mg/L; equilibrium time was 6 hr. The adsorption isotherm was non-linear and could be simulated by the Freundlich model (R2 = 0.9337). Adsorption efficiency was strongly affected by pH and natural organic matter (NOM). Removal efficiency was 16% higher at pH 3 than at pH 9. Efficiency rate was reduced by 15% with 25 mg/L NOM (UV254 = 0.089 cm(-1)) in drinking water. This study demonstrated that the bamboo charcoal modified with chitosan can effectively remove microcystin-LR from drinking water.
Tang, Jie; Chen, Chunxia; Chen, Lei; Daroch, Maurycy; Cui, Yan
2017-10-01
Various geographical duckweed isolates have been developed for phytoremediation of lead. The Pb 2+ removal efficiency of Lemna aequinoctialis, Landoltia punctata, and Spirodela polyrhiza was investigated in monoculture and polyculture at different levels of pH and initial Pb 2+ concentrations. L. aequinoctialis was not sensitive to the tested pH but significantly affected by initial Pb 2+ concentration, whereas synergistic effect of pH and initial Pb 2+ concentration on removal efficiency of L. punctata and S. polyrhiza was found. Although the majority of polycultures showed median removal efficiency as compared to respective monocultures, some of the polycultures achieved higher Pb 2+ removal efficiencies and can promote population to remove Pb 2+ . Besides, the three duckweed strains could be potential candidates for Pb 2+ remediation as compared to previous reports. Conclusively, this study provides useful references for future large-scale duckweed phytoremediation.
Crumb rubber filtration: a potential technology for ballast water treatment.
Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F
2006-05-01
The removal of turbidity, particles, phytoplankton and zooplankton in water by crumb rubber filtration was investigated. A substantial reduction was achieved. Of the three variables, filter depth, media size and filtration rate, media size had the most significant influence. Smaller media size favored higher removal efficiency of all targeted matter. There was no apparent relationship between removal efficiency and filter depth. Higher filtration rate resulted in lower removal efficiency and higher head loss. Compared with conventional granular media filters, crumb rubber filters required less backwash, and developed lower head loss. Consequently crumb rubber filters could be run for a longer time or allow a higher filtration rate. The results also indicate that the crumb rubber filtration alone did not achieve the target removal of invasive species. However, crumb rubber filtration could potentially be used as a primary treatment technology to enhance the efficiency of a secondary treatment process (e.g., disinfection).
Enhanced performance of crumb rubber filtration for ballast water treatment.
Tang, Zhijian; Butkus, Michael A; Xie, Yuefeng F
2009-03-01
Waste-tire-derived crumb rubber was utilized as filter media to develop an efficient filter for ballast water treatment. In this study, the effects of coagulation, pressure filtration and dual-media (gravity) filtration on the performance of the crumb rubber filtration were investigated. The removal efficiencies of turbidity, phytoplankton and zooplankton, and head loss development were monitored during the filtration process. The addition of a coagulant enhanced the removal efficiencies of all targeted matter, but resulted in substantial increase of head loss. Pressure filtration increased filtration rates to 220 m(3)h(-1)m(-2) for 8-h operation and improved the zooplankton removal. Dual-media (crumb rubber/sand) gravity filtration also improved the removal efficiencies of phytoplankton and zooplankton over mono-media gravity crumb rubber filtration. However, these filtration techniques alone did not meet the criteria for removing indigenous organisms from ballast water. A combination of filtration and disinfection is suggested for future studies.
Li, Jianjun; Ye, Guangyun; Sun, Duanfang; Sun, Guoping; Zeng, Xiaowei; Xu, Jian; Liang, Shizhong
2012-09-01
Two identical biotrickling filters named BTFa and BTFb were run in parallel to examine their performances in removing hydrogen sulfide. BTFa was filled with ceramic granules, and BTFb was filled with volcanic rocks. The results showed that BTFb was more robust than BTFa under acidic conditions. At empty bed residence times (EBRTs) of 20 and 15 s, the removal efficiency of BTFa was close to 100%. At EBRTs of 10 and 5 s, the removal efficiency of BTFa slightly decreased. The removal efficiencies of BTFa decreased by different degrees at the end of each stage, dropping to 94%, 81%, 60%, and 71%, respectively. However, the H(2)S removal efficiency in BTFb consistently reached 99% throughout the experiment. Pyrosequencing analyses indicated that members of Thiomonas dominated in both BTFs, but the relative abundance of Acidithiobacillus was higher in BTFb than in BTFa.
[Fluorine removal efficiency of organic-calcium during coal combustion].
Liu, Jing; Liu, Jian-Zhong; Zhou, Jun-Hu; Xiao, Hai-Ping; Cen, Ke-Fa
2006-08-01
Effectiveness of calcium magnesium acetate (CMA) and calcium acetate(CA) as feasible HF capture were studied by means of fixed bed tube furnaces. The effects of temperature, particle diameter and Ca/S molar ratio on the fluorine removal efficiency were studied. By contract with CaCO3 at the same condition, we find that the HF capture effectiveness of those sorbents is superior to CaCO3, especially at high temperature. At 1 000 - 1 100 degrees C, the efficiency of fluorine removal during coal combustion of CMA is 1.68 - 1.74 times as that of CaCO3; the efficiency of fluorine removal during coal combustion of CA is 1.28 - 1.37 times as that of CaCO3.
Mai, Lei; van den Akker, Ben; Du, Jun; Kookana, Rai S; Fallowfield, Howard
2016-06-01
The application of fixed bed high rate nitrifying trickling filters (NTFs) for the removal of track organic chemicals of concern (CoC) is less well known than their application to nutrient removal in water treatment. Particularly, the effect of exogenous organic carbon substrate (sucrose) loading on the performance of NTFs is not well understood. A laboratory-scale NTF system was operated in recirculation mode, with the objective of removing ammonia and CoC simultaneously. The efficiency of a high rate NTF for removal both of low concentration of ammonia (5 mg NH4-N L(-1)) and different concentrations of CoC in the presence of an exogenous organic carbon substrate (30 mg total organic carbon (TOC) L(-1)) was investigated. In the presence of exogenous organic carbon, the results demonstrated that the high rate NTF was able to successfully remove most of the CoCs investigated, with the removal ranging from 20.2% to 87.54%. High removal efficiencies were observed for acetaminophen (87.54%), bisphenol A (86.60%), trimethoprim (86.24%) and 17α-ethynylestradiol (80.60%). It was followed by the medium removal efficiency for N, N-diethyl-m-toluamide (61.31%) and atrazine (56.90%). In contrast, the removal of caffeine (28.43%) and benzotriazole (20.20%) was poorer in the presence of exogenous organic carbon. The removal efficiency for CoC was also compared with the results obtained in our previous study in the absence of exogenous organic carbon. The results showed that the addition of exogenous organic carbon was able to improve the removal of some of the CoC. Significant TOC percentage removals (45.68%-84.43%) and ammonia removal rate (mean value of 0.44 mg NH4-N L(-1) h(-1)) were also achieved in this study. The findings from this study provide valuable information for optimising the efficiency of high rate NTF for the removal of ammonia, CoC and TOC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance of hybrid constructed wetland systems for treating septic tank effluent.
Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang
2006-01-01
The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.
Araya, F; Vera, I; Sáez, K; Vidal, G
2016-01-01
The objective was to evaluate the effects of intermittent artificial aeration cycles and natural zeolite as a support medium, in addition to the contribution of plants (Schoenoplectus californicus) on NH4(+)-N removal during sewage treatment by Constructed Wetlands (CW). Two lines of Mesocosm Constructed Wetland (MCW) were installed: (a) gravel line (i.e. G-Line) and (b) zeolite line (i.e. Z-Line). Aeration increased the NH4(+)-N removal efficiency by 20-45% in the G-Line. Natural zeolite increased the NH4(+)-N removal efficiency by up to 60% in the Z-Line. Plants contributed 15-30% of the NH4(+)-N removal efficiency and no difference between the G-Line and the Z-Line. Conversely, the NH4(+)-N removal rate was shown to only increase with the use of natural zeolite. However, the MCW with natural zeolite, the NH4(+)-N removal rate showed a direct relationship only with the NH4(+)-N influent concentration. Additionally, relationship between the oxygen, energy and area regarding the NH4(+)-N removal efficiency was established for 2.5-12.5 gO2/(kWh-m(2)) in the G-Line and 0.1-2.6 gO2/(kWh-m(2)) in the Z-Line. Finally, it was established that a combination of natural zeolite as a support medium and the aeration strategy in a single CW could regenerate the zeolite's adsorption sites and maintain a given NH4(+)-N removal efficiency over time.
Pueyo, N; Miguel, N; Ovelleiro, J L; Ormad, M P
The purpose of this study is to compare the efficiency of ozonation and the hydrogen peroxide-ozone process for the removal of cyanide from coking wastewater. The most efficient oxidation process is combined with coagulation-flocculation-decantation and lime-soda ash softening pretreatments. The oxidation in aqueous solution and industrial wastewater (at pH 9.5-12.3) by O3 was carried out using a range of concentration of consumed O3 from 10 to 290 mg/L. A molar ratio of H2O2/O3 from 0.1 to 5.2 with different concentrations of O3 constants was used for the H2O2-O3 process. The maximum cyanide removal obtained in coking wastewater was 90% using a mass ratio of O3/CN(-) of 9.5. Using lower concentrations of O3, cyanide is not removed and can even be generated due to the presence of other cyanide precursor organic micropollutants in the industrial matrix. The concentration of O3 is reduced to half for the same cyanide removal efficiency if the pretreatments are applied to reduce the carbonate and bicarbonate ions. The cyanide removal efficiency in coking wastewater is not improved if the O3 is combined with the H2O2. However, the preliminary cyanide removal treatment in aqueous solution showed an increase in the cyanide removal efficiency for the H2O2-O3 process.
Zhao, Zhimiao; Song, Xinshan; Zhang, Yinjiang; Zhao, Yufeng; Wang, Bodi; Wang, Yuhui
2017-12-01
In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe 3+ (5.6 mg L -1 ), iron powder (2.8 mg L -1 ), and CaCO 3 powder (0.2 mg L -1 ) in influent as the adjusting agents, initial phosphorus source (PO 4 3- ) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO 3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe 3+ and iron powder produced Fe 2+ , which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
... to the national best bid or offer (``NBBO''); and (iv) there are no public customer orders resting in... to provide their customers a net price for the stock-option trade, and then allow the TPH to execute... or near the same time; (iv) the specific relationship between the component orders (e.g., the spread...
Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management
2015-05-01
Example anion concentrations in groundwater used for feasibility studies. ................... 30 Table 5. Compounds screened in the laboratory for IS2...phase extraction ST storage tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental...Protection Agency UST underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-12
... entered by the Submitting TPH during the RFQ Reaction Period. The ``RFQ Reaction Period'' is the period of... Response and Reaction Periods.\\19\\ When trading moves to the enhanced System, FLEX Orders may not be... to enter a FLEX Order during the RFQ Response and Reaction Periods, the FLEX Order will be rejected...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-17
.... Subsequent offenses will be referred to CFE's Business Conduct Committee. Block Trade Recordkeeping and... with CFE Rule 415 (which governs Block Trades). A first offense will result in the issuance of a letter... Block Trades on behalf of the TPH. A first offense will result in the issuance of a letter of caution...
40 CFR 63.8390 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... with a design capacity equal to or greater than 9.07 Mg/hr (10 tph) of fired product will be called a... Products Manufacturing What This Subpart Covers § 63.8390 What parts of my plant does this subpart cover... manufacturing facility. (b) The existing affected source is an existing tunnel kiln with a design capacity equal...
Hu, Guangji; Li, Jianbing; Hou, Haobo
2015-01-01
A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
[Difference in target antigens between central tolerance and peripheral tolerance deficiencies].
Chida, Natsuko; Kobayashi, Ichiro
2015-01-01
Failure of the immunotolerance mechanisms causes multiple organ-specific autoimmune disorders. Mutations of autoimmune regulator (AIRE) gene result in central immunotolerance deficiency named autoimmune polyendocrinopathy, candidiasis, ectodermal dystrophy (APECED). Mutations of FOXP3 genes cause regulatory T cell (Treg) deficiency named immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. Because T cell tolerance influences B cell tolerance, autoantibodies seem to reflect the presence of autoreactive T cells with the same antigen specificity. To date many differences in both clinical features and autoantibody profiles have been described between APECED and IPEX syndrome. In addition to the differences in target organs, we have found differences in the target antigens in the same organ, small intestine, between both disorders; anti-autoimmune enteropathy-related 75 kDa antigen (AIE-75) antibodies are specific to IPEX syndrome, whereas anti-tryptophan hydroxylase-1 (TPH-1) antibodies are specific to APECED. These facts suggest that immunotolerance to AIE-75 depends on the Treg, whereas the tolerance to TPH-1 depends on the central mechanisms. Furthermore, given the earlier onset and more serious clinical features of IPEX syndrome than APECED, physiological roles of Aire on the selection of Treg may be, if present, limited.
RSRM TP-H1148 Main Grain Propellant Crack Initiation Evaluation
NASA Technical Reports Server (NTRS)
Earnest, Todd E.
2005-01-01
Pressurized TP-HI 148 propellant fracture toughness testing was performed to assess the potential for initiation of visually undetectable cracks in the RSRM forward segment transition region during motor ignition. Two separate test specimens were used in this evaluation. Testing was performed in cold-gas and hot-fire environments, and under both static and dynamic pressurization conditions. Analysis of test results demonstrates safety factors against initiation of visually undetectable cracks in excess of 8.0. The Reusable Solid Rocket Motor (RSRM) forward segment is cast with PBAN propellant (TP-HI 148) to form T an 1 1-point star configuration that transitions to a tapered center perforated bore (see Figure 1). The geometry of the transition region between the fin valleys and the bore causes a localized area of high strain during horizontal storage. Updated analyses using worst-case mechanical properties at 40 F and improved modeling techniques indicated a slight reduction in safety margins over previous predictions. Although there is no history of strain induced cracks or flaws in the transition region propellant, a proactive test effort was initiated to better understand the implications of the new analysis, primarily the resistance of TP-H1148 propellant to crack initiation' during RSRM ignition.
TPH2 polymorphisms and alcohol-related suicide.
Zupanc, Tomaž; Pregelj, Peter; Tomori, Martina; Komel, Radovan; Paska, Alja Videtič
2011-02-18
Substantial evidence from family, twin, and adoption studies corroborates implication of genetic and environmental factors, as well as their interactions, on suicidal behavior and alcoholism risk. Serotonergic disfunction seems to be involved in the pathophysiology of substance abuse, and has also an important role in suicidal behavior. Recent studies of the tryptophan hydroxylase 2 showed mild or no association with suicide and alcohol-related suicide. We performed SNP and alcohol analysis on 388 suicide victims and 227 controls. The results showed association between suicide (Pχ²=0.043) and alcohol-related suicide (Pχ²=0.021) for SNP Rs1843809. A tendency for association was determined also for polymorphism Rs1386493 (Pχ²=0.055) and alcohol-related suicide. Data acquired from psychological autopsies in a subsample of suicide victims (n=79) determined more impulsive behavior (Pχ²=0.016) and verbal aggressive behavior (Pχ²=0.025) in the subgroup with alcohol misuse or dependency. In conclusion, our results suggest implication of polymorphisms in suicide and alcohol-related suicide, but further studies are needed to clarify the interplay among serotonergic system disfunction, suicide, alcohol dependence, impulsivity and the role of TPH2 enzyme. © 2010 Elsevier Ireland Ltd. All rights reserved.
Iturbe, R; Flores-Serrano, R M; Castro, A; Flores, C; Torres, L G
2010-11-01
This investigation deals with the characterization carried out in zones around two pipeline pumping stations and one pipeline right-of-way in the north of Mexico. In particular those areas where contamination was evaluated: (a) south area of the separation ditch in the Avalos station, (b) the area between the separation ditch at the Avalos station, (c) km 194+420 of the Moctuzma station, and (d) km 286+900 in the Candelaria station. Results of this investigation showed that only four samples showed TPH values higher than the Mexican limit for 2004: AVA 1B, with 21,191 mg kg(-1); AVA 1C, with 9348 mg kg(-1); AVA 2B, with 13,970 mg kg(-1); and MOC 2A, with 4108 mg kg(-1).None of the sampled points showed the presence of PAHs at values higher than those found in the Mexican or American legislations. PAH were detected in the range of 0.0004 and 13.05 mg kg(-1).It is suggested to implement surfactant soil washing as a remediation technique for the approximately 600 m(3) that need to be treated. Copyright 2010 Elsevier Ltd. All rights reserved.
Sanches Filho, Pedro J; Böhm, Emerson M; Böhm, Giani M B; Montenegro, Gissele O; Silveira, Lucas A; Betemps, Glauco R
2017-01-30
A high concentration of hydrocarbons in the environment is indicative of pollution. To evaluate the effect of hydrocarbons transported by urban runoff, the present study analyzed total petroleum hydrocarbons (TPHs), aliphatic hydrocarbons (AHs), unresolved complex mixture (UCM), and n-alkanes of the sediments of the canal that cross the urban area of Pelotas, Rio Grande do Sul, Brazil. The carbon preference index (CPI), terrigenous/aquatic ratio (TAR), and pristane/phytane ratio were determined. The TPH content ranged from 177,043.7μg·kg -1 ±13.4% to 5,892,667.0μg·kg -1 ±5.9%. The total aliphatic content ranged from 116,268.8μg·kg -1 ±11.1% to 2,393,592.6μg·kg -1 ±7.7%, indicating chronic contamination of n-alkanes petrogenic and biogenic sources. The levels of hydrocarbons (TPH, AHs, and n-alkanes) were considered relatively high, confirming the effect of urban runoff on the drainage system of cities and their consequent effect on the estuarine region of Patos Lagoon and other water resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sowlat, Mohammad Hossein; Kakavandi, Babak; Lotfi, Saeedeh; Yunesian, Masud; Abdollahi, Mohammad; Rezaei Kalantary, Roshanak
2017-05-01
In the present systematic review, we aimed to collect and analyze all the relevant evidence on the efficiency of cerium-impregnated versus virgin-activated carbons (ACs) for the removal of gas-phase elemental mercury (Hg 0 ) from the flue gas of coal-fired power plants and to assess the effect of different calcination and operational parameters on their efficiency. A total of eight relevant papers (out of 1193 hits produced by the search) met the eligibility criteria and were included in the study. Results indicated that the Hg 0 adsorption capacity of cerium-impregnated ACs is significantly higher than that of virgin ACs, depending highly on the impregnation and operational parameters. It was noticed that although cerium-impregnated ACs possessed smaller surface areas and pore volumes, their Hg 0 removal efficiencies were still higher than their virgin counterparts. An increased Hg 0 removal efficiency was in general found by increasing the operational adsorption temperature as high as 150-170 °C. Studies also indicated that NO, SO 2 , and HCl have promoting impacts on the Hg 0 removal efficiency of Ce-impregnated ACs, while H 2 O has an inhibitory effect.
Senduran, Cem; Gunes, Kemal; Topaloglu, Duygu; Dede, Omer Hulusi; Masi, Fabio; Kucukosmanoglu, Ozen Arli
2018-08-01
This study performed in Sapanca Lake catchment area, used as a drinking water resource. Two highways located at northern and southern shores, and a railway at its south are significant sources of pollution. As a possible solution for protecting water quality a pocket wetland constructed and operated. Performances statistically interpreted by Spearman's Correlation test and univariate analysis of variance on collected data. The mean removal efficiencies obtaited were 52% (TSS), 4% (Nitrate), 26% (TN), -5% (TOC), 63% (TP), 4.5% (Chloride), 3% (Sulfate), 33% (Cr), 39% (Co), -19.5% (Ni), 7% (Cu), 55% (Zn), 36% (As), 38% (Cd) and 18% (Pb). TSS removal was in positive significant medium correlation with Co, Cu, Zn, and Pb removal respectively (p < 0.05). Other statistically significant positive high correlations calculated between removal efficiency of Nitrate-TN, Chloride-Sulfate, Cr-Co-Cu-As-Cd. According to ANOVA and Kruskal-Wallis test results, removal efficiencies of TSS and TOC partially affected by different temperature (p < 0.1 for TSS and p < 0.05 for TOC) and pH ranges (p < 0.1 for both removal efficiencies), TP removal efficiency significantly affected by different pH ranges (p < 0.001), and Chloride and Sulfate removal efficiencies were significantly (p < 0.001) affected by different temperature ranges. Regardless of geographical location and climatic factors, pocket wetland systems can be relied upon for minimizing heavy metals such as Cr, Co, Zn, As, Cd and Pb and critical pollutants such as TP and TSS caused by highway runoff. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lee, Minhee; Yang, Minjune
2010-01-15
The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.
Meng, Fansheng; Xue, Hao; Wang, Yeyao; Zheng, Binghui; Wang, Juling
2018-02-01
Electrokinetic experiments were conducted on chromium-residue-contaminated soils collected from a chemical plant in China. Acidification-electrokinetic remediation technology was proposed in order to solve the problem of removing inefficient with ordinary electrokinetic. The results showed that electrokinetic remediation removal efficiency of chromium from chromium-contaminated soil was significantly enhanced with acidizing pretreatment. The total chromium [Cr(T)] and hexavalent chromium [Cr(VI)] removal rate of the group acidized by citric acid (0.9 mol/L) for 5 days was increased from 6.23% and 19.01% in the acid-free experiments to 26.97% and 77.66% in the acidification-treated experiments, respectively. In addition, part of chromium with the state of carbonate-combined will be converted into water-soluble state through acidification to improve the removal efficiency. Within the appropriate concentration range, the higher concentration of acid was, the more chromium was released. So the removal efficiency of chromium depended on the acid concentration. The citric acid is also a kind of complexing agent, which produced complexation with Cr that was released by the electrokinetic treatment and then enhanced the removal efficiency. The major speciation of chromium that was removed from soils by acidification-electrokinetics remediation was acid-soluble speciation, revivification speciation and oxidation speciation, which reduced biological availability of chromium.
García-Bautista, I; Toledano-Thompson, T; Dantán-González, E; González-Montilla, J; Valdez-Ojeda, R
2017-09-21
Marine environments are a reservoir of relevant information on dangerous contaminants such as hydrocarbons, as well as microbial communities with probable degradation skills. However, to access microbial diversity, it is necessary to obtain high-quality DNA. An inexpensive, reliable, and effective metagenomic DNA (mgDNA) extraction protocol from marine sediments contaminated with petroleum hydrocarbons was established in this study from modifications to Zhou's protocol. The optimization included pretreatment of sediment with saline solutions for the removal of contaminants, a second precipitation and enzymatic degradation of RNA, followed by purification of mgDNA extracted by electroelution. The results obtained indicated that the modifications applied to 12 sediments with total petroleum hydrocarbon (TPH) concentrations from 22.6-174.3 (µg/g dry sediment) yielded 20.3-321.3 ng/µL mgDNA with A 260 /A 280 and A 260 /A 230 ratios of 1.75 ± 0.08 and 1.19 ± 0.22, respectively. The 16S rRNA amplification confirmed the purity of the mgDNA. The suitability of this mgDNA extraction protocol lies in the fact that all chemical solutions utilized are common in all molecular biology laboratories, and the use of dialysis membrane does not require any sophisticated or expensive equipment, only an electrophoretic chamber.
Lee, Jae-Ho; Park, Jeung-Jin; Choi, Gi-Choong; Byun, Im-Gyu; Park, Tae-Joo; Lee, Tae-Ho
2013-01-01
Spent sulfidic caustic (SSC) produced from petroleum industry can be reused to denitrify nitrate-nitrogen via a biological nitrogen removal process as an electron donor for sulfur-based autotrophic denitrification, because it has a large amount of dissolved sulfur. However, SSC has to be refined because it also contains some aromatic hydrocarbons, typically benzene, toluene, ethylbenzene, xylene (BTEX) and phenol that are recalcitrant organic compounds. In this study, laboratory-scale ultrasound irradiation and air stripping treatment were applied in order to remove these aromatic hydrocarbons. In the ultrasound system, both BTEX and phenol were exponentially removed by ultrasound irradiation during 60 min of reaction time to give the greatest removal efficiency of about 80%. Whereas, about 95% removal efficiency of BTEX was achieved, but not any significant phenol removal, within 30 min in the air stripping system, indicating that air stripping was a more efficient method than ultrasound irradiation. However, since air stripping did not remove any significant phenol, an additional process for degrading phenol was required. Accordingly, we applied a combined ultrasound and air stripping process. In these experiments, the removal efficiencies of BTEX and phenol were improved compared to the application of ultrasound and air stripping alone. Thus, the combined ultrasound and air stripping treatment is appropriate for refining SSC.
Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene
2012-06-01
Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhou, Xin; Guo, Xuesong; Han, Yunping; Liu, Junxin; Ren, Jincheng; Wang, Yu; Guo, Yantao
2012-09-01
Seven different aeration modes, in which oxygen supply was changed by adjusting the number of aerators, were designed and applied in a full-scale municipal wastewater treatment plant with Orbal oxidation ditch to investigate the influence of dissolved oxygen (DO) on nitrogen removal performance. The full-scale experiment results of 574 days showed that nitrogen removal efficiency depended on the degree of nitrification and denitrification in the outer channel, which was the largest contributor for TN removal in the Orbal oxidation ditch. Appropriate aeration control in the outer channel was essential to balance nitrification and denitrification in the Orbal oxidation ditch. When DO was as low as about 0.2 mg/L in the outer channel, the highest TN removal efficiency of 75% was obtained. Microbial analysis confirmed that aerobic and anaerobic bacteria coexisted in the outer channel. The greater species diversity and more intensive activities of these bacteria in aeration Mode V may be responsible for the higher TN removal efficiency compared with Mode III. These results suggest that different aerated conditions in the Orbal oxidation ditch might have a significant effect on microbial community characteristics and nitrogen removal efficiencies.
Su, Yanyan; Mennerich, Artur; Urban, Brigitte
2012-08-01
The influence of biotic (algal inoculum concentration) and abiotic factors (illumination cycle, mixing velocity and nutrient strength) on the treatment efficiency, biomass generation and settleability were investigated with selected mixed algal culture. Dark condition led to poor nutrient removal efficiency. No significant difference in the N, P removal and biomass settleability between continuous and alternating illumination was observed, but a higher biomass generation capability for the continuous illumination was obtained. Different mixing velocity led to similar phosphorus removal efficiencies (above 98%) with different retention times. The reactor with 300 rpm mixing velocity had the best N removal capability. For the low strength wastewater, the N rates were 5.4±0.2, 9.1±0.3 and 10.8±0.3 mg/l/d and P removal rates were 0.57±0.03, 0.56±0.03 and 0.72±0.05 mg/l/d for reactors with the algal inoculum concentration of 0.2, 0.5 and 0.8 g/l, respectively. Low nutrient removal efficiency and poor biomass settleability were obtained for high strength wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kegel, F Schoonenberg; Rietman, B M; Verliefde, A R D
2010-01-01
Drinking water utilities in Europe are faced with a growing presence of organic micropollutants in their water sources. The aim of this research was to assess the robustness of a drinking water treatment plant equipped with reverse osmosis and subsequent activated carbon filtration for the removal of these pollutants. The total removal efficiency of 47 organic micropollutants was investigated. Results indicated that removal of most organic micropollutants was high for all membranes tested. Some selected micropollutants were less efficiently removed (e.g. the small and polar NDMA and glyphosate, and the more hydrophobic ethylbenzene and napthalene). Very high removal efficiencies for almost all organic micropollutants by the subsequent activated carbon, fed with the permeate stream of the RO element were observed except for the very small and polar NDMA and 1,4-dioxane. RO and subsequent activated carbon filtration are complementary and their combined application results in the removal of a large part of these emerging organic micropollutants. Based on these experiments it can be concluded that the robustness of a proposed treatment scheme for the drinking water treatment plant Engelse Werk is sufficiently guaranteed.
Biofilm Removal Using Carbon Dioxide Aerosols without Nitrogen Purge.
Hong, Seongkyeol; Jang, Jaesung
2016-11-06
Biofilms can cause serious concerns in many applications. Not only can they cause economic losses, but they can also present a public health hazard. Therefore, it is highly desirable to remove biofilms from surfaces. Many studies on CO2 aerosol cleaning have employed nitrogen purges to increase biofilm removal efficiency by reducing the moisture condensation generated during the cleaning. However, in this study, periodic jets of CO2 aerosols without nitrogen purges were used to remove Pseudomonas putida biofilms from polished stainless steel surfaces. CO2 aerosols are mixtures of solid and gaseous CO2 and are generated when high-pressure CO2 gas is adiabatically expanded through a nozzle. These high-speed aerosols were applied to a biofilm that had been grown for 24 hr. The removal efficiency ranged from 90.36% to 98.29% and was evaluated by measuring the fluorescence intensity of the biofilm as the treatment time was varied from 16 sec to 88 sec. We also performed experiments to compare the removal efficiencies with and without nitrogen purges; the measured biofilm removal efficiencies were not significantly different from each other (t-test, p > 0.55). Therefore, this technique can be used to clean various bio-contaminated surfaces within one minute.
Jia, Cuiying; Kang, Ruijuan; Zhang, Yuhui; Cong, Wei; Cai, Zhaoling
2007-03-01
Biodegradation and decolorization of monosodium glutamate wastewater were carried out by using an acidophilus yeast strain of Saccharomyces cerevisiae and Coriolus versicolor. For the yeast treatment, the highest COD removal and reducing sugar removal efficiency were 76.6% and 80.2%, respectively. The color removal was only 2%. For C. versicolor treatment, the highest COD removal, color removal and reducing sugar removal efficiencies were 78.7%, 56.5% and 90.9%, respectively. The synergic treatment process, in which the yeast and C. versicolor were successively applied,exhibited great advantage over the individual process.
Huang, Pengpeng; Ye, Zhengfang; Xie, Wuming; Chen, Qi; Li, Jing; Xu, Zhencheng; Yao, Maosheng
2013-08-01
Much work is devoted to heavy metal sorption, reduction and relevant mechanisms by nanoscale zero valent iron (nZVI) particle, but fewer studies utilize its magnetic properties in aqueous metal removals. Here, we have investigated the use of nZVI particles both electrosprayed (E-nZVI) and non-electrosprayed (NE-nZVI) with different concentration levels (0.186-1.86 mg/mL) in removing aqueous Cd(II), Cr(IV), and Pb(II) through the magnetic separation means. The effects of the reaction time (5-20 min) and magnetic treatment time (1-30 min) on relevant magnetic removal efficiencies were studied. Metal ion concentration was analyzed using inductively coupled plasma (ICP), and the magnetically obtained metal-nZVI mixtures were further analyzed using X-ray photoelectron spectroscopy (XPS). Results showed that the magnetic removal efficiencies of heavy metals varied with the metal species, nZVI loading, reaction and magnetic separation time. In most cases, use of 1.5 mg/mL E-nZVI or NE-nZVI resulted in removal efficiencies of more than 80% for Pb(II), Cd(II), and Cr(IV). Increasing the magnetic treatment time from 1 to 20 min was shown to lead to ≈ 20% increase in Pb(II) removal efficiency, but no improvements for Cd(II) and Cr(IV). In contrast, increasing the reaction time decreased the Pb(II) removal efficiency, yet no effects observed for Cd(II) and Cr(IV). In general, 1 min reaction and 5 min magnetic treatment were found sufficient to achieve considerable heavy metal removals. For comparable efficiencies, use of magnetic method could significantly reduce nZVI loading. XPS analysis results indicated that atomic percentages of O 1s, Fe 2p, Cd 3d, Pb 4f and Cr 2p varied with metal exposures. Different from Cd(II) and Cr(IV), aqueous iron ions might be possibly present when treating Pb(II). This study demonstrated a rapid heavy metal removal method using the magnetic property of nZVI particles, while contributing to understanding of the relevant removal mechanisms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Meutia, A A
2001-01-01
Wastewater treatment by constructed wetland is an appropriate technology for tropical developing countries like Indonesia because it is inexpensive, easily maintained, and has environmentally friendly and sustainable characteristics. The aim of the research is to examine the capability of constructed wetlands for treating laboratory wastewater at our Center, to investigate the suitable flow for treatment, namely vertical subsurface or horizontal surface flow, and to study the effect of the seasons. The constructed wetland is composed of three chambered unplanted sedimentation tanks followed by the first and second beds, containing gravel and sand, planted with Typha sp.; the third bed planted with floating plant Lemna sp.; and a clarifier with two chambers. The results showed that the subsurface flow in the dry season removed 95% organic carbon (COD) and total phosphorus (T-P) respectively, and 82% total nitrogen (T-N). In the transition period from the dry season to the rainy season, COD removal efficiency decreased to 73%, T-N increased to 89%, and T-P was almost the same as that in the dry season. In the rainy season COD and T-N removal efficiencies increased again to 95% respectively, while T-P remained unchanged. In the dry season, COD and T-P concentrations in the surface flow showed that the removal efficiencies were a bit lower than those in the subsurface flow. Moreover, T-N removal efficiency was only half as much as that in the subsurface flow. However, in the transition period, COD removal efficiency decreased to 29%, while T-N increased to 74% and T-P was still constant, around 93%. In the rainy season, COD and T-N removal efficiencies increased again to almost 95%. On the other hand, T-P decreased to 76%. The results show that the constructed wetland is capable of treating the laboratory wastewater. The subsurface flow is more suitable for treatment than the surface flow, and the seasonal changes have effects on the removal efficiency.
[Influencing factors and mechanism of arsenic removal during the aluminum coagulation process].
Chen, Gui-Xia; Hu, Cheng-Zhi; Zhu, Ling-Feng; Tong, Hua-Qing
2013-04-01
Aluminum coagulants are widely used in arsenic (As) removal during the drinking water treatment process. Aluminium chloride (AlCl3) and polyaluminium chloride (PACl) which contains high content of Al13 were used as coagulants. The effects of aluminum species, pH, humic acid (HA) and coexisting anions on arsenic removal were investigated. Results showed that AlCl3 and PACl were almost ineffective in As(II) removal while the As(V) removal efficiency reached almost 100%. pH was an important influencing factor on the arsenic removal efficiency, because pH influenced the distribution of aluminum species during the coagulation process. The efficiency of arsenic removal by aluminum coagulants was positively correlated with the content of Al13 species. HA and some coexisting anions showed negative impact on arsenic removal because of the competitive adsorption. The negative influence of HA was more pronounced at low coagulant dosages. PO4(3-) and F(-) showed marked influence during arsenic removal, but there was no obvious influence when SiO3(2-), CO3(2-) and SO4(2-) coexisted. The present study would be helpful to direct arsenic removal by enhanced coagulation during the drinking water treatment.
Nitrogen removal via nitrite from seawater contained sewage.
Peng, Yongzhen; Yu, De-Shuang; Liang, Dawei; Zhu, Guibing
2004-01-01
Under the control of both pH and the concentration of free ammonia (FA), the nitrification-denitrification via nitrite pathway was accomplished in SBR to achieve enhanced biological nitrogen removal from seawater contained wastewater, which is used to flush toilet, under relatively high salinity. Several parameters including salinity, temperature, pH, and NH4+-N loading rate were studied to evaluate their effects. The results indicate that at different salinity the nitrogen removal efficiency is relative to ammonia-nitrogen loading rate. The nitrogen removal efficiency reaches above 90% when the NH4+-N loading does not exceed 0.15 kg NH4+-N/kg MLSS d. With the salinity increasing, the ammonia-nitrogen loading rate should be lowered to obtain high removal efficiency. The evaluation of temperature effect shows that nitrogen removal efficiency is promoted twice when reaction temperature is elevated from 20 to 30 degrees C. Moderately high pH in the range of 7.5-8.5 has advantage to achieve effective nitrification-denitrification via nitrite, the process of which is caused by the selective inhibition of free ammonia (FA).
NASA Astrophysics Data System (ADS)
Desmiarti, Reni; Hazmi, Ariadi; Martynis, Munas; Sutopo, Ulung Muhammad; Li, Fusheng
2018-02-01
Pathogenic bacteria, such as total coliforms (TC), fecal coliforms (FC) and other coliforms (OC), were removed from groundwater by inductively coupled plasma system treatment in continuous flow experiments. The objective of this study is to investigate the effect of flowrate and frequency on the behavior of microorganisms in drinking water treatment using inductively coupled plasma system (ICPS). The results showed that after 120 minutes of ICPS treatment, the removal efficiency with respect to TC, FC and OC decreased with increasing flowrate. The removal efficiency of FC was achieved at 100% in all runs. Compared to FC, the removal efficiencies with respect to TC and FC were lower than those with respect to TC and OC in the following order: FC >OC> TC. The disinfection yield of TC and OC significantly increased when the removal efficiency increased. The electromagnetic flux varied from 8.08±0.46 to 10.54±0.19 W/cm2. The results in the present work can be used to design a new technology for drinking water treatment to remove all pathogenic bacteria without using hazardous chemicals.
Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.
Tong, Xuejiao; Xu, Renkou
2013-04-01
The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr.