Water Network Tool for Resilience v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-09
WNTR is a python package designed to simulate and analyze resilience of water distribution networks. The software includes: - Pressure driven and demand driven hydraulic simulation - Water quality simulation to track concentration, trace, and water age - Conditional controls to simulate power outages - Models to simulate pipe breaks - A wide range of resilience metrics - Analysis and visualization tools
Algorithms and architecture for multiprocessor based circuit simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, J.T.
Accurate electrical simulation is critical to the design of high performance integrated circuits. Logic simulators can verify function and give first-order timing information. Switch level simulators are more effective at dealing with charge sharing than standard logic simulators, but cannot provide accurate timing information or discover DC problems. Delay estimation techniques and cell level simulation can be used in constrained design methods, but must be tuned for each application, and circuit simulation must still be used to generate the cell models. None of these methods has the guaranteed accuracy that many circuit designers desire, and none can provide detailed waveformmore » information. Detailed electrical-level simulation can predict circuit performance if devices and parasitics are modeled accurately. However, the computational requirements of conventional circuit simulators make it impractical to simulate current large circuits. In this dissertation, the implementation of Iterated Timing Analysis (ITA), a relaxation-based technique for accurate circuit simulation, on a special-purpose multiprocessor is presented. The ITA method is an SOR-Newton, relaxation-based method which uses event-driven analysis and selective trace to exploit the temporal sparsity of the electrical network. Because event-driven selective trace techniques are employed, this algorithm lends itself to implementation on a data-driven computer.« less
Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.
Kalmbach, Brian E; Ohyama, Tatsuya; Mauk, Michael D
2010-08-01
Trace eyelid conditioning is a form of associative learning that requires several forebrain structures and cerebellum. Previous work suggests that at least two conditioned stimulus (CS)-driven signals are available to the cerebellum via mossy fiber inputs during trace conditioning: one driven by and terminating with the tone and a second driven by medial prefrontal cortex (mPFC) that persists through the stimulus-free trace interval to overlap in time with the unconditioned stimulus (US). We used electric stimulation of mossy fibers to determine whether this pattern of dual inputs is necessary and sufficient for cerebellar learning to express normal trace eyelid responses. We find that presenting the cerebellum with one input that mimics persistent activity observed in mPFC and the lateral pontine nuclei during trace eyelid conditioning and another that mimics tone-elicited mossy fiber activity is sufficient to produce responses whose properties quantitatively match trace eyelid responses using a tone. Probe trials with each input delivered separately provide evidence that the cerebellum learns to respond to the mPFC-like input (that overlaps with the US) and learns to suppress responding to the tone-like input (that does not). This contributes to precisely timed responses and the well-documented influence of tone offset on the timing of trace responses. Computer simulations suggest that the underlying cerebellar mechanisms involve activation of different subsets of granule cells during the tone and during the stimulus-free trace interval. These results indicate that tone-driven and mPFC-like inputs are necessary and sufficient for the cerebellum to learn well-timed trace conditioned responses.
Impacts of WRF lightning assimilation on offline CMAQ simulations
Deep convective clouds vertically redistribute trace gases and aerosols and also provide a source for scavenging, aqueous phase chemistry, and wet deposition, making them important to air quality.? Regional air quality simulations are typically driven by meteorological models tha...
A Measurement and Simulation Based Methodology for Cache Performance Modeling and Tuning
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
We present a cache performance modeling methodology that facilitates the tuning of uniprocessor cache performance for applications executing on shared memory multiprocessors by accurately predicting the effects of source code level modifications. Measurements on a single processor are initially used for identifying parts of code where cache utilization improvements may significantly impact the overall performance. Cache simulation based on trace-driven techniques can be carried out without gathering detailed address traces. Minimal runtime information for modeling cache performance of a selected code block includes: base virtual addresses of arrays, virtual addresses of variables, and loop bounds for that code block. Rest of the information is obtained from the source code. We show that the cache performance predictions are as reliable as those obtained through trace-driven simulations. This technique is particularly helpful to the exploration of various "what-if' scenarios regarding the cache performance impact for alternative code structures. We explain and validate this methodology using a simple matrix-matrix multiplication program. We then apply this methodology to predict and tune the cache performance of two realistic scientific applications taken from the Computational Fluid Dynamics (CFD) domain.
Massively parallel algorithms for trace-driven cache simulations
NASA Technical Reports Server (NTRS)
Nicol, David M.; Greenberg, Albert G.; Lubachevsky, Boris D.
1991-01-01
Trace driven cache simulation is central to computer design. A trace is a very long sequence of reference lines from main memory. At the t(exp th) instant, reference x sub t is hashed into a set of cache locations, the contents of which are then compared with x sub t. If at the t sup th instant x sub t is not present in the cache, then it is said to be a miss, and is loaded into the cache set, possibly forcing the replacement of some other memory line, and making x sub t present for the (t+1) sup st instant. The problem of parallel simulation of a subtrace of N references directed to a C line cache set is considered, with the aim of determining which references are misses and related statistics. A simulation method is presented for the Least Recently Used (LRU) policy, which regradless of the set size C runs in time O(log N) using N processors on the exclusive read, exclusive write (EREW) parallel model. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N processors. Timings are presented of the second algorithm's implementation on the MasPar MP-1, a machine with 16384 processors. A broad class of reference based line replacement policies are considered, which includes LRU as well as the Least Frequently Used and Random replacement policies. A simulation method is presented for any such policy that on any trace of length N directed to a C line set runs in the O(C log N) time with high probability using N processors on the EREW model. The algorithms are simple, have very little space overhead, and are well suited for SIMD implementation.
Can High Bandwidth and Latency Justify Large Cache Blocks in Scalable Multiprocessors?
1994-01-01
400 MB/second. 4 Dubnicki’s work used trace-driven simulation, with traces collected on an 8-processor machine. We would expect such small-scale...312 1 6 32 64 of odk Sb* Bad64.M Figure 17: Miss rate of Ind Blocked LU. Figure 18: MCPR of Ind Blocked LU. overall miss rate of TGauss is a factor of...easily. 17 (’his approach assunics that the model paramelers we collect from simulations with infinite band- width (such as the miss rate and the
NASA Technical Reports Server (NTRS)
Changsheng, LI; Frolking, Steve; Frolking, Tod A.
1992-01-01
Simulations of N2O and CO2 emissions from soils were conducted with a rain-event driven, process-oriented model (DNDC) of nitrogen and carbon cycling processes in soils. The magnitude and trends of simulated N2O (or N2O + N2) and CO2 emissions were consistent with the results obtained in field experiments. The successful simulation of these emissions from the range of soil types examined demonstrates that the DNDC will be a useful tool for the study of linkages among climate, soil-atmosphere interactions, land use, and trace gas fluxes.
Evaluating the effect of online data compression on the disk cache of a mass storage system
NASA Technical Reports Server (NTRS)
Pentakalos, Odysseas I.; Yesha, Yelena
1994-01-01
A trace driven simulation of the disk cache of a mass storage system was used to evaluate the effect of an online compression algorithm on various performance measures. Traces from the system at NASA's Center for Computational Sciences were used to run the simulation and disk cache hit ratios, number of files and bytes migrating to tertiary storage were measured. The measurements were performed for both an LRU and a size based migration algorithm. In addition to seeing the effect of online data compression on the disk cache performance measure, the simulation provided insight into the characteristics of the interactive references, suggesting that hint based prefetching algorithms are the only alternative for any future improvements to the disk cache hit ratio.
Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport
NASA Astrophysics Data System (ADS)
Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.
2018-03-01
Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.
Sensitivity of polar ozone recovery predictions of the GMI 3D CTM to GCM and DAS dynamics
NASA Astrophysics Data System (ADS)
Considine, D.; Connell, P.; Strahan, S.; Douglass, A.; Rotman, D.
2003-04-01
The Global Modeling Initiative (GMI) 3-D chemistry and transport model has been used to generate 2 simulations of the 1995-2030 time period. The 36-year simulations both used the source gas and aerosol boundary conditions of the 2002 World Meteorological Organization assessment exercise MA2. The first simulation was based on a single year of meteorological data (winds, temperatures) generated by the new Goddard Space Flight Center "Finite Volume" General Circulation Model (FVGCM), repeated for each year of the simulation. The second simulation used a year of meteorological data generated by a new data assimilation system based on the FVGCM (FVDAS), using observations for July 1, 1999 - June 30, 2000. All other aspects of the two simulations were identical. The increase in vortex-averaged south polar springtime ozone concentrations in the lower stratosphere over the course of the simulations is more robust in the simulation driven by the GCM meteorological data than in the simulation driven by DAS winds. At the same time, the decrease in estimated chemical springtime ozone loss is similar. We thus attribute the differences between the two simulations to differences in the representations of polar dynamics which reduce the sensitivity of the simulation driven by DAS winds to changes in vortex chemistry. We also evaluate the representations in the two simulations of trace constituent distributions in the current polar lower stratosphere using various observations. In these comparisons the GCM-based simulation often is in better agreement with the observations than the DAS-based simulation.
Radiation dominated acoustophoresis driven by surface acoustic waves.
Guo, Jinhong; Kang, Yuejun; Ai, Ye
2015-10-01
Acoustophoresis-based particle manipulation in microfluidics has gained increasing attention in recent years. Despite the fact that experimental studies have been extensively performed to demonstrate this technique for various microfluidic applications, numerical simulation of acoustophoresis driven by surface acoustic waves (SAWs) has still been largely unexplored. In this work, a numerical model taking into account the acoustic-piezoelectric interaction was developed to simulate the generation of a standing surface acoustic wave (SSAW) field and predict the acoustic pressure field in the liquid. Acoustic radiation dominated particle tracing was performed to simulate acoustophoresis of particles with different sizes undergoing a SSAW field. A microfluidic device composed of two interdigital transducers (IDTs) for SAW generation and a microfluidic channel was fabricated for experimental validation. Numerical simulations could well capture the focusing phenomenon of particles to the pressure nodes in the experimental observation. Further comparison of particle trajectories demonstrated considerably quantitative agreement between numerical simulations and experimental results with fitting in the applied voltage. Particle switching was also demonstrated using the fabricated device that could be further developed as an active particle sorting device. Copyright © 2015 Elsevier Inc. All rights reserved.
Injection and trapping of tunnel-ionized electrons into laser-produced wakes.
Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C
2010-01-15
A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.
Photoionization and heating of a supernova-driven turbulent interstellar medium
NASA Astrophysics Data System (ADS)
Barnes, J. E.; Wood, Kenneth; Hill, Alex S.; Haffner, L. M.
2014-06-01
The diffuse ionized gas (DIG) in galaxies traces photoionization feedback from massive stars. Through three-dimensional photoionization simulations, we study the propagation of ionizing photons, photoionization heating and the resulting distribution of ionized and neutral gas within snapshots of magnetohydrodynamic simulations of a supernova-driven turbulent interstellar medium. We also investigate the impact of non-photoionization heating on observed optical emission line ratios. Inclusion of a heating term which scales less steeply with electron density than photoionization is required to produce diagnostic emission line ratios similar to those observed with the Wisconsin Hα Mapper. Once such heating terms have been included, we are also able to produce temperatures similar to those inferred from observations of the DIG, with temperatures increasing to above 15 000 K at heights |z| ≳ 1 kpc. We find that ionizing photons travel through low-density regions close to the mid-plane of the simulations, while travelling through diffuse low-density regions at large heights. The majority of photons travel small distances (≲100 pc); however some travel kiloparsecs and ionize the DIG.
Rigorous analysis of an electric-field-driven liquid crystal lens for 3D displays
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik; Lee, Seung-Chul; Park, Woo-Sang
2014-08-01
We numerically analyzed the optical performance of an electric field driven liquid crystal (ELC) lens adopted for 3-dimensional liquid crystal displays (3D-LCDs) through rigorous ray tracing. For the calculation, we first obtain the director distribution profile of the liquid crystals by using the Erickson-Leslie motional equation; then, we calculate the transmission of light through the ELC lens by using the extended Jones matrix method. The simulation was carried out for a 9view 3D-LCD with a diagonal of 17.1 inches, where the ELC lens was slanted to achieve natural stereoscopic images. The results show that each view exists separately according to the viewing position at an optimum viewing distance of 80 cm. In addition, our simulation results provide a quantitative explanation for the ghost or blurred images between views observed from a 3D-LCD with an ELC lens. The numerical simulations are also shown to be in good agreement with the experimental results. The present simulation method is expected to provide optimum design conditions for obtaining natural 3D images by rigorously analyzing the optical functionalities of an ELC lens.
Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo.
Kaplan, E J; Brown, B P; Rahbarnia, K; Forest, C B
2012-06-01
This paper presents an analysis of the Dudley-James two-vortex flow, which inspired several laboratory-scale liquid-metal experiments, in order to better demonstrate its relation to astrophysical dynamos. A coordinate transformation splits the flow into components that are axisymmetric and nonaxisymmetric relative to the induced magnetic dipole moment. The reformulation gives the flow the same dynamo ingredients as are present in more complicated convection-driven dynamo simulations. These ingredients are currents driven by the mean flow and currents driven by correlations between fluctuations in the flow and fluctuations in the magnetic field. The simple model allows us to isolate the dynamics of the growing eigenvector and trace them back to individual three-wave couplings between the magnetic field and the flow. This simple model demonstrates the necessity of poloidal advection in sustaining the dynamo and points to the effect of large-scale flow fluctuations in exciting a dynamo magnetic field.
Generation of noninductive current by electron-Bernstein waves on the COMPASS-D Tokamak.
Shevchenko, V; Baranov, Y; O'Brien, M; Saveliev, A
2002-12-23
Electron-Bernstein waves (EBW) were excited in the plasma by mode converted extraordinary (X) waves launched from the high field side of the COMPASS-D tokamak at different toroidal angles. It has been found experimentally that X-mode injection perpendicular to the magnetic field provides maximum heating efficiency. Noninductive currents of up to 100 kA were found to be driven by the EBW mode with countercurrent drive. These results are consistent with ray tracing and quasilinear Fokker-Planck simulations.
Compiler-directed cache management in multiprocessors
NASA Technical Reports Server (NTRS)
Cheong, Hoichi; Veidenbaum, Alexander V.
1990-01-01
The necessity of finding alternatives to hardware-based cache coherence strategies for large-scale multiprocessor systems is discussed. Three different software-based strategies sharing the same goals and general approach are presented. They consist of a simple invalidation approach, a fast selective invalidation scheme, and a version control scheme. The strategies are suitable for shared-memory multiprocessor systems with interconnection networks and a large number of processors. Results of trace-driven simulations conducted on numerical benchmark routines to compare the performance of the three schemes are presented.
Chemical Sensing for Buried Landmines - Fundamental Processes Influencing Trace Chemical Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
PHELAN, JAMES M.
2002-05-01
Mine detection dogs have a demonstrated capability to locate hidden objects by trace chemical detection. Because of this capability, demining activities frequently employ mine detection dogs to locate individual buried landmines or for area reduction. The conditions appropriate for use of mine detection dogs are only beginning to emerge through diligent research that combines dog selection/training, the environmental conditions that impact landmine signature chemical vapors, and vapor sensing performance capability and reliability. This report seeks to address the fundamental soil-chemical interactions, driven by local weather history, that influence the availability of chemical for trace chemical detection. The processes evaluated include:more » landmine chemical emissions to the soil, chemical distribution in soils, chemical degradation in soils, and weather and chemical transport in soils. Simulation modeling is presented as a method to evaluate the complex interdependencies among these various processes and to establish conditions appropriate for trace chemical detection. Results from chemical analyses on soil samples obtained adjacent to landmines are presented and demonstrate the ultra-trace nature of these residues. Lastly, initial measurements of the vapor sensing performance of mine detection dogs demonstrates the extreme sensitivity of dogs in sensing landmine signature chemicals; however, reliability at these ultra-trace vapor concentrations still needs to be determined. Through this compilation, additional work is suggested that will fill in data gaps to improve the utility of trace chemical detection.« less
A trace-driven analysis of name and attribute caching in a distributed system
NASA Technical Reports Server (NTRS)
Shirriff, Ken W.; Ousterhout, John K.
1992-01-01
This paper presents the results of simulating file name and attribute caching on client machines in a distributed file system. The simulation used trace data gathered on a network of about 40 workstations. Caching was found to be advantageous: a cache on each client containing just 10 directories had a 91 percent hit rate on name look ups. Entry-based name caches (holding individual directory entries) had poorer performance for several reasons, resulting in a maximum hit rate of about 83 percent. File attribute caching obtained a 90 percent hit rate with a cache on each machine of the attributes for 30 files. The simulations show that maintaining cache consistency between machines is not a significant problem; only 1 in 400 name component look ups required invalidation of a remotely cached entry. Process migration to remote machines had little effect on caching. Caching was less successful in heavily shared and modified directories such as /tmp, but there weren't enough references to /tmp overall to affect the results significantly. We estimate that adding name and attribute caching to the Sprite operating system could reduce server load by 36 percent and the number of network packets by 30 percent.
3D Laser Imprint Using a Smoother Ray-Traced Power Deposition Method
NASA Astrophysics Data System (ADS)
Schmitt, Andrew J.
2017-10-01
Imprinting of laser nonuniformities in directly-driven icf targets is a challenging problem to accurately simulate with large radiation-hydro codes. One of the most challenging aspects is the proper construction of the complex and rapidly changing laser interference structure driving the imprint using the reduced laser propagation models (usually ray-tracing) found in these codes. We have upgraded the modelling capability in our massively-parallel
NASA Astrophysics Data System (ADS)
Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; E Carson, Richard
2017-06-01
Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.
Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; Carson, Richard E
2017-06-21
Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18 F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.
Nature and origins of virtual environments - A bibliographical essay
NASA Technical Reports Server (NTRS)
Ellis, S. R.
1991-01-01
Virtual environments presented via head-mounted, computer-driven displays provide a new media for communication. They may be analyzed by considering: (1) what may be meant by an environment; (2) what is meant by the process of virtualization; and (3) some aspects of human performance that constrain environmental design. Their origins are traced from previous work in vehicle simulation and multimedia research. Pointers are provided to key technical references, in the dispersed, archival literature, that are relevant to the development and evaluation of virtual-environment interface systems.
Simulation of a master-slave event set processor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comfort, J.C.
1984-03-01
Event set manipulation may consume a considerable amount of the computation time spent in performing a discrete-event simulation. One way of minimizing this time is to allow event set processing to proceed in parallel with the remainder of the simulation computation. The paper describes a multiprocessor simulation computer, in which all non-event set processing is performed by the principal processor (called the host). Event set processing is coordinated by a front end processor (the master) and actually performed by several other functionally identical processors (the slaves). A trace-driven simulation program modeling this system was constructed, and was run with tracemore » output taken from two different simulation programs. Output from this simulation suggests that a significant reduction in run time may be realized by this approach. Sensitivity analysis was performed on the significant parameters to the system (number of slave processors, relative processor speeds, and interprocessor communication times). A comparison between actual and simulation run times for a one-processor system was used to assist in the validation of the simulation. 7 references.« less
Optical simulations of laser focusing for optimization of laser betatron
NASA Astrophysics Data System (ADS)
Stanke, L.; Thakur, A.; Šmíd, M.; Gu, Y. J.; Falk, K.
2017-05-01
This work presents optical simulations that are used to design a betatron driven by a short-pulse laser based on the Laser Wakefield Acceleration (LWFA) concept. These simulations explore how the optical setup and its components influence the performance of the betatron. The impact of phase irregularities induced by optical elements is investigated. In order to obtain a good estimate of the future performance of this design a combination of two distinct techniques are used - Field Tracing for optical simulations employing a combination of the Zemax and VirtualLab computational platforms for the laser beam propagation and focusing with the given optical system and particle-in-cell simulation (PIC) for simulating the short-pulse laser interaction with a gas target. The result of the optical simulations serves as an input for the PIC simulations. Application of Field Tracing in combination with the PIC for the purposes of high power laser facility introduces the new application for VirtualLab Fusion. Based on the result of these simulations an alternative design with a hole in the final folding mirror coupled with a spherical focusing mirror is considered in favour of more commonly used off-axis parabola focusing setup. Results are demonstrating, that the decrease of the irradiance due to the presence of the central hole in the folding mirror is negligible (9.69× 1019 W/cm2 for the case without the hole vs. 9.73× 1019 W/cm2 for the case with hole). However, decrease caused by the surface irregularities (surface RMS λ/4 , λ/20 and λ/40 ) is more significant and leads to the poor performance of particle production.
NASA Astrophysics Data System (ADS)
Nilsson, E.; Decker, J.; Peysson, Y.; Artaud, J.-F.; Ekedahl, A.; Hillairet, J.; Aniel, T.; Basiuk, V.; Goniche, M.; Imbeaux, F.; Mazon, D.; Sharma, P.
2013-08-01
Fully non-inductive operation with lower hybrid current drive (LHCD) in the Tore Supra tokamak is achieved using either a fully active multijunction (FAM) launcher or a more recent ITER-relevant passive active multijunction (PAM) launcher, or both launchers simultaneously. While both antennas show comparable experimental efficiencies, the analysis of stability properties in long discharges suggest different current profiles. We present comparative modelling of LHCD with the two different launchers to characterize the effect of the respective antenna spectra on the driven current profile. The interpretative modelling of LHCD is carried out using a chain of codes calculating, respectively, the global discharge evolution (tokamak simulator METIS), the spectrum at the antenna mouth (LH coupling code ALOHA), the LH wave propagation (ray-tracing code C3PO), and the distribution function (3D Fokker-Planck code LUKE). Essential aspects of the fast electron dynamics in time, space and energy are obtained from hard x-ray measurements of fast electron bremsstrahlung emission using a dedicated tomographic system. LHCD simulations are validated by systematic comparisons between these experimental measurements and the reconstructed signal calculated by the code R5X2 from the LUKE electron distribution. An excellent agreement is obtained in the presence of strong Landau damping (found under low density and high-power conditions in Tore Supra) for which the ray-tracing model is valid for modelling the LH wave propagation. Two aspects of the antenna spectra are found to have a significant effect on LHCD. First, the driven current is found to be proportional to the directivity, which depends upon the respective weight of the main positive and main negative lobes and is particularly sensitive to the density in front of the antenna. Second, the position of the main negative lobe in the spectrum is different for the two launchers. As this lobe drives a counter-current, the resulting driven current profile is also different for the FAM and PAM launchers.
NASA Astrophysics Data System (ADS)
Wild, Oliver; Sundet, Jostein K.; Prather, Michael J.; Isaksen, Ivar S. A.; Akimoto, Hajime; Browell, Edward V.; Oltmans, Samuel J.
2003-11-01
Two closely related chemical transport models (CTMs) employing the same high-resolution meteorological data (˜180 km × ˜180 km × ˜600 m) from the European Centre for Medium-Range Weather Forecasts are used to simulate the ozone total column and tropospheric distribution over the western Pacific region that was explored by the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) measurement campaign in February-April 2001. We make extensive comparisons with ozone measurements from the lidar instrument on the NASA DC-8, with ozonesondes taken during the period around the Pacific Rim, and with TOMS total column ozone. These demonstrate that within the uncertainties of the meteorological data and the constraints of model resolution, the two CTMs (FRSGC/UCI and Oslo CTM2) can simulate the observed tropospheric ozone and do particularly well when realistic stratospheric ozone photochemistry is included. The greatest differences between the models and observations occur in the polluted boundary layer, where problems related to the simplified chemical mechanism and inadequate horizontal resolution are likely to have caused the net overestimation of about 10 ppb mole fraction. In the upper troposphere, the large variability driven by stratospheric intrusions makes agreement very sensitive to the timing of meteorological features.
Trace Replay and Network Simulation Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acun, Bilge; Jain, Nikhil; Bhatele, Abhinav
2015-03-23
TraceR is a trace reply tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performances and understanding network behavior by simulating messaging in High Performance Computing applications on interconnection networks.
Trace Replay and Network Simulation Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Bhatele, Abhinav; Acun, Bilge
TraceR Is a trace replay tool built upon the ROSS-based CODES simulation framework. TraceR can be used for predicting network performance and understanding network behavior by simulating messaging In High Performance Computing applications on interconnection networks.
Dynamic file-access characteristics of a production parallel scientific workload
NASA Technical Reports Server (NTRS)
Kotz, David; Nieuwejaar, Nils
1994-01-01
Multiprocessors have permitted astounding increases in computational performance, but many cannot meet the intense I/O requirements of some scientific applications. An important component of any solution to this I/O bottleneck is a parallel file system that can provide high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of processors. Most successful systems are based on a solid understanding of the expected workload, but thus far there have been no comprehensive workload characterizations of multiprocessor file systems. This paper presents the results of a three week tracing study in which all file-related activity on a massively parallel computer was recorded. Our instrumentation differs from previous efforts in that it collects information about every I/O request and about the mix of jobs running in a production environment. We also present the results of a trace-driven caching simulation and recommendations for designers of multiprocessor file systems.
Distributed Task Offloading in Heterogeneous Vehicular Crowd Sensing
Liu, Yazhi; Wang, Wendong; Ma, Yuekun; Yang, Zhigang; Yu, Fuxing
2016-01-01
The ability of road vehicles to efficiently execute different sensing tasks varies because of the heterogeneity in their sensing ability and trajectories. Therefore, the data collection sensing task, which requires tempo-spatial sensing data, becomes a serious problem in vehicular sensing systems, particularly those with limited sensing capabilities. A utility-based sensing task decomposition and offloading algorithm is proposed in this paper. The utility function for a task executed by a certain vehicle is built according to the mobility traces and sensing interfaces of the vehicle, as well as the sensing data type and tempo-spatial coverage requirements of the sensing task. Then, the sensing tasks are decomposed and offloaded to neighboring vehicles according to the utilities of the neighboring vehicles to the decomposed sensing tasks. Real trace-driven simulation shows that the proposed task offloading is able to collect much more comprehensive and uniformly distributed sensing data than other algorithms. PMID:27428967
CoCoMac 2.0 and the future of tract-tracing databases
Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus
2012-01-01
The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy. PMID:23293600
CoCoMac 2.0 and the future of tract-tracing databases.
Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus
2012-01-01
The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy.
Trace-Based Microanalytic Measurement of Self-Regulated Learning Processes
ERIC Educational Resources Information Center
Siadaty, Melody; Gaševic, Dragan; Hatala, Marek
2016-01-01
To keep pace with today's rapidly growing knowledge-driven society, productive self-regulation of one's learning processes are essential. We introduce and discuss a trace-based measurement protocol to measure the effects of scaffolding interventions on self-regulated learning (SRL) processes. It guides tracing of learners' actions in a learning…
NASA Astrophysics Data System (ADS)
Zhao, Xue-Yan; Xie, Bai-Song; Wu, Hai-Cheng; Zhang, Shan; Hong, Xue-Ren; Aimidula, Aimierding
2012-03-01
An optimizing and alternative scheme for electron injection and acceleration in the wake bubble driven by an ultraintense laser pulse is presented. In this scheme, the dense-plasma wall with an inner diameter matching the expected bubble size is placed along laser propagation direction. Meanwhile, a dense-plasma block dense-plasma is adhered inward transversely at some certain position of the wall. Particle-in-cell simulations are performed, which demonstrate that the block plays an important role in the first electron injection and acceleration. The result shows that a collimated electron bunch with a total number of about 4.04×108μm-1 can be generated and accelerated stably to 1.61 GeV peak energy with 2.6% energy spread. The block contributes about 50% to the accelerated electron injection bunch by tracing and sorting statistically the source.
SolarPILOT | Concentrating Solar Power | NREL
tools. Unlike exclusively ray-tracing tools, SolarPILOT runs the analytical simulation engine that uses engine alongside a ray-tracing core for more detailed simulations. The SolTrace simulation engine is
NASA Astrophysics Data System (ADS)
Crouch, Dustin L.; (Helen Huang, He
2017-06-01
Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r = 0.25, p < 0.0001). The amputee subject could coordinate movement between the wrist and MCP joints, but favored metacarpophalangeal joint motion more highly than able-bodied subjects in 8 of 10 trials. For able-bodied subjects, tracing accuracy was lower at the extremes of the model’s range of motion, though there was no apparent relationship between tracing accuracy and fingertip location for the amputee. Our result suggests that, unlike able-bodied subjects, the amputee’s motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.
A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation
NASA Technical Reports Server (NTRS)
Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.
2006-01-01
Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.
NASA Technical Reports Server (NTRS)
Oman, Luke D.; Strahan, Susan E.
2016-01-01
Simulations using reanalyzed meteorological conditions have been long used to understand causes of atmospheric composition change over the recent past. Using the new Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) meteorology, chemistry simulations are being conducted to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model developed Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 analysis. The GMI CTM is a 1 x 1.25 simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 approximately horizontal resolution on the cubed sphere. The Replay simulations is driven by the online use of key MERRA-2 meteorological variables (i.e. U, V, T, and surface pressure) with all other variables calculated in response to those variables. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and changes over the recent past.
Optimal message log reclamation for independent checkpointing
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Fuchs, W. Kent
1993-01-01
Independent (uncoordinated) check pointing for parallel and distributed systems allows maximum process autonomy but suffers from possible domino effects and the associated storage space overhead for maintaining multiple checkpoints and message logs. In most research on check pointing and recovery, it was assumed that only the checkpoints and message logs older than the global recovery line can be discarded. It is shown how recovery line transformation and decomposition can be applied to the problem of efficiently identifying all discardable message logs, thereby achieving optimal garbage collection. Communication trace-driven simulation for several parallel programs is used to show the benefits of the proposed algorithm for message log reclamation.
Lazy checkpoint coordination for bounding rollback propagation
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Fuchs, W. Kent
1992-01-01
Independent checkpointing allows maximum process autonomy but suffers from potential domino effects. Coordinated checkpointing eliminates the domino effect by sacrificing a certain degree of process autonomy. In this paper, we propose the technique of lazy checkpoint coordination which preserves process autonomy while employing communication-induced checkpoint coordination for bounding rollback propagation. The introduction of the notion of laziness allows a flexible trade-off between the cost for checkpoint coordination and the average rollback distance. Worst-case overhead analysis provides a means for estimating the extra checkpoint overhead. Communication trace-driven simulation for several parallel programs is used to evaluate the benefits of the proposed scheme for real applications.
NASA Astrophysics Data System (ADS)
Zhang, B.; Liu, H.; Crawford, J. H.; Fairlie, T. D.; Chen, G.; Chambers, S. D.; Kang, C. H.; Williams, A. G.; Zhang, K.; Considine, D. B.; Payer Sulprizio, M.; Yantosca, R.
2015-12-01
Convective and synoptic processes play a major role in determining the transport and distribution of trace gases and aerosols in the troposphere. The representation of these processes in global models (at ~100-1000 km horizontal resolution) is challenging, because convection is a sub-grid process and needs to be parameterized, while synoptic processes are close to the grid scale. Depending on the parameterization schemes used in climate models, the role of convection in transporting trace gases and aerosols may vary from model to model. 222Rn is a chemically inert and radioactive gas constantly emitted from soil and has a half-life (3.8 days) comparable to synoptic timescale, which makes it an effective tracer for convective and synoptic transport. In this study, we evaluate the convective and synoptic transport in two chemical transport models (GMI and GEOS-Chem), both driven by the NASA's MERRA reanalysis. Considering the uncertainties in 222Rn emissions, we incorporate two more recent scenarios with regionally varying 222Rn emissions into GEOS-Chem/MERRA and compare the simulation results with those using the relatively uniform 222Rn emissions in the standard model. We evaluate the global distribution and seasonality of 222Rn concentrations simulated by the two models against an extended collection of 222Rn observations from 1970s to 2010s. The intercomparison will improve our understanding of the spatial variability in global 222Rn emissions, including the suspected excessive 222Rn emissions in East Asia, and provide useful feedbacks on 222Rn emission models. We will assess 222Rn vertical distributions at different latitudes in the models using observations at surface sites and in the upper troposphere and lower stratosphere. Results will be compared with previous models driven by other meteorological fields (e.g., fvGCM and GEOS4). Since the decay of 222Rn is the source of 210Pb, a useful radionuclide tracer attached to submicron aerosols, improved understanding of emissions and transport of 222Rn will provide insights into the transport, distribution, and wet deposition of 210Pb aerosols.
Trace-Driven Debugging of Message Passing Programs
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Hood, Robert; Lopez, Louis; Bailey, David (Technical Monitor)
1998-01-01
In this paper we report on features added to a parallel debugger to simplify the debugging of parallel message passing programs. These features include replay, setting consistent breakpoints based on interprocess event causality, a parallel undo operation, and communication supervision. These features all use trace information collected during the execution of the program being debugged. We used a number of different instrumentation techniques to collect traces. We also implemented trace displays using two different trace visualization systems. The implementation was tested on an SGI Power Challenge cluster and a network of SGI workstations.
Parametric Quantum Search Algorithm as Quantum Walk: A Quantum Simulation
NASA Astrophysics Data System (ADS)
Ellinas, Demosthenes; Konstandakis, Christos
2016-02-01
Parametric quantum search algorithm (PQSA) is a form of quantum search that results by relaxing the unitarity of the original algorithm. PQSA can naturally be cast in the form of quantum walk, by means of the formalism of oracle algebra. This is due to the fact that the completely positive trace preserving search map used by PQSA, admits a unitarization (unitary dilation) a la quantum walk, at the expense of introducing auxiliary quantum coin-qubit space. The ensuing QW describes a process of spiral motion, chosen to be driven by two unitary Kraus generators, generating planar rotations of Bloch vector around an axis. The quadratic acceleration of quantum search translates into an equivalent quadratic saving of the number of coin qubits in the QW analogue. The associated to QW model Hamiltonian operator is obtained and is shown to represent a multi-particle long-range interacting quantum system that simulates parametric search. Finally, the relation of PQSA-QW simulator to the QW search algorithm is elucidated.
Progress on 3-D ICF simulations and Ray-Traced Power Deposition Method
NASA Astrophysics Data System (ADS)
Schmitt, Andrew J.; Fyfe, David E.
2016-10-01
We have performed 3D simulations of Omega-scale and NIF-scale spherical direct-drive targets with the massively parallel
Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liping; Zhang, Lei; Feng, Xueshang
2017-02-10
Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of themore » magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.« less
Li, Yuelin; Jiang, Zhang; Lin, Xiao -Min; ...
2015-01-30
Many potential industrial, medical, and environmental applications of metal nanorods rely on the physics and resultant kinetics and dynamics of the interaction of these particles with light. We report a surprising kinetics transition in the global melting of femtosecond laser-driven gold nanorod aqueous colloidal suspension. At low laser intensity, the melting exhibits a stretched exponential kinetics, which abruptly transforms into a compressed exponential kinetics when the laser intensity is raised. It is found the relative formation and reduction rate of intermediate shapes play a key role in the transition. Supported by both molecular dynamics simulations and a kinetic model, themore » behavior is traced back to the persistent heterogeneous nature of the shape dependence of the energy uptake, dissipation and melting of individual nanoparticles. These results could have significant implications for various applications such as water purification and electrolytes for energy storage that involve heat transport between metal nanorod ensembles and surrounding solvents.« less
Double-cavity radiometer for high-flux density solar radiation measurements.
Parretta, A; Antonini, A; Armani, M; Nenna, G; Flaminio, G; Pellegrino, M
2007-04-20
A radiometric method has been developed, suitable for both total power and flux density profile measurement of concentrated solar radiation. The high-flux density radiation is collected by a first optical cavity, integrated, and driven to a second optical cavity, where, attenuated, it is measured by a conventional radiometer operating under a stationary irradiation regime. The attenuation factor is regulated by properly selecting the aperture areas in the two cavities. The radiometer has been calibrated by a pulsed solar simulator at concentration levels of hundreds of suns. An optical model and a ray-tracing study have also been developed and validated, by which the potentialities of the radiometer have been largely explored.
Performance optimization of internet firewalls
NASA Astrophysics Data System (ADS)
Chiueh, Tzi-cker; Ballman, Allen
1997-01-01
Internet firewalls control the data traffic in and out of an enterprise network by checking network packets against a set of rules that embodies an organization's security policy. Because rule checking is computationally more expensive than routing-table look-up, it could become a potential bottleneck for scaling up the performance of IP routers, which typically implement firewall functions in software. in this paper, we analyzed the performance problems associated with firewalls, particularly packet filters, propose a good connection cache to amortize the costly security check over the packets in a connection, and report the preliminary performance results of a trace-driven simulation that show the average packet check time can be reduced by a factor of 2.5 at the least.
THE STELLAR SPHEROID, THE DISK, AND THE DYNAMICS OF THE COSMIC WEB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.
Models of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explainedmore » in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamics.« less
Impact of convection and resistivity on angular momentum transport in dwarf novae
NASA Astrophysics Data System (ADS)
Scepi, N.; Lesur, G.; Dubus, G.; Flock, M.
2018-01-01
The eruptive cycles of dwarf novae are thought to be due to a thermal-viscous instability in the accretion disk surrounding the white dwarf. This model has long been known to imply enhanced angular momentum transport in the accretion disk during outburst. This is measured by the stress to pressure ratio α, with α ≈ 0.1 required in outburst compared to α ≈ 0.01 in quiescence. Such an enhancement in α has recently been observed in simulations of turbulent transport driven by the magneto-rotational instability (MRI) when convection is present, without requiring a net magnetic flux. We independently recover this result by carrying out PLUTO magnetohydrodynamic (MHD) simulations of vertically stratified, radiative, shearing boxes with the thermodynamics and opacities appropriate to dwarf novae. The results are robust against the choice of vertical boundary conditions. The thermal equilibrium solutions found by the simulations trace the well-known S-curve in the density-temperature plane that constitutes the core of the disk thermal-viscous instability model. We confirm that the high values of α ≈ 0.1 occur near the tip of the hot branch of the S-curve, where convection is active. However, we also present thermally stable simulations at lower temperatures that have standard values of α ≈ 0.03 despite the presence of vigorous convection. We find no simple relationship between α and the strength of the convection, as measured by the ratio of convective to radiative flux. The cold branch is only very weakly ionized so, in the second part of this work, we studied the impact of non-ideal MHD effects on transport. Ohmic dissipation is the dominant effect in the conditions of quiescent dwarf novae. We include resistivity in the simulations and find that the MRI-driven transport is quenched (α ≈ 0) below the critical density at which the magnetic Reynolds number Rm ≤ 104. This is problematic because the X-ray emission observed in quiescent systems requires ongoing accretion onto the white dwarf. We verify that these X-rays cannot self-sustain MRI-driven turbulence by photo-ionizing the disk and discuss possible solutions to the issue of accretion in quiescence.
Double Magnetic Reconnection Driven by Kelvin-Helmholtz Vortices
NASA Astrophysics Data System (ADS)
Horton, W., Jr.; Faganello, M.; Califano, F.; Pegoraro, F.
2017-12-01
Simulations and theory for the solar wind driven magnetic reconnection in the flanks of the magnetopause is shown to be intrinsically 3D with the secular growth of couple pairs of reconnection regions off the equatorial plane. We call the process double mid-latitude reconnection and show supporting 3D simulations and theory descripting the secular growth of the magnetic reconnection with the resulting mixing of the solar wind plasma with the magnetosphere plasma. The initial phase develops Kelvin-Helmholtz vortices at low-latitude and, through the propagation of Alfven waves far from the region where the stresses are generated, creates a standard quasi-2D low latitude boundary layer magnetic reconnection but off the equatorial plane and with a weak guide field component. The reconnection exponential growth is followed by a secularly growing nonlinear phase that gradually closes the solar wind field lines on the Earth. The nonlinear field line structure provides a channel for penetration of the SW plasma into the MS as observed by spacecraft [THEMIS and Cluster]. The simulations show the amount of solar wind plasma brought into the magnetosphere by tracing the time evolution of the areas corresponding to double reconnected field lines with Poincare maps. The results for the solar wind plasma brought into the magnetosphere seems consistent with the observed plasma transport. Finally, we have shown how the intrinsic 3D nature of the doubly reconnected magnetic field lines leads to the generation of twisted magnetic spatial structures that differ from the quasi-2D magnetic islands structures.
Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests
NASA Technical Reports Server (NTRS)
Potter, C. S.; Peterson, David L. (Technical Monitor)
1997-01-01
Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.
Magnuson, James S.
2015-01-01
Grossberg and Kazerounian [(2011). J. Acoust. Soc. Am. 130, 440–460] present a model of sequence representation for spoken word recognition, the cARTWORD model, which simulates essential aspects of phoneme restoration. Grossberg and Kazerounian also include simulations with the TRACE model presented by McClelland and Elman [(1986). Cognit. Psychol. 18, 1–86] that seem to indicate that TRACE cannot simulate phoneme restoration. Grossberg and Kazerounian also claim cARTWORD should be preferred to TRACE because of TRACE's implausible approach to sequence representation (reduplication of time-specific units) and use of non-modulatory feedback (i.e., without position-specific bottom-up support). This paper responds to Grossberg and Kazerounian first with TRACE simulations that account for phoneme restoration when appropriately constructed noise is used (and with minor changes to TRACE phoneme definitions), then reviews the case for reduplicated units and feedback as implemented in TRACE, as well as TRACE's broad and deep coverage of empirical data. Finally, it is argued that cARTWORD is not comparable to TRACE because cARTWORD cannot represent sequences with repeated elements, has only been implemented with small phoneme and lexical inventories, and has been applied to only one phenomenon (phoneme restoration). Without evidence that cARTWORD captures a similar range and detail of human spoken language processing as alternative models, it is premature to prefer cARTWORD to TRACE. PMID:25786959
Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo
2015-07-01
Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.
Infant word recognition: Insights from TRACE simulations.
Mayor, Julien; Plunkett, Kim
2014-02-01
The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants' graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan's stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life.
Impact of impurities on zonal flow driven by trapped electron mode turbulence
NASA Astrophysics Data System (ADS)
Guo, Weixin; Wang, Lu; Zhuang, Ge
2017-12-01
The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.
Integrating Cache Performance Modeling and Tuning Support in Parallelization Tools
NASA Technical Reports Server (NTRS)
Waheed, Abdul; Yan, Jerry; Saini, Subhash (Technical Monitor)
1998-01-01
With the resurgence of distributed shared memory (DSM) systems based on cache-coherent Non Uniform Memory Access (ccNUMA) architectures and increasing disparity between memory and processors speeds, data locality overheads are becoming the greatest bottlenecks in the way of realizing potential high performance of these systems. While parallelization tools and compilers facilitate the users in porting their sequential applications to a DSM system, a lot of time and effort is needed to tune the memory performance of these applications to achieve reasonable speedup. In this paper, we show that integrating cache performance modeling and tuning support within a parallelization environment can alleviate this problem. The Cache Performance Modeling and Prediction Tool (CPMP), employs trace-driven simulation techniques without the overhead of generating and managing detailed address traces. CPMP predicts the cache performance impact of source code level "what-if" modifications in a program to assist a user in the tuning process. CPMP is built on top of a customized version of the Computer Aided Parallelization Tools (CAPTools) environment. Finally, we demonstrate how CPMP can be applied to tune a real Computational Fluid Dynamics (CFD) application.
NASA Astrophysics Data System (ADS)
Oman, L.; Strahan, S. E.
2017-12-01
The Quasi-Biennial Oscillation (QBO) is the dominant mode of variability in the tropical stratosphere on interannual time scales. It has been shown to impact both stratospheric dynamics and important trace gas constituent distributions. The QBO timing with respect to the seasonal cycle in each hemisphere is significant in determining its impact on up to decadal scale variability. The composition response to the QBO is examined using the new MERRA-2 GMI "Replay" simulation, an atmospheric composition community resource, run at the native MERRA-2 approximately ½° horizontal resolution on the cubed sphere. MERRA-2 GMI is driven by the online use of key MERRA-2 meteorological quantities (i.e. U, V, T, and P) with all other variables calculated in response to those and boundary condition forcings from 1980-2016. The simulation combined with NASA's UARS and Aura satellite measurements have allowed us to quantify the impact of the QBO on stratospheric composition in more detail than was ever possible before. Revealing preferential pathways and transport timings necessary in understanding the QBO impact on composition throughout the stratosphere.
Numerical optimization of a picosecond pulse driven Ni-like Nb x-ray laser at 20.3 nm
NASA Astrophysics Data System (ADS)
Lu, X.; Zhong, J. Y.; Li, Y. J.; Zhang, J.
2003-07-01
Detailed simulations of a Ni-like Nb x-ray laser pumped by a nanosecond prepulse followed by a picosecond main pulse are presented. The atomic physics data are obtained using the Cowan code [R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981)]. The optimization calculations are performed in terms of the intensity of prepulse and the time delay between the prepulse and the main pulse. A high gain over 150 cm-1 is obtained for the optimized drive pulse configuration. The ray-tracing calculations suggest that the total pump energy for a saturated x-ray laser can be reduced to less than 1 J.
Accretion dynamics in pre-main sequence binaries
NASA Astrophysics Data System (ADS)
Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.
Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.
NASA Astrophysics Data System (ADS)
Liping, Y.; He, J.; Peter, H.; Tu, C. Y.; Feng, X. S.
2015-12-01
In the solar atmosphere, the jets are ubiquitous and found to be at various spatia-temporal scales. They are significant to understand energy and mass transport in the solar atmosphere. Recently, the high-speed transition region jets are reported from the observation. Here we conduct a numerical simulation to investigate the mechanism in their formation, as well as their mass and energy contributions to the solar wind. Driven by the supergranular convection motion, the magnetic reconnection between the magnetic loop and the background open flux occurring in the transition region is simulated with a two-dimensional MHD model. The simulation results show that not only a fast hot jet, much resemble the found transition region jets, but also a adjacent slow cool jet, mostly like classical spicules, is launched. The force analysis shows that the fast hot jet is continually driven by the Lorentz force around the reconnection region, while the slow cool jet is induced by an initial kick through the Lorentz force associated with the emerging magnetic flux. Also, the features of the driven jets change with the amount of the emerging magnetic flux, giving the varieties of both jets.With the developed one-dimensional hydrodynamic solar wind model, the time-dependent pulses are imposed at the bottom to simulate the jet behaviors. The simulation results show that without other energy source, the injected plasmas are accelerated effectively to be a transonic wind with a substantial mass flux. The rapid acceleration occurs close to the Sun, and the resulting asymptotic speeds, number density at 0.3 AU, as well as mass flux normalized to 1 AU are compatible with in site observations. As a result of the high speed, the imposed pulses lead to a train of shocks traveling upward. By tracing the motions of the injected plasma, it is found that these shocks heat and accelerate the injected plasma to make part of them propagate upward and eventually escape. The parametric study shows that as the speed and temperature of the imposed pulses increase, we get an increase of the speed and temperature of the driven solar wind, which do not be influenced by the increase of the number density of the imposed pulses. When the recurring period of the imposed pulses decreases, the obtained solar wind becomes slower and cooler.
Verification technology of remote sensing camera satellite imaging simulation based on ray tracing
NASA Astrophysics Data System (ADS)
Gu, Qiongqiong; Chen, Xiaomei; Yang, Deyun
2017-08-01
Remote sensing satellite camera imaging simulation technology is broadly used to evaluate the satellite imaging quality and to test the data application system. But the simulation precision is hard to examine. In this paper, we propose an experimental simulation verification method, which is based on the test parameter variation comparison. According to the simulation model based on ray-tracing, the experiment is to verify the model precision by changing the types of devices, which are corresponding the parameters of the model. The experimental results show that the similarity between the imaging model based on ray tracing and the experimental image is 91.4%, which can simulate the remote sensing satellite imaging system very well.
Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers
NASA Technical Reports Server (NTRS)
Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)
1997-01-01
Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983-1988) were estimated at 57.1 Pg C-CO2yr-1, 9.8Tg (1012 g) N-NO yr-1, and 9.7 Tg N-N2O yr-1. Chemical fertilizer contributions to global soil N gas fluxes were estimated at between 1.3 to 7.3 Tg N-NO yr-1, and 1.2 to 4.0 Tg N-N2O yr-1.
An R package for state-trace analysis.
Prince, Melissa; Hawkins, Guy; Love, Jonathon; Heathcote, Andrew
2012-09-01
State-trace analysis (Bamber, Journal of Mathematical Psychology, 19, 137-181, 1979) is a graphical analysis that can determine whether one or more than one latent variable mediates an apparent dissociation between the effects of two experimental manipulations. State-trace analysis makes only ordinal assumptions and so, is not confounded by range effects that plague alternative methods, especially when performance is measured on a bounded scale (such as accuracy). We describe and illustrate the application of a freely available GUI driven package, StateTrace, for the R language. StateTrace automates many aspects of a state-trace analysis of accuracy and other binary response data, including customizable graphics and the efficient management of computationally intensive Bayesian methods for quantifying evidence about the outcomes of a state-trace experiment, developed by Prince, Brown, and Heathcote (Psychological Methods, 17, 78-99, 2012).
Hagerman, Amy D; Ward, Michael P; Anderson, David P; Looney, J Chris; McCarl, Bruce A
2013-07-01
In this study our aim was to value the benefits of rapid effective trace-back capability-based on a livestock identification system - in the event of a foot and mouth disease (FMD) outbreak. We simulated an FMD outbreak in the Texas High Plains, an area of high livestock concentration, beginning in a large feedlot. Disease spread was simulated under different time dependent animal tracing scenarios. In the specific scenario modeled (incursion of FMD within a large feedlot, detection within 14 days and 90% effective tracing), simulation suggested that control costs of the outbreak significantly increase if tracing does not occur until day 10 as compared to the baseline of tracing on day 2. In addition, control costs are significantly increased if effectiveness were to drop to 30% as compared to the baseline of 90%. Results suggest potential benefits from rapid effective tracing in terms of reducing government control costs; however, a variety of other scenarios need to be explored before determining in which situations rapid effective trace-back capability is beneficial. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
King, Jean A.; Rohmer-Hirt, Johnna A.
2011-01-01
From the 1980s to the present, educational accountability in the United States has grown dramatically. Such accountability in U.S. school districts, although driven primarily by external demands, has internal manifestations as well. The chapter traces the historical development of internal evaluation in American school districts, then highlights…
Scalability Analysis of Gleipnir: A Memory Tracing and Profiling Tool, on Titan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janjusic, Tommy; Kartsaklis, Christos; Wang, Dali
2013-01-01
Application performance is hindered by a variety of factors but most notably driven by the well know CPU-memory speed gap (also known as the memory wall). Understanding application s memory behavior is key if we are trying to optimize performance. Understanding application performance properties is facilitated with various performance profiling tools. The scope of profiling tools varies in complexity, ease of deployment, profiling performance, and the detail of profiled information. Specifically, using profiling tools for performance analysis is a common task when optimizing and understanding scientific applications on complex and large scale systems such as Cray s XK7. This papermore » describes the performance characteristics of using Gleipnir, a memory tracing tool, on the Titan Cray XK7 system when instrumenting large applications such as the Community Earth System Model. Gleipnir is a memory tracing tool built as a plug-in tool for the Valgrind instrumentation framework. The goal of Gleipnir is to provide fine-grained trace information. The generated traces are a stream of executed memory transactions mapped to internal structures per process, thread, function, and finally the data structure or variable. Our focus was to expose tool performance characteristics when using Gleipnir with a combination of an external tools such as a cache simulator, Gl CSim, to characterize the tool s overall performance. In this paper we describe our experience with deploying Gleipnir on the Titan Cray XK7 system, report on the tool s ease-of-use, and analyze run-time performance characteristics under various workloads. While all performance aspects are important we mainly focus on I/O characteristics analysis due to the emphasis on the tools output which are trace-files. Moreover, the tool is dependent on the run-time system to provide the necessary infrastructure to expose low level system detail; therefore, we also discuss any theoretical benefits that can be achieved if such modules were present.« less
Leiner, Claude; Nemitz, Wolfgang; Schweitzer, Susanne; Kuna, Ladislav; Wenzl, Franz P; Hartmann, Paul; Satzinger, Valentin; Sommer, Christian
2016-03-20
We show that with an appropriate combination of two optical simulation techniques-classical ray-tracing and the finite difference time domain method-an optical device containing multiple diffractive and refractive optical elements can be accurately simulated in an iterative simulation approach. We compare the simulation results with experimental measurements of the device to discuss the applicability and accuracy of our iterative simulation procedure.
Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors
NASA Astrophysics Data System (ADS)
Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich
2016-09-01
We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.
Infant word recognition: Insights from TRACE simulations☆
Mayor, Julien; Plunkett, Kim
2014-01-01
The TRACE model of speech perception (McClelland & Elman, 1986) is used to simulate results from the infant word recognition literature, to provide a unified, theoretical framework for interpreting these findings. In a first set of simulations, we demonstrate how TRACE can reconcile apparently conflicting findings suggesting, on the one hand, that consonants play a pre-eminent role in lexical acquisition (Nespor, Peña & Mehler, 2003; Nazzi, 2005), and on the other, that there is a symmetry in infant sensitivity to vowel and consonant mispronunciations of familiar words (Mani & Plunkett, 2007). In a second series of simulations, we use TRACE to simulate infants’ graded sensitivity to mispronunciations of familiar words as reported by White and Morgan (2008). An unexpected outcome is that TRACE fails to demonstrate graded sensitivity for White and Morgan’s stimuli unless the inhibitory parameters in TRACE are substantially reduced. We explore the ramifications of this finding for theories of lexical development. Finally, TRACE mimics the impact of phonological neighbourhoods on early word learning reported by Swingley and Aslin (2007). TRACE offers an alternative explanation of these findings in terms of mispronunciations of lexical items rather than imputing word learning to infants. Together these simulations provide an evaluation of Developmental (Jusczyk, 1993) and Familiarity (Metsala, 1999) accounts of word recognition by infants and young children. The findings point to a role for both theoretical approaches whereby vocabulary structure and content constrain infant word recognition in an experience-dependent fashion, and highlight the continuity in the processes and representations involved in lexical development during the second year of life. PMID:24493907
Hanuschkin, Alexander; Kunkel, Susanne; Helias, Moritz; Morrison, Abigail; Diesmann, Markus
2010-01-01
Traditionally, event-driven simulations have been limited to the very restricted class of neuronal models for which the timing of future spikes can be expressed in closed form. Recently, the class of models that is amenable to event-driven simulation has been extended by the development of techniques to accurately calculate firing times for some integrate-and-fire neuron models that do not enable the prediction of future spikes in closed form. The motivation of this development is the general perception that time-driven simulations are imprecise. Here, we demonstrate that a globally time-driven scheme can calculate firing times that cannot be discriminated from those calculated by an event-driven implementation of the same model; moreover, the time-driven scheme incurs lower computational costs. The key insight is that time-driven methods are based on identifying a threshold crossing in the recent past, which can be implemented by a much simpler algorithm than the techniques for predicting future threshold crossings that are necessary for event-driven approaches. As run time is dominated by the cost of the operations performed at each incoming spike, which includes spike prediction in the case of event-driven simulation and retrospective detection in the case of time-driven simulation, the simple time-driven algorithm outperforms the event-driven approaches. Additionally, our method is generally applicable to all commonly used integrate-and-fire neuronal models; we show that a non-linear model employing a standard adaptive solver can reproduce a reference spike train with a high degree of precision. PMID:21031031
Bioactive trace metal time series during Austral summer in Ryder Bay, Western Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Bown, Johann; Laan, Patrick; Ossebaar, Sharyn; Bakker, Karel; Rozema, Patrick; de Baar, Hein J. W.
2017-05-01
The Western Antarctic Peninsula, one of the most productive regions of the Southern Ocean, is currently affected by the increasing of atmospheric and oceanic temperatures. For several decades, the Rothera Time Series (RaTS) site located in Ryder Bay has been monitored by the British Antarctic Survey and has shown long lasting phytoplankton summer blooms (over a month) that are likely driven by the length of the sea ice season. The dynamics of phytoplankton blooms in Ryder Bay may just as well be influenced by natural fertilization of iron and other bioactive trace metals due to the proximity of land, islands and glaciers. For the first time, temporal distributions in the surface layer (0-75 m depth) of six bioactive trace metals (dissolved: Fe, Mn, Zn, Cd, Cu and dissolved labile Co) have been investigated with high temporal and spatial resolution at the RaTS site during a total of 2 and 3.5 months respectively, over two consecutive summers. Most of the studied trace elements showed wide ranges of concentrations and this dynamics appears to be driven by phytoplankton uptake, remineralization and occasional vertical mixing associated with storm episodes. The biological uptake of DMn, DZn, DCd, DCoL and DCu was proportional to uptake of phosphate and silicate, which was associated with weak to strong linear relationships depending on which phytoplankton bloom events was considered. This further suggests that the surface water distributions of these studied bio-active trace metals were mainly driven by biological uptake and remineralization during austral spring and summer in Ryder Bay. Even though DFe did not show any strong relationship with phosphate, DFe decreasing concentrations during each bloom event suggest that Fe is a key essential element for phytoplankton in the area of study. The consistency of trace metals/nutrient ratios during two consecutive summers indicates that over-winter scavenging removal was slow relative to mixing. The increase of DCd/P and DCoL/P drawdown ratios during the two consecutive blooms monitored during the second season could reflect the substitution of DZn by trace metals DCd and DCoL due to lowered DZn concentrations after the first bloom. Relationships of trace elements versus silicate appear to be dominated by diatoms abundances which tend to vary both at the season and bloom time scale. Simultaneous short-term events of depletions of both nutrients and bio-active trace metals might induce stress in the growth of the phytoplankton assemblage.
Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu
2006-01-01
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.
CosApps: Simulate gravitational lensing through ray tracing and shear calculation
NASA Astrophysics Data System (ADS)
Coss, David
2017-12-01
Cosmology Applications (CosApps) provides tools to simulate gravitational lensing using two different techniques, ray tracing and shear calculation. The tool ray_trace_ellipse calculates deflection angles on a grid for light passing a deflecting mass distribution. Using MPI, ray_trace_ellipse may calculate deflection in parallel across network connected computers, such as cluster. The program physcalc calculates the gravitational lensing shear using the relationship of convergence and shear, described by a set of coupled partial differential equations.
Evaluation of regional climate simulations for air quality modelling purposes
NASA Astrophysics Data System (ADS)
Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand
2013-05-01
In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, K; Hristov, D
2014-06-01
Purpose: To evaluate the potential impact of listmode-driven amplitude based optimal gating (OG) respiratory motion management technique on quantitative PET imaging. Methods: During the PET acquisitions, an optical camera tracked and recorded the motion of a tool placed on top of patients' torso. PET event data were utilized to detect and derive a motion signal that is directly coupled with a specific internal organ. A radioactivity-trace was generated from listmode data by accumulating all prompt counts in temporal bins matching the sampling rate of the external tracking device. Decay correction for 18F was performed. The image reconstructions using OG respiratorymore » motion management technique that uses 35% of total radioactivity counts within limited motion amplitudes were performed with external motion and radioactivity traces separately with ordered subset expectation maximization (OSEM) with 2 iterations and 21 subsets. Standard uptake values (SUVs) in a tumor region were calculated to measure the effect of using radioactivity trace for motion compensation. Motion-blurred 3D static PET image was also reconstructed with all counts and the SUVs derived from OG images were compared with SUVs from 3D images. Results: A 5.7 % increase of the maximum SUV in the lesion was found for optimal gating image reconstruction with radioactivity trace when compared to a static 3D image. The mean and maximum SUVs on the image that was reconstructed with radioactivity trace were found comparable (0.4 % and 4.5 % increase, respectively) to the values derived from the image that was reconstructed with external trace. Conclusion: The image reconstructed using radioactivity trace showed that the blurring due to the motion was reduced with impact on derived SUVs. The resolution and contrast of the images reconstructed with radioactivity trace were comparable to the resolution and contrast of the images reconstructed with external respiratory traces. Research supported by Siemens.« less
Recent progress of the Laser-driven Ion-beam Trace Probe
NASA Astrophysics Data System (ADS)
Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.
Edge-driven microplate kinematics
Schouten, Hans; Klitgord, Kim D.; Gallo, David G.
1993-01-01
It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.
AORSA full wave calculations of helicon waves in DIII-D and ITER
NASA Astrophysics Data System (ADS)
Lau, C.; Jaeger, E. F.; Bertelli, N.; Berry, L. A.; Green, D. L.; Murakami, M.; Park, J. M.; Pinsker, R. I.; Prater, R.
2018-06-01
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases. These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10%–20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.
AORSA full wave calculations of helicon waves in DIII-D and ITER
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola; ...
2018-04-11
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
Using radon-222 to distinguish between vertical transport processes at Jungfraujoch
NASA Astrophysics Data System (ADS)
Griffiths, Alan; Chambers, Scott; Conen, Franz; Weingartner, Ernest; Zimmermann, Lukas; Williams, Alastair; Steinbacher, Martin
2015-04-01
Trace gases measured at Jungfrajoch, a key baseline monitoring station in the Swiss Alps, are tranported from the surface to the alpine ridge by several different processes. On clear days with weak synoptic forcing, thermally-driven upslope mountain winds (anabatic winds) are prevalent. Using hourly radon--222 observations, which are often used to identify air of terrestrial origin, we used the shape of the diurnal cycle to sort days according to the strength of anabatic winds. Radon is ideal as an airmass tracer because it is emitted from soil at a relatively constant rate, it is chemically inert, and decays with a half-life of 3.8 days. Because of its short half-life, radon concentrations are much lower in the free troposphere than in boundary-layer air over land. For comparable radon concentrations, anabatic wind days at Jungfraujoch are different from non-anabatic days in terms of the average wind speed, humidity, air temperature anomalies, and trace species. As a consequence, future studies could be devised which focus on a subset of days, e.g. by excluding anabatic days, with the intention of choosing a set of days which can be more accurately simulated by a transport model.
AORSA full wave calculations of helicon waves in DIII-D and ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Cornwall; Jaeger, E.F.; Bertelli, Nicola
Helicon waves have been recently proposed as an off-axis current drive actuator for DIII-D, FNSF, and DEMO tokamaks. Previous ray tracing modeling using GENRAY predicts strong single pass absorption and current drive in the mid-radius region on DIII-D in high beta tokamak discharges. The full wave code AORSA, which is valid to all order of Larmor radius and can resolve arbitrary ion cyclotron harmonics, has been used to validate the ray tracing technique. If the scrape-off-layer (SOL) is ignored in the modeling, AORSA agrees with GENRAY in both the amplitude and location of driven current for DIII-D and ITER cases.more » These models also show that helicon current drive can possibly be an efficient current drive actuator for ITER. Previous GENRAY analysis did not include the SOL. AORSA has also been used to extend the simulations to include the SOL and to estimate possible power losses of helicon waves in the SOL. AORSA calculations show that another mode can propagate in the SOL and lead to significant (~10-20%) SOL losses at high SOL densities. Optimizing the SOL density profile can reduce these SOL losses to a few percent.« less
Particle acceleration in solar active regions being in the state of self-organized criticality.
NASA Astrophysics Data System (ADS)
Vlahos, Loukas
We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789
Electro-osmotic flow of a model electrolyte
NASA Astrophysics Data System (ADS)
Zhu, Wei; Singer, Sherwin J.; Zheng, Zhi; Conlisk, A. T.
2005-04-01
Electro-osmotic flow is studied by nonequilibrium molecular dynamics simulations in a model system chosen to elucidate various factors affecting the velocity profile and facilitate comparison with existing continuum theories. The model system consists of spherical ions and solvent, with stationary, uniformly charged walls that make a channel with a height of 20 particle diameters. We find that hydrodynamic theory adequately describes simple pressure-driven (Poiseuille) flow in this model. However, Poisson-Boltzmann theory fails to describe the ion distribution in important situations, and therefore continuum fluid dynamics based on the Poisson-Boltzmann ion distribution disagrees with simulation results in those situations. The failure of Poisson-Boltzmann theory is traced to the exclusion of ions near the channel walls resulting from reduced solvation of the ions in that region. When a corrected ion distribution is used as input for hydrodynamic theory, agreement with numerical simulations is restored. An analytic theory is presented that demonstrates that repulsion of the ions from the channel walls increases the flow rate, and attraction to the walls has the opposite effect. A recent numerical study of electro-osmotic flow is reanalyzed in the light of our findings, and the results conform well to our conclusions for the model system.
Event-driven simulation in SELMON: An overview of EDSE
NASA Technical Reports Server (NTRS)
Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.
1992-01-01
EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.
Synaptic and nonsynaptic plasticity approximating probabilistic inference
Tully, Philip J.; Hennig, Matthias H.; Lansner, Anders
2014-01-01
Learning and memory operations in neural circuits are believed to involve molecular cascades of synaptic and nonsynaptic changes that lead to a diverse repertoire of dynamical phenomena at higher levels of processing. Hebbian and homeostatic plasticity, neuromodulation, and intrinsic excitability all conspire to form and maintain memories. But it is still unclear how these seemingly redundant mechanisms could jointly orchestrate learning in a more unified system. To this end, a Hebbian learning rule for spiking neurons inspired by Bayesian statistics is proposed. In this model, synaptic weights and intrinsic currents are adapted on-line upon arrival of single spikes, which initiate a cascade of temporally interacting memory traces that locally estimate probabilities associated with relative neuronal activation levels. Trace dynamics enable synaptic learning to readily demonstrate a spike-timing dependence, stably return to a set-point over long time scales, and remain competitive despite this stability. Beyond unsupervised learning, linking the traces with an external plasticity-modulating signal enables spike-based reinforcement learning. At the postsynaptic neuron, the traces are represented by an activity-dependent ion channel that is shown to regulate the input received by a postsynaptic cell and generate intrinsic graded persistent firing levels. We show how spike-based Hebbian-Bayesian learning can be performed in a simulated inference task using integrate-and-fire (IAF) neurons that are Poisson-firing and background-driven, similar to the preferred regime of cortical neurons. Our results support the view that neurons can represent information in the form of probability distributions, and that probabilistic inference could be a functional by-product of coupled synaptic and nonsynaptic mechanisms operating over several timescales. The model provides a biophysical realization of Bayesian computation by reconciling several observed neural phenomena whose functional effects are only partially understood in concert. PMID:24782758
WRF Model Simulations of Terrain-Driven Atmospheric Eddies in Marine Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Muller, B. M.; Herbster, C. G.; Mosher, F. R.
2014-12-01
It is not unusual to observe atmospheric eddies in satellite imagery of the marine stratus and stratocumulus clouds that characterize the summertime weather of the California coastal region and near-shore oceanic environment. The winds of the marine atmospheric boundary layer (MABL) over the ocean interact with the high terrain of prominent headlands and islands to create order-10 km scale areas of swirling air that can contain a cloud-free eye, 180-degree wind reversals at the surface over a period of minutes, and may be associated with mixing and turbulence between the high-humidity air of the MABL and the much warmer and drier inversion layer air above. However, synoptic and even subsynoptic surface weather measurements, and the synoptic upper-air observing network are inadequate, or in some cases, completely unable, to detect and characterize the formation, movement, and even the existence of the eddies. They can literally slip between land-based surface observation locations, or stay over the near-shore ocean environment where there may be no surface meteorological measurements. This study presents Weather Research and Forecasting (WRF) Model simulations of these small-scale, terrain-driven, atmospheric features in the MABL from cases detected in GOES satellite imagery. The purpose is to use model output to diagnose the formation mechanisms, sources of vorticity, and the air flow in and around the eddies. Satellite imagery is compared to simulated atmospheric variables to validate features generated within the model atmosphere, and model output is employed as a surrogate atmosphere to better understand the atmospheric characteristics of the eddies. Model air parcel trajectories are estimated to trace the movement and sources of the air contained in and around these often-observed, but seldom-measured features.
Evidence of the Lower Thermospheric Winter-to-Summer Circulation From SABER CO2 Observations
NASA Astrophysics Data System (ADS)
Qian, Liying; Burns, Alan; Yue, Jia
2017-10-01
Numerical studies have shown that there is a lower thermospheric winter-to-summer circulation that is driven by wave dissipation and that it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere, and in the composition of the thermosphere. However, the characteristics of this circulation are poorly known. Direct observations of it are difficult, but it leaves clear signatures in tracer distributions. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite has obtained CO2 concentration from 2002 to present. This data set, combined with simulations by the Whole Atmosphere Community Climate Model, provides an unprecedented opportunity to infer the morphology of this circulation in both the summer and winter hemispheres. Our study show that there exists a maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; in the winter hemisphere, the maximum vertical gradient of CO2 is located at a higher altitude, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation; the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km.
Classification of conductance traces with recurrent neural networks
NASA Astrophysics Data System (ADS)
Lauritzen, Kasper P.; Magyarkuti, András; Balogh, Zoltán; Halbritter, András; Solomon, Gemma C.
2018-02-01
We present a new automated method for structural classification of the traces obtained in break junction experiments. Using recurrent neural networks trained on the traces of minimal cross-sectional area in molecular dynamics simulations, we successfully separate the traces into two classes: point contact or nanowire. This is done without any assumptions about the expected features of each class. The trained neural network is applied to experimental break junction conductance traces, and it separates the classes as well as the previously used experimental methods. The effect of using partial conductance traces is explored, and we show that the method performs equally well using full or partial traces (as long as the trace just prior to breaking is included). When only the initial part of the trace is included, the results are still better than random chance. Finally, we show that the neural network classification method can be used to classify experimental conductance traces without using simulated results for training, but instead training the network on a few representative experimental traces. This offers a tool to recognize some characteristic motifs of the traces, which can be hard to find by simple data selection algorithms.
Nguyen, Van-Giang; Lee, Soo-Jin
2016-07-01
Iterative reconstruction from Compton scattered data is known to be computationally more challenging than that from conventional line-projection based emission data in that the gamma rays that undergo Compton scattering are modeled as conic projections rather than line projections. In conventional tomographic reconstruction, to parallelize the projection and backprojection operations using the graphics processing unit (GPU), approximated methods that use an unmatched pair of ray-tracing forward projector and voxel-driven backprojector have been widely used. In this work, we propose a new GPU-accelerated method for Compton camera reconstruction which is more accurate by using exactly matched pair of projector and backprojector. To calculate conic forward projection, we first sample the cone surface into conic rays and accumulate the intersecting chord lengths of the conic rays passing through voxels using a fast ray-tracing method (RTM). For conic backprojection, to obtain the true adjoint of the conic forward projection, while retaining the computational efficiency of the GPU, we use a voxel-driven RTM which is essentially the same as the standard RTM used for the conic forward projector. Our simulation results show that, while the new method is about 3 times slower than the approximated method, it is still about 16 times faster than the CPU-based method without any loss of accuracy. The net conclusion is that our proposed method is guaranteed to retain the reconstruction accuracy regardless of the number of iterations by providing a perfectly matched projector-backprojector pair, which makes iterative reconstruction methods for Compton imaging faster and more accurate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, R. W.; Fujita, Y.; Taylor, J. L.
2008-12-01
Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory [INL]). Manipulation of in situ biogeochemical conditions to induce immobilization of these contaminants is a promising remediation approach that could yield significant risk and cost benefits to DOE. However, the effective design and interpretation of such field remediation activities requires the availability of numerical tools to model the biogeochemical processes underlying the remediation strategy. We are evaluating the use of microbial urea hydrolysis coupled to calcite precipitation as a means for the cost effective in situ stabilization of trace inorganic contaminants in groundwater and vadose zone systems. The approach relies upon the activity of indigenous ureolytic bacteria to hydrolyze introduced urea and causing an increase in pH and alkalinity, thereby accelerating calcium carbonate precipitation. The precipitation reaction results in the co- precipitation of trace metals and is sustained by the release of cations (both calcium and trace metals) from the aquifer matrix via exchange reactions involving the ammonium ions produced by urea hydrolysis. We have developed and parameterized a mixed kinetic-equilibrium reaction model using the Geochemist's Workbench computer code. Simulation results based on laboratory- and field-scale studies demonstrate the importance of transient events in systems with geochemical fluxes as well as of the coupling of biogeochemical processes.
Accurate low-cost methods for performance evaluation of cache memory systems
NASA Technical Reports Server (NTRS)
Laha, Subhasis; Patel, Janak H.; Iyer, Ravishankar K.
1988-01-01
Methods of simulation based on statistical techniques are proposed to decrease the need for large trace measurements and for predicting true program behavior. Sampling techniques are applied while the address trace is collected from a workload. This drastically reduces the space and time needed to collect the trace. Simulation techniques are developed to use the sampled data not only to predict the mean miss rate of the cache, but also to provide an empirical estimate of its actual distribution. Finally, a concept of primed cache is introduced to simulate large caches by the sampling-based method.
2014-09-30
Mental Domain = Ω Goal Management goal change goal input World =Ψ Memory Mission & Goals( ) World Model (-Ψ) Episodic Memory Semantic Memory ...Activations Trace Meta-Level Control Introspective Monitoring Memory Reasoning Trace ( ) Strategies Episodic Memory Metaknowledge Self Model...it is from incorrect or missing memory associations (i.e., indices). Similarly, correct information may exist in the input stream, but may not be
NASA Astrophysics Data System (ADS)
Spessa, Allan; Fisher, Rosie
2010-05-01
Tropical savannas cover 18% of the world's land surface and are amongst the most productive terrestrial systems in the world. They comprise 15% of the total terrestrial carbon stock, with an estimated mean net primary productivity (NPP) of 7.2 tCha-1yr-1 or two thirds of NPP in tropical forests. Tropical savannas are the most frequently burnt biome, with fire return intervals in highly productive areas being typically 1-2 years. Fires shape vegetation species composition, tree to grass ratios and nutrient redistribution, as well as the biosphere-atmosphere exchange of trace gases, momentum and radiative energy. Tropical savannas are a major source of emissions, contributing 38 % of total annual CO2 from biomass burning, 30% CO, 19 % CH4 and 59 % NOx. Climatically, they occur in regions subject to a strongly seasonal ‘wet-dry' regime, usually under monsoonal control from the movement of the inter-tropical convergence zone. In general, rainfall during the prior wet season(s) determines the amount of grass fuel available for burning while the length of the dry season influences fuel moisture content. Rainfall in tropical savannas exhibits high inter-annual variability, and under future climate change, is projected to change significantly in much of Africa, South America and northern Australia. Process-based simulation models of fire-vegetation dynamics and feedbacks are critical for determining the impacts of wildfires under projected future climate change on i) ecosystem structure and function, and ii) emissions of trace gases and aerosols from biomass burning. A new mechanistic global fire model SPITFIRE (SPread and InTensity of FIRE) has been designed to overcome many of the limitations in existing fire models set within Dynamic Global Vegetation Models (DGVMs). SPITFIRE has been applied in coupled mode globally and southern Africa, both as part of the LPJ DGVM. It has also been driven with MODIS burnt area data applied to sub-Saharan Africa, while coupled to the LPJ-GUESS vegetation model. Recently, SPIFTIRE has been coupled to the Ecosystem Demography (ED) model, which simulates global vegetation dynamics as part of the new land surface scheme JULES (Joint UK Environment Simulator) within the QUEST Earth System Model (http://www.quest-esm.ac.uk/). This study forms part of on-going work to further improve and test the ability of JULES to accurately simulate the terrestrial carbon cycle and land-atmosphere exchanges under different climates. Using the JULES (ED-SPITFIRE) model driven by observed climate (1901-2002), and focusing on large-scale rainfall gradients in the tropical savannas of west Africa, the Northern Territory (Australia) and central-southern Brazil, this study assesses: i) simulated versus observed vegetation dynamics and distributions, and ii) the relative importance of fire versus rainfall in determining vegetation patterns. A sensitivity analysis approach was used.
The Independence of Neutral and Ionized Gas Outflows in Low-z Galaxies
NASA Astrophysics Data System (ADS)
Bae, Hyun-Jin; Woo, Jong-Hak
2018-02-01
Using a large sample of emission line galaxies selected from the Sloan Digital Sky Survey, we investigate the kinematics of the neutral gas in the interstellar medium (ISM) based on the Na I λλ5890,5896 (Na D) doublet absorption line. By removing the Na D contribution from stellar atmospheres, we isolate the line profile of the Na D excess, which represents the neutral gas in the ISM. The kinematics traced by the Na D excess show high velocity and velocity dispersion for a fraction of galaxies, indicating the presence of neutral gas outflows. We find that the kinematics measured from the Na D excess are similar between AGNs and star-forming galaxies. Moreover, by comparing the kinematics traced by the Na D excess and those by the [O III] λ5007 line taken from Woo et al., which traces ionized outflows driven by AGNs, we find no correlation between them. These results demonstrate that the neutral gas in the ISM traced by the Na D excess and the ionized gas traced by [O III] are kinematically independent, and AGNs have no impact on the neutral gas outflows. In contrast to [O III], we find that the measured line-of-sight velocity shift and velocity dispersion of the Na D excess increase for more face-on galaxies due to the projection effect, supporting that Na D outflows are radially driven (i.e., perpendicular to the major axis of galaxies), presumably due to star formation.
NASA Astrophysics Data System (ADS)
Schichtel, B.; Barna, M.; Gebhart, K.; Green, M.
2002-12-01
The Big Bend Regional Aerosol and Visibility Observational Study (BRAVO) was designed to determine the causes of visibility impairment at Big Bend National Park, located in southwestern Texas. As part of BRAVO, an intensive field study was conducted during July-October 1999. Among the features of this study was the release of unique perfluorocarbon tracers from four sites within Texas, representative of industrial/urban locations. These tracers were monitored at 21 sites, throughout Texas. Other measurements collected during the field study included upper-level winds using radar profilers, and speciated fine-particulate mass concentrations. MM5 was used to simulate the regional meteorology during BRAVO, and was run in non-hydrostatic mode using a continental-scale 36km domain with nested 12km and 4km domains. MM5 employed observational nudging by incorporating the available measured wind data from the National Weather Service and data from the radar wind profilers. Meteorological data from the National Weather Service's Eta Data Assimilation System (EDAS), archived at 80km grid spacing, were also available. Several models are being used to evaluate airmass transport to Big Bend, including CMAQ, REMSAD, HYSPLIT and the CAPITA Monte Carlo Model. This combination of tracer data, meteorological data and deployment of four models provides a unique opportunity to assess the ability of the model/wind field combinations to properly simulate the regional scale atmospheric transport and dispersion of trace gases over distances of 100 to 800km. This paper will present the tracer simulations from REMSAD using the 36 and 12 km MM5 wind fields, and results from HYSPLIT and the Monte Carlo model driven by the 36km MM5 and 80km EDAS wind fields. Preliminary results from HYSPLIT and the Monte Carlo model driven by the EDAS wind fields shows that these models are able to account for the primary features of tracer concentrations patterns in the Big Bend area. However, at times the simulated concentration peaks proceeded or followed the actual measured concentrations by about at day and the duration of the simulated tracer impacts were shorter than those measured in the Big Bend area.
Comparing TID simulations using 3-D ray tracing and mirror reflection
NASA Astrophysics Data System (ADS)
Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.
2016-04-01
Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.
MAGNETOHYDRODYNAMIC SIMULATION-DRIVEN KINEMATIC MEAN FIELD MODEL OF THE SOLAR CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simard, Corinne; Charbonneau, Paul; Bouchat, Amelie, E-mail: corinne@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca, E-mail: amelie.bouchat@mail.mcgill.ca
We construct a series of kinematic axisymmetric mean-field dynamo models operating in the {alpha}{Omega}, {alpha}{sup 2}{Omega} and {alpha}{sup 2} regimes, all using the full {alpha}-tensor extracted from a global magnetohydrodynamical simulation of solar convection producing large-scale magnetic fields undergoing solar-like cyclic polarity reversals. We also include an internal differential rotation profile produced in a purely hydrodynamical parent simulation of solar convection, and a simple meridional flow profile described by a single cell per meridional quadrant. An {alpha}{sup 2}{Omega} mean-field model, presumably closest to the mode of dynamo action characterizing the MHD simulation, produces a spatiotemporal evolution of magnetic fields thatmore » share some striking similarities with the zonally-averaged toroidal component extracted from the simulation. Comparison with {alpha}{sup 2} and {alpha}{Omega} mean-field models operating in the same parameter regimes indicates that much of the complexity observed in the spatiotemporal evolution of the large-scale magnetic field in the simulation can be traced to the turbulent electromotive force. Oscillating {alpha}{sup 2} solutions are readily produced, and show some similarities with the observed solar cycle, including a deep-seated toroidal component concentrated at low latitudes and migrating equatorward in the course of the solar cycle. Various numerical experiments performed using the mean-field models reveal that turbulent pumping plays an important role in setting the global characteristics of the magnetic cycles.« less
Prediction-based dynamic load-sharing heuristics
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.
1993-01-01
The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.
Reducing space overhead for independendent checkpointing
NASA Technical Reports Server (NTRS)
Wang, Yi-Min; Chung, Pi-Yu; Lin, In-Jen; Fuchs, W. Kent
1992-01-01
The main disadvantages of independent checkpointing are the possible domino effect and the associated storage space overhead for maintaining multiple checkpoints. In most previous work, it has been assumed that only the checkpoints older than the current global recovery line can be discarded. Here, we generalize a notion of recovery line to potential recovery line. Only the checkpoints belonging to at least one of the potential recovery lines cannot be discarded. By using the model of maximum-sized antichains on a partially ordered set, an efficient algorithm is developed for finding all non-discardable checkpoints, and we show that the number of non-discardable checkpoints cannot exceed N(N+1)/2, where N is the number of processors. Communication trace driven simulation for several hypercube programs is performed to show the benefit of the proposed algorithm for real applications.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
NASA Astrophysics Data System (ADS)
Liang, S. W.; Chang, Y. W.; Chen, Chih
2006-04-01
Three-dimensional thermoelectrical simulation was conducted to investigate the influence of Al-trace dimension on Joule heating and current crowding in flip-chip solder joints. It is found that the dimension of the Al-trace effects significantly on the Joule heating, and thus directly determines the mean time to failure (MTTF). Simulated at a stressing current of 0.6A at 70°C, we estimate that the MTTF of the joints with Al traces in 100μm width was 6.1 times longer than that of joints with Al traces in 34μm width. Lower current crowding effect and reduced hot-spot temperature are responsible for the improved MTTF.
Taylor, William; Kalmbach, Brian; Desai, Niraj S.
2015-01-01
Abstract Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum. Finally, inactivation of the mPFC and amygdala in trained animals nearly abolished tCRs. Anatomical data from these critical regions showed that mPFC and amygdala both project to the rostral basilar pons and overlap with eyelid-associated pontocerebellar neurons. The data provide the first report of trace eyeblink conditioning in mice in which tCRs were driven by the cerebellum and required a localized region of mPFC for acquisition. The data further reveal a specific role for the amygdala as providing a conditioned stimulus-associated input to the cerebellum. PMID:26464998
Yang, Yanye; Ni, Zhengyang; Guo, Xiasheng; Luo, Linjiao; Tu, Juan; Zhang, Dong
2017-01-01
Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF) and acoustic streaming (AS). In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV). Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning. PMID:28753955
Trinity Bay Study: Dye tracing experiments
NASA Technical Reports Server (NTRS)
Ward, G. H., Jr.
1972-01-01
An analysis of the heat balance and temperature distribution within Trinity Bay near Galveston, Texas is presented. The effects of tidal currents, wind driven circulations, and large volume inflows are examined. Emphasis is placed on the effects of turbulent diffusion and local shears in currents. The technique of dye tracing to determine the parameters characterizing dispersion is described. Aerial photographs and maps are provided to show the flow conditions existing at different times and seasons.
NASA Astrophysics Data System (ADS)
Mihajlovski, A.; Spinuso, A.; Plieger, M.; Som de Cerff, W.
2016-12-01
Modern Climate analysis platforms provide generic and standardized ways of accessing data and processing services. These are typically supported by a wide range of OGC formats and interfaces. However, the problem of instrumentally tracing the lineage of the transformations occurring on a dataset and its provenance remains an open challenge. It requires standard-driven and interoperable solutions to facilitate understanding, sharing of self-describing data products, fostering collaboration among peers. The CLIPC portal provided us real use case, where the need of an instrumented provenance management is fundamental. CLIPC provides a single point of access for scientific information on climate change. The data about the physical environment which is used to inform climate change policy and adaptation measures comes from several categories: satellite measurements, terrestrial observing systems, model projections and simulations and from re-analyses. This is made possible through the Copernicus Earth Observation Programme for Europe. With a backbone combining WPS and OPeNDAP services, CLIPC has two themes: 1. Harmonized access to climate datasets derived from models, observations and re-analyses 2. A climate impact tool kit to evaluate, rank and aggregate indicators The climate impact tool kit is realised with the orchestration of a number of WPS that ingest, normalize and combine NetCDF files. The WPS allowing this specific computation are hosted by the climate4impact portal, which is a more generic climate data-access and processing service. In this context, guaranteeing validation and reproducibility of results, is a clearly stated requirement to improve the quality of the results obtained by the combined analysis Two core contributions made, are the enabling of a provenance wrapper around WPS services and the enabling of provenance tracing within the NetCDF format, which adopts and extends the W3C's PROV model. To disseminate indicator data and create transformed data products, a standardized provenance, metadata and processing infrastructure is researched for CLIPC. These efforts will lead towards the provision of tools for further web service processing development and optimisation, opening up possibilities to scale and administer abstract users and data driven workflows.
Address tracing for parallel machines
NASA Technical Reports Server (NTRS)
Stunkel, Craig B.; Janssens, Bob; Fuchs, W. Kent
1991-01-01
Recently implemented parallel system address-tracing methods based on several metrics are surveyed. The issues specific to collection of traces for both shared and distributed memory parallel computers are highlighted. Five general categories of address-trace collection methods are examined: hardware-captured, interrupt-based, simulation-based, altered microcode-based, and instrumented program-based traces. The problems unique to shared memory and distributed memory multiprocessors are examined separately.
RAY-RAMSES: a code for ray tracing on the fly in N-body simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barreira, Alexandre; Llinares, Claudio; Bose, Sownak
2016-05-01
We present a ray tracing code to compute integrated cosmological observables on the fly in AMR N-body simulations. Unlike conventional ray tracing techniques, our code takes full advantage of the time and spatial resolution attained by the N-body simulation by computing the integrals along the line of sight on a cell-by-cell basis through the AMR simulation grid. Moroever, since it runs on the fly in the N-body run, our code can produce maps of the desired observables without storing large (or any) amounts of data for post-processing. We implemented our routines in the RAMSES N-body code and tested the implementationmore » using an example of weak lensing simulation. We analyse basic statistics of lensing convergence maps and find good agreement with semi-analytical methods. The ray tracing methodology presented here can be used in several cosmological analysis such as Sunyaev-Zel'dovich and integrated Sachs-Wolfe effect studies as well as modified gravity. Our code can also be used in cross-checks of the more conventional methods, which can be important in tests of theory systematics in preparation for upcoming large scale structure surveys.« less
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
Peanut-shaped metallicity distributions in bulges of edge-on galaxies: the case of NGC 4710
NASA Astrophysics Data System (ADS)
Gonzalez, Oscar A.; Debattista, Victor P.; Ness, Melissa; Erwin, Peter; Gadotti, Dimitri A.
2017-03-01
Bulges of edge-on galaxies are often boxy/peanut-shaped (B/PS), and unsharp masks reveal the presence of an X shape. Simulations show that these shapes can be produced by dynamical processes driven by a bar which vertically thickens the centre. In the Milky Way, which contains such a B/PS bulge, the X-shaped structure is traced by the metal-rich stars but not by the metal-poor ones. Recently, Debattista et al. interpreted this property as a result of the varying effect of the bar on stellar populations with different starting kinematics. This kinematic fractionation model predicts that cooler populations at the time of bar formation go on to trace the X shape, whereas hotter populations are more uniformly distributed. As this prediction is not specific to the Milky Way, we test it with Multi Unit Spectroscopic Explorer (MUSE) observations of the B/PS bulge in the nearby galaxy NGC 4710. We show that the metallicity map is more peanut-shaped than the density distribution itself, in good agreement with the prediction. This result indicates that the X-shaped structure in B/PS bulges is formed of relatively metal-rich stars that have been vertically redistributed by the bar, whereas the metal-poor stars have a more uniform, box-shaped distribution.
Bias Reduction as Guidance for Developing Convection and Cloud Parameterization in GFDL AM4/CM4
NASA Astrophysics Data System (ADS)
Zhao, M.; Held, I.; Golaz, C.
2016-12-01
The representations of moist convection and clouds are challenging in global climate models and they are known to be important to climate simulations at all spatial and temporal scales. Many climate simulation biases can be traced to deficiencies in convection and cloud parameterizations. I will present some key biases that we are concerned about and the efforts that we have made to reduce the biases during the development of NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) new generation global climate model AM4/CM4. In particular, I will present a modified version of the moist convection scheme that is based on the University of Washington Shallow Cumulus scheme (UWShCu, Bretherton et. al 2004). The new scheme produces marked improvement in simulation of the Madden-Julian Oscillation (MJO) and the El Niño-Southern Oscillation (ENSO) compared to that used in AM3 and HIRAM. AM4/CM4 also produces high quality simulation of global distribution of cloud radiative effects and the precipitation with realistic mean climate state. This differs from models of improved MJO but with a much deteriorated mean state. The modifications to the UWShCu include an additional bulk plume for representing deep convection. The entrainment rate in the deep plume is parameterized to be a function of column-integrated relative humidity. The deep convective closure is based on relaxation of the convective available potential energy (CAPE) or cloud work function. The plumes' precipitation efficiency is optimized for better simulations of the cloud radiative effects. Precipitation re-evaporation is included in both shallow and deep plumes. In addition, a parameterization of convective gustiness is included with an energy source driven by cold pool derived from precipitation re-evaporation within the boundary layer and energy sink due to dissipation. I will present the motivations of these changes which are driven by reducing some aspects of the AM4/CM4 biases. Finally, I will also present the biases in current AM4/CM4 and challenges to further reduce them.
Simulation and animation of sensor-driven robots.
Chen, C; Trivedi, M M; Bidlack, C R
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.
2007-06-01
particle accelerators cannot run unless enough network band- width is available to absorb their data streams. DOE scientists running simulations routinely...send tuples to TelegraphCQ. To simulate a less-powerful machine, I increased the playback rate of the trace by a factor of 10 and reduced the query...III CPUs and 1.5 GB of main memory. To simulate using a less powerful embedded CPU, I wrote a program that would “play back” the trace at a multiple
Galeazzi, Juan M.; Navajas, Joaquín; Mender, Bedeho M. W.; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M.
2016-01-01
ABSTRACT Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant’s gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views. PMID:27253452
Galeazzi, Juan M; Navajas, Joaquín; Mender, Bedeho M W; Quian Quiroga, Rodrigo; Minini, Loredana; Stringer, Simon M
2016-01-01
Neurons have been found in the primate brain that respond to objects in specific locations in hand-centered coordinates. A key theoretical challenge is to explain how such hand-centered neuronal responses may develop through visual experience. In this paper we show how hand-centered visual receptive fields can develop using an artificial neural network model, VisNet, of the primate visual system when driven by gaze changes recorded from human test subjects as they completed a jigsaw. A camera mounted on the head captured images of the hand and jigsaw, while eye movements were recorded using an eye-tracking device. This combination of data allowed us to reconstruct the retinal images seen as humans undertook the jigsaw task. These retinal images were then fed into the neural network model during self-organization of its synaptic connectivity using a biologically plausible trace learning rule. A trace learning mechanism encourages neurons in the model to learn to respond to input images that tend to occur in close temporal proximity. In the data recorded from human subjects, we found that the participant's gaze often shifted through a sequence of locations around a fixed spatial configuration of the hand and one of the jigsaw pieces. In this case, trace learning should bind these retinal images together onto the same subset of output neurons. The simulation results consequently confirmed that some cells learned to respond selectively to the hand and a jigsaw piece in a fixed spatial configuration across different retinal views.
Tudor, G Samuel J; Harden, Susan V; Thomas, Simon J
2014-03-01
Dose differences from those planned can occur due to the respiratory interplay effect on helical tomotherapy. The authors present a technique to calculate single-fraction doses in three-dimensions resulting from craniocaudal motion applied to a patient CT set. The technique is applied to phantom and patient plans using patient respiratory traces. An additional purpose of the work is to determine the contribution toward the interplay effect of different components of the respiratory trace. MATLAB code used to calculate doses to a CT dataset from a helical tomotherapy plan has been modified to permit craniocaudal motion and improved temporal resolution. Real patient traces from seven patients were applied to ten phantom plans of differing field width, modulation factor, pitch and fraction dose, and simulations made with peak-to-peak amplitudes ranging from 0 to 2.5 cm. PTV voxels near the superior or inferior limits of the PTV are excluded from the analysis. The maximum dose discrepancy compared with the static case recorded along with the proportion of voxels receiving more than 10% and 20% different from prescription dose. The analysis was repeated with the baseline variation of the respiratory trace removed, leaving the cyclic component of motion only. Radiochromic film was used on one plan-trace combination and compared with the software simulation. For one case, filtered traces were generated and used in simulations which consisted only of frequencies near to particular characteristic frequencies of the treatment delivery. Intraslice standard deviation of dose differences was used to identify potential MLC interplay, which was confirmed using nonmodulated simulations. Software calculations were also conducted for four realistic patient plans and modeling movement of a patient CT set with amplitudes informed by the observed motion of the GTV on 4DCT. The maximum magnitude of dose difference to a PTV voxel due to the interplay effect within a particular plan-trace combination for peak-to-peak amplitudes of up to 2.5 cm ranged from 4.5% to 51.6% (mean: 23.8%) of the dose delivered in the absence of respiratory motion. For cyclic motion only, the maximum dose differences in each combination ranged from 2.1% to 26.2% (mean: 9.2%). There is reasonable correspondence between an example of the phantom plan simulations and radiochromic film measurement. The filtered trace simulations revealed that frequencies close to the characteristic frequency of the jaw motion across the target were found to generate greater interplay effect than frequencies close to the gantry frequency or MLC motion. There was evidence of interplay between respiratory motion and MLC modulation, but this is small compared with the interplay between respiratory motion and jaw motion. For patient-plan simulations, dose discrepancies are seen of up to 9.0% for a patient with 0.3 cm peak-to-peak respiratory amplitude and up to 17.7% for a patient with 0.9 cm peak-to-peak amplitude. These values reduced to 1.3% and 6.5%, respectively, when only cyclic motion was considered. Software has been developed to simulate craniocaudal respiratory motion in phantom and patient plans using real patient respiratory traces. Decomposition of the traces into baseline andcyclic components reveals that the large majority of the interplay effect seen with the full trace is due to baseline variation during treatment.
NASA Astrophysics Data System (ADS)
Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron
2017-12-01
Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.
Simulating intrafraction prostate motion with a random walk model.
Pommer, Tobias; Oh, Jung Hun; Munck Af Rosenschöld, Per; Deasy, Joseph O
2017-01-01
Prostate motion during radiation therapy (ie, intrafraction motion) can cause unwanted loss of radiation dose to the prostate and increased dose to the surrounding organs at risk. A compact but general statistical description of this motion could be useful for simulation of radiation therapy delivery or margin calculations. We investigated whether prostate motion could be modeled with a random walk model. Prostate motion recorded during 548 radiation therapy fractions in 17 patients was analyzed and used for input in a random walk prostate motion model. The recorded motion was categorized on the basis of whether any transient excursions (ie, rapid prostate motion in the anterior and superior direction followed by a return) occurred in the trace and transient motion. This was separately modeled as a large step in the anterior/superior direction followed by a returning large step. Random walk simulations were conducted with and without added artificial transient motion using either motion data from all observed traces or only traces without transient excursions as model input, respectively. A general estimate of motion was derived with reasonable agreement between simulated and observed traces, especially during the first 5 minutes of the excursion-free simulations. Simulated and observed diffusion coefficients agreed within 0.03, 0.2 and 0.3 mm 2 /min in the left/right, superior/inferior, and anterior/posterior directions, respectively. A rapid increase in variance at the start of observed traces was difficult to reproduce and seemed to represent the patient's need to adjust before treatment. This could be estimated somewhat using artificial transient motion. Random walk modeling is feasible and recreated the characteristics of the observed prostate motion. Introducing artificial transient motion did not improve the overall agreement, although the first 30 seconds of the traces were better reproduced. The model provides a simple estimate of prostate motion during delivery of radiation therapy.
Synchronization of autonomous objects in discrete event simulation
NASA Technical Reports Server (NTRS)
Rogers, Ralph V.
1990-01-01
Autonomous objects in event-driven discrete event simulation offer the potential to combine the freedom of unrestricted movement and positional accuracy through Euclidean space of time-driven models with the computational efficiency of event-driven simulation. The principal challenge to autonomous object implementation is object synchronization. The concept of a spatial blackboard is offered as a potential methodology for synchronization. The issues facing implementation of a spatial blackboard are outlined and discussed.
Internet stream synchronization using Concord
NASA Astrophysics Data System (ADS)
Sreenan, Cormac J.; Narendran, B.; Agrawal, Prathima; Shivakumar, Narayanan
1996-03-01
Using packet networks to transport multimedia introduces delay variations within and across streams, necessitating synchronization at the receiver. This requires stream data to be buffered prior to presentation, which also increases its total end to end delay. Concord recognizes that applications may wish to influence the underlying synchronization policy in terms of its effect on quality of service. It provides a single framework for synchronization within and across streams and employs an application specific tradeoff between packet losses, delay and inter- stream skew. We present a new predictive approach for synchronization and a selection of results from an extensive evaluation of Concord for use in the Internet. A trace driven simulator is used, allowing a direct comparison with alternative approaches. We demonstrate that Concord can operate with lower maximum delay and less variation in total end to end delay, which in turn can allow receiver buffer requirements to be reduced.
The Distribution of Carbon Monoxide in the GOCART Model
NASA Technical Reports Server (NTRS)
Fan, Xiaobiao; Chin, Mian; Einaudi, Franco (Technical Monitor)
2000-01-01
Carbon monoxide (CO) is an important trace gas because it is a significant source of tropospheric Ozone (O3) as well as a major sink for atmospheric hydroxyl radical (OH). The distribution of CO is set by a balance between the emissions, transport, and chemical processes in the atmosphere. The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the atmospheric distribution of CO. The GOCART model is driven by the assimilated meteorological data from the Goddard Earth Observing System Data Assimilation System (GEOS DAS) in an off-line mode. We study the distribution of CO on three time scales: (1) day to day fluctuation produced by the synoptic waves; (2) seasonal changes due to the annual cycle of CO sources and sinks; and (3) interannual variability induced by dynamics. Comparison of model results with ground based and remote sensing measurements will also be presented.
NASA Astrophysics Data System (ADS)
Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe
2016-11-01
Streaked photoemission from nanostructures is characterized by size- and material-dependent nanometer-scale variations of the induced nanoplasmonic response to the electronic field of the streaking pulse and thus holds promise of allowing photoelectron imaging with both subfemtosecond temporal and nanometer spatial resolution. In order to scrutinize the driven collective electronic dynamics in 10-200-nm-diameter gold nanospheres, we calculated the plasmonic field induced by streaking pulses in the infrared and visible spectral range and developed a quantum-mechanical model for streaked photoemission by extreme ultraviolet pulses. Our simulated photoelectron spectra reveal a significant amplitude enhancement and phase shift of the photoelectron streaking trace relative to calculations that exclude the induced plasmonic field. Both are most pronounced for streaking pulses tuned to the plasmon frequency and retrace the plasmonic electromagnetic field enhancement and phase shift near the nanosphere surface.
NASA Astrophysics Data System (ADS)
Le, Tuyen Quang; Lee, Kwang-Soo; Park, Jin-Soon; Ko, Jin Hwan
2014-06-01
In this study, flow-driven rotor simulations with a given load are conducted to analyze the operational characteristics of a vertical-axis Darrieus turbine, specifically its self-starting capability and fluctuations in its torque as well as the RPM. These characteristics are typically observed in experiments, though they cannot be acquired in simulations with a given tip speed ratio (TSR). First, it is shown that a flow-driven rotor simulation with a two-dimensional (2D) turbine model obtains power coefficients with curves similar to those obtained in a simulation with a given TSR. 3D flowdriven rotor simulations with an optimal geometry then show that a helical-bladed turbine has the following prominent advantages over a straight-bladed turbine of the same size: an improvement of its self-starting capabilities and reduced fluctuations in its torque and RPM curves as well as an increase in its power coefficient from 33% to 42%. Therefore, it is clear that a flow-driven rotor simulation provides more information for the design of a Darrieus turbine than a simulation with a given TSR before experiments.
Photorealistic 3D omni-directional stereo simulator
NASA Astrophysics Data System (ADS)
Reiners, Dirk; Cruz-Neira, Carolina; Neumann, Carsten
2015-03-01
While a lot of areas in VR have made significant advances, visual rendering in VR is often not quite keeping up with the state of the art. There are many reasons for this, but one way to alleviate some of the issues is by using ray tracing instead of rasterization for image generation. Contrary to popular belief, ray tracing is a realistic, competitive technology nowadays. This paper looks at the pros and cons of using ray tracing and demonstrates the feasibility of employing it using the example of a helicopter flight simulator image generator.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.
2013-04-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
U.S. GASOLINE COMPOSITION STUDY
This presentation presents results from a 2004/2005 study of U.S. gasoline composition. Differences in composition are driven by regulation, octane requirements, refining methods, and performance needs. Major differences in composition were traced to a few compounds: benzene, MTB...
NASA Astrophysics Data System (ADS)
Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.
2018-03-01
Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.
Retrospective data-driven respiratory gating for PET/CT
NASA Astrophysics Data System (ADS)
Schleyer, Paul J.; O'Doherty, Michael J.; Barrington, Sally F.; Marsden, Paul K.
2009-04-01
Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.
A trace map comparison algorithm for the discrete fracture network models of rock masses
NASA Astrophysics Data System (ADS)
Han, Shuai; Wang, Gang; Li, Mingchao
2018-06-01
Discrete fracture networks (DFN) are widely used to build refined geological models. However, validating whether a refined model can match to reality is a crucial problem, concerning whether the model can be used for analysis. The current validation methods include numerical validation and graphical validation. However, the graphical validation, aiming at estimating the similarity between a simulated trace map and the real trace map by visual observation, is subjective. In this paper, an algorithm for the graphical validation of DFN is set up. Four main indicators, including total gray, gray grade curve, characteristic direction and gray density distribution curve, are presented to assess the similarity between two trace maps. A modified Radon transform and loop cosine similarity are presented based on Radon transform and cosine similarity respectively. Besides, how to use Bézier curve to reduce the edge effect is described. Finally, a case study shows that the new algorithm can effectively distinguish which simulated trace map is more similar to the real trace map.
NASA Astrophysics Data System (ADS)
Fahrul Hassan, Mohd; Jamri, Azmil; Nawawi, Azli; Zaini Yunos, Muhamad; Fauzi Ahmad, Md; Adzila, Sharifah; Nasrull Abdol Rahman, Mohd
2017-08-01
The main purpose of this study is to investigate the performance of a driven fan design made by Polyester/Epoxy interpenetrate polymer network (IPN) material that specifically used for turbocharger compressor. Polyester/Epoxy IPN is polymer plastics that was used as replacements for traditional polymers and has been widely used in a variety of applications because of their limitless conformations. Simulation based on several parameters which are air pressure, air velocity and air temperature have been carried out for a driven fan design performance of two different materials, aluminum alloy (existing driven fan design) and Polyester/Epoxy IPN using SolidWorks Flow Simulation software. Results from both simulations were analyzed and compared where both materials show similar performance in terms of air pressure and air velocity due to similar geometric and dimension, but Polyester/Epoxy IPN produces lower air temperature than aluminum alloy. This study shows a preliminary result of the potential Polyester/Epoxy IPN to be used as a driven fan design material. In the future, further studies will be conducted on detail simulation and experimental analysis.
LPJ-GUESS Simulated North America Vegetation for 21-0 ka Using the TraCE-21ka Climate Simulation
NASA Astrophysics Data System (ADS)
Shafer, S. L.; Bartlein, P. J.
2016-12-01
Transient climate simulations that span multiple millennia (e.g., TraCE-21ka) have become more common as computing power has increased, allowing climate models to complete long simulations in relatively short periods of time (i.e., months). These climate simulations provide information on the potential rate, variability, and spatial expression of past climate changes. They also can be used as input data for other environmental models to simulate transient changes for different components of paleoenvironmental systems, such as vegetation. Long, transient paleovegetation simulations can provide information on a range of ecological processes, describe the spatial and temporal patterns of changes in species distributions, and identify the potential locations of past species refugia. Paleovegetation simulations also can be used to fill in spatial and temporal gaps in observed paleovegetation data (e.g., pollen records from lake sediments) and to test hypotheses of past vegetation change. We used the TraCE-21ka transient climate simulation for 21-0 ka from CCSM3, a coupled atmosphere-ocean general circulation model. The TraCE-21ka simulated temperature, precipitation, and cloud data were regridded onto a 10-minute grid of North America. These regridded climate data, along with soil data and atmospheric carbon dioxide concentrations, were used as input to LPJ-GUESS, a general ecosystem model, to simulate North America vegetation from 21-0 ka. LPJ-GUESS simulates many of the processes controlling the distribution of vegetation (e.g., competition), although some important processes (e.g., dispersal) are not simulated. We evaluate the LPJ-GUESS-simulated vegetation (in the form of plant functional types and biomes) for key time periods and compare the simulated vegetation with observed paleovegetation data, such as data archived in the Neotoma Paleoecology Database. In general, vegetation simulated by LPJ-GUESS reproduces the major North America vegetation patterns (e.g., forest, grassland) with regional areas of disagreement between simulated and observed vegetation. We describe the regions and time periods with the greatest data-model agreement and disagreement, and discuss some of the strengths and weaknesses of both the simulated climate and simulated vegetation data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiang, J.; Ding, Y.; Emma, P.
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
Qiang, J.; Ding, Y.; Emma, P.; ...
2017-05-23
The shot-noise driven microbunching instability can significantly degrade electron beam quality in x-ray free electron laser light sources. Experiments were carried out at the Linac Coherent Light Source (LCLS) to study this instability. Here in this paper, we present start-to-end simulations of the shot-noise driven microbunching instability experiment at the LCLS using the real number of electrons. The simulation results reproduce the measurements quite well. A microbunching self-heating mechanism is also illustrated in the simulation, which helps explain the experimental observation.
TRACE Model for Simulation of Anticipated Transients Without Scram in a BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng L. Y.; Baek J.; Cuadra,A.
2013-11-10
A TRACE model has been developed for using theTRACE/PARCS computational package [1, 2] to simulate anticipated transients without scram (ATWS) events in a boiling water reactor (BWR). The model represents a BWR/5 housed in a Mark II containment. The reactor and the balance of plant systems are modeled in sufficient detail to enable the evaluation of plant responses and theeffectiveness of automatic and operator actions tomitigate this beyond design basis accident.The TRACE model implements features thatfacilitate the simulation of ATWS events initiated by turbine trip and closure of the main steam isolation valves (MSIV). It also incorporates control logic tomore » initiate actions to mitigate the ATWS events, such as water levelcontrol, emergency depressurization, and injection of boron via the standby liquid control system (SLCS). Two different approaches have been used to model boron mixing in the lower plenum of the reactor vessel: modulate coolant flow in the lower plenum by a flow valve, and use control logic to modular.« less
Simulation and animation of sensor-driven robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, C.; Trivedi, M.M.; Bidlack, C.R.
1994-10-01
Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less
NVIDIA OptiX ray-tracing engine as a new tool for modelling medical imaging systems
NASA Astrophysics Data System (ADS)
Pietrzak, Jakub; Kacperski, Krzysztof; Cieślar, Marek
2015-03-01
The most accurate technique to model the X- and gamma radiation path through a numerically defined object is the Monte Carlo simulation which follows single photons according to their interaction probabilities. A simplified and much faster approach, which just integrates total interaction probabilities along selected paths, is known as ray tracing. Both techniques are used in medical imaging for simulating real imaging systems and as projectors required in iterative tomographic reconstruction algorithms. These approaches are ready for massive parallel implementation e.g. on Graphics Processing Units (GPU), which can greatly accelerate the computation time at a relatively low cost. In this paper we describe the application of the NVIDIA OptiX ray-tracing engine, popular in professional graphics and rendering applications, as a new powerful tool for X- and gamma ray-tracing in medical imaging. It allows the implementation of a variety of physical interactions of rays with pixel-, mesh- or nurbs-based objects, and recording any required quantities, like path integrals, interaction sites, deposited energies, and others. Using the OptiX engine we have implemented a code for rapid Monte Carlo simulations of Single Photon Emission Computed Tomography (SPECT) imaging, as well as the ray-tracing projector, which can be used in reconstruction algorithms. The engine generates efficient, scalable and optimized GPU code, ready to run on multi GPU heterogeneous systems. We have compared the results our simulations with the GATE package. With the OptiX engine the computation time of a Monte Carlo simulation can be reduced from days to minutes.
NASA Astrophysics Data System (ADS)
van Westrenen, W.; Allan, N. L.; Blundy, J. D.; Purton, J. A.; Wood, B. J.
2000-05-01
We have studied the energetics of trace element incorporation into pure almandine (Alm), grossular (Gros), pyrope (Py) and spessartine (Spes) garnets (X 3Al 2Si 3O 12, with X = Fe, Ca, Mg, Mn respectively), by means of computer simulations of perfect and defective lattices in the static limit. The simulations use a consistent set of interatomic potentials to describe the non-Coulombic interactions between the ions, and take explicit account of lattice relaxation associated with trace element incorporation. The calculated relaxation (strain) energies Urel are compared to those obtained using the Brice (1975) model of lattice relaxation, and the results compared to experimental garnet-melt trace element partitioning data interpreted using the same model. Simulated Urel associated with a wide range of homovalent (Ni, Mg, Co, Fe, Mn, Ca, Eu, Sr, Ba) and charge-compensated heterovalent (Sc, Lu, Yb, Ho, Gd, Eu, Nd, La, Li, Na, K, Rb) substitutions onto the garnet X-sites show a near-parabolic dependence on trace element radius, in agreement with the Brice model. From application of the Brice model we derived apparent X-site Young's moduli EX(1+, 2+, 3+) and the 'ideal' ionic radii r0(1+, 2+, 3+), corresponding to the minima in plots of Urel vs. radius. For both homovalent and heterovalent substitutions r0 increases in the order Py-Alm-Spes-Gros, consistent with crystallographic data on the size of garnet X-sites and with the results of garnet-melt partitioning studies. Each end-member also shows a marked increase in both the apparent EX and r0 with increasing trace element charge ( Zc). The increase in EX is consistent with values obtained by fitting to the Brice model of experimental garnet-melt partitioning data. However, the increase in r0 with increasing Zc is contrary to experimental observation. To estimate the influence of melt on the energetics of trace element incorporation, solution energies ( Usol) were calculated for appropriate exchange reactions between garnet and melt, using binary and other oxides to simulate cation co-ordination environment in the melt. Usol also shows a parabolic dependence on trace element radius, with inter-garnet trends in EX and r0 similar to those found for relaxation energies. However, r0( i+) obtained from minima in plots of Usol vs. radius are located at markedly different positions, especially for heterovalent substitutions ( i = 1, 3). For each end-member garnet, r0 now decreases with increasing Zc, consistent with experiment. Furthermore, although different assumptions for trace element environment in the melt, e.g., REE 3+ (VI) vs. REE 3+ (VIII), lead to parabolae with differing curvatures and minima, relative differences between end-members are always preserved. We conclude that: 1. The simulated variation in r0 and EX between garnets is largely governed by the solid phase. This stresses the overriding influence of crystal local environment on trace element partitioning. 2. Simulations suggest r0 in garnets varies with trace element charge, as experimentally observed. 3. Absolute values of r0 and EX can be influenced by the presence and structure of a coexisting melt. Thus, quantitative relations between r0, E and crystal chemistry should be derived from well-constrained systematic mineral-melt partitioning studies, and cannot be predicted from crystal-structural data alone.
Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport
NASA Technical Reports Server (NTRS)
Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.
2004-01-01
The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.
NASA Technical Reports Server (NTRS)
Follette-Cook, Melanie B.; Pickering, K.; Crawford, J.; Appel, W.; Diskin, G.; Fried, A.; Loughner, C.; Pfister, G.; Weinheimer, A.
2015-01-01
Results from an in-depth analysis of trace gas variability in MD indicated that the variability in this region was large enough to be observable by a TEMPO-like instrument. The variability observed in MD is relatively similar to the other three campaigns with a few exceptions: CO variability in CA was much higher than in the other regions; HCHO variability in CA and CO was much lower; MD showed the lowest variability in NO2All model simulations do a reasonable job simulating O3 variability. For CO, the CACO simulations largely under over estimate the variability in the observations. The variability in HCHO is underestimated for every campaign. NO2 variability is slightly overestimated in MD, more so in CO. The TX simulation underestimates the variability in each trace gas. This is most likely due to missing emissions sources (C. Loughner, manuscript in preparation).Future Work: Where reasonable, we will use these model outputs to further explore the resolvability from space of these key trace gases using analyses of tropospheric column amounts relative to satellite precision requirements, similar to Follette-Cook et al. (2015).
Lathe converted for grinding aspheric surfaces
NASA Technical Reports Server (NTRS)
Larmer, J. W.; Levinsohn, M.; Mc Craw, D.; Pessagno, E. H.; Taub, F. J.
1964-01-01
A standard overarm tracing lathe converted by the addition of an independently driven diamond grinding wheel is used for grinding aspheric surfaces. The motion of the wheel is controlled by the lathe air tracer following the template which produces the desired aspheric profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Chandler, G.A.; Biggs, F.
X-ray-producing hohlraums are being studied as indirect drives for Inertial Confinement Fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The UFO unfold code and its suite of auxiliary functions were used extensively in obtaining time- resolved x-ray spectra and radiation temperatures from this diagnostic. UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfolding parametersmore » (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le} 100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time-history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum.« less
Experimental simulation of magma-carbonate interaction beneath Mt. Vesuvius, Italy
NASA Astrophysics Data System (ADS)
Jolis, E. M.; Freda, C.; Troll, V. R.; Deegan, F. M.; Blythe, L. S.; McLeod, C. L.; Davidson, J. P.
2013-11-01
We simulated the process of magma-carbonate interaction beneath Mt. Vesuvius in short duration piston-cylinder experiments under controlled magmatic conditions (from 0 to 300 s at 0.5 GPa and 1,200 °C), using a Vesuvius shoshonite composition and upper crustal limestone and dolostone as starting materials. Backscattered electron images and chemical analysis (major and trace elements and Sr isotopes) of sequential experimental products allow us to identify the textural and chemical evolution of carbonated products during the assimilation process. We demonstrate that melt-carbonate interaction can be extremely fast (minutes), and results in dynamic contamination of the host melt with respect to Ca, Mg and 87Sr/86Sr, coupled with intense CO2 vesiculation at the melt-carbonate interface. Binary mixing between carbonate and uncontaminated melt cannot explain the geochemical variations of the experimental charges in full and convection and diffusion likely also operated in the charges. Physical mixing and mingling driven by exsolving volatiles seems to be a key process to promote melt homogenisation. Our results reinforce hypotheses that magma-carbonate interaction is a relevant and ongoing process at Mt. Vesuvius and one that may operate not only on a geological, but on a human timescale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chittenden, J. P., E-mail: j.chittenden@imperial.ac.uk; Appelbe, B. D.; Manke, F.
2016-05-15
We present the results of 3D simulations of indirect drive inertial confinement fusion capsules driven by the “high-foot” radiation pulse on the National Ignition Facility. The results are post-processed using a semi-deterministic ray tracing model to generate synthetic deuterium-tritium (DT) and deuterium-deuterium (DD) neutron spectra as well as primary and down scattered neutron images. Results with low-mode asymmetries are used to estimate the magnitude of anisotropy in the neutron spectra shift, width, and shape. Comparisons of primary and down scattered images highlight the lack of alignment between the neutron sources, scatter sites, and detector plane, which limits the ability tomore » infer the ρr of the fuel from a down scattered ratio. Further calculations use high bandwidth multi-mode perturbations to induce multiple short scale length flows in the hotspot. The results indicate that the effect of fluid velocity is to produce a DT neutron spectrum with an apparently higher temperature than that inferred from the DD spectrum and which is also higher than the temperature implied by the DT to DD yield ratio.« less
NASA Astrophysics Data System (ADS)
Yang, Xiaokang; Petrov, Yuri; Ceccherini, Francesco; Koehn, Alf; Galeotti, Laura; Dettrick, Sean; Binderbauer, Michl
2017-10-01
Numerous efforts have been made at Tri-Alpha Energy (TAE) to theoretically explore the physics of microwave electron heating in field-reversed configuration (FRC) plasmas. For the fixed 2D profiles of plasma density and temperature for both electrons and thermal ions and equilibrium field of the C-2U machine, simulations with GENRAY-C ray-tracing code have been conducted for the ratios of ω/ωci[D] in the range of 6 - 20. Launch angles and antenna radial and axial positions have been optimized in order to simultaneously achieve good wave penetration into the core of FRC plasmas and efficient power damping on electrons. It is found that in an optimal regime, single pass absorption efficiency is 100% and most of the power is deposited inside the separatrix of FRC plasmas, with power damping efficiency of about 72% on electrons and less than 19% on ions. Calculations have clearly demonstrated that substantial power absorption on electrons is mainly attributed to high beta enhancement of magnetic pumping; complete power damping occurs before Landau damping has a significant effect on power absorption.
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, R. L.
2007-01-01
We present observations from Hinode, STEREO, and TRACE of a solar filament eruption and flare that occurred on 2007 March 2. Data from the two new satellites, combined with the TRACE observations, give us fresh insights into the eruption onset process. HINODE/XRT shows soft X-ray (SXR) activity beginning approximately 30 minutes prior to ignition of bright flare loops. STEREO andTRACE images show that the filament underwent relatively slow motions coinciding with the pre-eruption SXR brightenings, and it underwent rapid eruptive motions beginning near the time of flare onset. Concurrent HINODE/SOT magnetograms showed substantial flux cancelation under the filament at the site of the pre-eruption SXR activity. From these observations we infer that progressive tether-cutting reconnection driven by photospheric convection caused the slow rise of the filament and led to its eruption. NASA supported this work through a NASA Heliosphysics GI grant.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial.
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-06-01
Data science or "data-driven research" is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves.
Data-Driven Design of Intelligent Wireless Networks: An Overview and Tutorial
Kulin, Merima; Fortuna, Carolina; De Poorter, Eli; Deschrijver, Dirk; Moerman, Ingrid
2016-01-01
Data science or “data-driven research” is a research approach that uses real-life data to gain insight about the behavior of systems. It enables the analysis of small, simple as well as large and more complex systems in order to assess whether they function according to the intended design and as seen in simulation. Data science approaches have been successfully applied to analyze networked interactions in several research areas such as large-scale social networks, advanced business and healthcare processes. Wireless networks can exhibit unpredictable interactions between algorithms from multiple protocol layers, interactions between multiple devices, and hardware specific influences. These interactions can lead to a difference between real-world functioning and design time functioning. Data science methods can help to detect the actual behavior and possibly help to correct it. Data science is increasingly used in wireless research. To support data-driven research in wireless networks, this paper illustrates the step-by-step methodology that has to be applied to extract knowledge from raw data traces. To this end, the paper (i) clarifies when, why and how to use data science in wireless network research; (ii) provides a generic framework for applying data science in wireless networks; (iii) gives an overview of existing research papers that utilized data science approaches in wireless networks; (iv) illustrates the overall knowledge discovery process through an extensive example in which device types are identified based on their traffic patterns; (v) provides the reader the necessary datasets and scripts to go through the tutorial steps themselves. PMID:27258286
Consistent data-driven computational mechanics
NASA Astrophysics Data System (ADS)
González, D.; Chinesta, F.; Cueto, E.
2018-05-01
We present a novel method, within the realm of data-driven computational mechanics, to obtain reliable and thermodynamically sound simulation from experimental data. We thus avoid the need to fit any phenomenological model in the construction of the simulation model. This kind of techniques opens unprecedented possibilities in the framework of data-driven application systems and, particularly, in the paradigm of industry 4.0.
Power and Scour: Laboratory simulations of tsunami-induced scour
NASA Astrophysics Data System (ADS)
Todd, David; McGovern, David; Whitehouse, Richard; Harris, John; Rossetto, Tiziana
2017-04-01
The world's coastal regions are becoming increasingly urbanised and densely populated. Recent major tsunami events in regions such as Samoa (2007), Indonesia (2004, 2006, 2010), and Japan (2011) have starkly highlighted this effect, resulting in catastrophic loss of both life and property, with much of the damage to buildings being reported in EEFIT mission reports following each of these events. The URBANWAVES project, led by UCL in collaboration with HR Wallingford, brings the power of the tsunami to the laboratory for the first time. The Pneumatic Tsunami Simulator is capable of tsimulating both idealised and real-world tsunami traces at a scale of 1:50. Experiments undertaken in the Fast Flow Facility at HR Wallingford using square and rectangular buildings placed on a sediment bed have allow us to measure, for the first time under laboratory conditions, the variations in the flow field around buildings produced by tsunami waves as a result of the scour process. The results of these tests are presented, providing insight into the process of scour development under different types of tsunami, giving a glimpse into the power of tsunamis that have already occurred, and helping us to inform the designs of future buildings so that we can be better prepared to analyse and design against these failure modes in the future. Additional supporting abstracts include Foster et al., on tsunami induced building loads; Chandler et al., on the tsunami simulation concept and McGovern et al., on the simulation of tsunami-driven scour and flow fields.
Improved algorithm of ray tracing in ICF cryogenic targets
NASA Astrophysics Data System (ADS)
Zhang, Rui; Yang, Yongying; Ling, Tong; Jiang, Jiabin
2016-10-01
The high precision ray tracing inside inertial confinement fusion (ICF) cryogenic targets plays an important role in the reconstruction of the three-dimensional density distribution by algebraic reconstruction technique (ART) algorithm. The traditional Runge-Kutta methods, which is restricted by the precision of the grid division and the step size of ray tracing, cannot make an accurate calculation in the case of refractive index saltation. In this paper, we propose an improved algorithm of ray tracing based on the Runge-Kutta methods and Snell's law of refraction to achieve high tracing precision. On the boundary of refractive index, we apply Snell's law of refraction and contact point search algorithm to ensure accuracy of the simulation. Inside the cryogenic target, the combination of the Runge-Kutta methods and self-adaptive step algorithm are employed for computation. The original refractive index data, which is used to mesh the target, can be obtained by experimental measurement or priori refractive index distribution function. A finite differential method is performed to calculate the refractive index gradient of mesh nodes, and the distance weighted average interpolation methods is utilized to obtain refractive index and gradient of each point in space. In the simulation, we take ideal ICF target, Luneberg lens and Graded index rod as simulation model to calculate the spot diagram and wavefront map. Compared the simulation results to Zemax, it manifests that the improved algorithm of ray tracing based on the fourth-order Runge-Kutta methods and Snell's law of refraction exhibits high accuracy. The relative error of the spot diagram is 0.2%, and the peak-to-valley (PV) error and the root-mean-square (RMS) error of the wavefront map is less than λ/35 and λ/100, correspondingly.
Study on the decomposition of trace benzene over V2O5–WO3/TiO2-based catalysts in simulated flue gas
Trace levels (1 and 10 ppm) of gaseous benzene were catalytically decomposed in a fixed-bed catalytic reactor with monolithic oxides of vanadium and tungsten supported on titanium oxide (V2O5–WO3/TiO2) catalysts under conditions simulating the cooling of waste incineration flue g...
Data-Driven Anomaly Detection Performance for the Ares I-X Ground Diagnostic Prototype
NASA Technical Reports Server (NTRS)
Martin, Rodney A.; Schwabacher, Mark A.; Matthews, Bryan L.
2010-01-01
In this paper, we will assess the performance of a data-driven anomaly detection algorithm, the Inductive Monitoring System (IMS), which can be used to detect simulated Thrust Vector Control (TVC) system failures. However, the ability of IMS to detect these failures in a true operational setting may be related to the realistic nature of how they are simulated. As such, we will investigate both a low fidelity and high fidelity approach to simulating such failures, with the latter based upon the underlying physics. Furthermore, the ability of IMS to detect anomalies that were previously unknown and not previously simulated will be studied in earnest, as well as apparent deficiencies or misapplications that result from using the data-driven paradigm. Our conclusions indicate that robust detection performance of simulated failures using IMS is not appreciably affected by the use of a high fidelity simulation. However, we have found that the inclusion of a data-driven algorithm such as IMS into a suite of deployable health management technologies does add significant value.
Particle Acceleration in a Statistically Modeled Solar Active-Region Corona
NASA Astrophysics Data System (ADS)
Toutounzi, A.; Vlahos, L.; Isliker, H.; Dimitropoulou, M.; Anastasiadis, A.; Georgoulis, M.
2013-09-01
Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field's strength and configuration with test particle simulations. Our objective is to complement previous work done on the subject. As in previous efforts, a set of three probability distribution functions describes our ad-hoc electromagnetic field configurations. In addition, we work on data-driven 3D magnetic field extrapolations. A collisional relativistic test-particle simulation traces each particle's guiding center within these configurations. We also find that an interplay between different electron populations (thermal/non-thermal, ambient/injected) in our simulations may also address, via a re-acceleration mechanism, the so called `number problem'. Using the simulated particle-energy distributions at different heights of the cylinder we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission. The above work is supported by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.
Radiation-driven Turbulent Accretion onto Massive Black Holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, KwangHo; Wise, John H.; Bogdanović, Tamara, E-mail: kwangho.park@physics.gatech.edu
Accretion of gas and interaction of matter and radiation are at the heart of many questions pertaining to black hole (BH) growth and coevolution of massive BHs and their host galaxies. To answer them, it is critical to quantify how the ionizing radiation that emanates from the innermost regions of the BH accretion flow couples to the surrounding medium and how it regulates the BH fueling. In this work, we use high-resolution three-dimensional (3D) radiation-hydrodynamic simulations with the code Enzo , equipped with adaptive ray-tracing module Moray , to investigate radiation-regulated BH accretion of cold gas. Our simulations reproduce findingsmore » from an earlier generation of 1D/2D simulations: the accretion-powered UV and X-ray radiation forms a highly ionized bubble, which leads to suppression of BH accretion rate characterized by quasi-periodic outbursts. A new feature revealed by the 3D simulations is the highly turbulent nature of the gas flow in vicinity of the ionization front. During quiescent periods between accretion outbursts, the ionized bubble shrinks in size and the gas density that precedes the ionization front increases. Consequently, the 3D simulations show oscillations in the accretion rate of only ∼2–3 orders of magnitude, significantly smaller than 1D/2D models. We calculate the energy budget of the gas flow and find that turbulence is the main contributor to the kinetic energy of the gas but corresponds to less than 10% of its thermal energy and thus does not contribute significantly to the pressure support of the gas.« less
Simulations of Dynamics and Transport during the September 2002 Antarctic Major Warming
NASA Technical Reports Server (NTRS)
Manney, Gloria L.; Sabutis, Joseph L.; Allen, Douglas R.; Lahoz, Willian A.; Scaife, Adam A.; Randall, Cora E.; Pawson, Steven; Naujokat, Barbara; Swinbank, Richard
2005-01-01
A mechanistic model simulation initialized on 14 September 2002, forced by 100-hPa geopotential heights from Met Office analyses, reproduced the dynamical features of the 2002 Antarctic major warming. The vortex split on approx.25 September; recovery after the warming, westward and equatorward tilting vortices, and strong baroclinic zones in temperature associated with a dipole pattern of upward and downward vertical velocities were all captured in the simulation. Model results and analyses show a pattern of strong upward wave propagation throughout the warming, with zonal wind deceleration throughout the stratosphere at high latitudes before the vortex split, continuing in the middle and upper stratosphere and spreading to lower latitudes after the split. Three-dimensional Eliassen-Palm fluxes show the largest upward and poleward wave propagation in the 0(deg)-90(deg)E sector prior to the vortex split (coincident with the location of strongest cyclogenesis at the model's lower boundary), with an additional region of strong upward propagation developing near 180(deg)-270(deg)E. These characteristics are similar to those of Arctic wave-2 major warmings, except that during this warming, the vortex did not split below approx.600 K. The effects of poleward transport and mixing dominate modeled trace gas evolution through most of the mid- to high-latitude stratosphere, with a core region in the lower-stratospheric vortex where enhanced descent dominates and the vortex remains isolated. Strongly tilted vortices led to low-latitude air overlying vortex air, resulting in highly unusual trace gas profiles. Simulations driven with several meteorological datasets reproduced the major warming, but in others, stronger latitudinal gradients at high latitudes at the model boundary resulted in simulations without a complete vortex split in the midstratosphere. Numerous tests indicate very high sensitivity to the boundary fields, especially the wave-2 amplitude. Major warmings occurred for initial fields with stronger winds and larger vortices, but not smaller vortices, consistent with the initiation of wind-deceleration by upward-propagating waves near the poleward edge of the region where wave 2 can propagate above the jet core. Thus, given the observed 100-hPa boundary forcing, stratospheric preconditioning is not needed to reproduce a major warming similar to that observed. The anomalously strong forcing in the lower stratosphere can be viewed as the primary direct cause of the major warming.
Chang, Lin; Bi, Pengyu; Li, Xiaochen; Wei, Yun
2015-06-15
A novel trace analytical method based on solvent sublation (SS) and gas chromatography-mass spectrometry (GC-MS) was developed for the trace determination of twenty-two phthalate esters (PAEs) from plastic beverage packaging. In the solvent sublation section, the effects of solution pH, NaCl concentration, nitrogen flow rate, and sublation time on the sublation efficiency were investigated in detail, and the optimal conditions were obtained. The trace PAEs migrated from plastic beverage packaging to food simulants were separated and concentrated by solvent sublation, and then the trace target compounds in the concentrated solution were analyzed by GC-MS. According to the European Union Regulation, the food simulants including distilled water for the normal beverages and acetic acid solution (3%) for the acetic beverage of yogurt were prepared for migration tests. The trace analysis method showed good linearity, low limits of detection (LODs) of 1.6-183.5 ng/L, and satisfied recoveries (67.3-113.7%). Copyright © 2015 Elsevier Ltd. All rights reserved.
Diffusion of nitrogen oxides and oxygenated volatile organic compounds through snow
NASA Astrophysics Data System (ADS)
Bartels-Rausch, T.; Ammann, M.; Schneebeli, M.; Riche, F.; Wren, S. N.
2013-12-01
Release of trace gases from surface snow on Earth drives atmospheric chemistry, especially in the Polar Regions. The exchange of atmospheric trace gases between snow or firn and atmosphere can also determine how these species are incorporated into glacial ice, which serves as archive. At low wind conditions, such fluxes between the porous surface snow and the overlaying atmosphere are driven by diffusion through the interstitial air. Here we present results from two laboratory studies where we looked at how the structure of the snowpack, the interaction of the trace gases with the snow surface, and the grain boundaries influence the diffusion of NO, NO2, HONO, methanol, and acetone on time scales up to 1 h. The diffusion through a snow sample was the direct observable of the experiments. Results for different snow types are presented, the structures of which were analysed by means of X-ray computed micro-tomography. Grain boundary content was quantified in one sample using a stereological method. The observed diffusion profiles were very well reproduced in simulations based on gas-phase diffusion and the known structure of the snow sample at temperatures above 253 K. At colder temperatures surface interactions start to dominate the diffusion. Parameterizing these in terms of adsorption to the solid ice surface gave much better agreement to the observations than the use of air - liquid partitioning coefficients. This is a central result as field and modelling studies have indicated that the partitioning to liquid water might describe the diffusion through snow much better even at cold temperatures. This will be discussed using our recent results from surface sensitive spectroscopy experiments. No changes in the diffusion was observed by increasing the number of grain boundaries in the snow sample by a factor of 7.
Garcia, David; Tessone, Claudio J; Mavrodiev, Pavlin; Perony, Nicolas
2014-10-06
What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy
Garcia, David; Tessone, Claudio J.; Mavrodiev, Pavlin; Perony, Nicolas
2014-01-01
What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. PMID:25100315
Numerical simulation and comparison of nonlinear self-focusing based on iteration and ray tracing
NASA Astrophysics Data System (ADS)
Li, Xiaotong; Chen, Hao; Wang, Weiwei; Ruan, Wangchao; Zhang, Luwei; Cen, Zhaofeng
2017-05-01
Self-focusing is observed in nonlinear materials owing to the interaction between laser and matter when laser beam propagates. Some of numerical simulation strategies such as the beam propagation method (BPM) based on nonlinear Schrödinger equation and ray tracing method based on Fermat's principle have applied to simulate the self-focusing process. In this paper we present an iteration nonlinear ray tracing method in that the nonlinear material is also cut into massive slices just like the existing approaches, but instead of paraxial approximation and split-step Fourier transform, a large quantity of sampled real rays are traced step by step through the system with changing refractive index and laser intensity by iteration. In this process a smooth treatment is employed to generate a laser density distribution at each slice to decrease the error caused by the under-sampling. The characteristics of this method is that the nonlinear refractive indices of the points on current slice are calculated by iteration so as to solve the problem of unknown parameters in the material caused by the causal relationship between laser intensity and nonlinear refractive index. Compared with the beam propagation method, this algorithm is more suitable for engineering application with lower time complexity, and has the calculation capacity for numerical simulation of self-focusing process in the systems including both of linear and nonlinear optical media. If the sampled rays are traced with their complex amplitudes and light paths or phases, it will be possible to simulate the superposition effects of different beam. At the end of the paper, the advantages and disadvantages of this algorithm are discussed.
A first proposal for a general description model of forensic traces
NASA Astrophysics Data System (ADS)
Lindauer, Ina; Schäler, Martin; Vielhauer, Claus; Saake, Gunter; Hildebrandt, Mario
2012-06-01
In recent years, the amount of digitally captured traces at crime scenes increased rapidly. There are various kinds of such traces, like pick marks on locks, latent fingerprints on various surfaces as well as different micro traces. Those traces are different from each other not only in kind but also in which information they provide. Every kind of trace has its own properties (e.g., minutiae for fingerprints, or raking traces for locks) but there are also large amounts of metadata which all traces have in common like location, time and other additional information in relation to crime scenes. For selected types of crime scene traces, type-specific databases already exist, such as the ViCLAS for sexual offences, the IBIS for ballistic forensics or the AFIS for fingerprints. These existing forensic databases strongly differ in the trace description models. For forensic experts it would be beneficial to work with only one database capable of handling all possible forensic traces acquired at a crime scene. This is especially the case when different kinds of traces are interrelated (e.g., fingerprints and ballistic marks on a bullet casing). Unfortunately, current research on interrelated traces as well as general forensic data models and structures is not mature enough to build such an encompassing forensic database. Nevertheless, recent advances in the field of contact-less scanning make it possible to acquire different kinds of traces with the same device. Therefore the data of these traces is structured similarly what simplifies the design of a general forensic data model for different kinds of traces. In this paper we introduce a first common description model for different forensic trace types. Furthermore, we apply for selected trace types from the well established database schema development process the phases of transferring expert knowledge in the corresponding forensic fields into an extendible, database-driven, generalised forensic description model. The trace types considered here are fingerprint traces, traces at locks, micro traces and ballistic traces. Based on these basic trace types, also combined traces (multiple or overlapped fingerprints, fingerprints on bullet casings, etc) and partial traces are considered.
Three-dimensional simulation of the free shear layer using the vortex-in-cell method
NASA Technical Reports Server (NTRS)
Couet, B.; Buneman, O.; Leonard, A.
1979-01-01
We present numerical simulations of the evolution of a mixing layer from an initial state of uniform vorticity with simple two- and three-dimensional small perturbations. A new method for tracing a large number of three-dimensional vortex filaments is used in the simulations. Vortex tracing by Biot-Savart interaction originally implied ideal (non-viscous) flow, but we use a 3-d mesh, Fourier transforms and filtering for vortex tracing, which implies 'modeling' of subgrid scale motion and hence some viscosity. Streamwise perturbations lead to the usual roll-up of vortex patterns with spanwise uniformity maintained. Remarkably, spanwise perturbations generate streamwise distortions of the vortex filaments and the combination of both perturbations leads to patterns with interesting features discernable in the movies and in the records of enstrophy and energy for the three components of the flow.
Simulations of material mixing in laser-driven reshock experiments
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.
2013-02-01
We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.
Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis
NASA Technical Reports Server (NTRS)
West, Jeff
2008-01-01
Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.
Jia-En Zhang; Jiayu Yu; Ying Ouyang; Huaqin Xu
2014-01-01
Acid rain is one of the most serious ecological and environmental problems worldwide. This study investigated the impacts of simulated acid rain (SAR) upon leaching of trace metals and aluminum (Al) from a soil. Soil pot leaching experiments were performed to investigate the impacts of SAR at five different pH levels (or treatments) over a 34-day period upon the...
Ray tracing the Wigner distribution function for optical simulations
NASA Astrophysics Data System (ADS)
Mout, Marco; Wick, Michael; Bociort, Florian; Petschulat, Joerg; Urbach, Paul
2018-01-01
We study a simulation method that uses the Wigner distribution function to incorporate wave optical effects in an established framework based on geometrical optics, i.e., a ray tracing engine. We use the method to calculate point spread functions and show that it is accurate for paraxial systems but produces unphysical results in the presence of aberrations. The cause of these anomalies is explained using an analytical model.
DOT National Transportation Integrated Search
2011-04-01
Leaching of trace elements may raise environmental concerns when using coal fly ash in road construction. US EPA is in the process : of creating the first national rule on coal ash management, including beneficial use. Meanwhile, driven by the tighte...
NASA Astrophysics Data System (ADS)
Hollstein, Maximilian; Santra, Robin; Pfannkuche, Daniela
2017-05-01
We theoretically investigate charge migration following prompt double ionization. Thereby, we extend the concept of correlation-driven charge migration, which was introduced by Cederbaum and coworkers for single ionization [Chem. Phys. Lett. 307, 205 (1999), 10.1016/S0009-2614(99)00508-4], to doubly ionized molecules. This allows us to demonstrate that compared to singly ionized molecules, in multiply ionized molecules, electron dynamics originating from electronic relaxation and correlation are particularly prominent. In addition, we also discuss how these correlation-driven electron dynamics might be evidenced and traced experimentally using attosecond transient absorption spectroscopy. For this purpose, we determine the time-resolved absorption cross section and find that the correlated electron dynamics discussed are reflected in it with exceptionally great detail. Strikingly, we find that features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. By taking advantage of element-specific core-to-valence transitions even atomic spatial resolution can be achieved. Thus, with the theoretical considerations presented, not only do we predict particularly diverse and correlated electron dynamics in molecules to follow prompt multiple ionization but we also identify a promising route towards their experimental investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Cheng, Liang; Chuah, Mooi Choo
In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impactsmore » of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.« less
Liu, Xin
2014-01-01
This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epiney, A.; Canepa, S.; Zerkak, O.
The STARS project at the Paul Scherrer Institut (PSI) has adopted the TRACE thermal-hydraulic (T-H) code for best-estimate system transient simulations of the Swiss Light Water Reactors (LWRs). For analyses involving interactions between system and core, a coupling of TRACE with the SIMULATE-3K (S3K) LWR core simulator has also been developed. In this configuration, the TRACE code and associated nuclear power reactor simulation models play a central role to achieve a comprehensive safety analysis capability. Thus, efforts have now been undertaken to consolidate the validation strategy by implementing a more rigorous and structured assessment approach for TRACE applications involving eithermore » only system T-H evaluations or requiring interfaces to e.g. detailed core or fuel behavior models. The first part of this paper presents the preliminary concepts of this validation strategy. The principle is to systematically track the evolution of a given set of predicted physical Quantities of Interest (QoIs) over a multidimensional parametric space where each of the dimensions represent the evolution of specific analysis aspects, including e.g. code version, transient specific simulation methodology and model "nodalisation". If properly set up, such environment should provide code developers and code users with persistent (less affected by user effect) and quantified information (sensitivity of QoIs) on the applicability of a simulation scheme (codes, input models, methodology) for steady state and transient analysis of full LWR systems. Through this, for each given transient/accident, critical paths of the validation process can be identified that could then translate into defining reference schemes to be applied for downstream predictive simulations. In order to illustrate this approach, the second part of this paper presents a first application of this validation strategy to an inadvertent blowdown event that occurred in a Swiss BWR/6. The transient was initiated by the spurious actuation of the Automatic Depressurization System (ADS). The validation approach progresses through a number of dimensions here: First, the same BWR system simulation model is assessed for different versions of the TRACE code, up to the most recent one. The second dimension is the "nodalisation" dimension, where changes to the input model are assessed. The third dimension is the "methodology" dimension. In this case imposed power and an updated TRACE core model are investigated. For each step in each validation dimension, a common set of QoIs are investigated. For the steady-state results, these include fuel temperatures distributions. For the transient part of the present study, the evaluated QoIs include the system pressure evolution and water carry-over into the steam line.« less
Remote Sensing of Tropospheric Pollution from Space
NASA Technical Reports Server (NTRS)
Fishman, Jack; Bowman, Kevin W.; Burrows, John P.; Chance, Kelly V.; Edwards, David P.; Martin, Randall V.; Morris, Gary A.; Pierce, R. Bradley; Ziemke, Jerald R.; Al-Saadi, Jassim A.;
2008-01-01
We review the progress of tropospheric trace gas observations and address the need for additional measurement capabilities as recommended by the National Academy of Science (NAS, 2007). Tropospheric measurements from current and earlier instruments show pollution in the Northern Hemisphere as a result of fossil fuel burning and a strong seasonal dependence with the largest amounts of photochemically-generated ozone in summer. At low latitudes, where photon flux is stronger throughout the year, trace gas concentrations are driven by the abundance of the emissions, where the largest source, biomass burning, is readily seen in carbon monoxide measurements, but lightning and biogenic trace gases may also contribute to trace gas variability. Although substantive progress has been achieved in seasonal and global mapping of a few tropospheric trace gases, satellite trace-gas observations with considerably better temporal and spatial resolution are essential to forecasting air quality at scales required by policy-makers. The concurrent use of atmospheric composition measurements for both scientific and operational purposes is a new paradigm for the atmospheric chemistry community. The examples presented illustrate both the promise and challenge of merging satellite information with in situ observations in state-of-the-art data assimilation models.
Weiser, Armin A; Thöns, Christian; Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie
2016-01-01
FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available.
Filter, Matthias; Falenski, Alexander; Appel, Bernd; Käsbohrer, Annemarie
2016-01-01
FoodChain-Lab is modular open-source software for trace-back and trace-forward analysis in food-borne disease outbreak investigations. Development of FoodChain-Lab has been driven by a need for appropriate software in several food-related outbreaks in Germany since 2011. The software allows integrated data management, data linkage, enrichment and visualization as well as interactive supply chain analyses. Identification of possible outbreak sources or vehicles is facilitated by calculation of tracing scores for food-handling stations (companies or persons) and food products under investigation. The software also supports consideration of station-specific cross-contamination, analysis of geographical relationships, and topological clustering of the tracing network structure. FoodChain-Lab has been applied successfully in previous outbreak investigations, for example during the 2011 EHEC outbreak and the 2013/14 European hepatitis A outbreak. The software is most useful in complex, multi-area outbreak investigations where epidemiological evidence may be insufficient to discriminate between multiple implicated food products. The automated analysis and visualization components would be of greater value if trading information on food ingredients and compound products was more easily available. PMID:26985673
Event-driven simulations of nonlinear integrate-and-fire neurons.
Tonnelier, Arnaud; Belmabrouk, Hana; Martinez, Dominique
2007-12-01
Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based currents and exponential integrate-and-fire neurons are discussed.
Wimberley, Catriona J; Fischer, Kristina; Reilhac, Anthonin; Pichler, Bernd J; Gregoire, Marie Claude
2014-10-01
The partial saturation approach (PSA) is a simple, single injection experimental protocol that will estimate both B(avail) and appK(D) without the use of blood sampling. This makes it ideal for use in longitudinal studies of neurodegenerative diseases in the rodent. The aim of this study was to increase the range and applicability of the PSA by developing a data driven strategy for determining reliable regional estimates of receptor density (B(avail)) and in vivo affinity (1/appK(D)), and validate the strategy using a simulation model. The data driven method uses a time window guided by the dynamic equilibrium state of the system as opposed to using a static time window. To test the method, simulations of partial saturation experiments were generated and validated against experimental data. The experimental conditions simulated included a range of receptor occupancy levels and three different B(avail) and appK(D) values to mimic diseases states. Also the effect of using a reference region and typical PET noise on the stability and accuracy of the estimates was investigated. The investigations showed that the parameter estimates in a simulated healthy mouse, using the data driven method were within 10±30% of the simulated input for the range of occupancy levels simulated. Throughout all experimental conditions simulated, the accuracy and robustness of the estimates using the data driven method were much improved upon the typical method of using a static time window, especially at low receptor occupancy levels. Introducing a reference region caused a bias of approximately 10% over the range of occupancy levels. Based on extensive simulated experimental conditions, it was shown the data driven method provides accurate and precise estimates of B(avail) and appK(D) for a broader range of conditions compared to the original method. Copyright © 2014 Elsevier Inc. All rights reserved.
Yu, Jun; Shen, Zhengxiang; Sheng, Pengfeng; Wang, Xiaoqiang; Hailey, Charles J; Wang, Zhanshan
2018-03-01
The nested grazing incidence telescope can achieve a large collecting area in x-ray astronomy, with a large number of closely packed, thin conical mirrors. Exploiting the surface metrological data, the ray tracing method used to reconstruct the shell surface topography and evaluate the imaging performance is a powerful tool to assist iterative improvement in the fabrication process. However, current two-dimensional (2D) ray tracing codes, especially when utilized with densely sampled surface shape data, may not provide sufficient accuracy of reconstruction and are computationally cumbersome. In particular, 2D ray tracing currently employed considers coplanar rays and thus simulates only these rays along the meridional plane. This captures axial figure errors but leaves other important errors, such as roundness errors, unaccounted for. We introduce a semianalytic, three-dimensional (3D) ray tracing approach for x-ray optics that overcomes these shortcomings. And the present method is both computationally fast and accurate. We first introduce the principles and the computational details of this 3D ray tracing method. Then the computer simulations of this approach compared to 2D ray tracing are demonstrated, using an ideal conic Wolter-I telescope for benchmarking. Finally, the present 3D ray tracing is used to evaluate the performance of a prototype x-ray telescope fabricated for the enhanced x-ray timing and polarization mission.
NASA Astrophysics Data System (ADS)
Li, Jun; Fu, Siyao; He, Haibo; Jia, Hongfei; Li, Yanzhong; Guo, Yi
2015-11-01
Large-scale regional evacuation is an important part of national security emergency response plan. Large commercial shopping area, as the typical service system, its emergency evacuation is one of the hot research topics. A systematic methodology based on Cellular Automata with the Dynamic Floor Field and event driven model has been proposed, and the methodology has been examined within context of a case study involving the evacuation within a commercial shopping mall. Pedestrians walking is based on Cellular Automata and event driven model. In this paper, the event driven model is adopted to simulate the pedestrian movement patterns, the simulation process is divided into normal situation and emergency evacuation. The model is composed of four layers: environment layer, customer layer, clerk layer and trajectory layer. For the simulation of movement route of pedestrians, the model takes into account purchase intention of customers and density of pedestrians. Based on evacuation model of Cellular Automata with Dynamic Floor Field and event driven model, we can reflect behavior characteristics of customers and clerks at the situations of normal and emergency evacuation. The distribution of individual evacuation time as a function of initial positions and the dynamics of the evacuation process is studied. Our results indicate that the evacuation model using the combination of Cellular Automata with Dynamic Floor Field and event driven scheduling can be used to simulate the evacuation of pedestrian flows in indoor areas with complicated surroundings and to investigate the layout of shopping mall.
NASA Astrophysics Data System (ADS)
Ma, K.; Thomassey, S.; Zeng, X.
2017-10-01
In this paper we proposed a central order processing system under resource sharing strategy for demand-driven garment supply chains to increase supply chain performances. We examined this system by using simulation technology. Simulation results showed that significant improvement in various performance indicators was obtained in new collaborative model with proposed system.
Mathematic models for a ray tracing method and its applications in wireless optical communications.
Zhang, Minglun; Zhang, Yangan; Yuan, Xueguang; Zhang, Jinnan
2010-08-16
This paper presents a new ray tracing method, which contains a whole set of mathematic models, and its validity is verified by simulations. In addition, both theoretical analysis and simulation results show that the computational complexity of the method is much lower than that of previous ones. Therefore, the method can be used to rapidly calculate the impulse response of wireless optical channels for complicated systems.
Chemical Modeling for Studies of GeoTRACE Capabilities
NASA Technical Reports Server (NTRS)
2005-01-01
Geostationary measurements of tropospheric pollutants with high spatial and temporal resolution will revolutionize the understanding and predictions of the chemically linked global pollutants aerosols and ozone. However, the capabilities of proposed geostationary instruments, particularly GeoTRACE, have not been thoroughly studied with model simulations. Such model simulations are important to answer the questions and allay the concerns that have been expressed in the atmospheric sciences community about the feasibility of such measurements. We proposed a suite of chemical transport model simulations using the EPA Models 3 chemical transport model, which obtains its meteorology from the MM-5 mesoscale model. The model output consists of gridded abundances of chemical pollutants and meteorological parameters every 30-60 minutes for cases that have occurred in the Eastern United States. This output was intended to be used to test the GeoTRACE capability to retrieve the tropospheric columns of these pollutants.
2011-01-01
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229
Computation and analysis of backward ray-tracing in aero-optics flow fields.
Xu, Liang; Xue, Deting; Lv, Xiaoyi
2018-01-08
A backward ray-tracing method is proposed for aero-optics simulation. Different from forward tracing, the backward tracing direction is from the internal sensor to the distant target. Along this direction, the tracing in turn goes through the internal gas region, the aero-optics flow field, and the freestream. The coordinate value, the density, and the refractive index are calculated at each tracing step. A stopping criterion is developed to ensure the tracing stops at the outer edge of the aero-optics flow field. As a demonstration, the analysis is carried out for a typical blunt nosed vehicle. The backward tracing method and stopping criterion greatly simplify the ray-tracing computations in the aero-optics flow field, and they can be extended to our active laser illumination aero-optics study because of the reciprocity principle.
NASA Astrophysics Data System (ADS)
Tichý, Vladimír; Hudec, René; Němcová, Šárka
2016-06-01
The algorithm presented is intended mainly for lobster eye optics. This type of optics (and some similar types) allows for a simplification of the classical ray-tracing procedure that requires great many rays to simulate. The method presented performs the simulation of a only few rays; therefore it is extremely effective. Moreover, to simplify the equations, a specific mathematical formalism is used. Only a few simple equations are used, therefore the program code can be simple as well. The paper also outlines how to apply the method to some other reflective optical systems.
Molecular Dynamics Simulations of an Idealized Shock Tube: N2 in Ar Bath Driven by He
NASA Astrophysics Data System (ADS)
Piskulich, Ezekiel Ashe; Sewell, Thomas D.; Thompson, Donald L.
2015-06-01
The dynamics of 10% N2 in Ar initially at 298 K in an idealized shock tube driven by He was studied using molecular dynamics. The simulations were performed using the Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code. Nitrogen was modeled as a Morse oscillator and non-covalent interactions were approximated by the Buckingham exponential-6 pair potential. The initial pressures in the He driver gas and the driven N2/Ar gas were 1000 atm and 20 atm, respectively. Microcanonical trajectories were followed for 2 ns following release of the driver gas. Results for excitation and subsequent relaxation of the N2, as well as properties of the gas during the simulations, will be reported.
Automatic CT simulation optimization for radiation therapy: A general strategy.
Li, Hua; Yu, Lifeng; Anastasio, Mark A; Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M; Low, Daniel A; Mutic, Sasa
2014-03-01
In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube potentials for patient sizes of 38, 43, 48, 53, and 58 cm were 120, 140, 140, 140, and 140 kVp, respectively, and the corresponding minimum CTDIvol for achieving the optimal image quality index 4.4 were 9.8, 32.2, 100.9, 241.4, and 274.1 mGy, respectively. For patients with lateral sizes of 43-58 cm, 120-kVp scan protocols yielded up to 165% greater radiation dose relative to 140-kVp protocols, and 140-kVp protocols always yielded a greater image quality index compared to the same dose-level 120-kVp protocols. The trace of target and organ dosimetry coverage and the γ passing rates of seven IMRT dose distribution pairs indicated the feasibility of the proposed image quality index for the predication strategy. A general strategy to predict the optimal CT simulation protocols in a flexible and quantitative way was developed that takes into account patient size, treatment planning task, and radiation dose. The experimental study indicated that the optimal CT simulation protocol and the corresponding radiation dose varied significantly for different patient sizes, contouring accuracy, and radiation treatment planning tasks.
Flow-aggregated traffic-driven label mapping in label-switching networks
NASA Astrophysics Data System (ADS)
Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu
1998-12-01
Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.
The three phases of galaxy formation
NASA Astrophysics Data System (ADS)
Clauwens, Bart; Schaye, Joop; Franx, Marijn; Bower, Richard G.
2018-05-01
We investigate the origin of the Hubble sequence by analysing the evolution of the kinematic morphologies of central galaxies in the EAGLE cosmological simulation. By separating each galaxy into disc and spheroidal stellar components and tracing their evolution along the merger tree, we find that the morphology of galaxies follows a common evolutionary trend. We distinguish three phases of galaxy formation. These phases are determined primarily by mass, rather than redshift. For M* ≲ 109.5M⊙ galaxies grow in a disorganised way, resulting in a morphology that is dominated by random stellar motions. This phase is dominated by in-situ star formation, partly triggered by mergers. In the mass range 109.5M⊙ ≲ M* ≲ 1010.5M⊙ galaxies evolve towards a disc-dominated morphology, driven by in-situ star formation. The central spheroid (i.e. the bulge) at z = 0 consists mostly of stars that formed in-situ, yet the formation of the bulge is to a large degree associated with mergers. Finally, at M* ≳ 1010.5M⊙ growth through in-situ star formation slows down considerably and galaxies transform towards a more spheroidal morphology. This transformation is driven more by the buildup of spheroids than by the destruction of discs. Spheroid formation in these galaxies happens mostly by accretion at large radii of stars formed ex-situ (i.e. the halo rather than the bulge).
Radio jets clearing the way through galaxies: the view from Hi and molecular gas
NASA Astrophysics Data System (ADS)
Morganti, Raffaella
2015-03-01
Massive gas outflows are considered a key component in the process of galaxy formation and evolution. Because of this, they are the topic of many studies aimed at learning more about their occurrence, location and physical conditions as well as the mechanism(s) at their origin. This contribution presents recent results on two of the best examples of jet-driven outflows traced by cold and molecular gas. Thanks to high-spatial resolution observations, we have been able to locate the region where the outflow occurs. This appears to be coincident with bright radio features and regions where the interaction between radio plasma jet and ISM is known to occur, thus strongly supporting the idea of jet-driven outflows. We have also imaged the distribution of the outflowing gas. The results clearly show the effect that expanding radio jets and lobes have on the ISM. This appears to be in good agreement with what predicted from numerical simulations. Furthermore, the results show that cold gas is associated with these powerful phenomena and can be formed - likely via efficient cooling - even after a strong interaction and fast shocks. The discovery of similar fast outflows of cold gas in weak radio sources is further increasing the relevance that the effect of the radio plasma can have on the surrounding medium and on the host galaxy.
Fast ray-tracing of human eye optics on Graphics Processing Units.
Wei, Qi; Patkar, Saket; Pai, Dinesh K
2014-05-01
We present a new technique for simulating retinal image formation by tracing a large number of rays from objects in three dimensions as they pass through the optic apparatus of the eye to objects. Simulating human optics is useful for understanding basic questions of vision science and for studying vision defects and their corrections. Because of the complexity of computing such simulations accurately, most previous efforts used simplified analytical models of the normal eye. This makes them less effective in modeling vision disorders associated with abnormal shapes of the ocular structures which are hard to be precisely represented by analytical surfaces. We have developed a computer simulator that can simulate ocular structures of arbitrary shapes, for instance represented by polygon meshes. Topographic and geometric measurements of the cornea, lens, and retina from keratometer or medical imaging data can be integrated for individualized examination. We utilize parallel processing using modern Graphics Processing Units (GPUs) to efficiently compute retinal images by tracing millions of rays. A stable retinal image can be generated within minutes. We simulated depth-of-field, accommodation, chromatic aberrations, as well as astigmatism and correction. We also show application of the technique in patient specific vision correction by incorporating geometric models of the orbit reconstructed from clinical medical images. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Modeling of contact tracing in social networks
NASA Astrophysics Data System (ADS)
Tsimring, Lev S.; Huerta, Ramón
2003-07-01
Spreading of certain infections in complex networks is effectively suppressed by using intelligent strategies for epidemic control. One such standard epidemiological strategy consists in tracing contacts of infected individuals. In this paper, we use a recently introduced generalization of the standard susceptible-infectious-removed stochastic model for epidemics in sparse random networks which incorporates an additional (traced) state. We describe a deterministic mean-field description which yields quantitative agreement with stochastic simulations on random graphs. We also discuss the role of contact tracing in epidemics control in small-world and scale-free networks. Effectiveness of contact tracing grows as the rewiring probability is reduced.
3-D Modeling of Planar Target-Mount Perturbation Experiments on OMEGA
NASA Astrophysics Data System (ADS)
Collins, T. J. B.; Marshall, F. J.; Marozas, J. A.; Bonino, M. J.; Forties, R.; Goncharov, V. N.; Igumenshchev, I. V.; McKenty, P. W.; Smalyuk, V. A.
2008-11-01
OMEGA cryogenic targets are suspended in the target chamber using four spider silks attached to a C-shaped mount. The spider silks are typically composed of two entwined protein strands comparable to 1 μm in diameter. The silks and mount refract the incident laser light and cast shadows on the target surface. Experiments to measure the effects of the silks on target illumination have been performed in planar geometry using silks suspended parallel to a 20-μm-thick laser-driven target. The evolution of the surface perturbations introduced by the silks was measured using x-ray backlighting. The results of these experiments will be compared to simulations performed with DRACO, employing three-dimensional (3-D) planar hydrodynamics and a new 3-D refractive ray-trace package written specifically for this geometry. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.
Simulating Sources of Superstorm Plasmas
NASA Technical Reports Server (NTRS)
Fok, Mei-Ching
2008-01-01
We evaluated the contributions to magnetospheric pressure (ring current) of the solar wind, polar wind, auroral wind, and plasmaspheric wind, with the surprising result that the main phase pressure is dominated by plasmaspheric protons. We used global simulation fields from the LFM single fluid ideal MHD model. We embedded the Comprehensive Ring Current Model within it, driven by the LFM transpolar potential, and supplied with plasmas at its boundary including solar wind protons, polar wind protons, auroral wind O+, and plasmaspheric protons. We included auroral outflows and acceleration driven by the LFM ionospheric boundary condition, including parallel ion acceleration driven by upward currents. Our plasmasphere model runs within the CRCM and is driven by it. Ionospheric sources were treated using our Global Ion Kinetics code based on full equations of motion. This treatment neglects inertial loading and pressure exerted by the ionospheric plasmas, and will be superceded by multifluid simulations that include those effects. However, these simulations provide new insights into the respective role of ionospheric sources in storm-time magnetospheric dynamics.
Event- and Time-Driven Techniques Using Parallel CPU-GPU Co-processing for Spiking Neural Networks
Naveros, Francisco; Garrido, Jesus A.; Carrillo, Richard R.; Ros, Eduardo; Luque, Niceto R.
2017-01-01
Modeling and simulating the neural structures which make up our central neural system is instrumental for deciphering the computational neural cues beneath. Higher levels of biological plausibility usually impose higher levels of complexity in mathematical modeling, from neural to behavioral levels. This paper focuses on overcoming the simulation problems (accuracy and performance) derived from using higher levels of mathematical complexity at a neural level. This study proposes different techniques for simulating neural models that hold incremental levels of mathematical complexity: leaky integrate-and-fire (LIF), adaptive exponential integrate-and-fire (AdEx), and Hodgkin-Huxley (HH) neural models (ranged from low to high neural complexity). The studied techniques are classified into two main families depending on how the neural-model dynamic evaluation is computed: the event-driven or the time-driven families. Whilst event-driven techniques pre-compile and store the neural dynamics within look-up tables, time-driven techniques compute the neural dynamics iteratively during the simulation time. We propose two modifications for the event-driven family: a look-up table recombination to better cope with the incremental neural complexity together with a better handling of the synchronous input activity. Regarding the time-driven family, we propose a modification in computing the neural dynamics: the bi-fixed-step integration method. This method automatically adjusts the simulation step size to better cope with the stiffness of the neural model dynamics running in CPU platforms. One version of this method is also implemented for hybrid CPU-GPU platforms. Finally, we analyze how the performance and accuracy of these modifications evolve with increasing levels of neural complexity. We also demonstrate how the proposed modifications which constitute the main contribution of this study systematically outperform the traditional event- and time-driven techniques under increasing levels of neural complexity. PMID:28223930
Software for computerised analysis of cardiotocographic traces.
Romano, M; Bifulco, P; Ruffo, M; Improta, G; Clemente, F; Cesarelli, M
2016-02-01
Despite the widespread use of cardiotocography in foetal monitoring, the evaluation of foetal status suffers from a considerable inter and intra-observer variability. In order to overcome the main limitations of visual cardiotocographic assessment, computerised methods to analyse cardiotocographic recordings have been recently developed. In this study, a new software for automated analysis of foetal heart rate is presented. It allows an automatic procedure for measuring the most relevant parameters derivable from cardiotocographic traces. Simulated and real cardiotocographic traces were analysed to test software reliability. In artificial traces, we simulated a set number of events (accelerations, decelerations and contractions) to be recognised. In the case of real signals, instead, results of the computerised analysis were compared with the visual assessment performed by 18 expert clinicians and three performance indexes were computed to gain information about performances of the proposed software. The software showed preliminary performance we judged satisfactory in that the results matched completely the requirements, as proved by tests on artificial signals in which all simulated events were detected from the software. Performance indexes computed in comparison with obstetricians' evaluations are, on the contrary, not so satisfactory; in fact they led to obtain the following values of the statistical parameters: sensitivity equal to 93%, positive predictive value equal to 82% and accuracy equal to 77%. Very probably this arises from the high variability of trace annotation carried out by clinicians. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
O'Neill, Anne-Marie
2015-01-01
Following the Tomorrow's Schools administrative restructuring, a second wave of educational change installed globalised discourses as governmentality policies in Aotearoa New Zealand. Drawing on Foucault's "toolkit", this genealogical policy chronology traces the transformation of curriculum and assessment into a specific political…
Ramamurti, B S; Estok, D M; Jasty, M; Harris, W H
1998-05-01
We developed an analytical technique to determine the paths traced by specific points on the femoral head against the acetabulum in the human hip joint during gait. The purpose of the study was to apply this technique to the mechanical hip simulators chosen to conduct wear tests on polymeric acetabular liners used in total hip replacements. These simulators differ from one another in the type of motion produced, apart from other variables such as type of lubricant and head position. Due to the variation in the kinematics between the machines, the paths traced by the points on the femoral head against the acetabular liner ranged from simple linear traces to figure-8 loops and quasi-elliptical paths during a single simulator cycle. The distances traveled by these points during the same period also varied appreciably among the different hip simulator designs. These results are important when combined with other studies that have shown that kinematics can play an important role in the outcome of in vitro wear experiments. The kinematic differences quantified in this study can partially explain the substantial differences in wear data reported from different simulator designs and also underscore the usefulness of the technique described in this study in judging the results from different hip simulator experiments.
Xu, Weihai; Yan, Wen; Zhang, Gan; Li, Jun; Miao, Li; Huang, Weixia
2014-01-01
Oceans play a significant role in the cycling of trace metals and persistent organic pollutants. In this study, aerosol samples covering the whole northern South China Sea (SCS) were collected in 2005 and 2007, respectively, for analysis of trace metals and major elements. The levels of trace metals detected ranged from 0.514 to 119 ng/m(3) in 2005 and from 0.130 to 24.2 ng/m(3) in 2007, respectively. Cu, Zn, and Pb were the three predominant metals with high enrichment factors (>10), indicating the strong anthropogenic inputs. The trace metals over SCS were comparable to the values in suburban and background sites of South China, but generally higher than those over other seas and oceans. Considering the fact that they were influenced by their proximity to source regions and air mass origins, the elevated metals in 2005 were probably attributed to the strong wind and long-range atmospheric transport driven by Asian monsoon.
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...
2016-09-18
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
A users' guide to the trace contaminant control simulation computer program
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various trace contaminant control technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. The results obtained from the program can be useful in assessing different technology combinations, system sizing, system location with respect to other life support systems, and the overall life cycle economics of a trace contaminant control system. The user's manual is extracted in its entirety from NASA TM-108409 to provide a stand-alone reference for using any version of the program. The first publication of the manual as part of TM-108409 also included a detailed listing of version 8.0 of the program. As changes to the code were necessary, it became apparent that the user's manual should be separate from the computer code documentation and be general enough to provide guidance in using any version of the program. Provided in the guide are tips for input file preparation, general program execution, and output file manipulation. Information concerning source code listings of the latest version of the computer program may be obtained by contacting the author.
Gravitational instabilities in a protosolar-like disc - I. Dynamics and chemistry
NASA Astrophysics Data System (ADS)
Evans, M. G.; Ilee, J. D.; Boley, A. C.; Caselli, P.; Durisen, R. H.; Hartquist, T. W.; Rawlings, J. M. C.
2015-10-01
To date, most simulations of the chemistry in protoplanetary discs have used 1 + 1D or 2D axisymmetric α-disc models to determine chemical compositions within young systems. This assumption is inappropriate for non-axisymmetric, gravitationally unstable discs, which may be a significant stage in early protoplanetary disc evolution. Using 3D radiative hydrodynamics, we have modelled the physical and chemical evolution of a 0.17 M⊙ self-gravitating disc over a period of 2000 yr. The 0.8 M⊙ central protostar is likely to evolve into a solar-like star, and hence this Class 0 or early Class I young stellar object may be analogous to our early Solar system. Shocks driven by gravitational instabilities enhance the desorption rates, which dominate the changes in gas-phase fractional abundances for most species. We find that at the end of the simulation, a number of species distinctly trace the spiral structure of our relatively low-mass disc, particularly CN. We compare our simulation to that of a more massive disc, and conclude that mass differences between gravitationally unstable discs may not have a strong impact on the chemical composition. We find that over the duration of our simulation, successive shock heating has a permanent effect on the abundances of HNO, CN and NH3, which may have significant implications for both simulations and observations. We also find that HCO+ may be a useful tracer of disc mass. We conclude that gravitational instabilities induced in lower mass discs can significantly, and permanently, affect the chemical evolution, and that observations with high-resolution instruments such as Atacama Large Millimeter/submillimeter Array (ALMA) offer a promising means of characterizing gravitational instabilities in protosolar discs.
MHD Simulation of the HIT-SI Experiment
NASA Astrophysics Data System (ADS)
Marklin, George
2003-10-01
The Helicity Injected Torus (HIT) experiment at the University of Washington has been reconfigured into a high beta spheromak with steady state AC current drive [1]. Helicity is injected by two half torus Reversed Field Pinches (RFP's) connected to the ends of the cylindrically symmetric flux conserver, rotated by 90 degrees from each other. The RFP's are driven with sinusoidally varying voltage and flux. Each side has its voltage and flux in phase, but is 90 degrees out of phase from the other side. The helicity injection rate, which is proportional to the voltage times the flux, goes like sin(wt)^2 on one side and cos(wt)^2 on the other, making the total injection rate constant in time. The complex multiply connected 3-dimensional geometry of this device make it difficult to simulate with existing codes that typically use a structured mesh. This poster will describe a new 3D MHD simulation code and a new 3D Taylor state code which both use an unstructured finite element mesh. The mesh is generated from a CAD-like description of an arbitrary arrangement of 3D geometrical objects. Taylor states in the HIT-SI geometry will be shown for different combinations of fluxes in the two injectors. MHD simulation results will be shown starting from a Taylor state with uniform density and temperature and continuing through several cycles of time dependent helicity injection. Field line tracing plots will show the quality of the flux surfaces at various stages in the injection cycle. [1] T. R. Jarboe, Fusion Technology, vol. 36, p. 85, 1999
Hybrid Global Model Simulations of He/N2 and He/H2O Atmospheric Pressure Capacitive Discharges
NASA Astrophysics Data System (ADS)
Lieberman, M. A.; Kawamura, E.; Ke, Ding; Lichtenberg, A. J.; Chabert, P.; Lazzaroni, C.
2014-10-01
We used 1D particle-in-cell (PIC) simulations of an atmospheric He/0.1%N2 discharge with simplified chemistry to guide the development of a hybrid analytical/numerical global model that includes electron multiplication and two classes of electrons: ``hot'' electrons associated with the sheaths, and ``warm'' electrons associated with the bulk. The model and PIC results show reasonable agreement and indicate a transition from a low power α-mode with a relatively high bulk electron temperature Te to a high power γ-mode with a low Te. The transition is accompanied by an increase in density and a decrease in sheath widths. Water is a trace gas of bio-medical interest since it may arise from contact with skin. We use the hybrid global model to simulate a chemically complex, bounded He/H2O atmospheric pressure discharge, including 148 volume reactions among 43 species, and including clusters up to H19O9+.For a planar discharge with a 1 cm electrode radius and a 0.5 mm gap driven at 13.56 MHz, we determine the depletion and diffusion effects and the α to γ transition for secondary emission γse = 0.25 over a range of rf currents and external H2O concentrations. Each simulation takes about 2 minutes on a moderate laptop. This work was partially supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193 and by the Natural Science Foundation of China Contract 11375042.
The effect of trace mineral source and concentration on ruminal digestion and mineral solubility.
Genther, O N; Hansen, S L
2015-01-01
The objective of this experiment was to compare the effect of sources of sulfate trace mineral (STM) and hydroxy trace mineral (HTM) at different inclusions on digestibility of dry matter (DM) and neutral detergent fiber and solubility of Cu, Mn, and Zn in the rumen and abomasum of cattle. Five ruminally cannulated steers were used in a 5×5 Latin square design and individually fed a corn silage-based diet on an ad libitum basis. The 5 dietary treatments were as follows: control: no supplemental Cu, Mn, or Zn, analyzed to contain 7.4mg of Cu, 30.8mg of Mn, and 32.1mg of Zn per kilogram of diet DM (CON); low sulfate: 5mg of Cu/kg of DM supplemented from CuSO4, 15mg of Mn/kg of DM from MnSO4, and 30mg of Zn/kg of DM from ZnSO4; low HTM: 5mg of Cu/kg of DM supplemented from basic copper chloride (IntelliBond C; Micronutrients Inc., Indianapolis, IN), 15mg of Mn/kg of DM from manganese hydroxychloride (IntelliBond M; Micronutrients Inc.), and 30mg of Zn/kg of DM from zinc hydroxychloride (IntelliBond Z; Micronutrients Inc.); high sulfate: 25mg of Cu/kg of DM supplemented from CuSO4, 60mg of Mn/kg of DM from MnSO4, and 120mg of Zn/kg of DM from ZnSO4; and high HTM: 25mg of Cu/kg of DM supplemented from basic copper chloride, 60mg of Mn/kg of DM from manganese hydroxychloride, and 120mg of Zn/kg of DM from zinc hydroxychloride. Periods lasted for 12d, with 10d of diet adaptation. Dacron bags containing the CON total mixed ration were inserted on d 11 at 0h and were removed at 6, 12, 24, and 36h after insertion. Dry matter and neutral detergent fiber disappearances and rumen and simulated abomasal trace mineral solubilities were evaluated. Dietary treatment did not affect DM intake. Dry matter disappearance was lesser in supplemental TM treatments and greater in CON than the STM treatments, although the CON and HTM treatments did not differ. Neutral detergent fiber disappearance was not affected by treatment. Ruminally soluble Cu and Mn concentrations were least in CON and were lesser in HTM-containing treatments compared with STM treatments. However, in the abomasum, solubilities of Cu and Mn were similar across trace mineral sources. Ruminal and simulated abomasal soluble Zn was greater in the HTM treatments than in CON and STM, driven by the greater solubility of the high HTM treatment. Under the conditions of this study, supplementing trace minerals as STM decreased DM digestibility, whereas HTM did not affect DM digestibility. Additionally, Cu and Mn from HTM sources were relatively insoluble in the rumen but had similar solubility as STM at the pH found in the abomasum, suggesting that these minerals should be available for absorption in the intestine. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Numerical simulation of plasma processes driven by transverse ion heating
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
An Empirical Development of Parallelization Guidelines for Time-Driven Simulation
1989-12-01
wives, who though not Cub fans, put on a good show during our trip, to waich some games . I would also like to recognize the help of my professors at...program parallelization. in this research effort a Ballistic Missile Defense (BMD) time driven simulation program, developed by DESE Research and...continuously, or continuously with discrete changes superimposed. The distinguishing feature of these simulations is the interaction between discretely
Diehl, S.F.; Goldhaber, M.B.; Hatch, J.R.
2004-01-01
The mineralogic residence and abundance of trace metals is an important environmental issue. Data from the USGS coal quality database show that potentially toxic elements, including Hg, As, Mo, Se, Cu, and Tl are enriched in a subset of coal samples in the Black Warrior Basin of Alabama, USA. Although the coal as-mined typically is low in these elements, localized enrichments occur in high-pyrite coals and near faults. Microscopic analyses demonstrate that the residence of these elements is dominantly in a late-stage pyrite associated with structurally disrupted coal. Further, our data suggest addition of Hg to the coal matrix as well. The source of these trace elements was hydrothermal fluids driven into the Black Warrior Basin by Alleghanian age tectonism. ?? 2004 Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fehl, D.L.; Chandler, G.A.; Biggs, F.
X-ray-producing hohlraums are being studied as indirect drives for inertial confinement fusion targets. In a 1994 target series on the PBFAII accelerator, cylindrical hohlraum targets were heated by an intense Li{sup +} ion beam and viewed by an array of 13 time-resolved, filtered x-ray detectors (XRDs). The unfold operator (UFO) code and its suite of auxiliary functions were used extensively in obtaining time-resolved x-ray spectra and radiation temperatures from this diagnostic. The UFO was also used to obtain fitted response functions from calibration data, to simulate data from blackbody x-ray spectra of interest, to determine the suitability of various unfoldingmore » parameters (e.g., energy domain, energy partition, smoothing conditions, and basis functions), to interpolate the XRD signal traces, and to unfold experimental data. The simulation capabilities of the code were useful in understanding an anomalous feature in the unfolded spectra at low photon energies ({le}100 eV). Uncertainties in the differential and energy-integrated unfolded spectra were estimated from uncertainties in the data. The time{endash}history of the radiation temperature agreed well with independent calculations of the wall temperature in the hohlraum. {copyright} {ital 1997 American Institute of Physics.}« less
Towards a Consolidated Approach for the Assessment of Evaluation Models of Nuclear Power Reactors
Epiney, A.; Canepa, S.; Zerkak, O.; ...
2016-11-02
The STARS project at the Paul Scherrer Institut (PSI) has adopted the TRACE thermal-hydraulic (T-H) code for best-estimate system transient simulations of the Swiss Light Water Reactors (LWRs). For analyses involving interactions between system and core, a coupling of TRACE with the SIMULATE-3K (S3K) LWR core simulator has also been developed. In this configuration, the TRACE code and associated nuclear power reactor simulation models play a central role to achieve a comprehensive safety analysis capability. Thus, efforts have now been undertaken to consolidate the validation strategy by implementing a more rigorous and structured assessment approach for TRACE applications involving eithermore » only system T-H evaluations or requiring interfaces to e.g. detailed core or fuel behavior models. The first part of this paper presents the preliminary concepts of this validation strategy. The principle is to systematically track the evolution of a given set of predicted physical Quantities of Interest (QoIs) over a multidimensional parametric space where each of the dimensions represent the evolution of specific analysis aspects, including e.g. code version, transient specific simulation methodology and model "nodalisation". If properly set up, such environment should provide code developers and code users with persistent (less affected by user effect) and quantified information (sensitivity of QoIs) on the applicability of a simulation scheme (codes, input models, methodology) for steady state and transient analysis of full LWR systems. Through this, for each given transient/accident, critical paths of the validation process can be identified that could then translate into defining reference schemes to be applied for downstream predictive simulations. In order to illustrate this approach, the second part of this paper presents a first application of this validation strategy to an inadvertent blowdown event that occurred in a Swiss BWR/6. The transient was initiated by the spurious actuation of the Automatic Depressurization System (ADS). The validation approach progresses through a number of dimensions here: First, the same BWR system simulation model is assessed for different versions of the TRACE code, up to the most recent one. The second dimension is the "nodalisation" dimension, where changes to the input model are assessed. The third dimension is the "methodology" dimension. In this case imposed power and an updated TRACE core model are investigated. For each step in each validation dimension, a common set of QoIs are investigated. For the steady-state results, these include fuel temperatures distributions. For the transient part of the present study, the evaluated QoIs include the system pressure evolution and water carry-over into the steam line.« less
Kinetic modeling of x-ray laser-driven solid Al plasmas via particle-in-cell simulation
NASA Astrophysics Data System (ADS)
Royle, R.; Sentoku, Y.; Mancini, R. C.; Paraschiv, I.; Johzaki, T.
2017-06-01
Solid-density plasmas driven by intense x-ray free-electron laser (XFEL) radiation are seeded by sources of nonthermal photoelectrons and Auger electrons that ionize and heat the target via collisions. Simulation codes that are commonly used to model such plasmas, such as collisional-radiative (CR) codes, typically assume a Maxwellian distribution and thus instantaneous thermalization of the source electrons. In this study, we present a detailed description and initial applications of a collisional particle-in-cell code, picls, that has been extended with a self-consistent radiation transport model and Monte Carlo models for photoionization and K L L Auger ionization, enabling the fully kinetic simulation of XFEL-driven plasmas. The code is used to simulate two experiments previously performed at the Linac Coherent Light Source investigating XFEL-driven solid-density Al plasmas. It is shown that picls-simulated pulse transmissions using the Ecker-Kröll continuum-lowering model agree much better with measurements than do simulations using the Stewart-Pyatt model. Good quantitative agreement is also found between the time-dependent picls results and those of analogous simulations by the CR code scfly, which was used in the analysis of the experiments to accurately reproduce the observed K α emissions and pulse transmissions. Finally, it is shown that the effects of the nonthermal electrons are negligible for the conditions of the particular experiments under investigation.
Ray tracing analysis of overlapping objects in refraction contrast imaging.
Hirano, Masatsugu; Yamasaki, Katsuhito; Okada, Hiroshi; Sakurai, Takashi; Kondoh, Takeshi; Katafuchi, Tetsuro; Sugimura, Kazuro; Kitazawa, Sohei; Kitazawa, Riko; Maeda, Sakan; Tamura, Shinichi
2005-08-01
We simulated refraction contrast imaging in overlapping objects using the ray tracing method. The easiest case, in which two columnar objects (blood vessels) with a density of 1.0 [g/cm3], run at right angles in air, was calculated. For absorption, we performed simulation using the Snell law adapted to the object's boundary. A pair of bright and dark spot results from the interference of refracted X-rays where the blood vessels crossed. This has the possibility of increasing the visibility of the image.
Simulation and optimization of volume holographic imaging systems in Zemax.
Wissmann, Patrick; Oh, Se Baek; Barbastathis, George
2008-05-12
We present a new methodology for ray-tracing analysis of volume holographic imaging (VHI) systems. Using the k-sphere formulation, we apply geometrical relationships to describe the volumetric diffraction effects imposed on rays passing through a volume hologram. We explain the k-sphere formulation in conjunction with ray tracing process and describe its implementation in a Zemax UDS (User Defined Surface). We conclude with examples of simulation and optimization results and show proof of consistency and usefulness of the proposed model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClenaghan, J.; Lin, Z.; Holod, I.
The gyrokinetic toroidal code (GTC) capability has been extended for simulating internal kink instability with kinetic effects in toroidal geometry. The global simulation domain covers the magnetic axis, which is necessary for simulating current-driven instabilities. GTC simulation in the fluid limit of the kink modes in cylindrical geometry is verified by benchmarking with a magnetohydrodynamic eigenvalue code. Gyrokinetic simulations of the kink modes in the toroidal geometry find that ion kinetic effects significantly reduce the growth rate even when the banana orbit width is much smaller than the radial width of the perturbed current layer at the mode rational surface.
On the Role of Ionospheric Ions in Sawtooth Events
NASA Astrophysics Data System (ADS)
Lund, E. J.; Nowrouzi, N.; Kistler, L. M.; Cai, X.; Frey, H. U.
2018-01-01
Simulations have suggested that feedback of heavy ions originating in the ionosphere is an important mechanism for driving sawtooth injections. However, this feedback may only be necessary for events driven by coronal mass ejections (CMEs), whereas in events driven by streaming interaction regions (SIRs), solar wind variability may suffice to drive these injections. Here we present case studies of two sawtooth events for which in situ data are available in both the magnetotail (Cluster) and the nightside auroral region (FAST), as well as global auroral images (IMAGE). One event, on 1 October 2001, was driven by a CME; the other, on 24 October 2002, was driven by an SIR. The available data do not support the hypothesis that heavy ion feedback is necessary to drive either event. This result is consistent with simulations of the SIR-driven event but disagrees with simulation results for a different CME-driven event. We also find that in an overwhelming majority of the sawtooth injections for which Cluster tail data are available, the O+ observed in the tail comes from the cusp rather than the nightside auroral region, which further casts doubt on the hypothesis that ionospheric heavy ion feedback is the cause of sawtooth injections.
A data-driven dynamics simulation framework for railway vehicles
NASA Astrophysics Data System (ADS)
Nie, Yinyu; Tang, Zhao; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2018-03-01
The finite element (FE) method is essential for simulating vehicle dynamics with fine details, especially for train crash simulations. However, factors such as the complexity of meshes and the distortion involved in a large deformation would undermine its calculation efficiency. An alternative method, the multi-body (MB) dynamics simulation provides satisfying time efficiency but limited accuracy when highly nonlinear dynamic process is involved. To maintain the advantages of both methods, this paper proposes a data-driven simulation framework for dynamics simulation of railway vehicles. This framework uses machine learning techniques to extract nonlinear features from training data generated by FE simulations so that specific mesh structures can be formulated by a surrogate element (or surrogate elements) to replace the original mechanical elements, and the dynamics simulation can be implemented by co-simulation with the surrogate element(s) embedded into a MB model. This framework consists of a series of techniques including data collection, feature extraction, training data sampling, surrogate element building, and model evaluation and selection. To verify the feasibility of this framework, we present two case studies, a vertical dynamics simulation and a longitudinal dynamics simulation, based on co-simulation with MATLAB/Simulink and Simpack, and a further comparison with a popular data-driven model (the Kriging model) is provided. The simulation result shows that using the legendre polynomial regression model in building surrogate elements can largely cut down the simulation time without sacrifice in accuracy.
NASA Astrophysics Data System (ADS)
Iida, Michihira; Maeno, Tsuyoshi; Wang, Jianqing; Fujiwara, Osamu
Electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common slitting ground patterns. To suppress these kinds of noise currents, we previously measured them for simple two-layer PCBs with two parallel signal traces and slitting or non-slitting ground patterns, and then investigated by the FDTD simulation the reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces on six simple PCB models having different slitting ground or different divided ground patterns parallel to the traces. As a result, we found that the contributory factor for the FM-band cross-talk reduction is the reduction of mutual inductance between the two parallel traces, and also the noise currents from PCBs can rather be suppressed even if the size of the return ground becomes small. In this study, to investigate this finding, we further simulated the frequency characteristics of cross-talk reduction for additional six simple PCB models with different dividing dimensions ground patterns parallel to the traces, which revealed an interesting phenomenon that cross-talk reduction characteristics do not always decrease with increasing the width between the divided ground patterns.
Modeling DNP3 Traffic Characteristics of Field Devices in SCADA Systems of the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Cheng, Liang; Chuah, Mooi Choo
In the generation, transmission, and distribution sectors of the smart grid, intelligence of field devices is realized by programmable logic controllers (PLCs). Many smart-grid subsystems are essentially cyber-physical energy systems (CPES): For instance, the power system process (i.e., the physical part) within a substation is monitored and controlled by a SCADA network with hosts running miscellaneous applications (i.e., the cyber part). To study the interactions between the cyber and physical components of a CPES, several co-simulation platforms have been proposed. However, the network simulators/emulators of these platforms do not include a detailed traffic model that takes into account the impactsmore » of the execution model of PLCs on traffic characteristics. As a result, network traces generated by co-simulation only reveal the impacts of the physical process on the contents of the traffic generated by SCADA hosts, whereas the distinction between PLCs and computing nodes (e.g., a hardened computer running a process visualization application) has been overlooked. To generate realistic network traces using co-simulation for the design and evaluation of applications relying on accurate traffic profiles, it is necessary to establish a traffic model for PLCs. In this work, we propose a parameterized model for PLCs that can be incorporated into existing co-simulation platforms. We focus on the DNP3 subsystem of slave PLCs, which automates the processing of packets from the DNP3 master. To validate our approach, we extract model parameters from both the configuration and network traces of real PLCs. Simulated network traces are generated and compared against those from PLCs. Our evaluation shows that our proposed model captures the essential traffic characteristics of DNP3 slave PLCs, which can be used to extend existing co-simulation platforms and gain further insights into the behaviors of CPES.« less
Modifications to Axially Symmetric Simulations Using New DSMC (2007) Algorithms
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
Several modifications aimed at improving physical accuracy are proposed for solving axially symmetric problems building on the DSMC (2007) algorithms introduced by Bird. Originally developed to solve nonequilibrium, rarefied flows, the DSMC method is now regularly used to solve complex problems over a wide range of Knudsen numbers. These new algorithms include features such as nearest neighbor collisions excluding the previous collision partners, separate collision and sampling cells, automatically adaptive variable time steps, a modified no-time counter procedure for collisions, and discontinuous and event-driven physical processes. Axially symmetric solutions require radial weighting for the simulated molecules since the molecules near the axis represent fewer real molecules than those farther away from the axis due to the difference in volume of the cells. In the present methodology, these radial weighting factors are continuous, linear functions that vary with the radial position of each simulated molecule. It is shown that how one defines the number of tentative collisions greatly influences the mean collision time near the axis. The method by which the grid is treated for axially symmetric problems also plays an important role near the axis, especially for scalar pressure. A new method to treat how the molecules are traced through the grid is proposed to alleviate the decrease in scalar pressure at the axis near the surface. Also, a modification to the duplication buffer is proposed to vary the duplicated molecular velocities while retaining the molecular kinetic energy and axially symmetric nature of the problem.
Schematic driven silicon photonics design
NASA Astrophysics Data System (ADS)
Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris
2016-03-01
Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.
Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment
Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.
2011-01-01
Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Nyawira, Sylvia; Nabel, Julia; Brovkin, Victor; Pongratz, Julia
2017-04-01
Modelling studies estimate a global loss in soil carbon caused by land-use changes (LUCs) over the last century. Although it is known that this loss stems from the changes in quantity of litter inputs from the vegetation to the soil (input-driven) and the changes in turnover of carbon in the soil (turnover-driven) associated with LUC, the individual contribution of these two controls to the total changes have not been assessed. Using the dynamic global vegetation model JSBACH, we apply a factor separation approach to isolate the contribution of the input-driven and turnover-driven changes, as well as their synergies, to the total changes in soil carbon from LUC. To assess how land management through crop and wood harvest influences the controls, we compare our results for simulations with and without land management. Our results reveal that for the afforested regions both the input-driven and turnover-driven changes generally result in soil carbon gain, whereas deforested regions exhibit a loss. However, for regions where croplands have increased at the expense of grasslands and pastures, the input-driven changes result in a loss that is partly offset by a gain via the turnover-driven changes. This gain stems from a decrease in the fire-related carbon losses when grasslands or pastures are replaced with croplands. Omitting land management reduces the carbon losses in regions where natural vegetation has been converted to croplands and enhances the gain in afforested regions. The global simulated losses are substantially reduced from 54.0 Pg C to 22.0 Pg C, with the input-driven losses reducing from 54.7 Pg C to 24.9 Pg C. Our study shows that the dominating control of soil carbon losses is through the input-driven changes, which are more directly influenced by human management than the turnover-driven ones.
ERIC Educational Resources Information Center
Scott, J. Blake
2009-01-01
The pharmaceutical industry's corporate responsibility reports illustrate how the liberal rhetoric of civic engagement can be reappropriated to serve the market-driven aims of risk management and public relations. Tracing the ideologic linkage of corporate responsibility and service-learning versions of civic engagement, and contextualizing…
Ties That Do Not Bind: Musings on the Specious Relevance of Academic Research.
ERIC Educational Resources Information Center
Bolton, Michael J.; Stolcis, Gregory B.
2003-01-01
Discusses the gap between academic research and practice in public administration and argues that it can be traced to conflicts such as theoretical vs. pragmatic knowledge, data-supported vs. logic-driven information, scientific method vs. case studies, academic vs. practitioner journals, and tenure vs. organizational effectiveness. Explores…
ERIC Educational Resources Information Center
O'Neill, Anne-Marie
2016-01-01
This policy chronology traces the institution of globalised school curriculum and assessment discourses, as a vernacular and specific form of public rationalisation and educational governmentality in Aotearoa New Zealand. Without functional national standards or national testing, official discourses constructed an assessment-driven framework as a…
Time-Driven Effects on Parsing during Reading
ERIC Educational Resources Information Center
Roll, Mikael; Lindgren, Magnus; Alter, Kai; Horne, Merle
2012-01-01
The phonological trace of perceived words starts fading away in short-term memory after a few seconds. Spoken utterances are usually 2-3 s long, possibly to allow the listener to parse the words into coherent prosodic phrases while they still have a clear representation. Results from this brain potential study suggest that even during silent…
Social Justice and Technocracy: Tracing the Narratives of Inclusive Education in the USA
ERIC Educational Resources Information Center
Danforth, Scot
2016-01-01
Over the past two decades, the percentage of American students with disabilities educated in general classrooms with their nondisabled peers has risen by approximately 50%. This gradual but steady policy shift has been driven by two distinct narratives of organisational change. The social justice narrative espouses principles of equality and…
A Brief History of ... Semiconductors
ERIC Educational Resources Information Center
Jenkins, Tudor
2005-01-01
The development of studies in semiconductor materials is traced from its beginnings with Michael Faraday in 1833 to the production of the first silicon transistor in 1954, which heralded the age of silicon electronics and microelectronics. Prior to the advent of band theory, work was patchy and driven by needs of technology. However, the arrival…
Paxton, Alexandra; Griffiths, Thomas L
2017-10-01
Today, people generate and store more data than ever before as they interact with both real and virtual environments. These digital traces of behavior and cognition offer cognitive scientists and psychologists an unprecedented opportunity to test theories outside the laboratory. Despite general excitement about big data and naturally occurring datasets among researchers, three "gaps" stand in the way of their wider adoption in theory-driven research: the imagination gap, the skills gap, and the culture gap. We outline an approach to bridging these three gaps while respecting our responsibilities to the public as participants in and consumers of the resulting research. To that end, we introduce Data on the Mind ( http://www.dataonthemind.org ), a community-focused initiative aimed at meeting the unprecedented challenges and opportunities of theory-driven research with big data and naturally occurring datasets. We argue that big data and naturally occurring datasets are most powerfully used to supplement-not supplant-traditional experimental paradigms in order to understand human behavior and cognition, and we highlight emerging ethical issues related to the collection, sharing, and use of these powerful datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.
2010-08-15
In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovativemore » concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)« less
C-arm technique using distance driven method for nephrolithiasis and kidney stones detection
NASA Astrophysics Data System (ADS)
Malalla, Nuhad; Sun, Pengfei; Chen, Ying; Lipkin, Michael E.; Preminger, Glenn M.; Qin, Jun
2016-04-01
Distance driven represents a state of art method that used for reconstruction for x-ray techniques. C-arm tomography is an x-ray imaging technique that provides three dimensional information of the object by moving the C-shaped gantry around the patient. With limited view angle, C-arm system was investigated to generate volumetric data of the object with low radiation dosage and examination time. This paper is a new simulation study with two reconstruction methods based on distance driven including: simultaneous algebraic reconstruction technique (SART) and Maximum Likelihood expectation maximization (MLEM). Distance driven is an efficient method that has low computation cost and free artifacts compared with other methods such as ray driven and pixel driven methods. Projection images of spherical objects were simulated with a virtual C-arm system with a total view angle of 40 degrees. Results show the ability of limited angle C-arm technique to generate three dimensional images with distance driven reconstruction.
Testability, Test Automation and Test Driven Development for the Trick Simulation Toolkit
NASA Technical Reports Server (NTRS)
Penn, John
2014-01-01
This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes the approach, and the significant benefits seen, such as fast, thorough and clear test feedback every time code is checked into the code repository. It also describes an approach that encourages development of code that is testable and adaptable.
A SPECT system simulator built on the SolidWorks TM 3D-Design package.
Li, Xin; Furenlid, Lars R
2014-08-17
We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design workflow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorks TM -created stereolithography (.STL) representations with a full complement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorks TM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.
A SPECT system simulator built on the SolidWorksTM 3D design package
NASA Astrophysics Data System (ADS)
Li, Xin; Furenlid, Lars R.
2014-09-01
We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design work flow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorksTM-created stereolithography (.STL) representations with a full com- plement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorksTM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.
Navarro, Rafael; Palos, Fernando; Lanchares, Elena; Calvo, Begoña; Cristóbal, José A
2009-01-01
To develop a realistic model of the optomechanical behavior of the cornea after curved relaxing incisions to simulate the induced astigmatic change and predict the optical aberrations produced by the incisions. ICMA Consejo Superior de Investigaciones Científicas and Universidad de Zaragoza, Zaragoza, Spain. A 3-dimensional finite element model of the anterior hemisphere of the ocular surface was used. The corneal tissue was modeled as a quasi-incompressible, anisotropic hyperelastic constitutive behavior strongly dependent on the physiological collagen fibril distribution. Similar behaviors were assigned to the limbus and sclera. With this model, some corneal incisions were computer simulated after the Lindstrom nomogram. The resulting geometry of the biomechanical simulation was analyzed in the optical zone, and finite ray tracing was performed to compute refractive power and higher-order aberrations (HOAs). The finite-element simulation provided new geometry of the corneal surfaces, from which elevation topographies were obtained. The surgically induced astigmatism (SIA) of the simulated incisions according to the Lindstrom nomogram was computed by finite ray tracing. However, paraxial computations would yield slightly different results (undercorrection of astigmatism). In addition, arcuate incisions would induce significant amounts of HOAs. Finite-element models, together with finite ray-tracing computations, yielded realistic simulations of the biomechanical and optical changes induced by relaxing incisions. The model reproduced the SIA indicated by the Lindstrom nomogram for the simulated incisions and predicted a significant increase in optical aberrations induced by arcuate keratotomy.
Use case driven approach to develop simulation model for PCS of APR1400 simulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Wook, Kim; Hong Soo, Kim; Hyeon Tae, Kang
2006-07-01
The full-scope simulator is being developed to evaluate specific design feature and to support the iterative design and validation in the Man-Machine Interface System (MMIS) design of Advanced Power Reactor (APR) 1400. The simulator consists of process model, control logic model, and MMI for the APR1400 as well as the Power Control System (PCS). In this paper, a use case driven approach is proposed to develop a simulation model for PCS. In this approach, a system is considered from the point of view of its users. User's view of the system is based on interactions with the system and themore » resultant responses. In use case driven approach, we initially consider the system as a black box and look at its interactions with the users. From these interactions, use cases of the system are identified. Then the system is modeled using these use cases as functions. Lower levels expand the functionalities of each of these use cases. Hence, starting from the topmost level view of the system, we proceeded down to the lowest level (the internal view of the system). The model of the system thus developed is use case driven. This paper will introduce the functionality of the PCS simulation model, including a requirement analysis based on use case and the validation result of development of PCS model. The PCS simulation model using use case will be first used during the full-scope simulator development for nuclear power plant and will be supplied to Shin-Kori 3 and 4 plant. The use case based simulation model development can be useful for the design and implementation of simulation models. (authors)« less
Gray: a ray tracing-based Monte Carlo simulator for PET
NASA Astrophysics Data System (ADS)
Freese, David L.; Olcott, Peter D.; Buss, Samuel R.; Levin, Craig S.
2018-05-01
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within % when accounting for differences in peak NECR. We also estimate the peak NECR to be kcps, or within % of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
NASA Astrophysics Data System (ADS)
Nyawira, S. S.; Nabel, J. E. M. S.; Brovkin, V.; Pongratz, J.
2017-08-01
Historical changes in soil carbon associated with land-use change (LUC) result mainly from the changes in the quantity of litter inputs to the soil and the turnover of carbon in soils. We use a factor separation technique to assess how the input-driven and turnover-driven controls, as well as their synergies, have contributed to historical changes in soil carbon associated with LUC. We apply this approach to equilibrium simulations of present-day and pre-industrial land use performed using the dynamic global vegetation model JSBACH. Our results show that both the input-driven and turnover-driven changes generally contribute to a gain in soil carbon in afforested regions and a loss in deforested regions. However, in regions where grasslands have been converted to croplands, we find an input-driven loss that is partly offset by a turnover-driven gain, which stems from a decrease in the fire-related carbon losses. Omitting land management through crop and wood harvest substantially reduces the global losses through the input-driven changes. Our study thus suggests that the dominating control of soil carbon losses is via the input-driven changes, which are more directly accessible to human management than the turnover-driven ones.
NASA Astrophysics Data System (ADS)
Shimizu, K.; von Storch, J. S.; Haak, H.; Nakayama, K.; Marotzke, J.
2014-12-01
Surface wind stress is considered to be an important forcing of the seasonal and interannual variability of Atlantic Meridional Overturning Circulation (AMOC) volume transports. A recent study showed that even linear response to wind forcing captures observed features of the mean seasonal cycle. However, the study did not assess the contribution of wind-driven linear response in realistic conditions against the RAPID/MOCHA array observation or Ocean General Circulation Model (OGCM) simulations, because it applied a linear two-layer model to the Atlantic assuming constant upper layer thickness and density difference across the interface. Here, we quantify the contribution of wind-driven linear response to the seasonal and interannual variability of AMOC transports by comparing wind-driven linear simulations under realistic continuous stratification against the RAPID observation and OCGM (MPI-OM) simulations with 0.4º resolution (TP04) and 0.1º resolution (STORM). All the linear and MPI-OM simulations capture more than 60% of the variance in the observed mean seasonal cycle of the Upper Mid-Ocean (UMO) and Florida Strait (FS) transports, two components of the upper branch of the AMOC. The linear and TP04 simulations also capture 25-40% of the variance in the observed transport time series between Apr 2004 and Oct 2012; the STORM simulation does not capture the observed variance because of the stochastic signal in both datasets. Comparison of half-overlapping 12-month-long segments reveals some periods when the linear and TP04 simulations capture 40-60% of the observed variance, as well as other periods when the simulations capture only 0-20% of the variance. These results show that wind-driven linear response is a major contributor to the seasonal and interannual variability of the UMO and FS transports, and that its contribution varies in an interannual timescale, probably due to the variability of stochastic processes.
Data-driven non-linear elasticity: constitutive manifold construction and problem discretization
NASA Astrophysics Data System (ADS)
Ibañez, Ruben; Borzacchiello, Domenico; Aguado, Jose Vicente; Abisset-Chavanne, Emmanuelle; Cueto, Elias; Ladeveze, Pierre; Chinesta, Francisco
2017-11-01
The use of constitutive equations calibrated from data has been implemented into standard numerical solvers for successfully addressing a variety problems encountered in simulation-based engineering sciences (SBES). However, the complexity remains constantly increasing due to the need of increasingly detailed models as well as the use of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in computational mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to balance laws (momentum, mass, energy,\\ldots ), whereas the second one consists of models that scientists have extracted from collected, either natural or synthetic, data. Data-driven (or data-intensive) simulation consists of directly linking experimental data to computers in order to perform numerical simulations. These simulations will employ laws, universally recognized as epistemic, while minimizing the need of explicit, often phenomenological, models. The main drawback of such an approach is the large amount of required data, some of them inaccessible from the nowadays testing facilities. Such difficulty can be circumvented in many cases, and in any case alleviated, by considering complex tests, collecting as many data as possible and then using a data-driven inverse approach in order to generate the whole constitutive manifold from few complex experimental tests, as discussed in the present work.
Trace contaminant control simulation computer program, version 8.1
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.
Antoniotti, M; Park, F; Policriti, A; Ugel, N; Mishra, B
2003-01-01
The analysis of large amounts of data, produced as (numerical) traces of in vivo, in vitro and in silico experiments, has become a central activity for many biologists and biochemists. Recent advances in the mathematical modeling and computation of biochemical systems have moreover increased the prominence of in silico experiments; such experiments typically involve the simulation of sets of Differential Algebraic Equations (DAE), e.g., Generalized Mass Action systems (GMA) and S-systems. In this paper we reason about the necessary theoretical and pragmatic foundations for a query and simulation system capable of analyzing large amounts of such trace data. To this end, we propose to combine in a novel way several well-known tools from numerical analysis (approximation theory), temporal logic and verification, and visualization. The result is a preliminary prototype system: simpathica/xssys. When dealing with simulation data simpathica/xssys exploits the special structure of the underlying DAE, and reduces the search space in an efficient way so as to facilitate any queries about the traces. The proposed system is designed to give the user possibility to systematically analyze and simultaneously query different possible timed evolutions of the modeled system.
NASA Astrophysics Data System (ADS)
Woiwode, Wolfgang; Oelhaf, Hermann; Dörnbrack, Andreas; Bramberger, Martina; Diekmann, Christopher; Friedl-Vallon, Felix; Höpfner, Michael; Hoor, Peter; Johansson, Sören; Krause, Jens; Kunkel, Daniel; Orphal, Johannes; Preusse, Peter; Ruhnke, Roland; Schlage, Romy; Schröter, Jennifer; Sinnhuber, Björn-Martin; Ungermann, Jörn; Zahn, Andreas
2017-04-01
Tropopause folds are known of enabling efficient exchange of trace constituents between the stratosphere and troposphere. In particular, the modification of the vertical distributions of radiatively important H2O and other reactive trace gases associated with tropopause folds is relevant for accurate model simulations of the upper troposphere and lower stratosphere composition. During the POLSTRACC/GW-LCYCLE/SALSA flight on 12 January 2016, the HALO (High Altitude LOng range) aircraft crossed twice an extended tropopause fold in the vicinity of the Arctic polar vortex. At the same time, the ECMWF operational analysis shows that the meteorological scenario probed above Italy was accompanied by wide-spread gravity wave activity induced by north-westerly winds. Using high spectral resolution limb-observations by the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) spectrometer aboard HALO and associated observations, we investigate the vertical distributions of H2O, O3, temperature, and associated parameters across the tropopause fold. In combination with a high-resolution simulation by the ICON-ART (ICOsahedral Nonhydrostatic- Aerosol and Reactive Trace gases) model, we search for indications for irreversible trace gas exchange between the stratosphere and troposphere and the potential influence of gravity waves.
Real time ray tracing based on shader
NASA Astrophysics Data System (ADS)
Gui, JiangHeng; Li, Min
2017-07-01
Ray tracing is a rendering algorithm for generating an image through tracing lights into an image plane, it can simulate complicate optical phenomenon like refraction, depth of field and motion blur. Compared with rasterization, ray tracing can achieve more realistic rendering result, however with greater computational cost, simple scene rendering can consume tons of time. With the GPU's performance improvement and the advent of programmable rendering pipeline, complicated algorithm can also be implemented directly on shader. So, this paper proposes a new method that implement ray tracing directly on fragment shader, mainly include: surface intersection, importance sampling and progressive rendering. With the help of GPU's powerful throughput capability, it can implement real time rendering of simple scene.
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
NASA Technical Reports Server (NTRS)
Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay
2016-01-01
The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.
Rorres, Chris; Romano, Maria; Miller, Jennifer A; Mossey, Jana M; Grubesic, Tony H; Zellner, David E; Smith, Gary
2018-06-01
Contact tracing is a crucial component of the control of many infectious diseases, but is an arduous and time consuming process. Procedures that increase the efficiency of contact tracing increase the chance that effective controls can be implemented sooner and thus reduce the magnitude of the epidemic. We illustrate a procedure using Graph Theory in the context of infectious disease epidemics of farmed animals in which the epidemics are driven mainly by the shipment of animals between farms. Specifically, we created a directed graph of the recorded shipments of deer between deer farms in Pennsylvania over a timeframe and asked how the properties of the graph could be exploited to make contact tracing more efficient should Chronic Wasting Disease (a prion disease of deer) be discovered in one of the farms. We show that the presence of a large strongly connected component in the graph has a significant impact on the number of contacts that can arise. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Loyd, Jody; Gregory, Don; Gaskin, Jessica
2016-01-01
This presentation discusses work done to assess the design of a focusing column in a miniaturized Scanning Electron Microscope (SEM) developed at the NASA Marshall Space Flight Center (MSFC) for use in-situ on the Moon-in particular for mineralogical analysis. The MSFC beam column design uses purely electrostatic fields for focusing, because of the severe constraints on mass and electrical power consumption imposed by the goals of lunar exploration and of spaceflight in general. The resolution of an SEM ultimately depends on the size of the focused spot of the scanning beam probe, for which the stated goal here is a diameter of 10 nanometers. Optical aberrations are the main challenge to this performance goal, because they blur the ideal geometrical optical image of the electron source, effectively widening the ideal spot size of the beam probe. In the present work the optical aberrations of the mini SEM focusing column were assessed using direct tracing of non-paraxial rays, as opposed to mathematical estimates of aberrations based on paraxial ray-traces. The geometrical ray-tracing employed here is completely analogous to ray-tracing as conventionally understood in the realm of photon optics, with the major difference being that in electron optics the lens is simply a smoothly varying electric field in vacuum, formed by precisely machined electrodes. Ray-tracing in this context, therefore, relies upon a model of the electrostatic field inside the focusing column to provide the mathematical description of the "lens" being traced. This work relied fundamentally on the boundary element method (BEM) for this electric field model. In carrying out this research the authors discovered that higher accuracy in the field model was essential if aberrations were to be reliably assessed using direct ray-tracing. This led to some work in testing alternative techniques for modeling the electrostatic field. Ultimately, the necessary accuracy was attained using a BEM/Fourier series hybrid approach. The presentation will give background remarks about the MSFC mini Lunar SEM concept and electron optics modeling, followed by a description of the alternate field modeling techniques that were tried, along with their incorporation into a ray-trace simulation. Next, the validation of this simulation against commercially available software will be discussed using an example lens as a test case. Then, the efficacy of aberration assessment using direct ray-tracing will be demonstrated, using this same validation case. The discussion will include practical error checks of the field solution. Finally, the ray-trace assessment of the MSFC mini Lunar SEM concept will be shown and discussed. The authors believe this presentation will be of general interest to practitioners of modeling and simulation, as well as those with a general optics background. Because electron optics and photon optics share many basic concepts (e.g., lenses, images, aberrations, etc.), the appeal of this presentation need not be restricted to just those interested in charged particle optics.
2015-04-14
This collage of NASA Cassini spacecraft images and computer simulations shows how long, sinuous features from Enceladus can be modeled by tracing the trajectories of tiny, icy grains ejected from the moon south polar geysers.
Chip-Scale Trace-Gas Spectrometers for Methane Leak Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, William
Panelists from industry, academia, government laboratories and venture capital community will discuss opportunities driven by miniaturization of spectroscopic sensing systems and optical sensor applications. The speakers will discuss industry needs for wide-range commercial, security and defense applications. Listen and interact with leaders in the spectroscopy and sensing community, and come to share your ideas.
Corrective Feedback and Working Memory Capacity in Interaction-Driven L2 Learning
ERIC Educational Resources Information Center
Goo, Jaemyung
2012-01-01
The present study explores the relative efficacy of recasts over metalinguistic feedback on the learning of the English "that"-trace filter and how working memory capacity (WMC) is related to the extent to which learners can benefit from recasts and metalinguistic feedback. Fifty-four Korean English as a foreign language (EFL) learners…
CTE Policy Past, Present, and Future: Driving Forces behind the Evolution of Federal Priorities
ERIC Educational Resources Information Center
Imperatore, Catherine; Hyslop, Alisha
2017-01-01
Federal legislation has driven and been receptive to the vision of a rigorous, relevant career and technical education (CTE) system integrated with academics and aligned across middle school, secondary school, and postsecondary education. This article uses a social policy analysis approach to trace the history of federal CTE policy throughout the…
Yan, Shuwen; Yao, Bo; Lian, Lushi; Lu, Xinchen; Snyder, Shane A; Li, Rui; Song, Weihua
2017-03-07
The photochemical transformation of pharmaceutical and personal care products (PPCPs) in wastewater effluents is an emerging concern for environmental scientists. In the current study, the photodegradation of 29 PPCPs was examined in effluents under simulated solar irradiation. Direct photodegradation, triplet state effluent organic matter ( 3 EfOM*)-mediated and hydroxyl radical (HO • )-mediated degradation are three major pathways in the removal process. With the photodegradation of trace levels of PPCPs, the excitation-emission matrix (EEM) fluorescence intensities of the effluents were also gradually reduced. Therefore, fluorescence peaks have been identified, for the first time, as appropriate surrogates to assess the photodegradation of PPCPs. The humic-like fluorescence peak is linked to direct photolysis-labile PPCPs, such as naproxen, ronidazole, diclofenac, ornidazole, tinidazole, chloramphenicol, flumequine, ciprofloxacin, methadone, and dimetridazole. The tyrosine-like EEM peak is associated with HO • /CO 3 •- -labile PPCPs, such as trimethoprim, ibuprofen, gemfibrozil, atenolol, carbamazepine, and cephalexin. The tryptophan-like peak is associated with 3 EfOM*-labile PPCPs, such as clenbuterol, metoprolol, venlafaxine, bisphenol A, propranolol, ractopamine, salbutamol, roxithromycin, clarithromycin, azithromycin, famotidine, terbutaline, and erythromycin. The reduction in EEM fluorescence correlates well with the removal of PPCPs, allowing a model to be constructed. The solar-driven removal of EEM fluorescence was applied to predict the attenuation of 11 PPCPs in five field samples. A close correlation between the predicted results and the experimental results suggests that fluorescence may be a suitable surrogate for monitoring the solar-driven photodegradation of PPCPs in effluents.
Motion tracing system for ultrasound guided HIFU
NASA Astrophysics Data System (ADS)
Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong
2017-03-01
One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.
Ray tracing simulation of aero-optical effect using multiple gradient index layer
NASA Astrophysics Data System (ADS)
Yang, Seul Ki; Seong, Sehyun; Ryu, Dongok; Kim, Sug-Whan; Kwon, Hyeuknam; Jin, Sang-Hun; Jeong, Ho; Kong, Hyun Bae; Lim, Jae Wan; Choi, Jong Hwa
2016-10-01
We present a new ray tracing simulation of aero-optical effect through anisotropic inhomogeneous media as supersonic flow field surrounds a projectile. The new method uses multiple gradient-index (GRIN) layers for construction of the anisotropic inhomogeneous media and ray tracing simulation. The cone-shaped projectile studied has 19° semi-vertical angle; a sapphire window is parallel to the cone angle; and an optical system of the projectile was assumed via paraxial optics and infrared image detector. The condition for the steady-state solver conducted through computational fluid dynamics (CFD) included Mach numbers 4 and 6 in speed, 25 km altitude, and 0° angle of attack (AoA). The grid refractive index of the flow field via CFD analysis and Gladstone-Dale relation was discretized into equally spaced layers which are parallel with the projectile's window. Each layer was modeled as a form of 2D polynomial by fitting the refractive index distribution. The light source of ray set generated 3,228 rays for varying line of sight (LOS) from 10° to 40°. Ray tracing simulation adopted the Snell's law in 3D to compute the paths of skew rays in the GRIN layers. The results show that optical path difference (OPD) and boresight error (BSE) decreases exponentially as LOS increases. The variation of refractive index decreases, as the speed of flow field increases the OPD and its rate of decay at Mach number 6 in speed has somewhat larger value than at Mach number 4 in speed. Compared with the ray equation method, at Mach number 4 and 10° LOS, the new method shows good agreement, generated 0.33% of relative root-mean-square (RMS) OPD difference and 0.22% of relative BSE difference. Moreover, the simulation time of the new method was more than 20,000 times faster than the conventional ray equation method. The technical detail of the new method and simulation is presented with results and implication.
Provenance In Sensor Data Management: A Cohesive, Independent Solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensley, Zachary P; Sanyal, Jibonananda; New, Joshua Ryan
2014-01-01
In today's information-driven workplaces, data is constantly undergoing transformations and being moved around. The typical business-as-usual approach is to use email attachments, shared network locations, databases, and now, the cloud. More often than not, there are multiple versions of the data sitting in different locations and users of this data are confounded by the lack of metadata describing its provenance, or in other words, its lineage. Our project is aimed to solve this issue in the context of sensor data. The Oak Ridge National Laboratory's Building Technologies Research and Integration Center has reconfigurable commercial buildings deployed on the Flexible Researchmore » Platforms (FRPs). These FRPs are instrumented with a large number of sensors which measure a number of variables such as HVAC efficiency, relative humidity, and temperature gradients across doors, windows, and walls. Sub-minute resolution data from hundreds of channels is acquired. This sensor data, traditionally, was saved to a shared network location which was accessible to a number of scientists for performing complicated simulation and analysis tasks. The sensor data also participates in elaborate quality assurance exercises as a result of inherent faults. Sometimes, faults are induced to observe building behavior. It became apparent that proper scientific controls required not just managing the data acquisition and delivery, but to also manage the metadata associated with temporal subsets of the sensor data. We built a system named ProvDMS, or Provenance Data Management System for the FRPs, which would both allow researchers to retrieve data of interest as well as trace data lineage. This provides researchers a one-stop shop for comprehensive views of various data transformation allowing researchers to effectively trace their data to its source so that experiments, and derivations of experiments, may be reused and reproduced without much overhead of the repeatability of experiments that use it. Using these traces, researchers can determine exactly what happens to data as it moves through its life cycle.« less
NASA Astrophysics Data System (ADS)
Fu, Linyun; Ma, Xiaogang; Zheng, Jin; Goldstein, Justin; Duggan, Brian; West, Patrick; Aulenbach, Steve; Tilmes, Curt; Fox, Peter
2014-05-01
This poster will show how we used a case-driven iterative methodology to develop an ontology to represent the content structure and the associated provenance information in a National Climate Assessment (NCA) report of the US Global Change Research Program (USGCRP). We applied the W3C PROV-O ontology to implement a formal representation of provenance. We argue that the use case-driven, iterative development process and the application of a formal provenance ontology help efficiently incorporate domain knowledge from earth and environmental scientists in a well-structured model interoperable in the context of the Web of Data.
NASA Astrophysics Data System (ADS)
Duy, Vinh Nguyen; Lee, Jungkoo; Kim, Kyungcheol; Ahn, Jiwoong; Park, Seongho; Kim, Taeeun; Kim, Hyung-Man
2015-10-01
The under-rib convection-driven flow-field design for the uniform distribution of reacting gas and the generation of produced water generates broad scientific interest, especially among those who study the performance of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we simulate the effects of an under-rib convection-driven serpentine flow-field with sub-channel and by-pass (SFFSB) and a conventional advanced serpentine flow-field (CASFF) on single cell performance, and we compare the simulation results with experimental measurements. In the under-rib convection-driven flow-field configuration with SFFSB, the pressure drop is decreased because of the greater cross-sectional area for gas flow, and the decreased pressure drop results in the reduction of the parasitic loss. The anode liquid water mass fraction increases with increasing channel height because of increased back diffusion, while the cathode liquid water mass fraction does not depend upon the sub-channels but is ascribed mainly to the electro-osmotic drag. Simulation results verify that the maximum current and the power densities of the SFFSB are increased by 18.85% and 23.74%, respectively, due to the promotion of under-rib convection. The findings in this work may enable the optimization of the design of under-rib convection-driven flow-fields for efficient PEMFCs.
New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations
NASA Technical Reports Server (NTRS)
Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.
2012-01-01
In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Reducing the computational footprint for real-time BCPNN learning
Vogginger, Bernhard; Schüffny, René; Lansner, Anders; Cederström, Love; Partzsch, Johannes; Höppner, Sebastian
2015-01-01
The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building upon Bayesian statistics, and having clear links to biological plasticity processes, the BCPNN learning rule has been applied in many fields, ranging from data classification, associative memory, reward-based learning, probabilistic inference to cortical attractor memory networks. In the spike-based version of this learning rule the pre-, postsynaptic and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight state variables, whose dynamics are typically simulated with the fixed step size Euler method. We derive analytic solutions allowing an efficient event-driven implementation of this learning rule. Further speedup is achieved by first rewriting the model which reduces the number of basic arithmetic operations per update to one half, and second by using look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use case, the simulation using our approach is more than one order of magnitude faster than with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN synapse, we also evaluate the use of fixed-point numbers for the state variables, and assess the number of bits required to achieve same or better accuracy than with the conventional explicit Euler method. All of this will allow a real-time simulation of a reduced cortex model based on BCPNN in high performance computing. More important, with the analytic solution at hand and due to the reduced memory bandwidth, the learning rule can be efficiently implemented in dedicated or existing digital neuromorphic hardware. PMID:25657618
NASA Astrophysics Data System (ADS)
Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas
2017-04-01
Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).
Reducing the computational footprint for real-time BCPNN learning.
Vogginger, Bernhard; Schüffny, René; Lansner, Anders; Cederström, Love; Partzsch, Johannes; Höppner, Sebastian
2015-01-01
The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building upon Bayesian statistics, and having clear links to biological plasticity processes, the BCPNN learning rule has been applied in many fields, ranging from data classification, associative memory, reward-based learning, probabilistic inference to cortical attractor memory networks. In the spike-based version of this learning rule the pre-, postsynaptic and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight state variables, whose dynamics are typically simulated with the fixed step size Euler method. We derive analytic solutions allowing an efficient event-driven implementation of this learning rule. Further speedup is achieved by first rewriting the model which reduces the number of basic arithmetic operations per update to one half, and second by using look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use case, the simulation using our approach is more than one order of magnitude faster than with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN synapse, we also evaluate the use of fixed-point numbers for the state variables, and assess the number of bits required to achieve same or better accuracy than with the conventional explicit Euler method. All of this will allow a real-time simulation of a reduced cortex model based on BCPNN in high performance computing. More important, with the analytic solution at hand and due to the reduced memory bandwidth, the learning rule can be efficiently implemented in dedicated or existing digital neuromorphic hardware.
Innovative Tools for Water Quality/Quantity Management: New York City's Operations Support Tool
NASA Astrophysics Data System (ADS)
Wang, L.; Schaake, J. C.; Day, G. N.; Porter, J.; Sheer, D. P.; Pyke, G.
2011-12-01
The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies more than 1 billion gallons of water per day to over 9 million customers. Recently, DEP has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. This presentation describes the technical structure of OST, including the underlying water supply and water quality models, data sources and database management, reservoir inflow forecasts, and the functionalities required to meet the needs of a diverse group of end users. OST is a major upgrade of DEP's current water supply - water quality model, developed to evaluate alternatives for controlling turbidity in NYC's Catskill reservoirs. While the current model relies on historical hydrologic and meteorological data, OST can be driven by forecasted future conditions. It will receive a variety of near-real-time data from a number of sources. OST will support two major types of simulations: long-term, for evaluating policy or infrastructure changes over an extended period of time; and short-term "position analysis" (PA) simulations, consisting of multiple short simulations, all starting from the same initial conditions. Typically, the starting conditions for a PA run will represent those for the current day and traces of forecasted hydrology will drive the model for the duration of the simulation period. The result of these simulations will be a distribution of future system states based on system operating rules and the range of input ensemble streamflow predictions. DEP managers will analyze the output distributions and make operation decisions using risk-based metrics such as probability of refill. Currently, in the developmental stages of OST, forecasts are based on antecedent hydrologic conditions and are statistical in nature. The statistical algorithm is a relatively simple and versatile, but lacks short-term skill critical for water quality and spill management. To improve short-term skill, OST will ultimately operate with meteorologically driven hydrologic forecasts provided by the National Weather Service (NWS). OST functionalities will support a wide range of DEP uses, including short term operational projections, outage planning and emergency management, operating rule development, and water supply planning. A core use of OST will be to inform reservoir management strategies to control and mitigate turbidity events while ensuring water supply reliability. OST will also allow DEP to manage its complex reservoir system to meet multiple objectives, including ecological flows, tailwater fisheries and recreational releases, and peak flow mitigation for downstream communities.
NASA Astrophysics Data System (ADS)
Hutchinson, G. L.; Livingston, G. P.; Healy, R. W.; Striegl, R. G.
2000-04-01
We employed a three-dimensional finite difference gas diffusion model to simulate the performance of chambers used to measure surface-atmosphere trace gas exchange. We found that systematic errors often result from conventional chamber design and deployment protocols, as well as key assumptions behind the estimation of trace gas exchange rates from observed concentration data. Specifically, our simulations showed that (1) when a chamber significantly alters atmospheric mixing processes operating near the soil surface, it also nearly instantaneously enhances or suppresses the postdeployment gas exchange rate, (2) any change resulting in greater soil gas diffusivity, or greater partitioning of the diffusing gas to solid or liquid soil fractions, increases the potential for chamber-induced measurement error, and (3) all such errors are independent of the magnitude, kinetics, and/or distribution of trace gas sources, but greater for trace gas sinks with the same initial absolute flux. Finally, and most importantly, we found that our results apply to steady state as well as non-steady-state chambers, because the slow rate of gas diffusion in soil inhibits recovery of the former from their initial non-steady-state condition. Over a range of representative conditions, the error in steady state chamber estimates of the trace gas flux varied from -30 to +32%, while estimates computed by linear regression from non-steady-state chamber concentrations were 2 to 31% too small. Although such errors are relatively small in comparison to the temporal and spatial variability characteristic of trace gas exchange, they bias the summary statistics for each experiment as well as larger scale trace gas flux estimates based on them.
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-07-01
The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio
2015-09-01
Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.
Computing the total atmospheric refraction for real-time optical imaging sensor simulation
NASA Astrophysics Data System (ADS)
Olson, Richard F.
2015-05-01
Fast and accurate computation of light path deviation due to atmospheric refraction is an important requirement for real-time simulation of optical imaging sensor systems. A large body of existing literature covers various methods for application of Snell's Law to the light path ray tracing problem. This paper provides a discussion of the adaptation to real time simulation of atmospheric refraction ray tracing techniques used in mid-1980's LOWTRAN releases. The refraction ray trace algorithm published in a LOWTRAN-6 technical report by Kneizys (et. al.) has been coded in MATLAB for development, and in C-language for simulation use. To this published algorithm we have added tuning parameters for variable path segment lengths, and extensions for Earth grazing and exoatmospheric "near Earth" ray paths. Model atmosphere properties used to exercise the refraction algorithm were obtained from tables published in another LOWTRAN-6 related report. The LOWTRAN-6 based refraction model is applicable to atmospheric propagation at wavelengths in the IR and visible bands of the electromagnetic spectrum. It has been used during the past two years by engineers at the U.S. Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) in support of several advanced imaging sensor simulations. Recently, a faster (but sufficiently accurate) method using Gauss-Chebyshev Quadrature integration for evaluating the refraction integral was adopted.
Ray tracing study of rising tone EMIC-triggered emissions
NASA Astrophysics Data System (ADS)
Hanzelka, Miroslav; Santolík, Ondřej; Grison, Benjamin; Cornilleau-Wehrlin, Nicole
2017-04-01
ElectroMagnetic Ion Cyclotron (EMIC) triggered emissions have been subject of extensive theoretical and experimental research in last years. These emissions are characterized by high coherence values and a frequency range of 0.5 - 2.0 Hz, close to local helium gyrofrequency. We perform ray tracing case studies of rising tone EMIC-triggered emissions observed by the Cluster spacecraft in both nightside and dayside regions off the equatorial plane. By comparison of simulated and measured wave properties, namely wave vector orientation, group velocity, dispersion and ellipticity of polarization, we determine possible source locations. Diffusive equilibrium density model and other, semi-empirical models are used with ion composition inferred from cross-over frequencies. Ray tracing simulations are done in cold plasma approximation with inclusion of Landau and cyclotron damping. Various widths, locations and profiles of plasmapause are tested.
NASA Astrophysics Data System (ADS)
Hong, R.; Li, J. C.; Chakraborty Thakur, S.; Hajjar, R.; Diamond, P. H.; Tynan, G. R.
2018-05-01
This study traces the emergence of sheared axial flow from collisional drift-wave turbulence with broken symmetry in a linear plasma device—the controlled shear decorrelation experiment. As the density profile steepens, the axial Reynolds stress develops and drives a radially sheared axial flow that is parallel to the magnetic field. Results show that the nondiffusive piece of the Reynolds stress is driven by the density gradient, results from spectral asymmetry of the turbulence, and, thus, is dynamical in origin. Taken together, these findings constitute the first simultaneous demonstration of the causal link between the density gradient, turbulence, and stress with broken spectral symmetry and the mean axial flow.
Simulated BRDF based on measured surface topography of metal
NASA Astrophysics Data System (ADS)
Yang, Haiyue; Haist, Tobias; Gronle, Marc; Osten, Wolfgang
2017-06-01
The radiative reflective properties of a calibration standard rough surface were simulated by ray tracing and the Finite-difference time-domain (FDTD) method. The simulation results have been used to compute the reflectance distribution functions (BRDF) of metal surfaces and have been compared with experimental measurements. The experimental and simulated results are in good agreement.
Initial conditions and modeling for simulations of shock driven turbulent material mixing
Grinstein, Fernando F.
2016-11-17
Here, we focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions (IC). Beyond complex multi-scale resolution issues of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics capturable by a large eddy simulation (LES) strategy, but not by an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach based on developed equilibrium turbulence assumptions and single-point-closure modeling. On the engineering end of computations, such URANS with reduced 1D/2D dimensionality and coarsermore » grids, tend to be preferred for faster turnaround in full-scale configurations.« less
NASA Technical Reports Server (NTRS)
Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing
2016-01-01
Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.
Mobility Models for Systems Evaluation
NASA Astrophysics Data System (ADS)
Musolesi, Mirco; Mascolo, Cecilia
Mobility models are used to simulate and evaluate the performance of mobile wireless systems and the algorithms and protocols at the basis of them. The definition of realistic mobility models is one of the most critical and, at the same time, difficult aspects of the simulation of applications and systems designed for mobile environments. There are essentially two possible types of mobility patterns that can be used to evaluate mobile network protocols and algorithms by means of simulations: traces and synthetic models [130]. Traces are obtained by means of measurements of deployed systems and usually consist of logs of connectivity or location information, whereas synthetic models are mathematical models, such as sets of equations, which try to capture the movement of the devices.
Using numerical simulations to study the ICM metallicity fields in clusters and groups
NASA Astrophysics Data System (ADS)
Mazzei, Renato; Vijayaraghavan, Rukmani; Sarazin, Craig L.
2018-01-01
Most baryonic matter in clusters resides in the intracluster medium (ICM) as hot and diffuse gas. The metal content of this gas is deposited from dying stars, typically synthesized in type Ia or core-collapse supernovae. The ICM gas traces the formation history of the cluster and the compositional signature of its constituent galaxies as a function of time. Studying the metallicity content thus aids in understanding the gradual evolution of the cluster as it is constructed. Within this framework, galaxy and star formation and evolution can be studied by tracing metals in the ICM. In this work we use numerical simulations to study the evolution of ICM metallicity due to the stripping of galaxies’ gas. We model metallicity fields using cloud-in-cell techniques, to determine the ratio between the mass of particles tracing galaxy outflows and the mass of ICM gas at different spatial locations in each simulation time step. Integrated abundance maps are produced. We then project photons and construct mock X-ray images to investigate the relationship between ICM metallicity and observable information.
SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure
Davis, Sean L.; Sen, Oishik; Udaykumar, H. S.
2017-01-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian–Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles. PMID:28413341
SPARSE-A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure.
Davis, Sean L; Jacobs, Gustaaf B; Sen, Oishik; Udaykumar, H S
2017-03-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian-Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles.
Adsorption and Detection of Hazardous Trace Gases by Metal-Organic Frameworks.
Woellner, Michelle; Hausdorf, Steffen; Klein, Nicole; Mueller, Philipp; Smith, Martin W; Kaskel, Stefan
2018-06-19
The quest for advanced designer adsorbents for air filtration and monitoring hazardous trace gases has recently been more and more driven by the need to ensure clean air in indoor, outdoor, and industrial environments. How to increase safety with regard to personal protection in the event of hazardous gas exposure is a critical question for an ever-growing population spending most of their lifetime indoors, but is also crucial for the chemical industry in order to protect future generations of employees from potential hazards. Metal-organic frameworks (MOFs) are already quite advanced and promising in terms of capacity and specific affinity to overcome limitations of current adsorbent materials for trace and toxic gas adsorption. Due to their advantageous features (e.g., high specific surface area, catalytic activity, tailorable pore sizes, structural diversity, and range of chemical and physical properties), MOFs offer a high potential as adsorbents for air filtration and monitoring of hazardous trace gases. Three advanced topics are considered here, in applying MOFs for selective adsorption: (i) toxic gas adsorption toward filtration for respiratory protection as well as indoor and cabin air, (ii) enrichment of hazardous gases using MOFs, and (iii) MOFs as sensors for toxic trace gases and explosives. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gray: a ray tracing-based Monte Carlo simulator for PET.
Freese, David L; Olcott, Peter D; Buss, Samuel R; Levin, Craig S
2018-05-21
Monte Carlo simulation software plays a critical role in PET system design. Performing complex, repeated Monte Carlo simulations can be computationally prohibitive, as even a single simulation can require a large amount of time and a computing cluster to complete. Here we introduce Gray, a Monte Carlo simulation software for PET systems. Gray exploits ray tracing methods used in the computer graphics community to greatly accelerate simulations of PET systems with complex geometries. We demonstrate the implementation of models for positron range, annihilation acolinearity, photoelectric absorption, Compton scatter, and Rayleigh scatter. For validation, we simulate the GATE PET benchmark, and compare energy, distribution of hits, coincidences, and run time. We show a [Formula: see text] speedup using Gray, compared to GATE for the same simulation, while demonstrating nearly identical results. We additionally simulate the Siemens Biograph mCT system with both the NEMA NU-2 scatter phantom and sensitivity phantom. We estimate the total sensitivity within [Formula: see text]% when accounting for differences in peak NECR. We also estimate the peak NECR to be [Formula: see text] kcps, or within [Formula: see text]% of published experimental data. The activity concentration of the peak is also estimated within 1.3%.
NASA Astrophysics Data System (ADS)
Shafer, S. L.; Bartlein, P. J.
2017-12-01
The period from 15-10 ka was a time of rapid vegetation changes in North America. Continental ice sheets in northern North America were receding, exposing new habitat for vegetation, and regions distant from the ice sheets experienced equally large environmental changes. Northern hemisphere temperatures during this period were increasing, promoting transitions from cold-adapted to temperate plant taxa at mid-latitudes. Long, transient paleovegetation simulations can provide important information on vegetation responses to climate changes, including both the spatial dynamics and rates of species distribution changes over time. Paleovegetation simulations also can fill the spatial and temporal gaps in observed paleovegetation records (e.g., pollen data from lake sediments), allowing us to test hypotheses about past vegetation changes (e.g., the location of past refugia). We used the CCSM3 TraCE transient climate simulation as input for LPJ-GUESS, a general ecosystem model, to simulate vegetation changes from 15-10 ka for parts of western North America at mid-latitudes ( 35-55° N). For these simulations, LPJ-GUESS was parameterized to simulate key tree taxa for western North America (e.g., Pseudotsuga, Tsuga, Quercus, etc.). The CCSM3 TraCE transient climate simulation data were regridded onto a 10-minute grid of the study area. We analyzed the simulated spatial and temporal dynamics of these taxa and compared the simulated changes with observed paleovegetation changes recorded in pollen and plant macrofossil data (e.g., data from the Neotoma Paleoecology Database). In general, the LPJ-GUESS simulations reproduce the general patterns of paleovegetation responses to climate change, although the timing of some simulated vegetation changes do not match the observed paleovegetation record. We describe the areas and time periods with the greatest data-model agreement and disagreement, and discuss some of the strengths and weaknesses of the simulated climate and vegetation data. The magnitude and rate of the simulated past vegetation changes are compared with projected future vegetation changes for the region.
Simulation of a main steam line break with steam generator tube rupture using trace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallardo, S.; Querol, A.; Verdu, G.
A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation ofmore » the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)« less
Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.; ...
2016-06-01
Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less
EBW H&CD Potential for Spherical Tokamaks
NASA Astrophysics Data System (ADS)
Urban, J.; Decker, J.; Peysson, Y.; Preinhaelter, J.; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.
2011-12-01
Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-ß regimes, in which the usual EC O- and X- modes are cut-off. In this case, electron Bernstein waves (EBWs) seem to be the only option that can provide features similar to the EC waves—controllable localized heating and current drive (H&) that can be utilized for core plasma heating as well as for accurate plasma stabilization. We first derive an analytical expression for Gaussian beam OXB conversion efficiency. Then, an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX) is performed. Coupled ray-tracing (AMR) and Fokker-Planck (LUKE) codes are employed to simulate EBWs of varying frequencies and launch conditions. Our results indicate that an efficient and universal EBW H&CD system is indeed viable. In particular, power can be deposited and current reasonably efficiently driven across the whole plasma radius. Such a system could be controlled by a suitably chosen launching antenna vertical position and would also be sufficiently robust.
Efficient Ada multitasking on a RISC register window architecture
NASA Technical Reports Server (NTRS)
Kearns, J. P.; Quammen, D.
1987-01-01
This work addresses the problem of reducing context switch overhead on a processor which supports a large register file - a register file much like that which is part of the Berkeley RISC processors and several other emerging architectures (which are not necessarily reduced instruction set machines in the purest sense). Such a reduction in overhead is particularly desirable in a real-time embedded application, in which task-to-task context switch overhead may result in failure to meet crucial deadlines. A storage management technique by which a context switch may be implemented as cheaply as a procedure call is presented. The essence of this technique is the avoidance of the save/restore of registers on the context switch. This is achieved through analysis of the static source text of an Ada tasking program. Information gained during that analysis directs the optimized storage management strategy for that program at run time. A formal verification of the technique in terms of an operational control model and an evaluation of the technique's performance via simulations driven by synthetic Ada program traces are presented.
NASA Astrophysics Data System (ADS)
Soelistijanto, B.; Muliadi, V.
2018-03-01
Diffie-Hellman (DH) provides an efficient key exchange system by reducing the number of cryptographic keys distributed in the network. In this method, a node broadcasts a single public key to all nodes in the network, and in turn each peer uses this key to establish a shared secret key which then can be utilized to encrypt and decrypt traffic between the peer and the given node. In this paper, we evaluate the key transfer delay and cost performance of DH in opportunistic mobile networks, a specific scenario of MANETs where complete end-to-end paths rarely exist between sources and destinations; consequently, the end-to-end delays in these networks are much greater than typical MANETs. Simulation results, driven by a random node movement model and real human mobility traces, showed that DH outperforms a typical key distribution scheme based on the RSA algorithm in terms of key transfer delay, measured by average key convergence time; however, DH performs as well as the benchmark in terms of key transfer cost, evaluated by total key (copies) forwards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Won, Jongho; Ma, Chris Y. T.; Yau, David K. Y.
Smart meters are integral to demand response in emerging smart grids, by reporting the electricity consumption of users to serve application needs. But reporting real-time usage information for individual households raises privacy concerns. Existing techniques to guarantee differential privacy (DP) of smart meter users either are not fault tolerant or achieve (possibly partial) fault tolerance at high communication overheads. In this paper, we propose a fault-tolerant protocol for smart metering that can handle general communication failures while ensuring DP with significantly improved efficiency and lower errors compared with the state of the art. Our protocol handles fail-stop faults proactively bymore » using a novel design of future ciphertexts, and distributes trust among the smart meters by sharing secret keys among them. We prove the DP properties of our protocol and analyze its advantages in fault tolerance, accuracy, and communication efficiency relative to competing techniques. We illustrate our analysis by simulations driven by real-world traces of electricity consumption.« less
Sriram, Vinay K; Montgomery, Doug
2017-07-01
The Internet is subject to attacks due to vulnerabilities in its routing protocols. One proposed approach to attain greater security is to cryptographically protect network reachability announcements exchanged between Border Gateway Protocol (BGP) routers. This study proposes and evaluates the performance and efficiency of various optimization algorithms for validation of digitally signed BGP updates. In particular, this investigation focuses on the BGPSEC (BGP with SECurity extensions) protocol, currently under consideration for standardization in the Internet Engineering Task Force. We analyze three basic BGPSEC update processing algorithms: Unoptimized, Cache Common Segments (CCS) optimization, and Best Path Only (BPO) optimization. We further propose and study cache management schemes to be used in conjunction with the CCS and BPO algorithms. The performance metrics used in the analyses are: (1) routing table convergence time after BGPSEC peering reset or router reboot events and (2) peak-second signature verification workload. Both analytical modeling and detailed trace-driven simulation were performed. Results show that the BPO algorithm is 330% to 628% faster than the unoptimized algorithm for routing table convergence in a typical Internet core-facing provider edge router.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Podolske, James R. (Technical Monitor)
1995-01-01
The intercontinental buildup of tropospheric ozone, carbon monoxide, and other pollutants over the South Atlantic has been attributed to biomass burning over distant continents. We address several of the large questions regarding the nature and budget of this buildup have remained: What is the role of turning In South America or various portions of Africa in this accumulation? What are the relative roles of shallow and deep convection for emplacing various compounds in the free troposphere? Can we understand the ozone budget? We report the first simulations of a three-dimensional pollutant transport model, (GRACES) transport which is driven by fully reconstructed meteorology for the TRACE-A/SAFARI period of 1992. Greater detail is provided by a two-dimensional, detailed-chemistry model of more restricted regions of Africa. We find a predominant role for African emissions affecting the Atlantic during this period. Boundary-layer venting via PBL convection tends to build the observed carbon monoxide column over the ocean, while deep cumulonimbus processes tend to explain rather more of the ozone column.
Ephedrine QoS: An Antidote to Slow, Congested, Bufferless NoCs
Fang, Juan; Yao, Zhicheng; Sui, Xiufeng; Bao, Yungang
2014-01-01
Datacenters consolidate diverse applications to improve utilization. However when multiple applications are colocated on such platforms, contention for shared resources like networks-on-chip (NoCs) can degrade the performance of latency-critical online services (high-priority applications). Recently proposed bufferless NoCs (Nychis et al.) have the advantages of requiring less area and power, but they pose challenges in quality-of-service (QoS) support, which usually relies on buffer-based virtual channels (VCs). We propose QBLESS, a QoS-aware bufferless NoC scheme for datacenters. QBLESS consists of two components: a routing mechanism (QBLESS-R) that can substantially reduce flit deflection for high-priority applications and a congestion-control mechanism (QBLESS-CC) that guarantees performance for high-priority applications and improves overall system throughput. We use trace-driven simulation to model a 64-core system, finding that, when compared to BLESS, a previous state-of-the-art bufferless NoC design, QBLESS, improves performance of high-priority applications by an average of 33.2% and reduces network-hops by an average of 42.8%. PMID:25250386
The Role of Monsoon-Like Zonally Asymmetric Heating in Interhemispheric Transport
NASA Technical Reports Server (NTRS)
Chen, Gang; Orbe, Clara; Waugh, Darryn
2017-01-01
While the importance of the seasonal migration of the zonally averaged Hadley circulation on interhemispheric transport of trace gases has been recognized, few studies have examined the role of the zonally asymmetric monsoonal circulation. This study investigates the role of monsoon-like zonally asymmetric heating on interhemispheric transport using a dry atmospheric model that is forced by idealized Newtonian relaxation to a prescribed radiative equilibrium temperature. When only the seasonal cycle of zonally symmetric heating is considered, the mean age of air in the Southern Hemisphere since last contact with the Northern Hemisphere midlatitude boundary layer, is much larger than the observations. The introduction of monsoon-like zonally asymmetric heating not only reduces the mean age of tropospheric air to more realistic values, but also produces an upper-tropospheric cross-equatorial transport pathway in boreal summer that resembles the transport pathway simulated in the NASA Global Modeling Initiative (GMI) Chemistry Transport Model driven with MERRA meteorological fields. These results highlight the monsoon-induced eddy circulation plays an important role in the interhemispheric transport of long-lived chemical constituents.
Rapid simulation of X-ray transmission imaging for baggage inspection via GPU-based ray-tracing
NASA Astrophysics Data System (ADS)
Gong, Qian; Stoian, Razvan-Ionut; Coccarelli, David S.; Greenberg, Joel A.; Vera, Esteban; Gehm, Michael E.
2018-01-01
We present a pipeline that rapidly simulates X-ray transmission imaging for arbitrary system architectures using GPU-based ray-tracing techniques. The purpose of the pipeline is to enable statistical analysis of threat detection in the context of airline baggage inspection. As a faster alternative to Monte Carlo methods, we adopt a deterministic approach for simulating photoelectric absorption-based imaging. The highly-optimized NVIDIA OptiX API is used to implement ray-tracing, greatly speeding code execution. In addition, we implement the first hierarchical representation structure to determine the interaction path length of rays traversing heterogeneous media described by layered polygons. The accuracy of the pipeline has been validated by comparing simulated data with experimental data collected using a heterogenous phantom and a laboratory X-ray imaging system. On a single computer, our approach allows us to generate over 400 2D transmission projections (125 × 125 pixels per frame) per hour for a bag packed with hundreds of everyday objects. By implementing our approach on cloud-based GPU computing platforms, we find that the same 2D projections of approximately 3.9 million bags can be obtained in a single day using 400 GPU instances, at a cost of only 0.001 per bag.
Cross-scale transport processes in the three-dimensional Kelvin-Helmholtz instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Burkholder, B. L.; Ma, X.; Nykyri, K.
2017-12-01
The Kelvin-Helmholtz (KH) instability is a crucial aspect of the solar wind interaction with the giant magnetospheres. Rapid internal rotation of the magnetodisc produces conditions favorable for the growth of KH vortices along much of the equatorial magnetopause boundary. Pronounced dawn/dusk asymmetries at Jupiter and Saturn indicate a robust interaction with the solar wind. Using three-dimensional hybrid simulations we investigate the transport processes associated with the flow shear-driven KH instability. Of particular importance is small-scale and intermittent reconnection generated by the twisting of the magnetic field into configurations with antiparallel components. In three-dimensions strong guide field reconnection can occur even for initially parallel magnetic field configurations. Often the twisting motion leads to pairs of reconnection sites that can operate asynchronously, generating intermittent open flux and Maxwell stresses at the magnetopause boundary. We quantify the generation of open flux using field line tracing methods, determine the Reynolds and Maxwell stresses, and evaluate the mass transport as functions of magnetic shear, velocity shear, electron pressure and plasma beta. These results are compared with magnetohydrodynamic simulations (Ma et al., 2017). In addition, we present preliminary results for the role of cross-scale coupling processes, from fluid to ion scales. In particular, we characterize small-scale waves and the their role in mixing, diffusing and heating plasma at the magnetopause boundary.
Effects of wall friction on flow in a quasi-2D hopper
NASA Astrophysics Data System (ADS)
Shah, Neil; Birwa, Sumit; Carballo-Ramirez, Brenda; Pleau, Mollie; Easwar, Nalini; Tewari, Shubha
Our experiments on the gravity-driven flow of spherical particles in a vertical hopper examine how the flow rate varies with opening size and wall friction. We report here on a model simulation using LAMMPS of the experimental geometry, a quasi-2D hopper. Keeping inter-particle friction fixed, the coefficient of friction at the walls is varied from 0.0 to 0.9 for a range of opening sizes. Our simulations find a steady rate of flow at each wall friction and outlet size. The Janssen effect attributes the constant rate of flow of a granular column to the column height independence of the pressure at the base, since the weight of the grains is borne in part by friction at the walls. However, we observe a constant flow regime even in the absence of wall friction, suggesting that wall friction may not be a necessary condition for pressure saturation. The observed velocities of particles near the opening are used to extrapolate their starting positions had they been in free fall. In contrast to scaling predictions, our data suggest that the height of this free-fall arch does not vary with opening size for higher frictional coefficients. We analyze the velocity traces of particles to see the range over which contact interactions remain collisional as they approach the hopper outlet.
Radiation pattern of a borehole radar antenna
Ellefsen, K.J.; Wright, D.L.
2002-01-01
To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.
Theory in Practice: Why "Good Medicine" and "Scientific Medicine" Are Not Necessarily the Same Thing
ERIC Educational Resources Information Center
De Camargo, Kenneth, Jr.; Coeli, Claudia Medina
2006-01-01
The term "scientific medicine", ubiquitous in medical literature although poorly defined, can be traced to a number of assumptions, three of which are examined in this paper: that medicine is a form of knowledge-driven practice, where the established body of proven medical knowledge determines what doctors do; if what doctors do is either…
Watching AGN feedback at its birth: HST observations of nascent outflow host IC860
NASA Astrophysics Data System (ADS)
Alatalo, Katherine
2016-10-01
IC860 is a nearby IR-luminous early-type spiral with a unique set of properties: it is a shocked, poststarburst galaxy that hosts an AGN-driven neutral wind and a compact core of molecular gas. IC860 can serve as a rosetta stone for the early stages of triggering AGN feedback. We propose to use WFC3 on HST to obtain NUV, optical and near-IR imaging of IC860. We will create a spatially-resolved history of star formation quenching through SED-fitting of 7 requested broadband filters, and compare the spatially resolved star formation histories to in different positions within the underlying stellar features (such as spiral structure) that might define a narrative of how star formation is quenching in IC860. These observations will also resolve the super-star cluster sites to trace the most recent star formation. Finally, these observations will trace the mass of the outflow by building an absorption map of the dust. IC860 presents a unique opportunity to study a galaxy at an early stage of transitioning from blue spiral to red early-type galaxy, that also hosts an AGN-driven neutral wind and a compact, turbulent molecular gas core.
NASA Astrophysics Data System (ADS)
Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani
2018-02-01
As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.
The Birth of a Galaxy: Primordial Metal Enrichment and Stellar Populations
NASA Astrophysics Data System (ADS)
Wise, John H.; Turk, Matthew J.; Norman, Michael L.; Abel, Tom
2012-01-01
By definition, Population III stars are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas phase, leading to large characteristic masses. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10-6-10-3.5 Z ⊙. We present an adaptive mesh refinement radiation hydrodynamics simulation that follows the transition from Population III to Population II star formation. The maximum spatial resolution of 1 comoving parsec allows for individual molecular clouds to be well resolved and their stellar associations to be studied in detail. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5% to nearly the cosmic fraction in halos with merger histories rich in halos above 107 M ⊙. A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10-3 Z ⊙ and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyα systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t-Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.
Offner, Stella S. R.; Klein, Richard I.; McKee, Christopher F.
2008-10-20
Molecular clouds are observed to be turbulent, but the origin of this turbulence is not well understood. As a result, there are two different approaches to simulating molecular clouds, one in which the turbulence is allowed to decay after it is initialized, and one in which it is driven. We use the adaptive mesh refinement (AMR) code, Orion, to perform high-resolution simulations of molecular cloud cores and protostars in environments with both driven and decaying turbulence. We include self-gravity, use a barotropic equation of state, and represent regions exceeding the maximum grid resolution with sink particles. We analyze the propertiesmore » of bound cores such as size, shape, line width, and rotational energy, and we find reasonable agreement with observation. At high resolution the different rates of core accretion in the two cases have a significant effect on protostellar system development. Clumps forming in a decaying turbulence environment produce high-multiplicity protostellar systems with Toomre Q unstable disks that exhibit characteristics of the competitive accretion model for star formation. In contrast, cores forming in the context of continuously driven turbulence and virial equilibrium form smaller protostellar systems with fewer low-mass members. Furthermore, our simulations of driven and decaying turbulence show some statistically significant differences, particularly in the production of brown dwarfs and core rotation, but the uncertainties are large enough that we are not able to conclude whether observations favor one or the other.« less
Evaluation of respondent-driven sampling.
McCreesh, Nicky; Frost, Simon D W; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda N; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G
2012-01-01
Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total population data. Total population data on age, tribe, religion, socioeconomic status, sexual activity, and HIV status were available on a population of 2402 male household heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, using current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). We recruited 927 household heads. Full and small RDS samples were largely representative of the total population, but both samples underrepresented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven sampling statistical inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven sampling bootstrap 95% confidence intervals included the population proportion. Respondent-driven sampling produced a generally representative sample of this well-connected nonhidden population. However, current respondent-driven sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience sampling method, and caution is required when interpreting findings based on the sampling method.
Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samulyak, Roman V.; Brookhaven National Lab.; Parks, Paul
The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy.more » High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.« less
Simulation of a Driven Dense Granular Gas
NASA Astrophysics Data System (ADS)
Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.
1998-11-01
Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.
Large eddy simulations of time-dependent and buoyancy-driven channel flows
NASA Technical Reports Server (NTRS)
Cabot, William H.
1993-01-01
The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.
NASA Astrophysics Data System (ADS)
Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.
2018-05-01
Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.
Verma, Sunita; Worden, John; Payra, Swagata; Jourdain, Line; Shim, Changsub
2009-07-01
A major aircraft experiment Transport and Chemical Evolution over the Pacific (TRACE-P) mission over the NW Pacific in March-April 2001 was conducted to better understand how outflow from the Asian continent affects the composition of the global atmosphere. In this paper, a global climate model, GEOS-Chem is used to investigate possible black carbon aerosol contributions from TRACE-P region. Our result depicts that absorbing black carbon ("soot") significantly outflow during lifting to the free troposphere through warm conveyor belt and convection associated with this lifting. The GEOS-Chem simulation results show significant transport of black carbon aerosols from Asian regions to the Western Pacific region during the spring season. As estimated by GEOS-Chem simulations, approximately 25% of the black carbon concentrations over the western pacific originate from SE Asia in the spring.
3D Global Fluid Simulations of Turbulence in LAPD
NASA Astrophysics Data System (ADS)
Rogers, Barrett; Ricci, Paolo; Li, Bo
2009-05-01
We present 3D global fluid simulations of the UCLA upgraded Large Plasma Device (LAPD). This device confines an 18-m-long, cylindrically symmetric plasma with a uniform magnetic field. The plasma in the simulations is generated by density and temperature sources inside the computational domain, and sheath boundary conditions are applied at the ends of the plasma column. In 3D simulations of the entire plasma, we observe strong, rotating intermittent density and temperature fluctuations driven by resistive driftwave turbulence with finite parallel wavenumbers. Analogous simulations carried out in the 2D limit (that is, assuming that the motions are purely interchange-like) display much weaker mode activity driven a Kelvin-Helmholtz instability. The properties and scaling of the turbulence and transport will be discussed.
High performance ultrasonic field simulation on complex geometries
NASA Astrophysics Data System (ADS)
Chouh, H.; Rougeron, G.; Chatillon, S.; Iehl, J. C.; Farrugia, J. P.; Ostromoukhov, V.
2016-02-01
Ultrasonic field simulation is a key ingredient for the design of new testing methods as well as a crucial step for NDT inspection simulation. As presented in a previous paper [1], CEA-LIST has worked on the acceleration of these simulations focusing on simple geometries (planar interfaces, isotropic materials). In this context, significant accelerations were achieved on multicore processors and GPUs (Graphics Processing Units), bringing the execution time of realistic computations in the 0.1 s range. In this paper, we present recent works that aim at similar performances on a wider range of configurations. We adapted the physical model used by the CIVA platform to design and implement a new algorithm providing a fast ultrasonic field simulation that yields nearly interactive results for complex cases. The improvements over the CIVA pencil-tracing method include adaptive strategies for pencil subdivisions to achieve a good refinement of the sensor geometry while keeping a reasonable number of ray-tracing operations. Also, interpolation of the times of flight was used to avoid time consuming computations in the impulse response reconstruction stage. To achieve the best performance, our algorithm runs on multi-core superscalar CPUs and uses high performance specialized libraries such as Intel Embree for ray-tracing, Intel MKL for signal processing and Intel TBB for parallelization. We validated the simulation results by comparing them to the ones produced by CIVA on identical test configurations including mono-element and multiple-element transducers, homogeneous, meshed 3D CAD specimens, isotropic and anisotropic materials and wave paths that can involve several interactions with interfaces. We show performance results on complete simulations that achieve computation times in the 1s range.
Ray-tracing critical-angle transmission gratings for the X-ray Surveyor and Explorer-size missions
NASA Astrophysics Data System (ADS)
Günther, Hans M.; Bautz, Marshall W.; Heilmann, Ralf K.; Huenemoerder, David P.; Marshall, Herman L.; Nowak, Michael A.; Schulz, Norbert S.
2016-07-01
We study a critical angle transmission (CAT) grating spectrograph that delivers a spectral resolution significantly above any X-ray spectrograph ever own. This new technology will allow us to resolve kinematic components in absorption and emission lines of galactic and extragalactic matter down to unprecedented dispersion levels. We perform ray-trace simulations to characterize the performance of the spectrograph in the context of an X-ray Surveyor or Arcus like layout (two mission concepts currently under study). Our newly developed ray-trace code is a tool suite to simulate the performance of X-ray observatories. The simulator code is written in Python, because the use of a high-level scripting language allows modifications of the simulated instrument design in very few lines of code. This is especially important in the early phase of mission development, when the performances of different configurations are contrasted. To reduce the run-time and allow for simulations of a few million photons in a few minutes on a desktop computer, the simulator code uses tabulated input (from theoretical models or laboratory measurements of samples) for grating efficiencies and mirror reflectivities. We find that the grating facet alignment tolerances to maintain at least 90% of resolving power that the spectrometer has with perfect alignment are (i) translation parallel to the optical axis below 0.5 mm, (ii) rotation around the optical axis or the groove direction below a few arcminutes, and (iii) constancy of the grating period to 1:105. Translations along and rotations around the remaining axes can be significantly larger than this without impacting the performance.
NASA Technical Reports Server (NTRS)
Eluszkiewicz, Janusz; Nehrkorn, Thomas; Wofsy, Steven C.; Matross, Daniel; Gerbig, Christoph; Lin, John C.; Freitas, Saulo; Longo, Marcos; Andrews, Arlyn E.; Peters, Wouter
2007-01-01
This paper evaluates simulations of atmospheric CO2 measured in 2004 at continental surface and airborne receptors, intended to test the capability to use data with high temporal and spatial resolution for analyses of carbon sources and sinks at regional and continental scales. The simulations were performed using the Stochastic Time-Inverted Lagrangian Transport (STILT) model driven by the Weather Forecast and Research (WRF) model, and linked to surface fluxes from the satellite-driven Vegetation Photosynthesis and Respiration Model (VPRM). The simulations provide detailed representations of hourly CO2 tower data and reproduce the shapes of airborne vertical profiles with high fidelity. WRF meteorology gives superior model performance compared with standard meteorological products, and the impact of including WRF convective mass fluxes in the STILT trajectory calculations is significant in individual cases. Important biases in the simulation are associated with the nighttime CO2 build-up and subsequent morning transition to convective conditions, and with errors in the advected lateral boundary condition. Comparison of STILT simulations driven by the WRF model against those driven by the Brazilian variant of the Regional Atmospheric Modeling System (BRAMS) shows that model-to-model differences are smaller than between an individual transport model and observations, pointing to systematic errors in the simulated transport. Future developments in the WRF model s data assimilation capabilities, basic research into the fundamental aspects of trajectory calculations, and intercomparison studies involving other transport models, are possible venues for reducing these errors. Overall, the STILT/WRF/VPRM offers a powerful tool for continental and regional scale carbon flux estimates.
ENSO effects on stratospheric trace gases: How do we capture reality?
NASA Astrophysics Data System (ADS)
Braesicke, Peter; Kirner, Oliver; Versick, Stefan; Joeckel, Patrick; Stiler, Gabriele
2016-04-01
The El Niño/Southern Oscillation (ENSO) phenomenon is an important pacemaker for interannual variability in the Earth's atmosphere. ENSO impacts on trace gases have been observed and modelled for the stratosphere and the troposphere. However, unambiguous attribution is often difficult due to the limited length of homogenous observational records and thus long-term (decadal) trends are sometimes difficult to detect. Generally ENSO impacts in low latitudes are easier to detect, because the response emerges close (temporally and spatially) to the forcing. Moving from low to high latitudes it becomes increasingly difficult to isolate ENSO driven variability, due to time-lags involved and many other modes of variability playing a role as well. Here, we use a nudged version of the EMAC chemistry-climate model to evaluate ENSO impacts on trace gases over the last 35 years (a so-called Ref-C1SD integration) and contrast the nudged model with its free running counterpart. We use water vapour and ozone observations from the MIPAS instrument on ENVISAT from 2002 to 2012 to test the model performance. Using lagged correlations for the longer model time-series we trace the ENSO signal from the tropical lower troposphere to the polar lower and middle stratosphere and provide a framework for simple attribution of the ENSO signal in trace gases. This concise characterisation of the ENSO impact on trace gases aids improved trend detection in temporally limited time series.
NASA Technical Reports Server (NTRS)
Kiley, C. M.; Fuelberg, Henry E.; Palmer, P. I.; Allen, D. J.; Carmichael, G. R.; Jacob, D. J.; Mari, C.; Pierce, R. B.; Pickering, K. E.; Tang, Y.
2002-01-01
Four global scale and three regional scale chemical transport models are intercompared and evaluated during NASA's TRACE-P experiment. Model simulated and measured CO are statistically analyzed along aircraft flight tracks. Results for the combination of eleven flights show an overall negative bias in simulated CO. Biases are most pronounced during large CO events. Statistical agreements vary greatly among the individual flights. Those flights with the greatest range of CO values tend to be the worst simulated. However, for each given flight, the models generally provide similar relative results. The models exhibit difficulties simulating intense CO plumes. CO error is found to be greatest in the lower troposphere. Convective mass flux is shown to be very important, particularly near emissions source regions. Occasionally meteorological lift associated with excessive model-calculated mass fluxes leads to an overestimation of mid- and upper- tropospheric mixing ratios. Planetary Boundary Layer (PBL) depth is found to play an important role in simulating intense CO plumes. PBL depth is shown to cap plumes, confining heavy pollution to the very lowest levels.
An efficient soil water balance model based on hybrid numerical and statistical methods
NASA Astrophysics Data System (ADS)
Mao, Wei; Yang, Jinzhong; Zhu, Yan; Ye, Ming; Liu, Zhao; Wu, Jingwei
2018-04-01
Most soil water balance models only consider downward soil water movement driven by gravitational potential, and thus cannot simulate upward soil water movement driven by evapotranspiration especially in agricultural areas. In addition, the models cannot be used for simulating soil water movement in heterogeneous soils, and usually require many empirical parameters. To resolve these problems, this study derives a new one-dimensional water balance model for simulating both downward and upward soil water movement in heterogeneous unsaturated zones. The new model is based on a hybrid of numerical and statistical methods, and only requires four physical parameters. The model uses three governing equations to consider three terms that impact soil water movement, including the advective term driven by gravitational potential, the source/sink term driven by external forces (e.g., evapotranspiration), and the diffusive term driven by matric potential. The three governing equations are solved separately by using the hybrid numerical and statistical methods (e.g., linear regression method) that consider soil heterogeneity. The four soil hydraulic parameters required by the new models are as follows: saturated hydraulic conductivity, saturated water content, field capacity, and residual water content. The strength and weakness of the new model are evaluated by using two published studies, three hypothetical examples and a real-world application. The evaluation is performed by comparing the simulation results of the new model with corresponding results presented in the published studies, obtained using HYDRUS-1D and observation data. The evaluation indicates that the new model is accurate and efficient for simulating upward soil water flow in heterogeneous soils with complex boundary conditions. The new model is used for evaluating different drainage functions, and the square drainage function and the power drainage function are recommended. Computational efficiency of the new model makes it particularly suitable for large-scale simulation of soil water movement, because the new model can be used with coarse discretization in space and time.
NASA Astrophysics Data System (ADS)
Shang, J. S.; Andrienko, D. A.; Huang, P. G.; Surzhikov, S. T.
2014-06-01
An efficient computational capability for nonequilibrium radiation simulation via the ray tracing technique has been accomplished. The radiative rate equation is iteratively coupled with the aerodynamic conservation laws including nonequilibrium chemical and chemical-physical kinetic models. The spectral properties along tracing rays are determined by a space partition algorithm of the nearest neighbor search process, and the numerical accuracy is further enhanced by a local resolution refinement using the Gauss-Lobatto polynomial. The interdisciplinary governing equations are solved by an implicit delta formulation through the diminishing residual approach. The axisymmetric radiating flow fields over the reentry RAM-CII probe have been simulated and verified with flight data and previous solutions by traditional methods. A computational efficiency gain nearly forty times is realized over that of the existing simulation procedures.
NASA Astrophysics Data System (ADS)
Delon, C.; Druilhet, A.; Delmas, R.; Greenberg, J.
2000-08-01
The Relaxed Eddy Accumulation (REA) technique, implemented aboard aircraft, may be used to measure a wide variety of trace gas fluxes at a regional scale. Its principle is rather simple: air is sampled at a constant rate and the flux is calculated by multiplying a constant β (0.58 in field experiment and 0.62 in simulations) by the standard deviation of the vertical velocity and by the difference between the average concentrations of the scalar (trace gas) for updrafts and downdrafts. The storage of the chemical compound in reservoirs allows for trace gas analysis in laboratory, when in situ measurement with fast response and high sensitivity sensors are not available. The REA method was implemented on the Avion de Recherche Atmosphérique et de Télédétection aircraft during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO) campaign. The main requirement for accurate flux determination is the measurement of the vertical component of wind velocity in real time. A simulation technique was developed to evaluate the performance of an aircraft REA. The influence of the time lag between the vertical velocity (W) measurement and REA control was tested, as well as the offset of W, the threshold, and the filtering imposed on W. Correction factors, used in a deployment of aircraft REA, were deduced from this study. An additional simulation was performed to evaluate the influence of spatial or temporal drifts on the scalar. The simulation showed that the REA method is not more disturbed than the Eddy Correlation method by low frequencies of physical origin, such as topography. The REA method was used during EXPRESSO for the measurement of isoprene fluxes over the wet savanna and the evergreen rain forest.
Probing plasma wakefields using electron bunches generated from a laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Zhang, C. J.; Wan, Y.; Guo, B.; Hua, J. F.; Pai, C.-H.; Li, F.; Zhang, J.; Ma, Y.; Wu, Y. P.; Xu, X. L.; Mori, W. B.; Chu, H.-H.; Wang, J.; Lu, W.; Joshi, C.
2018-04-01
We show experimental results of probing the electric field structure of plasma wakes by using femtosecond relativistic electron bunches generated from a laser wakefield accelerator. Snapshots of laser-driven linear wakes in plasmas with different densities and density gradients are captured. The spatiotemporal evolution of the wake in a plasma density up-ramp is recorded. Two parallel wakes driven by a laser with a main spot and sidelobes are identified in the experiment and reproduced in simulations. The capability of this new method for capturing the electron- and positron-driven wakes is also shown via 3D particle-in-cell simulations.
Cluster-based exposure variation analysis
2013-01-01
Background Static posture, repetitive movements and lack of physical variation are known risk factors for work-related musculoskeletal disorders, and thus needs to be properly assessed in occupational studies. The aims of this study were (i) to investigate the effectiveness of a conventional exposure variation analysis (EVA) in discriminating exposure time lines and (ii) to compare it with a new cluster-based method for analysis of exposure variation. Methods For this purpose, we simulated a repeated cyclic exposure varying within each cycle between “low” and “high” exposure levels in a “near” or “far” range, and with “low” or “high” velocities (exposure change rates). The duration of each cycle was also manipulated by selecting a “small” or “large” standard deviation of the cycle time. Theses parameters reflected three dimensions of exposure variation, i.e. range, frequency and temporal similarity. Each simulation trace included two realizations of 100 concatenated cycles with either low (ρ = 0.1), medium (ρ = 0.5) or high (ρ = 0.9) correlation between the realizations. These traces were analyzed by conventional EVA, and a novel cluster-based EVA (C-EVA). Principal component analysis (PCA) was applied on the marginal distributions of 1) the EVA of each of the realizations (univariate approach), 2) a combination of the EVA of both realizations (multivariate approach) and 3) C-EVA. The least number of principal components describing more than 90% of variability in each case was selected and the projection of marginal distributions along the selected principal component was calculated. A linear classifier was then applied to these projections to discriminate between the simulated exposure patterns, and the accuracy of classified realizations was determined. Results C-EVA classified exposures more correctly than univariate and multivariate EVA approaches; classification accuracy was 49%, 47% and 52% for EVA (univariate and multivariate), and C-EVA, respectively (p < 0.001). All three methods performed poorly in discriminating exposure patterns differing with respect to the variability in cycle time duration. Conclusion While C-EVA had a higher accuracy than conventional EVA, both failed to detect differences in temporal similarity. The data-driven optimality of data reduction and the capability of handling multiple exposure time lines in a single analysis are the advantages of the C-EVA. PMID:23557439
DynamO: a free O(N) general event-driven molecular dynamics simulator.
Bannerman, M N; Sargant, R; Lue, L
2011-11-30
Molecular dynamics algorithms for systems of particles interacting through discrete or "hard" potentials are fundamentally different to the methods for continuous or "soft" potential systems. Although many software packages have been developed for continuous potential systems, software for discrete potential systems based on event-driven algorithms are relatively scarce and specialized. We present DynamO, a general event-driven simulation package, which displays the optimal O(N) asymptotic scaling of the computational cost with the number of particles N, rather than the O(N) scaling found in most standard algorithms. DynamO provides reference implementations of the best available event-driven algorithms. These techniques allow the rapid simulation of both complex and large (>10(6) particles) systems for long times. The performance of the program is benchmarked for elastic hard sphere systems, homogeneous cooling and sheared inelastic hard spheres, and equilibrium Lennard-Jones fluids. This software and its documentation are distributed under the GNU General Public license and can be freely downloaded from http://marcusbannerman.co.uk/dynamo. Copyright © 2011 Wiley Periodicals, Inc.
Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Schmidt, J. M.
2008-05-01
CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.
Plasma radiation and acceleration effectiveness of CME-driven shocks
NASA Astrophysics Data System (ADS)
Schmidt, Joachim
CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.
Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu
2017-09-10
Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).
Xue, Wenchao; Tobino, Tomohiro; Nakajima, Fumiyuki; Yamamoto, Kazuo
2015-02-01
Seawater-driven forward osmosis (FO) is considered to be a novel strategy to concentrate nutrients in treated municipal wastewater for further recovery as well as simultaneous discharge of highly purified wastewater into the sea with low cost. As a preliminary test, the performance of FO membranes in concentrating nutrients was investigated by both batch experiments and model simulation approaches. With synthetic seawater as the draw solution, the dissolved organic carbon, phosphate, and ammonia in the effluent from a membrane bioreactor (MBR) treating municipal wastewater were 2.3-fold, 2.3-fold, and 2.1-fold, respectively, concentrated by the FO process with approximately 57% of water reduction. Most of the dissolved components, including trace metals in the MBR effluent, were highly retained (>80%) in the feed side, indicating high water quality of permeate to be discharged. The effect of membrane properties on the nutrient enrichment performance was investigated by comparing three types of FO membranes. Interestingly, a polyamide membrane possessing a high negative charge demonstrated a poor capability of retaining ammonia, which was hypothesized because of an ion exchange-like mechanism across the membrane prompted by the high ionic concentration of the draw solution. A feed solution pH of 7 was demonstrated to be an optimum condition for improving the overall retention of nutrients, especially for ammonia because of the pH-dependent speciation of ammonia/ammonium forms. The modeling results showed that higher than 10-fold concentrations of ammonia and phosphate are achievable by seawater-driven FO with a draw solution to feed solution volume ratio of 2:1. The enriched municipal wastewater contains nitrogen and phosphorous concentrations comparable with typical animal wastewater and anaerobic digestion effluent, which are used for direct nutrient recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.
Network-based simulation of aircraft at gates in airport terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Y.
1998-03-01
Simulation is becoming an essential tool for planning, design, and management of airport facilities. A simulation of aircraft at gates at an airport can be applied for various periodically performed applications, relating to the dynamic behavior of aircraft at gates in airport terminals for analyses, evaluations, and decision supports. Conventionally, such simulations are implemented using an event-driven method. For a more efficient simulation, this paper proposes a network-based method. The basic idea is to transform all the sequence constraint relations of aircraft at gates into a network. The simulation is done by calculating the longest path to all the nodesmore » in the network. The effect of the algorithm of the proposed method has been examined by experiments, and the superiority of the proposed method over the event-driven method is revealed through comprehensive comparisons of their overall simulation performance.« less
The Alba ray tracing code: ART
NASA Astrophysics Data System (ADS)
Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi
2013-09-01
The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.
Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions
Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...
2016-01-21
We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less
Formation and Assembly of Massive Star Clusters
NASA Astrophysics Data System (ADS)
McMillan, Stephen
The formation of stars and star clusters is a major unresolved problem in astrophysics. It is central to modeling stellar populations and understanding galaxy luminosity distributions in cosmological models. Young massive clusters are major components of starburst galaxies, while globular clusters are cornerstones of the cosmic distance scale and represent vital laboratories for studies of stellar dynamics and stellar evolution. Yet how these clusters form and how rapidly and efficiently they expel their natal gas remain unclear, as do the consequences of this gas expulsion for cluster structure and survival. Also unclear is how the properties of low-mass clusters, which form from small-scale instabilities in galactic disks and inform much of our understanding of cluster formation and star-formation efficiency, differ from those of more massive clusters, which probably formed in starburst events driven by fast accretion at high redshift, or colliding gas flows in merging galaxies. Modeling cluster formation requires simulating many simultaneous physical processes, placing stringent demands on both software and hardware. Simulations of galaxies evolving in cosmological contexts usually lack the numerical resolution to simulate star formation in detail. They do not include detailed treatments of important physical effects such as magnetic fields, radiation pressure, ionization, and supernova feedback. Simulations of smaller clusters include these effects, but fall far short of the mass of even single young globular clusters. With major advances in computing power and software, we can now directly address this problem. We propose to model the formation of massive star clusters by integrating the FLASH adaptive mesh refinement magnetohydrodynamics (MHD) code into the Astrophysical Multi-purpose Software Environment (AMUSE) framework, to work with existing stellar-dynamical and stellar evolution modules in AMUSE. All software will be freely distributed on-line, allowing open access to state-of- the-art simulation techniques within a modern, modular software environment. We will follow the gravitational collapse of 0.1-10 million-solar mass gas clouds through star formation and coalescence into a star cluster, modeling in detail the coupling of the gas and the newborn stars. We will study the effects of star formation by detecting accreting regions of gas in self-gravitating, turbulent, MHD, FLASH models that we will translate into collisional dynamical systems of stars modeled with an N-body code, coupled together in the AMUSE framework. Our FLASH models will include treatments of radiative transfer from the newly formed stars, including heating and radiative acceleration of the surrounding gas. Specific questions to be addressed are: (1) How efficiently does the gas in a star forming region form stars, how does this depend on mass, metallicity, and other parameters, and what terminates star formation? What observational predictions can be made to constrain our models? (2) How important are different mechanisms for driving turbulence and removing gas from a cluster: accretion, radiative feedback, and mechanical feedback? (3) How does the infant mortality rate of young clusters depend on the initial properties of the parent cloud? (4) What are the characteristic formation timescales of massive star clusters, and what observable imprints does the assembly process leave on their structure at an age of 10-20 Myr, when formation is essentially complete and many clusters can be observed? These studies are directly relevant to NASA missions at many electromagnetic wavelengths, including Chandra, GALEX, Hubble, and Spitzer. Each traces different aspects of cluster formation and evolution: X-rays trace supernovae, ultraviolet traces young stars, visible colors can distinguish between young blue stars and older red stars, and the infrared directly shows young embedded star clusters.
ERIC Educational Resources Information Center
Buchanan, David R.
2006-01-01
This article describes two models for thinking about the purposes of health education--a medical model and an education model--and traces how concerns about the validity of research have driven preference for the medical model. In the medical model, the purpose of health education is to develop effective interventions that will prevent people from…
NASA Astrophysics Data System (ADS)
Regnery, Julia; Lee, Jonghyun; Drumheller, Zachary W.; Drewes, Jörg E.; Illangasekare, Tissa H.; Kitanidis, Peter K.; McCray, John E.; Smits, Kathleen M.
2017-05-01
Meaningful model-based predictions of water quality and quantity are imperative for the designed footprint of managed aquifer recharge installations. A two-dimensional (2D) synthetic MAR system equipped with automated sensors (temperature, water pressure, conductivity, soil moisture, oxidation-reduction potential) and embedded water sampling ports was used to test and model fundamental subsurface processes during surface spreading managed aquifer recharge operations under controlled flow and redox conditions at the meso-scale. The fate and transport of contaminants in the variably saturated synthetic aquifer were simulated using the finite element analysis model, FEFLOW. In general, the model concurred with travel times derived from contaminant breakthrough curves at individual sensor locations throughout the 2D tank. However, discrepancies between measured and simulated trace organic chemical concentrations (i.e., carbamazepine, sulfamethoxazole, tris (2-chloroethyl) phosphate, trimethoprim) were observed. While the FEFLOW simulation of breakthrough curves captured overall shapes of trace organic chemical concentrations well, the model struggled with matching individual data points, although compound-specific attenuation parameters were used. Interestingly, despite steady-state operation, oxidation-reduction potential measurements indicated temporal disturbances in hydraulic properties in the saturated zone of the 2D tank that affected water quality.
Dynamical features and electric field strengths of double layers driven by currents. [in auroras
NASA Technical Reports Server (NTRS)
Singh, N.; Thiemann, H.; Schunk, R. W.
1985-01-01
In recent years, a number of papers have been concerned with 'ion-acoustic' double layers. In the present investigation, results from numerical simulations are presented to show that the shapes and forms of current-driven double layers evolve dynamically with the fluctuations in the current through the plasma. It is shown that double layers with a potential dip can form even without the excitation of ion-acoustic modes. Double layers in two-and one-half-dimensional simulations are discussed, taking into account the simulation technique, the spatial and temporal features of plasma, and the dynamical behavior of the parallel potential distribution. Attention is also given to double layers in one-dimensional simulations, and electrical field strengths predicted by two-and one-half-dimensional simulations.
Flux-driven simulations of turbulence collapse
Park, G. Y.; Kim, S. S.; Jhang, Hogun; ...
2015-03-12
In this study, using self-consistent three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally due to mean E x B shear feedback through evolving pressure gradient once input power exceeds a threshold value. The temporal evolution and development of the transition are elucidated. Profiles, turbulence-driven flows and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that themore » turbulence collapses and the ETB transition begins when R T > 1 at t = t R (R T : normalized Reynolds power), while the conventional transition criterion (ω E x B > γlin) is satisfied only after t = t C (> t R), when the mean ow shear grows due to positive feedback.« less
Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A
2014-01-01
This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432
Star Formation of Merging Disk Galaxies with AGN Feedback Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr
2017-08-20
Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Coxmore » et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.« less
Placinta, Mike; Shen, Meng-Chieh; Achermann, Marc; Karlstrom, Rolf O
2009-12-30
Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 mum targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.
NASA Technical Reports Server (NTRS)
Liu, Nan-Suey; Wey, Thomas
2001-01-01
Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.
Sink or Swim: Ions and Organics at the Ice-Air Interface.
Hudait, Arpa; Allen, Michael T; Molinero, Valeria
2017-07-26
The ice-air interface is an important locus of environmental chemical reactions. The structure and dynamics of the ice surface impact the uptake of trace gases and kinetics of reactions in the atmosphere and snowpack. At tropospheric temperatures, the ice surface is partially premelted. Experiments indicate that ions increase the liquidity of the ice surface but hydrophilic organics do not. However, it is not yet known the extent of the perturbation solutes induce at the ice surface and what is the role of the disordered liquid-like layer in modulating the interaction between solutes and their mobility and aggregation at the ice surface. Here we use large-scale molecular simulations to investigate the effect of ions and glyoxal, one of the most abundant oxygenated volatile organic compounds in the atmosphere, on the structure, dynamics, and solvation properties of the ice surface. We find that the premelted surface of ice has unique solvation properties, different from those of liquid water. The increase in surface liquidity resulting from the hydration of ions leads to a water-mediated attraction of ions at the ice surface. Glyoxal molecules, on the other hand, perturb only slightly the surface of ice and do not experience water-driven attraction. They nonetheless accumulate as dry agglomerates at the ice surface, driven by direct interactions between the organic molecules. The enhanced attraction and clustering of ions and organics at the ice surface may play a significant role in modulating the mechanism and rate of heterogeneous chemical reactions occurring at the surface of atmospheric ice particles.
NASA Astrophysics Data System (ADS)
Perez, J. C.; Chandran, B. D. G.
2017-12-01
In this work we present recent results from high-resolution direct numerical simulations and a phenomenological model that describes the radial evolution of reflection-driven Alfven Wave turbulence in the solar atmosphere and the inner solar wind. The simulations are performed inside a narrow magnetic flux tube that models a coronal hole extending from the solar surface through the chromosphere and into the solar corona to approximately 21 solar radii. The simulations include prescribed empirical profiles that account for the inhomogeneities in density, background flow, and the background magnetic field present in coronal holes. Alfven waves are injected into the solar corona by imposing random, time-dependent velocity and magnetic field fluctuations at the photosphere. The phenomenological model incorporates three important features observed in the simulations: dynamic alignment, weak/strong nonlinear AW-AW interactions, and that the outward-propagating AWs launched by the Sun split into two populations with different characteristic frequencies. Model and simulations are in good agreement and show that when the key physical parameters are chosen within observational constraints, reflection-driven Alfven turbulence is a plausible mechanism for the heating and acceleration of the fast solar wind. By flying a virtual Parker Solar Probe (PSP) through the simulations, we will also establish comparisons between the model and simulations with the kind of single-point measurements that PSP will provide.
Performance of technology-driven simulators for medical students--a systematic review.
Michael, Michael; Abboudi, Hamid; Ker, Jean; Shamim Khan, Mohammed; Dasgupta, Prokar; Ahmed, Kamran
2014-12-01
Simulation-based education has evolved as a key training tool in high-risk industries such as aviation and the military. In parallel with these industries, the benefits of incorporating specialty-oriented simulation training within medical schools are vast. Adoption of simulators into medical school education programs has shown great promise and has the potential to revolutionize modern undergraduate education. An English literature search was carried out using MEDLINE, EMBASE, and psychINFO databases to identify all randomized controlled studies pertaining to "technology-driven" simulators used in undergraduate medical education. A validity framework incorporating the "framework for technology enhanced learning" report by the Department of Health, United Kingdom, was used to evaluate the capabilities of each technology-driven simulator. Information was collected regarding the simulator type, characteristics, and brand name. Where possible, we extracted information from the studies on the simulators' performance with respect to validity status, reliability, feasibility, education impact, acceptability, and cost effectiveness. We identified 19 studies, analyzing simulators for medical students across a variety of procedure-based specialities including; cardiovascular (n = 2), endoscopy (n = 3), laparoscopic surgery (n = 8), vascular access (n = 2), ophthalmology (n = 1), obstetrics and gynecology (n = 1), anesthesia (n = 1), and pediatrics (n = 1). Incorporation of simulators has so far been on an institutional level; no national or international trends have yet emerged. Simulators are capable of providing a highly educational and realistic experience for the medical students within a variety of speciality-oriented teaching sessions. Further research is needed to establish how best to incorporate simulators into a more primary stage of medical education; preclinical and clinical undergraduate medicine. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Puccetti, S.; Fiore, F.; Giommi, P.
2009-05-01
The ASI Science Data Center (ASDC) has developed an X-ray event simulator to support users (and team members) in simulation of data taken with the two cameras on board the Simbol-X X-Ray Telescope. The Simbol-X simulator is very fast and flexible, compared to ray-tracing simulator. These properties make our simulator advantageous to support the user in planning proposals and comparing real data with the theoretical expectations and for a quick detection of unexpected features. We present here the simulator outline and a few examples of simulated data.
Simulation of networks of spiking neurons: A review of tools and strategies
Brette, Romain; Rudolph, Michelle; Carnevale, Ted; Hines, Michael; Beeman, David; Bower, James M.; Diesmann, Markus; Morrison, Abigail; Goodman, Philip H.; Harris, Frederick C.; Zirpe, Milind; Natschläger, Thomas; Pecevski, Dejan; Ermentrout, Bard; Djurfeldt, Mikael; Lansner, Anders; Rochel, Olivier; Vieville, Thierry; Muller, Eilif; Davison, Andrew P.; El Boustani, Sami
2009-01-01
We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin–Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks. PMID:17629781
Efficient Analysis of Simulations of the Sun's Magnetic Field
NASA Astrophysics Data System (ADS)
Scarborough, C. W.; Martínez-Sykora, J.
2014-12-01
Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.
MARXS: A Modular Software to Ray-trace X-Ray Instrumentation
NASA Astrophysics Data System (ADS)
Günther, Hans Moritz; Frost, Jason; Theriault-Shay, Adam
2017-12-01
To obtain the best possible scientific result, astronomers must understand the properties of the available instrumentation well. This is important both when designing new instruments and when using existing instruments close to the limits of their specified capabilities or beyond. Ray-tracing is a technique for numerical simulations where the path of many light rays is followed through the system to understand how individual system components influence the observed properties, such as the shape of the point-spread-function. In instrument design, such simulations can be used to optimize the performance. For observations with existing instruments, this helps to discern instrumental artefacts from a true signal. Here, we describe MARXS, a new python package designed to simulate X-ray instruments on satellites and sounding rockets. MARXS uses probability tracking of photons and has polarimetric capabilities.
Shi, Xianbo; Reininger, Ruben; Sanchez del Rio, Manuel; ...
2014-05-15
A new method for beamline simulation combining ray-tracing and wavefront propagation is described. The 'Hybrid Method' computes diffraction effects when the beam is clipped by an aperture or mirror length and can also simulate the effect of figure errors in the optical elements when diffraction is present. The effect of different spatial frequencies of figure errors on the image is compared withSHADOWresults pointing to the limitations of the latter. The code has been benchmarked against the multi-electron version ofSRWin one dimension to show its validity in the case of fully, partially and non-coherent beams. The results demonstrate that the codemore » is considerably faster than the multi-electron version ofSRWand is therefore a useful tool for beamline design and optimization.« less
Reduced equations of motion for quantum systems driven by diffusive Markov processes.
Sarovar, Mohan; Grace, Matthew D
2012-09-28
The expansion of a stochastic Liouville equation for the coupled evolution of a quantum system and an Ornstein-Uhlenbeck process into a hierarchy of coupled differential equations is a useful technique that simplifies the simulation of stochastically driven quantum systems. We expand the applicability of this technique by completely characterizing the class of diffusive Markov processes for which a useful hierarchy of equations can be derived. The expansion of this technique enables the examination of quantum systems driven by non-Gaussian stochastic processes with bounded range. We present an application of this extended technique by simulating Stark-tuned Förster resonance transfer in Rydberg atoms with nonperturbative position fluctuations.
Multidimensional simulations of core-collapse supernovae with CHIMERA
NASA Astrophysics Data System (ADS)
Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.
2014-01-01
Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.
Global Response to Local Ionospheric Mass Ejection
NASA Technical Reports Server (NTRS)
Moore, T. E.; Fok, M.-C.; Delcourt, D. C.; Slinker, S. P.; Fedder, J. A.
2010-01-01
We revisit a reported "Ionospheric Mass Ejection" using prior event observations to guide a global simulation of local ionospheric outflows, global magnetospheric circulation, and plasma sheet pressurization, and comparing our results with the observed global response. Our simulation framework is based on test particle motions in the Lyon-Fedder-Mobarry (LFM) global circulation model electromagnetic fields. The inner magnetosphere is simulated with the Comprehensive Ring Current Model (CRCM) of Fok and Wolf, driven by the transpolar potential developed by the LFM magnetosphere, and includes an embedded plasmaspheric simulation. Global circulation is stimulated using the observed solar wind conditions for the period 24-25 Sept 1998. This period begins with the arrival of a Coronal Mass Ejection, initially with northward, but later with southward interplanetary magnetic field. Test particles are launched from the ionosphere with fluxes specified by local empirical relationships of outflow to electrodynamic and particle precipitation imposed by the MIlD simulation. Particles are tracked until they are lost from the system downstream or into the atmosphere, using the full equations of motion. Results are compared with the observed ring current and a simulation of polar and auroral wind outflows driven globally by solar wind dynamic pressure. We find good quantitative agreement with the observed ring current, and reasonable qualitative agreement with earlier simulation results, suggesting that the solar wind driven global simulation generates realistic energy dissipation in the ionosphere and that the Strangeway relations provide a realistic local outflow description.
Li, Jiajia; Deng, Baoqing; Zhang, Bing; Shen, Xiuzhong; Kim, Chang Nyung
2015-01-01
A simulation of an unbaffled stirred tank reactor driven by a magnetic stirring rod was carried out in a moving reference frame. The free surface of unbaffled stirred tank was captured by Euler-Euler model coupled with the volume of fluid (VOF) method. The re-normalization group (RNG) k-ɛ model, large eddy simulation (LES) model and detached eddy simulation (DES) model were evaluated for simulating the flow field in the stirred tank. All turbulence models can reproduce the tangential velocity in an unbaffled stirred tank with a rotational speed of 150 rpm, 250 rpm and 400 rpm, respectively. Radial velocity is underpredicted by the three models. LES model and RNG k-ɛ model predict the better tangential velocity and axial velocity, respectively. RNG k-ɛ model is recommended for the simulation of the flow in an unbaffled stirred tank with magnetic rod due to its computational effort.
NASA Technical Reports Server (NTRS)
Murray, Lee T.; Fiore, Arlene M.
2014-01-01
Over four decades of measurements exist that sample the 3-D composition of reactive trace gases in the troposphere from approximately weekly ozone sondes, instrumentation on civil aircraft, and individual comprehensive aircraft field campaigns. An obstacle to using these data to evaluate coupled chemistry-climate models (CCMs)the models used to project future changes in atmospheric composition and climateis that exact space-time matching between model fields and observations cannot be done, as CCMs generate their own meteorology. Evaluation typically involves averaging over large spatiotemporal regions, which may not reflect a true average due to limited or biased sampling. This averaging approach generally loses information regarding specific processes. Here we aim to identify where discrete sampling may be indicative of long-term mean conditions, using the GEOS-Chem global chemical-transport model (CTM) driven by the MERRA reanalysis to reflect historical meteorology from 2003 to 2012 at 2o by 2.5o resolution. The model has been sampled at the time and location of every ozone sonde profile available from the Would Ozone and Ultraviolet Radiation Data Centre (WOUDC), along the flight tracks of the IAGOSMOZAICCARABIC civil aircraft campaigns, as well as those from over 20 individual field campaigns performed by NASA, NOAA, DOE, NSF, NERC (UK), and DLR (Germany) during the simulation period. Focusing on ozone, carbon monoxide and reactive nitrogen species, we assess where aggregates of the in situ data are representative of the decadal mean vertical, spatial and temporal distributions that would be appropriate for evaluating CCMs. Next, we identically sample a series of parallel sensitivity simulations in which individual emission sources (e.g., lightning, biogenic VOCs, wildfires, US anthropogenic) have been removed one by one, to assess where and when the aggregated observations may offer constraints on these processes within CCMs. Lastly, we show results of an additional 31-year simulation from 1980-2010 of GEOS-Chem driven by the MACCity emissions inventory and MERRA reanalysis at 4o by 5o. We sample the model at every WOUDC sonde and flight track from MOZAIC and NASA field campaigns to evaluate which aggregate observations are statistically reflective of long-term trends over the period.
Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation
Rakhmatov, Ruslan; Ogay, Tatyana; Jeon, Seokhee
2018-01-01
This article presents a new data-driven model design for rendering force responses from elastic tool deformation. The new design incorporates a six-dimensional input describing the initial position of the contact, as well as the state of the tool deformation. The input-output relationship of the model was represented by a radial basis functions network, which was optimized based on training data collected from real tool-surface contact. Since the input space of the model is represented in the local coordinate system of a tool, the model is independent of recording and rendering devices and can be easily deployed to an existing simulator. The model also supports complex interactions, such as self and multi-contact collisions. In order to assess the proposed data-driven model, we built a custom data acquisition setup and developed a proof-of-concept rendering simulator. The simulator was evaluated through numerical and psychophysical experiments with four different real tools. The numerical evaluation demonstrated the perceptual soundness of the proposed model, meanwhile the user study revealed the force feedback of the proposed simulator to be realistic. PMID:29342964
Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters
NASA Astrophysics Data System (ADS)
Tran, Jonathan; Eckhardt, Daniel; Martin, Robert
2017-10-01
Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, E. C.; Barnak, D. H.; Betti, R.
Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less
Hansen, E. C.; Barnak, D. H.; Betti, R.; ...
2018-04-04
Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less
Simultsonic: A Simulation Tool for Ultrasonic Inspection
NASA Astrophysics Data System (ADS)
Krishnamurthy, Adarsh; Karthikeyan, Soumya; Krishnamurthy, C. V.; Balasubramaniam, Krishnan
2006-03-01
A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment initially followed by a displacement or pressure field-based assessment for user-specified probe positions and user-selected component. Immersion and contact modes of inspection are available in SIMULTSONIC. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, the application of SIMULTSONIC to the inspection of very thin-walled pipes (with 450 um wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes. The scope of SIMULTSONIC to deal with parametrically represented surfaces will also be discussed.
NASA Astrophysics Data System (ADS)
Jiang, Wang-Qiang; Zhang, Min; Nie, Ding; Jiao, Yong-Chang
2018-04-01
To simulate the multiple scattering effect of target in synthetic aperture radar (SAR) image, the hybrid method GO/PO method, which combines the geometrical optics (GO) and physical optics (PO), is employed to simulate the scattering field of target. For ray tracing is time-consuming, the Open Graphics Library (OpenGL) is usually employed to accelerate the process of ray tracing. Furthermore, the GO/PO method is improved for the simulation in low pixel situation. For the improved GO/PO method, the pixels are arranged corresponding to the rectangular wave beams one by one, and the GO/PO result is the sum of the contribution values of all the rectangular wave beams. To get high-resolution SAR image, the wideband echo signal is simulated which includes information of many electromagnetic (EM) waves with different frequencies. Finally, the improved GO/PO method is used to simulate the SAR image of targets above rough surface. And the effects of reflected rays and the size of pixel matrix on the SAR image are also discussed.
A soil sampling reference site: the challenge in defining reference material for sampling.
de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; van der Perk, Marcel
2008-11-01
In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.
Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu
2012-11-19
Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.
NASA Astrophysics Data System (ADS)
Tran, Jonathan
Plasma turbulence and the resulting anomalous electron transport due to azimuthal current driven instabilities in Hall-effect thrusters is a promising candidate for developing predictive models for the observed anomalous transport. A theory for anomalous electron transport and current driven instabilities has been recently studied by [Lafluer et al., 2016a]. Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster modeling. Using a reduced dimension particle in cell simulation implemented in the Thermophysics Universal Research Framework developed by the Air Force Research Lab, we show collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field and the plasma density. These high-frequency and short wavelength fluctuations can lead to an effective cross-field mobility many orders of magnitude larger than what is expected from classical electron-neutral momentum collisions in the low neutral density regime. We further adapt the previous study by [Lampe et al., 1971] and [Stringer, 1964] for related current driven instabilities to electric propulsion relevant mass ratios and conditions. Finally, we conduct a preliminary study of resolving this instability with a modified hybrid simulation with the hope of integration with established hybrid Hall-effect thruster simulations.
Large-scale disruptions in a current-carrying magnetofluid
NASA Technical Reports Server (NTRS)
Dahlburg, J. P.; Montgomery, D.; Doolen, G. D.; Matthaeus, W. H.
1986-01-01
Internal disruptions in a strongly magnetized electrically conducting fluid contained within a rigid conducting cylinder of square cross section are investigated theoretically, both with and without an externally applied axial electric field, by means of computer simulations using the pseudospectral three-dimensional Strauss-equations code of Dahlburg et al. (1985). Results from undriven inviscid, driven inviscid, and driven viscid simulations are presented graphically, and the significant effects of low-order truncations on the modeling accuracy are considered. A helical current filament about the cylinder axis is observed. The ratio of turbulent kinetic energy to total poloidal magnetic energy is found to undergo cyclic bounces in the undriven inviscid case, to exhibit one large bounce followed by decay to a quasi-steady state with poloidal fluid velocity flow in the driven inviscid case, and to show one large bounce followed by further sawtoothlike bounces in the driven viscid case.
Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls
Zhou, Chenming
2017-01-01
At the ultrahigh frequencies common to portable radios, tunnels such as mine entries are often modeled by hollow dielectric waveguides. The roughness condition of the tunnel walls has an influence on radio propagation, and therefore should be taken into account when an accurate power prediction is needed. This paper investigates how wall roughness affects radio propagation in tunnels, and presents a unified ray tracing and modal method for modeling radio propagation in tunnels with rough walls. First, general analytical formulas for modeling the influence of the wall roughness are derived, based on the modal method and the ray tracing method, respectively. Second, the equivalence of the ray tracing and modal methods in the presence of wall roughnesses is mathematically proved, by showing that the ray tracing-based analytical formula can converge to the modal-based formula through the Poisson summation formula. The derivation and findings are verified by simulation results based on ray tracing and modal methods. PMID:28935995
Reconsidering Simulations in Science Education at a Distance: Features of Effective Use
ERIC Educational Resources Information Center
Blake, C.; Scanlon, E.
2007-01-01
This paper proposes a reconsideration of use of computer simulations in science education. We discuss three studies of the use of science simulations for undergraduate distance learning students. The first one, "The Driven Pendulum" simulation is a computer-based experiment on the behaviour of a pendulum. The second simulation, "Evolve" is…
Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos
2018-03-01
Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental evidence of space charge driven resonances in high intensity linear accelerators
Jeon, Dong -O
2016-01-12
In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less
NASA Technical Reports Server (NTRS)
Turok, Neil
1988-01-01
It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation.
Respondent-Driven Sampling: An Assessment of Current Methodology.
Gile, Krista J; Handcock, Mark S
2010-08-01
Respondent-Driven Sampling (RDS) employs a variant of a link-tracing network sampling strategy to collect data from hard-to-reach populations. By tracing the links in the underlying social network, the process exploits the social structure to expand the sample and reduce its dependence on the initial (convenience) sample.The current estimators of population averages make strong assumptions in order to treat the data as a probability sample. We evaluate three critical sensitivities of the estimators: to bias induced by the initial sample, to uncontrollable features of respondent behavior, and to the without-replacement structure of sampling.Our analysis indicates: (1) that the convenience sample of seeds can induce bias, and the number of sample waves typically used in RDS is likely insufficient for the type of nodal mixing required to obtain the reputed asymptotic unbiasedness; (2) that preferential referral behavior by respondents leads to bias; (3) that when a substantial fraction of the target population is sampled the current estimators can have substantial bias.This paper sounds a cautionary note for the users of RDS. While current RDS methodology is powerful and clever, the favorable statistical properties claimed for the current estimates are shown to be heavily dependent on often unrealistic assumptions. We recommend ways to improve the methodology.
Annual variability of acetone in the UTLS region based on ICON-ART simulations
NASA Astrophysics Data System (ADS)
Weimer, Michael; Schröter, Jennifer; Eckstein, Johannes; Deetz, Konrad; Neumaier, Marco; Fischbeck, Garlich; Rieger, Daniel; Vogel, Heike; Vogel, Bernhard; Reddmann, Thomas; Kirner, Oliver; Ruhnke, Roland; Braesicke, Peter
2017-04-01
We present results of an extension to the ICOsahedral Non-hydrostatic modelling framework (ICON) [1]. ICON is a joint project of the German Weather Service and the Max-Planck-Institute for Meteorology. We use the Aerosols and Reactive Trace gases (ART) extension for ICON which currently is under development [2]. Here, the module for including emissions from external data sources has been implemented and exploited [3]. Our test cases are the emissions of volatile organic compounds (VOCs). We test the sensitivity of the VOC concentrations in the upper troposphere and lower stratosphere (UTLS) driven by prescribed emission inventories and online calculated emissions. Because VOCs are influencing the HOx equilibrium the annual cycle of VOCs matter for UTLS ozone concentrations. In the UTLS region, the HOx production due to photooxidation of the VOC acetone gets in the same order as that due to photolysis of ozone. Therefore, acetone is one of the main regulators of HOx and ozone in this region. We compare our simulations of acetone concentrations with ground-based and CARIBIC airborne measurements for different emission scenarios and different parametrisations of the acetone lifetime. [1] Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core, Quart. J. Roy. Meteor. Soc., 141, 563-579, doi:10.1002/qj.2378, 2015. [2] Rieger, D., Bangert, M., Bischoff-Gauss, I., Förstner, J., Lundgren, K., Reinert, D., Schröter, J., Vogel, H., Zängl, G., Ruhnke, R., and Vogel, B.: ICON-ART 1.0 - a new online-coupled model system from the global to regional scale, Geosci. Model Dev., 8, 1659-1676, doi:10.5194/gmd-8-1659-2015, 2015. [3] Weimer, M., Schröter, J., Eckstein, J., Deetz, K., Neumaier, M., Fischbeck, G., Rieger, D., Vogel, H., Vogel, B., Reddmann, T., Kirner, O., Ruhnke, R., and Braesicke, P.: A new module for trace gas emissions in ICON-ART 2.0: A sensitivity study focusing on acetone emissions and concentrations, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-259, in review, 2016.
Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masters, N D; Kaiser, T B; Anderson, R W
2009-09-28
ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.
NASA Astrophysics Data System (ADS)
Wang, Zu-liang; Zhang, Ting; Xie, Shi-yang
2017-01-01
In order to improve the agricultural tracing efficiency and reduce tracking and monitoring cost, agricultural products quality tracking and tracing based on Radio-Frequency Identification(RFID) technology is studied, then tracing and tracking model is set up. Three-layer structure model is established to realize the high quality of agricultural products traceability and tracking. To solve the collision problems between multiple RFID tags and improve the identification efficiency a new reservation slot allocation mechanism is proposed. And then we analyze and optimize the parameter by numerical simulation method.
The first super geomagnetic storm of solar cycle 24: "The St. Patrick day (17 March 2015)" event
NASA Astrophysics Data System (ADS)
Wu, C. C.; Liou, K.; Socker, D. G.; Howard, R.; Jackson, B. V.; Yu, H. S.; Hutting, L.; Plunkett, S. P.
2015-12-01
The first super geomagnetic storm of solar cycle 24 occurred on the "St. Patrick's day" (17 March 2015). Notably, it was a two-step storm. The source of the storm can be traced back to the solar event on March 15, 2015. At ~2:10 UT on that day, SOHO/LASCO C3 recorded a partial halo corona mass ejection (CME) which was associated with a C9.1/1F flare (S22W25) and a series of type II/IV radio bursts. The propagation speed of this CME is estimated to be ~668 km/s during 02:10 - 06:20 UT (Figure 1). An interplanetary (IP) shock, likely driven by the CME, arrived at the Wind spacecraft at 03:59 UT on 17 March (Figure 2). The arrival of the IP shock at the Earth may have caused a sudden storm commencement (SSC) at 04:45 UT on March 17. The storm intensified (Dst dropped to -80 nT at ~10:00 UT) during the crossing of the CME sheath. Later, the storm recovered slightly (Dst ~ -50 nT) after the IMF turned northward. At 11:01 UT, IMF started turning southward again due to the large magnetic cloud (MC) field itself and caused the second storm intensification, reaching Dst = - 228 nT on March 18. We conclude that the St. Patrick day event is a two-step storm. The first step is associated with the sheath, whereas the second step is associated with the MC. Here, we employ a numerical simulation using the global, three-dimensional (3D), time-dependent, magnetohydrodynamic (MHD) model (H3DMHD, Wu et al. 2007) to study the CME propagation from the Sun to the Earth. The H3DMHD model has been modified so that it can be driven by (solar wind) data at the inner boundary of the computational domain. In this study, we use time varying, 3D solar wind velocity and density reconstructed from STELab, Japan interplanetary scintillation (IPS) data by the University of California, San Diego, and magnetic field at the IPS inner boundary provided by CSSS model closed-loop propagation (Jackson et a., 2015). The simulation result matches well with the in situ solar wind plasma and field data at Wind, in terms of the peak values of the IP shock and its arrival time (Figure 3). The simulation not only helps us to identify the driver of the IP shock, but also demonstrates that the modified H3DMHD model is capable of realistic simulations of large solar event. In this presentation, we will discuss the CME/storm event with detailed data from observations (Wind and SOHO) and our numerical simulation.
NASA Astrophysics Data System (ADS)
Kemp, G. Elijah; Mariscal, D. A.; Williams, G. J.; Blue, B. E.; Colvin, J. D.; Fears, T. M.; Kerr, S. M.; May, M. J.; Moody, J. D.; Strozzi, D. J.; Lefevre, H. J.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Gautier, D. C.; Montgomery, D. S.
2017-10-01
We present experimental and simulation results from a study of thermal transport inhibition in laser-driven, mid-Z, non-equilibrium plasmas in the presence external magnetic fields. The experiments were performed at the Jupiter Laser Facility at LLNL, where x-ray spectroscopy, proton radiography, and Brillouin backscatter data were simultaneously acquired from sub-critical-density, Ti-doped silica aerogel foams driven by a 2 ω laser at 5 ×1014 W /cm2 . External B-field strengths up to 20 T (aligned antiparallel to the laser propagation axis) were provided by a capacitor-bank-driven Helmholtz coil. Pre-shot simulations with
Exploiting Data Similarity to Reduce Memory Footprints
2011-01-01
leslie3d Fortran Computational Fluid Dynamics (CFD) application 122. tachyon C Parallel Ray Tracing application 128.GAPgeofem C and Fortran Simulates...benefits most from SBLLmalloc; LAMMPS, which shows moderate similarity from primarily zero pages; and 122. tachyon , a parallel ray- tracing application...similarity across MPI tasks. They primarily are zero- pages although a small fraction (≈10%) are non-zero pages. 122. tachyon is an image rendering
Phobos: Simulation-Driven Design for Exploration
NASA Technical Reports Server (NTRS)
Crues, Edwin
2015-01-01
Dr. Edwin "Zack" Crues presented an overview of the current use of modeling and simulation technologies by the NASA Exploration Systems Simulations (NExSyS) team in investigating the spacecraft and missions for the human exploration of Mars' moon Phobos.
Identifiability and identification of trace continuous pollutant source.
Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao
2014-01-01
Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions.
Atomistic simulation of mineral-melt trace-element partitioning
NASA Astrophysics Data System (ADS)
Allan, Neil L.; Du, Zhimei; Lavrentiev, Mikhail Yu.; Blundy, Jon D.; Purton, John A.; van Westrenen, Wim
2003-09-01
We discuss recent advances in computational approaches to trace-element incorporation in minerals and melts. It is crucial to take explicit account of the local structural environment of each ion in the solid and the change in this environment following the introduction of a foreign atom or atoms. Particular attention is paid to models using relaxation (strain) energies and solution energies, and the use of these different models for isovalent and heterovalent substitution in diopside and forsterite. Solution energies are also evaluated for pyrope and grossular garnets, and pyrope-grossular solid solutions. Unfavourable interactions between dodecahedral sites containing ions of the same size and connected by an intervening tetrahedron lead to larger solubilities of trace elements in the garnet solid solution than in either end member compound and to the failure of Goldschmidt's first rule. Our final two examples are the partitioning behaviour of noble gases, which behave as 'ions of zero charge' and the direct calculation of high-temperature partition coefficients between CaO solid and melt via Monte Carlo simulations.
Effect of censoring trace-level water-quality data on trend-detection capability
Gilliom, R.J.; Hirsch, R.M.; Gilroy, E.J.
1984-01-01
Monte Carlo experiments were used to evaluate whether trace-level water-quality data that are routinely censored (not reported) contain valuable information for trend detection. Measurements are commonly censored if they fall below a level associated with some minimum acceptable level of reliability (detection limit). Trace-level organic data were simulated with best- and worst-case estimates of measurement uncertainty, various concentrations and degrees of linear trend, and different censoring rules. The resulting classes of data were subjected to a nonparametric statistical test for trend. For all classes of data evaluated, trends were most effectively detected in uncensored data as compared to censored data even when the data censored were highly unreliable. Thus, censoring data at any concentration level may eliminate valuable information. Whether or not valuable information for trend analysis is, in fact, eliminated by censoring of actual rather than simulated data depends on whether the analytical process is in statistical control and bias is predictable for a particular type of chemical analyses.
On the potential of GHG emissions estimation by multi-species inverse modeling
NASA Astrophysics Data System (ADS)
Gerbig, Christoph; Boschetti, Fabio; Filges, Annette; Marshall, Julia; Koch, Frank-Thomas; Janssens-Maenhout, Greet; Nedelec, Philippe; Thouret, Valerie; Karstens, Ute
2016-04-01
Reducing anthropogenic emissions of greenhouse gases is one of the most important elements in mitigating climate change. However, as emission reporting is often incomplete or incorrect, there is a need to independently monitor the emissions. Despite this, in the case of CO2 one typically assumes that emissions from fossil fuel burning are well known, and only natural fluxes are constrained by atmospheric measurements via inverse modelling. On the other hand, species such as CO2, CH4, and CO often have common emission patterns, and thus share part of the uncertainties, both related to the prior knowledge of emissions, and to model-data mismatch error. We implemented the Lagrangian transport model STILT driven by ECMWF analysis and short-term forecast meteorological fields together with emission sector and fuel-type specific emissions of CO2, CH4 and CO from EDGARv4.3 at a spatial resolution of 0.1 x 0.1 deg., providing an atmospheric fingerprint of anthropogenic emissions for multiple trace gases. We combine the regional STILT simulations with lateral boundary conditions for CO2 and CO from MACC forecasts and CH4 from TM3 simulations. Here we apply this framework to airborne in-situ measurements made in the context of IAGOS (In-service Aircraft for a Global Observing System) and in the context of a HALO mission conducted for testing the active remote sensing system CHARM-F during April/May 2015 over central Europe. Simulated tracer distributions are compared to observed profiles of CO2, CH4, and CO, and the potential for a multi-species inversion using synergies between different tracers is assessed with respect to the uncertainty reduction in retrieved emission fluxes. Implications for inversions solving for anthropogenic emissions using atmospheric observations from ICOS (Integrated Carbon Observing System) are discussed.
NASA Astrophysics Data System (ADS)
Jones, Mackenzie
2018-01-01
At the center of essentially every massive galaxy is a monstrous black hole producing luminous radiation driven by the accretion of gas. By observing these active galactic nuclei (AGN) we may trace the growth of black holes across cosmic time. However, our knowledge of the full underlying AGN population is hindered by complex observational biases. My research aims to untangle these biases by using a novel approach to simulate the impact of selection effects on multiwavelength observations.The most statistically powerful studies of AGN to date come from optical spectroscopic surveys, with some reporting a complex relationship between AGN accretion rates and host galaxy characteristics. However, the optical waveband can be strongly influenced by selection effects and dilution from host galaxy star formation. I have shown that accounting for selection effects, the Eddington ratio distribution for optically-selected AGN is consistent with a broad power-law, as seen in the X-rays (Jones et al. 2016). This suggests that a universal Eddington ratio distribution may be enough to describe the full multiwavelength AGN population.Building on these results, I have expanded a semi-numerical galaxy formation simulation to include this straightforward prescription for AGN accretion and explicitly model selection effects. I have found that a simple model for AGN accretion can broadly reproduce the host galaxies and halos of X-ray AGN, and that different AGN selection techniques yield samples with very different host galaxy properties (Jones et al. 2017). Finally, I will discuss the capabilities of this simulation to build synthetic multiwavelength SEDs in order to explore what AGN populations would be detected with the next generation of observatories. This research is supported by a NASA Jenkins Graduate Fellowship under grant no. NNX15AU32H.
Szostek, Kamil; Piórkowski, Adam
2016-10-01
Ultrasound (US) imaging is one of the most popular techniques used in clinical diagnosis, mainly due to lack of adverse effects on patients and the simplicity of US equipment. However, the characteristics of the medium cause US imaging to imprecisely reconstruct examined tissues. The artifacts are the results of wave phenomena, i.e. diffraction or refraction, and should be recognized during examination to avoid misinterpretation of an US image. Currently, US training is based on teaching materials and simulators and ultrasound simulation has become an active research area in medical computer science. Many US simulators are limited by the complexity of the wave phenomena, leading to intensive sophisticated computation that makes it difficult for systems to operate in real time. To achieve the required frame rate, the vast majority of simulators reduce the problem of wave diffraction and refraction. The following paper proposes a solution for an ultrasound simulator based on methods known in geophysics. To improve simulation quality, a wavefront construction method was adapted which takes into account the refraction phenomena. This technique uses ray tracing and velocity averaging to construct wavefronts in the simulation. Instead of a geological medium, real CT scans are applied. This approach can produce more realistic projections of pathological findings and is also capable of providing real-time simulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Simulation of photons from plasmas for the applications to display devices
NASA Astrophysics Data System (ADS)
Lee, Hae June; Yoon, Hyun Jin; Lee, Jae Koo
2007-07-01
Numerical modeling of the photon transport of the ultraviolet (UV) and the visible lights are presented for plasma based display devices. The transport of UV lights which undergo resonance trapping by ground state atoms is solved by using the Holstein equation. After the UV lights are transformed to visible lights at the phosphor surfaces, the visible lights experience complicated traces inside the cell and finally are emitted toward the viewing window after having some power loss within the cell. A three-dimensional ray trace of the visible lights is calculated with a radiosity model. These simulations for the photons strengthen plasma discharge modeling for the application to display devices.
Zlotopol'skiĭ, V M; Smolenskaia, T S
2000-01-01
Subject of the investigation was the balance of harmful trace contaminants (HTC) between the air moisture condensate and air in a simulator of the MIR moisture condensation unit. Experiments involved various classes of water-solvent compounds including alcohols (C1-C4), ketons (C1-C2), aldehydes (C1-C2), fatty acids (C2-C4), esters (acetates C4-C6), and ammonium. For most of the compounds, removal efficiency correlates with air humidity and virtually does not depend on the HTC concentration within the range of 0.25 to 59.1 mg/m3.
A Comparison of Observed and Simulated 1990 – 2010 U.S. Ozone Trends
In this study, we analyze ozone concentrations from long-term (1990 – 2010) WRF-CMAQ simulations driven by year specific meteorology and emissions. These simulations allow us to compare observed and simulated ozone trends in order to evaluate the model’s ability to pr...
Abaqus Simulations of Rock Response to Dynamic Loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, David W.; Coblentz, David
The LANL Geodynamics Team has been applying Abaqus modeling to achieve increasingly complex simulations. Advancements in Abaqus model building and simulation tools allows this progress. We use Lab-developed constitutive models, the fully coupled CEL Abaqus and general contact to simulate response of realistic sites to explosively driven shock.
NASA Astrophysics Data System (ADS)
Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.
2015-10-01
We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.
Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.
Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W
2012-01-01
Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.
Simulating Freshwater Availability under Future Climate Conditions
NASA Astrophysics Data System (ADS)
Zhao, F.; Zeng, N.; Motesharrei, S.; Gustafson, K. C.; Rivas, J.; Miralles-Wilhelm, F.; Kalnay, E.
2013-12-01
Freshwater availability is a key factor for regional development. Precipitation, evaporation, river inflow and outflow are the major terms in the estimate of regional water supply. In this study, we aim to obtain a realistic estimate for these variables from 1901 to 2100. First we calculated the ensemble mean precipitation using the 2011-2100 RCP4.5 output (re-sampled to half-degree spatial resolution) from 16 General Circulation Models (GCMs) participating the Coupled Model Intercomparison Project Phase 5 (CMIP5). The projections are then combined with the half-degree 1901-2010 Climate Research Unit (CRU) TS3.2 dataset after bias correction. We then used the combined data to drive our UMD Earth System Model (ESM), in order to generate evaporation and runoff. We also developed a River-Routing Scheme based on the idea of Taikan Oki, as part of the ESM. It is capable of calculating river inflow and outflow for any region, driven by the gridded runoff output. River direction and slope information from Global Dominant River Tracing (DRT) dataset are included in our scheme. The effects of reservoirs/dams are parameterized based on a few simple factors such as soil moisture, population density and geographic regions. Simulated river flow is validated with river gauge measurements for the world's major rivers. We have applied our river flow calculation to two data-rich watersheds in the United States: Phoenix AMA watershed and the Potomac River Basin. The results are used in our SImple WAter model (SIWA) to explore water management options.
Beam-plasma coupling physics in support of active experiments
NASA Astrophysics Data System (ADS)
Yakymenko, K.; Delzanno, G. L.; Roytershteyn, V.
2017-12-01
The recent development of compact relativistic accelerators might open up a new era of active experiments in space, driven by important scientific and national security applications. Examples include using electron beams to trace magnetic field lines and establish causality between physical processes occurring in the magnetosphere and those in the ionosphere. Another example is the use of electron beams to trigger waves in the near-Earth environment. Waves could induce pitch-angle scattering and precipitation of energetic electrons, acting as an effective radiation belt remediation scheme. In this work, we revisit the coupling between an electron beam and a magnetized plasma in the framework of linear cold-plasma theory. We show that coupling can occur through two different regimes. In the first, a non-relativistic beam radiates through whistler waves. This is well known, and was in fact the focus of many rockets and space-shuttle campaigns aimed at demonstrating whistler emissions in the eighties. In the second regime, the beam radiates through extraordinary (R-X) modes. Nonlinear simulations with a highly-accurate Vlasov code support the theoretical results qualitatively and demonstrate that the radiated power through R-X modes can be much larger than in the whistler regime. Test-particle simulations in the wave electromagnetic field will also be presented to assess the efficiency of these waves in inducing pitch-angle scattering via wave-particle interactions. Finally, the implications of these results for a rocket active experiment in the ionosphere and for a radiation belt remediation scheme will be discussed.
Surface CO2 Flux in Weekly Time Resolution Over the Globe Inferred From CONTRAIL Data set
NASA Astrophysics Data System (ADS)
Taguchi, S.; Machida, T.; Matsueda, H.; Sawa, Y.
2008-12-01
Concentrations of CO2 observed on passenger aircrafts are ready for data assimilation in biogeochemical models. Five auto measurement system called the continuous CO2 measuring Equipments (CME) are installed on Boeing 747 and 777 and are measuring CO2 in every 10 second in ascending and descending mode and every 1 minute during level flight (Machida et al., doi:10.1175/2008JTECHA1082.1). The measurement system, named comprehensive observation network for trace gases by airliner (CONTRAIL) has been tested in 2006 and is in full operation since November 2006. In this presentation, we will show a preliminary result of inverse calculation to estimate weekly sources and sinks of CO2 in 2007 at 64 surface areas on the globe. About 30000 data world wide extending from 3km to 11 km in 2007 were selected from full data set due to a limitation of our solver. A global atmospheric transport model driven with a meteorological data set of ECMWF was used to derive a gain matrix which represents a response at a sampling point of concentrations from a continuous release of CO2 for a week at individual area. Fluxes in 56 weeks starting from 5th December 2006 were estimated. The root mean squared error between concentrations simulated using weekly fluxes and CONTRAIL was 1.6ppm which improved 12 percent from that of concentrations simulated using monthly fluxes estimated from other data set.
Prospects for Off-axis Current Drive via High Field Side Lower Hybrid Current Drive in DIII-D
NASA Astrophysics Data System (ADS)
Wukitch, S. J.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Holcomb, C.; Park, J. M.; Pinsker, R. I.
2017-10-01
An outstanding challenge for an economical, steady state tokamak is efficient off-axis current drive scalable to reactors. Previous studies have focused on high field side (HFS) launch of lower hybrid waves for current drive (LHCD) in double null configurations in reactor grade plasmas. The goal of this work is to find a HFS LHCD scenario for DIII-D that balances coupling, power penetration and damping. The higher magnetic field on the HFS improves wave accessibility, which allows for lower n||waves to be launched. These waves penetrate farther into the plasma core before damping at higher Te yielding a higher current drive efficiency. Utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D), wave penetration, absorption and drive current profiles in high performance DIII-D H-Mode plasmas were investigated. We found LH scenarios with single pass absorption, excellent wave penetration to r/a 0.6-0.8, FWHM r/a=0.2 and driven current up to 0.37 MA/MW coupled. These simulations indicate that HFS LHCD has potential to achieve efficient off-axis current drive in DIII-D and the latest results will be presented. Work supported by U.S. Dept. of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award No. DE-FC02-04ER54698 and Contract No. DE-FC02-01ER54648 under Scientific Discovery through Advanced Computing Initiative.
Deployment and retraction of a cable-driven solar array: Testing and simulation
NASA Technical Reports Server (NTRS)
Kumar, P.; Pellegrino, S.
1995-01-01
The paper investigates three critical areas in cable-driven rigid-panel solar arrays: First, the variation of deployment and retraction cable tensions due to friction at the hinges; Second, the change in deployment dynamics associated with different deployment histories; Third, the relationship between the level of pre-tension in the closed contact loops and the synchronization of deployment. A small scale model array has been made and tested, and its behavior has been compared to numerical simulations.
Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling
2006-01-01
Hidden populations, such as injection drug users and sex workers, are central to a number of public health problems. However, because of the nature of these groups, it is difficult to collect accurate information about them, and this difficulty complicates disease prevention efforts. A recently developed statistical approach called respondent-driven sampling improves our ability to study hidden populations by allowing researchers to make unbiased estimates of the prevalence of certain traits in these populations. Yet, not enough is known about the sample-to-sample variability of these prevalence estimates. In this paper, we present a bootstrap method for constructing confidence intervals around respondent-driven sampling estimates and demonstrate in simulations that it outperforms the naive method currently in use. We also use simulations and real data to estimate the design effects for respondent-driven sampling in a number of situations. We conclude with practical advice about the power calculations that are needed to determine the appropriate sample size for a study using respondent-driven sampling. In general, we recommend a sample size twice as large as would be needed under simple random sampling. PMID:16937083
NASA Astrophysics Data System (ADS)
Aono, Masami; Harata, Tomo; Odawara, Taku; Asai, Shinnosuke; Orihara, Dai; Nogi, Masaya
2018-01-01
Amorphous carbon nitride (a-CN x ) thin films deposited by reactive sputtering have great potential for driving source applications of light-driven active devices. We demonstrate, for the first time, the photoinduced deformation of a-CN x deposited on flexible substrates, namely, poly(ethylene naphthalate) (PEN) films and transparent cellulose nanopaper. a-CN x films without delamination were obtained on both substrates. By decreasing the thickness of PEN films, the photoinduced deformation became extremely large. A light-driven pump was fabricated using a-CN x -coated PEN films, and then the pumping motion was observed up to 10 Hz. When a He-Ne laser traced the surface of a-CN x films deposited on the nanopaper, the sample moved to the opposite side of the laser spot. The motion involved repeated expansions and contractions similar to the motion of caterpillars occurring owing to the temporary photoinduced deformation of a-CN x films.
Simulations as a tool for higher mass resolution spectrometer: Lessons from existing observations
NASA Astrophysics Data System (ADS)
Nicolaou, Georgios; Yamauchi, Masatoshi; Nilsson, Hans; Wieser, Martin; Fedorov, Andrei
2017-04-01
Scientific requirements of each mission are crucial for the instrument's design. Ion tracing simulations of instruments can be helpful to characterize their performance, identify their limitations and improving the design for future missions. However, simulations provide the best performance in ideal case, and the actual response is determined by many other factors. Therefore, simulations should be compared with observations when possible. Characterizing the actual response of a running instrument gives valuable lessons for the future design of test instruments with the same detection principle before spending resources to build and calibrate them. In this study we use an ion tracing simulation of the Ion Composition Analyser (ICA) on board ROSETTA, in order to characterize its response and to compare it with the observations. It turned out that, due to the complicated unexpected response of the running instrument, the heavy cometary ions and molecules are sometimes difficult to be resolved. However, preliminary simulation of a slightly modified design predicts much higher mass resolution. Even after considering the complicated unexpected response, we safely expect that the modified design can resolve most abundant heavy atomic ions (e.g., O^+) and molecular ions (e.g., N_2+ and O_2^+). We show the simulation results for both designs and ICA data.
Evaluation of Respondent-Driven Sampling
McCreesh, Nicky; Frost, Simon; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda Ndagire; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G
2012-01-01
Background Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex-workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total-population data. Methods Total-population data on age, tribe, religion, socioeconomic status, sexual activity and HIV status were available on a population of 2402 male household-heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, employing current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). Results We recruited 927 household-heads. Full and small RDS samples were largely representative of the total population, but both samples under-represented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven-sampling statistical-inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven-sampling bootstrap 95% confidence intervals included the population proportion. Conclusions Respondent-driven sampling produced a generally representative sample of this well-connected non-hidden population. However, current respondent-driven-sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience-sampling method, and caution is required when interpreting findings based on the sampling method. PMID:22157309
Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia
2017-08-21
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.
Luo, Yuan; Castro, Jose; Barton, Jennifer K.; Kostuk, Raymond K.; Barbastathis, George
2010-01-01
A new methodology describing the effects of aperiodic and multiplexed gratings in volume holographic imaging systems (VHIS) is presented. The aperiodic gratings are treated as an ensemble of localized planar gratings using coupled wave methods in conjunction with sequential and non-sequential ray-tracing techniques to accurately predict volumetric diffraction effects in VHIS. Our approach can be applied to aperiodic, multiplexed gratings and used to theoretically predict the performance of multiplexed volume holographic gratings within a volume hologram for VHIS. We present simulation and experimental results for the aperiodic and multiplexed imaging gratings formed in PQ-PMMA at 488nm and probed with a spherical wave at 633nm. Simulation results based on our approach that can be easily implemented in ray-tracing packages such as Zemax® are confirmed with experiments and show proof of consistency and usefulness of the proposed models. PMID:20940823
Combining ray tracing and CFD in the thermal analysis of a parabolic dish tubular cavity receiver
NASA Astrophysics Data System (ADS)
Craig, Ken J.; Marsberg, Justin; Meyer, Josua P.
2016-05-01
This paper describes the numerical evaluation of a tubular receiver used in a dish Brayton cycle. In previous work considering the use of Computational Fluid Dynamics (CFD) to perform the calculation of the absorbed radiation from the parabolic dish into the cavity as well as the resulting conjugate heat transfer, it was shown that an axi-symmetric model of the dish and receiver absorbing surfaces was useful in reducing the computational cost required for a full 3-D discrete ordinates solution, but concerns remained about its accuracy. To increase the accuracy, the Monte Carlo ray tracer SolTrace is used to perform the calculation of the absorbed radiation profile to be used in the conjugate heat transfer CFD simulation. The paper describes an approach for incorporating a complex geometry like a tubular receiver generated using CFD software into SolTrace. The results illustrate the variation of CFD mesh density that translates into the number of elements in SolTrace as well as the number of rays used in the Monte Carlo approach and their effect on obtaining a resolution-independent solution. The conjugate heat transfer CFD simulation illustrates the effect of applying the SolTrace surface heat flux profile solution as a volumetric heat source to heat up the air inside the tube. Heat losses due to convection and thermal re-radiation are also determined as a function of different tube absorptivities.
Global MHD simulations driven by idealized Alfvenic fluctuations in the solar wind
NASA Astrophysics Data System (ADS)
Claudepierre, S. G.
2017-12-01
High speed solar wind streams (HSSs) and corotating interaction regions (CIRs) often lead to MeV electron flux enhancements the Earth's outer radiation belt. The relevant physical processes responsible for these enhancements are not entirely understood. We investigate the potential role that solar wind Alfvenic fluctuations, intrinsic structures embedded in the HSS/CIRs, play in radiation belt dynamics. In particular, we explore the hypothesis that magnetospheric ultra-low frequency (ULF) pulsations driven by interplanetary magnetic field fluctuations are the intermediary mechanism responsible for the pronounced effect that HSS/CIRs have on the outer electron radiation belt. We examine these effects using global, three-dimensional magnetohydrodynamic (MHD) simulations driven by idealized interplanetary Alfvenic fluctuations, both monochromatic and broadband noise (Kolmogorov turbulence).
Dynamic Data-Driven UAV Network for Plume Characterization
2016-05-23
data collection where simulations and measurements become a symbiotic feedback control system where simulations inform measurement locations and the...and measurements become a symbiotic feedback control system where simulations inform measurement locations and the measured data augments simulations...data analysis techniques with mobile sensor data collection where simulations and measurements become a symbiotic feedback control system where
Regional/Urban Air Quality Modeling Assessment over China Using the Models-3/CMAQ System
NASA Astrophysics Data System (ADS)
Fu, J. S.; Jang, C. C.; Streets, D. G.; Li, Z.; Wang, L.; Zhang, Q.; Woo, J.; Wang, B.
2004-12-01
China is the world's most populous country with a fast growing economy that surges in energy comsumption. It has become the second largest energy consumer after the United States although the per capita level is much lower than those found in developed or developing countries. Air pollution has become one of the most important problems of megacities such as Beijing and Shanghai and has serious impacts on public health, causes urban and regional haze. The Models-3/CMAQ modeling application that has been conducted to simulate multi-pollutants in China is presented. The modeling domains cover East Asia (36-kmx36-km) including Japan, South Korea, Korea DPR, Indonesia, Thailand, India and Mongolia, East China (12-kmx12-km) and Beijing/Tianjing, Shanghai (4-kmx4-km). For this study, the Asian emission inventory based on the emission estimates of the year 2000 that supported the NASA TRACE-P program is used. However, the TRACE-P emission inventory was developed for a different purpose such as global modeling. TRACE-P emission inventory may not be practical in urban area. There is no China national emission inventory available. Therefore, TRACE-P emission inventory is used on the East Asia and East China domains. The 8 districts of Beijing and Shanghai local emissions inventory are used to replace TRACE-P in 4-km domains. The meteorological data for the Models-3/CMAQ run are extracted from MM5. The model simulation is performed during the period January 1-20 and July 1-20, 2001 that presented the winter and summer time for China areas. The preliminary model results are shown O3 concentrations are in the range of 80 -120 ppb in the urban area. Lower urban O3 concentrations are shown in Beijing areas, possibly due to underestimation of urban man-made VOC emissions in the TRACE-P inventory and local inventory. High PM2.5 (70ug/m3 in summer and 150ug/m3 in winter) were simulated over metropolitan & downwind areas with significant secondary constituents. More comprehensive simulations in the Beijing, Shanghai areas are presented with sensitivity analysis. A comparison against available ozone and PM measurement data in Beijing, Shanghai is presented. The local emission inventory improvement in China is to be suggested to investigate. The modeling configuration of the Beijing 4-km x 4-km domain is to demonstrate the development of cost-effective control strategies for the air pollution control such as 2008 Olympic Game air quality management plan.
Implications of Tidally Driven Convection and Lithospheric Arguments on the Topography of Europa
NASA Astrophysics Data System (ADS)
Sattler-Cassara, L.; Lyra, W.
2017-11-01
We present 3D numerical simulations of tidally driven convection in Europa. By associating the resulting normal stress from plumes with surface weakening and resistance from shallower layers, we successfully reproduce domes and double ridges.
The Status of Multi-Dimensional Core-Collapse Supernova Models
NASA Astrophysics Data System (ADS)
Müller, B.
2016-09-01
Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the `perturbations-aided neutrino-driven mechanism,' whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.
NASA Astrophysics Data System (ADS)
Nour, Mohamed
Constructing an effective statistical model and a simulation tool that can predict the phenomenon of random telegraph signals (RTS) is the objective of this work. The continuous scaling down of metal oxide -- semiconductor field effect transistors (MOSFETs) makes charging/discharging traps(s) located at the silicon/silicon dioxide interface or deep in the oxide bulk by mobile charge(s) a more pronounced problem for both analog and digital applications. The intent of this work is to develop an RTS statistical model and a simulation tool based on first principles and supported by extensive experimental data. The newly developed RTS statistical model and its simulation tool should be able to replicate and predict the RTS in time and frequency domains. First, room temperature RTS measurements are performed which provide limited information about the trap. They yield the extraction of some trap and RTS characteristics such as average capture and emission times associated with RTS traces, trap position in the oxide with respect to the Si/SiO 2 interface and along the channel with respect to the source, capture cross section, and trap energies in the Si and SiO2 band -- gaps. Variable temperature measurements, on the other hand, yield much more valuable information. Variable temperature RTS measurements from room temperature down to 80 K were performed, with the MOSFET biased from threshold voltage to strong inversion, in the linear and saturation regions. Variable temperature RTS measurements yield the extraction of trap characteristics such as capture cross -- section prefactor, capture and emission activation energies, change in entropy and enthalpy, and relaxation energy associated with a trap from which the nature and origin of a defect center can be identified. The newly developed Random Telegraph Signals Simulation (RTSSIM) is based on several physical principles and mechanisms e.g. (1) capturing and emitting a mobile charge from and to the channel is governed by phonon- assisted- tunneling, (2) traps only within a few kBT of the Fermi energy level are considered electrically active, (3) trap density is taken as U -- shaped in energy in the silicon band-gap, (4) device scalability is accounted for, (5) and temperature dependence of all parameters is considered. RTSSIM reconstructs the RTS traces in time domain from which the power spectral density (PSD) is evaluated. If there is 20 or more active traps, RTSSIM evaluates the PSD from the superposition of the RTS spectra. RTSSIM extracts RTS and trap characteristics from the simulated RTS data and outputs them to MS Excel files for further analyses and study. The novelty of this work is: (1) it is the first time quantum trap states have been accurately assigned to each switching level in a complex RTS corresponding to dependently and independently interacting traps, (2) new physics-based measurement-driven model and simulation tool has been developed for RTS phenomenon in a MOSFET, (3) and it is the first time a species in SiO2 responsible for RTS has been identified through time-domain measurements and extensive analysis using four trap characteristics at the same time.
NASA Technical Reports Server (NTRS)
Cummings, Kristin A.; Pickering, Kenneth; Barth, Mary; Weinheimer, A.; Bela, M.; Li, Y; Allen, D.; Bruning, E.; MacGorman, D.; Rutledge, S.;
2015-01-01
The Deep Convective Clouds and Chemistry (DC3) field campaign in 2012 provided a plethora of aircraft and ground-based observations (e.g., trace gases, lightning and radar) to study deep convective storms, their convective transport of trace gases, and associated lightning occurrence and production of nitrogen oxides (NOx). This is a continuation of previous work, which compared lightning observations (Oklahoma Lightning Mapping Array and National Lightning Detection Network) with flashes generated by various flash rate parameterization schemes (FRPSs) from the literature in a Weather Research and Forecasting Chemistry (WRF-Chem) model simulation of the 29-30 May 2012 Oklahoma thunderstorm. Based on the Oklahoma radar observations and Lightning Mapping Array data, new FRPSs are being generated and incorporated into the model. The focus of this analysis is on estimating the amount of lightning-generated nitrogen oxides (LNOx) produced per flash in this storm through a series of model simulations using different production per flash assumptions and comparisons with DC3 aircraft anvil observations. The result of this analysis will be compared with previously studied mid-latitude storms. Additional model simulations are conducted to investigate the upper troposphere transport, distribution, and chemistry of the LNOx plume during the 24 hours following the convective event to investigate ozone production. These model-simulated mixing ratios are compared against the aircraft observations made on 30 May over the southern Appalachians.
Formaldehyde in Absorption: Tracing Molecular Gas in Early-Type Galaxies
NASA Astrophysics Data System (ADS)
Dollhopf, Niklaus M.; Donovan Meyer, Jennifer
2016-01-01
Early-Type Galaxies (ETGs) have been long-classified as the red, ellipsoidal branch of the classic Hubble tuning fork diagram of galactic structure. In part with this classification, ETGs are thought to be molecular and atomic gas-poor with little to no recent star formation. However, recent efforts have questioned this ingrained classification. Most notably, the ATLAS3D survey of 260 ETGs within ~40 Mpc found 22% contain CO, a common tracer for molecular gas. The presence of cold molecular gas also implies the possibility for current star formation within these galaxies. Simulations do not accurately predict the recent observations and further studies are necessary to understand the mechanisms of ETGs.CO traces molecular gas starting at densities of ~102 cm-3, which makes it a good tracer of bulk molecular gas, but does little to constrain the possible locations of star formation within the cores of dense molecular gas clouds. Formaldehyde (H2CO) traces molecular gas on the order of ~104 cm-3, providing a further constraint on the location of star-forming gas, while being simple enough to possibly be abundant in gas-poor ETGs. In cold molecular clouds at or above ~104 cm-3 densities, the structure of formaldehyde enables a phenomenon in which rotational transitions have excitation temperatures driven below the temperature of the cosmic microwave background (CMB), ~2.7 K. Because the CMB radiates isotropically, formaldehyde can be observed in absorption, independent of distance, as a tracer of moderately-dense molecular clouds and star formation.This novel observation technique of formaldehyde was incorporated for observations of twelve CO-detected ETGs from the ATLAS3D sample, including NGC 4710 and PGC 8815, to investigate the presence of cold molecular gas, and possible star formation, in ETGs. We present images from the Very Large Array, used in its C-array configuration, of the J = 11,0 - 11,1 transition of formaldehyde towards these sources. We report our preliminary results here.Niklaus M. Dollhopf gratefully acknowledges the support of the National Radio Astronomy Observatory Summer Student REU Program sponsored by the National Science Foundation.
NASA Astrophysics Data System (ADS)
Christensen, David B.; Basaeri, Hamid; Roundy, Shad
2017-12-01
In acoustic power transfer systems, a receiver is displaced from a transmitter by an axial depth, a lateral offset (alignment), and a rotation angle (orientation). In systems where the receiver’s position is not fixed, such as a receiver implanted in biological tissue, slight variations in depth, orientation, or alignment can cause significant variations in the received voltage and power. To address this concern, this paper presents a computationally efficient technique to model the effects of depth, orientation, and alignment via ray tracing (DOART) on received voltage and power in acoustic power transfer systems. DOART combines transducer circuit equivalent models, a modified version of Huygens principle, and ray tracing to simulate pressure wave propagation and reflection between a transmitter and a receiver in a homogeneous medium. A reflected grid method is introduced to calculate propagation distances, reflection coefficients, and initial vectors between a point on the transmitter and a point on the receiver for an arbitrary number of reflections. DOART convergence and simulation time per data point is discussed as a function of the number of reflections and elements chosen. Finally, experimental data is compared to DOART simulation data in terms of magnitude and shape of the received voltage signal.
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Word, Andrea; Nair, Udasysankar
2014-01-01
Threshold concepts in any discipline are the core concepts an individual must understand in order to master a discipline. By their very nature, these concepts are troublesome, irreversible, integrative, bounded, discursive, and reconstitutive. Although grasping threshold concepts can be extremely challenging for each learner as s/he moves through stages of cognitive development relative to a given discipline, the learner's grasp of these concepts determines the extent to which s/he is prepared to work competently and creatively within the field itself. The movement of individuals from a state of ignorance of these core concepts to one of mastery occurs not along a linear path but in iterative cycles of knowledge creation and adjustment in liminal spaces - conceptual spaces through which learners move from the vaguest awareness of concepts to mastery, accompanied by understanding of their relevance, connectivity, and usefulness relative to questions and constructs in a given discipline. For example, challenges in the teaching and learning of atmospheric science can be traced to threshold concepts in fluid dynamics. In particular, Dynamic Meteorology is one of the most challenging courses for graduate students and undergraduates majoring in Atmospheric Science. Dynamic Meteorology introduces threshold concepts - those that prove troublesome for the majority of students but that are essential, associated with fundamental relationships between forces and motion in the atmosphere and requiring the application of basic classical statics, dynamics, and thermodynamic principles to the three dimensionally varying atmospheric structure. With the explosive growth of data available in atmospheric science, driven largely by satellite Earth observations and high-resolution numerical simulations, paradigms such as that of dataintensive science have emerged. These paradigm shifts are based on the growing realization that current infrastructure, tools and processes will not allow us to analyze and fully utilize the complex and voluminous data that is being gathered. In this emerging paradigm, the scientific discovery process is driven by knowledge extracted from large volumes of data. In this presentation, we contend that this paradigm naturally lends to inquiry-driven pedagogy where knowledge is discovered through inductive engagement with large volumes of data rather than reached through traditional, deductive, hypothesis-driven analyses. In particular, data-intensive techniques married with an inductive methodology allow for exploration on a scale that is not possible in the traditional classroom with its typical problem sets and static, limited data samples. In addition, we identify existing gaps and possible solutions for addressing the infrastructure and tools as well as a pedagogical framework through which to implement this inductive approach.
NASA Astrophysics Data System (ADS)
Balin Talamba, D.; Higy, C.; Joerin, C.; Musy, A.
The paper presents an application concerning the hydrological modelling for the Haute-Mentue catchment, located in western Switzerland. A simplified version of Topmodel, developed in a Labview programming environment, was applied in the aim of modelling the hydrological processes on this catchment. Previous researches car- ried out in this region outlined the importance of the environmental tracers in studying the hydrological behaviour and an important knowledge has been accumulated dur- ing this period concerning the mechanisms responsible for runoff generation. In con- formity with the theoretical constraints, Topmodel was applied for an Haute-Mentue sub-catchment where tracing experiments showed constantly low contributions of the soil water during the flood events. The model was applied for two humid periods in 1998. First, the model calibration was done in order to provide the best estimations for the total runoff. Instead, the simulated components (groundwater and rapid flow) showed far deviations from the reality indicated by the tracing experiments. Thus, a new calibration was performed including additional information given by the environ- mental tracing. The calibration of the model was done by using simulated annealing (SA) techniques, which are easy to implement and statistically allow for converging to a global minimum. The only problem is that the method is time and computer consum- ing. To improve this, a version of SA was used which is known as very fast-simulated annealing (VFSA). The principles are the same as for the SA technique. The random search is guided by certain probability distribution and the acceptance criterion is the same as for SA but the VFSA allows for better taking into account the ranges of vari- ation of each parameter. Practice with Topmodel showed that the energy function has different sensitivities along different dimensions of the parameter space. The VFSA algorithm allows differentiated search in relation with the sensitivity of the param- eters. The environmental tracing was used in the aim of constraining the parameter space in order to better simulate the hydrological behaviour of the catchment. VFSA outlined issues for characterising the significance of Topmodel input parameters as well as their uncertainty for the hydrological modelling.
Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics
Veshtort, Mikhail; Griffin, Robert G.
2011-01-01
Proton-driven spin diffusion (PDSD) experiments in rotating solids have received a great deal of attention as a potential source of distance constraints in large biomolecules. However, the quantitative relationship between the molecular structure and observed spin diffusion has remained obscure due to the lack of an accurate theoretical description of the spin dynamics in these experiments. We start with presenting a detailed relaxation theory of PDSD in rotating solids that provides such a description. The theory applies to both conventional and radio-frequency-assisted PDSD experiments and extends to the non-Markovian regime to include such phenomena as rotational resonance (R2). The basic kinetic equation of the theory in the non-Markovian regime has the form of a memory function equation, with the role of the memory function played by the correlation function. The key assumption used in the derivation of this equation expresses the intuitive notion of the irreversible dissipation of coherences in macroscopic systems. Accurate expressions for the correlation functions and for the spin diffusion constants are given. The theory predicts that the spin diffusion constants governing the multi-site PDSD can be approximated by the constants observed in the two-site diffusion. Direct numerical simulations of PDSD dynamics via reversible Liouville-von Neumann equation are presented to support and compliment the theory. Remarkably, an exponential decay of the difference magnetization can be observed in such simulations in systems consisting of only 12 spins. This is a unique example of a real physical system whose typically macroscopic and apparently irreversible behavior can be traced via reversible microscopic dynamics. An accurate value for the spin diffusion constant can be usually obtained through direct simulations of PDSD in systems consisting of two 13C nuclei and about ten 1H nuclei from their nearest environment. Spin diffusion constants computed by this method are in excellent agreement with the spin diffusion constants obtained through equations given by the relaxation theory of PDSD. The constants resulting from these two approaches were also in excellent agreement with the results of 2D rotary resonance recoupling proton-driven spin diffusion (R3-PDSD) experiments performed in three model compounds, where magnetization exchange occurred over distances up to 4.9 Å. With the methodology presented, highly accurate internuclear distances can be extracted from such data. Relayed transfer of magnetization between distant nuclei appears to be the main (and apparently resolvable) source of uncertainty in such measurements. The non-Markovian kinetic equation was applied to the analysis of the R2 spin dynamics. The conventional semi-phenomenological treatment of relxation in R2 has been shown to be equivalent to the assumption of the Lorentzian spectral density function in the relaxatoin theory of PDSD. As this assumption is a poor approximation in real physical systems, the conventional R2 treatment is likely to carry a significant model error that has not been recognized previously. The relaxation theory of PDSD appears to provide an accurate, parameter-free alternative. Predictions of this theory agreed well with the full quantum mechanical simulations of the R2 dynamics in the few simple model systems we considered. PMID:21992326
Stability analysis of hybrid-driven underwater glider
NASA Astrophysics Data System (ADS)
Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang
2017-10-01
Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
Cost-aware request routing in multi-geography cloud data centres using software-defined networking
NASA Astrophysics Data System (ADS)
Yuan, Haitao; Bi, Jing; Li, Bo Hu; Tan, Wei
2017-03-01
Current geographically distributed cloud data centres (CDCs) require gigantic energy and bandwidth costs to provide multiple cloud applications to users around the world. Previous studies only focus on energy cost minimisation in distributed CDCs. However, a CDC provider needs to deliver gigantic data between users and distributed CDCs through internet service providers (ISPs). Geographical diversity of bandwidth and energy costs brings a highly challenging problem of how to minimise the total cost of a CDC provider. With the recently emerging software-defined networking, we study the total cost minimisation problem for a CDC provider by exploiting geographical diversity of energy and bandwidth costs. We formulate the total cost minimisation problem as a mixed integer non-linear programming (MINLP). Then, we develop heuristic algorithms to solve the problem and to provide a cost-aware request routing for joint optimisation of the selection of ISPs and the number of servers in distributed CDCs. Besides, to tackle the dynamic workload in distributed CDCs, this article proposes a regression-based workload prediction method to obtain future incoming workload. Finally, this work evaluates the cost-aware request routing by trace-driven simulation and compares it with the existing approaches to demonstrate its effectiveness.
NASA Astrophysics Data System (ADS)
Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve
2012-10-01
Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.
On Estimating End-to-End Network Path Properties
NASA Technical Reports Server (NTRS)
Allman, Mark; Paxson, Vern
1999-01-01
The more information about current network conditions available to a transport protocol, the more efficiently it can use the network to transfer its data. In networks such as the Internet, the transport protocol must often form its own estimates of network properties based on measurements per-formed by the connection endpoints. We consider two basic transport estimation problems: determining the setting of the retransmission timer (RTO) for are reliable protocol, and estimating the bandwidth available to a connection as it begins. We look at both of these problems in the context of TCP, using a large TCP measurement set [Pax97b] for trace-driven simulations. For RTO estimation, we evaluate a number of different algorithms, finding that the performance of the estimators is dominated by their minimum values, and to a lesser extent, the timer granularity, while being virtually unaffected by how often round-trip time measurements are made or the settings of the parameters in the exponentially-weighted moving average estimators commonly used. For bandwidth estimation, we explore techniques previously sketched in the literature [Hoe96, AD98] and find that in practice they perform less well than anticipated. We then develop a receiver-side algorithm that performs significantly better.
ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.
2012-10-01
Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.
A Kinematical Detection of Two Embedded Jupiter-mass Planets in HD 163296
NASA Astrophysics Data System (ADS)
Teague, Richard; Bae, Jaehan; Bergin, Edwin A.; Birnstiel, Tilman; Foreman-Mackey, Daniel
2018-06-01
We present the first kinematical detection of embedded protoplanets within a protoplanetary disk. Using archival Atacama Large Millimetre Array (ALMA) observations of HD 163296, we demonstrate a new technique to measure the rotation curves of CO isotopologue emission to sub-percent precision relative to the Keplerian rotation. These rotation curves betray substantial deviations caused by local perturbations in the radial pressure gradient, likely driven by gaps carved in the gas surface density by Jupiter-mass planets. Comparison with hydrodynamic simulations shows excellent agreement with the gas rotation profile when the disk surface density is perturbed by two Jupiter-mass planets at 83 and 137 au. As the rotation of the gas is dependent upon the pressure of the total gas component, this method provides a unique probe of the gas surface density profile without incurring significant uncertainties due to gas-to-dust ratios or local chemical abundances that plague other methods. Future analyses combining both methods promise to provide the most accurate and robust measures of embedded planetary mass. Furthermore, this method provides a unique opportunity to explore wide-separation planets beyond the mm continuum edge and to trace the gas pressure profile essential in modeling grain evolution in disks.
Eguchi, Akihiro; Walters, Daniel; Peerenboom, Nele; Dury, Hannah; Fox, Elaine; Stringer, Simon
2017-03-01
[Correction Notice: An Erratum for this article was reported in Vol 85(3) of Journal of Consulting and Clinical Psychology (see record 2017-07144-002). In the article, there was an error in the Discussion section's first paragraph for Implications and Future Work. The in-text reference citation for Penton-Voak et al. (2013) was incorrectly listed as "Blumenfeld, Preminger, Sagi, and Tsodyks (2006)". All versions of this article have been corrected.] Objective: Cognitive bias modification (CBM) eliminates cognitive biases toward negative information and is efficacious in reducing depression recurrence, but the mechanisms behind the bias elimination are not fully understood. The present study investigated, through computer simulation of neural network models, the neural dynamics underlying the use of CBM in eliminating the negative biases in the way that depressed patients evaluate facial expressions. We investigated 2 new CBM methodologies using biologically plausible synaptic learning mechanisms-continuous transformation learning and trace learning-which guide learning by exploiting either the spatial or temporal continuity between visual stimuli presented during training. We first describe simulations with a simplified 1-layer neural network, and then we describe simulations in a biologically detailed multilayer neural network model of the ventral visual pathway. After training with either the continuous transformation learning rule or the trace learning rule, the 1-layer neural network eliminated biases in interpreting neutral stimuli as sad. The multilayer neural network trained with realistic face stimuli was also shown to be able to use continuous transformation learning or trace learning to reduce biases in the interpretation of neutral stimuli. The simulation results suggest 2 biologically plausible synaptic learning mechanisms, continuous transformation learning and trace learning, that may subserve CBM. The results are highly informative for the development of experimental protocols to produce optimal CBM training methodologies with human participants. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Simulations of snow distribution and hydrology in a mountain basin
Hartman, Melannie D.; Baron, Jill S.; Lammers, Richard B.; Cline, Donald W.; Band, Larry E.; Liston, Glen E.; Tague, Christina L.
1999-01-01
We applied a version of the Regional Hydro-Ecologic Simulation System (RHESSys) that implements snow redistribution, elevation partitioning, and wind-driven sublimation to Loch Vale Watershed (LVWS), an alpine-subalpine Rocky Mountain catchment where snow accumulation and ablation dominate the hydrologic cycle. We compared simulated discharge to measured discharge and the simulated snow distribution to photogrammetrically rectified aerial (remotely sensed) images. Snow redistribution was governed by a topographic similarity index. We subdivided each hillslope into elevation bands that had homogeneous climate extrapolated from observed climate. We created a distributed wind speed field that was used in conjunction with daily measured wind speeds to estimate sublimation. Modeling snow redistribution was critical to estimating the timing and magnitude of discharge. Incorporating elevation partitioning improved estimated timing of discharge but did not improve patterns of snow cover since wind was the dominant controller of areal snow patterns. Simulating wind-driven sublimation was necessary to predict moisture losses.
Drift wave turbulence simulations in LAPD
NASA Astrophysics Data System (ADS)
Popovich, P.; Umansky, M.; Carter, T. A.; Auerbach, D. W.; Friedman, B.; Schaffner, D.; Vincena, S.
2009-11-01
We present numerical simulations of turbulence in LAPD plasmas using the 3D electromagnetic code BOUT (BOUndary Turbulence). BOUT solves a system of fluid moment equations in a general toroidal equlibrium geometry near the plasma boundary. The underlying assumptions for the validity of the fluid model are well satisfied for drift waves in LAPD plasmas (typical plasma parameters ne˜1x10^12cm-3, Te˜10eV, and B ˜1kG), which makes BOUT a perfect tool for simulating LAPD. We have adapted BOUT for the cylindrical geometry of LAPD and have extended the model to include the background flows required for simulations of recent bias-driven rotation experiments. We have successfully verified the code for several linear instabilities, including resistive drift waves, Kelvin-Helmholtz and rotation-driven interchange. We will discuss first non-linear simulations and quasi-stationary solutions with self-consistent plasma flows and saturated density profiles.
NASA Astrophysics Data System (ADS)
Melis, M. T.; Mundula, F.; DessÌ, F.; Cioni, R.; Funedda, A.
2014-09-01
Unequivocal delimitation of landforms is an important issue for different purposes, from science-driven morphometric analysis to legal issues related to land conservation. This study is aimed at giving a new contribution to the morphometric approach for the delineation of the boundaries of volcanic edifices, applied to 13 monogenetic volcanoes (scoria cones) related to the Pliocene-Pleistocene volcanic cycle in Sardinia (Italy). External boundary delimitation of the edifices is discussed based on an integrated methodology using automatic elaboration of digital elevation models together with geomorphological and geological observations. Different elaborations of surface slope and profile curvature have been proposed and discussed; among them, two algorithms based on simple mathematical functions combining slope and profile curvature well fit the requirements of this study. One of theses algorithms is a modification of a function introduced by Grosse et al. (2011), which better performs for recognizing and tracing the boundary between the volcanic scoria cone and its basement. Although the geological constraints still drive the final decision, the proposed method improves the existing tools for a semi-automatic tracing of the boundaries.
NASA Astrophysics Data System (ADS)
Melis, M. T.; Mundula, F.; Dessì, F.; Cioni, R.; Funedda, A.
2014-05-01
Unequivocal delimitation of landforms is an important issue for different purposes, from science-driven morphometric analysis to legal issues related to land conservation. This study is aimed at giving a new contribution to the morphometric approach for the delineation of the boundaries of volcanic edifices, applied to 13 monogenetic volcanoes (scoria cones) related to the Pliocene-Pleistocene volcanic cycle in Sardinia (Italy). External boundary delimitation of the edifices is discussed based on an integrated methodology using automatic elaboration of digital elevation models together with geomorphological and geological observations. Different elaborations of surface slope and profile curvature have been proposed and discussed; among them, two algorithms based on simple mathematical functions combining slope and profile curvature well fit the requirements of this study. One of theses algorithms is a modification of a function already discussed by Grosse et al. (2011), which better perform for recognizing and tracing the boundary between the volcanic scoria cone and its basement. Although the geological constraints still drive the final decision, the proposed method improves the existing tools for a semi-automatic tracing of the boundaries.
An integrated theory of attention and decision making in visual signal detection.
Smith, Philip L; Ratcliff, Roger
2009-04-01
The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces complex patterns of performance. Attentional cues interact with backward masks and with spatial uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time. A computational theory of performance in this task is described. The theory links visual encoding, masking, spatial attention, visual short-term memory (VSTM), and perceptual decision making in an integrated dynamic framework. The theory assumes that decisions are made by a diffusion process driven by a neurally plausible, shunting VSTM. The VSTM trace encodes the transient outputs of early visual filters in a durable form that is preserved for the time needed to make a decision. Attention increases the efficiency of VSTM encoding, either by increasing the rate of trace formation or by reducing the delay before trace formation begins. The theory provides a detailed, quantitative account of attentional effects in spatial cuing tasks at the level of response accuracy and the response time distributions. (c) 2009 APA, all rights reserved
Abdulhadi, Mike A; Perno, Joseph R; Melhem, Elias R; Nucifora, Paolo G P
2014-01-01
In patients with spinal stenosis, magnetic resonance imaging of the cervical spine can be improved by using 3D driven-equilibrium fast spin echo sequences to provide a high-resolution assessment of osseous and ligamentous structures. However, it is not yet clear whether 3D driven-equilibrium fast spin echo sequences adequately evaluate the spinal cord itself. As a result, they are generally supplemented by additional 2D fast spin echo sequences, adding time to the examination and potential discomfort to the patient. Here we investigate the hypothesis that in patients with spinal stenosis and spondylotic myelopathy, 3D driven-equilibrium fast spin echo sequences can characterize cord lesions equally well as 2D fast spin echo sequences. We performed a retrospective analysis of 30 adult patients with spondylotic myelopathy who had been examined with both 3D driven-equilibrium fast spin echo sequences and 2D fast spin echo sequences at the same scanning session. The two sequences were inspected separately for each patient, and visible cord lesions were manually traced. We found no significant differences between 3D driven-equilibrium fast spin echo and 2D fast spin echo sequences in the mean number, mean area, or mean transverse dimensions of spondylotic cord lesions. Nevertheless, the mean contrast-to-noise ratio of cord lesions was decreased on 3D driven-equilibrium fast spin echo sequences compared to 2D fast spin echo sequences. These findings suggest that 3D driven-equilibrium fast spin echo sequences do not need supplemental 2D fast spin echo sequences for the diagnosis of spondylotic myelopathy, but they may be less well suited for quantitative signal measurements in the spinal cord.
2013-10-01
voiding contractions (NVC) during normal bladder filling. These NVC are responsible for incontinence episodes, bladder and bladder neck damage, as...eliminated, however, voiding occurred by a combination of augmented overflow incontinence (NVC-driven and a vesicosomatic reflex of the hindquarters...spinal micturition reflex, but rather an augmented overflow incontinence with a locomotor component (High amplitude pressure swings in bottom trace
2003-09-01
activity of endosymbiotic dinoflagellates (commonly called zooxanthellae ) playing a major role. During biomineralization, the carbonate skeleton...precipitation of the carbonate structure driven by the photosynthetic zooxanthellae [16]. In the Looe Key corals, the δ13C ranges from –20/00 to –30/00...in the low density portion of the skeleton reflecting an influence of zooxanthellae photosynthesis. However, during the formation of the high
NASA Astrophysics Data System (ADS)
Bahl, Mayank; Zhou, Gui-Rong; Heller, Evan; Cassarly, William; Jiang, Mingming; Scarmozzino, Rob; Gregory, G. Groot
2014-09-01
Over the last two decades there has been extensive research done to improve the design of Organic Light Emitting Diodes (OLEDs) so as to enhance light extraction efficiency, improve beam shaping, and allow color tuning through techniques such as the use of patterned substrates, photonic crystal (PCs) gratings, back reflectors, surface texture, and phosphor down-conversion. Computational simulation has been an important tool for examining these increasingly complex designs. It has provided insights for improving OLED performance as a result of its ability to explore limitations, predict solutions, and demonstrate theoretical results. Depending upon the focus of the design and scale of the problem, simulations are carried out using rigorous electromagnetic (EM) wave optics based techniques, such as finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA), or through ray optics based technique such as Monte Carlo ray-tracing. The former are typically used for modeling nanostructures on the OLED die, and the latter for modeling encapsulating structures, die placement, back-reflection, and phosphor down-conversion. This paper presents the use of a mixed-level simulation approach which unifies the use of EM wave-level and ray-level tools. This approach uses rigorous EM wave based tools to characterize the nanostructured die and generate both a Bidirectional Scattering Distribution function (BSDF) and a far-field angular intensity distribution. These characteristics are then incorporated into the ray-tracing simulator to obtain the overall performance. Such mixed-level approach allows for comprehensive modeling of the optical characteristic of OLEDs and can potentially lead to more accurate performance than that from individual modeling tools alone.
Microseismic response characteristics modeling and locating of underground water supply pipe leak
NASA Astrophysics Data System (ADS)
Wang, J.; Liu, J.
2015-12-01
In traditional methods of pipeline leak location, geophones must be located on the pipe wall. If the exact location of the pipeline is unknown, the leaks cannot be identified accurately. To solve this problem, taking into account the characteristics of the pipeline leak, we propose a continuous random seismic source model and construct geological models to investigate the proposed method for locating underground pipeline leaks. Based on two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm were utilized to obtain the time difference and the leak location. We also analyze and discuss the effect of the number of recorded traces, the survey layout, and the offset and interval of the traces on the accuracy of the estimated location. The preliminary results of the simulation and data field experiment indicate that (1) a continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D visco-acoustic equations and a staggered grid FD algorithm. (2) The cross-correlation method is effective for calculating the time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, the accuracy of the time difference is reduced by the effects of the refracted wave. (3) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential for locating leaks from underground pipelines from an array located on the ground surface. Keywords: Viscoacoustic finite-difference simulation; continuous random source; simulated annealing algorithm; pipeline leak location
Dynamically adaptive data-driven simulation of extreme hydrological flows
NASA Astrophysics Data System (ADS)
Kumar Jain, Pushkar; Mandli, Kyle; Hoteit, Ibrahim; Knio, Omar; Dawson, Clint
2018-02-01
Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.
Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2016-10-01
Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.
Quantum simulations and many-body physics with light.
Noh, Changsuk; Angelakis, Dimitris G
2017-01-01
In this review we discuss the works in the area of quantum simulation and many-body physics with light, from the early proposals on equilibrium models to the more recent works in driven dissipative platforms. We start by describing the founding works on Jaynes-Cummings-Hubbard model and the corresponding photon-blockade induced Mott transitions and continue by discussing the proposals to simulate effective spin models and fractional quantum Hall states in coupled resonator arrays (CRAs). We also analyse the recent efforts to study out-of-equilibrium many-body effects using driven CRAs, including the predictions for photon fermionisation and crystallisation in driven rings of CRAs as well as other dynamical and transient phenomena. We try to summarise some of the relatively recent results predicting exotic phases such as super-solidity and Majorana like modes and then shift our attention to developments involving 1D nonlinear slow light setups. There the simulation of strongly correlated phases characterising Tonks-Girardeau gases, Luttinger liquids, and interacting relativistic fermionic models is described. We review the major theory results and also briefly outline recent developments in ongoing experimental efforts involving different platforms in circuit QED, photonic crystals and nanophotonic fibres interfaced with cold atoms.
Sun, Xiaoqiang; Liu, Xuyang; Liu, Yaolu; Hu, Ning; Zhao, Youxuan; Ding, Xiangyan; Qin, Shiwei; Zhang, Jianyu; Zhang, Jun; Liu, Feng; Fu, Shaoyun
2017-01-01
In this study, a numerical approach—the discontinuous Meshless Local Petrov-Galerkin-Eshelby Method (MLPGEM)—was adopted to simulate and measure material plasticity in an Al 7075-T651 plate. The plate was modeled in two dimensions by assemblies of small particles that interact with each other through bonding stiffness. The material plasticity of the model loaded to produce different levels of strain is evaluated with the Lamb waves of S0 mode. A tone burst at the center frequency of 200 kHz was used as excitation. Second-order nonlinear wave was extracted from the spectrogram of a signal receiving point. Tensile-driven plastic deformation and cumulative second harmonic generation of S0 mode were observed in the simulation. Simulated measurement of the acoustic nonlinearity increased monotonically with the level of tensile-driven plastic strain captured by MLPGEM, whereas achieving this state by other numerical methods is comparatively more difficult. This result indicates that the second harmonics of S0 mode can be employed to monitor and evaluate the material or structural early-stage damage induced by plasticity. PMID:28773188
Spectral element simulation of precession driven flows in the outer cores of spheroidal planets
NASA Astrophysics Data System (ADS)
Vormann, Jan; Hansen, Ulrich
2015-04-01
A common feature of the planets in the solar system is the precession of the rotation axes, driven by the gravitational influence of another body (e.g. the Earth's moon). In a precessing body, the rotation axis itself is rotating around another axis, describing a cone during one precession period. Similar to the coriolis and centrifugal force appearing from the transformation to a rotating system, the addition of precession adds another term to the Navier-Stokes equation, the so called Poincaré force. The main geophysical motivation in studying precession driven flows comes from their ability to act as magnetohydrodynamic dynamos in planets and moons. Precession may either act as the only driving force or operate together with other forces such as thermochemical convection. One of the challenges in direct numerical simulations of such flows lies in the spheroidal shape of the fluid volume, which should not be neglected since it contributes an additional forcing trough pressure torques. Codes developed for the simulation of flows in spheres mostly use efficient global spectral algorithms that converge fast, but lack geometric flexibility, while local methods are usable in more complex shapes, but often lack high accuracy. We therefore adapted the spectral element code Nek5000, developed at Argonne National Laboratory, to the problem. The spectral element method is capable of solving for the flow in arbitrary geometries while still offering spectral convergence. We present first results for the simulation of a purely hydrodynamic, precession-driven flow in a spheroid with no-slip boundaries and an inner core. The driving by the Poincaré force is in a range where theoretical work predicts multiple solutions for a laminar flow. Our simulations indicate a transition to turbulent flows for Ekman numbers of 10-6 and lower.
LANES - LOCAL AREA NETWORK EXTENSIBLE SIMULATOR
NASA Technical Reports Server (NTRS)
Gibson, J.
1994-01-01
The Local Area Network Extensible Simulator (LANES) provides a method for simulating the performance of high speed local area network (LAN) technology. LANES was developed as a design and analysis tool for networking on board the Space Station. The load, network, link and physical layers of a layered network architecture are all modeled. LANES models to different lower-layer protocols, the Fiber Distributed Data Interface (FDDI) and the Star*Bus. The load and network layers are included in the model as a means of introducing upper-layer processing delays associated with message transmission; they do not model any particular protocols. FDDI is an American National Standard and an International Organization for Standardization (ISO) draft standard for a 100 megabit-per-second fiber-optic token ring. Specifications for the LANES model of FDDI are taken from the Draft Proposed American National Standard FDDI Token Ring Media Access Control (MAC), document number X3T9.5/83-16 Rev. 10, February 28, 1986. This is a mature document describing the FDDI media-access-control protocol. Star*Bus, also known as the Fiber Optic Demonstration System, is a protocol for a 100 megabit-per-second fiber-optic star-topology LAN. This protocol, along with a hardware prototype, was developed by Sperry Corporation under contract to NASA Goddard Space Flight Center as a candidate LAN protocol for the Space Station. LANES can be used to analyze performance of a networking system based on either FDDI or Star*Bus under a variety of loading conditions. Delays due to upper-layer processing can easily be nullified, allowing analysis of FDDI or Star*Bus as stand-alone protocols. LANES is a parameter-driven simulation; it provides considerable flexibility in specifying both protocol an run-time parameters. Code has been optimized for fast execution and detailed tracing facilities have been included. LANES was written in FORTRAN 77 for implementation on a DEC VAX under VMS 4.6. It consists of two programs, a simulation program and a user-interface program. The simulation program requires the SLAM II simulation library from Pritsker and Associates, W. Lafayette IN; the user interface is implemented using the Ingres database manager from Relational Technology, Inc. Information about running the simulation program without the user-interface program is contained in the documentation. The memory requirement is 129,024 bytes. LANES was developed in 1988.
Scaling laws in granular flow and pedestrian flow
NASA Astrophysics Data System (ADS)
Chen, Shumiao; Alonso-Marroquin, Fernando; Busch, Jonathan; Hidalgo, Raúl Cruz; Sathianandan, Charmila; Ramírez-Gómez, Álvaro; Mora, Peter
2013-06-01
We use particle-based simulations to examine the flow of particles through an exit. Simulations involve both gravity-driven particles (representing granular material) and velocity-driven particles (mimicking pedestrian dynamics). Contact forces between particles include elastic, viscous, and frictional forces; and simulations use bunker geometry. Power laws are observed in the relation between flow rate and exit width. Simulations of granular flow showed that the power law has little dependence on the coefficient of friction. Polydisperse granular systems produced higher flow rates than those produced by monodisperse ones. We extend the particle model to include the main features of pedestrian dynamics: thoracic shape, shoulder rotation, and desired velocity oriented towards the exit. Higher desired velocity resulted in higher flow rate. Granular simulations always give higher flow rate than pedestrian simulations, despite the values of aspect ratio of the particles. In terms of force distribution, pedestrians and granulates share similar properties with the non-democratic distribution of forces that poses high risks of injuries in a bottleneck situation.
Contribution of finger tracing to the recognition of Chinese characters.
Yim-Ng, Y Y; Varley, R; Andrade, J
2000-01-01
Finger tracing is a simulation of the act of writing without the use of pen and paper. It is claimed to help in the processing of Chinese characters, possibly by providing additional motor coding. In this study, blindfolded subjects were equally good at identifying Chinese characters and novel visual stimuli through passive movements made with the index finger of the preferred hand and those made with the last finger of that hand. This suggests that finger tracing provides a relatively high level of coding specific to individual characters, but non-specific to motor effectors. Beginning each stroke from the same location, i.e. removing spatial information, impaired recognition of the familiar characters and the novel nonsense figures. Passively tracing the strokes in a random sequence also impaired recognition of the characters. These results therefore suggest that the beneficial effect of finger tracing on writing or recall of Chinese characters is mediated by sequence and spatial information embedded in the motor movements, and that proprioceptive channel may play a part in mediating visuo-spatial information. Finger tracing may be a useful strategy for remediation of Chinese language impairments.
NASA Astrophysics Data System (ADS)
Rojas, Maisa; Seth, Anji
2003-08-01
of this study, the RegCM's ability to simulate circulation and rainfall observed in the two extreme seasons was demonstrated when driven at the lateral boundaries by reanalyzed forcing. Seasonal integrations with the RegCM driven by GCM ensemble-derived lateral boundary forcing demonstrate that the nested model responds well to the SST forcing, by capturing the major features of the circulation and rainfall differences between the two years. The GCM-driven model also improves upon the monthly evolution of rainfall compared with that from the GCM. However, the nested model rainfall simulations for the two seasons are degraded compared with those from the reanalyses-driven RegCM integrations. The poor location of the Atlantic intertropical convergence zone (ITCZ) in the GCM leads to excess rainfall in Nordeste in the nested model.An expanded domain was tested, wherein the RegCM was permitted more internal freedom to respond to SST and regional orographic forcing. Results show that the RegCM is able to improve the location of the ITCZ, and the seasonal evolution of rainfall in Nordeste, the Amazon region, and the southeastern region of Brazil. However, it remains that the limiting factor in the skill of the nested modeling system is the quality of the lateral boundary forcing provided by the global model.
NASA Astrophysics Data System (ADS)
Vandermeulen, J.; Nasseri, S. A.; Van de Wiele, B.; Durin, G.; Van Waeyenberge, B.; Dupré, L.
2018-03-01
Lagrangian-based collective coordinate models for magnetic domain wall (DW) motion rely on an ansatz for the DW profile and a Lagrangian approach to describe the DW motion in terms of a set of time-dependent collective coordinates: the DW position, the DW magnetization angle, the DW width and the DW tilting angle. Another approach was recently used to derive similar equations of motion by averaging the Landau-Lifshitz-Gilbert equation without any ansatz, and identifying the relevant collective coordinates afterwards. In this paper, we use an updated version of the semi-analytical equations to compare the Lagrangian-based collective coordinate models with micromagnetic simulations for field- and STT-driven (spin-transfer torque-driven) DW motion in Pt/CoFe/MgO and Pt/Co/AlOx nanostrips. Through this comparison, we assess the accuracy of the different models, and provide insight into the deviations of the models from simulations. It is found that the lack of terms related to DW asymmetry in the Lagrangian-based collective coordinate models significantly contributes to the discrepancy between the predictions of the most accurate Lagrangian-based model and the micromagnetic simulations in the field-driven case. This is in contrast to the STT-driven case where the DW remains symmetric.
Szep, S; Gerhardt, T; Leitzbach, C; Lüder, W; Heidemann, D
2001-03-01
This in vitro study evaluated the efficacy and safety of six different nickel-titanium engine-driven instruments used with a torque-controlled engine device and nickel-titanium hand and stainless steel hand instruments in preparation of curved canals. A total of 80 curved (36 degrees) simulated root canals were prepared. Images before and after were superimposed, and instrumentation areas were observed. Time of instrumentation, instrument failure, change in working length and weight loss were also recorded. Results show that stainless steel hand instruments cause significantly less transportation towards the inner wall of the canal than do nickel-titanium hand instruments. No instrument fracture occurred with hand instruments, but 30-60% breakage of instruments was recorded during instrumentation with the engine-driven devices. The working length was maintained by all types of instruments. Newly developed nickel-titanium rotary files were not able to prevent straightening of the severely curved canals when a torque-controlled engine-driven device was used.
Force-velocity relation for actin-polymerization-driven motility from Brownian dynamics simulations.
Lee, Kun-Chun; Liu, Andrea J
2009-09-02
We report numerical simulation results for the force-velocity relation for actin-polymerization-driven motility. We use Brownian dynamics to solve a physically consistent formulation of the dendritic nucleation model with semiflexible filaments that self-assemble and push a disk. We find that at small loads, the disk speed is independent of load, whereas at high loads, the speed decreases and vanishes at a characteristic stall pressure. Our results demonstrate that at small loads, the velocity is controlled by the reaction rates, whereas at high loads the stall pressure is determined by the mechanical properties of the branched actin network. The behavior is consistent with experiments and with our recently proposed self-diffusiophoretic mechanism for actin-polymerization-driven motility. New in vitro experiments to measure the force-velocity relation are proposed.
Ion acceleration by laser hole-boring into plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogorelsky, I. V.; Dover, N. P.; Babzien, M.
By experiment and simulations, we study the interaction of an intense CO{sub 2} laser pulse with slightly overcritical plasmas of fully ionized helium gas. Transverse optical probing is used to show a recession of the front plasma surface with an initial velocity >10{sup 6} m/s driven by hole-boring by the laser pulse and the resulting radiation pressure driven electrostatic shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These observations are supported by PIC simulations which prove the conclusion that monoenergetic protons observed in our earlier reportedmore » experiment with a hydrogen jet result from ion trapping and reflection from a shock wave driven through the plasma.« less
Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution and Eruption
NASA Astrophysics Data System (ADS)
Leake, J. E.; Linton, M.; Schuck, P. W.
2017-12-01
Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the recent development of coronal models which are "data-driven" at the photosphere. Using magnetohydrodynamic simulations of active region formation and our recently created validation framework we investigate the source of errors in data-driven models that use surface measurements of the magnetic field, and derived MHD quantities, to model the coronal magnetic field. The primary sources of errors in these studies are the temporal and spatial resolution of the surface measurements. We will discuss the implications of theses studies for accurately modeling the build up and release of coronal magnetic energy based on photospheric magnetic field observations.
NASA Astrophysics Data System (ADS)
Hogan, M. T.; McNamara, B. R.; Pulido, F. A.; Nulsen, P. E. J.; Vantyghem, A. N.; Russell, H. R.; Edge, A. C.; Babyk, Iu.; Main, R. A.; McDonald, M.
2017-12-01
We present accurate mass and thermodynamic profiles for 57 galaxy clusters observed with the Chandra X-ray Observatory. We investigate the effects of local gravitational acceleration in central cluster galaxies, and explore the role of the local free-fall time ({t}{ff}) in thermally unstable cooling. We find that the radially averaged cooling time ({t}{cool}) is as effective an indicator of cold gas, traced through its nebular emission, as the ratio {t}{cool}/{t}{ff}. Therefore, {t}{cool} primarily governs the onset of thermally unstable cooling in hot atmospheres. The location of the minimum {t}{cool}/{t}{ff}, a thermodynamic parameter that many simulations suggest is key in driving thermal instability, is unresolved in most systems. Consequently, selection effects bias the value and reduce the observed range in measured {t}{cool}/{t}{ff} minima. The entropy profiles of cool-core clusters are characterized by broken power laws down to our resolution limit, with no indication of isentropic cores. We show, for the first time, that mass isothermality and the K\\propto {r}2/3 entropy profile slope imply a floor in {t}{cool}/{t}{ff} profiles within central galaxies. No significant departures of {t}{cool}/{t}{ff} below 10 are found. This is inconsistent with models that assume thermally unstable cooling ensues from linear perturbations at or near this threshold. We find that the inner cooling times of cluster atmospheres are resilient to active galactic nucleus (AGN)-driven change, suggesting gentle coupling between radio jets and atmospheric gas. Our analysis is consistent with models in which nonlinear perturbations, perhaps seeded by AGN-driven uplift of partially cooled material, lead to cold gas condensation.
Spreading of nanofluids driven by the structural disjoining pressure gradient.
Chengara, Anoop; Nikolov, Alex D; Wasan, Darsh T; Trokhymchuk, Andrij; Henderson, Douglas
2004-12-01
This paper discusses the role of the structural disjoining pressure exerted by nanoparticles on the spreading of a liquid film containing these particles. The origin of the structural disjoining pressure in a confined geometry is due to the layering of the particles normal to the confining plane and has already been traced to the net increase in the entropy of the system in previous studies. In a recent paper, Wasan and Nikolov (Nature, 423 (2003) 156) pointed out that the structural component of the disjoining pressure is strong enough to move a liquid wedge; this casts a new light on many applications-most notably, detergency. While the concept of spreading driven by the disjoining pressure is not new, the importance of the structural disjoining pressure arises from its long-range nature (as compared to the van der Waals' force), making it an important component of the overall force balance near the contact line. In this paper, we report on a parametric study of the spreading phenomena by examining the effects of nanoparticle size, concentration and polydispersity on the displacement of an oil-aqueous interface with the aqueous bulk containing nanoparticles. The solution of the extended Laplace-Young equations for the profile of the meniscus yields the position of the nominal contact line under the action of the structural disjoining pressure. Simulations show that the displacement of the contact line is greater with a high nanoparticle volume fraction, small particles for the same volume fraction, monodispersed (in size) particles rather than polydispersed particles and when the resisting capillary pressure is small, i.e., when the interfacial tension is low and/or the radius of the dispersed phase drop/bubble is large.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries
NASA Astrophysics Data System (ADS)
Tetarenko, B. E.; Lasota, J.-P.; Heinke, C. O.; Dubus, G.; Sivakoff, G. R.
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1–0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2–1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
Strong disk winds traced throughout outbursts in black-hole X-ray binaries.
Tetarenko, B E; Lasota, J-P; Heinke, C O; Dubus, G; Sivakoff, G R
2018-02-01
Recurring outbursts associated with matter flowing onto compact stellar remnants (such as black holes, neutron stars and white dwarfs) in close binary systems provide a way of constraining the poorly understood accretion process. The light curves of these outbursts are shaped by the efficiency of angular-momentum (and thus mass) transport in the accretion disks, which has traditionally been encoded in a viscosity parameter, α. Numerical simulations of the magneto-rotational instability that is believed to be the physical mechanism behind this transport yield values of α of roughly 0.1-0.2, consistent with values determined from observations of accreting white dwarfs. Equivalent viscosity parameters have hitherto not been estimated for disks around neutron stars or black holes. Here we report the results of an analysis of archival X-ray light curves of 21 outbursts in black-hole X-ray binaries. By applying a Bayesian approach to a model of accretion, we determine corresponding values of α of around 0.2-1.0. These high values may be interpreted as an indication either of a very high intrinsic rate of angular-momentum transport in the disk, which could be sustained by the magneto-rotational instability only if a large-scale magnetic field threads the disk, or that mass is being lost from the disk through substantial outflows, which strongly shape the outburst in the black-hole X-ray binary. The lack of correlation between our estimates of α and the accretion state of the binaries implies that such outflows can remove a substantial fraction of the disk mass in all accretion states and therefore suggests that the outflows correspond to magnetically driven disk winds rather than thermally driven ones, which require specific radiative conditions.
A simulation-based approach for evaluating logging residue handling systems.
B. Bruce Bare; Benjamin A. Jayne; Brian F. Anholt
1976-01-01
Describes a computer simulation model for evaluating logging residue handling systems. The flow of resources is traced through a prespecified combination of operations including yarding, chipping, sorting, loading, transporting, and unloading. The model was used to evaluate the feasibility of converting logging residues to chips that could be used, for example, to...
2006-06-01
computed and measured pressure traces show significant pressure wave action and oscillations at early times. The simulations seem to overprotect ...significant pressure wave action and oscillations at early times. The simulations seem to overprotect both the early-time peak pressure at the rear
NASA Astrophysics Data System (ADS)
Kredler, L.; Häußler, W.; Martin, N.; Böni, P.
The flux is still a major limiting factor in neutron research. For instruments being supplied by cold neutrons using neutron guides, both at present steady-state and at new spallation neutron sources, it is therefore important to optimize the instrumental setup and the neutron guidance. Optimization of neutron guide geometry and of the instrument itself can be performed by numerical ray-tracing simulations using existing open-access codes. In this paper, we discuss how such Monte Carlo simulations have been employed in order to plan improvements of the Neutron Resonant Spin Echo spectrometer RESEDA (FRM II, Germany) as well as the neutron guides before and within the instrument. The essential components have been represented with the help of the McStas ray-tracing package. The expected intensity has been tested by means of several virtual detectors, implemented in the simulation code. Comparison between simulations and preliminary measurements results shows good agreement and demonstrates the reliability of the numerical approach. These results will be taken into account in the planning of new components installed in the guide system.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
Lee, P.; Audet, T. L.; Lehe, R.; ...
2015-12-31
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P.; Audet, T. L.; Lehe, R.
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
Py-SPHViewer: Cosmological simulations using Smoothed Particle Hydrodynamics
NASA Astrophysics Data System (ADS)
Benítez-Llambay, Alejandro
2017-12-01
Py-SPHViewer visualizes and explores N-body + Hydrodynamics simulations. The code interpolates the underlying density field (or any other property) traced by a set of particles, using the Smoothed Particle Hydrodynamics (SPH) interpolation scheme, thus producing not only beautiful but also useful scientific images. Py-SPHViewer enables the user to explore simulated volumes using different projections. Py-SPHViewer also provides a natural way to visualize (in a self-consistent fashion) gas dynamical simulations, which use the same technique to compute the interactions between particles.
Crystal nucleation of colloidal hard dumbbells
NASA Astrophysics Data System (ADS)
Ni, Ran; Dijkstra, Marjolein
2011-01-01
Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.
Kentel, Behzat B; King, Mark A; Mitchell, Sean R
2011-11-01
A torque-driven, subject-specific 3-D computer simulation model of the impact phase of one-handed tennis backhand strokes was evaluated by comparing performance and simulation results. Backhand strokes of an elite subject were recorded on an artificial tennis court. Over the 50-ms period after impact, good agreement was found with an overall RMS difference of 3.3° between matching simulation and performance in terms of joint and racket angles. Consistent with previous experimental research, the evaluation process showed that grip tightness and ball impact location are important factors that affect postimpact racket and arm kinematics. Associated with these factors, the model can be used for a better understanding of the eccentric contraction of the wrist extensors during one-handed backhand ground strokes, a hypothesized mechanism of tennis elbow.
NASA Astrophysics Data System (ADS)
Li, Zhiyong; Hoagg, Jesse B.; Martin, Alexandre; Bailey, Sean C. C.
2018-03-01
This paper presents a data-driven computational model for simulating unsteady turbulent flows, where sparse measurement data is available. The model uses the retrospective cost adaptation (RCA) algorithm to automatically adjust the closure coefficients of the Reynolds-averaged Navier-Stokes (RANS) k- ω turbulence equations to improve agreement between the simulated flow and the measurements. The RCA-RANS k- ω model is verified for steady flow using a pipe-flow test case and for unsteady flow using a surface-mounted-cube test case. Measurements used for adaptation of the verification cases are obtained from baseline simulations with known closure coefficients. These verification test cases demonstrate that the RCA-RANS k- ω model can successfully adapt the closure coefficients to improve agreement between the simulated flow field and a set of sparse flow-field measurements. Furthermore, the RCA-RANS k- ω model improves agreement between the simulated flow and the baseline flow at locations at which measurements do not exist. The RCA-RANS k- ω model is also validated with experimental data from 2 test cases: steady pipe flow, and unsteady flow past a square cylinder. In both test cases, the adaptation improves agreement with experimental data in comparison to the results from a non-adaptive RANS k- ω model that uses the standard values of the k- ω closure coefficients. For the steady pipe flow, adaptation is driven by mean stream-wise velocity measurements at 24 locations along the pipe radius. The RCA-RANS k- ω model reduces the average velocity error at these locations by over 35%. For the unsteady flow over a square cylinder, adaptation is driven by time-varying surface pressure measurements at 2 locations on the square cylinder. The RCA-RANS k- ω model reduces the average surface-pressure error at these locations by 88.8%.
Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson
2012-01-01
The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...
Understanding Resonance Graphs Using Easy Java Simulations (EJS) and Why We Use EJS
ERIC Educational Resources Information Center
Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel
2015-01-01
This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of…
NASA Astrophysics Data System (ADS)
Mercogliano, Paola; Bucchignani, Edoardo; Montesarchio, Myriam; Zollo, Alessandra Lucia
2013-04-01
In the framework of the Work Package 4 (Developing integrated tools for environmental assessment) of PERSEUS Project, high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes the Mediterranean and Black Seas, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate trend but also extremes of the present and future climate, in terms of temperature, precipitation and wind.
NASA Astrophysics Data System (ADS)
Mercogliano, P.; Montesarchio, M.; Zollo, A.; Bucchignani, E.
2012-12-01
In the framework of the Italian GEMINA Project (program of expansion and development of the Euro-Mediterranean Center for Climate Change (CMCC), high resolution climate simulations have been performed, with the aim of furthering knowledge in the field of climate variability at regional scale, its causes and impacts. CMCC is a no profit centre whose aims are the promotion, research coordination and scientific activities in the field of climate changes. In this work, we show results of numerical simulation performed over a very wide area (13W-46E; 29-56N) at spatial resolution of 14 km, which includes all the Mediterranean Sea, using the regional climate model COSMO-CLM. It is a non-hydrostatic model for the simulation of atmospheric processes, developed by the DWD-Germany for weather forecast services; successively, the model has been updated by the CLM-Community, in order to develop climatic applications. It is the only documented numerical model system in Europe designed for spatial resolutions down to 1 km with a range of applicability encompassing operational numerical weather prediction, regional climate modelling the dispersion of trace gases and aerosol and idealised studies and applicable in all regions of the world for a wide range of available climate simulations from global climate and NWP models. Different reasons justify the development of a regional model: the first is the increasing number of works in literature asserting that regional models have also the features to provide more detailed description of the climate extremes, that are often more important then their mean values for natural and human systems. The second one is that high resolution modelling shows adequate features to provide information for impact assessment studies. At CMCC, regional climate modelling is a part of an integrated simulation system and it has been used in different European and African projects to provide qualitative and quantitative evaluation of the hydrogeological and public health risks. A simulation covering the period 1971-2000 and driven by ERA40 reanalysis has been performed, in order to assess the capability of the model to reproduce the present climate, with "perfect boundary conditions". A comparison, in terms of 2-metre temperature and precipitation, with EOBS dataset will be shown and discussed, in order to analyze the capabilities in simulating the main features of the observed climate over a wide area, at high spatial resolution. Then, a comparison between the results of COSMO-CLM driven by the global model CMCC-MED (whose atmospheric component is ECHAM5) and by ERA40 will be provided for a characterization of the errors induced by the global model. Finally, climate projections on the examined area for the XXI century, considering the RCP4.5 emission scenario for the future, will be provided. In this work a special emphasis will be issued to the analysis of the capability to reproduce not only the average climate patterns but also extremes of the present and future climate, in terms of temperature, precipitation and wind.
Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Papathakos, L. C.
1977-01-01
The Global Atmospheric Sampling Program (GASP) by NASA is collecting and analyzing data on gaseous and aerosol trace species in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Advances were made in airborne sampling instrumentation. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei and mass concentrations of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to uniquely identify the source of the air mass as being typically tropospheric or stratospheric. A quantitative understanding of the tropospheric-stratospheric exchange processes leads to better knowledge of the atmospheric impact of pollution through the development of improved simulation models of the atmosphere.
Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas
NASA Astrophysics Data System (ADS)
Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.
2015-11-01
Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.
Wind influence on a coastal buoyant outflow
NASA Astrophysics Data System (ADS)
Whitney, Michael M.; Garvine, Richard W.
2005-03-01
This paper investigates the interplay between river discharge and winds in forcing coastal buoyant outflows. During light winds a plume influenced by the Earth's rotation will flow down shelf (in the direction of Kelvin wave propagation) as a slender buoyancy-driven coastal current. Downwelling favorable winds augment this down-shelf flow, narrow the plume, and mix the water column. Upwelling favorable winds drive currents that counter the buoyancy-driven flow, spread plume waters offshore, and rapidly mix buoyant waters. Two criteria are developed to assess the wind influence on a buoyant outflow. The wind strength index (Ws) determines whether a plume's along-shelf flow is in a wind-driven or buoyancy-driven state. Ws is the ratio of the wind-driven and buoyancy-driven along-shelf velocities. Wind influence on across-shelf plume structure is rated with a timescale (ttilt) for the isopycnal tilting caused by wind-driven Ekman circulation. These criteria are used to characterize wind influence on the Delaware Coastal Current and can be applied to other coastal buoyant outflows. The Delaware buoyant outflow is simulated for springtime high-river discharge conditions. Simulation results and Ws values reveal that the coastal current is buoyancy-driven most of the time (∣Ws∣ < 1 on average). Wind events, however, overwhelm the buoyancy-driven flow (∣Ws∣ > 1) several times during the high-discharge period. Strong upwelling events reverse the buoyant outflow; they constitute an important mechanism for transporting fresh water up shelf. Across-shelf plume structure is more sensitive to wind influence than the along-shelf flow. Values of ttilt indicate that moderate or strong winds persisting throughout a day can modify plume width significantly. Plume widening during upwelling events is accompanied by mixing that can erase the buoyant outflow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Po-Lun; Gattiker, J. R.; Liu, Xiaohong
2013-06-27
A Gaussian process (GP) emulator is applied to quantify the contribution of local and remote emissions of black carbon (BC) on the BC concentrations in different regions using a Latin Hypercube sampling strategy for emission perturbations in the offline version of the Community Atmosphere Model Version 5.1 (CAM5) simulations. The source-receptor relationships are computed based on simulations constrained by a standard free-running CAM5 simulation and the ERA-Interim reanalysis product. The analysis demonstrates that the emulator is capable of retrieving the source-receptor relationships based on a small number of CAM5 simulations. Most regions are found susceptible to their local emissions. Themore » emulator also finds that the source-receptor relationships retrieved from the model-driven and the reanalysis-driven simulations are very similar, suggesting that the simulated circulation in CAM5 resembles the assimilated meteorology in ERA-Interim. The robustness of the results provides confidence for applying the emulator to detect dose-response signals in the climate system.« less
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
Rajagopal, Apoorva; Dembia, Christopher L; DeMers, Matthew S; Delp, Denny D; Hicks, Jennifer L; Delp, Scott L
2016-10-01
Musculoskeletal models provide a non-invasive means to study human movement and predict the effects of interventions on gait. Our goal was to create an open-source 3-D musculoskeletal model with high-fidelity representations of the lower limb musculature of healthy young individuals that can be used to generate accurate simulations of gait. Our model includes bony geometry for the full body, 37 degrees of freedom to define joint kinematics, Hill-type models of 80 muscle-tendon units actuating the lower limbs, and 17 ideal torque actuators driving the upper body. The model's musculotendon parameters are derived from previous anatomical measurements of 21 cadaver specimens and magnetic resonance images of 24 young healthy subjects. We tested the model by evaluating its computational time and accuracy of simulations of healthy walking and running. Generating muscle-driven simulations of normal walking and running took approximately 10 minutes on a typical desktop computer. The differences between our muscle-generated and inverse dynamics joint moments were within 3% (RMSE) of the peak inverse dynamics joint moments in both walking and running, and our simulated muscle activity showed qualitative agreement with salient features from experimental electromyography data. These results suggest that our model is suitable for generating muscle-driven simulations of healthy gait. We encourage other researchers to further validate and apply the model to study other motions of the lower extremity. The model is implemented in the open-source software platform OpenSim. The model and data used to create and test the simulations are freely available at https://simtk.org/home/full_body/, allowing others to reproduce these results and create their own simulations.
Full body musculoskeletal model for muscle-driven simulation of human gait
Rajagopal, Apoorva; Dembia, Christopher L.; DeMers, Matthew S.; Delp, Denny D.; Hicks, Jennifer L.; Delp, Scott L.
2017-01-01
Objective Musculoskeletal models provide a non-invasive means to study human movement and predict the effects of interventions on gait. Our goal was to create an open-source, three-dimensional musculoskeletal model with high-fidelity representations of the lower limb musculature of healthy young individuals that can be used to generate accurate simulations of gait. Methods Our model includes bony geometry for the full body, 37 degrees of freedom to define joint kinematics, Hill-type models of 80 muscle-tendon units actuating the lower limbs, and 17 ideal torque actuators driving the upper body. The model’s musculotendon parameters are derived from previous anatomical measurements of 21 cadaver specimens and magnetic resonance images of 24 young healthy subjects. We tested the model by evaluating its computational time and accuracy of simulations of healthy walking and running. Results Generating muscle-driven simulations of normal walking and running took approximately 10 minutes on a typical desktop computer. The differences between our muscle-generated and inverse dynamics joint moments were within 3% (RMSE) of the peak inverse dynamics joint moments in both walking and running, and our simulated muscle activity showed qualitative agreement with salient features from experimental electromyography data. Conclusion These results suggest that our model is suitable for generating muscle-driven simulations of healthy gait. We encourage other researchers to further validate and apply the model to study other motions of the lower-extremity. Significance The model is implemented in the open source software platform OpenSim. The model and data used to create and test the simulations are freely available at https://simtk.org/home/full_body/, allowing others to reproduce these results and create their own simulations. PMID:27392337
Mechanics of Interrill Erosion with Wind-Driven Rain (WDR)
USDA-ARS?s Scientific Manuscript database
This article provides an evaluation analysis for the performance of the interrill component of the Water Erosion Prediction Project (WEPP) model for Wind-Driven Rain (WDR) events. The interrill delivery rates (Di) were collected in the wind tunnel rainfall simulator facility of the International Cen...
NASA Astrophysics Data System (ADS)
Desnijder, Karel; Hanselaer, Peter; Meuret, Youri
2016-04-01
A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.
Identifiability and Identification of Trace Continuous Pollutant Source
Qu, Hongquan; Liu, Shouwen; Pang, Liping; Hu, Tao
2014-01-01
Accidental pollution events often threaten people's health and lives, and a pollutant source is very necessary so that prompt remedial actions can be taken. In this paper, a trace continuous pollutant source identification method is developed to identify a sudden continuous emission pollutant source in an enclosed space. The location probability model is set up firstly, and then the identification method is realized by searching a global optimal objective value of the location probability. In order to discuss the identifiability performance of the presented method, a conception of a synergy degree of velocity fields is presented in order to quantitatively analyze the impact of velocity field on the identification performance. Based on this conception, some simulation cases were conducted. The application conditions of this method are obtained according to the simulation studies. In order to verify the presented method, we designed an experiment and identified an unknown source appearing in the experimental space. The result showed that the method can identify a sudden trace continuous source when the studied situation satisfies the application conditions. PMID:24892041
Simulated annealing two-point ray tracing
NASA Astrophysics Data System (ADS)
Velis, Danilo R.; Ulrych, Tadeusz J.
We present a new method for solving the two-point seismic ray tracing problem based on Fermat's principle. The algorithm overcomes some well known difficulties that arise in standard ray shooting and bending methods. Problems related to: (1) the selection of new take-off angles, and (2) local minima in multipathing cases, are overcome by using an efficient simulated annealing (SA) algorithm. At each iteration, the ray is propagated from the source by solving a standard initial value problem. The last portion of the raypath is then forced to pass through the receiver. Using SA, the total traveltime is then globally minimized by obtaining the initial conditions that produce the absolute minimum path. The procedure is suitable for tracing rays through 2D complex structures, although it can be extended to deal with 3D velocity media. Not only direct waves, but also reflected and head-waves can be incorporated in the scheme. One important advantage is its simplicity, in as much as any available or user-preferred initial value solver system can be used. A number of clarifying examples of multipathing in 2D media are examined.
NASA Astrophysics Data System (ADS)
D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.
2015-11-01
In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.
An Efficient Ray-Tracing Method for Determining Terrain Intercepts in EDL Simulations
NASA Technical Reports Server (NTRS)
Shidner, Jeremy D.
2016-01-01
The calculation of a ray's intercept from an arbitrary point in space to a prescribed surface is a common task in computer simulations. The arbitrary point often represents an object that is moving according to the simulation, while the prescribed surface is fixed in a defined frame. For detailed simulations, this surface becomes complex, taking the form of real-world objects such as mountains, craters or valleys which require more advanced methods to accurately calculate a ray's intercept location. Incorporation of these complex surfaces has commonly been implemented in graphics systems that utilize highly optimized graphics processing units to analyze such features. This paper proposes a simplified method that does not require computationally intensive graphics solutions, but rather an optimized ray-tracing method for an assumed terrain dataset. This approach was developed for the Mars Science Laboratory mission which landed on the complex terrain of Gale Crater. First, this paper begins with a discussion of the simulation used to implement the model and the applicability of finding surface intercepts with respect to atmosphere modeling, altitude determination, radar modeling, and contact forces influencing vehicle dynamics. Next, the derivation and assumptions of the intercept finding method are presented. Key assumptions are noted making the routines specific to only certain types of surface data sets that are equidistantly spaced in longitude and latitude. The derivation of the method relies on ray-tracing, requiring discussion on the formulation of the ray with respect to the terrain datasets. Further discussion includes techniques for ray initialization in order to optimize the intercept search. Then, the model implementation for various new applications in the simulation are demonstrated. Finally, a validation of the accuracy is presented along with the corresponding data sets used in the validation. A performance summary of the method will be shown using the analysis from the Mars Science Laboratory's terminal descent sensing model. Alternate uses will also be shown for determining horizon maps and orbiter set times.
Mass imbalances in EPANET water-quality simulations
NASA Astrophysics Data System (ADS)
Davis, Michael J.; Janke, Robert; Taxon, Thomas N.
2018-04-01
EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.
VOLATILE LOSS AND CLASSIFICATION OF KUIPER BELT OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R. E.; Schmidt, C.; Oza, A.
Observations indicate that some of the largest Kuiper Belt Objects (KBOs) have retained volatiles in the gas phase (e.g., Pluto), while others have surface volatiles that might support a seasonal atmosphere (e.g., Eris). Since the presence of an atmosphere can affect their reflectance spectra and thermal balance, Schaller and Brown examined the role of volatile escape driven by solar heating of the surface. Guided by recent simulations, we estimate the loss of primordial N{sub 2} for several large KBOs, accounting for escape driven by UV/EUV heating of the upper atmosphere as well as by solar heating of the surface. Formore » the latter we present new simulations and for the former we scale recent detailed simulations of escape from Pluto using the energy limited escape model validated recently by molecular kinetic simulations. Unlike what has been assumed to date, we show that unless the N{sub 2} atmosphere is thin (<∼10{sup 18} N{sub 2} cm{sup −2}) and/or the radius small (<∼200–300 km), escape is primarily driven by the UV/EUV radiation absorbed in the upper atmosphere. This affects the discussion of the relationship between atmospheric loss and the observed surface properties for a number of the KBOs examined. Our long-term goal is to connect detailed atmospheric loss simulations with a model for volatile transport for individual KBOs.« less
NASA Astrophysics Data System (ADS)
Linton, M.; Leake, J. E.; Schuck, P. W.
2016-12-01
The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solar activity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of emerging magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution. We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data. These investigations will then be used to outline future prospects and challenges for using observed photospheric data to drive such solar atmospheric simulations. This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.
Miskovic, Vladimir; Keil, Andreas
2015-01-01
The visual system is biased towards sensory cues that have been associated with danger or harm through temporal co-occurrence. An outstanding question about conditioning-induced changes in visuocortical processing is the extent to which they are driven primarily by top-down factors such as expectancy or by low-level factors such as the temporal proximity between conditioned stimuli and aversive outcomes. Here, we examined this question using two different differential aversive conditioning experiments: participants learned to associate a particular grating stimulus with an aversive noise that was presented either in close temporal proximity (delay conditioning experiment) or after a prolonged stimulus-free interval (trace conditioning experiment). In both experiments we probed cue-related cortical responses by recording steady-state visual evoked potentials (ssVEPs). Although behavioral ratings indicated that all participants successfully learned to discriminate between the grating patterns that predicted the presence versus absence of the aversive noise, selective amplification of population-level responses in visual cortex for the conditioned danger signal was observed only when the grating and the noise were temporally contiguous. Our findings are in line with notions purporting that changes in the electrocortical response of visual neurons induced by aversive conditioning are a product of Hebbian associations among sensory cell assemblies rather than being driven entirely by expectancy-based, declarative processes. PMID:23398582
Simulators IV; Proceedings of the SCS Conference, Orlando, FL, Apr. 6-9, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fairchild, B.T.
1987-01-01
The conference presents papers on the applicability of AI techniques to simulation models, the simulation of a reentry vehicle on Simstar, simstar missile simulation, measurement issues associated with simulator sickness, and tracing the etiology of simulator sickness. Consideration is given to a simulator of a steam generator tube bundle response to a blowdown transient, the census of simulators for fossil fueled boiler and gas turbine plant operation training, and a new approach for flight simulator visual systems. Other topics include past and present simulated aircraft maintenance trainers, an AI-simulation based approach for aircraft maintenance training, simulator qualification using EPRI methodology,more » and the role of instinct in organizational dysfunction.« less
Modeling the solute transport by particle-tracing method with variable weights
NASA Astrophysics Data System (ADS)
Jiang, J.
2016-12-01
Particle-tracing method is usually used to simulate the solute transport in fracture media. In this method, the concentration at one point is proportional to number of particles visiting this point. However, this method is rather inefficient at the points with small concentration. Few particles visit these points, which leads to violent oscillation or gives zero value of concentration. In this paper, we proposed a particle-tracing method with variable weights. The concentration at one point is proportional to the sum of the weights of the particles visiting it. It adjusts the weight factors during simulations according to the estimated probabilities of corresponding walks. If the weight W of a tracking particle is larger than the relative concentration C at the corresponding site, the tracking particle will be splitted into Int(W/C) copies and each copy will be simulated independently with the weight W/Int(W/C) . If the weight W of a tracking particle is less than the relative concentration C at the corresponding site, the tracking particle will be continually tracked with a probability W/C and the weight will be adjusted to be C. By adjusting weights, the number of visiting particles distributes evenly in the whole range. Through this variable weights scheme, we can eliminate the violent oscillation and increase the accuracy of orders of magnitudes.
Impact of large-scale atmospheric refractive structures on optical wave propagation
NASA Astrophysics Data System (ADS)
Nunalee, Christopher G.; He, Ping; Basu, Sukanta; Vorontsov, Mikhail A.; Fiorino, Steven T.
2014-10-01
Conventional techniques used to model optical wave propagation through the Earth's atmosphere typically as- sume flow fields based on various empirical relationships. Unfortunately, these synthetic refractive index fields do not take into account the influence of transient macroscale and mesoscale (i.e. larger than turbulent microscale) atmospheric phenomena. Nevertheless, a number of atmospheric structures that are characterized by various spatial and temporal scales exist which have the potential to significantly impact refractive index fields, thereby resulting dramatic impacts on optical wave propagation characteristics. In this paper, we analyze a subset of spatio-temporal dynamics found to strongly affect optical waves propagating through these atmospheric struc- tures. Analysis of wave propagation was performed in the geometrical optics approximation using a standard ray tracing technique. Using a numerical weather prediction (NWP) approach, we simulate multiple realistic atmospheric events (e.g., island wakes, low-level jets, etc.), and estimate the associated refractivity fields prior to performing ray tracing simulations. By coupling NWP model output with ray tracing simulations, we demon- strate the ability to quantitatively assess the potential impacts of coherent atmospheric phenomena on optical ray propagation. Our results show a strong impact of spatio-temporal characteristics of the refractive index field on optical ray trajectories. Such correlations validate the effectiveness of NWP models as they offer a more comprehensive representation of atmospheric refractivity fields compared to conventional methods based on the assumption of horizontal homogeneity.
Raindrop and flow interactions for interrill erosion with wind-driven rain
USDA-ARS?s Scientific Manuscript database
Wind-driven rain (WDR) experiments were conducted to evaluate interrill component of the Water Erosion Prediction Project (WEPP) model with two-dimensional experimental set-up in wind tunnel. Synchronized wind and rain simulations were applied to soil surfaces on windward and leeward slopes of 7, 15...
3D numerical simulation of transient processes in hydraulic turbines
NASA Astrophysics Data System (ADS)
Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.
2010-08-01
An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.
Trace element and isotope deposition across the air–sea interface: progress and research needs
Landing, W. M.; Bucciarelli, E.; Cheize, M.; Fietz, S.; Hayes, C. T.; Kadko, D.; Morton, P. L.; Rogan, N.; Sarthou, G.; Shelley, R. U.; Shi, Z.; Shiller, A.; van Hulten, M. M. P.
2016-01-01
The importance of the atmospheric deposition of biologically essential trace elements, especially iron, is widely recognized, as are the difficulties of accurately quantifying the rates of trace element wet and dry deposition and their fractional solubility. This paper summarizes some of the recent progress in this field, particularly that driven by the GEOTRACES, and other, international research programmes. The utility and limitations of models used to estimate atmospheric deposition flux, for example, from the surface ocean distribution of tracers such as dissolved aluminium, are discussed and a relatively new technique for quantifying atmospheric deposition using the short-lived radionuclide beryllium-7 is highlighted. It is proposed that this field will advance more rapidly by using a multi-tracer approach, and that aerosol deposition models should be ground-truthed against observed aerosol concentration data. It is also important to improve our understanding of the mechanisms and rates that control the fractional solubility of these tracers. Aerosol provenance and chemistry (humidity, acidity and organic ligand characteristics) play important roles in governing tracer solubility. Many of these factors are likely to be influenced by changes in atmospheric composition in the future. Intercalibration exercises for aerosol chemistry and fractional solubility are an essential component of the GEOTRACES programme. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035268
Trace element and isotope deposition across the air-sea interface: progress and research needs
NASA Astrophysics Data System (ADS)
Baker, A. R.; Landing, W. M.; Bucciarelli, E.; Cheize, M.; Fietz, S.; Hayes, C. T.; Kadko, D.; Morton, P. L.; Rogan, N.; Sarthou, G.; Shelley, R. U.; Shi, Z.; Shiller, A.; van Hulten, M. M. P.
2016-11-01
The importance of the atmospheric deposition of biologically essential trace elements, especially iron, is widely recognized, as are the difficulties of accurately quantifying the rates of trace element wet and dry deposition and their fractional solubility. This paper summarizes some of the recent progress in this field, particularly that driven by the GEOTRACES, and other, international research programmes. The utility and limitations of models used to estimate atmospheric deposition flux, for example, from the surface ocean distribution of tracers such as dissolved aluminium, are discussed and a relatively new technique for quantifying atmospheric deposition using the short-lived radionuclide beryllium-7 is highlighted. It is proposed that this field will advance more rapidly by using a multi-tracer approach, and that aerosol deposition models should be ground-truthed against observed aerosol concentration data. It is also important to improve our understanding of the mechanisms and rates that control the fractional solubility of these tracers. Aerosol provenance and chemistry (humidity, acidity and organic ligand characteristics) play important roles in governing tracer solubility. Many of these factors are likely to be influenced by changes in atmospheric composition in the future. Intercalibration exercises for aerosol chemistry and fractional solubility are an essential component of the GEOTRACES programme. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
Trace element and isotope deposition across the air-sea interface: progress and research needs.
Baker, A R; Landing, W M; Bucciarelli, E; Cheize, M; Fietz, S; Hayes, C T; Kadko, D; Morton, P L; Rogan, N; Sarthou, G; Shelley, R U; Shi, Z; Shiller, A; van Hulten, M M P
2016-11-28
The importance of the atmospheric deposition of biologically essential trace elements, especially iron, is widely recognized, as are the difficulties of accurately quantifying the rates of trace element wet and dry deposition and their fractional solubility. This paper summarizes some of the recent progress in this field, particularly that driven by the GEOTRACES, and other, international research programmes. The utility and limitations of models used to estimate atmospheric deposition flux, for example, from the surface ocean distribution of tracers such as dissolved aluminium, are discussed and a relatively new technique for quantifying atmospheric deposition using the short-lived radionuclide beryllium-7 is highlighted. It is proposed that this field will advance more rapidly by using a multi-tracer approach, and that aerosol deposition models should be ground-truthed against observed aerosol concentration data. It is also important to improve our understanding of the mechanisms and rates that control the fractional solubility of these tracers. Aerosol provenance and chemistry (humidity, acidity and organic ligand characteristics) play important roles in governing tracer solubility. Many of these factors are likely to be influenced by changes in atmospheric composition in the future. Intercalibration exercises for aerosol chemistry and fractional solubility are an essential component of the GEOTRACES programme.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.
Awrahman, Zmnako A; Rainbow, Philip S; Smith, Brian D; Khan, Farhan R; Fialkowski, Wojciech
2016-09-01
Demonstration of an ecotoxicological effect of raised toxic metal bioavailabilities on benthic macroinvertebrate communities in contaminated freshwater streams typically requires the labour-intensive identification and quantification of such communities before the application of multivariate statistical analysis. A simpler approach is the use of accumulated trace metal concentrations in a metal-resistant biomonitor to define thresholds that indicate the presence of raised trace metal bioavailabilities causing ecotoxicological responses in populations of more metal-sensitive members of the community. We explore further the hypothesis that concentrations of toxic metals in larvae of species of the caddisfly genus Hydropsyche can be used to predict metal-driven ecotoxicological responses in more metal-sensitive mayflies, especially ephemerellid and heptageniid mayflies, in metal-contaminated rivers. Comparative investigation of two caddisflies, Hydropsyche siltalai and Hydropsyche angustipennis, from metal-contaminated rivers in Cornwall and Upper Silesia, Poland respectively, has provided preliminary evidence that this hypothesis is applicable across caddisfly species and contaminated river systems. Use of a combined toxic unit approach, relying on independent data sets, suggested that copper and probably also arsenic are the drivers of mayfly ecotoxicity in the River Hayle and the Red River in Cornwall, while cadmium, lead and zinc are the toxic agents in the Biala Przemsza River in Poland. This approach has great potential as a simple tool to detect the more subtle effects of mixed trace metal contamination in freshwater systems. An informed choice of suitable biomonitor extends the principle to different freshwater habitats over different ranges of severity of trace metal contamination. Copyright © 2016 Elsevier Ltd. All rights reserved.
2014-03-27
mass and surface area, Equation 12 demonstrates an energy balance for the material, assuming the rest of the surfaces of the material are isothermal...radiation in order to dissipate heat from 18 the spacecraft [8]. As discussed in the system thermal energy balance defined previously, emission of IR... energy balance calculations will be utilized. The Monte Carlo/Ray Trace Radiation Method The Monte Carlo/Ray Trace method is utilized in order to
NASA Astrophysics Data System (ADS)
Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.
2010-12-01
Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.
Shock propagation in locally driven granular systems
NASA Astrophysics Data System (ADS)
Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.
2017-09-01
We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.
Shock propagation in locally driven granular systems.
Joy, Jilmy P; Pathak, Sudhir N; Das, Dibyendu; Rajesh, R
2017-09-01
We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.
Evaluation of lightning accommodation systems for wind-driven turbine rotors
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1982-01-01
Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.
Mukherjee, Shayantani; Warshel, Arieh
2012-01-01
The molecular origin of the action of the F0 proton gradient-driven rotor presents a major puzzle despite significant structural advances. Although important conceptual models have provided guidelines of how such systems should work, it has been challenging to generate a structure-based molecular model using physical principles that will consistently lead to the unidirectional proton-driven rotational motion during ATP synthesis. This work uses a coarse-grained (CG) model to simulate the energetics of the F0-ATPase system in the combined space defined by the rotational coordinate and the proton transport (PTR) from the periplasmic side (P) to the cytoplasmic side (N). The model establishes the molecular origin of the rotation, showing that this effect is due to asymmetry in the energetics of the proton path rather than only the asymmetry of the interaction of the Asp on the c-ring helices and Arg on the subunit-a. The simulation provides a clear conceptual background for further exploration of the electrostatic basis of proton-driven mechanochemical systems. PMID:22927379
Evidence of a New Instability in Gyrokinetic Simulations of LAPD Plasmas
NASA Astrophysics Data System (ADS)
Terry, P. W.; Pueschel, M. J.; Rossi, G.; Jenko, F.; Told, D.; Carter, T. A.
2015-11-01
Recent experiments at the LArge Plasma Device (LAPD) have focused on structure formation driven by density and temperature gradients. A central difference relative to typical, tokamak-like plasmas stems from the linear geometry and absence of background magnetic shear. At sufficiently high β, strong excitation of parallel (compressional) magnetic fluctuations was observed. Here, linear and nonlinear simulations with the
Barman, Rahul; Jain, Atul K; Liang, Miaoling
2014-05-01
We used a land surface model to quantify the causes and extents of biases in terrestrial gross primary production (GPP) due to the use of meteorological reanalysis datasets. We first calibrated the model using meteorology and eddy covariance data from 25 flux tower sites ranging from the tropics to the northern high latitudes and subsequently repeated the site simulations using two reanalysis datasets: NCEP/NCAR and CRUNCEP. The results show that at most sites, the reanalysis-driven GPP bias was significantly positive with respect to the observed meteorology-driven simulations. Notably, the absolute GPP bias was highest at the tropical evergreen tree sites, averaging up to ca. 0.45 kg C m(-2) yr(-1) across sites (ca. 15% of site level GPP). At the northern mid-/high-latitude broadleaf deciduous and the needleleaf evergreen tree sites, the corresponding annual GPP biases were up to 20%. For the nontree sites, average annual biases of up to ca. 20-30% were simulated within savanna, grassland, and shrubland vegetation types. At the tree sites, the biases in short-wave radiation and humidity strongly influenced the GPP biases, while the nontree sites were more affected by biases in factors controlling water stress (precipitation, humidity, and air temperature). In this study, we also discuss the influence of seasonal patterns of meteorological biases on GPP. Finally, using model simulations for the global land surface, we discuss the potential impacts of site-level reanalysis-driven biases on the global estimates of GPP. In a broader context, our results can have important consequences on other terrestrial ecosystem fluxes (e.g., net primary production, net ecosystem production, energy/water fluxes) and reservoirs (e.g., soil carbon stocks). In a complementary study (Barman et al., ), we extend the present analysis for latent and sensible heat fluxes, thus consistently integrating the analysis of climate-driven uncertainties in carbon, energy, and water fluxes using a single modeling framework. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lin, J. Y. Y.; Aczel, A. A.; Abernathy, D. L.; Nagler, S. E.; Buyers, W. J. L.; Granroth, G. E.
2014-03-01
Recently neutron spectroscopy measurements, using the ARCS and SEQUOIA time-of-flight chopper spectrometers, observed an extended series of equally spaced modes in UN that are well described by quantum harmonic oscillator behavior of the N atoms. Additional contributions to the scattering are also observed. Monte Carlo ray tracing simulations with various sample kernels have allowed us to distinguish between the response from the N oscillator scattering, contributions that arise from the U partial phonon density of states (PDOS), and all forms of multiple scattering. These simulations confirm that multiple scattering contributes an ~ Q -independent background to the spectrum at the oscillator mode positions. All three of the aforementioned contributions are necessary to accurately model the experimental data. These simulations were also used to compare the T dependence of the oscillator modes in SEQUOIA data to that predicted by the binary solid model. This work was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Maeno, Tsuyoshi; Ueyama, Hiroya; Iida, Michihira; Fujiwara, Osamu
It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To suppress the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, which revealed that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with the FDTD simulation, we investigated reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces for eighteen PCBs, which have different ground patterns with/without slits parallel to the traces and dielectric layers with different thickness. As a result, we found that the cross-talk reduction effect due to slits is obtained by 3.6-5.3dB, while the cross-talks between signal traces are reduced in inverse proportion to the square of the dielectric-layer thickness and in proportion to the square of the trace interval and, which can quantitatively be explained from an inductive coupling theory.
Web-Based Predictive Analytics to Improve Patient Flow in the Emergency Department
NASA Technical Reports Server (NTRS)
Buckler, David L.
2012-01-01
The Emergency Department (ED) simulation project was established to demonstrate how requirements-driven analysis and process simulation can help improve the quality of patient care for the Veterans Health Administration's (VHA) Veterans Affairs Medical Centers (VAMC). This project developed a web-based simulation prototype of patient flow in EDs, validated the performance of the simulation against operational data, and documented IT requirements for the ED simulation.
Experimental Constraints on Fluid-Rock Reactions during Incipient Serpentinization of Harzburgite
NASA Astrophysics Data System (ADS)
Klein, F.; Grozeva, N. G.; Seewald, J.; McCollom, T. M.; Humphris, S. E.; Moskowitz, B. M.; Berquo, T. S.; Kahl, W. A.
2014-12-01
The exposure of mantle peridotite to water at crustal levels leads to a cascade of interconnected dissolution-precipitation and reduction-oxidation reactions - a process referred to as serpentinization. These reactions have major implications for microbial life through the provision of hydrogen (H2). To simulate incipient serpentinization and the release of H2 under well-constrained conditions, we reacted uncrushed harzburgite with chemically modified seawater at 300°C and 35 MPa for ca. 1.5 years (13441 hours), monitored changes in fluid chemistry over time, and examined the secondary mineralogy at the termination of the experiment. Approximately 4 mol % of the protolith underwent alteration forming serpentine, accessory magnetite, chlorite, and traces of calcite and heazlewoodite. Alteration textures bear remarkable similarities to those found in partially serpentinized abyssal peridotites. Neither brucite nor talc precipitated during the experiment. Given that the starting material contained ~3.8 times more olivine than orthopyroxene on a molar basis, mass balance requires that dissolution of orthopyroxene was significantly faster than dissolution of olivine. However, the H2 release rate was not uniform, slowing from ~2 nmol H2(aq) gperidotite-1 s-1 at the beginning of the experiment to ~0.2 nmol H2(aq) gperidotite-1 s-1 at its termination. Serpentinization consumed water but did not release significant amounts of dissolved species (other than H2) suggesting that incipient hydration reactions involved a volume increase of ~40%. The reduced access of water to olivine surfaces due to filling of fractures and coating of primary minerals with alteration products led to decreased rates of serpentinization and H2 release. While this concept might seem at odds with completely serpentinized seafloor peridotites, reaction-driven fracturing offers an intriguing solution to the seemingly self-limiting nature of serpentinization. Indeed, the reacted sample revealed a number of textural features diagnostic of incipient reaction-driven fracturing. Reaction-driven and tectonic fracturing must have far reaching impacts on the release rate of H2 in peridotite-hosted hydrothermal systems and therefore represent key mechanisms in regulating the supply of reduced gases to microbial ecosystems.
Numerical calculations of non-inductive current driven by microwaves in JET
NASA Astrophysics Data System (ADS)
Kirov, K. K.; Baranov, Yu; Mailloux, J.; Nave, M. F. F.; Contributors, JET
2016-12-01
Recent studies at JET focus on analysis of the lower hybrid (LH) wave power absorption and current drive (CD) calculations by means of a new ray tracing (RT)/Fokker-Planck (FP) package. The RT code works in real 2D geometry accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, {{N}\\parallel} , spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by different combinations of klystrons. Various FP solvers were tested most advanced of which is a relativistic bounce averaged FP code. LH wave power deposition profiles from the new RT/FP code were compared to the experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4 T low and high density. This kind of direct comparison between power deposition profiles from experimental ECE data and numerical model were carried out for the first time for waves in the LH range of frequencies. The results were in a reasonable agreement with experimental data at lower density, line averaged values of {{n}\\text{e}}≈ 2.4× {{10}19} {{\\text{m}}-3} . At higher density, {{n}\\text{e}}≈ 3× {{10}19} {{\\text{m}}-3} , the code predicted larger on-axis LH power deposition, which is inconsistent with the experimental observations. Both calculations were unable to produce LH wave absorption at the plasma periphery, which contradicts to the analysis of the ECE data and possible sources of these discrepancies have been briefly discussed in the paper. The code was also used to calculate the LH power deposition and CD profiles for the low-density preheat phase of JET’s advanced tokamak (AT) scenario. It was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and driven current move inward i.e. towards the plasma axis. A total driven current of about 70 kA for 1 MW of launched LH power was predicted in these conditions.
NASA Astrophysics Data System (ADS)
Blecka, Maria I.
2010-05-01
The passive remote spectrometric methods are important in examinations the atmospheres of planets. The radiance spectra inform us about values of thermodynamical parameters and composition of the atmospheres and surfaces. The spectral technology can be useful in detection of the trace aerosols like biological substances (if present) in the environments of the planets. We discuss here some of the aspects related to the spectroscopic search for the aerosols and dust in planetary atmospheres. Possibility of detection and identifications of biological aerosols with a passive InfraRed spectrometer in an open-air environment is discussed. We present numerically simulated, based on radiative transfer theory, spectroscopic observations of the Earth atmosphere. Laboratory measurements of transmittance of various kinds of aerosols, pollens and bacterias were used in modeling.
Cloud draft structure and trace gas transport
NASA Technical Reports Server (NTRS)
Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.
1990-01-01
During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.
Wind tunnel simulation of air pollution dispersion in a street canyon.
Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek
2002-01-01
Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.
Research on illumination uniformity of high-power LED array light source
NASA Astrophysics Data System (ADS)
Yu, Xiaolong; Wei, Xueye; Zhang, Ou; Zhang, Xinwei
2018-06-01
Uniform illumination is one of the most important problem that must be solved in the application of high-power LED array. A numerical optimization algorithm, is applied to obtain the best LED array typesetting so that the light intensity of the target surface is evenly distributed. An evaluation function is set up through the standard deviation of the illuminance function, then the particle swarm optimization algorithm is utilized to optimize different arrays. Furthermore, the light intensity distribution is obtained by optical ray tracing method. Finally, a hybrid array is designed and the optical ray tracing method is applied to simulate the array. The simulation results, which is consistent with the traditional theoretical calculation, show that the algorithm introduced in this paper is reasonable and effective.
NASA Astrophysics Data System (ADS)
Akritidis, D.; Zanis, P.; Katragkou, E.; Schultz, M. G.; Tegoulias, I.; Poupkou, A.; Markakis, K.; Pytharoulis, I.; Karacostas, Th.
2013-12-01
A modeling system based on the air quality model CAMx driven off-line by the regional climate model RegCM3 is used for assessing the impact of chemical lateral boundary conditions (LBCs) on near surface ozone over Europe for the period 1996-2000. The RegCM3 and CAMx simulations were performed on a 50 km × 50 km grid over Europe with RegCM3 driven by the NCEP meteorological reanalysis fields and CAMx with chemical LBCs from ECHAM5/MOZART global model. The recent past period (1996-2000) was simulated in three experiments. The first simulation was forced using time and space invariant LBCs, the second was based on ECHAM5/MOZART chemical LBCs fixed for the year 1996 and the third was based on ECHAM5/MOZART chemical LBCs with interannual variability. Anthropogenic and biogenic emissions were kept identical for the three sensitivity runs.