Sample records for trace element effects

  1. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula).

    PubMed

    Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric

    2016-10-01

    In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    PubMed Central

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  3. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  4. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

    PubMed Central

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W.; Fallmann, Katharina; Puschenreiter, Markus

    2013-01-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils. PMID:23645938

  5. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    PubMed

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  6. A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins.

    PubMed

    Espejo, Winfred; Celis, José E; GonzÃlez-Acuña, Daniel; Banegas, Andiranel; Barra, Ricardo; Chiang, Gustavo

    2018-01-01

    Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

  7. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  9. The effect of tissue structure and soil chemistry on trace element uptake in fossils

    NASA Astrophysics Data System (ADS)

    Hinz, Emily A.; Kohn, Matthew J.

    2010-06-01

    Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.

  10. Atmospheric transport of trace elements and nutrients to the oceans

    PubMed Central

    Chance, R.

    2016-01-01

    This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035252

  11. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  12. Enhanced analgesic effects of tramadol and common trace element coadministration in mice.

    PubMed

    Alexa, Teodora; Marza, Aurelia; Voloseniuc, Tudor; Tamba, Bogdan

    2015-10-01

    Chronic pain is managed mostly by the daily administration of analgesics. Tramadol is one of the most commonly used drugs, marketed in combination with coanalgesics for enhanced effect. Trace elements are frequent ingredients in dietary supplements and may enhance tramadol's analgesic effect either through synergic mechanisms or through analgesic effects of their own. Swiss Weber male mice were divided into nine groups and were treated with a combination of the trace elements Mg, Mn, and Zn in three different doses and a fixed dose of tramadol. Two groups served as positive (tramadol alone) and negative (saline) controls. Nociceptive assessment by tail-flick (TF) and hot-plate (HP) tests was performed at baseline and at 15, 30, 45, and 60 min after intraperitoneal administration. Response latencies were recorded and compared with the aid of ANOVA testing. All three trace elements enhanced tramadol's analgesic effect, as assessed by TF and HP test latencies. Coadministration of these trace elements led to an increase of approximately 30% in the average pain inhibition compared with the tramadol-alone group. The most effective doses were 0.6 mg/kg b.w. for Zn, 75 mg/kg b.w. for Mg, and 7.2 mg/kg b.w. for Mn. Associating trace elements such as Zn, Mg, and Mn with the standard administration of tramadol increases the drug's analgesic effect, most likely a consequence of their synergic action. These findings impact current analgesic treatment because the addition of these trace elements may reduce the tramadol dose required to obtain analgesia. © 2015 Wiley Periodicals, Inc.

  13. Stability of hydrophilic vitamins mixtures in the presence of electrolytes and trace elements for parenteral nutrition: a nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza

    2015-03-25

    In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Toxic effects of trace elements on newborns and their birth outcomes.

    PubMed

    Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-15

    Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The effect of pasteurization on trace elements in donor breast milk.

    PubMed

    Mohd-Taufek, N; Cartwright, D; Davies, M; Hewavitharana, A K; Koorts, P; McConachy, H; Shaw, P N; Sumner, R; Whitfield, K

    2016-10-01

    Premature infants often receive pasteurized donor human milk when mothers are unable to provide their own milk. This study aims to establish the effect of the pasteurization process on a range of trace elements in donor milk. Breast milk was collected from 16 mothers donating to the milk bank at the Royal Brisbane and Women's Hospital. Samples were divided into pre- and post-pasteurization aliquots and were Holder pasteurized. Inductively coupled plasma mass spectrometry was used to analyze the trace elements zinc (Zn), copper (Cu), selenium (Se), manganese (Mn), iodine (I), iron (Fe), molybdenum (Mo) and bromine (Br). Differences in trace elements pre- and post-pasteurization were analyzed. No significant differences were found between the trace elements tested pre- and post-pasteurization, except for Fe (P<0.05). The median (interquartile range, 25 to 75%; μg l(-1)) of trace elements for pre- and post- pasteurization aliquots were-Zn: 1639 (888-4508), 1743 (878-4143), Cu: 360 (258-571), 367 (253-531), Se: 12.34 (11.73-17.60), 12.62 (11.94-16.64), Mn: (1.48 (1.01-1.75), 1.49 (1.11-1.75), I (153 (94-189), 158 (93-183), Fe (211 (171-277), 194 (153-253), Mo (1.46 (0.37-2.99), 1.42 (0.29-3.73) and Br (1066 (834-1443), 989 (902-1396). Pasteurization had minimal effect on several trace elements in donor breast milk but high levels of inter-donor variability of trace elements were observed. The observed decrease in the iron content of pasteurized donor milk is, however, unlikely to be clinically relevant.

  16. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  17. Trace elements in Mediterranean seagrasses and macroalgae. A review.

    PubMed

    Bonanno, Giuseppe; Orlando-Bonaca, Martina

    2018-03-15

    This review investigates the current state of knowledge on the levels of the main essential and non-essential trace elements in Mediterranean vascular plants and macroalgae. The research focuses also on the so far known effects of high element concentrations on these marine organisms. The possible use of plants and algae as bioindicators of marine pollution is discussed as well. The presence of trace elements is overall well known in all five Mediterranean vascular plants, whereas current studies investigated element concentrations in only c. 5.0% of all native Mediterranean macroalgae. Although seagrasses and macroalgae can generally accumulate and tolerate high concentrations of trace elements, phytotoxic levels are still not clearly identified for both groups of organisms. Moreover, although the high accumulation of trace elements in seagrasses and macroalgae is considered as a significant risk for the associated food webs, the real magnitude of this risk has not been adequately investigated yet. The current research provides enough scientific evidence that seagrasses and macroalgae may act as effective bioindicators, especially the former for trace elements in sediments, and the latter in seawater. The combined use of seagrasses and macroalgae as bioindicators still lacks validated protocols, whose application should be strongly encouraged to biomonitor exhaustively the presence of trace elements in the abiotic and biotic components of coastal ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion.

    PubMed

    Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-09-01

    Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Measurement of Trace Elements During the Development and Immune Response of Heliothis virescens Larvae

    USDA-ARS?s Scientific Manuscript database

    While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...

  20. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    PubMed

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  2. A simple model for closure temperature of a trace element in cooling bi-mineralic systems

    NASA Astrophysics Data System (ADS)

    Liang, Yan

    2015-09-01

    Closure temperature is defined as the lower temperature limit at which the element of interest effectively ceases diffusive exchange with its surrounding medium during cooling. Here we generalize the classic equation of Dodson (1973) for cooling mono-mineralic systems to cooling bi-mineralic aggregates by considering diffusive exchange of a trace element between the two minerals in a closed system. We present a simple analytical model that includes key parameters affecting the closure temperature of a trace element in cooling bi-mineralic systems: cooling rate, temperature-dependent diffusion coefficients for the trace element in the two minerals, temperature-dependent partition coefficient of the trace element between the two minerals, effective grain sizes of the two minerals, and volume proportions of the minerals in the system. We show that closure temperatures of a trace element in cooling bi-mineralic systems are bounded by the closure temperatures of the trace element in the two mono-mineralic systems and that our generalized model reduces to Dodson's equation when one of the mineral serves as "an effective infinite" reservoir to the other mineral. Application to closure temperatures of REE in orthopyroxene and clinopyroxene bi-mineralic systems highlights the importance of REE diffusion and partitioning in the pyroxenes as well as clinopyroxene modal abundance and grain size in the systems. Closure temperatures for REE in two-pyroxene bearing equigranular rocks are controlled primarily by diffusion in orthopyroxene unless the modal abundance of clinopyroxene is very small. This has important bearings on the interpretation of temperatures derived from the REE-in-two-pyroxene thermometer.

  3. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  4. Progress of pharmacogenomic research related to minerals and trace elements.

    PubMed

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  5. Trace element bias in the use of CO2 vents as analogues for low pH environments: Implications for contamination levels in acidified oceans

    NASA Astrophysics Data System (ADS)

    Vizzini, S.; Di Leonardo, R.; Costa, V.; Tramati, C. D.; Luzzu, F.; Mazzola, A.

    2013-12-01

    Research into the effects of ocean acidification on marine ecosystems has increasingly focused on natural CO2 vents, although their intrinsic environmental complexity means observations from these areas may not relate exclusively to pH gradients. In order to assess trace element levels and distribution in the Levante Bay (Vulcano Island, NE Sicily, Italy) and its suitability for studying biological effects of pH decline, Ba, Fe and trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn) in sediment were analysed from 7 transects. Where present, Cymodocea nodosa leaves and epiphytes were also analysed. At the spatial scale of the bay, trace element concentrations in sediments and biota showed wide variability, possibly related to both input from fluid emissions and seawater physico-chemical variables (i.e. pH and Eh), which may considerably affect the solubility and bioavailability of potentially harmful trace elements. According to two pollution indices (MSPI: Marine Sediment Pollution Index and SQG-Q: Sediment Quality Guideline Quotient), the bay can be considered to be affected by low contamination with moderate potential for adverse biological effects, especially in the area between about 150 and 350 m from the primary vent, where localized detrimental effects on biota may occur. Generally, biological samples showed concentrations that were comparable with the lower values of seagrass ranges. The overall results of this study support the complex spatial dynamics of trace elements in the CO2 vent studied, which are constrained by both direct input from the vent and/or biogeochemical processes affecting element precipitation at the sediment-seawater interface. Consequently, great caution should be used when relating biological changes along pH gradients to the unifactorial effect of pH only, as interactions with concurrent, multiple stressors, including trace element enrichments, may occur. This finding has implications for the use of CO2 vents as analogues in ocean acidification research. They should be considered more appropriately as analogues for low pH environments with non-negligible trace element contamination which, in a scenario of continuous increase in anthropogenic pollution, may be very common.

  6. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician

    PubMed Central

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-01-01

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized. PMID:28452962

  7. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician.

    PubMed

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-04-28

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.

  8. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A. viridis regulates its internal trace element concentrations by compartmentalization and excretion and that these features contribute to its resilience and potential success at the trace element-rich high pCO2 vent. PMID:25250210

  9. The effects of trace element content on pyrite oxidation rates

    NASA Astrophysics Data System (ADS)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the variability of trace element content from the pyrite samples. These data were then used to select areas of interest for NanoSIMS analyses, which in turn was used to select areas for TEM and APT. These analyses show that the trace element content of pyrite can be highly variable, which may significantly affect the rate of pyrite oxidation.

  10. Influence of trace elements on dental enamel properties: A review.

    PubMed

    Qamar, Zeeshan; Haji Abdul Rahim, Zubaidah Binti; Chew, Hooi Pin; Fatima, Tayyaba

    2017-01-01

    Dental enamel, an avascular, irreparable, outermost and protective layer of the human clinical crown has a potential to withstand the physico-chemical effects and forces. These properties are being regulated by a unique association among elements occurring in the crystallites setup of human dental enamel. Calcium and phosphate are the major components (hydroxyapatite) in addition to some trace elements which have a profound effect on enamel. The current review was planned to determine the aptitude of various trace elements to substitute and their influence on human dental enamel in terms of physical and chemical properties.

  11. The role of high-energy synchrotron radiation in biomedical trace element research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pounds, J.G.; Long, G.J.; Kwiatek, W.M.

    1987-01-01

    This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation andmore » maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.« less

  12. Investigating Planetesimal Evolution by Experiments with Fe-Ni Metallic Melts: Light Element Composition Effects on Trace Element Partitioning Behavior

    NASA Astrophysics Data System (ADS)

    Chabot, N. L.

    2017-12-01

    As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.

  13. Functional role of inorganic trace elements in angiogenesis-Part II: Cr, Si, Zn, Cu, and S.

    PubMed

    Saghiri, Mohammad Ali; Asatourian, Armen; Orangi, Jafar; Sorenson, Christine M; Sheibani, Nader

    2015-10-01

    Trace elements play critical roles in angiogenesis events. The effects of nitrogen, iron, selenium, phosphorus, gold, and calcium were discussed in part I. In part II, we evaluated the effect of chromium, silicon, zinc, copper, and sulfur on different aspects of angiogenesis, with critical roles in healing and regeneration processes, and undeniable roles in tumor growth and cancer therapy. This review is the second of series that serves as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. The methods of exposure, structure, mechanism, and potential activity of these trace elements are briefly discussed. An electronic search was performed on the role of these trace elements in angiogenesis from January 2005 to April 2014. The recent aspects of the relationship between five different trace elements and their role in regulation of angiogenesis, and homeostasis of pro- and anti-angiogenic factors were assessed. Many studies have investigated the effects and importance of these elements in angiogenesis events. Both stimulatory and inhibitory effects on angiogenesis are observed for the evaluated elements. Chromium can promote angiogenesis in pathological manners. Silicon as silica nanoparticles is anti-angiogenic, while in calcium silicate extracts and bioactive silicate glasses promote angiogenesis. Zinc is an anti-angiogenic agent acting on important genes and growth factors. Copper and sulfur compositions have pro-angiogenic functions by activating pro-angiogenic growth factors and promoting endothelial cells migration, growth, and tube formation. Thus, utilization of these elements may provide a unique opportunity to modulate angiogenesis under various setting. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Trace elements in stormflow, ash, and burned soil following the 2009 station fire in southern California

    USGS Publications Warehouse

    Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.

  15. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

    PubMed Central

    Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270

  16. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  17. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  18. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  19. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  20. Evaluating Crustal Contamination Effects On The Lithophile Trace Element Budget Of Shergottites, NWA 856 As A Test Case

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Ferdous, J.; Peslier, A. H.

    2017-01-01

    The issue of whether crustal contamination has affected the lithophile trace element budget of shergottites has been a point of contention for decades. The evaluation has focused on the enriched shergottite compositions as an outcome of crustal contamination of mantle-derived parent magmas or, alternatively, the compositions of these stones reflect an incompatible trace element (ITE) enriched mantle source.

  1. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  2. Effects of preoperative oral carbohydrates and trace elements on perioperative nutritional status in elective surgery patients.

    PubMed

    Oyama, Yoshimasa; Iwasaka, Hideo; Shiihara, Keisuke; Hagiwara, Satoshi; Kubo, Nobuhiro; Fujitomi, Yutaka; Noguchi, Takayuki

    2011-10-01

    In order to enhance postoperative recovery, preoperative consumption of carbohydrate (CHO) drinks has been used to suppress metabolic fluctuations. Trace elements such as zinc and copper are known to play an important role in postoperative recovery. Here, we examined the effects of preoperatively consuming a CHO drink containing zinc and copper. Subjects were 122 elective surgery patients divided into two groups (overnight fasting and CHO groups); each group was further divided into morning or afternoon surgery groups. Subjects in the CHO group consumed 300 mL of a CHO drink the night before surgery, followed by 200 ml before morning surgery or 700 ml before afternoon surgery (> or =2 hours before anesthesia induction). Blood levels of glucose, nonesterified fatty acids (NEFA), retinol-binding protein, zinc, and copper were determined. One subject in the CHO group was excluded after refusing the drink. There were no adverse effects from the CHO drink. NEFA levels increased in the fasting groups. Although zinc levels increased in the CHO group immediately after anesthesia induction, no group differences were observed the day after surgery. Preoperative consumption of a CHO drink containing trace elements suppressed preoperative metabolic fluctuations without complications and prevented trace element deficiency. Further beneficial effects during the perioperative period can be expected by adding trace elements to CHO supplements.

  3. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  4. Investigation of ecosystems impacts from geothermal development in Imperial Valley, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinn, J.H.; Ireland, R.R.; Kercher, J.R.

    1979-07-13

    A summary of three years of field ecological investigation in Imperial Valley Environmental Program is presented. The potential terrestrial habitat impacts of geothermal development are discussed for shorebirds and waterfowl habitat, the endangered clapper rail, powerline corridors, noise effects, animal trace element burdens, and the desert community. Aquatic habitats are discussed in terms of Salton Sea salinity, effects of geothermal brine discharges to the Salton Sea, trace element baselines, and potential toxicity of brine spills in freshwater. Studies of impacts on agriculture involved brine movement in soil, release of trace metals, trace element baselines in soil and plants, water requirementsmore » of crops, and H{sub 2}S effects on crop production in the presence of CO{sub 2} and ozone.« less

  5. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-02-21

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.

  6. Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA.

    PubMed

    Ali, Sazan; Chaspoul, Florence; Anderson, Loundou; Bergé-Lefranc, David; Achard, Vincent; Perrin, Jeanne; Gallice, Philippe; Guichaoua, Marie

    2017-02-01

    Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.

  7. How Certain Trace Elements Behave.

    ERIC Educational Resources Information Center

    Zingaro, Ralph A.

    1979-01-01

    Fluorine, selenium, tin, and arsenic are among the trace elements occurring in the environment which are considered. Emphasis is given to developing a qualitative survey of the extent and kinds of metal transformations and their resultant effects. (CS)

  8. Long-term anaerobic digestion of food waste stabilized by trace elements.

    PubMed

    Zhang, Lei; Jahng, Deokjin

    2012-08-01

    The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.

  9. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. The effect of melt composition on the partitioning of trace elements between titanite and silicate melt

    NASA Astrophysics Data System (ADS)

    Prowatke, S.; Klemme, S.

    2003-04-01

    The aim of this study is to systematically investigate the influence of melt composition on the partitioning of trace elements between titanite and different silicate melts. Titanite was chosen because of its important role as an accessory mineral, particularly with regard to intermediate to silicic alkaline and calc-alkaline magmas [e.g. 1] and of its relative constant mineral composition over a wide range of bulk compositions. Experiments at atmospheric pressure were performed at temperatures between 1150°C and 1050°C. Bulk compositions were chosen to represent a basaltic andesite (SH3 - 53% SiO2), a dacite (SH2 - 65 SiO2) and a rhyolite (SH1 - 71% SiO2). Furthermore, two additional experimental series were conducted to investigate the effect of Al-Na and the Na-K ratio of melts on partitioning. Starting materials consisted of glasses that were doped with 23 trace elements including some selected rare earth elements (La, Ce, Pr, Sm, Gd, Lu), high field strength elements (Zr, Hf, Nb, Ta) and large ion lithophile elements (Cs, Rb, Ba) and Th and U. The experimental run products were analysed for trace elements using secondary ion mass spectrometry at Heidelberg University. Preliminary results indicate a strong effect of melt composition on trace element partition coefficients. Partition coefficients for rare-earth elements uniformly show a convex-upward shape [2, 3], since titanite accommodates the middle rare-earth elements more readily than the light rare-earth elements or the heavy rare-earth elements. Partition coefficients for the rare-earth elements follow a parabolic trend when plotted against ionic radius. The shape of the parabola is very similar for all studied bulk compositions, the position of the parabola, however, is strongly dependent on bulk composition. For example, isothermal rare-earth element partition coefficients (such as La) are incompatible (D<1) in alkali-rich silicate melts and strongly compatible (D>>1) in alkali-poor melt compositions. From our experimental data we present an model that combines the influence of the crystal lattice on partitioning with the effect of melt composition on trace element partition coefficients. [1] Nakada, S. (1991) Am. Mineral. 76: 548-560 [2] Green, T.H. and Pearson, N.J. (1986) Chem. Geol. 55: 105-119 [3] Tiepolo, M.; Oberti, R. and Vannucci, R. (2002) Chem. Geol. 191: 105-119

  11. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  12. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  13. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  14. The effect of trace element addition to mono-digestion of grass silage at high organic loading rates.

    PubMed

    Wall, David M; Allen, Eoin; Straccialini, Barbara; O'Kiely, Padraig; Murphy, Jerry D

    2014-11-01

    This study investigated the effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Two continuous reactors were compared. The first mono-digested grass silage whilst the second operated in co-digestion, 80% grass silage with 20% dairy slurry (VS basis). The reactors were run for 65weeks with a further 5weeks taken for trace element supplementation for the mono-digestion of grass silage. The co-digestion reactor reported a higher biomethane efficiency (1.01) than mono-digestion (0.90) at an OLR of 4.0kgVSm(-3)d(-1) prior to addition of trace elements. Addition of cobalt, iron and nickel, led to an increase in the SMY in mono-digestion of grass silage by 12% to 404LCH4kg(-1)VS and attained a biomethane efficiency of 1.01. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace elements and other sources of bias and variability in the sampling process. Trace elements have both natural and anthropogenic sources that may affect the sampling process, including the sample-collection and handling materials used in many trace-element monitoring studies. Trace elements also react with these materials within the timescales typical for collection, processing and analysis of runoff samples. To study the characteristics and potential effects of trace elements in highway and urban runoff, investigators typically sample one or more operationally defined matrixes including: whole water, dissolved (filtered water), suspended sediment, bottom sediment, biological tissue, and contaminant sources. The sampling and analysis of each of these sample matrixes can provide specific information about the occurrence and distribution of trace elements in runoff and receiving waters. There are, however, technical concerns specific to each matrix that must be understood and addressed through use of proper collection and processing protocols. Valid protocols are designed to minimize inherent problems and to maximize the accuracy, precision, comparability, and representativeness of data collected. Documentation, including information about monitoring protocols, quality assurance and quality control efforts, and ancillary data also is necessary to establish data quality. This documentation is especially important for evaluation of historical traceelement monitoring data, because trace-element monitoring protocols and analysis methods have been constantly changing over the past 30 years.

  16. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    PubMed

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465

  18. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Sensitivity of trace element pyritization to pyrite oxidation processes

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Díaz, Rut; Mendoza, Ursula; Capilla, Ramses; Böttcher, Michael; Luiza Albuquerque, Ana; Machado, Wilson

    2014-05-01

    Total trace elements concentration variability in marine sediments has been widely used as a proxy for redox conditions and marine paleoprodutivity. However, partial extraction procedures reduce influences of detrital sedimentary fractions, and information on trace element geochemical partitioning can contribute to provide comprehensive evidences on elemental sensitivity to particular processes. The potential effect of sedimentary pyrite re-oxidative cycling on the degree of trace metal pyritization (DTMP) has not been previously evaluated. This study investigates this effect in 4 sediment cores from the continental shelf under the influence of a tropical upwelling system (Cabo Frio, Brazil). The relation of DTMP with stable isotope signals (δ34SCRS) of chromium reducible sulfur, which becomes lighter in response to intense pyrite re-oxidative cycling in the study area, suggests high (As, Cd and Mn), low (Cu and Zn) or negligible (Cr and Ni) re-oxidation influences. The oldest, pyrite-richer sediments provide an apparent threshold for intense pyrite re-oxidation, after which most trace elements (As, Cd, Zn and Mn) presented more accentuated pyritization. A middle shelf core presented negative correlations of reactive (HCl-soluble) Mn, Cu and Ni with pyrite iron, suggesting Mn oxide (and associated metals) depletion in reaction with pyrite. Results provided evidences for coupled influences from both aerobic and anaerobic oxidative processes on trace elements incorporation into pyrite. Pyrite δ34S signatures under the oxic bottom water from the study area were similar to those from euxinic sedimentary environments, suggesting that pyrite re-oxidative cycling can affect trace element susceptibility to be incorporated and preserved into pyrite in a wide range of sedimentary conditions. The evaluation of trace elements sensitivity to these processes can contribute to improve the use of multiple DTMP data (e.g., as paleoredox proxies). Considering that S re-oxidative cycling is ubiquitous in many sedimentary conditions, such coupled use of DTMP and δ34SCRS proxies can be possibly applied to a large variety of sedimentary environments.

  20. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  1. Should bioactive trace elements not recognized as essential, but with beneficial health effects, have intake recommendations.

    PubMed

    Nielsen, Forrest H

    2014-10-01

    Today, most nutritionists do not consider a trace element essential unless it has a defined biochemical function in higher animals or humans. As a result, even though it has been found that trace elements such as boron and silicon have beneficial bioactivity in higher animals and humans, they generally receive limited attention or mention when dietary guidelines or intake recommendations are formulated. Recently, the possibility of providing dietary intake recommendations such as an adequate intake (AI) for some bioactive food components (e.g., flavonoids) has been discussed. Boron, chromium, nickel, and silicon are bioactive food components that provide beneficial health effects by plausible mechanisms of action in nutritional and supra nutritional amounts, and thus should be included in the discussions. Although the science base may not be considered adequate for establishing AIs, a significant number of findings suggest that statements about these trace elements should be included when dietary intake guidance is formulated. An appropriate recommendation may be that diets should include foods that would provide trace elements not currently recognized as essential in amounts shown to reduce the risk of chronic disease and/or promote health and well-being. Published by Elsevier GmbH.

  2. Loess as an environmental archive of atmospheric trace element deposition

    NASA Astrophysics Data System (ADS)

    Blazina, T.; Winkel, L. H.

    2013-12-01

    Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.

  3. Assessment of the effects of glutamic acid decarboxylase antibodies and trace elements on cognitive performance in older adults.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S

    2015-01-01

    Homeostatic imbalance of trace elements such as iron (Fe), copper (Cu), and zinc (Zn) demonstrated adverse effects on brain function among older adults. The present study aimed to investigate the effects of trace elements and the presence of anti-glutamic acid decarboxylase antibodies (GADAs) in human cognitive abilities among healthy older adults. A total of 100 healthy subjects (65 males, 35 females; age range; 64-96 years) were recruited for this study. Based on Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) score, the participants were classified according to cognitive performance into normal (n=45), moderate (n=30), and severe (n=25). Cognitive functioning, leisure-time physical activity (LTPA), serum trace elements - Fe, Cu, Zn, Zn/Cu, and GADAs were assessed using LOTCA battery, pre-validated physical activity (PA) questionnaire, atomic absorption, and immunoassay techniques, respectively. Approximately 45% of the study population (n=45) had normal distribution of cognitive function and 55% of the study population (n=55) had abnormal cognitive function; they were classified into moderate (score 62-92) and severe (score 31-62). There was a significant reduction in the level of Zn and Zn/Cu ratio along with an increase in the level of Fe, Cu, and anti-GADAs in subjects of severe (P=0.01) and moderate (P=0.01) cognitive performance. LOTCA-cognitive scores correlated positively with sex, HbA(1c), Fe, Cu, Zn, and Zn/Cu ratio, and negatively with age, PA, body mass index, and anti-GADAs. Significant inter-correlation was reported between serum trace element concentrations and anti-GADAs which suggest producing a cognitive decline via oxidative and neural damage mechanism. This study found significant associations among trace elements, anti-GADAs, and cognitive function in older adults. The homeostatic balance of trace elements should be recommended among older adults for better cognitive performance.

  4. Intercropping with white lupin (Lupinus albus L.); a promising tool for phytoremediation and phytomining research

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balazs; Moschner, Christin; Heilmeier, Hermann

    2015-04-01

    In recent studies root-soil interactions of white lupine (Lupinus albus L.) have drawn special attention to researchers due to its particularly high potential to increase bioavailability of phosphorous (P) and trace nutrients in soils. In mixed cultures, white lupine has the ability to mobilize P and trace nutrients in soil in excess of its own need and make this excess available for other intercropped companion species. While improved acquisition of P and improved yield parameters have mostly been documented in cereal-lupine intercrops, compared to sole crops, only a few recent studies have evidenced similar effects for trace elements e.g. Fe, Zn and Mn. In this preliminary study we tried to obtain more information about the mobilization of trace elements due to intercropping under field conditions. We hypothesize, that processes that lead to a better acquisition of trace nutrients might also affect other trace elements what could be useful for phytoremediation and phytomining research. Here we report the results of a semi-field experiment were we investigated the effects of an intercropping of white lupine with oat (Avena sativa L.) on the concentrations of trace metals in shoots of oat. We investigated the effects on 12 trace elements, including 4 elements with relevance for plant nutrition (P, Fe, Mn, Zn) and 8 trace elements, belonging to the group of metalloids, lanthanides and actinides with high relevance in phytoremediation (Cd, Pb Th, U) and phytomining research (Sc, La, Nd, Ge). The experiment was carried out on a semi-field lysimer at the off-site soil recycling and remediation center in Hirschfeld (Saxony, Germany). To test the intercropping-dependent mobilization of trace metals in soil and enhanced uptake of elements by oat, white lupine and oat were cultivated on 20 plots (4 m² each) in monocultures and mixed cultures and two different white lupin /oat-ratios (11% and 33%, respectively) applying various treatments. The geometrical arrangement of plots was randomized and every treatment was fivefold replicated. Soil solution was collected weekly with plastic suction cups. Concentrations of trace metals in shoots of oat and soil solution were measured with ICP-MS. As a result, we found that both, concentrations of trace elements in oat plants, as well as the mobility of P and trace metals in soil solution was increased by an intercropping with white lupine. Mixed culture of oat with 11% white lupin significantly increased the concentrations of the trace nutrients Fe, Mn and Zn, as well as the concentrations of the trace metals Pb, La, Nd, Sc, Th and U in tissues of oat. Surprisingly, mixed cultures with 33 % white lupin did not significantly affect trace metal concentrations in oat, what might be the consequence of an increasing competition of roots of white lupin and oat for nutrients and trace metals. In conclusion we found that mixed cultures of white lupin with cereals might be a powerful tool for enhanced phytoremediation and phytomining. However, processes involved in the physiochemical mechanism of element uptake as affected by the oat/white lupin co-cultivation remain unknown and further studies on this topic are planned. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  5. Trace element levels and cognitive function in rural elderly Chinese.

    PubMed

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W; Ma, Feng; Hall, Kathleen S; Murrell, Jill R; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C

    2008-06-01

    Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Three trace elements-calcium, cadmium, and copper-were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p <.0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p =.0044 and p =.0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population.

  6. Long-term anaerobic digestion of food waste stabilized by trace elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less

  7. Trace elements: implications for nursing.

    PubMed

    Hayter, J

    1980-01-01

    Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.

  8. Chemical analysis and geochemical associations in Devonian black shale core samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.

  9. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  10. Quality of trace element contaminated soils amended with compost under fast growing tree Paulownia fortunei plantation.

    PubMed

    Madejón, P; Xiong, J; Cabrera, F; Madejón, E

    2014-11-01

    The use of fast growing trees could be an alternative in trace element contaminated soils to stabilize these elements and improve soil quality. In this study we investigate the effect of Paulownia fortunei growth on trace element contaminated soils amended with two organic composts under semi-field conditions for a period of 18 months. The experiment was carried out in containers filled with tree different soils, two contaminated soils (neutral AZ and acid V) and a non contaminated soil, NC. Three treatments per soil were established: two organic amendments (alperujo compost, AC, and biosolid compost, BC) and a control without amendment addition. We study parameters related with fertility and contamination in soils and plants. Paulownia growth and amendments increased pH in acid soils whereas no effect of these factors was observed in neutral soils. The plant and the amendments also increased organic matter and consequently, soil fertility. Positive results were also found in soils that were only affected by plant growth (without amendment). A general improvement of "soil biochemical quality" was detected over time and treatments, confirming the positive effect of amendments plus paulownia. Even in contaminated soils, except for Cu and Zn, trace element concentrations in leaves were in the normal range for plants. Results of this mid-term study showed that Paulownia fortunei is a promising species for phytoremediation of trace element polluted soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    PubMed

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Gull-derived trace elements trigger small-scale contamination in a remote Mediterranean nature reserve.

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2013-09-15

    The role of a yellow-legged gull (Larus michahellis) small colony in conveying trace elements (As, Cd, Cr, Cu, Ni, Pb, THg, V, Zn) was assessed in a Mediterranean nature reserve (Marinello ponds) at various spatial and temporal scales. Trace element concentrations in guano were high and seasonally variable. In contrast, contamination in the ponds was not influenced by season but showed strong spatial variability among ponds, according to the different guano input. Biogenic enrichment factor B confirmed the role of gulls in the release of trace elements through guano subsidies. In addition, comparing trace element pond concentrations to the US NOAA's SQGs, As, Cu and Ni showed contamination levels associated with possible negative biological effects. Thus, this study reflects the need to take seabirds into account as key factors influencing ecological processes and contamination levels even in remote areas, especially around the Mediterranean, where these birds are abundant but overlooked. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review

    PubMed Central

    Hussain, Mohsina

    2016-01-01

    Human body requires certain essential elements in small quantities and their absence or excess may result in severe malfunctioning of the body and even death in extreme cases because these essential trace elements directly influence the metabolic and physiologic processes of the organism. Rapid urbanization and economic development have resulted in drastic changes in diets with developing preference towards refined diet and nutritionally deprived junk food. Poor nutrition can lead to reduced immunity, augmented vulnerability to various oral and systemic diseases, impaired physical and mental growth, and reduced efficiency. Diet and nutrition affect oral health in a variety of ways with influence on craniofacial development and growth and maintenance of dental and oral soft tissues. Oral potentially malignant disorders (OPMD) are treated with antioxidants containing essential trace elements like selenium but even increased dietary intake of trace elements like copper could lead to oral submucous fibrosis. The deficiency or excess of other trace elements like iodine, iron, zinc, and so forth has a profound effect on the body and such conditions are often diagnosed through their early oral manifestations. This review appraises the biological functions of significant trace elements and their role in preservation of oral health and progression of various oral diseases. PMID:27433374

  14. Ultra-Sensitive Elemental Analysis Using Plasmas 7.Application to Criminal Investigation

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro

    This paper describes the application of trace elemental analysis using ICP-AES and ICP-MS to criminal investigation. The comparison of trace elements, such as Rb, Sr, Zr, and so on, is effective for the forensic discrimination of glass fragments, which can be important physical evidence for connecting a suspect to a crime scene or to a victim. This procedure can be applied also to lead shotgun pellets by the removal of matrix lead as the sulfate precipitate after the dissolution of a pellet sample. The determination of a toxic element in bio-logical samples is required to prove that a victim ingested this element. Arsenous acids produced in Japan, China, Germany and Switzerland show characteristic patterns of trace elements characteristic to each country.

  15. Determination of Pb in Biological Samples by Graphite Furnace Atomic Absorption Spectrophotometry: An Exercise in Common Interferences and Fundamental Practices in Trace Element Determination

    ERIC Educational Resources Information Center

    Spudich, Thomas M.; Herrmann, Jennifer K.; Fietkau, Ronald; Edwards, Grant A.

    2004-01-01

    An experiment is conducted to ascertain trace-level Pb in samples of bovine liver or muscle by applying graphite furnace atomic absorption spectrophotometry (GFAAS). The primary objective is to display the effects of physical and spectral intrusions in determining trace elements, and project the usual methods employed to minimize accuracy errors…

  16. Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds.

    PubMed

    Oyewumi, Oluyinka; Schreiber, Madeline E

    2017-08-01

    Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60-70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Trace elements as paradigms of developmental neurotoxicants: lead, methylmercury and arsenic

    PubMed Central

    Grandjean, Philippe; Herz, Katherine T.

    2014-01-01

    Trace elements have contributed unique insights into developmental neurotoxicity and serve as paradigms for such adverse effects. Many trace elements are retained in the body for long periods and can be easily measured to assess exposure by inexpensive analytical methods that became available several decades ago so that past and cumulated exposures could be easily characterized through analysis of biological samples, e.g. blood and urine. The first compelling evidence resulted from unfortunate poisoning events that allowed scrutiny of long-term outcomes of acute exposures that occurred during early development. Pursuant to this documentation, prospective studies of children's cohorts that applied sensitive neurobehavioral methods supported the notion that the brain is uniquely vulnerable to toxic damage during early development. Lead, methylmercury, and arsenic thereby serve as paradigm neurotoxicants that provide a reference for other substances that may have similar adverse effects. Less evidence is available on manganese, fluoride, and cadmium, but experience from the former trace elements suggest that, with time, adverse effects are likely to be documented at exposures previously thought to be low and safe. PMID:25175507

  18. Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic.

    PubMed

    Grandjean, Philippe; Herz, Katherine T

    2015-01-01

    Trace elements have contributed unique insights into developmental neurotoxicity and serve as paradigms for such adverse effects. Many trace elements are retained in the body for long periods and can be easily measured to assess exposure by inexpensive analytical methods that became available several decades ago so that past and cumulated exposures could be easily characterized through analysis of biological samples, e.g. blood and urine. The first compelling evidence resulted from unfortunate poisoning events that allowed scrutiny of long-term outcomes of acute exposures that occurred during early development. Pursuant to this documentation, prospective studies of children's cohorts that applied sensitive neurobehavioral methods supported the notion that the brain is uniquely vulnerable to toxic damage during early development. Lead, methylmercury, and arsenic thereby serve as paradigm neurotoxicants that provide a reference for other substances that may have similar adverse effects. Less evidence is available on manganese, fluoride, and cadmium, but experience from the former trace elements suggest that, with time, adverse effects are likely to be documented at exposures previously thought to be low and safe. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    PubMed

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Factors to consider for trace element deposition biomonitoring surveys with lichen transplants

    USGS Publications Warehouse

    Ayrault, S.; Clochiatti, R.; Carrot, F.; Daudin, L.; Bennett, J.P.

    2007-01-01

    A trace element deposition biomonitoring experiment with transplants of the fruticose lichen Evernia prunastri was developed, aimed at monitoring the effects of different exposure parameters (exposure orientation and direct rain) and to the elements Ti, V, Cr, Co, Cu, Zn, Rb, Cd, Sb and Pb. Accumulations were observed for most of the elements, confirming the ability of Evernia transplants for atmospheric metal deposition monitoring. The accumulation trends were mainly affected by the exposure orientation and slightly less so by the protection from rain. The zonation of the trace elements inside the thallus was also studied. It was concluded that trace element concentrations were not homogeneous in Evernia, thus imposing some cautions on the sampling approach. A nuclear microprobe analysis of an E. prunastri transplanted thallus in thin cross-sections concluded that the trace elements were mainly concentrated on the cortex of the thallus, except Zn, Ca and K which were also present in the internal layers. The size of the particles deposited or entrapped on the cortex surface averaged 7????m. A list of key parameters to ensure the comparability of surveys aiming at observing temporal or spatial deposition variation is presented. ?? 2006 Elsevier B.V. All rights reserved.

  1. Trace elements in coal. Environmental and health significance

    USGS Publications Warehouse

    Finkelman, R.B.

    1999-01-01

    Trace elements can have profound adverse effects on the health of people burning coal in homes or living near coal deposits, coal mines, and coal- burning power plants. Trace elements such as arsenic emitted from coal- burning power plants in Europe and Asia have been shown to cause severe health problems. Perhaps the most widespread health problems are caused by domestic coal combustion in developing countries where millions of people suffer from fluorosis and thousands from arsenism. Better knowledge of coal quality characteristics may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals in coal may help to predict the behavior of the potentially toxic trace metals during coal cleaning, combustion, weathering, and leaching.

  2. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    PubMed

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems. Environ Toxicol Chem 2017;36:2916-2924. © 2017 SETAC. © 2017 SETAC.

  3. In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese.

    PubMed

    Chebassier, Nathalie; El Houssein, Ouijja; Viegas, Isabelle; Dréno, Brigitte

    2004-08-01

    Matrix metalloproteinase (MMP)-2 and MMP-9 are involved in keratinocyte migration and granulation tissue remodeling during wound healing. Thermal water cures are sometimes proposed as complementary treatment for accelerating healing of wounds resulting from burns and/or surgery, but their mechanisms of action remain unknown. Some thermal waters are rich in trace elements such as boron and manganese. Interestingly, clinical studies have shown the beneficial effects of trace elements such as boron and manganese for human wound healing. To try to specify the role of trace elements in cutaneous healing, the present study investigated the effects of these trace elements on the production of MMP-2 and MMP-9 by normal human keratinocytes cultured in vitro. Immunohistochemistry and Western blot showed that intracellular MMP-9 expression in keratinocytes was induced when incubated for 6 h with boron at 10 micro g/ml or manganese at 0.2 micro g/ml. Moreover, gelatin zymography on keratinocyte supernatants showed an increase of gelatinase secretion after 24 h of incubation of keratinocytes with boron or manganese, regardless of concentration. Gelatinase secretion was not associated with keratinocyte proliferation induced by trace elements. Thus, our results suggest that boron and manganese could play a role in the clinical efficiency of thermal water on wound healing.

  4. Trace element contents in fine particulate matter (PM2.5) in urban school microenvironments near a contaminated beach with mine tailings, Chañaral, Chile.

    PubMed

    Mesías Monsalve, Stephanie; Martínez, Leonardo; Yohannessen Vásquez, Karla; Alvarado Orellana, Sergio; Klarián Vergara, José; Martín Mateo, Miguel; Costilla Salazar, Rogelio; Fuentes Alburquenque, Mauricio; Cáceres Lillo, Dante D

    2018-06-01

    Air quality in schools is an important public health issue because children spend a considerable part of their daily life in classrooms. Particulate size and chemical composition has been associated with negative health effects. We studied levels of trace element concentrations in fine particulate matter (PM 2.5 ) in indoor versus outdoor school settings from six schools in Chañaral, a coastal city with a beach severely polluted with mine tailings. Concentrations of trace elements were measured on two consecutive days during the summer and winter of 2012 and 2013 and determined using X-ray fluorescence. Source apportionment and element enrichment were measured using principal components analysis and enrichment factors. Trace elements were higher in indoor school spaces, especially in classrooms compared with outdoor environments. The most abundant elements were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with earth's crust. Conversely, an extremely high enrichment factor was determined for Cu, Zn, Ni and Cr; heavy metals associated with systemic and carcinogenic risk effects, whose probably origin sources are industrial and mining activities. These results suggest that the main source of trace elements in PM 2.5 from these school microenvironments is a mixture of dust contaminated with mine tailings and marine aerosols. Policymakers should prioritize environmental management changes to minimize further environmental damage and its direct impact on the health of children exposed.

  5. Trace Element Levels and Cognitive Function in Rural Elderly Chinese

    PubMed Central

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W.; Ma, Feng; Hall, Kathleen S.; Murrell, Jill R.; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C.

    2009-01-01

    Background Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. Methods The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Results Three trace elements—calcium, cadmium, and copper—were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p < .0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p = .0044 and p = .0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Conclusions Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population. PMID:18559640

  6. Transport of trace metals in runoff from soil and pond ash feedlot surfaces

    USGS Publications Warehouse

    Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.

    2011-01-01

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.

  7. Trace elements have beneficial, as well as detrimental effects on bone homeostasis.

    PubMed

    Zofkova, I; Davis, M; Blahos, J

    2017-07-18

    The protective role of nutrition factors such as calcium, vitamin D and vitamin K for the integrity of the skeleton is well understood. In addition, integrity of the skeleton is positively influenced by certain trace elements (e.g. zinc, copper, manganese, magnesium, iron, selenium, boron and fluoride) and negatively by others (lead, cadmium, cobalt). Deficiency or excess of these elements influence bone mass and bone quality in adulthood as well as in childhood and adolescence. However, some protective elements may become toxic under certain conditions, depending on dosage (serum concentration), duration of treatment and interactions among individual elements. We review the beneficial and toxic effects of key elements on bone homeostasis.

  8. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy.

    PubMed

    Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro

    2012-08-01

    Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.

  10. Toxic and trace elements in tobacco and tobacco smoke.

    PubMed Central

    Chiba, M.; Masironi, R.

    1992-01-01

    While the harmful health effects of carbon monoxide, nicotine, tar, irritants and other noxious gases that are present in tobacco smoke are well known, those due to heavy metals and other toxic mineral elements in tobacco smoke are not sufficiently emphasized. Tobacco smoking influences the concentrations of several elements in some organs. This review summarizes the known effects of some trace elements and other biochemically important elements (Al, As, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Po-210, Se, and Zn) which are linked with smoking. Cigarette smoking may be a substantial source of intake of these hazardous elements not only to the smoker but also, through passive smoking, to nonsmokers. The adverse health effects of these toxic elements on the fetus through maternal smoking, and on infants through parental smoking, are of special concern. PMID:1600587

  11. Trace elements and oxidative stress levels in the blood of painters in Lagos, Nigeria: occupational survey and health concern.

    PubMed

    Awodele, Olufunsho; Akinyede, Akin; Babawale, Omotola Opeyemi; Coker, Herbert A Babatunde; Akintonwa, Alade

    2013-06-01

    Adverse effects attributed to exposure to paints are currently a concern because of the continued widespread use of paint containing trace elements. Thus, occupational survey amongst painters in Lagos and determination of trace elements and oxidative stress parameters were carried out. Descriptive cross-sectional survey was done using a standardized questionnaire to obtain job safety-related information. Forty-eight percent of the painters were aware of hazards associated with painting and 52 % of these workers were aware of the necessary precautionary measures during painting. There were no significant differences (p ≥ 0.05) between the levels of trace elements in the blood of painters and the control subjects. However, there was a significance increase (p ≤ 0.0001) in the level of malondialdehyde and a decrease (p ≤ 0.001) in the levels of reduced glutathione, superoxide dismutase, and catalase of the painters compared to the control. An increase in oxidative stress parameters may not only be due to trace element concentrations, but also the painters' exposure to some petrochemical solvents during mixing of paints.

  12. Effects of human-induced alteration of groundwater flow on concentrations of naturally-occurring trace elements at water-supply wells

    USGS Publications Warehouse

    Ayotte, J.D.; Szabo, Z.; Focazio, M.J.; Eberts, S.M.

    2011-01-01

    The effects of human-induced alteration of groundwater flow patterns on concentrations of naturally-occurring trace elements were examined in five hydrologically distinct aquifer systems in the USA. Although naturally occurring, these trace elements can exceed concentrations that are considered harmful to human health. The results show that pumping-induced hydraulic gradient changes and artificial connection of aquifers by well screens can mix chemically distinct groundwater. Chemical reactions between these mixed groundwaters and solid aquifer materials can result in the mobilization of trace elements such as U, As and Ra, with subsequent transport to water-supply wells. For example, in the High Plains aquifer near York, Nebraska, mixing of shallow, oxygenated, lower-pH water from an unconfined aquifer with deeper, confined, anoxic, higher-pH water is facilitated by wells screened across both aquifers. The resulting higher-O2, lower-pH mixed groundwater facilitated the mobilization of U from solid aquifer materials, and dissolved U concentrations were observed to increase significantly in nearby supply wells. Similar instances of trace element mobilization due to human-induced mixing of groundwaters were documented in: (1) the Floridan aquifer system near Tampa, Florida (As and U), (2) Paleozoic sedimentary aquifers in eastern Wisconsin (As), (3) the basin-fill aquifer underlying the California Central Valley near Modesto (U), and (4) Coastal Plain aquifers of New Jersey (Ra). Adverse water-quality impacts attributed to human activities are commonly assumed to be related solely to the release of the various anthropogenic contaminants to the environment. The results show that human activities including various land uses, well drilling, and pumping rates and volumes can adversely impact the quality of water in supply wells, when associated with naturally-occurring trace elements in aquifer materials. This occurs by causing subtle but significant changes in geochemistry and associated trace element mobilization as well as enhancing advective transport processes.

  13. Trace element distribution in waters of the northern catchment area of Lake Linneret, northern Israel

    NASA Astrophysics Data System (ADS)

    Sandler, A.; Brenner, I. B.; Halicz, L.

    1988-02-01

    Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.

  14. Stress-induced injuries and trace element concentrations in vascular leaf plants from an urban environment (Palermo, Italy).

    PubMed

    Alaimo, Maria Grazia; Colombo, Paolo; Firetto, Anna; Trapani, Salvatore; Vizzì, Daniela; Melati, M Rita

    2003-01-01

    We examined leaf injuries and measured trace element concentrations in vascular plants from an urban ecosystem with distinct stress valences (the city of Palermo), and compared them with samples of the same species from sites where the stress potential is lower. Urban pollution influences macro-, micro- and toxic element concentrations in leaves. Therefore these leaves can be used as markers of the chemical and biological effects of atmospheric pollution. We studied the trace element content in the leaves of two species, oleander and oak, both fairly tolerant plants and good indicators and bio-monitors of pollution contaminants. Samples were collected at various sites in different periods.

  15. [Analysis of primary elemental speciation distribution in mungbean during enzymatic hydrolization].

    PubMed

    Li, Ji-Hua; Huang, Mao-Fang; Zhu, De-Ming; Zheng, Wei-Wan; Zhong, Ye-Jun

    2009-03-01

    In the present paper, trace elements contents of cuprum, zincum, manganese and ferrum in mungbean and their primary speciation distribution during enzymatic hydrolization were investigated with ICP-AES OPTIMA 5300DV plasma emission spectroscopy. The trace elements were separated into two forms, i.e. dissolvable form and particulate form, by cellulose membrane with 0.45 microm of pore diameter. All the samples were digested by strong acid (perchloric acid and nitric acid with 1 : 4 ratio ). The parameters of primary speciations of the four elements were calculated and discussed. The results showed: (1) Contents of cuprum, zincum, manganese and ferrum in mungbean were 12.77, 31.26, 18.14 and 69.38 microg x g(-1) (of dry matter), respectively. Different treatment resulted in different elemental formulation in product, indicating that more attention should be paid to the trace elements pattern when producing mungbean beverage with different processes. (2) Extraction rates of cuprum, zincum, manganese and ferrum in extract were 68.84%, 51.84%, 63.97% and 30.40% with enzymatic treatments and 36.22%, 17.58%, 7.85% and 22.99% with boil treatment, respectively. Both boil and enzymatic treatments led to poor elemental extraction rates, which proved that it was necessary to take deep enzymatic hydrolysis treatment in mungbean beverage process as the trace element utilization rate was concerned. (3) Amylase, protease and cellulose showed different extraction effectiveness of the four trace elements. Generally, protease exhibited highest efficiency for the four elements extraction. All of the four trace elements were mostly in dissolvable form in all hydrolysates and soup. (4) Relative standard deviations and recovery yields are within 0.12%-0.90% (n = 11) and 98.6%-101.4%, respectively. The analysis method in this paper proved to be accurate.

  16. Effects of electromagnetic pulse on serum element levels in rat.

    PubMed

    Li, Kangchu; Ma, Shirong; Ren, Dongqing; Li, Yurong; Ding, Guirong; Liu, Junye; Guo, Yao; Guo, Guozhen

    2014-04-01

    Electromagnetic pulse (EMP) was a potentially harmful factor to the human body, and a biological dosimetry to evaluate effects of EMP is necessary. Little is known about effects of EMP on concentration of macro and trace elements in serum so far. In this study, Sprague-Dawley rats were randomly divided into 50-kV/m EMP-exposed group (n = 10), 100-kV/m EMP-exposed group (n = 10), 200-kV/m EMP-exposed group (n = 40), and the sham-exposed group (n = 20). The macro and trace element concentrations in serum were examined at 6, 12, 24, and 48 h after EMP exposure at different electric field intensities. Compared with the sham-exposed groups, the concentration of sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), selenium (Se), and manganese (Mn) in rat serum was not changed significantly within 48 h after 200 pulses of EMP exposure at electric field intensity of 50, 100, and 200 kV/m although the K level was decreased and the Ca level was increased with the electric field intensity of EMP increasing. In addition, there was a tendency that the Zn level was decreased with the time going on within 48 h after EMP exposure. Under our experimental conditions, EMP exposure cannot affect the concentration of macro and trace elements in rat serum. There was no time-effect or dose-effect relationship between EMP exposure and serum element levels. The macro and trace elements in serum are not suitable endpoints of biological dosimetry of EMP.

  17. Numerical simulation of trace element transport on subsurface environment pollution in coal mine spoil.

    PubMed

    Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu

    2006-01-01

    An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.

  18. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Contributions of trace elements to the sea by small uncontaminated rivers: Effects of a water reservoir and a wastewater treatment plant.

    PubMed

    Álvarez-Vázquez, Miguel Ángel; Prego, Ricardo; Caetano, Miguel; De Uña-Álvarez, Elena; Doval, Maryló; Calvo, Susana; Vale, Carlos

    2017-07-01

    Trace element contributions from small rivers to estuaries is an issue barely addressed in the literature. In this work, freshwater flowing into the Ria of Cedeira (NW Iberian Peninsula) was studied during a hydrological year through the input from three rivers, one considered uncontaminated (the Das-Mestas River), a second affected by urban treated wastewater discharges (the Condomiñas River), and the third containing a water reservoir for urban supply (the Forcadas River). With the objective of assessing the possible influence of human pressure, the annual yields for selected trace elements (Al, Fe, As, Cd, Co, Cr, Cu, Mn, Mo, Ni and Pb) were estimated and compared by normalizing by basin surface. Both dissolved and particulate transported elements were considered. After the data treatment and analysis it can be highlighted that: (i) the Das Mestas River is suitable to be included between the short European pristine baseline of small rivers, at least regarding the transported trace elements; (ii) natural enrichments were identified associated to the lithology of the basin in the Das-Mestas River (i.e. As) and in the Condomiñas River (i.e. Co, Cr and Ni); this fact highlights the importance of considering the local background for a proper assessment; (iii) the impoundment in the Forcadas River is related with a general decrease, even depletion, of the particulate and dissolved transported trace elements, except Mn; (iv) the discharge of sewage to the Condomiñas River is increasing the inputs to the ria of some trace elements in the particulate phase (i.e. Al, Cu and Pb). Both observed human-induced changes can be regarded as typical disturbances of trace element contributions from small rivers to estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  1. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    PubMed

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  2. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits.

    PubMed

    Madejón, P; Ciadamidaro, L; Marañón, T; Murillo, J M

    2013-01-01

    Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  3. Transmission of atmospherically derived trace elements through an undeveloped, forested Maryland watershed

    USGS Publications Warehouse

    Scudlark, J.R.; Rice, Karen C.; Conko, Kathryn M.; Bricker, Owen P.; Church, T.M.

    2005-01-01

    The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases.To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.

  4. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  5. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  6. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution impact studies require knowledge of the natural background concentrations and knowledge of pollutant behavior. For example, it is generally accepted that rare earth elements (REEs) in waters behave as good analogues for the actinides, whose natural levels are quite low and rarely measured. Water quality investigations have clearly been a stimulus for measurement of toxic heavy metals in order to understand their behavior in natural systems.From a more fundamental point of view, it is crucial to understand the behavior of trace elements in geological processes, in particular during chemical weathering and transport by waters. Trace elements are much more fractionated by weathering and transport processes than major elements, and these fractionations give clues for understanding the nature and intensity of the weathering+transport processes. This has not only applications for weathering studies or for the past mobilization and transport of elements to the ocean (potentially recorded in the sediments), but also for the possibility of better utilization of trace elements in the aqueous environment as an exploration tool.In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a "field approach" by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters will be reviewed. Regulation by surfaces is of major importance for a great range of elements. Although for both colloids and surface interactions, some progress has been made, we are still far from a unified model that can accurately predict trace-element concentrations in natural water systems. This is mainly due to our poor physical description of natural colloids, surface site complexation, and their interaction with solutes.

  7. Trace element diffusion and kinetic fractionation in wet rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Holycross, Megan E.; Watson, E. Bruce

    2018-07-01

    Piston-cylinder experiments were run to determine the chemical diffusivities of 21 trace elements (Sc, V, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Th and U) in hydrous rhyolitic melts at 1 GPa pressure and temperatures from 850 to 1250 °C. Diffusion couple glasses were doped with trace elements in low concentrations to characterize the diffusivities of all cations in a single experiment. Laser ablation ICP-MS was used to evaluate the trace element concentration gradients that developed in the silicate glasses. All calculated diffusion coefficients correspond to the temperature dependence D = D0exp(-Ea/RT). Rhyolite liquids contained either ∼4.1 wt% or ∼6.2 wt% dissolved H2O; separate Arrhenius relationships are produced for each melt composition. Trace element diffusivities in the melt with 6.2 wt% H2O are roughly two times higher than those in the less hydrous melt. Calculated trace element diffusion coefficients cover nearly two orders of magnitude at a given temperature. The high field strength elements are the slowest diffusers, followed by the transition metals and heavy rare earth elements. The light rare earth elements have the fastest diffusion rates in hydrous rhyolitic melt. The measured diffusion coefficients range down to values sufficiently low to preclude diffusive homogenization over geochemically realistic time scales in some cases. The substantial differences in the diffusivities of individual cations may result in fractionated trace element signatures in rhyolite melt pockets. A simple model is used to explore the potential for kinetic fractionation of REE during growth of an apatite crystal in a diffusive boundary layer locally saturated in P2O5. The faster-diffusing light REE are more efficiently transported away from the crystal interface than the slower-moving heavy REE. Diffusion effects will enrich the melt boundary layer in slow-moving HREE relative to the faster LREE. The kinetic fractionation of REE in the melt growth medium will result in a precipitated apatite crystal with a disequilibrium trace element composition.

  8. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  9. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  10. Raccoons (Procyon lotor) as Sentinels of Trace Element Contamination and Physiological Effects of Exposure to Coal Fly Ash

    DOE PAGES

    Hernandez, Felipe; Oldenkamp, Ricki E.; Webster, Sarah; ...

    2016-12-08

    Anthropogenic pollutants disrupt global biodiversity, and terrestrial sentinels of pollution can provide a warning system for ecosystem-wide contamination. This study sought to assess whether raccoons (Procyon lotor) are sentinels of local exposure to trace element contaminants at a coal fly ash site and whether exposure resulted in health impairment or changes in the intestinal helminth communities. We compared trace element accumulation and the impact on health responses and intestinal helminth communities of raccoons inhabiting contaminated and reference sites of the U.S. Department of Energy’s Savannah River Site (South Carolina, USA). Data on morphometry, hematology, histopathology, helminth community and abundance, andmore » liver trace element burdens were collected from 15 raccoons captured adjacent to a coal fly ash basin and 11 raccoons from a comparable uncontaminated site nearby. Of eight trace elements analyzed, Cu, As, Se, and Pb were elevated in raccoons from the contaminated site. Raccoons from the contaminated site harbored higher helminth abundance than animals from the reference site and that abundance was positively associated with increased Cu concentrations. While we found changes in hematology associated with increased Se exposure, we did not find physiological or histological changes associated with higher levels of contaminants. Our results suggest that raccoons and their intestinal helminths act as sentinels of trace elements in the environment associated with coal fly ash contamination.« less

  11. Raccoons (Procyon lotor) as Sentinels of Trace Element Contamination and Physiological Effects of Exposure to Coal Fly Ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Felipe; Oldenkamp, Ricki E.; Webster, Sarah

    Anthropogenic pollutants disrupt global biodiversity, and terrestrial sentinels of pollution can provide a warning system for ecosystem-wide contamination. This study sought to assess whether raccoons (Procyon lotor) are sentinels of local exposure to trace element contaminants at a coal fly ash site and whether exposure resulted in health impairment or changes in the intestinal helminth communities. We compared trace element accumulation and the impact on health responses and intestinal helminth communities of raccoons inhabiting contaminated and reference sites of the U.S. Department of Energy’s Savannah River Site (South Carolina, USA). Data on morphometry, hematology, histopathology, helminth community and abundance, andmore » liver trace element burdens were collected from 15 raccoons captured adjacent to a coal fly ash basin and 11 raccoons from a comparable uncontaminated site nearby. Of eight trace elements analyzed, Cu, As, Se, and Pb were elevated in raccoons from the contaminated site. Raccoons from the contaminated site harbored higher helminth abundance than animals from the reference site and that abundance was positively associated with increased Cu concentrations. While we found changes in hematology associated with increased Se exposure, we did not find physiological or histological changes associated with higher levels of contaminants. Our results suggest that raccoons and their intestinal helminths act as sentinels of trace elements in the environment associated with coal fly ash contamination.« less

  12. Trace Elements and Healthcare: A Bioinformatics Perspective.

    PubMed

    Zhang, Yan

    2017-01-01

    Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.

  13. Effect of royal jelly on serum trace elements in rats undergoing head and neck irradiation.

    PubMed

    Cihan, Yasemin Benderli; Cihan, Celaleddin; Mutlu, Hasan; Unal, Dilek

    2013-01-01

    This study aims to investigate the effects of radiation on serum trace elements and the changes in these elements as induced by royal jelly in rats undergoing head and neck irradiation. Thirty-two Sprague-Dawley male rats at the age of eight weeks with a mean weight of 275±35 g were included in the study. Subjects were divided into four groups with eight rats in each group: group 1: controls (C), group 2: radiation-only (RT), group 3: radiation plus royal jelly 50 mg/kg (RT+RJ50) and group 4: royal jelly 50 mg/kg-only (RJ50). Radiotherapy was applied to the head and neck area by single fraction at a dose of 22 Gy. The royal jelly was given once daily for seven days. The subjects were sacrificed on the seventh day of the study. Trace elements in blood samples were measured using ICP/MS method. When the trace element levels among the groups were compared using ANOVA test, a statistically significant difference was found in Al, As, Ca, Cd, Cr, K, Mg, Pb, Se, and Sn levels (p<0.05). No significant difference was found in the levels of Ag, Ba, Co, Cs, Cu, Fe, Ga, Hg, Mn, Na, Ni, Rb, Sr, Ti, U, V, and Zn (p>0.05). It was observed that oxidative stress was reduced in the radiation plus royal jelly group, compared to the radiation-only group. Our study results suggest that head and neck irradiation increases oxidative stress, leading to some changes in the trace element levels, while royal jelly exhibits a protective effect against the oxidative stress induced by radiation.

  14. Effect of silicon on trace element partitioning in iron-bearing metallic melts

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Safko, Trevor M.; McDonough, William F.

    2010-08-01

    Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe-Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1MPa experiments with two coexisting immiscible metallic liquids in the Fe-S-Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si-free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite-rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.

  15. Prevention of congenital abnormalities by periconceptional multivitamin supplementation.

    PubMed Central

    Czeizel, A E

    1993-01-01

    OBJECTIVE--To study the effect of periconceptional multivitamin supplementation on neural tube defects and other congenital abnormality entities. DESIGN--Randomised controlled trial of supplementation with multivitamins and trace elements. SETTING--Hungarian family planning programme. SUBJECTS--4156 pregnancies with known outcome and 3713 infants evaluated in the eighth month of life. INTERVENTIONS--A single tablet of a multivitamin including 0.8 mg of folic acid or trace elements supplement daily for at least one month before conception and at least two months after conception. MAIN OUTCOME MEASURES--Number of major and mild congenital abnormalities. RESULTS--The rate of all major congenital abnormalities was significantly lower in the group given vitamins than in the group given trace elements and this difference cannot be explained totally by the significant reduction of neural tube defects. The rate of major congenital abnormalities other than neural tube defects and genetic syndromes was 9.0/1000 in pregnancies with known outcome in the vitamin group and 16.6/1000 in the trace element group; relative risk 1.85 (95% confidence interval 1.02 to 3.38); difference, 7.6/1000. The rate of all major congenital abnormalities other than neural tube defects and genetic syndromes diagnosed up to the eighth month of life was 14.7/1000 informative pregnancies in the vitamin group and 28.3/1000 in the trace element group; relative risk 1.95 (1.23 to 3.09); difference, 13.6/1000. The rate of some congenital abnormalities was lower in the vitamin group than in the trace element group but the differences for each group of abnormalities were not significant. CONCLUSIONS--Periconceptional multivitamin supplementation can reduce not only the rate of neural tube defects but also the rate of other major non-genetic syndromatic congenital abnormalities. Further studies are needed to differentiate the chance effect and vitamin dependent effect. PMID:8324432

  16. Association of Serum Concentration of Different Trace Elements with Biomarkers of Systemic Oxidant Status in Dairy Cattle.

    PubMed

    Abuelo, Angel; Hernandez, Joaquín; Alves-Nores, Víctor; Benedito, José L; Castillo, Cristina

    2016-12-01

    There has been some recent criticism about the reliability of the assays commonly used to measure oxidant status in cattle, because some recent publications suggested that the concentration of different trace elements influences the results of these assays. The aim of this study was to test the correlation in 502 bovine serum samples between the concentration of several trace elements (Br, Co, Cr, Cu, Fe, I, Mn, Mo, Ni, Se, Sr, V and Zn) and markers of oxidant status (reactive oxygen species (ROS) and total serum antioxidant capacity (SAC)). The Oxidative Stress index (OSi) was also calculated as ROS/SAC. Some significant correlations were found, although weak (|ρ| < 0.50). Therefore, the relationships observed might be attributed to the different pro- and antioxidant effect of the different elements rather than to the assays detecting these elements instead of the oxidised molecules or total antioxidant potential, respectively. The OSi was poorly correlated (|ρ| ≤ 0.36) with the concentration of the studied trace elements, and therefore, its use is recommended to assess shifts in the systemic redox balance.

  17. Major factors influencing the elemental composition of surface estuarine sediments: the case of 15 estuaries in Portugal.

    PubMed

    Mil-Homens, M; Vale, C; Raimundo, J; Pereira, P; Brito, P; Caetano, M

    2014-07-15

    Upper sediments (0-5 cm) were sampled in 94 sites of water bodies of the fifteen Portuguese estuaries characterized by distinct settings of climate, topography and lithology, and marked by diverse anthropogenic pressures. Confined areas recognized as highly anthropogenic impacted, as well as areas dominated by erosion or frequently dredged were not sampled. Grain size, organic carbon (Corg), Al and trace elements (As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were determined. Normalisation of trace element concentrations to Al and Corg, correlations between elements and Principal Component Analysis (PCA) allowed identifying elemental associations and the relevance of grain-size, lithology and anthropogenic inputs on sediment chemical composition. Whereas grain-size is the dominant effect for the majority of the studied estuaries, the southern estuaries Mira, Arade and Guadiana are dominated by specific lithologies of their river basins, and anthropogenic effects are identified in Ave, Leça, Tagus and Sado. This study emphasizes how baseline values of trace elements in sediments may vary within and among estuarine systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Direct identification of trace metals in fine and ultrafine particles in the Detroit urban atmosphere.

    PubMed

    Utsunomiya, Satoshi; Jensen, Keld A; Keeler, Gerald J; Ewing, Rodney C

    2004-04-15

    Exposure to airborne particulates containing low concentrations of heavy metals, such as Pb, As, and Se, may have serious health effects. However, little is known about the speciation and particle size of these airborne metals. Fine- and ultrafine particles with heavy metals in aerosol samples from the Detroit urban area, Michigan, were examined in detail to investigate metal concentrations and speciation. The characterization of individual particles was completed using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with conventional high-resolution TEM techniques. The trace elements, Pb, As, La, Ce, Sr, Zn, Cr, Se, Sn, Y, Zr, Au, and Ag, were detected, and the elemental distributions were mapped in situ atthe nanoscale. The crystal structures of the particles containing Pb, Sr, Zn, and Au were determined from their electron diffraction patterns. Based on the characterization of the representative trace element particles, the potential health effects are discussed. Most of the trace element particles detected in this study were within a range of 0.01-1.0 microm in size, which has the longest atmospheric residence time (approximately 100 days). Increased chemical reactivity owing to the size of nanoparticles may be expected for most of the trace metal particles observed.

  19. The effect of acidified sample storage time on the determination of trace element concentration in ice cores by ICP-SFMS

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.

    2012-12-01

    Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.

  20. Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    PubMed Central

    van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.

    2010-01-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062

  1. Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.

    PubMed

    Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W

    2010-10-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.

  2. Semi-volatile organic compounds and trace elements in the Yangtze River source of drinking water.

    PubMed

    Wu, Bing; Zhang, Xuxiang; Zhang, Xiaolin; Yasun, Aishangjiang; Zhang, Yan; Zhao, Dayong; Ford, Tim; Cheng, Shupei

    2009-08-01

    Determination of 24 semi-volatile organic compounds (SVOCs) and 24 trace elements in water samples was conducted in order to investigate the quality of the Nanjing source of drinking water taken from Yangtze River. The total concentrations of SVOCs and trace elements were in the range of 1,951-11,098 ng/l and 51,274-72,384 microg/l, respectively. No significant seasonal changes were found for the pollutants' concentrations. A primary health risk assessment was carried out to evaluate potential health effects. Risk quotients involving carcinogenic effects for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, bis(2-ethylhexyl)phthalate and arsenic were >1 under the worst-case scenario. The results of this study demonstrate the importance of further studies on the environmental health effects of exposure to the source water.

  3. Trace and major element levels in rats after oral administration of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) seeds.

    PubMed

    Aksoy, Laçine; Sözbilir, Nalan Bayşu

    2015-10-01

    The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.

  4. PM2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis.

    PubMed

    Mainka, Anna; Zajusz-Zubek, Elwira; Kaczmarek, Konrad

    2015-07-14

    Indoor air quality (IAQ) in nursery schools is an emerging public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than older children. Among air pollutants, fine particulate matter (PM2.5) is of the greatest interest mainly due to its strong association with acute and chronic effects on children's health. In this paper, we present concentrations of PM2.5 and the composition of its trace elements at naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter and spring seasons. The results indicate there is a problem with elevated concentrations of PM2.5 inside the examined classrooms. The children's exposure to trace elements was different based on localization and season. PM2.5 concentration and its trace element composition have been studied using correlation coefficients between the different trace elements, the enrichment factor (EF) and principal component analysis (PCA). PCA allowed the identification of the three components: anthropogenic and geogenic sources (37.2%), soil dust contaminated by sewage sludge dumping (18.6%) and vehicular emissions (19.5%).

  5. Potential role of peroxisome proliferator activated receptor gamma activation on serum visfatin and trace elements in high fat diet induced type 2 diabetes mellitus.

    PubMed

    Tabassum, Arshia; Zaidi, Syeda Nuzhat Fatima; Yasmeen, Kausar; Mahboob, Tabassum

    2018-07-15

    Electrolytes and trace elements dysregulation play an important role in the progression of obesity and diabetes complications. The present study was designed to evaluate the insulin sensitizing effects of peroxisomes proliferators activated receptor gamma (PPAR-γ) agonist on trace elements in obesity induced type 2 diabetes mellitus and correlate with serum visfatin. Wistar rats were categorized into five groups. Group I served as control; Group II fed on high fat diet (HFD); Group III fed on HFD and treated with rosiglitazone (3 mg/kg) for 7 days; Group IV were T2DM rats induce by HFD and low dose of streptozotocin (i.p. 35 mg/kg); Group V was T2DM rats treated with rosiglitazone (3 mg/kg) for 7 days. Serum and tissues electrolytes levels and renal, hepatic and cardiac tissues trace elements were estimated by flame photometer and atomic absorption spectroscopy. Serum visfatin was estimated by ELISA. Pearson correlations were analyzed among fasting blood glucose (FBG), serum visfatin and tissues trace elements. Results of the current study showed hyponatremia, hyperkalemia, hypomagnesemia and hypercalcemia in HFD and T2DM groups. HFD and T2DM also showed elevated copper and iron levels; however, zinc and selenium levels were decreased. Rosiglitazone treatment increased the insulin sensitization and altered these changes. A Strong association was observed among FBG, serum visfatin and trace elements levels of HFD and T2DM. Obesity and diabetes mellitus disturbed visfatin, electrolytes and trace elements homeostasis. Rosiglitazone treatment restored these changes. The results of the study could serve as a basis for further studies for the prevention of diabetic complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  7. The occurrence of trace elements in bed sediment collected from areas of varying land use and potential effects on stream macroinvertebrates in the conterminous western United States, Alaska, and Hawaii, 1992-2000

    USGS Publications Warehouse

    Paul, Angela P.; Paretti, Nicholas V.; MacCoy, Dorene E.; Brasher, Anne M.D.

    2012-01-01

    As part of the National Water-Quality Assessment Program of the U.S. Geological Survey, this study examines the occurrence of nine trace elements in bed sediment of varying mineralogy and land use and assesses the possible effects of these trace elements on aquatic-macroinvertebrate community structure. Samples of bed sediment and macroinvertebrates were collected from 154 streams at sites representative of undeveloped, agricultural, urban, mined, or mixed land-use areas and 12 intermediate-scale ecoregions within the conterminous western United States, Alaska, and Hawaii from 1992 to 2000. The nine trace elements evaluated during this study—arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn)—were selected on the basis of potential ecologic significance and availability of sediment-quality guidelines. At most sites, the occurrence of these trace elements in bed sediment was at concentrations consistent with natural geochemical abundance, and the lowest concentrations were in bed-sediment samples collected from streams in undeveloped and agricultural areas. With the exception of Zn at sampling sites influenced by historic mining-related activities, median concentrations of all nine trace elements in bed sediment collected from sites representative of the five general land-use areas were below concentrations predicted to be harmful to aquatic macroinvertebrates. The highest concentrations of As, Cd, Pb, and Zn were in bed sediment collected from mined areas. Median concentrations of Cu and Ni in bed sediment were similarly enriched in areas of mining, urban, and mixed land use. Concentrations of Cr and Ni appear to originate largely from geologic sources, especially in the western coastal states (California, Oregon, and Washington), Alaska, and Hawaii. In these areas, naturally high concentrations of Cr and Ni can exceed concentrations that may adversely affect aquatic macroinvertebrates. Generally, Hg concentrations were below the sediment-quality guideline for this trace element but appeared elevated in urbanized areas and at sites contaminated by historic mining practices. Lastly, although there was no distinctive pattern in Se concentrations with land use, median bed-sediment concentrations were slightly elevated in urbanized areas.Macroinvertebrate community structure was influenced by topographic, geologic, climatic, and in-stream characteristics. To account for inherent distribution patterns resulting from these influences, samples of macroinvertebrates were stratified by ecoregion to assess the influence of trace elements on community structure. Cumulative toxic units (CTUs) were used to evaluate gradients in trace-element concentrations in mixture. Correlation analyses among the trace elements under different land-use conditions indicate that trace-element mixtures vary among bed sediment and can have a marked influence on CTU composition. Macroinvertebrate response to bed-sediment trace-element exposure was evident only at the most highly contaminated sites, notably at sites classified as contaminated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as a result of historic mining activities. Results of this study agree with the findings of other studies evaluating trace-element exposure to in-stream macroinvertebrate community structure in that generally lower richness metrics and taxa dominance occur in streams where high trace-element enrichment occurs; however, not all streams in all areas have the same characterizing taxa. In the mountain and xeric ecosystems, the mayfly, Baetis sp.; the Diptera, Simulium sp.; caddisflies in the family Hydropsychiidae; midges in the family Orthocladiinae; and the worms belonging to Turbellaria and Naididae all demonstrated resilience to trace-element exposure and, in some cases, possible changes in physical habitat within stream ecosystems. The taxa characteristics within the Ozark Highland ecoregion were different than other ecoregions as evidenced by generally more diverse mayfly populations. In addition, Baetis sp. was common and dominated many of the mayfly populations found in the Rocky Mountain streams within the Mountain Southern Rockies and Mountain Northern Rockies ecoregions; however, within the Ozark Highland ecoregion, Tricorythodes sp. appeared to be more common than Baetis sp.

  8. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  9. Organochlorine compounds and trace elements in fish tissue and streambed sediment in the Mobile River Basin, Alabama, Mississippi, and Georgia, 1998

    USGS Publications Warehouse

    Zappia, Humbert

    2002-01-01

    During the summer of 1998, as part of the National Water-Quality Assessment Program, a survey was conducted to determine which organochlorine compounds and trace elements occur in fish tissues and streambed sediments in the Mobile River Basin, which includes parts of Alabama, Mississippi, Georgia, and Tennessee. The data collected were compared to guidelines related to wildlife, land use, and to 1991 and 1994 National Water-Quality Assessment Program Study-Unit data.Twenty-one sites were sampled in subbasins of the Mobile River Basin. The subbasins ranged in size from about 9 to 22,000 square miles and were dominated by either a single land use or a combination of land uses. The major land-use categories were urban, agriculture, and forest.Organochlorine compounds were widespread spatially in the Mobile River Basin. At least one organochlorine compound was reported at the majority of sampling sites (84 percent) and in a majority of whole-fish (80 percent) and streambed-sediment (52 percent) samples. Multiple organochlorine compounds were reported at 75 percent of the sites where fish tissues were collected and were reported at many of the streambed-sediment sampling sites (45 percent). The majority of concentrations reported, however, were less than 5 micrograms per kilogram in fish-tissue samples and less than 1 microgram per kilogram in streambed-sediment samples.The majority of trace elements analyzed in fish-liver tissue (86 percent) and streambed-sediment (98 percent) samples were reported during this study. Multiple trace elements were reported in all samples and at all sites.Based on comparisons of concentrations of organochlorine compounds and trace elements in fish-tissue and streambed-sediment samples in relation to National Academy of Science and National Academy of Engineering and Canadian tissue guidelines, probable-effects concentrations, and mean probable-effects concentration quotients for streambed sediment, the potential exists for adverse effects to wildlife at 15 (72 percent) of the sites sampled. The potential for adverse effects at these sites is because of the presence of residues or breakdown products related to polychlorinated biphenyls (PCB?s), chlordane, dichlorodiphenyltrichloroethane (DDT), chromium, lead, and zinc.The majority of compounds reported (65 percent) were chlordane, DDT, and PCB?s, or their breakdown products. Concentrations of chlordane and heptachlor epoxide in whole-fish tissue were positively correlated to the amount of urban land use in a basin. Total DDT concentrations in whole-fish tissues were positively correlated to agriculture.The relation of trace elements to land use is not as clear as the relation of organochlorine compounds to land use. This lack of clarity may be due to the possibility of geologic sources of trace elements in the Mobile River Basin and to the ubiquitous nature of many of these trace elements. However, there may be a correlation between the amount of urban land use and concentrations of antimony, cadmium, lead, and zinc in streambed-sediment samples from the Mobile River Basin.Fewer organochlorine compounds and trace elements were reported in samples from the Mobile River Basin than in samples collected during the 1991 and 1994 National Water-Quality Assessment Program studies. Of the organochlorine compounds analyzed nationally, 57 percent were reported in whole-fish tissue samples collected locally and 41 percent were reported in streambed-sediment samples collected locally, whereas 96 percent and 86 percent, respectively, were reported nationally. Of trace elements analyzed nationally, 86 percent were reported in fish-liver tissue locally and 95 percent were reported in streambed-sediment samples locally, whereas 95 percent and 98 percent, respectively, were reported nationally.In general, concentrations of organochlorine compounds and trace elements and the frequency with which they were reported in the Mobile River Basin are similar to or less than t

  10. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saqib, Naeem, E-mail: naeem.saqib@oru.se; Bäckström, Mattias, E-mail: mattias.backstrom@oru.se

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of flymore » ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature.« less

  11. Modeling Trace Element Concentrations in the San Francisco Bay Estuary from Remote Measurement of Suspended Solids

    NASA Astrophysics Data System (ADS)

    Press, J.; Broughton, J.; Kudela, R. M.

    2014-12-01

    Suspended and dissolved trace elements are key determinants of water quality in estuarine and coastal waters. High concentrations of trace element pollutants in the San Francisco Bay estuary necessitate consistent and thorough monitoring to mitigate adverse effects on biological systems and the contamination of water and food resources. Although existing monitoring programs collect annual in situ samples from fixed locations, models proposed by Benoit, Kudela, & Flegal (2010) enable calculation of the water column total concentration (WCT) and the water column dissolved concentration (WCD) of 14 trace elements in the San Francisco Bay from a more frequently sampled metric—suspended solids concentration (SSC). This study tests the application of these models with SSC calculated from remote sensing data, with the aim of validating a tool for continuous synoptic monitoring of trace elements in the San Francisco Bay. Using HICO imagery, semi-analytical and empirical SSC algorithms were tested against a USGS dataset. A single-band method with statistically significant linear fit (p < 0.001) was chosen as the proxy for SSC values. The numerical models for WCT and the distribution ratio D were applied in MATLAB with terms to account for regional and seasonal effects, and results were used to calculate WCD. The modeled results were assessed against in situ data from the San Francisco Estuary Regional Monitoring Program. Quantile regression was used to evaluate model sensitivity to the distribution of regions, and outliers displaying regional aberrations were removed before robust regression was applied. Statistically significant and highly correlated results for WCT were found for 10 elements, with goodness of fit greater than or equal to that of the original models of seven elements. WCD was successfully modeled for six elements, with goodness of fit for each exceeding that of the original models. Concentrations of Arsenic, Iron, and Lead in the southern region of the Bay were found to exceed EPA water quality criteria for human health and aquatic life. The results of this study demonstrate the potential of monitoring programs using remote observation of trace element concentrations, and provide the foundation for investigation of pollutant sources and pathways over time.

  12. Toxic trace elements at gastrointestinal level.

    PubMed

    Vázquez, M; Calatayud, M; Jadán Piedra, C; Chiocchetti, G M; Vélez, D; Devesa, V

    2015-12-01

    Many trace elements are considered essential [iron (Fe), zinc (Zn), copper (Cu)], whereas others may be harmful [lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As)], depending on their concentration and chemical form. In most cases, the diet is the main pathway by which they enter our organism. The presence of toxic trace elements in food has been known for a long time, and many of the food matrices that carry them have been identified. This has led to the appearance of legislation and recommendations concerning consumption. Given that the main route of exposure is oral, passage through the gastrointestinal tract plays a fundamental role in their entry into the organism, where they exert their toxic effect. Although the digestive system can be considered to be of crucial importance in their toxicity, in most cases we do not know the events that occur during the passage of these elements through the gastrointestinal tract and of ascertaining whether they may have some kind of toxic effect on it. The aim of this review is to summarize available information on this subject, concentrating on the toxic trace elements that are of greatest interest for organizations concerned with food safety and health: Pb, Cd, Hg and As. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The effects of dissecting tools on the trace element concentrations of fish and mussel tissues.

    PubMed

    Heit, M; Klusek, C S

    1982-06-01

    A comparison of the effects of dissecting tools composed of various materials on the trace element content of the muscle of the marine bluefish, Pomatomus saltatrix, and the soft tissues of freshwater mussels, Eliptio complanatus and Lampsilus radiata, is presented. The fish were dissected with blades made of stainless steel, Lexan plastic, titanium, and Teflon-coated stainless steel. The mussels were dissected with stainless and Teflon tools only. Elements measured included As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn, Te, V, and Zn. Significant concentration differences (P = 0.01) were not found for any element in fish or mussel samples dissected by the different tools.

  14. Trace elements as quantitative probes of differentiation processes in planetary interiors

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1980-01-01

    The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.

  15. Parenteral trace element provision: recent clinical research and practical conclusions

    PubMed Central

    Stehle, P; Stoffel-Wagner, B; Kuhn, K S

    2016-01-01

    The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended. PMID:27049031

  16. Trace Elements Characteristic Based on ICP-AES and the Correlation of Flavonoids from Sparganii rhizoma.

    PubMed

    Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan

    2018-04-01

    The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.

  17. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  18. Trace element concentrations in surface estuarine and marine sediments along the Mississippi Gulf Coast following Hurricane Katrina.

    PubMed

    Warren, Crystal; Duzgoren-Aydin, Nurdan S; Weston, James; Willett, Kristine L

    2012-01-01

    Hurricanes are relatively frequent ecological disturbances that may cause potentially long-term impacts to the coastal environment. Hurricane Katrina hit the Mississippi Gulf Coast in August 2005, and caused a storm surge with the potential to change the trace element content of coastal surface sediments. In this study, surface estuarine and marine sediments were collected monthly following the storm from ten sites along the Mississippi Gulf Coast (Mobile Bay, Grand Bay Bayous Heron and Cumbest, Pascagoula, Ocean Springs, Biloxi Gulf, Back Biloxi Bay, Gulfport Gulf, Gulfport Courthouse Rd, and Gulfport Marina). Concentrations of V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb were measured by inductively coupled plasma-mass spectrometry to evaluate their temporal and spatial variations in the year following Hurricane Katrina. Sediments were characterized by pH, particle size distribution and total carbon and nitrogen content. Trace element contents of the sediments were determined in both <2 mm and <63 μm grain size fractions. Results revealed no significant temporal and spatial variability in trace element concentrations, in either size fraction. Potential ecological risk of the sediments was assessed by using NOAA SQuiRTs' guideline values; most concentrations remained below probable adverse effects guidelines to marine organisms suggesting that trace elements redistributed by Hurricane Katrina would not cause an adverse impact on resident organisms. Instead, the concentrations of trace elements were site-dependent, with specific contaminants relating to the use of the area prior to Hurricane Katrina.

  19. The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes.

    PubMed

    Lu, Yong-Ze; Fu, Liang; Li, Na; Ding, Jing; Bai, Ya-Nan; Samaras, Petros; Zeng, Raymond Jianxiong

    2018-05-01

    Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 μM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 μM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women

    PubMed Central

    Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-young; Lee, Soo-Youn

    2016-01-01

    This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4–40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29–0.53), copper: 165.0 μg/dL (IQR 144.0–187.0), zinc: 57.0 μg/dL (IQR 50.0–64.0), and selenium: 94.0 μg/L (IQR 87.0–101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower (p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters (p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper (p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia. PMID:27886083

  1. A Prospective Study of Serum Trace Elements in Healthy Korean Pregnant Women.

    PubMed

    Choi, Rihwa; Sun, Jiyu; Yoo, Heejin; Kim, Seonwoo; Cho, Yoon Young; Kim, Hye Jeong; Kim, Sun Wook; Chung, Jae Hoon; Oh, Soo-Young; Lee, Soo-Youn

    2016-11-23

    This prospective study sought to investigate serum levels of trace elements (cobalt, copper, zinc, and selenium) and to assess their effects on pregnancy and neonatal outcomes. Serum levels of trace elements in 245 Korean pregnant women (median gestational age at delivery was 39 + 4 weeks and interquartile range was 38 + 4-40 + 1 weeks) were compared with those of 527 general adults and those of previous studies in other ethnic groups. Pregnancy and neonatal outcomes including gestational diabetes, preeclampsia, neonatal birth weight, and congenital abnormalities were assessed. The median serum trace element concentrations of all pregnant women were: cobalt: 0.39 μg/L (interquartile range, IQR 0.29-0.53), copper: 165.0 μg/dL (IQR 144.0-187.0), zinc: 57.0 μg/dL (IQR 50.0-64.0), and selenium: 94.0 μg/L (IQR 87.0-101.0). Serum cobalt and copper concentrations were higher in pregnant women than in the general population, whereas zinc and selenium levels were lower ( p < 0.01). Concentrations of all four trace elements varied significantly during the three trimesters ( p < 0.05), and seasonal variation was found in copper, zinc, and selenium, but was not observed for cobalt. The prevalence of preeclampsia was significantly lower with high copper ( p = 0.03). Trace element levels varied by pregnancy trimester and season, and alteration in copper status during pregnancy might influence pregnancy outcomes such as preeclampsia.

  2. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  3. A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology

    PubMed Central

    Ragimov, Aligejdar; Faizullin, Rashat; Valiev, Vsevolod

    2017-01-01

    Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water. PMID:29065586

  4. Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release.

    PubMed

    Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E

    2016-04-01

    Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.

  5. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    PubMed

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future. Copyright © 2016. Published by Elsevier B.V.

  6. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis.

    PubMed

    Jafri, Azliana Jusnida Ahmad; Arfuzir, Natasha Najwa Nor; Lambuk, Lidawani; Iezhitsa, Igor; Agarwal, Renu; Agarwal, Puneet; Razali, Norhafiza; Krasilnikova, Anna; Kharitonova, Maria; Demidov, Vasily; Serebryansky, Evgeny; Skalny, Anatoly; Spasov, Alexander; Yusof, Ahmad Pauzi Md; Ismail, Nafeeza Mohd

    2017-01-01

    Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL -1 ). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL -1 ) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Anaerobic digestion of thermal pre-treated emulsified slaughterhouse wastes (TESW): Effect of trace element limitation on process efficiency and sludge metabolic properties.

    PubMed

    Eftaxias, Alexandros; Diamantis, Vasileios; Aivasidis, Alexandros

    2018-06-01

    Slaughterhouse solid wastes, characterized by a high lipid content, are considered a valuable resource for energy production by means of anaerobic digestion technologies. Aim of this study was to examine the effect of trace element limitation on the mesophilic anaerobic digestion of thermally pre-treated emulsified slaughterhouse wastes (TESW). Under two distinct experimental periods (Period I - low and Period II - high trace element dosage respectively) a CSTR with sludge recirculation was operated at increasing organic loading rate (OLR) from 1.5 to 10 g L -1  d -1 . Under optimum conditions, COD removal was higher than 96%, biogas yield equal to 0.53 L g -1  COD feed and the biogas methane content 77%. Trace element limitation however, resulted in a dramatic decline in process efficiency, with VFA accumulation and events of extreme sludge flotation, despite that the soluble concentration of Ni, Co and Mo were between 12 and 28 μg L -1 . This is indicative of mass transfer limitations caused by lipids adsorption onto the anaerobic biomass. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Nutrient supplementation as adjunct therapy in pulmonary tuberculosis.

    PubMed

    Chandra, Ranjit Kumar

    2004-03-01

    The study examined the effect of supplementation with multivitamins and trace elements on microbiological and radiological recovery in patients with pulmonary tuberculosis. Forty-four patients aged 28-50 years were diagnosed with active pulmonary tuberculosis based on X-ray of the chest and smear examination of the sputum for the presence of acid-fast bacilli. They were all treated for six months with a standard anti-tuberculosis regimen that has been found to be effective worldwide for disease control. The subjects were randomized to receive either a multivitamin-trace element supplement or a placebo containing calcium. The two groups were matched on all relevant confounding variables. At two months into the treatment, the group that was supplemented with a multivitamin-trace element preparation showed a significant reduction in the number of individuals with sputum smear positive for acid-fast bacillus: two out of 22 individuals, compared with seven out of 22 among placebo-treated controls (p = 0.028, Fisher's test). It is concluded that patients with tuberculosis should be supplemented with a suitable micronutrient preparation that contains optimum amounts of all vitamins and trace elements that have been documented to enhance the immune response.

  9. New Perspectives on the Essential Trace Elements.

    ERIC Educational Resources Information Center

    Frieden, Earl

    1985-01-01

    Provides a comprehensive overview of the 19 essential trace elements, examining: the concept of essentiality; evolution of these elements; possible future essential elements; the lanthanides and actinides; how essential trace elements work; the metalloenzymes; the nonmetals; iodine and the thyroid hormones; and antagonism among these elements. (JN)

  10. Determination of trace elements in epiphytic lichens from Bandar Baru Bangi, Selangor using INAA method

    NASA Astrophysics Data System (ADS)

    Khairudin, Nurshafiq Ezam; Siong, Khoo Kok; Siong, Wee Boon

    2014-02-01

    Lichens have been used as effective biomonitors of atmospheric pollutants as they can take up nutrients and pollutants directly from the atmosphere. In this study, trace element contents in epiphytic lichens were determined using INAA method. Samples were collected from 7 sampling locations around Bandar Baru Bangi, Selangor. The elements detected were As (1.73+0.85 mg/kg), Ce (3.65+1.91 mg/kg), Co (0.29+0.12 mg/kg), Cr (5.92+3.54 mg/kg), Cs (0.92+0.25 mg/kg), Eu (0.03+0.02 mg/kg), Fe (1280+760 mg/kg), Hf (0.37+0.18 mg/kg), La (1.52+0.89 mg/kg), Rb (27.7+4.8 mg/kg), Sc (0.33+0.19 mg/kg), Sm (0.28+0.16 mg/kg), Th (1.21+0.62 mg/kg) and Zn (116+27 mg/kg). Comparisons were then made between the elemental concentrations obtained and the baseline data from literature. Results showed that most of the elements were within the concentration range of the baseline data. Enrichment factors (EF) of the trace element in lichens showed that most of the elements were within the range of the baseline data except for As which was found to be slightly enriched (EF: 13.2 - 28.5). Regression analysis indicated significant correlation (p<0.05) with Sc for most of the elements which signifies crustal input except for Cs and Rb. The poor correlations of Cs and Rb with Sc may be due to the mobility of these elements. In summary, trace element data obtained using INAA were very useful and demonstrated that lichens were suitable biomonitors for identifying potential trace element pollutants in ambient air around the sampling area.

  11. Major and Trace Element Analysis of Natural and Experimental Igneous Systems using LA-ICP-MS

    NASA Technical Reports Server (NTRS)

    Jenner, Frances E.; Arevalo, Ricardo D., Jr.

    2016-01-01

    Major- and trace-element compositions of minerals provide valuable information on a variety of global Earth-system processes, including melting of distinct mantle reservoirs, the growth and evolution of the Earths crust and the formation of economically viable ore deposits. In the mid-1980s and early 1990s, attempts were made to couple laser ablation (LA) systems to inductively coupled plasma mass spectrometry (ICPMS) instruments (e.g. Fryer et al. 1995; Jackson et al. 1992). The goal was to develop a rapid, highly sensitive in situ analytical technique to measure abundances and spatial distributions of trace elements in minerals and other geological samples. Elemental analysis using LAICPMS was envisaged as a quicker and less destructive means of chemical analysis (requiring only g quantities) than labour-intensive sample digestion and solution analysis (requiring mg-levels of material); and it would be a more cost-effective method than secondary ion mass spectrometry (SIMS) for the routine analysis of trace elements from solid samples. Furthermore, it would have lower limits-of-detection than electron probe microanalysis (EPMA) (e.g. Jackson et al. 1992; Eggins 2003).

  12. An ion microprobe study of the intra-crystalline behavior of REE and selected trace elements in pyroxene from mare basalts with different cooling and crystallization histories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, C.K.; Papike, J.J.; Simon, S.B.

    1989-05-01

    To study the effects of crystallization sequence and rate on trace element zoning characteristics of pyroxenes, the authors used combined electron microprobe-ion microprobe techniques on four nearly isochemical Apollo 12 and 15 pigeonite basalts with different cooling rates and crystallization histories. Major and minor element zoning characteristics are nearly identical to those reported in the literature. All the pyroxenes have similar chondrite-normalized REE patterns: negative Eu anomalies, positive slopes as defined by Yb/Ce, and slopes of REE patterns from Ce to Sm much steeper than from Gd to Yb. These trace element zoning characteristics in pyroxene and the partitioning ofmore » trace elements between pyroxene and the melt are intimately related to the interplay among the efficiency of the crystallization process, the kinetics at the crystal-melt interface, the kinetics of plagioclase nucleation and the characteristics of the crystal chemical substitutions within both the pyroxene and the associated crystallizing phases (i.e. plagioclase).« less

  13. Evaluating cleansing effects on trace elements and stable isotope values in feathers of oiled birds.

    PubMed

    Valladares, Sonia; Moreno, Roćio; Jover, Lluis; Sanpera, Carola

    2010-01-01

    Feathers of seabirds are widely used as a nondestructive tissue for pollution monitoring of trace elements, as well as convenient samples for trophic ecology studies by means of stable isotope analysis (SIA). Nevertheless, feathers can be occasionally impregnated with oil from deliberate ship discharges and from massive oil spill accidents. The feather structure makes them effective traps for particles and are subject to external contamination. It is unknown to what extent the oil adhered to feathers can change trace element concentrations or stable isotope signatures. This study has two primary objectives: (1) to assess if there are differences between trace element concentrations and stable isotope signatures of oiled and clean feathers, and (2) to determine if the cleansing of oiled feathers using commonly applied techniques such as sodium hydroxide (NaOH) washes in combination with an organic solvent (hexane) is more effective than using NaOH alone. In order to do this, we analysed trace elements (Se, Hg, Pb, Cu and Zn) and stable isotopes (delta(13)C and delta(15)N) of individual feathers of yellow-legged gulls (Larus michahellis) which were affected by the 2002 Prestige oil spill in Galicia (NW Spain). Two sets of feathers were analysed, one group were oil-free (Control group) and the other had oil adhered to its surface (Oiled group). We expected to find differences between control and oiled feathers when cleaning exclusively with NaOH and no differences when using hexane. Our results did not show significant differences between Control and Oiled groups as a consequence of the cleansing method used. Unexpectedly, the additional cleansing with hexane resulted in decreasing selenium concentrations and increasing zinc and delta(15)N values in all groups of feathers.

  14. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  15. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  16. Two-lattice models of trace element behavior: A response

    NASA Astrophysics Data System (ADS)

    Ellison, Adam J. G.; Hess, Paul C.

    1990-08-01

    Two-lattice melt components of Bottinga and Weill (1972), Nielsen and Drake (1979), and Nielsen (1985) are applied to major and trace element partitioning between coexisting immiscible liquids studied by RYERSON and Hess (1978) and Watson (1976). The results show that (1) the set of components most successful in one system is not necessarily portable to another system; (2) solution non-ideality within a sublattice severely limits applicability of two-lattice models; (3) rigorous application of two-lattice melt components may yield effective partition coefficients for major element components with no physical interpretation; and (4) the distinction between network-forming and network-modifying components in the sense of the two-lattice models is not clear cut. The algebraic description of two-lattice models is such that they will most successfully limit the compositional dependence of major and trace element solution behavior when the effective partition coefficient of the component of interest is essentially the same as the bulk partition coefficient of all other components within its sublattice.

  17. Temperature and composition dependencies of trace element partitioning - Olivine/melt and low-Ca pyroxene/melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Mckay, G. A.; Taylor, L. A.

    1988-01-01

    This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.

  18. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  19. Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.

    PubMed

    Bu, Hongmei; Song, Xianfang; Guo, Fen

    2017-01-15

    Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of organic and conventional rearing system on the mineral content of pork.

    PubMed

    Zhao, Yan; Wang, Donghua; Yang, Shuming

    2016-08-01

    Dietary composition and rearing regime largely determine the trace elemental composition of pigs, and consequently their concentration in animal products. The present study evaluates thirteen macro- and trace element concentrations in pork from organic and conventional farms. Conventional pigs were given a commercial feed with added minerals; organic pigs were given a feed based on organic feedstuffs. The content of macro-elements (Na, K, Mg and Ca) and some trace elements (Ni, Fe, Zn and Sr) in organic and conventional meat samples showed no significant differences (P>0.05). Several trace element concentrations in organic pork were significantly higher (P<0.05) compared to conventional pork: Cr (808 and 500μg/kg in organic and conventional pork, respectively), Mn (695 and 473μg/kg) and Cu (1.80 and 1.49mg/kg). The results showed considerable differences in mineral content between samples from pigs reared in organic and conventional systems. Our results also indicate that authentication of organic pork can be realized by applying multivariate chemometric methods such as discriminant analysis to this multi-element data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Proposal of new trace elements classification to be used in nutrition, oligotherapy and other therapeutics strategies].

    PubMed

    Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María

    2014-12-17

    1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  2. Trace elements have limited utility for studying migratory connectivity in shorebirds that winter in Argentina

    USGS Publications Warehouse

    Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I.

    2010-01-01

    Trace-element analysis has been suggested as a tool for the study of migratory connectivity because (1) trace-element abundance varies spatially in the environment, (2) trace elements are assimilated into animals' tissues through the diet, and (3) current technology permits the analysis of multiple trace elements in a small tissue sample, allowing the simultaneous exploration of several elements. We explored the potential of trace elements (B, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, As, Sr, Cs, Hg, Tl, Pb, Bi, Th, and U) to clarify the migratory connectivity of shorebirds that breed in North America and winter in southern South America. We collected 66 recently replaced secondary feathers from Red Knots (Calidris canutus) at three sites in Patagonia and 76 from White-rumped Sandpipers (C. fuscicollis) at nine sites across Argentina. There were significant differences in trace-element abundance in shorebird feathers grown at different nonbreeding sites, and annual variability within a site was small compared to variability among sites. Across Argentina, there was no large-scale gradient in trace elements. The lack of such a gradient restricts the application of this technique to questions concerning the origin of shorebirds to a small number of discrete sites. Furthermore, our results including three additional species, the Pectoral Sandpiper (C. melanotos), Wilson's Phalarope (Phalaropus tricolor), and Collared Plover (Charadrius collaris), suggest that trace-element profiles change as feathers age. Temporal instability of trace-element values could undermine their application to the study of migratory connectivity in shorebirds. ?? The Cooper Ornithological Society 2010.

  3. Cycling of oxyanion-forming trace elements in groundwaters from a freshwater deltaic marsh

    NASA Astrophysics Data System (ADS)

    Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; Kolker, Alexander S.; Cable, Jaye E.; Johannesson, Karen H.

    2018-05-01

    Pore waters and surface waters were collected from a freshwater system in southeastern Louisiana to investigate the geochemical cycling of oxyanion-forming trace elements (i.e., Mo, W, As, V). A small bayou (Bayou Fortier) receives input from a connecting lake (Lac des Allemands) and groundwater input at the head approximately 5 km directly south of the Mississippi River. Marsh groundwaters exchange with bayou surface water but are otherwise relatively isolated from outside hydrologic forcings, such as tides, storms, and effects from local navigation canals. Rather, redox processes in the marsh groundwaters appear to drive changes in trace element concentrations. Elevated dissolved S(-II) concentrations in marsh groundwaters suggest greater reducing conditions in the late fall and winter as compared to the spring and late summer. The data suggest that reducing conditions in marsh groundwaters initiate the dissolution of Fe(III)/Mn(IV) oxide/hydroxide minerals, which releases adsorbed and/or co-precipitated trace elements into solution. Once in solution, the fate of these elements is determined by complexation with aqueous species and precipitation with iron sulfide minerals. The trace elements remain soluble in the presence of Fe(III)- and SO42-- reducing conditions, suggesting that either kinetic limitations or complexation with aqueous ligands obfuscates the correlation between V and Mo sequestration in sediments with reducing or euxinic conditions.

  4. Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna

    USGS Publications Warehouse

    Dwyer, F.J.; Burch, S.A.; Ingersoll, C.G.; Hunn, J.B.

    1992-01-01

    Acute toxicity tests with reconstituted water were conducted to investigate the relationship between water hardness, salinity, and a mixture of trace elements found in irrigation drain waters entering Stillwater Wildlife Management Area (SWMA), near Fallon, Nevada. The SWMA has been the site of many fish kills in recent years, and previous toxicity studies indicated that one drain water, Pintail Bay, was acutely toxic to organisms acclimated or cultured in fresh water or salt water. This toxicity could reflect both the ionic composition of this saline water and the presence of trace elements. The lowest water salinity tested with Daphnia magna was near the upper salinity tolerance of these organisms; therefore, we were unable to differentiate between the toxic effects of ion composition and those of trace elements. In toxicity tests conducted with striped bass (Morone saxatilis), we found that the extent to which salinity was lethal to striped bass depended on the ion composition of that salinity. Survival of striped bass increased as hardness increased. In addition, a trace element mixture was toxic to striped bass, even though the concentrations of individual elements were below expected acutely lethal concentrations. Although salinity is an important water quality characteristic, the ionic composition of the water must be considered when one assesses the hazard of irrigation drain waters to aquatic organisms.

  5. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  6. In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management.

    PubMed

    Vamerali, Teofilo; Bandiera, Marianna; Mosca, Giuliano

    2011-05-01

    Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3m depth), the former yielding higher contamination (∼30%) in top soil. Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33mgm(-2) of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation. It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. PM2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis

    PubMed Central

    Mainka, Anna; Zajusz-Zubek, Elwira; Kaczmarek, Konrad

    2015-01-01

    Indoor air quality (IAQ) in nursery schools is an emerging public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than older children. Among air pollutants, fine particulate matter (PM2.5) is of the greatest interest mainly due to its strong association with acute and chronic effects on children’s health. In this paper, we present concentrations of PM2.5 and the composition of its trace elements at naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter and spring seasons. The results indicate there is a problem with elevated concentrations of PM2.5 inside the examined classrooms. The children’s exposure to trace elements was different based on localization and season. PM2.5 concentration and its trace element composition have been studied using correlation coefficients between the different trace elements, the enrichment factor (EF) and principal component analysis (PCA). PCA allowed the identification of the three components: anthropogenic and geogenic sources (37.2%), soil dust contaminated by sewage sludge dumping (18.6%) and vehicular emissions (19.5%). PMID:26184269

  8. Comparison of elemental composition in two wild and cultured marine fish and potential risks to human health.

    PubMed

    Marengo, Michel; Durieux, Eric D H; Ternengo, Sonia; Lejeune, Pierre; Degrange, Elise; Pasqualini, Vanina; Gobert, Sylvie

    2018-08-30

    Among all available species, fish are a powerful model for risk-benefit assessments to study the effects of contaminants on human health. Gilthead seabream (Sparus aurata, Linnaeus 1758) and european seabass (Dicentrarchus labrax, Linnaeus 1758) are two species of great economic importance, representing very large production volumes in the Mediterranean. The objective of this study is (1) to analyze the concentrations of Trace Elements (TE) between wild and cultured seabream and seabass specimens, (2) to compare the determined concentrations with other studies, and (3) to increase the data about the potential risks to human health. Our results point to significant intra- and interspecies-specific differences between wild and cultured fish for several trace elements. Several strong and moderate inter-elemental correlations in fish muscle were observed through correlation analysis. In our study, the mean levels of trace elements were still below the standard safety values for fish intended for human consumption. The same results were reached for all the parameters analyzed (international legal limits, estimated weekly intake, provisional tolerable weekly intake, target hazard quotient, target cancer risk), with trace element levels in fish below those that could pose a risk to human health. Consequently, these fish can be considered safe for human consumption. A better understanding of the levels of trace elements in fish would also better inform consumers about the potential risks of exposure to contaminants. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A review of recent activity in the United States.

    USGS Publications Warehouse

    Cannon, H.L.; Petrie, W.L.

    1979-01-01

    Either an overabundance or a deficiency of trace metals in the food chain can ultimately affect adversely the health of livestock and man. Increasing interest in the United States in the distribution of metals in the environment and in metal pollutants has led to widespread interdisciplinary research sponsored by governmental, private and academic groups concerning the availability of trace elements for absorption by plants and animals, and the effects of trace elements throughout the food chain. Effects on the environment of coal-fired power plants, the mining and processing of metals, asbestos, and phosphate, and the disposal of industrial and nuclear wastes have also received much attention in the past few years.-Authors

  10. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  11. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    NASA Astrophysics Data System (ADS)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  12. A new method for automated discontinuity trace mapping on rock mass 3D surface model

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Chen, Jianqin; Zhu, Hehua

    2016-04-01

    This paper presents an automated discontinuity trace mapping method on a 3D surface model of rock mass. Feature points of discontinuity traces are first detected using the Normal Tensor Voting Theory, which is robust to noisy point cloud data. Discontinuity traces are then extracted from feature points in four steps: (1) trace feature point grouping, (2) trace segment growth, (3) trace segment connection, and (4) redundant trace segment removal. A sensitivity analysis is conducted to identify optimal values for the parameters used in the proposed method. The optimal triangular mesh element size is between 5 cm and 6 cm; the angle threshold in the trace segment growth step is between 70° and 90°; the angle threshold in the trace segment connection step is between 50° and 70°, and the distance threshold should be at least 15 times the mean triangular mesh element size. The method is applied to the excavation face trace mapping of a drill-and-blast tunnel. The results show that the proposed discontinuity trace mapping method is fast and effective and could be used as a supplement to traditional direct measurement of discontinuity traces.

  13. Mix or un-mix? Trace element segregation from a heterogeneous mantle, simulated.

    NASA Astrophysics Data System (ADS)

    Katz, R. F.; Keller, T.; Warren, J. M.; Manley, G.

    2016-12-01

    Incompatible trace-element concentrations vary in mid-ocean ridge lavas and melt inclusions by an order of magnitude or more, even in samples from the same location. This variability has been attributed to channelised melt flow [Spiegelman & Kelemen, 2003], which brings enriched, low-degree melts to the surface in relative isolation from depleted inter-channel melts. We re-examine this hypothesis using a new melting-column model that incorporates mantle volatiles [Keller & Katz 2016]. Volatiles cause a deeper onset of channelisation: their corrosivity is maximum at the base of the silicate melting regime. We consider how source heterogeneity and melt transport shape trace-element concentrations in basaltic lavas. We use both equilibrium and non-equilibrium formulations [Spiegelman 1996]. In particular, we evaluate the effect of melt transport on probability distributions of trace element concentration, comparing the inflow distribution in the mantle with the outflow distribution in the magma. Which features of melt transport preserve, erase or overprint input correlations between elements? To address this we consider various hypotheses about mantle heterogeneity, allowing for spatial structure in major components, volatiles and trace elements. Of interest are the roles of wavelength, amplitude, and correlation of heterogeneity fields. To investigate how different modes of melt transport affect input distributions, we compare melting models that produce either shallow or deep channelisation, or none at all.References:Keller & Katz (2016). The Role of Volatiles in Reactive Melt Transport in the Asthenosphere. Journal of Petrology, http://doi.org/10.1093/petrology/egw030. Spiegelman (1996). Geochemical consequences of melt transport in 2-D: The sensitivity of trace elements to mantle dynamics. Earth and Planetary Science Letters, 139, 115-132. Spiegelman & Kelemen (2003). Extreme chemical variability as a consequence of channelized melt transport. Geochemistry Geophysics Geosystems, http://doi.org/10.1029/2002GC000336

  14. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions.

    PubMed

    Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-04-01

    To promote the utilization of waste material as alternative fuel, the mono- and co-combustion characteristics of sewage sludge (SS) and coal gangue (CG) were systematically investigated, with emphasis on environmental influences. The emission of SO2, NOx as well as the trace elements during combustion of SS and CG were studied with regard to the effects of their chemistries, structures and interactions. Results showed that co-combustion can be beneficial for ignition performance. A synergic effect on both desulfurization and denitrification can be expected at ca. 800°C. Further, an enhanced retention of trace elements during co-combustion was also observed, especially for Pb and Zn. On the basis of the results, it can be expected that, with proper operation, co-combustion of SS and CG can be a promising method for the disposal of these two wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  16. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species.

    PubMed

    He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong

    2010-03-24

    In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.

  17. Influences of different dietary contents of macrominerals on the availability of trace elements in horses.

    PubMed

    Neustädter, L-T; Kamphues, J; Ratert, C

    2018-04-01

    In this study, influences of a reduced macromineral intake on the trace element metabolism in horses at maintenance were investigated. Background of this study is the revised recommendation on the macromineral supply for horses (GfE ). Balance studies on three adult pony geldings with body weights of 405 / 348 / 384 kg were performed to obtain data on apparent digestibility (aD), retention and serum concentrations of different trace elements (Cu, Zn, Se) at different dietary macromineral levels. A mineral supplement or a complementary feed-with a reduced macromineral content-was added to a hay-based diet (daily 5.5 kg hay per animal, split in three servings a day), beside distilled water was offered. The diets were offered one after the other in a way that all ponies had the same sequence of treatments. The native macromineral contents of the daily offered amount of hay already surpassed the new recommendations whereas dietary trace elements needed to be supplemented. There were no statistically significant differences (p ≤ .05) concerning the aD of copper, zinc and selenium comparing the diets with and without macromineral supplementation. Serum levels of these three trace elements were not affected by the different macromineral content of the diet. Results of this study, based on a 22-day feeding period for each treatment, indicate that a macromineral supplementation of a hay-based diet for adult horses at maintenance was not necessary. However, no negative effects of added macrominerals on the trace element metabolism occurred in this study. © 2017 Blackwell Verlag GmbH.

  18. Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice

    NASA Astrophysics Data System (ADS)

    Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja

    2017-04-01

    Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental proxies in glaciers partially affected by melting. References Della Lunga, D., Müller, W., Rasmussen, S. O. & Svensson, A. 2014: Location of cation impurities in NGRIP deep ice revealed by cryo-cell UV-laser-ablation ICPMS, Journal of Glaciology, 60, 970-988. Eichler, A., Schwikowski, M., Gäggeler, H. W. 2001: Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192-203. Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffmann, E. & Skole, J. 2001: Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores, Fresenius' Journal of Analytical Chemistry, 370, 629-636. Schwikowski, M., Barbante, C., Doering, T., Gäggeler, H. W., Boutron, C., Schotterer, U., Tobler, L., van de Velde, K., Ferrari, C., Cozzi, G., Rosman, K., Cescon, P. 2004: Post-17th-Century Changes of European Lead Emissions Recorded in High-Altitude Alpine Snow and Ice, Environmental Science & Technology, 38, 957-964. Sneed, S. B., Mayewski, P. A., Sayre, W. G., Handley, M. J., Kurbatov, A. V., Taylor, K. C., Bohleber, P., Wagenbach, D., Erhardt, T. & Spaulding, N. E. 2015: New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores, Journal of Glaciology, 61, 233-242.

  19. Composition of minerals and trace elements at Mamasani thermal source: A possible preventive treatment for some skin diseases.

    PubMed

    Hamidizadeh, Nasrin; Simaeetabar, Shima; Handjani, Farhad; Ranjbar, Sara; Moghadam, Mohammad Gohari; Parvizi, Mohammad Mahdi

    2017-01-01

    Some skin diseases are incurable and modern medicine can only control them. In addition, alternative treatment remedies including balneotherapy can be effective in improving skin conditions. However, there are only a limited number of studies on particular mineral or trace elements of mineral sources that have been identified in Iran. In this respect, the amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods and evaluated. The amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods. The concentrations of natural gases such as H 2 S and NO 3 in Mamasani thermal source were measured to be 22.10 mg/L and 42.79 mg/L, respectively. The source also contained major ions such as chloride, sulfate, sodium, calcium, magnesium, potassium, and carbonate. Due to the high concentration of chloride, sulfate, and sodium ions in comparison with other major ions, the water source is also classified as sulfide water. The existing trace elements in this thermal water source are iron, zinc, copper, selenium, cobalt, chromium, boron, silisium, aluminum, magnesium, and molybdenum. We concluded that bathing in this source could be beneficial. As nitrate concentration is close to the highest standard concentration for drinking water, it can be used in chronic dermatitis, psoriasis, burns, and allergy. Furthermore, the antibacterial and antifungal effects of sulfur-containing water in this source can be helpful in the treatment of leg ulcers, tinea versicolor, tinea corporis, and tinea capitis.

  20. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    PubMed

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  1. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  2. Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (Swan Lake), northern China.

    PubMed

    Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei

    2017-06-30

    Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA.

    PubMed

    Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke

    2014-08-01

    Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions.

    PubMed

    Clemente, Rafael; Walker, David J; Pardo, Tania; Martínez-Fernández, Domingo; Bernal, M Pilar

    2012-07-15

    The halophytic shrub Atriplex halimus L. was used in a field phytoremediation experiment in a semi-arid area highly contaminated by trace elements (As, Cd, Cu, Mn, Pb and Zn) within the Sierra Minera of La Unión-Cartagena (SE Spain). The effects of compost and pig slurry on soil conditions and plant growth were determined. The amendments (particularly compost) only slightly affected trace element concentrations in soil pore water or their availability to the plants, increased soil nutrient and organic matter levels and favoured the development of a sustainable soil microbial biomass (effects that were enhanced by the presence of A. halimus) as well as, especially for slurry, increasing A. halimus biomass and ground cover. With regard to the minimisation of trace elements concentrations in the above-ground plant parts, the effectiveness of both amendments was greatest 12-16 months after their incorporation. The findings demonstrate the potential of A. halimus, particularly in combination with an organic amendment, for the challenging task of the phytostabilisation of contaminated soils in (semi-)arid areas and suggest the need for an ecotoxicological evaluation of the remediated soils. However, the ability of A. halimus to accumulate Zn and Cd in the shoot may limit its use to moderately-contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  6. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less

  7. Apollo 15 green glass - Compositional distribution and petrogenesis

    NASA Technical Reports Server (NTRS)

    Steele, Alison M.; Colson, Russell O.; Korotev, Randy L.; Haskin, Larry A.

    1992-01-01

    We have characterized a comprehensive suite of individual green-glass beads from Apollo 15 soil to determine interelement behavior and to constrain petrogenetic relationships. We analyzed 365 particles for trace elements by instrumental neutron activation analysis and analyzed 52 of them, selected to cover the compositional ranges observed for trace elements, for major elements by electron microprobe analysis. We confirm the observation of Delano (1979) that the beads comprise discrete compositional groups, although two of the groups he defined are further split on the basis of trace-element compositions. Each of the resulting seven groups has distinct average rare-earth abundances. The coherence between major- and trace-element data was masked in previous studies by imprecision, correlated error, and nonrepresentative sampling of the different groups. Most of the compositional characteristics of the green glasses can be explained by a model for batch equilibrium melting of a nearly homogeneous, ultramafic source region, when the complicating effects of high pressure and low oxygen fugacity are taken into account. The previously puzzling behavior of Ni and Co as apparently incompatible elements may arise from partial reduction of those elements to the zero oxidation state, resulting in low mineral/melt partition coefficients. The model also offers explanations for why the green glasses form boomerang-shaped trends on many two-element variation diagrams and why certain compositions (Groups A and D) are more abundant than glasses with other compositions.

  8. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    PubMed

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Development of Proxies for Vent Fluid Trace Metal Concentrations and pH through Study of Sulfide Chimney Linings

    NASA Astrophysics Data System (ADS)

    Evans, G. N.; Tivey, M. K.; Seewald, J.; Rouxel, O. J.; Monteleone, B.

    2016-12-01

    Analyses of trace elements (Ag, As, Co, Mn, and Zn) hosted in the chalcopyrite linings of `black smoker' chimneys using secondary ion mass spectrometry (SIMS) have been combined with data for trace metal concentrations in corresponding vent fluids to investigate fluid-mineral partitioning of trace elements. Goals of this research include development of proxies for fluid chemistry based on mineral trace element content. The use of SIMS allows for the measurement of trace elements below the detection limits of electron microprobe and at the necessary spatial resolution (20 microns) to examine fine-grained and mixed-mineral samples. Results indicate that the chalcopyrite linings of many `black smoker' chimneys are homogeneous with respect to Ag, Mn, Co, and Zn. Minerals picked from samples exhibiting homogeneity with respect to specific elements were dissolved and analyzed by solution inductively coupled plasma mass spectrometry (ICP-MS) for use as working standards. Results also document a strong correlation between the Ag content of chalcopyrite and the Ag:Cu ratio of the corresponding hydrothermal fluid. This supports systematic partitioning of Ag into chalcopyrite as a substitute for Cu, providing a proxy for fluid Ag concentration. Additionally, the Ag content of chalcopyrite correlates with fluid pH, particularly at pH>3, and thus represents an effective proxy for fluid pH. Application of these proxies to chimney samples provides an opportunity to better identify hydrothermal conditions even when fluids have not been sampled, or not fully analyzed.

  10. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. Trace element concentrations in feathers and blood of Northern goshawk (Accipiter gentilis) nestlings from Norway and Spain.

    PubMed

    Dolan, Kevin J; Ciesielski, Tomasz M; Lierhagen, Syverin; Eulaers, Igor; Nygård, Torgeir; Johnsen, Trond V; Gómez-Ramírez, Pilar; García-Fernández, Antonio J; Bustnes, Jan O; Ortiz-Santaliestra, Manuel E; Jaspers, Veerle L B

    2017-10-01

    Information on trace element pollution in the terrestrial environment and its biota is limited compared to the marine environment. In the present study, we collected body feathers and blood of 37 Northern goshawk (Accipiter gentilis) nestlings from Tromsø (northern Norway), Trondheim (central Norway), and Murcia (southeastern Spain) to study regional exposure, hypothesizing the potential health risks of metals and other trace elements. Blood and body feathers were analyzed by a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) for aluminum (Al), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg) and lead (Pb). The influence of regional differences, urbanization and agricultural land usage in proximity to the nesting Northern goshawks was investigated using particular spatial analysis techniques. Most trace elements were detected below literature blood toxicity thresholds, except for elevated concentrations (mean ± SD µgml -1 ww) found for Zn (5.4 ± 1.5), Cd (0.00023 ± 0.0002), and Hg (0.021 ± 0.01). Corresponding mean concentrations in feathers (mean ± SD µgg -1 dw) were 82.0 ± 12.4, 0.0018 ± 0.002, and 0.26 ± 0.2 for Zn, Cd and Hg respectively. Multiple linear regressions indicated region was a significant factor influencing Al, Zn, Se and Hg feather concentrations. Blood Cd and Hg concentrations were significantly influenced by agricultural land cover. Urbanization did not have a significant impact on trace element concentrations in either blood or feathers. Overall metal and trace element levels do not indicate a high risk for toxic effects in the nestlings. Levels of Cd in Tromsø and Hg in Trondheim were however above sub-lethal toxic threshold levels. For holistic risk assessment purposes it is important that the concentrations found in the nestlings of this study indicate that terrestrial raptors are exposed to various trace elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Trace Elements in the Sea Surface Microlayer: Results from a Two Year Study in the Florida Keys

    NASA Astrophysics Data System (ADS)

    Ebling, A. M.; Westrich, J. R.; Lipp, E. K.; Mellett, T.; Buck, K. N.; Landing, W. M.

    2016-02-01

    Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. Opportunistic bacteria have been shown to experience rapid growth during deposition events. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. It has been hypothesized that dust particles would be retained in the sea surface microlayer long enough to undergo chemical and physical changes that would affect the bioavailability of trace elements. In this study, aerosols, sea surface microlayer, and underlying water column samples were collected in the Florida Keys in July 2014 and May 2015 at various locations and analyzed for a suite of dissolved and particulate trace elements. Sea surface microlayer samples ( 50 μm) were collected using a cylinder of ultra-pure quartz glass; a novel adaptation of the glass plate technique. Sampling sites ranged from a more pristine environment approximately ten kilometers offshore to a more anthropogenic environment within a shallow bay a few hundred meters offshore. While it was clear from the results that dust deposition events played a large role in the chemical composition of the sea surface microlayer (elevated concentrations in dissolved and particulate trace elements associated with dust deposition), the location where the samples were collected also had a large impact on the sea surface microlayer as well as the underlying water column. The results were compared with other parameters analyzed such as Vibrio cultures as well as iron speciation, providing an important step towards our goal of understanding of the fate of trace elements in the sea surface microlayer as well as the specific effects of aeolian dust deposition on heterotrophic microbes in the upper ocean.

  13. Trace element levels in drinking water and cognitive function among elderly Chinese.

    PubMed

    Emsley, C L; Gao, S; Li, Y; Liang, C; Ji, R; Hall, K S; Cao, J; Ma, F; Wu, Y; Ying, P; Zhang, Y; Sun, S; Unverzagt, F W; Slemenda, C W; Hendrie, H C

    2000-05-01

    The relation between trace element levels in drinking water and cognitive function was investigated in a population-based study of elderly residents (n = 1,016) in rural China in 1996-1997. Cognitive function was measured using a Chinese translation of the Community Screening Interview for Dementia. A mixed effects model was used to evaluate the effect of each of the elements on cognitive function while adjusting for age, sex, and educational level. Several of the elements examined had a significant effect on cognitive function when they were assessed in a univariate context. However, after adjustment for other elements, many of these results were not significant. There was a significant quadratic effect for calcium and a significant zinc-cadmium interaction. Cognitive function increased with calcium level up to a certain point and then decreased as calcium continued to increase. Zinc showed a positive relation with cognitive function at low cadmium levels but a negative relation at high levels.

  14. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  15. INAA Application for Trace Element Determination in Biological Reference Material

    NASA Astrophysics Data System (ADS)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  16. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  17. Physiological Effects of Trace Elements and Chemicals in Water

    ERIC Educational Resources Information Center

    Varma, M. M.; And Others

    1976-01-01

    The physiological effects on humans and animals of trace amounts of organic and unorganic pollutants in natural and waste waters are examined. The sensitivity of particular organs and species is emphasized. Substances reviewed include mercury, arsenic, cadmium, lead, chromium, fluorides, nitrates and organics, including polychlounated biphenyls.…

  18. Trace elements release from volcanic ash to seawater. Natural concentrations in Central Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Randazzo, L. A.; Censi, P.; Saiano, F.; Zuddas, P.; Aricò, P.; Mazzola, S.

    2009-04-01

    Distributions and concentrations of many minor and trace elements in epicontinental basins, as Mediterranean Sea, are mainly driven to atmospheric fallout from surroundings. This mechanism supplies an estimated yearly flux of about 1000 kg km-2 of terrigenous matter of different nature on the whole Mediterranean basin. Dissolution of these materials and processes occurring at solid-liquid interface along the water column drive the distributions of many trace elements as V, Cr, Mn, Co, Cu, and Pb with contents ranging from pmol l-1 (Co, Cd, Pb) to nmol l-1 scale in Mediterranean seawater, with some local differences in the basin. The unwinding of an oceanographic cruise in the coastal waters of Ionian Sea during the Etna's eruptive activity in summer 2001 led to the almost unique chance to test the effects of large delivery of volcanic ash to a coastal sea water system through the analyses of distribution of selected trace elements along several seawater columns. The collection of these waters and their analyses about V, Cr, Mn, Co, Cu, and Pb contents evidenced trace element concentrations were always higher (about 1 order of magnitude at least) than those measured concentrations in the recent past in Mediterranean seawater, apart from Pb. Progressive increase of concentrations of some elements with depth, sometimes changing in a "conservative" behaviour without any clear reason and the observed higher concentrations required an investigation about interaction processes occurring at solid-liquid interface between volcanic ash and seawater along water columns. This investigation involving kinetic evaluation of trace element leaching to seawater, was carried out during a 6 months time period under laboratory conditions. X-ray investigations, SEM-EDS observations and analyses on freshly-erupted volcanic ash evidenced formation of alteration clay minerals onto glass fraction surfaces. Chemical analyses carried out on coexisting liquid phase demonstrated that trace element leaching occurs through a first quick followed by a slow second step that attaints to an apparent equilibrium after 6 months. Amplitude of kinetic rate constant measured for SiO2 release during the first step and behaviour of Ti/Si and Cr/Si rations in primary volcanic minerals, glass fraction and leaching solutions during the first 1 month stage of the experimental interaction allowed to demonstrate that trace element release mainly occurs from glassy materials and Ti-rich magnetite.

  19. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor (abstract)

    NASA Astrophysics Data System (ADS)

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-01

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainland (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.

  20. Trace Elements in Hair from Tanzanian Children: Effect of Dietary Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, Najat K.; Spyrou, Nicholas M.

    2009-04-19

    Trace elements in certain amounts are essential for childrens' health, because they are present in tissues participating in metabolic reactions of organisms. Deficiency of the essential elements may result in malnutrition, impaired body immunity, and poor resistance to disease. These conditions might be enhanced against a background of additional adverse environmental factors such as toxic elements. The analysis of elements in childrens' hair will give information on the deficiency of essential elements and excess of toxic elements in relation to their diet. In this study, 141 hair samples from children (girls and boys) living in two regions of Tanzanian mainlandmore » (Dar es Salaam and Moshi) and the island of Zanzibar have been analysed for trace elements in relation to food consumption habits. The analysis was carried out using long and short irradiation instrumental neutron activation analysis (INAA) of the Nuclear Physics Institute at Rez, Czech Republic. Arithmetic and geometric means with their respective standard deviations are presented for 19 elements. Subgroups were formed according to age, gender, and geographic regions from which the samples were collected. Differences in concentrations for the groups and with other childhood populations were explored and discussed.« less

  1. Correlation between bone mineral density and serum trace elements in response to supervised aerobic training in older adults.

    PubMed

    Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S; Alghadir, Muaz H

    2016-01-01

    Life style and physical activity play a pivotal role in prevention and treatment of osteoporosis. The mechanism for better bone metabolism and improvement of physical disorders is not clear yet. Trace minerals such as Ca, Mn, Cu, and Zn are essential precursors for most vital biological process, especially those of bone health. The main target of this study was evaluating the effective role of supervised aerobic exercise for 1 hour/day, 3 days/week for 12 weeks in the functions of trace elements in bone health through measuring bone mineral density (BMD), osteoporosis (T-score), bone markers, and trace element concentrations in healthy subjects aged 30-60 years with age average of 41.2±4.9. A total of 100 healthy subjects (47 males, 53 females; age range 30-60 years) were recruited for this study. Based on dual-energy x-ray absorptiometry (DEXA) scan analysis, the participants were classified into three groups: normal (n=30), osteopenic (n=40), and osteoporotic (n=30). Following, 12 weeks of moderate aerobic exercise, bone-specific alkaline phosphatase (BAP), BMD, T-score, and trace elements such as Ca, Mn, Cu, and Zn were assessed at baseline and post-intervention. Significant improvement in serum BAP level, T-score, and BMD were observed in all participants following 12 weeks of moderate exercise. Participants with osteopenia and osteoporosis showed significant increase in serum Ca and Mn, along with decrease in serum Cu and Zn levels following 12 weeks of aerobic training. In control group, the improvements in serum trace elements and body mass index were significantly linked with the enhancement in the levels of BAP, BMD hip, and BMD spine. These results supported the preventive effects of moderate exercise in healthy subjects against osteoporosis. In both sexes, the changes in serum trace elements significantly correlated (P<0.05) with the improvement in BAP, BMD hip, BMD spine, and body mass index in all groups. The observed changes in the levels of Ca, Mn, Cu, and Zn were shown to be positively correlated with improved bone mass density among control and osteoporosis subjects of both sexes. These results demonstrate that aerobic exercise of moderate intensity might protect bone and cartilage by regulation of body trace elements which are involved in the biosynthesis of bone matrix structures and inhibition of bone resorption process via a proposed anti-free radical mechanism.

  2. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  3. Metabolism and tissue distribution of trace elements in broiler chickens' fed diets containing deficient and plethoric levels of copper, manganese, and zinc.

    PubMed

    Mondal, Sovik; Haldar, Sudipto; Saha, Pinaki; Ghosh, Tapan Kumar

    2010-11-01

    Supplementation of broiler diets with copper, manganese, and zinc at levels higher than that stipulated by the National Research Council 1994 reportedly improved live weight, feed conversion, and cured leg abnormality supposedly caused by inadequate intake of Mn and Zn. The objective of the study was to ascertain the effects of plethoric supplementation of copper (Cu), manganese (Mn), and zinc (Zn) on performance and metabolic responses in broiler chickens. The study also aimed to discriminate the responses of the birds when the mineral elements were supplemented either in an inorganic or in an organic form. Cobb 400 broiler chickens (1-day old, n = 300) were assigned to three dietary treatments each containing nine replicates with ten birds for 39 days. The treatments included a control in which the diet was devoid of supplemental trace elements and treatments supplemented with an inorganic trace element premix (ITM) and supplemented with a combination of the inorganic and an organic trace element premix (OTM). The ITM contained (per kilogram) copper, 15 g; iron, 90 g; manganese, 90 g; zinc, 80 g (all as sulfated salts); iodine (as potassium iodide), 2 g; and selenium (as sodium selenite), 0.3 g. The OTM on the other hand, contained copper, 2.5 g; iron, 15 g; manganese, 15 g; zinc, 13.33 g; and chromium, 0.226 g (all as protein chelates). Plethoric supplementation of trace elements improved live weight gain and feed/gain ratio (p < 0.05). Leg abnormality developed in the 16% of the control group of birds but not in the supplemented group. Metabolizability of dry matter, organic matter, and protein was higher (p < 0.01) in the ITM and OTM groups. Excretion of Cu, Fe, and Zn decreased (p < 0.1) due to supplementation of the trace elements leading to increased apparent absorption of the said mineral elements (p < 0.01). Concentration of the concerned trace elements in serum, liver, and composite muscle samples was higher (p < 0.05) in the ITM and OTM dietary groups indicating an increased deposition of the said mineral elements due to supplementation. Although the study revealed subtle difference between the inorganic and organic mineral premixes with regards to the parameters mentioned above, it became apparent that it is possible to reduce excretion of these trace elements by a judicious escalation in the level of supplementation. The results of the present investigation further revealed that the trace mineral requirement of broiler chickens suggested by the National Research Council may not be optimum to support the maximum growth potential of the high yielding strains, and it is reasonable to consider a review of the current NRC recommendations to meet the needs of the modern birds.

  4. Trace elements in Antarctic meteorites: Weathering and genetic information

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.

    1986-01-01

    Antarctic meteorite discoveries have created great scientific interest due to the large number of specimens recovered (approximately 7000) and because included are representatives of hitherto rare or unknown types. Antarctic meteorites are abundant because they have fallen over long periods and were preserved, transported, and concentrated by the ice sheets. The weathering effects on the Antarctic meteorites are described. Weathering effects of trace element contents of H5 chondrites were studied in detail. The results are examined. The properties of Antarctic finds and non-Antarctic falls are discussed.

  5. Trace element analysis of coal by neutron activation.

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  6. Trace element analysis of coal by neutron activation

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1973-01-01

    The irradiation, counting, and data reduction scheme is described for an analysis capability of 1000 samples per year. Up to 56 elements are reported on each sample. The precision and accuracy of the method are shown for 25 elements designated as hazardous by the Environmental Protection Agency (EPA). The interference corrections for selenium and ytterbium on mercury and ytterbium on selenium are described. The effect of bromine and antimony on the determination of arsenic is also mentioned. The use of factorial design techniques to evaluate interferences in the determination of mercury, selenium, and arsenic is shown. Some typical trace element results for coal, fly ash, and bottom ash are given.

  7. Marine molluscs in environmental monitoring. III. Trace metals and organic pollutants in animal tissue and sediments

    NASA Astrophysics Data System (ADS)

    Feldstein, Tamar; Kashman, Yoel; Abelson, Avigdor; Fishelson, Lev; Mokady, Ofer; Bresler, Vladimir; Erel, Yigal

    2003-10-01

    Concentrations of trace elements and organic pollutants were determined in marine sediments and molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria aegyptia), two gastropod species (Patella caerulea, Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediterranean coast of Israel, sediments and molluscs from Haifa Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences between the polluted and reference sites were less pronounced. Bio-concentration factors indicate a significant concentration of Zn, As, Cd, Sn and Pb in animal tissue relative to the concentrations of these elements in the sediments. In contrast, Ce, La and U were not concentrated in molluscs. The trace element results indicate a saturation of the detoxification mechanisms in molluscs from polluted sites. The concentrations of organic pollutants at the same sites are at the lower range of values recorded in other studies. However, synergistic effects between these compounds and between them and metals can lead to acute toxicity.

  8. [Contents of ten trace elements in Epimedium acuminatum Franch. and its different processed products].

    PubMed

    Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y

    2001-03-01

    Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.

  9. Wash effect of atmospheric trace metals wet deposition and its source characteristic in subtropical watershed in China.

    PubMed

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Tian, Jing; Wen, Xuefa

    2016-10-01

    In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.

  10. Plasma lead, silicon and titanium concentrations are considerably higher in green sea turtle from the suburban coast than in those from the rural coast in Okinawa, Japan

    PubMed Central

    TSUKANO, Kenji; SUZUKI, Kazuyuki; NODA, Jun; YANAGISAWA, Makio; KAMEDA, Kazunari; SERA, Koichiro; NISHI, Yasunobu; SHIMAMORI, Toshio; MORIMOTO, Yasuyo; YOKOTA, Hiroshi; ASAKAWA, Mitsuhiko

    2017-01-01

    The purpose of this study was to compare the concentration of trace elements in the plasma of sea turtles that inhabited the suburban (Okinawa Main Island, n=8) and the rural coast (Yaeyama Island, n=57) in Okinawa, Japan. Particle induced X-ray emission allowed detection of 20 trace and major elements. The wild sea turtles in the suburban coast in Okinawa were found to have high concentrations of Pb, Si and Ti in the plasma when compared to the rural area but there were no significant changes in the Al, As and Hg concentrations. These results may help to suggest the status of some elements in a marine environment. Further, monitoring the plasma trace and major element status in sea turtles can be used as a bio-monitoring approach by which specific types of elements found here could indicate effects that are related to human activities. PMID:29070764

  11. Trace Elements in the Marine Sediments of the La Paz Lagoon, Baja California Peninsula, Mexico: Pollution Status in 2013.

    PubMed

    Pérez-Tribouillier, Habacuc; Shumilin, Evgueni; Rodríguez-Figueroa, Griselda Margarita

    2015-07-01

    To determine the actual concentrations of trace elements in surface sediments from the La Paz Lagoon, as well as their associations and possible origins, 91 sediment samples were analyzed for more than 50 elements using a combination of ICP-MS and ICP-AES. The results of a principal component analysis are used to distinguish four associative groups within the elements. Natural enrichment of As, Cd and U occurs due to the supply of weathered phosphorites from the El Cien formation located to the north-west of the lagoon. Sediment quality indices for potentially toxic trace elements do not show any probable impact on the biota of the lagoon. Only the concentrations of As in 30 % of the stations and Cu in 20 % of them exceed related effect range low levels. The highest concentration of Pb (36.8 mg kg(-1)) was measured in the sediments near the City of La Paz.

  12. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  14. Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.

    PubMed

    Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan

    2014-04-01

    The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.

  15. Methods for detecting the mobility of trace elements during medium-temperature pyrolysis

    USGS Publications Warehouse

    Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola

    1983-01-01

    The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.

  16. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-01-01

    The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.

  17. Simultaneous trace multielement determination by ICP-OES after solid phase extraction with modified octadecyl silica gel.

    PubMed

    Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal

    2009-10-15

    Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.

  18. Composition of minerals and trace elements at Mamasani thermal source: A possible preventive treatment for some skin diseases

    PubMed Central

    Hamidizadeh, Nasrin; Simaeetabar, Shima; Handjani, Farhad; Ranjbar, Sara; Moghadam, Mohammad Gohari; Parvizi, Mohammad Mahdi

    2017-01-01

    INTRODUCTION: Some skin diseases are incurable and modern medicine can only control them. In addition, alternative treatment remedies including balneotherapy can be effective in improving skin conditions. However, there are only a limited number of studies on particular mineral or trace elements of mineral sources that have been identified in Iran. In this respect, the amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods and evaluated. MATERIALS AND METHODS: The amount of minerals and trace elements in Mamasani thermal source, Fars Province, Iran, was measured using electrochemical, titration, and spectrophotometric methods. RESULTS: The concentrations of natural gases such as H2S and NO3 in Mamasani thermal source were measured to be 22.10 mg/L and 42.79 mg/L, respectively. The source also contained major ions such as chloride, sulfate, sodium, calcium, magnesium, potassium, and carbonate. Due to the high concentration of chloride, sulfate, and sodium ions in comparison with other major ions, the water source is also classified as sulfide water. The existing trace elements in this thermal water source are iron, zinc, copper, selenium, cobalt, chromium, boron, silisium, aluminum, magnesium, and molybdenum. CONCLUSION: We concluded that bathing in this source could be beneficial. As nitrate concentration is close to the highest standard concentration for drinking water, it can be used in chronic dermatitis, psoriasis, burns, and allergy. Furthermore, the antibacterial and antifungal effects of sulfur-containing water in this source can be helpful in the treatment of leg ulcers, tinea versicolor, tinea corporis, and tinea capitis. PMID:29296611

  19. Remediation using trace element humate surfactant

    DOEpatents

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  20. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    PubMed

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal.

    PubMed

    Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A

    2018-10-15

    The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Comparison of trace element concentrations in livers of diseased, emaciated and non-diseased southern sea otters from the California coast

    USGS Publications Warehouse

    Kannan, K.; Agusa, T.; Perrotta, E.; Thomas, N.J.; Tanabe, S.

    2006-01-01

    Infectious diseases have been implicated as a cause of high rates of adult mortality in southern sea otters. Exposure to environmental contaminants can compromise the immuno-competence of animals, predisposing them to infectious diseases. In addition to organic pollutants, certain trace elements can modulate the immune system in marine mammals. Nevertheless, reports of occurrence of trace elements, including toxic heavy metals, in sea otters are not available. In this study, concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of southern sea otters found dead along the central California coast (n = 80) from 1992 to 2002. Hepatic concentrations of trace elements were compared among sea otters that died from infectious diseases (n = 27), those that died from non-infectious causes (n = 26), and otters that died in emaciated condition with no evidence of another cause of death (n = 27). Concentrations of essential elements in sea otters varied within an order of magnitude, whereas concentrations of non-essential elements varied by two to five orders of magnitude. Hepatic concentrations of Cu and Cd were 10- to 100-fold higher in the sea otters in this study than concentrations reported for any other marine mammal species. Concentrations of Mn, Co, Zn, and Cd were elevated in the diseased and emaciated sea otters relative to the non-diseased sea otters. Elevated concentrations of essential elements such as Mn, Zn, and Co in the diseased/emaciated sea otters suggest that induction of synthesis of metallothionein and superoxide dismutase (SOD) enzyme is occurring in these animals, as a means of protecting the cells from oxidative stress-related injuries. Trace element profiles in diseased and emaciated sea otters suggest that oxidative stress mediates the perturbation of essential-element concentrations. Elevated concentrations of toxic metals such as Cd, in addition to several other organic pollutants, may contribute to oxidative stress-meditated effects in sea otters.

  3. Constraints on the bioavailability of trace elements to terrestrial fauna at mining and smelting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.; Schoof, R.; LaTier, A.

    1995-12-31

    At mining and smelting sites, the bioavailability of waste-related trace elements to terrestrial wildlife is limited by mineralogy of the waste material and the geochemistry of the waste-soil mixture. For example, encapsulation of trace elements in inert mineral matrices limits the assimilation of particle-associated trace elements that are ingested by wildlife. The bioavailability of arsenic, cadmium, copper, lead, silver, and zinc at mining and smelting sites in Oklahoma and Montana was evaluated based on analysis of waste material, soil chemistry, and concentrations of trace elements in whole-body samples of key food web species. Concentrations of trace elements were generally elevatedmore » relative to reference area values for selected species of vegetation, insects, spiders, and small mammals. Soil-to-tissue bioconcentration factors derived from field data at these sites were generally low (< 1), with the exception of cadmium in vegetation. For all of the trace elements evaluated, wildlife exposure models indicate that the potential for transfer of contaminants to wildlife species of public concern and high trophic-level predators is limited. Moreover, laboratory feeding experiments conducted with cadmium and lead indicate that the assimilation of waste-related trace elements by mammals is relatively low (24--47 percent for lead in blood and bone; 22--44 percent for cadmium in kidney). The relatively low bioavailability of trace elements at mining and smelting sites should be considered when estimating exposure of ecological receptors and when deriving soil cleanup criteria based on measured or modeled ecological risk.« less

  4. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-09-01

    The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Trace elements and organic compounds in bed sediment from selected streams in southern Louisiana, 1998

    USGS Publications Warehouse

    Skrobialowski, Stanley C.

    2002-01-01

    Bed-sediment samples from 21 selected streams in southern Louisiana were collected and analyzed for the presence of trace elements and organic compounds during 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Concentrations of selected trace elements and organic compounds were compared on the basis of sediment-quality criteria, land use, and grain size; concentrations of selected trace elements also were compared with concentrations from previous studies. Concentrations of seven selected trace elements and 21 organic compounds were evaluated with sediment-quality criteria established by the Canadian Council of Ministers of the Environment. Concentrations of selected trace elements and organic compounds were highest at sites draining urban and agricultural areas and may result from cumulative effects of relatively high percentages of fine-grained material, iron, and organic material. Concentrations exceeding sediment-quality criteria for the protection of aquatic life occurred most frequently at Bayou Grosse Tete at Rosedale and Bayou Lafourche below weir at Thibodaux. Exceedance of Interim Sediment Quality Guidelines occurred most frequently for arsenic and chromium. Trace-element concentrations in fine-grained samples were compared with concentrations in bulk samples and were determined to be significantly different, and concentrations were generally higher in finegrained sediment. Shapiro-Wilk, paired t-test, and Wilcoxon rank sum statistical procedures, with an alpha of 0.05, were used to compare concentrations of 21 trace elements, total organic carbon, and total carbon in finegrained and bulk sediment samples for 19 sites. Significant differences were determined between fine-grained and bulk sediment samples for aluminum, barium, beryllium, chromium, copper, iron, lithium, nickel, phosphorus, selenium, titanium, and zinc concentrations. Of 133 paired concentrations, 69 percent were greater in fine-grained samples, and 23 percent were greater in bulk samples. Comparisons with data from previous studies indicate increases by more than 20 percent in concentrations of antimony at Bayou Lafourche below weir at Thibodaux, arsenic and chromium at Tickfaw River at Liverpool, lead at Bayou Lafourche below weir at Thibodaux, and zinc at Bayou Lafourche below weir at Thibodaux and Vermilion River at Perry. Historic comparisons also indicate decreases by more than 20 percent in concentrations of chromium at Bayou des Cannes near Eunice and mercury at Mermentau River at Mermentau.

  6. Determination of Serum Trace Elements (Zn, Cu, and Fe) in Pakistani Patients with Rheumatoid Arthritis.

    PubMed

    Ullah, Zia; Ullah, Muhammad Ikram; Hussain, Shabbir; Kaul, Haiba; Lone, Khalid P

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, which mainly involves the joints. RA is prevalent worldwide with increasing prevalence in elderly people. The mechanism of RA pathogenesis is still undefined, and it is interplaying between genetic susceptibility and environmental factors. Although risk factors for RA are not fully established, various studies have focused on the role of trace elements in association with RA. Trace elements act as co-factors for most of the enzymes, and their deficiency is associated with many untoward effects on human health. The homeostatic alterations in the metabolism of trace elements may partly be due to inflammatory response in RA. The objective of the present study was to determine the serum concentrations and correlation of zinc, copper, and iron in RA patients and healthy controls. The study comprised of 61 RA patients and 61 age- and sex-related healthy individuals of Pakistani population. Serum levels of Zn, Cu, and Fe were measured in all the participants by atomic absorption spectrophotometer. Serum Zn and Fe were significantly reduced in the RA patients than those in the healthy controls. Serum Cu concentrations were found elevated in the RA patients. Correlation studies of trace elements determine that there was negative correlation between Zn and Cu in the RA patients and no correlation in the control group. It is very important to explore the deficiency of essential trace metals in biological samples of the RA patients in different populations which may be helpful for diagnosis and supplementary management of rheumatoid arthritis patients.

  7. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  8. Origin and distribution of trace elements in high-elevation precipitation in southern China.

    PubMed

    Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing

    2012-09-01

    During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.

  9. Organic Compounds and Trace Elements in Fish Tissue and Bed Sediment in the Delaware River Basin, New Jersey, Pennsylvania, New York, and Delaware, 1998-2000

    USGS Publications Warehouse

    Romanok, Kristin M.; Fischer, Jeffrey M.; Riva-Murray, Karen; Brightbill, Robin; Bilger, Michael

    2006-01-01

    As part of the National Water-Quality Assessment (NAWQA) program activities in the Delaware River Basin (DELR), samples of fish tissue from 21 sites and samples of bed sediment from 35 sites were analyzed for a suite of organic compounds and trace elements. The sampling sites, within subbasins ranging in size from 11 to 600 square miles, were selected to represent 5 main land-use categories in the DELR -forest, low-agricultural, agricultural, urban, and mixed use. Samples of both fish tissue and bed sediment were also collected from 4 'large-river' sites that represented drainage areas ranging from 1,300 to 6,800 square miles, areas in which the land is used for a variety of purposes. One or more of the organochlorine compounds-DDT and chlordane metabolites, polychlorinated biphenyls (total PCBs), and dieldrin- were detected frequently in samples collected over a wide geographic area. One or more of these compounds were detected in fish-tissue samples from 92 percent of the sites and in bed-sediment samples from 82 percent of the sites. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in whole white suckers and in bed sediment were significantly related to urban/industrial basin characteristics, such as percentage of urban land use and population density. Semi-volatile organic compounds (SVOCs)-total polycyclic aromatic hydrocarbons (PAHs), total phthalates, and phenols- were detected frequently in bed-sediment samples. All three types of SVOCs were detected in samples from at least one site in each land-use category. The highest detection rates and concentrations typically were in samples from sites in the urban and mixed land-use categories, as well as from the large-river sites. Concentrations of total PAHs and total phthalates in bed-sediment samples were found to be statistically related to percentages of urban land use and to population density in the drainage areas represented by the sampling sites. The samples of fish tissue and bed sediment collected throughout the DELR were analyzed for a large suite of trace elements, but results of the analyses for eight elements-arsenic, cadmium, chromium, copper, lead, nickel, mercury, and zinc- that are considered contaminants of concern are described in this report. One or more of the eight trace elements were detected in samples from every fish tissue and bed-sediment sampling site, and all of the trace elements were detected in samples from 97 percent of the bed-sediment sites. The concentrations of organic compounds and trace elements in the DELR samples were compared to applicable guidelines for the protection of wildlife and other biological organisms. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in fish-tissue samples from 14 sites exceeded one or more of the Wildlife Protective Guidelines established by the New York State Department of Environmental Conservation. Concentrations of one or more organic compounds in samples from 16 bed-sediment sites exceeded the Threshold Effects Concentrations (TEC) of the Canadian Sediment Quality Guidelines, and concentrations of one or more of the eight trace elements in samples from 38 bed-sediment sites exceeded the TEC. (The TEC is the concentration below which adverse biological effects in freshwater ecosystems are expected to be rare.) Concentrations of organic compounds in samples from some bed-sediment sites exceeded the Canadian Probable Effects Concentrations (PEC), and concentrations of trace elements in samples from 18 sites exceeded the PEC. (The PEC is the concentration above which adverse effects to biological organisms are expected to occur frequently). Concentrations of organic compounds and trace elements in samples from the DELR were compared to similar data from other NAWQA study units in the northeastern United States and also data from the Mobile River (Alabama) Basin and the Northern Rockies Intermontane Basin study units. Median concentrations of to

  10. Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: monitoring at Mekong Delta area and in vitro experiment.

    PubMed

    Yamaguchi, Sonoko; Miura, Chiemi; Ito, Aki; Agusa, Tetsuro; Iwata, Hisato; Tanabe, Shinsuke; Tuyen, Bui Cach; Miura, Takeshi

    2007-06-05

    To estimate the influence of water contaminants on fish reproduction in the Mekong Delta area, we sampled cultivated male catfish (Pangasianodon hypophthalmus), investigated testicular development, and measured persistent organic pollutants (POPs) and trace element levels in muscle and liver, respectively. Various testes sizes were observed although sampling took place during a short period. Histological analysis revealed that all developmental stages of germ cells were observed in catfish with large testis, whereas only necrotic spermatogonia but no other germ cells were observed in catfish with small testis. In small testis, furthermore, vacuolization and hypertrophy of Sertoli cells were observed. Measurement of POPs in muscle and trace elements in liver demonstrated that there were negative correlations between GSI and the concentrations of Pb, Mo, Rb and As. To clarify possible direct effects of Pb, Mo, Rb and As on spermatogenesis in fish, we investigated the effects of these trace elements on spermatogenesis using in vitro testicular organ culture of Japanese eel (Anguilla japonica). Treatment with each of the trace elements alone did not affect spermatogenesis. However, treatment with 10(-7)M of Pb, 10(-5) and 10(-4)M of Mo, 10(-5)-10(-3)M of Rb or 10(-5)M of As inhibited the spermatogenesis induced by 11-ketotestosterone (11KT). Furthermore, treatment with 10(-4)M of As in combination with 11KT caused necrosis of testicular fragments. Taken together, these results are consistent with the hypothesis that Pb, Mo, Rb and As can exert inhibitory effects on spermatogenesis in catfish inhabiting the Mekong Delta area.

  11. Trends in Trace Element Fractionation Between Foraminiferal Species and the Role of Biomineralization

    NASA Astrophysics Data System (ADS)

    Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.

    2017-12-01

    Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.

  12. Introductory Laboratory Exercises in Radiobiology

    ERIC Educational Resources Information Center

    Williams, J. R. Parry; Servant, D. M.

    1970-01-01

    Describes experiments suitable for introducing use of radioisotopes in biology. Includes demonstrations of tracing food chains, uptake of ions by plants, concentration of elements by insects, tracing photosynthetic reactions, activation analysis of copper, and somatic and genetic effects. Uses autoradiographic and counting techniques. (AL)

  13. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected in all three bed-sediment samples, ranged from 1.1 micrograms per kilogram dry weight in C.J. Strike Reservoir to 11 micrograms per kilogram dry weight in Brownlee Reservoir at Burnt River. Data from this study, compared with data collected in the upper Snake River Basin from 1992 to 1994, indicates that, in general, organochlorine concentrations in fish tissue and bed sediment increased from the headwaters of the Snake River in Wyoming downstream to Brownlee Reservoir. The largest trace-element concentrations in fish tissue were in liver samples from carp from Brownlee Reservoir at Burnt River and suckers from the Boise River near Twin Springs. Concentrations of most trace elements were larger in livers than in the sport- fish fillets. However, mercury concentrations were generally larger in the sportfish fillets; they ranged from 0.08 microgram per gram wet weight in yellow perch from C.J. Strike Reservoir to 0.32 microgram per gram wet weight in channel catfish from Brownlee Reservoir at Burnt River. None of the trace-element concentrations in fillets exceeded median international standards or U.S. Food and Drug Administration action levels. Large trace-element concentrations in the upper Snake River Basin were reported in liver samples from suckers from headwater streams, probably a result of historical mining and weathering of metal-rich rocks. Concentrations of most trace elements in the bed-sediment samples were largest in Brownlee Reservoir at Mountain Man Lodge. Concentrations of arsenic, cadmium, chromium, copper, nickel, and zinc in bed sediment from the Mountain Man Lodge site exceeded either the threshold effect level or probable effect level established by the Canadian Government for the protection of benthic life. Arsenic, chromium, copper, and nickel concentrations in bed sediment from Brownlee Reservoir at Burnt River and chromium, copper, and nickel in bed sediment from C.J. Strike Reservoir also exceeded the threshold effect level.

  14. Enhancing biogas production from vinasse in sugarcane biorefineries: Effects of urea and trace elements supplementation on process performance and stability.

    PubMed

    Janke, Leandro; Leite, Athaydes F; Batista, Karla; Silva, Witan; Nikolausz, Marcell; Nelles, Michael; Stinner, Walter

    2016-10-01

    In this study, the effects of nitrogen, phosphate and trace elements supplementation were investigated in a semi-continuously operated upflow anaerobic sludge blanket system to enhance process stability and biogas production from sugarcane vinasse. Phosphate in form of KH2PO4 induced volatile fatty acids accumulation possibly due to potassium inhibition of the methanogenesis. Although nitrogen in form of urea increased the reactor's alkalinity, the process was overloaded with an organic loading rate of 6.1gCODL(-1)d(-1) and a hydraulic retention time of 3.6days. However, by supplementing urea and trace elements a stable operation even at an organic loading rate of 9.6gCODL(-1)d(-1) and a hydraulic retention time of 2.5days was possible, resulting in 79% higher methane production rate with a stable specific methane production of 239mLgCOD(-1). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Estimated Loads of Suspended Sediment and Selected Trace Elements Transported through Milltown Reservoir in the Upper Clark Fork Basin, Montana, Water Years 2004-07

    USGS Publications Warehouse

    Lambing, John H.; Sando, Steven K.

    2008-01-01

    The purpose of this report is to present estimated daily and annual loads of suspended sediment and selected trace elements for water years 2004-07 at two sites upstream and one site downstream from Milltown Reservoir. Milltown Reservoir is a National Priorities List Superfund site in the upper Clark Fork basin of western Montana where sediments enriched in trace elements from historical mining and ore processing have been deposited since the construction of Milltown Dam in 1907. The estimated loads were used to quantify annual net gains and losses (mass balance) of suspended sediment and trace elements within Milltown Reservoir before and after June 1, 2006, which was the start of Stage 1 of a permanent drawdown of the reservoir in preparation for removal of Milltown Dam. This study was done in cooperation with the U.S. Environmental Protection Agency. Daily loads of suspended sediment were estimated for water years 2004-07 by using either high-frequency sampling as part of daily sediment monitoring or regression equations relating suspended-sediment discharge to streamflow. Daily loads of unfiltered-recoverable arsenic, cadmium, copper, iron, lead, manganese, and zinc were estimated by using regression equations relating trace-element discharge to suspended-sediment discharge. Regression equations were developed from data for eriodic water-quality samples collected during water years 2004-07. The equations were applied to daily records of either streamflow or suspended-sediment discharge to produce estimated daily loads. Variations in daily suspended-sediment and trace-element loads generally coincided with variations in streamflow. For most of the period before June 1, 2006, differences in daily loads transported to and from Milltown Reservoir were minor or indicated small amounts of deposition; however, losses of suspended sediment and trace elements from the reservoir occurred during temporary drawdowns in July-August 2004 and October-December 2005. After the start of Stage 1 of the permanent drawdown on June 1, 2006, losses of suspended sediment and trace elements from the reservoir persisted for all streamflow conditions during the entire interval of the Stage 1 drawdown (June 1, 2006-September 30, 2007) within the study period. Estimated daily loads of suspended sediment and trace elements were summed for each year to produce estimated annual loads used to determine the annual net gains (deposition) or losses (erosion) of each constituent within Milltown Reservoir during water years 2004-07. During water year 2004, there was an annual net gain of suspended sediment in the reservoir. The annual net gains and losses of trace elements were inconsistent in water year 2004, with gains occurring for arsenic ad iron, but losses occurring for cadmium, copper, lead, manganese, and zinc. In water year 2005, there were annual net gains of suspended sediment and all the trace elements within the reservoir. In water year 2006, there were annual net losses of all constituents from the reservoir, likely as the result of sediment erosion from the reservoir during both a temporary drawdown in October-December 2005 and Stage 1 of the permanent drawdown that continued after June 1, 2006. In water year 2007, when the Stage 1 drawdown was in effect for the entire year, there were large annual net losses of suspended sediment and trace elements from the reservoir. The annual net losses of constituents from Milltown Reservoir in water year 2007 were the largest of any year during the 2004-07 study period. In water year 2007, the annual net loss of suspended sediment from the reservoir was 130,000 tons, which was more than double (about 222 percent) the combined inflow to the reservoir. The largest annual net losses of trace elements in water year 2007, in percent of the combined inflow to the reservoir, occurred for cadmium, copper, lead, and zinc-about 190 percent for cadmium, 170 percent for copper, 150 percent for lead, and 238 p

  16. Characterization of the quality of water, bed sediment, and fish in Mittry Lake, Arizona, 2014–15

    USGS Publications Warehouse

    Hermosillo, Edyth; Coes, Alissa L.

    2017-03-01

    Water, bed-sediment, and fish sampling was conducted in Mittry Lake, Arizona, in 2014–15 to establish current water-quality conditions of the lake. The parameters of temperature, dissolved-oxygen concentration, specific conductance, and alkalinity were measured in the field. Water samples were collected and analyzed for dissolved major ions, dissolved trace elements, dissolved nutrients, dissolved organic carbon, dissolved pesticides, bacteria, and suspended-sediment concentrations. Bed-sediment and fish samples were analyzed for trace elements, halogenated compounds, total mercury, and methylmercury.U.S. Environmental Protection Agency secondary maximum contaminant levels in drinking water were exceeded for sulfate, chloride, and manganese in the water samples. Trace-element concentrations were relatively similar between the inlet, middle, and outlet locations. Concentrations for nutrients in all water samples were below the Arizona Department of Environmental Quality’s water-quality standards for aquatic and wildlife uses, and all bacteria levels were below the Arizona Department of Environmental Quality’s recommended recreational water-quality criteria. Three out of 81 pesticides were detected in the water samples.Trace-element concentrations in bed sediment were relatively consistent between the inlet, middle, and outlet locations. Lead, manganese, nickel, and zinc concentrations, however, decreased from the inlet to outlet locations. Concentrations for lead, nickel, and zinc in some bed-sediment samples exceeded consensus-based sediment-quality guidelines probable effect concentrations. Eleven out of 61 halogenated compounds were detected in bed sediment at the inlet location, whereas three were detected at the middle location, and five were detected at the outlet location. No methylmercury was detected in bed sediment. Total mercury was detected in bed sediment at concentrations below the consensus-based sediment-quality guidelines probable effect concentration.Sixteen trace elements were detected in at least one of the fish-tissue samples, and trace-element concentrations were relatively consistent between the three fish-tissue samples. Seven halogenated compounds were detected in at least one of the whole-body fish samples; four to five compounds were detected in each fish. One fish-tissue sample exceeded the U.S. Environmental Protection Agency human health consumption criteria for methylmercury.

  17. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  18. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  19. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  20. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  1. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  2. Heavy metals and essential elements in Italian cereals.

    PubMed

    Brizio, P; Benedetto, A; Squadrone, S; Curcio, A; Pellegrino, M; Ferrero, M; Abete, M C

    2016-12-01

    Crops intended for human nutrition and food production containing different essential trace elements, such as copper and zinc, could be contaminated by toxic metals like cadmium and lead. The interrelationship between micronutrients and contaminant trace elements in different cereals was investigated in North-western Italy, where both agricultural and industrial activities are present. Elemental concentrations in sampled cereals were assessed by inductively coupled plasma mass spectrometry (ICP-MS). Rice, oats and barley reached the highest median levels for Al, Cd and Pb content, while corn samples were less contaminated by toxic metals. Regarding essential elements highest median values of Cu and Zn were both found in barley, while Ni median content was higher in oats. Rice had the lowest median levels of essential elements. The correlation study between toxic and essential elements seemed to demonstrate fixed trends in analysed samples, corroborating the importance of a different diet to limit potential adverse effects caused by toxic elements.

  3. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    PubMed Central

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  4. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous concentric annuli towards crystal rims. Conversely, the medium rare earth elements (e.g. Gd, Eu and Sm) exhibit bowl-shaped zoning from core to rim, with no annuli, and core and rim compositions of the medium rare earth elements are the same throughout the population within crystals of differing size. Cr exhibits pronounced spiral zoning, and the average Cr content increases towards garnet rims. In all cases, spirals are centered on the geometric core of the crystals. These LA-ICP-MS maps highlight the complexity of garnet growth over a single prograde event, and indicate that there is still much to be learnt from the analysis of garnet using ever-improving analytical methods. We explore the potential causes of the variations in the distribution of trace elements in garnet, and assess how these zoning patterns may be used to refine our understanding of the intricacies of garnet crystallisation and the spatial and temporal degree of trace element equilibration during metamorphism.

  5. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  6. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  7. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  8. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  9. Trace-metal concentrations in African dust: effects of long-distance transport and implications for human health

    USGS Publications Warehouse

    Garrison, Virginia; Lamothe, Paul; Morman, Suzette; Plumlee, Geoffrey S.; Gilkes, Robert; Prakongkep, Nattaporn

    2010-01-01

    The Sahara and Sahel lose billions of tons of eroded mineral soils annually to the Americas and Caribbean, Europe and Asia via atmospheric transport. African dust was collected from a dust source region (Mali, West Africa) and from downwind sites in the Caribbean [Trinidad-Tobago (TT) and U.S. Virgin Islands (VI)] and analysed for 32 trace-elements. Elemental composition of African dust samples was similar to that of average upper continental crust (UCC), with some enrichment or depletion of specific trace-elements. Pb enrichment was observed only in dust and dry deposition samples from the source region and was most likely from local use of leaded gasoline. Dust particles transported long-distances (VI and TT) exhibited increased enrichment of Mo and minor depletion of other elements relative to source region samples. This suggests that processes occurring during long-distance transport of dust produce enrichment/depletion of specific elements. Bioaccessibility of trace-metals in samples was tested in simulated human fluids (gastric and lung) and was found to be greater in downwind than source region samples, for some metals (e.g., As). The large surface to volume ratio of the dust particles (<2.5 µm) at downwind sites may be a factor.

  10. Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.

    PubMed

    Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta

    2018-02-24

    Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.

  11. Antidepressant, psychostimulant, and nootropic effects of major and trace element composition.

    PubMed

    Afanasieva, O G; Suslov, N I; Shilova, I V

    2013-06-01

    The antidepressant, psychostimulant, and nootropic effects of a composition of major and trace elements including KCl, RbNO3, magnesium sulfate, and zinc sulfate were studied on the models of behavioural despair (Porsolt test) and conditioned passive avoidance test. The preparation was found to shorten the immobilization time in the Porsolt test and promote retention of the conditioned passive avoidance. The most pronounced psychostimulant effect of the substance was observed at a dose of 4.68 mg/kg and the most pronounced antidepressant effect was found at a dose of 18.72 mg/kg. Maximum nootropic activity of the preparation was found at a dose of 93.6 mg/kg.

  12. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients.

    PubMed

    Fessler, Theresa A

    2013-12-01

    Parenteral nutrition (PN) is a life-sustaining therapy for hundreds of thousands of people who have severe impairment of gastrointestinal function. Trace elements are a small but very important part of PN that can be overlooked during busy practice. Serious complications can result from trace element deficiencies and toxicities, and this is especially problematic during times of product shortages. Practical information on parenteral trace element use can be gleaned from case reports, some retrospective studies, and very few randomized controlled trials. A general knowledge of trace element metabolism and excretion, deficiency and toxicity symptoms, products, optimal dosages, and strategies for supplementation, restriction, and monitoring will equip practitioners to provide optimal care for their patients who depend on PN.

  13. Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur D'Alene, Idaho, USA. Part I: Surface sediments

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Cook, Robert B.

    1993-01-01

    During the summer of 1989 surface sediment samples were collected in Lake Coeur d'Alene, the Coeur d'Alene River and the St Joe River, Idaho, at a density of approximately one sample per square kilometre. Additional samples were collected from the banks of the South Fork of the Coeur d'Alene and the Coeur d'Alene Rivers in 1991. All the samples were collected to determine trace element concentrations, partitioning and distribution patterns, and to relate them to mining, mining related and discharge operations that have occurred in the Coeur d'Alene district since the 1880s, some of which are ongoing.Most of the surface sediments in Lake Coeur d'Alene north of Conkling Point and Carey Bay are substantially enriched in Ag, As, Cu, Cd, Hg, Pb, Sb and Zn relative to unaffected sediments in the southern portion of the lake near the St Joe River. All the trace element enriched sediments are extremely fine grained (mean grain sizes « 63 μm). Most of the enriched trace elements, based on both the chemical analyses of separated heavy and light mineral fractions and a two step sequential extraction procedure, are associated with an operationally defined Fe oxide phase; much smaller percentages are associated either with operationally defined organics/sulphides or refractory phases.The presence, concentration and distribution of the Fe oxides and heavy minerals indicates that a substantial portion of the enriched trace elements are probably coming from the Coeur d'Alene River, which is serving as a point source. Within the lake, this relatively simple point source pattern is complicated by a combination of (1) the formation of trace element rich authigenic Fe oxides that appear to have reprecipitated from material solubilized from anoxic bed sediments and (2) physical remobilization by currents and wind driven waves. The processes that have caused the trace element enrichment in the surface sediments of Lake Coeur d'Alene are likely to continue for the foreseeable future.

  14. Trace elements in patients on continuous renal replacement therapy.

    PubMed

    Broman, M; Bryland, A; Carlsson, O

    2017-07-01

    Intensive care patients with acute kidney injury (AKI), treated with continuous renal replacement therapy (CRRT) are at great risk for disturbances in plasma levels of trace elements due to the underlying illness, AKI, and dialysis. This study was performed to increase our knowledge regarding eight different trace elements during CRRT. Thirty one stable patients with AKI, treated with CRRT, were included in the study. Blood, plasma and effluent samples were taken at the start of the study and 36 ± 12 h later. A group of 48 healthy volunteers were included as controls and exposed to one fasting blood sample. Samples were analysed for trace elements (Cr, Cu, Mn, Co, Zn, Rb, Mo, Se) and standard blood chemistry. Blood and plasma levels of selenium and rubidium were significantly reduced while the levels of chromium, cobalt, and molybdenum were significantly increased in the study group vs. healthy volunteers. There was an uptake of chromium, manganese, and zinc. Molybdenum mass balance was around zero. For selenium, copper, and rubidium there were a marked loss. The low levels of selenium and rubidium in blood and plasma from CRRT patients, together with the loss via CRRT effluent, raises the possibility of the need for selenium supplementation in this group of patients, despite the unchanged levels during the short study period. Further investigations on the effect of additional administration of trace elements to CRRT patients would be of interest. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey.

    PubMed

    Sanal, Hasan; Güler, Zehra; Park, Young W

    2011-01-01

    The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.

  16. Assessment of health risk related to the ingestion of trace metals through fish consumption in Todos os Santos Bay.

    PubMed

    de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, Willian Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso

    2017-05-01

    This study was carried out to evaluate the concentration of trace elements (As, Cd, Cu, Pb, and Zn) in the muscle of carnivorous fish species from three different areas of Todos os Santos Bay (BTS), Bahia State, Brazil. Trace elements were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES), and consumption rates advisory for minimizing chronic systemic effects in children and adults were estimated. As concentrations in fish samples from Jiribatuba were higher than legal limits set by FAO, and Cd concentrations in fish from Iguape Bay were high in comparison with FAO and EC. This study provides information about the fish consumption limits, considering the elements concentrations observed in the analyses, in particular As and Cd, necessary for minimizing potential health risks.

  17. Relative trace-element concern indexes for eastern Kentucky coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S.L.

    Coal trace elements that could affect environmental quality were studied in 372 samples (collected and analyzed by the Kentucky Geological Survey and the United States Geological Survey) from 36 coal beds in eastern Kentucky. Relative trace-element concern indexes are defined as the weighted sum of standarized (substract mean; divide by standard deviation) concentrations. Index R is calculated from uranium and thorium, index 1 from elements of minor concern (antimony, barium, bromine, chloride, cobalt, lithium, manganese, sodium, and strontium), index 2 from elements of moderate concern (chromium, copper, fluorine, nickel, vanadium, and zinc), and index 4 from elements of greatest concernmore » (arsenic, boron, cadmium, lead, mercury, molybdenum, and selenium). Numericals indicate weights, except that index R is weighted by 1, and index 124 is the unweighted sum of indexes 1, 2, and 4. Contour mapping indexes is valid because all indexes have nonnugget effect variograms. Index 124 is low west of Lee and Bell counties, and in Pike County. Index 124 is high in the area bounded by Boyd, Menifee, Knott, and Martin counties and in Owsley, Clay, and Leslie counties. Coal from some areas of eastern Kentucky is less likely to cause environmental problems than that from other areas. Positive correlations of all indexes with the centered log ratios of ash, and negative correlations with centered log ratios of carbon, hydrogen, nitrogen, oxygen, and sulfur indicate that trace elements of concern are predominantly associated with ash. Beneficiation probably would reduce indexes significantly.« less

  18. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race.

    PubMed

    Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija

    2017-05-01

    The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Trace elemental correlation study in malignant and normal breast tissue by PIXE technique

    NASA Astrophysics Data System (ADS)

    Raju, G. J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G. A. V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P. V. B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka

    2006-06-01

    Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors.

  20. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Betha, Raghu; Tan, Li Yun; Balasubramanian, Rajasekhar

    2016-01-01

    Smoke-haze episodes, caused by uncontrolled peat and forest fires, occur almost every year in the South-East Asian region with increased concentrations of PM2.5 (airborne particulate matter (PM) with diameter ≤ 2.5 μm). Particulate-bound trace elements (TrElems), especially carcinogenic and toxic elements, were measured during smoke haze as well as non-haze periods in 2014 as they are considered to be indicators of potential health effects. The bioaccessibilities of 13 TrElems were investigated using two types of simulated lung fluids (SLFs), Gamble's solution and artificial lysosomal fluid (ALF), instead of the commonly used leaching agent (water). The dissolution kinetics was also examined for these TrElems. Many TrElems showed higher solubility in SLFs, and were more soluble in ALF compared to the Gamble's solution. Cu, Mn and Cd were observed to be the most soluble trace elements in ALF, while in Gamble's solution the most soluble trace elements were Cu, Mn and Zn. The dissolution rates were highly variable among the elements. Health risk assessment was conducted based on the measured concentrations of TrElems and their corresponding toxicities for three possible scenarios involving interactions between carcinogenic and toxic TrElems and SLFs, using the United States Environmental Protection Agency (USEPA) human health risk assessment model. The cumulative cancer risks exceeded the acceptable level (1 in a million i.e. 1 × 10-6). However, the estimation of health quotient (HQ) indicated no significant chronic toxic health effects. The risk assessment results revealed that the assessment of bioaccessibility of particulate-bound TrElems using water as the leaching agent may underestimate the health risk.

  1. Potential sources of analytical bias and error in selected trace element data-quality analyses

    USGS Publications Warehouse

    Paul, Angela P.; Garbarino, John R.; Olsen, Lisa D.; Rosen, Michael R.; Mebane, Christopher A.; Struzeski, Tedmund M.

    2016-09-28

    Potential sources of analytical bias and error associated with laboratory analyses for selected trace elements where concentrations were greater in filtered samples than in paired unfiltered samples were evaluated by U.S. Geological Survey (USGS) Water Quality Specialists in collaboration with the USGS National Water Quality Laboratory (NWQL) and the Branch of Quality Systems (BQS).Causes for trace-element concentrations in filtered samples to exceed those in associated unfiltered samples have been attributed to variability in analytical measurements, analytical bias, sample contamination either in the field or laboratory, and (or) sample-matrix chemistry. These issues have not only been attributed to data generated by the USGS NWQL but have been observed in data generated by other laboratories. This study continues the evaluation of potential analytical bias and error resulting from matrix chemistry and instrument variability by evaluating the performance of seven selected trace elements in paired filtered and unfiltered surface-water and groundwater samples collected from 23 sampling sites of varying chemistries from six States, matrix spike recoveries, and standard reference materials.Filtered and unfiltered samples have been routinely analyzed on separate inductively coupled plasma-mass spectrometry instruments. Unfiltered samples are treated with hydrochloric acid (HCl) during an in-bottle digestion procedure; filtered samples are not routinely treated with HCl as part of the laboratory analytical procedure. To evaluate the influence of HCl on different sample matrices, an aliquot of the filtered samples was treated with HCl. The addition of HCl did little to differentiate the analytical results between filtered samples treated with HCl from those samples left untreated; however, there was a small, but noticeable, decrease in the number of instances where a particular trace-element concentration was greater in a filtered sample than in the associated unfiltered sample for all trace elements except selenium. Accounting for the small dilution effect (2 percent) from the addition of HCl, as required for the in-bottle digestion procedure for unfiltered samples, may be one step toward decreasing the number of instances where trace-element concentrations are greater in filtered samples than in paired unfiltered samples.The laboratory analyses of arsenic, cadmium, lead, and zinc did not appear to be influenced by instrument biases. These trace elements showed similar results on both instruments used to analyze filtered and unfiltered samples. The results for aluminum and molybdenum tended to be higher on the instrument designated to analyze unfiltered samples; the results for selenium tended to be lower. The matrices used to prepare calibration standards were different for the two instruments. The instrument designated for the analysis of unfiltered samples was calibrated using standards prepared in a nitric:hydrochloric acid (HNO3:HCl) matrix. The instrument designated for the analysis of filtered samples was calibrated using standards prepared in a matrix acidified only with HNO3. Matrix chemistry may have influenced the responses of aluminum, molybdenum, and selenium on the two instruments. The best analytical practice is to calibrate instruments using calibration standards prepared in matrices that reasonably match those of the samples being analyzed.Filtered and unfiltered samples were spiked over a range of trace-element concentrations from less than 1 to 58 times ambient concentrations. The greater the magnitude of the trace-element spike concentration relative to the ambient concentration, the greater the likelihood spike recoveries will be within data control guidelines (80–120 percent). Greater variability in spike recoveries occurred when trace elements were spiked at concentrations less than 10 times the ambient concentration. Spike recoveries that were considerably lower than 90 percent often were associated with spiked concentrations substantially lower than what was present in the ambient sample. Because the main purpose of spiking natural water samples with known quantities of a particular analyte is to assess possible matrix effects on analytical results, the results of this study stress the importance of spiking samples at concentrations that are reasonably close to what is expected but sufficiently high to exceed analytical variability. Generally, differences in spike recovery results between paired filtered and unfiltered samples were minimal when samples were analyzed on the same instrument.Analytical results for trace-element concentrations in ambient filtered and unfiltered samples greater than 10 and 40 μg/L, respectively, were within the data-quality objective for precision of ±25 percent. Ambient trace-element concentrations in filtered samples greater than the long-term method detection limits but less than 10 μg/L failed to meet the data-quality objective for precision for at least one trace element in about 54 percent of the samples. Similarly, trace-element concentrations in unfiltered samples greater than the long-term method detection limits but less than 40 μg/L failed to meet this data-quality objective for at least one trace-element analysis in about 58 percent of the samples. Although, aluminum and zinc were particularly problematic, limited re-analyses of filtered and unfiltered samples appeared to improve otherwise failed analytical precision.The evaluation of analytical bias using standard reference materials indicate a slight low bias for results for arsenic, cadmium, selenium, and zinc. Aluminum and molybdenum show signs of high bias. There was no observed bias, as determined using the standard reference materials, during the analysis of lead.

  2. Biological application of laser induced breakdown spectroscopy technique for determination of trace elements in hair.

    PubMed

    Emara, Elshaimaa M; Imam, Hisham; Hassan, Mouyed A; Elnaby, Salah H

    2013-12-15

    Analysis of trace elements in mammalian hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during growth. Using LIBS technique, Na, K, Ca, Mg, Si, Fe, Pb and Zn were detected in a single strand of horse hair. The results obtained through LIBS technique on hair samples were compared with the traditional technique (AAS) on digested acidified solution of the same samples. The effects of the experimental parameters on the emission lines were studied and the local thermodynamic equilibrium (LTE) in produced plasma was investigated. The transient plasma condition was verified at specific time region (1500-2000 ns) in the plasma evolution corresponding to its dynamic expanding characteristic. The relative mass concentrations of Fe and Zn were calculated by setting the concentration of C as the calibration. The information obtained from the trace elements' spectra of horse hair in this study substantiates the potential of hair as a biomarker. © 2013 Elsevier B.V. All rights reserved.

  3. Adsorption of trace elements from poultry litter by montmorillonite clay.

    PubMed

    Subramanian, Bhaskaran; Gupta, Gian

    2006-01-16

    Poultry litter (PL) is used as fertilizer on agricultural lands because of its high nutrient content. However, the litter also contains trace elements such as As, Cd, Cu, Pb, and Zn. On land application of PL, these trace elements may be absorbed by crops, leach into groundwater, or enter the aquatic system as run-off. The objective of this research was to study the effect of the addition of montmorillonite clay-mineral (CM) in reducing the release of trace elements from PL. Cd, Cu, and Zn showed significant decreases of 29, 34, and 22%, respectively, in PL aqueous leachate (compared with the control-PL without CM) on mixing with 0.05 g CM but no change in As, Co, and Cr concentrations was observed. Lead showed a significant increase in PL aqueous leachate on mixing with 0.2 g CM but Pb concentration was two orders of magnitude less than in CM aqueous leachate alone. On washing, the settled precipitate (PL+CM) in the centrifuge tubes with water (desorption study) most of the adsorbed metals (Cd 85%, Cu 61%, and Zn 100%) were released. The results of this study show that the addition of CM resulted in significant adsorption of Cd and Cu from PL.

  4. Laser-ablation ICP-MS as a tool for whole rock trace element analyses on fused powders

    NASA Astrophysics Data System (ADS)

    Girard, G.; Rooney, T. O.

    2013-12-01

    Here we present an accurate and precise technique for routine trace element analysis of geologic materials by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We focus on rock powders previously prepared for X-ray fluorescence by fusion in a Li2B4O7 flux, and subsequently quenched in a Pt mold to form a glass disk. Our method allows for the analysis up to 30 trace elements by LA-ICP-MS using a Photon-Machines Analyte G2 193 nm excimer laser coupled to a Thermo-Fisher Scientific ICAP Q quadrupole ICP-MS. Analyses are run as scans on the surface of the disks. Laser ablation conditions for which trace element fractionation effects are minimal have been empirically determined to be ~ 4 J m-2 fluence, at 10 Hz , and 10 μm s-1 scan speed, using a 110 μm laser beam size. Ablated material is carried into the ICP-MS by a He carrier at a rate of 0.75 L min-1. Following pre-ablation to remove surface particles, samples are ablated for 200 s, of which 140 s are used for data acquisition. At the end of each scan, a gas blank is collected for 30 s. Dwell times for each element vary between 15 and 60 μs, depending on abundance and instrument sensitivity, allowing 120 readings of each element during the data acquisition time window. To correct for variations in the total volume of material extracted by the laser, three internal standards are used, Ca, Fe and Zr. These elements are routinely analyzed by X-ray fluorescence by the Geoanalytical laboratory at Michigan State University with precision and accuracy of <5%. The availability of several internal standards allows for better correction of possible persisting laser ablation fractionation effects; for a particular trace element, we correct using the internal standard that best reproduces its ablation behavior. Our calibration is based on a combination of fused powders of US Geological Survey and Geological Survey of Japan rock standards, NIST SRM 612 glass, and US Geological Survey natural and synthetic basalt glasses. Instrumental drift is monitored during each run using two fused standards analyzed multiple times as unknowns. We routinely achieve an external precision of <5% on multiple replicates of standards run as unknowns, which are also within <5% of certified values. Elements analyzed include most first row transition metals, large ion lithophile elements, high field strength elements, lanthanide and actinide rare earth elements.

  5. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    NASA Astrophysics Data System (ADS)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  6. Stanford-USGS shrimp-RG ion microprobe: A new approach to determining the distribution of trace elements in coal

    USGS Publications Warehouse

    Kolker, A.; Wooden, J.L.; Persing, H.M.; Zielinski, R.A.

    2000-01-01

    The distribution of Cr and other trace metals of environmental interest in a range of widely used U.S. coals was investigated using the Stanford-USGS SHRIMP-RG ion microprobe . Using the oxygen ion source, concentrations of Cr (11 to 176 ppm), V (23 to 248 ppm), Mn (2 to 149 ppm), Ni (2 to 30 ppm), and 13 other elements were determined in illite/smectite, a group of clay minerals commonly present in coal. The results confirm previous indirect or semi-quantitative determinations indicating illite/smectite to be an important host of these metals. Calibration was achieved using doped aluminosilicate-glass synthetic standards and glasses prepared from USGS rock standards. Grains for analysis were identified optically, and confirmed by 1) precursory electron microprobe analysis and wavelength-dispersive compositional mapping, and 2) SHRIMP-RG major element data obtained concurrently with trace element results. Follow-up investigations will focus on the distribution of As and other elements that are more effectively ionized with the cesium primary beam currently being tested.

  7. Patterns of trace element bioaccumulation in jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) in a Mediterranean coastal lagoon from SE Spain.

    PubMed

    Muñoz-Vera, Ana; Peñas Castejón, Jose Matías; García, Gregorio

    2016-09-15

    The effects of an abandoned mining area, exploited for centuries in the mining district of Cartagena-La Union, result in a continuous supply of heavy metals into the Mar Menor coastal lagoon after rain episodes. As a consequence, concentration of trace elements in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, this study assessed the ability of Rhizostoma pulmo to bioaccumulate trace elements. A total of 57 individuals were sampled at eight different sampling stations during the summer of 2012. Although the concentrations of different analyzed elements (Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sn, and Pb) were moderate, bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content, because of their potential environmental and health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Identification of water-quality trends using sediment cores from Dillon Reservoir, Summit County, Colorado

    USGS Publications Warehouse

    Greve, Adrienne I.; Spahr, Norman E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2001-01-01

    Since the construction of Dillon Reservoir, in Summit County, Colorado, in 1963, its drainage area has been the site of rapid urban development and the continued influence of historical mining. In an effort to assess changes in water quality within the drainage area, sediment cores were collected from Dillon Reservoir in 1997. The sediment cores were analyzed for pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and trace elements. Pesticides, PCBs, and PAHs were used to determine the effects of urban development, and trace elements were used to identify mining contributions. Water-quality and streambed-sediment samples, collected at the mouth of three streams that drain into Dillon Reservoir, were analyzed for trace elements. Of the 14 pesticides and 3 PCBs for which the sediment samples were analyzed, only 2 pesticides were detected. Low amounts of dichloro-diphenyldichloroethylene (DDE) and dichloro-diphenyldichloroethane (DDD), metabolites of dichlorodiphenyltrichloroethane (DDT), were found at core depths of 5 centimeters and below 15 centimeters in a core collected near the dam. The longest core, which was collected near the dam, spanned the entire sedimentation history of the reservoir. Concentrations of total combustion PAH and the ratio of fluoranthene to pyrene in the core sample decreased with core depth and increased over time. This relation is likely due to growth in residential and tourist populations in the region. Comparisons between core samples gathered in each arm of the reservoir showed the highest PAH concentrations were found in the Tenmile Creek arm, the only arm that has an urban area on its shores, the town of Frisco. All PAH concentrations, except the pyrene concentration in one segment in the core near the dam and acenaphthylene concentrations in the tops of three cores taken in the reservoir arms, were below Canadian interim freshwater sediment-quality guidelines. Concentrations of arsenic, cadmium, chromium, copper, lead, and zinc in sediment samples from Dillon Reservoir exceeded the Canadian interim freshwater sediment-quality guidelines. Copper, iron, lithium, nickel, scandium, titanium, and vanadium concentrations in sediment samples decreased over time. Other elements, while no trend was evident, displayed concentration spikes in the down-core profiles, indicating loads entering the reservoir may have been larger than they were in 1997. The highest concentrations of copper, lead, manganese, mercury, and zinc were detected during the late 1970's and early 1980's. Elevated concentrations of trace elements in sediment in Dillon Reservoir likely resulted from historical mining in the drainage area. The downward trend identified for copper, iron, lithium, nickel, scandium, titanium, and vanadium may be due in part to restoration efforts in mining-affected areas and a decrease in active mining in the Dillon Reservoir watershed. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission. Although many trace-element core-sediment concentrations exceeded the Canadian probable effect level for freshwater lakes, under current limnological conditions, the high core-sediment concentrations do not adversely affect water quality in Dillon Reservoir. The trace-element concentrations in the reservoir water column meet the standards established by the Colorado Water Quality Control Commission.

  9. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  10. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  11. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Impact of trace element additives on anaerobic digestion of sewage sludge with in-situ carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linville, Jessica L.; Shen, Yanwen; Schoene, Robin P.

    Anaerobic digestion (AD) of sludge at wastewater treatment plants can benefit from addition of essential trace metals such as iron, nickel and cobalt to increase biogas production for utilization in combined heat and power systems, fed into natural gas pipelines or as a vehicle fuel. This study evaluated the impact and benefits of Ni/Co and olivine addition to the digester at mesophilic temperatures. These additions supplement previously reported research in which iron-rich olivine (MgSiO4) was added to sequester CO2 in-situ during batch AD of sludge. Trace element addition has been shown to stimulate and stabilize biogas production and have amore » synergistic effect on the mineral carbonation process. AD with 5% w/v olivine and 1.5 mg/L Ni/Co addition had a 17.3% increase in methane volume, a 6% increase in initial exponential methane production rate and a 56% increase in methane yield (mL CH4/g CODdegraded) compared to the control due to synergistic trace element and olivine addition while maintaining 17.7% CO2 sequestration from olivine addition. Both first-order kinetic modeling and response surface methodology modeling confirmed the combined benefit of the trace elements and olivine addition. These results were significantly higher than previously reported results with olivine addition alone [1].« less

  13. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  14. Closure and ratio correlation analysis of lunar chemical and grain size data

    NASA Technical Reports Server (NTRS)

    Butler, J. C.

    1976-01-01

    Major element and major element plus trace element analyses were selected from the lunar data base for Apollo 11, 12 and 15 basalt and regolith samples. Summary statistics for each of the six data sets were compiled, and the effects of closure on the Pearson product moment correlation coefficient were investigated using the Chayes and Kruskal approximation procedure. In general, there are two types of closure effects evident in these data sets: negative correlations of intermediate size which are solely the result of closure, and correlations of small absolute value which depart significantly from their expected closure correlations which are of intermediate size. It is shown that a positive closure correlation will arise only when the product of the coefficients of variation is very small (less than 0.01 for most data sets) and, in general, trace elements in the lunar data sets exhibit relatively large coefficients of variation.

  15. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  16. [Determination of eight trace elements in the Swertia davidii Franch by flame atomic absorption spectrometry].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Yu, Hon; Cao, Yu-juan; Zhang, Jing-jing; Liu, Qin

    2007-12-01

    The effects of different sample digestives on the determination of Swertia davidii Franch are compared. Eight trace elements in the Swertia davidii Franch were determined by flame atomic absorption spectrometry. The result shows that the RSD and recovery are better if the Swertia davidii Franch was digested with HNO3-HClO4 (5 : 1) mixed acid. The experimental results show that the detection limits were all smaller than 0.097 microg x mL(-1), the RSDs (n=8) all smaller than 2.34%, and the addition standard recovery (ASR) (n=8) was 89.32%-106.65% for all the elements.

  17. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  18. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    USGS Publications Warehouse

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.

  19. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability.

    PubMed

    Zhang, Wanli; Zhang, Lei; Li, Aimin

    2015-11-01

    This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Trace metal analysis by laser ablation-inductively coupled plasmamass spectrometry and x-ray K-edge densitometry of forensic samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Jonna Elizabeth

    This dissertation describes a variety of studies on the determination of trace elements in samples with forensic importance. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to determine the trace element composition of numerous lipstick samples. Lipstick samples were determined to be homogeneous. Most lipstick samples of similar colors were readily distinguishable at a 95% confidence interval based on trace element composition. Numerous strands of a multi-strand speaker cable were analyzed by LA-ICP-MS. The strands in this study are spatially heterogeneous in trace element composition. In actual forensic applications, the possibility of spatial heterogeneity must be considered, especially in casesmore » where only small samples (e.g., copper wire fragments after an explosion) are available. The effects of many unpredictable variables, such as weather, temperature, and human activity, on the retention of gunshot residue (GSR) around projectile wounds were assessed with LAICP- MS. Skin samples around gunshot and stab wounds and larvae feeding in and around the wounds on decomposing pig carcasses were analyzed for elements consistent with GSR (Sb, Pb, Ba, and Cu). These elements were detected at higher levels in skin and larvae samples around the gunshot wounds compared to the stab wounds for an extended period of time throughout decomposition in both a winter and summer study. After decomposition, radiographic images of the pig bones containing possible damage from bullets revealed metallic particles embedded within a number of bones. Metallic particles within the bones were analyzed with x-ray, K-edge densitometry and determined to contain lead, indicating that bullet residue can be retained throughout decomposition and detected within bones containing projectile trauma.« less

  1. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment.

    PubMed

    Kosiorek, Milena; Modrzewska, Beata; Wyszkowski, Mirosław

    2016-10-01

    The aim of the study was to determine the concentrations of selected trace elements in needles and bark of Scots pine (Pinus sylvestris L.), leaves and bark of silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.), as well as in the soil in which the trees grew, depending on their localization and hence the distribution of local pollution sources. The content of trace elements in needles of Scots pine, leaves of silver birch, and Norway maple and in bark of these trees depended on the location, tree species, and analyzed organ. The content of Fe, Mn, and Zn in needles, leaves, and bark of the examined tree species was significantly higher than that of the other elements. The highest average content of Fe and Mn was detected in leaves of Norway maple whereas the highest average content of Zn was found in silver birch leaves. The impact of such locations as the center of Olsztyn or roadside along Road 51 on the content of individual elements tended to be more pronounced than the influence of the other locations. The influence of the sampling sites on the content of trace elements in tree bark was less regular than the analogous effect in needles and leaves. Moreover, the relevant dependences were slightly different for Scots pine than for the other two tree species. The concentrations of heavy metals determined in the soil samples did not exceed the threshold values set in the Regulation of the Minister for the Environment, although the soil along Road 51 and in the center of Olsztyn typically had the highest content of these elements. There were also significant correlations between the content of some trace elements in soil and their accumulation in needles, leaves, and bark of trees.

  2. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  3. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy.

    PubMed

    Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla

    2009-04-01

    The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.

  4. Study on elemental fingerprint of traditional marine Chinese medicine oysters from Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Zheng, Yongjun; Zheng, Kang; Li, Yantuan

    2012-09-01

    In order to investigate the relationship between the trace elements and the characteristics of the oysters, we analyzed the trace elements present in the germplasm of oysters from different producing areas in the Jiaozhou Bay. The element fingerprints were established to reflect the elemental characteristics of the oysters. Concentration patterns of the elements were deciphered by principle component analysis (PCA) and hierarchical cluster analysis (HCA). The six regions were discriminated with accuracy using HCA and PCA based on the concentration of 16 trace elements. The elements were viewed as characteristic elements of the oysters and the fingerprints of these elements could be used to distinguish the quality of the oysters.

  5. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    USGS Publications Warehouse

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  6. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. I. FIFTEEN TRACE ELEMENTS IN NEW YORK, N.Y. (1971-72)

    EPA Science Inventory

    Previous studies have revealed that hair trace element concentrations can reflect exposure in cases of frank poisoning and deficiency. Correlations have been found also in some populations living in regions where metallurgic processes are conducted. This study reports significant...

  7. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  8. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  9. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  10. Effective removal of hazardous trace metals from recovery boiler fly ashes.

    PubMed

    Kinnarinen, Teemu; Golmaei, Mohammad; Jernström, Eeva; Häkkinen, Antti

    2018-02-15

    The objective of this study is to introduce a treatment sequence enabling straightforward and effective recovery of hazardous trace elements from recovery boiler fly ash (RBFA) by a novel method, and to demonstrate the subsequent removal of Cl and K with the existing crystallization technology. The treatment sequence comprises two stages: dissolution of most other RBFA components than the hazardous trace elements in water in Step 1 of the treatment, and crystallization of the process chemicals in Step 2. Solid-liquid separation has an important role in the treatment, due to the need to separate first the small solid residue containing the trace elements, and to separate the valuable crystals, containing Na and S, from the liquid rich in Cl and K. According to the results, nearly complete recovery of cadmium, lead and zinc can be reached even without pH adjustment. Some other metals, such as Mg and Mn, are removed together with the hazardous metals. Regarding the removal of Cl and K from the process, in this non-optimized case the removal efficiency was satisfactory: 60-70% for K when 80% of sodium was recovered, and close to 70% for Cl when 80% of sulfate was recovered. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  12. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  13. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  14. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  15. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).

  16. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm.

    PubMed

    Zhu, LiuCun; Chen, XiJia; Kong, Xiangyin; Cai, Yu-Dong

    2016-11-01

    Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  18. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on molecular mechanisms involved in such processes as inorganic carbon fixation, organic carbon respiration, or nitrogen transformation, they explain how the cycles of trace elements are critically linked to those of major nutrients such as carbon or nitrogen. But we have relatively little understanding of the binding molecules and the enzymes that mediate the biochemical role of trace metals in the marine environment. In this sense, this chapter is more a "preview" than a review of the field of marine bioinorganic chemistry. To exemplify the concepts and methods of this field, we have chosen to focus on one of its most important topics: the potentially limiting role of trace elements in primary marine production. As a result we center our discussion on particular subsets of organisms, biogeochemical cycles, and trace elements. Our chief actors are marine phytoplankton, particularly eukaryotes, while heterotrophic bacteria make only cameo appearances. The biogeochemical cycles that will serve as our plot are those of the elements involved in phytoplankton growth, the major algal nutrients - carbon, nitrogen, phosphorus, and silicon - leaving aside, e.g., the interesting topic of the marine sulfur cycle. Seven trace metals provide the intrigue: manganese, iron, nickel, cobalt, copper, zinc, and cadmium. But several other trace elements such as selenium, vanadium, molybdenum, and tungsten (and, probably, others not yet identified) will assuredly add further twists in future episodes.We begin this chapter by discussing what we know of the concentrations of trace elements in marine microorganisms and of the relevant mechanisms and kinetics of trace-metal uptake. We then review the biochemical role of trace elements in the marine cycles of carbon, nitrogen, phosphorus, and silicon. Using this information, we examine the evidence, emanating from both laboratory cultures and field measurements, relevant to the mechanisms and the extent of control by trace metals of marine biogeochemical cycles. Before concluding with a wistful glimpse of the future of marine bioinorganic chemistry we discuss briefly some paleoceanographic aspects of this new field: how the chemistry of the planet "Earth" - particularly the concentrations of trace elements in the oceans - has evolved since its origin, chiefly as a result of biological processes and how the evolution of life has, in turn, been affected by the availability of essential trace elements.

  19. Trace elements levels in centenarian 'dodgers'.

    PubMed

    Alis, Rafael; Santos-Lozano, Alejandro; Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Fiuza-Luces, Carmen; Garatachea, Nuria; Lucia, Alejandro; Emanuele, Enzo

    2016-05-01

    Trace element bioavailability can play a role in several metabolic and physiological pathways known to be altered during the aging process. We aimed to explore the association of trace elements with increased lifespan by analyzing the circulating levels of seven trace elements (Cr, Cu, Fe, Mn, Mo, Se and Zn) in a cohort of healthy centenarians or 'dodgers' (≥100 years, free of major age-related diseases) in comparison with sex-matched younger elderly controls. Centenarians showed significant lower Cu (783.7 (76.7, 1608.9) vs 962.5 (676.3, 2064.4)μg/mL, P<0.001), but higher Fe (1.3 (0.4, 4.7) vs 1.1 (0.5, 8.4)μg/mL, P=0.003) and Se (85.7 (43.0, 256.7) vs 77.8 (24.3, 143.8)ng/mL, P=0.002) values compared with elderly controls. The logistic regression analysis identified the combination of Cu and Se as significant predictor variables associated with successful aging (P=0.001), while receiver operating characteristic (ROC) analysis confirmed that Cu and Se (either alone or in combination) were independent variables associated with healthy aging. An 'improved' trace element profile (reduced Cu and elevated Se, which are involved in key physiological processes) could play a role in the resistance to disease showed by centenarian 'dodgers', and, therefore, at least partly, be involved in the healthy aging phenotype shown by these subjects. These results should be confirmed in larger cohorts of other geographic/ethnic origin and the potential cause-effect association tested in mechanistic experimental settings. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. PIXE analysis of ancient Chinese Qing dynasty porcelain

    NASA Astrophysics Data System (ADS)

    Cheng, Huansheng; He, Wenquan; Tang, Jiayong; Yang, Fujia; Wang, Jianhua

    1996-09-01

    The major and minor chemical compositions and trace element content of white glaze made in Qing dynasty at kuan kiln have been determined by PIXE. Experimental results show that trace element contents RbSrZr are useful to distinguish the place of production of ancient porcelain. In the porcelain from different kilns situated in a same province, the trace element contents can be different from each other. Determining and comparing the major and minor compositions and trace elemental concentrations in white glaze by PIXE technique, we can distinguish a precious Qing dynasty porcelain made at kuan kiln from a fake.

  1. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Trace elements in streambed sediment and fish livers, 1995-96

    USGS Publications Warehouse

    Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.

    2000-01-01

    In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.

  2. The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez Bisquert, David; Matías Peñas Castejón, José; García Fernández, Gregorio

    2017-03-01

    It is understood that particulate matter in the atmosphere from metallic mining waste has adverse health effects on populations living nearby. Atmospheric deposition is a process connecting the mining wasteswith nearby ecosystems. Unfortunately, very limited information is available about atmospheric deposition surrounding rural metallic mining areas. This article will focus on the deposition from mining areas, combined with its impact on nearby rural built areas and populations. Particle samples were collected between June 2011 and March 2013. They were collected according to Spanish legislation in ten specialised dust collectors. They were located near populations close to a former Mediterranean mining area, plus a control, to assess the impact of mining waste on these villages. This article and its results have been made through an analysis of atmospheric deposition of these trace elements (Mn, Zn, As, Cd and Pb). It also includes an analysis of total dust flux. Within this analysis it has considered the spatial variations of atmospheric deposition flux in these locations. The average annual level of total bulk deposition registered was 42.0 g m-2 per year. This was higher than most of the areas affected by a Mediterranean climate or in semi-arid conditions around the world. Regarding the overall analysis of trace elements, the annual bulk deposition fluxes of total Zn far exceeded the values of other areas. While Mn, Cd and Pb showed similar or lower values, and in part much lower than those described in other Mediterranean mining areas. This study confirmed some spatial variability of dust and trace elements, contained within the atmospheric deposition. From both an environmental and a public health perspective, environmental managers must take into account the cumulative effect of the deposition of trace elements on the soil and air quality around and within the villages surrounding metallic mining areas.

  3. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  4. Turbidite geochemistry and evolution of the Izu-Bonin arc and continents

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Hiscott, R. N.; Vidal, Ph.

    1994-10-01

    The major and trace element and NdPb isotopic composition of Oligocene to Pleistocene volcaniclastic sands and sandstones derived from the Izu Bonin island arc has been determined. Many characteristics of the igneous sources are preserved and record the geochemical evolution of juvenile proto-continental crust in an island arc. After an initial boninitic phase, arc geochemistry has varied primarily as the result of backarc basin formation. The Izu arc source became depleted in incompatible trace elements during backarc basin formation, and re-enriched after spreading stopped in the basin. Renewed rifting during the Pliocene to Recent caused felsic magmatism as a result of easier eruption of differentiates rather than as a result of crustal melting. Four isotopically-distinct source components are recognized. Their combination in the sources of the Izu-Bonin and Mariana arcs initially was similar but diverged after backarc basin formation. The Izu arc turbidites are more similar to Archean than post-Archean sedimentary rocks, indicating that the production of new upper crust at subduction zones has changed little over time. The turbidites are similar in major element composition to average continental crust but are depleted in incompatible trace elements, especially Th and Nb. Consequently, the net effect of adding juvenile arc crust to continents is to reverse the trend of planetary trace element differentiation instead of continuing the process.

  5. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem.

    PubMed

    Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-01-01

    Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (C org ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and C org than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.

  6. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.

  7. Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.

    PubMed

    Guyot, Hugues; Saegerman, Claude; Lebreton, Pascal; Sandersen, Charlotte; Rollin, Frédéric

    2009-01-01

    Selenium (Se), iodine (I), zinc (Zn) and copper (Cu) deficiencies in cattle have been reported in Europe. These deficiencies are often associated with diseases. The aim of the study was to assess trace element status in Belgian cattle herds showing pathologies and to compare them to healthy cattle herds. Eighty-two beef herds with pathologies, 11 healthy beef herds, 65 dairy herds with pathologies and 20 healthy dairy herds were studied during barn period. Blood and/or milk samples were taken in healthy animals. Plasma Zn, Cu, inorganic I (PII) and activity of glutathione peroxidase in erythrocytes (GPX) were assayed. In milk, I concentration was measured. Data about pathologies and nutrition in the herds were collected. According to defined thresholds, it appeared that a large proportion of deficient herds belonged to "sick" group of herds. This conclusion was supported by the mean value of trace elements and by the fact that a majority of individual values of trace elements was below the threshold. Dairy herds had mean values of trace elements higher than beef herds. More concentrates and minerals were used in healthy herds versus "sick" herds. These feed supplements were also used more often in dairy herds, compared to beef herds. Trace elements deficiencies are present in cattle herds in Belgium and are linked to diseases. Nutrition plays a major role in the trace elements status.

  8. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  9. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  10. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. EFFECTS OF RESIDUAL ORGANIC MATTER ON ELEMENTAL ANALYSES BY SPARK SOURCE MASS SPECTROGRAPHY (SSMS)

    EPA Science Inventory

    The report gives results of research to define the effect of organics in SSMS and to evaluate several sample preparation methods for their removal. Samples of known organic content were fabricated by diluting NBS SRM 1633 fly ash (spiked with several trace elements) with a mixtur...

  12. The occurrence and distribution of selected trace elements in the upper Rio Grande and tributaries in Colorado and Northern New Mexico

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.

    2001-01-01

    Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.

  13. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  14. Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia

    NASA Astrophysics Data System (ADS)

    Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe

    2008-02-01

    Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.

  15. Concentrations of mercury and other trace elements in walleye, smallmouth bass, and rainbow trout in Franklin D. Roosevelt Lake and the upper Columbia River, Washington, 1994

    USGS Publications Warehouse

    Munn, M.D.; Cox, S.E.; Dean, C.J.

    1995-01-01

    Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.

  16. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    PubMed

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  17. Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy).

    PubMed

    Frontalini, Fabrizio; Buosi, Carla; Da Pelo, Stefania; Coccioni, Rodolfo; Cherchi, Antonietta; Bucci, Carla

    2009-06-01

    In order to assess the response of benthic foraminifera to trace element pollution, a study of benthic foraminiferal assemblages was carried out into sediment samples collected from the Santa Gilla lagoon (Sardinia, Italy). The lagoon has been contaminated by industrial waste, mainly trace elements, as well as by agricultural and domestic effluent. The analysis of surficial sediment shows enrichment in trace elements, including Cr, Cu, Hg, Ni, Pb and Zn. Biotic and abiotic data, analyzed with multivariate techniques of statistical analysis, reveal a distinct separation of both the highly polluted and less polluted sampling sites. The innermost part of the lagoon, comprising the industrial complex at Macchiareddu, is exposed to a high load of trace elements which are probably enhanced by their accumulation in the finer sediment fraction. This area reveals lower diversity and higher percentages of abnormalities when compared to the outermost part of the lagoon.

  18. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  19. Trace elements in canvasbacks (Aythya valisineria) wintering in Louisiana, USA, 1987-1988

    USGS Publications Warehouse

    Custer, Thomas W.; Hohman, William L.

    1994-01-01

    We determined trace element concentrations in livers of canvasbacks (Aythya valisineria) collected at Catahoula Lake and the Mississippi River Delta, Louisiana during, the winter of 1987–1988. Forty percent of canvasbacks wintering at Lake Catahoula had elevated concentrations of lead (>6·7 μg g−1 dry weight) in the liver; 33% had concentrations consistent with lead intoxication (>26·7 μg g−1). Based on the number of canvasbacks that winter at Lake Catahoula and the frequency of lead exposure there, more than 5% of the continental population of canvasbacks may be exposed to lead at Lake Catahoula alone. Lead concentrations in livers differed among months and were higher in males than females, but were not different in adults and immatures. Concentrations of selenium and mercury in livers of females differed among months but not by age or location. Cadmium concentrations in livers differed by age, location and month of collection, but not by sex. Frequencies and concentrations of trace elements not commonly associated with adverse effects on avian species (aluminum, arsenic, copper, iron, magnesium, manganese, nickel, silver, vanadium and zinc) are presented. Except for the elevated concentrations of lead at Catahoula Lake, all trace elements were at background concentrations.

  20. Trace elements in cocoa solids and chocolate: an ICPMS study.

    PubMed

    Yanus, Rinat Levi; Sela, Hagit; Borojovich, Eitan J C; Zakon, Yevgeni; Saphier, Magal; Nikolski, Andrey; Gutflais, Efi; Lorber, Avraham; Karpas, Zeev

    2014-02-01

    The concentrations of eight trace elements: lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), cobalt (Co), arsenic (As), bismuth (Bi) and molybdenum (Mo), in chocolate, cocoa beans and products were studied by ICPMS. The study examined chocolate samples from different brands and countries with different concentrations of cocoa solids from each brand. The samples were digested and filtered to remove lipids and indium was used as an internal standard to correct matrix effects. A linear correlation was found between the level of several trace elements in chocolate and the cocoa solids content. Significant levels of Bi and As were found in the cocoa bean shells but not in the cocoa bean and chocolate. This may be attributed to environmental contamination. The presence of other elements was attributed to the manufacturing processes of cocoa and chocolate products. Children, who are big consumers of chocolates, may be at risk of exceeding the daily limit of lead; whereas one 10 g cube of dark chocolate may contain as much as 20% of the daily lead oral limit. Moreover chocolate may not be the only source of lead in their nutrition. For adults there is almost no risk of exceeding daily limits for trace metals ingestion because their digestive absorption of metals is very poor. © 2013 Published by Elsevier B.V.

  1. Rates of As and trace-element mobilization caused by Fe reduction in mixed BTEX–ethanol experimental plumes

    USGS Publications Warehouse

    Ziegler, Brady A.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2015-01-01

    Biodegradation of organic matter, including petroleum-based fuels and biofuels, can create undesired secondary water-quality effects. Trace elements, especially arsenic (As), have strong adsorption affinities for Fe(III) (oxyhydr)-oxides and can be released to groundwater during Fe-reducing biodegradation. We investigated the mobilization of naturally occurring As, cobalt (Co), chromium (Cr), and nickel (Ni) from wetland sediments caused by the introduction of benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol mixtures under iron- and nitrate-reducing conditions, using in situ push–pull tests. When BTEX alone was added, results showed simultaneous onset and similar rates of Fe reduction and As mobilization. In the presence of ethanol, the maximum rates of As release and Fe reduction were higher, the time to onset of reaction was decreased, and the rates occurred in multiple stages that reflected additional processes. The concentration of As increased from <1 μg/L to a maximum of 99 μg/L, exceeding the 10 μg/L limit for drinking water. Mobilization of Co, Cr, and Ni was observed in association with ethanol biodegradation but not with BTEX. These results demonstrate the potential for trace-element contamination of drinking water during biodegradation and highlight the importance of monitoring trace elements at natural and enhanced attenuation sites.

  2. Trace element carriers in combined sewer during dry and wet weather: an electron microscope investigation.

    PubMed

    El Samrani, A G; Lartiges, B S; Ghanbaja, J; Yvon, J; Kohler, A

    2004-04-01

    The nature of trace element carriers contained in sewage and combined sewer overflow (CSO) was investigated by TEM-EDX-Electron diffraction and SEM-EDX. During dry weather, chalcophile elements were found to accumulate in sewer sediments as early diagenetic sulfide phases. The sulfurization of some metal alloys was also evidenced. Other heavy metal carriers detected in sewage include metal alloys, some iron oxihydroxide phases and neoformed phosphate minerals such as anapaite. During rain events, the detailed characterization of individual mineral species allowed to differentiate the contributions from various specific sources. Metal plating particles, barite from automobile brake, or rare earth oxides from catalytic exhaust pipes, originate from road runoff, whereas PbSn alloys and lead carbonates are attributed to zinc-works from roofs and paint from building siding. Soil contribution can be traced by the presence of clay minerals, iron oxihydroxides, zircons and rare earth phosphates. However, the most abundant heavy metal carriers in CSO samples were the sulfide particles eroded from sewer sediments. The evolution of relative abundances of trace element carriers during a single storm event, suggests that the pollution due to the "first flush" effect principally results from the sewer stock of sulfides and previously deposited metal alloys, rather than from urban surface runoff.

  3. Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France.

    PubMed

    Taneez, Mehwish; Marmier, Nicolas; Hurel, Charlotte

    2016-05-01

    Management of marine dredged sediments polluted with trace elements is prime issue in the French Mediterranean coast. The polluted sediments possess ecological threats to surrounding environment on land disposal. Therefore, stabilization of contaminants in multi-contaminated marine dredged sediment is a promising technique. Present study aimed to assess the effect of gypsum neutralized bauxaline(®) (bauxite residue) to decrease the availability of pollutants and inherent toxicity of marine dredged sediment. Bauxaline(®), (alumia industry waste) contains high content of iron oxide but its high alkalinity makes it not suitable for the stabilization of all trace elements from multi-contaminated dredged sediments. In this study, neutralized bauxaline(®) was prepared by mixing bauxaline(®) with 5% of plaster. Experiments were carried out for 3 months to study the effect of 5% and 20% amendment rate on the availability of Cu, Cd, Zn, As, Mo, and Cr. Trace elements concentration, pH, EC and dissolved organic carbon were measured in all leachates. Toxicity of leachates was assessed against marine rotifers Brachionus plicatilis. The Results showed that both treatments have immobilization capacity against different pollutants. Significant stabilization of contaminants (Cu, Cd, Zn) was achieved with 20% application rate whereas As, Mo, and Cr were slightly stabilized. Toxicity results revealed that leachates collected from treated sediment were less toxic than the control sediment. These results suggest that application of neutralized bauxaline(®) to dredged sediment is an effective approach to manage large quantities of dredged sediments as well as bauxite residue itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period.

    PubMed

    Omur, A; Kirbas, A; Aksu, E; Kandemir, F; Dorman, E; Kaynar, O; Ucar, O

    2016-12-01

    The objective of this study was to determine the effects of some antioxidant vitamins and trace elements on some metabolic and postpartum reproductive profiles in dairy cows during transition period. In the study, altogether 20 clinically healthy Brown Swiss dairy cows (aged 4-5 years-old) under the same management and feeding conditions in periparturient period were used. The animals were divided into two equal groups: control (C) and treatment (T) group (n=10 for each group). Vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) were administered intramuscularly into the cows of the T group, while isotonic saline, as placebo, was injected subcutaneously into those in the C group. Blood samples were collected by venipuncture of the jugular vein at the beginning of transition period, parturition and 3-weeks after the parturition. The metabolic and reproductive parameters were determined. In the C group, statistically significant changes were observed in the levels of non-esterified fatty acids (NEFA), high density lipoprotein (HDL), low density lipoprotein (LDL), total protein (TP) (p<0.05), glucose (GLU), progesterone (P4) (p<0.01), total cholesterol (T.CHOL), triglycerides (TG), UREA, creatinine (CRSC) and total bilirubin (TBIL) (p<0.001). In the T group, significant changes in the levels of NEFA, TBIL (p<0.05), T.CHOL, HDL, LDL (p<0.01), TG, GLU, P4, TAC and TOC (p<0.001) were observed. It was concluded that the administration of various vitamins and trace elements could be effective to improve some metabolic and reproductive profiles in dairy cows during the transition period.

  5. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility.

    PubMed

    Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-10-01

    The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.

  6. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  7. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  8. Phytoaccumulation of trace elements by wetland plants. 2: Water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.L.; Zayed, A.M.; Qian, J.H.

    Wetland plants are being used successfully for the phytoremediation of trace elements in natural and constructed wetlands. This study demonstrates the potential of water hyacinth (Eichhornia crassipes), an aquatic floating plant, for the phytoremediation of six trace elements. The ability of water hyacinth to take up and translocate six trace elements--As(V), Cd(II), Cr(VI), Cu(II), Ni(II), and Se(VI)--was studied under controlled conditions. Water hyacinth accumulated Cd and Cr best, Se and Cu at moderate levels, and was a poor accumulator of As and Ni. The highest levels of Cd found in shoots and roots were 371 and 6103 mg kg[sup [minus]1]more » dry wt., respectively, and those of Cr were 119 and 32951 mg kg[sup [minus]1] dry wt, respectively. Cadmium, Cr, Cu, Ni, and As were more highly accumulated in roots than in shoots. In contrast, Se was accumulated more in shoots than in roots at most external concentrations. Water hyacinth had high trace element bioconcentration factors when supplied with low external concentrations of all six elements, particularly Cd, Cr, and Cu. Therefore, water hyacinth will be very efficient at phytoextracting trace elements from wastewater containing low concentrations of these elements. The authors conclude that water hyacinth is a promising candidate for phytoremediation of wastewater polluted with Cd, Cr, Cu, and Se.« less

  9. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  10. Plants as indicators of urban air pollution (ozone and trace elements) in Pisa, Italy.

    PubMed

    Nali, Cristina; Crocicchi, Lara; Lorenzini, Giacomo

    2004-07-01

    A biennial integrated survey, based on the use of vascular plants for the bioindication of the effects of tropospheric ozone, was performed in the area of Pisa (Tuscany, Central Italy). It also investigated the distribution of selected trace elements in plants and the data were compared with those obtained from the use of passive samplers, automatic analysers of ozone and lichen biodiversity. Photochemically produced ozone proved to be present during the warm season, with maximum hourly means surpassing 100 ppb: the use of supersensitive tobacco Bel-W3 confirmed the value of detailed, cost-effective, monitoring surveys. Trials with clover clones demonstrate that sensitive plants undergo severe biomass reduction in the current ozone regime. The mean NC-S (clover clone sensitive to ozone):NC-R (resistant) biomass ratio ranged from 0.7 (in 1999) to 0.5 (in 2000). The economic impact of these reductions deserves attention. The data obtained using passive ozone samplers exceeded those obtained using an automatic analyser. The mapping of epiphytic lichen biodiversity was not related to the geographical ozone distribution as can be seen from the tobacco's response. Lettuce plants grown under standardized conditions were used positively as bioaccumulators of trace elements: Pb was abundantly recovered, but a large portion of this element was removed by washing.

  11. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  12. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  13. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    NASA Astrophysics Data System (ADS)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  14. High cell density media for Escherichia coli are generally designed for aerobic cultivations – consequences for large-scale bioprocesses and shake flask cultures

    PubMed Central

    Soini, Jaakko; Ukkonen, Kaisa; Neubauer, Peter

    2008-01-01

    Background For the cultivation of Escherichia coli in bioreactors trace element solutions are generally designed for optimal growth under aerobic conditions. They do normally not contain selenium and nickel. Molybdenum is only contained in few of them. These elements are part of the formate hydrogen lyase (FHL) complex which is induced under anaerobic conditions. As it is generally known that oxygen limitation appears in shake flask cultures and locally in large-scale bioreactors, function of the FHL complex may influence the process behaviour. Formate has been described to accumulate in large-scale cultures and may have toxic effects on E. coli. Although the anaerobic metabolism of E. coli is well studied, reference data which estimate the impact of the FHL complex on bioprocesses of E. coli with oxygen limitation have so far not been published, but are important for a better process understanding. Results Two sets of fed-batch cultures with conditions triggering oxygen limitation and formate accumulation were performed. Permanent oxygen limitation which is typical for shake flask cultures was caused in a bioreactor by reduction of the agitation rate. Transient oxygen limitation, which has been described to eventually occur in the feed-zone of large-scale bioreactors, was mimicked in a two-compartment scale-down bioreactor consisting of a stirred tank reactor and a plug flow reactor (PFR) with continuous glucose feeding into the PFR. In both models formate accumulated up to about 20 mM in the culture medium without addition of selenium, molybdenum and nickel. By addition of these trace elements the formate accumulation decreased below the level observed in well-mixed laboratory-scale cultures. Interestingly, addition of the extra trace elements caused accumulation of large amounts of lactate and reduced biomass yield in the simulator with permanent oxygen limitation, but not in the scale-down two-compartment bioreactor. Conclusion The accumulation of formate in oxygen limited cultivations of E. coli can be fully prevented by addition of the trace elements selenium, nickel and molybdenum, necessary for the function of FHL complex. For large-scale cultivations, if glucose gradients are likely, the results from the two-compartment scale-down bioreactor indicate that the addition of the extra trace elements is beneficial. No negative effects on the biomass yield or on any other bioprocess parameters could be observed in cultures with the extra trace elements if the cells were repeatedly exposed to transient oxygen limitation. PMID:18687130

  15. Distribution of trace levels of therapeutic gallium in bone as mapped by synchrotron x-ray microscopy.

    PubMed Central

    Bockman, R S; Repo, M A; Warrell, R P; Pounds, J G; Schidlovsky, G; Gordon, B M; Jones, K W

    1990-01-01

    Gallium nitrate, a drug that inhibits calcium release from bone, has been proven a safe and effective treatment for the accelerated bone resorption associated with cancer. Though bone is a target organ for gallium, the kinetics, sites, and effects of gallium accumulation in bone are not known. We have used synchrotron x-ray microscopy to map the distribution of trace levels of gallium in bone. After short-term in vivo administration of gallium nitrate to rats, trace (nanogram) amounts of gallium preferentially localized to the metabolically active regions in the metaphysis as well as the endosteal and periosteal surfaces of diaphyseal bone, regions where new bone formation and modeling were occurring. The amounts measured were well below the levels known to be cytotoxic. Iron and zinc, trace elements normally found in bone, were decreased in amount after in vivo administration of gallium. These studies represent a first step toward understanding the mechanism(s) of action of gallium in bone by suggesting the possible cellular, structural, and elemental "targets" of gallium. Images PMID:2349224

  16. Modified batch anaerobic digestion assay for testing efficiencies of trace metal additives to enhance methane production of energy crops.

    PubMed

    Brulé, Mathieu; Bolduan, Rainer; Seidelt, Stephan; Schlagermann, Pascal; Bott, Armin

    2013-01-01

    Batch biochemical methane potential (BMP) assays to evaluate the methane yield of biogas substrates such as energy crops are usually carried out with undiluted inoculum. A BMP assay was performed on two energy crops (green cuttings and grass silage). Anaerobic digestion was performed both with and without supplementation of three commercial additives containing trace metals in liquid, solid or adsorbed form (on clay particles). In order to reveal positive effects of trace metal supplementation on the methane yield, besides undiluted inoculum, 3-fold and 10-fold dilutions of the inoculum were applied for substrate digestion. Diluted inoculum variants were supplemented with both mineral nutrients and pH-buffering substances to prevent a collapse of the digestion process. As expected, commercial additives had no effect on the digestion process performed with undiluted inoculum, while significant increases of methane production through trace element supplementation could be observed on the diluted variants. The effect of inoculum dilution may be twofold: (1) decrease in trace metal supplementation from the inoculum and (2) reduction in the initial number of bacterial cells. Bacteria require higher growth rates for substrate degradation and hence have higher trace element consumption. According to common knowledge of the biogas process, periods with volatile fatty acids accumulation and decreased pH may have occurred in the course ofanaerobic digestion. These effects may have led to inhibition, not only ofmethanogenes and acetogenes involved in the final phases of methane production, but also offibre-degrading bacterial strains involved in polymer hydrolysis. Further research is required to confirm this hypothesis.

  17. Co-occurrence profiles of trace elements in potable water systems: a case study.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N

    2014-11-01

    Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.

  18. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  19. Chemical studies of H chondrites. II - Weathering effects in the Victoria Land, Antarctic population and comparison of two Antarctic populations with non-Antarctic falls

    NASA Astrophysics Data System (ADS)

    Dennison, J. E.; Lipschutz, M. E.

    1987-03-01

    The authors report RNAA data for 14 siderophile, lithophile and chalcophile volatile/mobile trace elements in interior portions of 45 different H4-6 chondrites (49 samples) from Victoria Land, Antarctica and 5 H5 chondrites from the Yamato Mts., Antarctica. Relative to H5 chondrites of weathering types A and B, all elements are depleted (10 at statistically significant levels) in extensively weathered (types B/C and C) samples. Chondrites of weathering types A and B seem compositionally uncompromised and as useful as contemporary falls for trace-element studies. When data distributions for these 14 trace elements in non-Antarctic H chondrite falls and unpaired samples from Victoria Land and from the Yamato Mts. (Queen Maud Land) are compared statistically, numerous significant differences are apparent. These and other differences give ample cause to doubt that the various sample populations derive from the same parent population. The observed differences do no reflect weathering, chance or other trivial causes: a preterrestrial source must be responsible.

  20. Assessing pollution in a Mediterranean lagoon using acid volatile sulfides and estimations of simultaneously extracted metals.

    PubMed

    Zaaboub, Noureddine; Helali, Mohamed Amine; Martins, Maria Virgínia Alves; Ennouri, Rym; Béjaoui, Béchir; da Silva, Eduardo Ferreira; El Bour, Monia; Aleya, Lotfi

    2016-11-01

    Bizerte Lagoon is a southern Mediterranean semi-enclosed lagoon with a maximum depth of 12 m. After assessing sediment quality, the authors report on the physicochemical characteristics of the lagoon's surface sediment using SEM (simultaneously extracted metals) and AVS (acid volatile sulfides) as proxies. Biogeochemical tools are used to investigate the environmental disturbance at the water-sediment interface by means of SEM and AVS to seek conclusions concerning the study area's pollution status. Results confirm accumulation of trace elements in sediment. The use of the SEM-AVS model with organic matter in sediment (ƒOC) confirms possible bioavailability of accumulated trace elements, especially Zn, in the southern part of the lagoon, with organic matter playing an important role in SEM excess correction to affirm a nontoxic total metal sediment state. Individual trace element toxicity is dependent on the bioavailable fraction of SEM Metal on sediment, as is the influence of lagoon inflow from southern water sources on element bioavailability. Appropriate management strategies are highly recommended to mitigate any potential harmful effects on health from this heavy-metal-based pollution.

  1. Sequential patterns of essential trace elements composition in Gracilaria verrucosa and its generated products

    NASA Astrophysics Data System (ADS)

    Izzati, Munifatul; Haryanti, Sri; Parman, Sarjana

    2018-05-01

    Gracilaria widely known as a source of essential trace elements. However this red seaweeds also has great potential for being developed into commercial products. This study examined the sequential pattern of essential trace elements composition in fresh Gracilaria verrucosa and a selection of its generated products, nemely extracted agar, Gracilaria salt and Gracilaria residue. The sample was collected from a brackish water pond, located in north part Semarang, Central Java. The collected sample was then dried under the sun, and subsequently processed into aformentioned generated products. The Gracilaria salt was obtain by soaking the sun dried Gracilaria overnight in fresh water overnight. The resulted salt solution was then boiled leaving crystal salt. Extracted agar was obtained with alkali agar extraction method. The rest of remaining material was considered as Gracilaria residue. The entire process was repeated 3 times. The compositin of trace elements was examined using ICP-MS Spectrometry. Collected data was then analyzed by ANOVA single factor. Resulting sequential pattern of its essential trace elements composition was compared. A regular table salt was used as controls. Resuts from this study revealed that Gracilaria verrucosa and its all generated products all have similarly patterned the composition of essential trace elements, where Mn>Zn>Cu>Mo. Additionally this pattern is similar to different subspecies of Gracilaria from different location and and different season. However, Gracilaria salt has distinctly different pattern of sequential essential trace elements composition compared to table salt.

  2. Natural and anthropic effects on hydrochemistry and major and trace elements in the water mass of a Spanish Pyrenean glacial lake set.

    PubMed

    Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago

    2017-07-01

    This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.

  3. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature.

    PubMed

    Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J

    2012-03-01

    The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2

  4. Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils.

    PubMed

    Wang, Chunyan; Alidoust, Darioush; Yang, Xueling; Isoda, Akihiro

    2018-04-15

    Improvements in plant physiological performance by means of biochar application in soils contaminated by multi-elements are determinants of agroecosystem functioning. This study analyzed the effects of bamboo-derived biochar on root nodulation and plant growth in a moderately acidic Andosol (pH = 5.56) contaminated with multi-elements during a 70-day investigation of soybean growth. Bamboo biochar that had been pyrolyzed at a temperature below 500°C was applied to soils at three different and moderately high rates (5%, 10%, and 15%, w/w). Biochar amendment beyond 5% stimulated root nodulation as well as soybean growth. The nodule weight per root system was significantly enhanced by 186% and 243% over the control at the 10% and 15% addition rates, respectively. The primary explanation for these stimulatory effects was attributed to an increase in the K and Mo supplies for plant uptake that was induced by the biochar application, whereas the increased availability of P contributed to a lesser extent. Leaf CO 2 assimilation rate was slightly enhanced at the highest application rate, but this enhancement was not associated with an increase in biomass. The incorporation of biochar into the soil reduced extractable-NH 4 NO 3 Cd, Cu, Mn, Ni, and Zn, but not Pb, regardless of the application dose. This change was accompanied by a significant (P < 0.05) suppression of the uptake od trace elements in soybean shoots at the optimum application rate (10%); the degree of reduction followed this order: Pb>Mn>Cd>Zn>Cu>Ni. The increase in soil pH and the diffusion/adsorption of trace elements onto the biochar may have contributed to the lowering of the concentration of trace elements in the soil as well as in soybean shoots. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  6. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    NASA Astrophysics Data System (ADS)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the analyzed trace elements in groundwater do not pose any significant threat to the population living in this area.

  7. Effects of cleaning methods upon preservation of stable isotopes and trace elements in shells of Cyprideis torosa (Crustacea, Ostracoda): Implications for palaeoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Roberts, L. R.; Holmes, J. A.; Leng, M. J.; Sloane, H. J.; Horne, D. J.

    2018-06-01

    The trace element (Sr/Ca and Mg/Ca) and stable isotope (δ18O and δ13C) geochemistry of fossil ostracod valves provide valuable information, particularly in lacustrine settings, on palaeo-water composition and palaeotemperature. The removal of sedimentary and organic contamination prior to geochemical analysis is essential to avoid bias of the results. Previous stable isotope and trace element work on ostracod shells has, however, employed different treatments for the removal of contamination beyond simple 'manual' cleaning using a paint brush and methanol under a low-power binocular microscope. For isotopic work pre-treatments include chemical oxidation, vacuum roasting and plasma ashing, and for trace element work sonication, chemical oxidation and reductive cleaning. The impact of different treatments on the geochemical composition of the valve calcite has not been evaluated in full, and a universal protocol has not been established. Here, a systematic investigation of the cleaning methods is undertaken using specimens of the ubiquitous euryhaline species, Cyprideis torosa. Cleaning methods are evaluated by undertaking paired analyses on a single carapace (comprising two valves); in modern ostracods, whose valves are assumed to be unaltered, the two valves should have identical geochemical and isotopic composition. Hence, when one valve is subjected to the chosen treatment and the other to simple manual cleaning any difference in composition can confidently be assigned to the treatment method. We show that certain cleaning methods have the potential to cause alteration to the geochemical signal, particularly Mg/Ca and δ18O, and hence have implications for palaeoenvironmental reconstructions. For trace-element determinations we recommend cleaning by sonication and for stable isotope analysis, oxidation by hydrogen peroxide. These methods remove contamination, yet do not significantly alter the geochemical signal.

  8. Contaminants in molting long-tailed ducks and nesting common eiders in the Beaufort Sea

    USGS Publications Warehouse

    Franson, J.C.; Hollmén, Tuula E.; Flint, Paul L.; Grand, J.B.; Lanctot, Richard B.

    2004-01-01

    In 2000, we collected blood from long-tailed ducks (Clangula hyemalis) and blood and eggs from common eiders (Somateria mollissima) at near-shore islands in the vicinity of Prudhoe Bay, Alaska, and at a reference area east of Prudhoe Bay. Blood was analyzed for trace elements and egg contents were analyzed for trace elements, organochlorine pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons. Except for Se (mean=36.1 ??g/g dry weight (dw) in common eiders and 48.8 ??g/g dw in long-tailed ducks), concentrations of trace elements in blood were low and, although several trace elements differed between areas, they were not consistently higher at one location. In long-tailed ducks, Se in blood was positively correlated with activities of two serum enzymes, suggestive of an adverse effect of increasing Se levels on the liver. Although common eiders had high Se concentrations in their blood, Se residues in eggs were low (mean=2.28 ??g/g dw). Strontium and Ni were higher in eggs near Prudhoe Bay than at the reference area, but none of the other trace elements or organic contaminants in eggs differed between locations. Concentrations of Ca, Sr, Mg, and Ni differed among eggs having no visible development, early-stage embryos, or late-stage embryos. Residues of 4,4???-DDE, cis-nonachlor, dieldrin, hexachlorobenzene, oxychlordane, and trans-nonachlor were found in 100% of the common eider eggs, but at low concentrations (means of 2.35-7.45 ??g/kg wet weight (ww)). The mean total PCB concentration in eggs was 15.12 ??g/kg ww. Of PAHs tested for, residues of 1- and 2-methylnaphthalene and naphthalene were found in 100% of the eggs, at mean concentrations of 0.36-0.89 ??g/kg ww.

  9. Changes in sample collection and analytical techniques and effects on retrospective comparability of low-level concentrations of trace elements in ground water

    USGS Publications Warehouse

    Ivahnenko, T.; Szabo, Z.; Gibs, J.

    2001-01-01

    Ground-water sampling techniques were modified to reduce random low-level contamination during collection of filtered water samples for determination of trace-element concentrations. The modified sampling techniques were first used in New Jersey by the US Geological Survey in 1994 along with inductively coupled plasma-mass spectrometry (ICP-MS) analysis to determine the concentrations of 18 trace elements at the one microgram-per-liter (μg/L) level in the oxic water of the unconfined sand and gravel Kirkwood-Cohansey aquifer system. The revised technique tested included a combination of the following: collection of samples (1) with flow rates of about 2L per minute, (2) through acid-washed single-use disposable tubing and (3) a single-use disposable 0.45-μm pore size capsule filter, (4) contained within portable glove boxes, (5) in a dedicated clean sampling van, (6) only after turbidity stabilized at values less than 2 nephelometric turbidity units (NTU), when possible. Quality-assurance data, obtained from equipment blanks and split samples, indicated that trace element concentrations, with the exception of iron, chromium, aluminum, and zinc, measured in the samples collected in 1994 were not subject to random contamination at 1μg/L.Results from samples collected in 1994 were compared to those from samples collected in 1991 from the same 12 PVC-cased observation wells using the available sampling and analytical techniques at that time. Concentrations of copper, lead, manganese and zinc were statistically significantly lower in samples collected in 1994 than in 1991. Sampling techniques used in 1994 likely provided trace-element data that represented concentrations in the aquifer with less bias than data from 1991 when samples were collected without the same degree of attention to sample handling.

  10. Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema.

    PubMed

    Amin, Mohammad Nurul; Liza, Kaniz Fatema; Sarwar, Md Shahid; Ahmed, Jamiuddin; Adnan, Md Tareek; Chowdhury, Manjurul Islam; Hossain, Mohammad Zahid; Islam, Mohammad Safiqul

    2015-09-01

    The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.

  11. Sources of volatiles in basalts from the Galapagos Archipelago: deep and shallow evidence

    NASA Astrophysics Data System (ADS)

    Peterson, M. E.; Saal, A. E.; Hauri, E. H.; Werner, R.; Hauff, S. F.; Kurz, M. D.; Geist, D.; Harpp, K. S.

    2010-12-01

    The study of volatiles (H2O, CO2, F, S, and Cl) is important because volatiles assert a strong influence on mantle melting and magma crystallization, as well as on the viscosity and rheology of the mantle. Despite this importance, there have been a minimal number of volatile studies done on magmas from the four main mantle sources that define the end member compositions of the Galapagos lavas. For this reason, we here present new volatile concentrations of 89 submarine glass chips from dredges collected across the archipelago during the SONNE SO158, PLUM02, AHA-NEMO, and DRIFT04 cruises. All samples, with the exception of six, were collected at depths greater than 1000m. Major elements (E-probe), and volatile and trace elements (SIMS), are analyzed on the same glass chip, using 4 chips per sample, to better represent natural and analytical variation. Trace element contents reveal three main compositional groups: an enriched group typical of OIB, a group with intermediate compositions, and a group with a depleted trace element composition similar to MORB. The absolute ranges of volatile contents for all three compositional groups are .098-1.15wt% for H2O, 10.7-193.7 ppm for CO2, 61.4-806.5 ppm for F, 715.8-1599.2 ppm for S and 3.8-493.3 for Cl. The effect of degassing, sulfide saturation and assimilation of hydrothermally altered material must be understood before using the volatile content of submarine glasses to establish the primary volatile concentration of basalts and their mantle sources. CO2 has a low solubility in basaltic melts causing it to extensively degas. Based on the CO2/Nb ratio, we estimate the extent of degassing for the Galapagos lavas to range from approximately undegassed to 90% degassed. We demonstrate that 98% of the samples are sulfur undersaturated. Therefore, sulfur will behave as a moderately incompatible element during magmatic processes. Finally, we evaluate the effect of assimilation of hydrothermally altered material on the volatile content of the lavas. This process is evident when volatile/refractory element ratios are compared to the trace elements indicative of interaction between melt and the oceanic lithosphere such as a positive Sr anomaly (Sr*) in a primitive mantle normalized diagram. This is indicative of the interaction of basaltic melts with plagioclase cumulates. For the Galapagos depleted submarine glasses, we find a positive correlation between Sr* and all volatile/refractory element ratios suggesting significant volatile input from melt-lithosphere interaction. These samples, due to their low trace element concentrations, readily show the alteration signature, thus making the establishment of their primitive volatile content difficult. As a result, we will present the primary volatile concentrations for the trace element intermediate and enriched groups after careful consideration for degassing, sulfide saturation, and assimilation of hydrothermally altered material.

  12. Occurrence and distribution of trace elements in snow, streams, and streambed sediments, Cape Krusenstern National Monument, Alaska, 2002-2003

    USGS Publications Warehouse

    Brabets, Timothy P.

    2004-01-01

    Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When normalized to 1 percent organic carbon, the concentrations of these trace elements are not expected to be toxic to aquatic life when compared to criteria established by the Canadian government and other recent research.

  13. Interactions between accumulation of trace elements and major nutrients in Salix caprea after inoculation with rhizosphere microorganisms

    PubMed Central

    De Maria, Susanna; Rivelli, Anna Rita; Kuffner, Melanie; Sessitsch, Angela; Wenzel, Walter W.; Gorfer, Markus; Strauss, Joseph; Puschenreiter, Markus

    2015-01-01

    Although the beneficial effects on growth and trace element accumulation in Salix inoculated with microbes are well known, little information is available on the interactions among trace elements and major nutrients. The main purpose of this study was to assess the effect of inoculation with rhizobacteria Agromyces sp. AR33, Streptomyces sp. AR17, and the combination of each of them with the fungus Cadophora finlandica PRF15 on biomass production and the accumulation of selected trace elements and major nutrients (Cd, Zn, Fe, Ca, K and Mg) in Salix caprea grown on a moderately polluted soil. Dry matter production was significantly enhanced only upon inoculation with Agromyces AR33. Microbial treatments differently affected the accumulation of Zn and Cd in plants. Both the inoculation with Streptomyces AR17 and the co-inoculation of C. finlandica with Agromyces AR33 were most efficient in enhancing the accumulation of Zn and Cd in leaves. These two treatments showed also a higher translocation factor from roots to the leaves for both Cd and Zn. Concentrations of major nutrients in shoots were generally increased in the treatments with the fungus compared to those without, except for K in plants inoculated with bacterial strain Streptomyces AR17. Co-inoculation of C. finlandica plus Agromyces AR33 resulted in a better accumulation of both Zn and Cd and Ca, K and Mg in shoots. This study suggests that the phytoextraction of Zn and Cd can be improved by inoculation with selected microbial strains. PMID:21612812

  14. The influence of a slow-release multi-trace element ruminal bolus on trace element status, number of ovarian follicles and pregnancy outcomes in synchronized Afshari ewes

    PubMed Central

    Abdollahi, E.; Kohram, H.; Shahir, M. H.; Nemati, M. H.

    2015-01-01

    Published data on the effects of ruminal bolus on the number of ovulatory follicles in ewes does not exist. The present study determined the effects of a ruminal bolus on trace element status, follicular dynamics and reproductive performance in ewes. Eighty Afshari cycling ewes were synchronized during breeding season using CIDR for 14 days and assigned to 4 groups (n=20); group 1 received a single Ferrobloc bolus four weeks prior to CIDR insertion following 400 IU eCG on CIDR removal, group 2 received two boluses four weeks prior to CIDR insertion following 400 IU eCG on CIDR removal, group 3 received only 400 IU eCG on CIDR removal and group 4 (control) received no bolus and no eCG. Transrectal ultrasonography was done to monitor the ovarian follicles on the day of CIDR removal and a day later. Results showed that boluses increased the status of copper, selenium and iodine on mating day and days 90 to 100 of gestation. Ruminal bolus did not significantly increase the number of different classes of ovarian follicles in ewes fed a diet meeting all trace mineral requirements. All ewes eventually became pregnant with 1 or 2 boluses but the multiple births rate (80%) was higher (P<0.05) after 2 boluses compared to the other groups. PMID:27175153

  15. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  16. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  17. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements.

  18. Trace-element interactions in Rook Corvus frugilegus eggshells along an urbanisation gradient.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-11-01

    Concentrations of seven trace elements [arsenic (As), chromium (Cr), nickel (Ni), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd)] in the eggshells of Rooks Corvus frugilegus, a focal bird species of Eurasian agricultural environments, are increased above background levels and exceed levels of toxicological concern. The concentrations of Cr, Ni, Pb, Cu, and Zn are greater in eggshells from urban rookeries (large cities) compared with rural areas (small towns and villages) suggesting an urbanisation gradient effect among eggs laid by females. In the present study, the investigators assessed whether the pattern of relationships among the seven trace elements in eggshells change along an urbanisation/pollution gradient. Surprisingly, we found that eggshells with the greatest contaminant burden, i.e., from urban rookeries, showed far fewer significant relationships (n = 4) than eggshells from villages (n = 10), small towns (n = 6), or rural areas (n = 8). In most cases, the relationships were positive. As was an exception: Its concentration was negatively correlated with Ni and Cd levels in eggshells from small town rookeries (where As levels were the highest), whereas eggshells from villages (with a lower As level) showed positive relationships between As and Cd. Our findings suggest that at low to intermediate levels, interactions between the trace elements in Rook eggshells are of a synergistic character and appear to operate as parallel coaccumulation. A habitat-specific excess of some elements (primarily Cr, Ni, Cu, As) suggests their more competitively selective sequestration.

  19. The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.

    PubMed

    Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-10-01

    To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.

  20. Illustration and analysis of a coordinated approach to an effective forensic trace evidence capability.

    PubMed

    Stoney, David A; Stoney, Paul L

    2015-08-01

    An effective trace evidence capability is defined as one that exploits all useful particle types, chooses appropriate technologies to do so, and directly integrates the findings with case-specific problems. Limitations of current approaches inhibit the attainment of an effective capability and it has been strongly argued that a new approach to trace evidence analysis is essential. A hypothetical case example is presented to illustrate and analyze how forensic particle analysis can be used as a powerful practical tool in forensic investigations. The specifics in this example, including the casework investigation, laboratory analyses, and close professional interactions, provide focal points for subsequent analysis of how this outcome can be achieved. This leads to the specification of five key elements that are deemed necessary and sufficient for effective forensic particle analysis: (1) a dynamic forensic analytical approach, (2) concise and efficient protocols addressing particle combinations, (3) multidisciplinary capabilities of analysis and interpretation, (4) readily accessible external specialist resources, and (5) information integration and communication. A coordinating role, absent in current approaches to trace evidence analysis, is essential to achieving these elements. However, the level of expertise required for the coordinating role is readily attainable. Some additional laboratory protocols are also essential. However, none of these has greater staffing requirements than those routinely met by existing forensic trace evidence practitioners. The major challenges that remain are organizational acceptance, planning and implementation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  2. Mantle End-Members: The Trace Element Perspective

    NASA Astrophysics Data System (ADS)

    Willbold, M.; Stracke, A.; Hofmann, A. W.

    2004-12-01

    On the basis of their isotopic composition, ocean island basalts (OIB) have been classified into three to four end-members; HIMU with the most radiogenic Pb isotope ratios of OIB and Enriched Mantle 1 and 2 (EM1, EM2) with less radiogenic but variable Pb isotope and highly radiogenic Sr isotope signatures. It has also been argued that each of these isotopic families has common trace element characteristics that distinguish them from one another and so substantiated this classification. Here, we present new high-precision trace element data for samples from St. Helena, Tristan da Cunha and Gough in the Atlantic Ocean. The overall data-set is augmented by OIB data from the GEOROC database and includes data from all major isotopic families (HIMU: St. Helena, Mangaia, Tubuai, and Rururtu; EM1: Tristan da Cunha, Gough, Pitcairn; and EM2: Samoa, Marquesas, and Society). For each locality we use only islands defining the most extreme isotopic compositions. The entire data-set has been screened to exclude altered and highly differentiated samples. HIMU basalts have a very uniform trace element composition. Compared to HIMU-type basalts, EM-type basalts are enriched in Rb, Ba, and K, and depleted in U, Nb, and Ta, relative to La. Different EM-type OIBs from the same isotopic family (EM1 or EM2), have distinct trace element characteristics that can ultimately only be caused by different source compositions. For example, Ba/Th ratios in samples from both Tristan da Cunha (EM1) and Samoa (EM2) are similarly high (ca. 110) whereas Ba/Th ratios in samples from Pitcairn (EM1) and Society (EM2) samples are consistently lower (ca. 70). Thus on the basis of their trace element composition, EM-type OIB cannot be classified into EM1 and EM2 type basalts, nor can any other grouping be identified. The remarkably uniform isotopic and trace element composition of HIMU-type basalts suggests derivation from a single common source reservoir, most likely subduction-modified oceanic crust. Although there are some trace element characteristics common to all EM-type basalts, which distinguish them from HIMU-type basalts (e.g. uniformly high Th/U ratios of 4.7 ± 0.3, and enrichment in Cs-U), each suite of EM-type basalts has unique trace element signatures that distinguish them from any other suite of EM-type basalts. This is especially obvious when comparing the trace element composition of EM basalts from one isotopic family, for example EM1-type basalts from Tristan, Gough and Pitcairn. Consequently, the trace element systematics of EM-type basalts suggest that there are many different EM-type sources, whereas the isotopic composition of EM-type basalts suggest derivation from two broadly similar sources, i.e. EM1 and EM2. The large variability in subducting sediments with respect to both parent-daughter (e.g. Rb/Sr, Sm/Nd, U/Pb, Th/Pb,...) and other trace element ratios makes it unlikely that there are reproducible mixtures of sediments leading to two different isotopic evolution paths (EM1 and EM2) while preserving a range of incompatible element contents for each isotopic family, as would be required to reconcile the isotopic and trace element characteristics of EM-type basalts. Although this does not a priori argue against sediments as possible source components for OIB, it does argue against two distinct groups of sediments as EM1 and EM2 sources. Further characterization of sources with the same general origin (e.g. a certain type of crust or lithosphere) or identification of processes leading to reservoirs with similar parent-daughter ratio characteristics but different incompatible trace element contents could resolve the apparent conundrum.

  3. An analysis of human exposure to trace elements from deliberate soil ingestion and associated health risks.

    PubMed

    Ngole-Jeme, Veronica M; Ekosse, Georges-Ive E; Songca, Sandile P

    2018-01-01

    Fifty-seven samples of soils commonly ingested in South Africa, Swaziland, Democratic Republic of Congo (DRC), and Togo were analyzed for the concentrations of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) and their bioaccessibility in the human gastrointestinal tract. Bioaccessibility values were used to calculate daily intake, and hazard quotient of each trace element, and chronic hazard index (CHI) of each sample. Carcinogenic risk associated with As and Ni exposure were also calculated. Mean pseudo-total concentrations of trace elements in all samples were 7.2, 83.3, 77.1, 15.4, 28.6, 24.9, 56.1, 2.8, and 26.5 mg/kg for As, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb, respectively. Percent bioaccessibility of Pb (13-49%) and Zn (38-56%) were highest among trace elements studied. Average daily intake values were lower than their respective reference doses for ell elements except for Pb in selected samples. Samples from DRC presented the highest health risks associated with trace element exposure with most of the samples having CHI values between 0.5 and 1.0. Some samples had higher than unacceptable values of carcinogenic risk associated with As and Ni exposure. Results indicate low trace element exposure risk from ingesting most of the soil samples.

  4. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    PubMed Central

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  5. Trace element analysis of soil type collected from the Manjung and central Perak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. Themore » enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.« less

  6. Blood lead: Its effect on trace element levels and iron structure in hemoglobin

    NASA Astrophysics Data System (ADS)

    Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.

    2008-08-01

    Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.

  7. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    PubMed

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Use of sediment-trace element geochemical models for the identification of local fluvial baseline concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.

    1991-01-01

    Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.

  9. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    PubMed Central

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and posttranslational modifications; and the iron levels are influenced by iron import and expression of the iron/heme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated dataset opens new directions for studies of human trace element metabolism. PMID:24522796

  10. Topical index and bibliography of U.S. Geological Survey Trace Elements and related reports

    USGS Publications Warehouse

    Curtis, Diane; Houser, Shirley S.

    1952-01-01

    Part 1, the topical index, lists the titles of reports prepared from 1941 to December 1952, in conjunction with the Geological Survey's program of uranium and other elements of related interest. It includes not only completed Trace Elements reports and those now in preparation, but also Survey publications, publications by Survey personnel in scientific journals, and open-fie releases. The titles are grouped topically under the headings listed in the table of contents. Entries in each category are listed alphabetically, by author, and numbered consecutively. Many of the reports have been cross-indexed, where appropriate. The classification of the Trace Elements reports, insofar as it is known, has been indicated after the title of the report. The classification of some of the earlier Trace Elements reports is uncertain. The Geological Survey does not have additional copies of most of the reports listed, but copies of some of the completed reports can be loaned on request to organizations officially cooperating with the Atomic Energy Commission. Many Trace Elements reports have been made available to the public, either by open-file release, reproduction by Technical Information Service, Oak Ridge (referred to as TIS), by publication as a Geological Survey circular or bulletin or by a publication in a scientific journal. This information is given, following the title of the report. If the abstract of a Trace Element report has been published in Nuclear Science Abstracts, it is noted by the initials NSA following the title of the report. Part 2 is a reference guide to information on the Trace Elements program that is available to the public. This information is categorized according to the type of publication or release.

  11. Sampling strategy and analysis of trace element concentrations by inductively coupled plasma mass spectrometry on medieval human bones--the concept of chemical life history.

    PubMed

    Skytte, Lilian; Rasmussen, Kaare Lund

    2013-07-30

    Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Impact of Elevated CO2 on Trace Element Release from Aquifer Sediments of the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Fox, P. M.; Nico, P. S.; Davis, J. A.; Spycher, N.

    2014-12-01

    Carbon capture and storage (CCS) is a promising technique for mitigating climate change by storing large volumes of carbon dioxide in deep saline aquifers. In California, the thick marine sediments of the Central and Salinas Valleys have been identified as prime targets for future CO2 storage. However, the potential impacts on water quality of overlying drinking-water aquifers must be studied before CCS can be implemented. In this study, we compare trace element release from San Joaquin Valley aquifer sediments with a wide range of textural and redox properties. Kinetic batch experiments were performed with artificial groundwater continuously equilibrated under CO2-saturated (at 1 atm) and background CO2 (0.002-0.006 atm) conditions, resulting in a shift of nearly 3 pH units. In addition, the reversibility of trace element release was studied by sequentially lowering the CO2 from 1.0 atm to 0.5 atm to background concentrations (0.002-0.006 atm) for CO2-saturated systems in order to mimic the dissipation of a CO2 plume in the aquifer. During exposure to high CO2, a number of elements displayed enhanced release compared to background CO2 experiments (Ca, Mg, Li, Si, B, As, Sr, Ni, Fe, Mn, V, Ti, and Co) with concentrations of As, Fe, and Mn exceeding EPA maximum contaminant levels in some cases. On the other hand, Mo and U showed suppressed release. Most intriguing, many of the elements showing enhanced release displayed at least some degree of irreversibility when CO2 concentrations were decreased to background levels. In fact, in some cases (i.e., for V), an element showed further release when CO2 concentrations were decreased. These results suggest that there may be longer-term effects on groundwater quality that persist even after the CO2 plume has dissipated. Several different mechanisms of trace element release including ion exchange, desorption, and carbonate mineral dissolution are explored. Preliminary modeling results suggest that carbonate mineral dissolution can play a key role in driving trace element release even in sediments where carbonates are in low abundance.

  13. Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho

    USGS Publications Warehouse

    Piper, D.Z.

    2001-01-01

    Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE, above both terrigenous and biogenic contributions, define bottom-water redox conditions as having been oxygen depleted, that is, denitrifying but not sulfate reducing.

  14. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  15. Trace Elements in Bed Sediments and Biota from Streams in the Santee River Basin and Coastal Drainages, North and South Carolina, 1995-97

    Treesearch

    Thomas A. Abrahamsen

    1999-01-01

    Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...

  16. Accumulation of propionic acid during consecutive batch anaerobic digestion of commercial food waste.

    PubMed

    Capson-Tojo, Gabriel; Ruiz, Diane; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-12-01

    The objective of this study was to test three different alternatives to mitigate the destabilizing effect of accumulation of ammonia and volatile fatty acids during food waste anaerobic digestion. The three options tested (low temperature, co-digestion with paper waste and trace elements addition) were compared using consecutive batch reactors. Although methane was produced efficiently (∼500ml CH 4 gVS -1 ; 16l CH 4 lreactor -1 ), the concentrations of propionic acid increased gradually (up to 21.6gl -1 ). This caused lag phases in the methane production and eventually led to acidification at high substrate loads. The addition of trace elements improved the kinetics and allowed higher substrate loads, but could not avoid propionate accumulation. Here, it is shown for the first time that addition of activated carbon, trace elements and dilution can favor propionic acid consumption after its accumulation. These promising options should be optimized to prevent propionate accumulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors.

    PubMed

    Gustavsson, J; Svensson, B H; Karlsson, A

    2011-01-01

    The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 degrees C). It was concluded that daily supplementation with Co (0.5 mg L(-1)), Ni (0.2 mg L(-1)) and Fe (0.5 g L(-1)) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L(-1) day(-1).

  18. Movement of Trace Elements During Residence in the Antarctic Ice: a Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Strait, Melissa M.

    1991-01-01

    Recent work has determined that differences in the trace element distribution between Antarctic eucrites and non-Antarctic eucrites may be due to weathering during residence in the ice, and samples that demonstrate trace element disturbances do not necessarily correspond to eucrites that appear badly weathered to the naked eye. This study constitutes a preliminary test of the idea that long-term residence in the ice is the cause of the trace element disturbances observed in the eucrites. Samples of a non-Antarctic eucrite were leached in water at room temperature conditions. Liquid samples were analyzed for rare earth element abundances using ion chromatography. The results for the short-term study showed little or no evidence that leaching had occurred. However, there were tantalizing hints that something may be happening. The residual solid samples are currently being analyzed for the unleached trace metals using instrumental neutron activation analysis and should show evidence of disturbance if the chromatography clues were real. In addition, another set of samples continues to be intermittently sampled for later analysis. The results should give us information about the movement of trace elements under our conditions and allow us to make some tentative extrapolations to what we observe in actual Antarctic eucrite samples.

  19. Application of major and trace elements as well as boron isotopes for tracing hydrochemical processes: the case of Trifilia coastal karst aquifer, Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, G.

    2009-09-01

    The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.

  20. Essential trace elements and antioxidant status in relation to severity of HIV in Nigerian patients.

    PubMed

    Olaniyi, J A; Arinola, O G

    2007-01-01

    This study was designed to determine the plasma levels of some antioxidants and trace elements in three severity groups of HIV patients compared with non-HIV-infected controls. The plasma levels of antioxidants (total antioxidant, albumin, bilirubin and uric acid) and trace elements (Mg, Fe, Zn, Mn, Cu, Cr, Cd and Se) were estimated spectrophotometrically in controls and patients with CD4 counts of <200; 200-499 and > or =500 cells/microl. Uric acid and Zn were significantly higher, while vitamin E and all the trace elements (except Zn) were significantly lower in HIV-infected patients compared to healthy controls. The highest level of uric acid was observed in those with CD4 counts of <200 cells/microl. All the trace elements (except Zn) were higher in HIV subjects with a CD4 count of 200-499 cells/microl compared to >500 cells/microl. Only uric acid and Zn showed significant correlation with CD4 count. Based on the results of this study, we recommend routine assessment and appropriate supplementation of antioxidants/trace elements in HIV subjects. This supplementation is hoped to strengthen the immune system and reduce the adverse consequences of HIV- related oxidative stress. Copyright 2007 S. Karger AG, Basel.

  1. Effects of urbanization and long-term rainfall on the occurrence of organic compounds and trace elements in reservoir sediment cores, streambed sediment, and fish tissue from the Santa Ana River basin, California, 1998

    USGS Publications Warehouse

    Burton, Carmen A.

    2002-01-01

    Organcochlorine compounds, semivolatile-organic compounds (SVOC), and trace elements were analyzed in reservoir sediment cores, streambed sediment, and fish tissue in the Santa Ana River Basin as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Three reservoirs were sampled in areas that have different degrees of urbanization. Streambed sediment and fish tissue collected at 12 sites were divided into two groups, urban and nonurban. More organochlorine compounds were detected in reservoir sediment cores, streambed sediment and fish tissue, and at higher concentrations at urban sites than at nonurban sites. At all sites, except West Street Basin, concentrations of organochlorine compounds were lower than the probable-effect concentration (PEC). At the highly urbanized West Street Basin, chlordane and p,p'-DDE exceeded the PEC throughout the historical record. The less stringent threshold-effect concentration (TEC) was exceeded for six compounds at eight sites. Most of the organochlorine compounds detected in streambed sediment and fish tissue were at urban sites on the Santa Ana River as opposed to its tributaries, suggesting accumulation and persistence in the river. More SVOCs were detected in reservoir sediment cores and streambed sediment, and at higher concentrations, at urban sites than at nonurban sites. At all the sites, except West Street Basin, concentrations of SVOCs were lower than the PEC. At West Street Basin, chrysene, pyrene, and total polycyclic-aromatic hydrocarbons exceeded the PEC throughout the historical record. The TEC was exceeded for 10 compounds at 3 sites. Most of the SVOCs were detected in streambed sediment at urban sites on tributaries to the Santa Ana River rather than the mainstem itself. The less frequent occurrence and lower concentrations in the Santa Ana River suggest that SVOCs are less persistent than organochlorine compounds, possibly as a result of volatization, gradation, or dilution. Most trace-element detections in reservoir sediment cores and streambed sediment were at urban sites, and the concentrations were generally higher than at nonurban sites. Lead and zinc exceeded their PECs at West Street Basin throughout the historical record; copper exceeded its PEC at Canyon Lake, an area of urban growth. The TEC was exceeded for 10 compounds at 11 sites. Frequency of detection and concentration did not differ between tributary and Santa Ana River sites, which may be attributed to the fact that trace elements occur naturally. Four trace elements (arsenic, copper, mercury, and selenium) had higher concentrations in fish tissue at nonurban sites than at urban sites. Concentrations decreased over time for organochlorine compounds at all three reservoirs, probably a result of the discontinued use of many of the compounds. Decreasing trends in SVOCs and trace elements were observed at West Street Basin, but increasing trends were observed at Canyon Lake. Concentrations of organochlorine compounds, SVOCs, and trace elements were higher during periods of above average rainfall at both West Street Basin and Canyon Lake.

  2. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    USGS Publications Warehouse

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions of sediment at the sites differed spatially, indicating that the Pb (and other trace elements by association) originated from different natural sources at the two locations.

  3. Disentangling controls on element impurities of bivalve shells

    NASA Astrophysics Data System (ADS)

    Zhao, Liqiang; Schöne, Bernd R.; Mertz-Kraus, Regina

    2017-04-01

    Trace and minor elements of bivalve shells can potentially serve as proxies of past environmental change. However, retrieving environmental information from element impurities of bivalve shells remains an extremely challenging task. A central difficulty concerns the fact that extrinsic and intrinsic factors governing the element incorporation are poorly constrained. Within the framework of the ARAMACC project, we aim to decipher the complexity of the incorporation of trace and minor elements into bivalve shells and explore their full potential as proxies of environmental change. More specifically, the following questions were tackled. (1) How are trace and minor elements transported from the ambient environment to the calcifying front? (2) How is their incorporation into the shells affected by environmental and physiological variables? Our findings lend support to the general assumption that divalent ions (e.g., Cu2+, Mn2+, Zn2+ and Pb2+) share the same transport pathways as Ca2+ because of similar ionic radii and electrochemical properties. However, results obtained for Mg2+, Sr2+ and Ba2+ are particularly interesting as they are at odds with existing hypotheses on the incorporation of these three elements, i.e., intracellular Ca2+ pathways (via Ca2+ channels and Ca2+-ATPase) are likely not responsible for their incorporation. Despite the existence of strong physiological interference, some encouraging results were found, in particular (1) strong, positive relationships between the Sr, Ba and Mn contents of the shells and concentrations in the ambient water, (2) only minor effects of growth rate (which is closely linked to the rate of crystal growth and hence, kinetics) on the amounts of Na, Sr, Ba and Mn incorporation into the shells. Overall, our findings demonstrate that environmental and physiological controls on the element incorporation do not have to be mutually exclusive, i.e., if environmental changes outweigh physiological influences, one could still expect that trace and minor elements of bivalve shells serve as promising environmental proxies.

  4. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  5. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory.

    PubMed

    Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J

    2007-01-01

    Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.

  6. The impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester.

    PubMed

    Skalny, Anatoly V; Tinkov, Alexey A; Voronina, Irina; Terekhina, Olga; Skalnaya, Margarita G; Bohan, Tatiana G; Agarkova, Lyubov A; Kovas, Yulia

    2018-01-01

    Trace elements play a significant role in the regulation of human reproduction, while advanced age may have a significant impact on trace element metabolism. The objective of the present study was to assess the impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester. A total of 124 pregnant women aged 20–29 (n = 72) and 30–39 (n = 52) were ex- amined. Scalp hair trace element content was assessed using inductively coupled plasma mass spectrometry at NexION 300D (Perkin Elmer, USA) after microwave digestion. The results showed that the elder pregnant women had 36% (p = 0.009), 14% (p = 0.045), and 45% (p = 0.044) lower hair Zn, V, and Cd content, and 16% (p = 0.044) higher hair B levels – in comparison to the respective younger group values. Multiple regression analysis demonstrated that the age of the women had a significant influence on hair V and Zn levels. B content was also significantly influenced by age at first intercourse, smoking status, and specific dietary habits. None of the lifestyle factors were associated with hair Cd content in pregnant women. Hair V levels were also affected by following a special diet. Interestingly, alcohol intake did not have a significant impact on hair trace element content. These data indicate that lifestyle factors have a significant influence on age-related changes in hair trace elements during pregnancy that may impact the outcome of pregnancy.

  7. Trace elements record complex histories in diogenites

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; Beck, A. W.; McSween, H. Y.

    2012-12-01

    Diogenite meteorites are cumulate rocks composed mostly of orthopyroxene and chemically linked to eucrites (basaltic) and howardites (brecciated mixtures of diogenites and eucrites). Together, they represent the largest single family of achondrite meteorites delivered to Earth, and have been spectrally linked to the asteroid 4 Vesta, the largest remaining basaltic protoplanet. However, this spectral link is non-unique as many basaltic asteroids likely formed and were destroyed in the early solar system. Recent work suggested that Vesta may be an unlikely parent body for the diogenites based on correlations between trace elements and short-lived isotope decay products, which would be unlikely to survive on a body as large as Vesta due to its long cooling history [1]. Recent analyses of terrestrial and martian olivines have demonstrated that trace element spatial distributions can preserve evidence of their crystallization history even when major elements have been homogenized [2]. We have mapped minor elements including Cr, Al, and Ti in seemingly homogeneous diogenite orthopyroxenes and found a variety of previously unobserved textures. The pyroxenes in one sample (GRA 98108) are seemingly large grains of variable shapes and sizes, but the trace elements reveal internal grain boundaries between roughly-equal sized original subgrains, with equilibrated metamorphic triple junctions between them and trace element depletions at the boundaries. These trends suggest extraction of trace elements by a magma along those relict grain boundaries during a reheating event. Two other samples show evidence of fracturing and annealing, with trace element mobility within grains. One sample appears to have remained a closed system during annealing (MET 01084), while the other has interacted with a fluid or magma to move elements along annealed cracks (LEW 88679). These relict features establish that the history of diogenite pyroxenes is more complex than their homogeneous major element compositions imply. Many trace element analyses are performed using either bulk rock techniques or spot analyses, and these maps suggest those types of analyses likely sample variable trace element abundances even within otherwise homogeneous grains, rendering their results difficult to interpret. Consequently, the correlation discussed previously between trace elements and short lived isotopes has likely been impacted by post-magmatic alteration and cannot solely be used to argue that HED's cannot be derived from Vesta. Furthermore, these maps strengthen the HED-Vesta link by suggesting that the diogenites underwent an extended history of cooling, reheating, partial melting, impact fragmentation, fluid/melt migration, and finally re-annealing. These complicated steps are particularly noteworthy as the pyroxene cumulate layer on the asteroid Vesta should lie beneath the eucritic crust, implying that early impacts were able to penetrate that crust and affect the diogenite layers early in Vesta's history, most likely while the asteroid was still hot enough to allow for annealing and regrowth of fractured grains. [1] Schiller et al. (2011) [2] Milman-Barris et al. (2008)

  8. Effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Colberg, Mark R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one; only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  9. The effect of membrane filtration artifacts on dissolved trace element concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Colberg, M.R.

    1992-01-01

    Among environment scientists, the current and almost universally accepted definition of dissolved constituents is an operational one only those materials which pass through a 0.45-??m membrane filter are considered to be dissolved. Detailed laboratory and field studies on Fe and Al indicate that a number of factors associated with filtration, other than just pore size, can substantially alter 'dissolved' trace element concentrations; these include: filter type, filter diameter, filtration method, volume of sample processed, suspended sediment concentration, suspended sediment grain-size distribution, concentration of colloids and colloidally-associated trace elements and concentration of organic matter. As such, reported filtered-water concentrations employing the same pore size filter may not be equal. Filtration artifacts may lead to the production of chemical data that indicate seasonal or annual 'dissolved' chemical trends which do not reflect actual environmental conditions. Further, the development of worldwide averages for various dissolved chemical constituents, the quantification of geochemical cycles, and the determination of short- or long-term environmental chemical trends may be subject to substantial errors, due to filtration artifacts, when data from the same or multiple sources are combined. Finally, filtration effects could have a substantial impact on various regulatory requirements.

  10. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  11. The presence of vanadium in groundwater of southeastern extreme the pampean region Argentina Relationship with other chemical elements.

    PubMed

    Fiorentino, Carmen E; Paoloni, Juan D; Sequeira, Mario E; Arosteguy, Pedro

    2007-08-15

    Changes in the quality of groundwater resources are related to the presence and concentration of contaminants, especially trace elements such as arsenic, boron, fluoride and vanadium. Vanadium is a rare element naturally abundant, generally found in combination with other elements. Vanadium pentoxide is known to have aneugenic effects. Thus, a study was carried out to assess the presence of vanadium in the groundwater of the southeastern pampean region of Argentina, which constitutes the main water supply for the local population. Statistical and correlational analyses were applied to identify possible interrelationships between vanadium and another chemical elements. Vanadium was found in all groundwater samples. The minimum and maximum vanadium concentrations found were 0.05 mg/l and 2.47 mg/l, respectively. Vanadium is significantly correlated with other trace elements such as arsenic, fluoride and boron. The interrelationship between vanadium and the presence of volcanic glass in sediments is not significant as expected.

  12. Impact of a trace element supplementation programme on health and performance of cross-breed (Bos indicus x Bos taurus) dairy cattle under tropical farming conditions: a double-blinded randomized field trial.

    PubMed

    Dermauw, V; Dierenfeld, E; Du Laing, G; Buyse, J; Brochier, B; Van Gucht, S; Duchateau, L; Janssens, G P J

    2015-06-01

    Small-scale urban dairy farms (n = 16) in and around Jimma, Ethiopia with cross-bred (Bos indicus × Bos taurus) cows were enrolled in a double-blinded intervention study to investigate the effect of a trace element supplementation programme on trace element status and milk concentrations as well as performance [body condition score (BCS), milk yield, leptin], milk composition, antioxidant status (ferric-reducing ability of plasma (FRAP), thiobarbituric acid-reactive substances (TBARS)], blood biochemistry, serum proteins and immune response (antibody titre upon rabies vaccination). The farms were allocated to a (1) placebo or (2) Cu, Zn, Se, Co and I supplementation treatment for 150 d. On days 0 and 120, four lactating cows per farm were sampled for milk and plasma, and on day 150 for serum, following primo-vaccination. Cu deficiency was present in 17% and marginal Se deficiency in 30% of initially sampled cows, while no Zn shortage was detected. Over 120 days, trace element supplementation caused a bigger increase in plasma Se and Cu concentrations, but also a larger decrease of plasma Fe concentrations. A larger increase in milk Se concentrations was observed in the supplemented group, whereas none of the other elements were affected. BCS decreased more over time in the supplemented group. None of the other parameters of performance and antioxidant status nor milk composition or blood biochemistry was affected by treatment. Antibody response to rabies vaccination did not differ between groups, whereas α1-globulins tended to be lower and β-globulins tended to be higher in the supplemented group. In conclusion, despite improved Cu and Se status and Se concentrations in milk, cows on tropical urban dairy farms did not seem to benefit from trace element supplementation, with respect to the parameters investigated. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  13. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.

    PubMed

    Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L

    2011-03-15

    The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. [Analysis and separation of organic and inorganic speciations of soluble zinc in edible flowers].

    PubMed

    Peng, Shan-shan; Huang, Guo-qing

    2005-02-01

    Considering the medicinal effects of the edible flowers, the authors studied the separation of trace element zinc's soluble organic and inorganic speciations in water decoction of three edible flowers: Chrysanthemum, Cottonrose hibiscus and Honeysucker by using the 0.45 microm membrane filter and amberlite XAD-2 macroreticular resins. And trace element zinc contents were determined by atomic absorption spectrometry. The optimal conditions for separation had been established. This study verifies the economic value of developing edible flowers, and provides theoretical basis for developing edible flowers as the third functional food materials.

  15. U.S. Geological Survey Trace Elements and related reports through 1953

    USGS Publications Warehouse

    Wallace, Jane H.; Blatcher, Virginia K.; Smith, Harriet B.

    1954-01-01

    This report combines and brings up-to-date the information previously given in Trace Elements Investigations Report 325, "Numerical list of U.S. Geological Survey Trace Elements Reports to April 30, 1953," and Trace Elements Investigations Report 301, "Topical index and bibliography of U.S. Geological Survey Trace Elements and related reports." Part I is a numerical list of U.S. Geological Survey Trace Elements Investigations and Memorandum reports. It supersedes TEI-325. This part lists not only reports (followed by a date) that have been transmitted to the U.S. Atomic Energy Commission, but also reports in preparation (followed by an asterisk) for which tentative titles were available on December 31, 1953. Reports that have been published are indicated by the abbreviation of the medium of publication. (See also part II.) Part II is a reference guide to Trace Elements and related reports that are available to the public; this part supersedes Part 2 of the TEI-301 (published as Geological survey Circular 281). These reports are grouped according to the type of publication or release. Abstracts published in Nuclear Science Abstracts are not included in Part II, although certain TEI and TEM reports, the abstracts of which have been published in NSA, are so indicated in Part I. Publications in process on December 31, 1953, are designated by an asterisk. Part III is a finding list of states, areas, and subjects. It is based on information derived mostly from the titles of reports and, where titles are of a general nature, from a cursory review of the reports. This list is not a complete index of the information given in Trace Elements and related reports, but is designed to find subjects of major interest. Because of the numerous entries for Colorado and Utah, information has been listed by counties and, where possible, by subject under these states. Other states have county listings only if a county is included in the title of a report; otherwise, areas may be listed separately under the state. Major subjects are listed separately in the index and also where appropriate under states. Analytical methods and subjects related to analytical research are listed under Analytical Methods and Research, but not separately throughout the index. Most mineralogic studies are included under the heading Mineralogy, but are not necessarily listed according to location. Part IV is a finding list of authors. The words “with” and “and” are used to indicate seniority of authorship. For example, a listing of Jones and Brown indicates that Jones is the senior author. A listing of Jones with Brown indicates that Brown is the senior author. In both parts III and IV all Trace Elements reports are listed, as well as other related reports that have not been issued as Trace Elements reports. The following standard abbreviations have been used: TEI, Trace Elements Investigations report; TEM, Trace Elements Memorandum report; P, Professional Paper; B, Bulletin; C, Circular; J, Journal; OF, open file; TIS, Technical Information Service release; NSA, Nuclear Science Abstracts; QM, Quadrangle Map Series; and OM, Oil and Gas map or Mineral Investigations map or report.

  16. Accumulation of contaminants in fish from wastewater treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Keefe, S.H.; Antweiler, Ronald C.; Taylor, Howard E.; Wass, R.D.

    2006-01-01

    Increasing demands on water resources in arid environments make reclamation and reuse of municipal wastewater an important component of the water budget. Treatment wetlands can be an integral part of the water-reuse cycle providing both water-quality enhancement and habitat functions. When used for habitat, the bioaccumulation potential of contaminants in the wastewater is a critical consideration. Water and fish samples collected from the Tres Rios Demonstration Constructed Wetlands near Phoenix, Arizona, which uses secondary-treated wastewater to maintain an aquatic ecosystem in a desert environment, were analyzed for hydrophobic organic compounds (HOC) and trace elements. Semipermeable membrane devices (SPMD) were deployed to investigate uptake of HOC. The wetlands effectively removed HOC, and concentrations of herbicides, pesticides, and organic wastewater contaminants decreased 40-99% between inlet and outlet. Analysis of Tilapia mossambica and Gambusia affinis indicated accumulation of HOC, including p,p???-DDE and trans-nonachlor. The SPMD accumulated the HOC detected in the fish tissue as well as additional compounds. Trace-element concentrations in whole-fish tissue were highly variable, but were similar between the two species. Concentrations of HOC and trace elements varied in different fish tissue compartments, and concentrations in Tilapia liver tissue were greater than those in the whole organism or filet tissue. Bioconcentration factors for the trace elements ranged from 5 to 58 000 and for the HOC ranged from 530 to 150 000. ?? 2006 American Chemical Society.

  17. Molybdenite Mineral Evolution: A Study Of Trace Elements Through Time

    NASA Astrophysics Data System (ADS)

    McMillan, M. M.; Downs, R. T.; Stein, H. J.; Zimmerman, A.; Beitscher, B. A.; Sverjensky, D. A.; Papineau, D.; Armstrong, J. T.; Hazen, R. M.

    2010-12-01

    Mineral evolution explores changes through time in Earth’s near-surface mineralogy, including diversity of species, relative abundances of species, and compositional ranges of major, minor and trace elements. Such studies elucidate the co-evolution of the geosphere and biosphere. Accordingly, we investigated trace and minor elements in molybdenite (MoS2) with known ages from 3 billion years to recent. Molybdenite, the commonest mineral of Mo, may prove to be a useful case study as a consequence of its presence in Earth’s early history, the effects of oxidation on Mo mobility, and the possible role of Mo mineral coevolution with biology via its role in the nitrogen fixation enzyme nitrogenase. We employed ICPMS, SEM and electron microprobe analyses to detect trace and minor elements. We detected significant amounts of Mn and Cu (~100 ppm) and greater amounts of Fe, W, and Re (to ~4000 ppm). Molybdenites commonly contain micro inclusions, resulting in local concentrations in otherwise homogeneous samples. Inhomogeneities in Fe, Zn and Sn concentrations, for example, point to the presence of pyrite, sphalerite and cassiterite inclusions, respectively. Analyses examined as a function of time reveal that samples containing significant concentrations (>200 ppm, compared to average values < 100 ppm) of W and Re formed primarily within the last billion years. These trends may reflect changes in the mobility of W and Re in oxic hydrothermal fluids at shallow crustal conditions following the Great Oxidation Event.

  18. Investigation of trace elements in ancient pottery from Jenini, Brong Ahafo region, Ghana by INAA and Compton suppression spectrometry

    NASA Astrophysics Data System (ADS)

    Nyarko, B. J. B.; Bredwa-Mensah, Y.; Serfor-Armah, Y.; Dampare, S. B.; Akaho, E. H. K.; Osae, S.; Perbi, A.; Chatt, A.

    2007-10-01

    Concentrations of trace elements in ancient pottery excavated from Jenini in the Brong Ahafo region of Ghana were determined using instrumental neutron activation analysis (INAA) in conjunction with both conventional and Compton suppression counting. Jenini was a slave Camp of Samory Toure during the indigenous slavery and the Trans-Atlantic slave trade. Pottery fragments found during the excavation of the grave tombs of the slaves who died in the slave camps were analysed. In all, 26 trace elements were determined in 40 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, cluster, factor and discriminant analyses in order to determine similarities and correlation between the various samples. The suitability of the two counting systems for determination of trace elements in pottery objects has been evaluated.

  19. Environmental influence on trace element levels in human hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limic, N.; Valkovic, V.

    1986-12-01

    Trace element content of human hair depends on many factors. It has been shown by a large number of investigators that environmental factors play an important role. Elements from air particulates, water, shampoo or other media get incorporated into the hair structure. Here a model is proposed in which different contributions to trace element levels in human hair are factorized and the environmental contribution to the radial and longitudinal concentration profiles can be calculated. With the proper understanding of environmental contamination, hair analysis has better chances of being used as a diagnostic tool.

  20. [Contents of macromineral and trace elements in spirulina (Arthrospira platensis) from France, Chad, Togo, Niger, Mali, Burkina-Faso and Central African Republic].

    PubMed

    Vicat, Jean-Paul; Doumnang Mbaigane, Jean-Claude; Bellion, Yves

    2014-01-01

    Data on mineral elements in spirulinas being limited, we analyzed macrominerals and trace elements of samples from France and Africa. Spirulinas cultivated in France have a composition in macromineral elements similar to those of the literature. The entire contents of trace elements are low. Unlike marine cyanobacteria, they do not concentrate rare-earth elements. Spirulina harvested in Chad has high levels in macrominerals and trace elements, due to traditional drying and harvesting methods. Rare-earth element levels are attributed to this pollution and not to their concentration in spirulinas, because rare-earth element normalized profiles of spirulina are strictly parallel to those of ouadis mud and very different from those of ouadis water. Despite the sometimes high content of total As, normal water consumption in Chad presents no health problems. Spirulinas grown in Togo, Niger, Mali, Burkina-Faso and Central African Republic have chemical compositions similar to those of Chad spirulinas, but with a lower content of macromineral and trace elements, reflecting a lower mineral pollution. Rare-earth element normalized patterns dismiss an aeolian pollution and the pollution is rather of pedological origin. They show no toxicity problem except spirulinas from Burkina-Faso, whose Pb content is too high. The variability of composition of spirulinas can be largely attributed to the mineral pollution of the samples. Significant levels of rare-earth elements sometimes found in the literature reflect this pollution. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  1. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A soil sampling reference site: the challenge in defining reference material for sampling.

    PubMed

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; van der Perk, Marcel

    2008-11-01

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.

  3. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levelsmore » to those in the pituitary gland of AD and control subjects.« less

  4. Occurrence and distribution of contaminants in bottom sediment and water of the Barron River Canal, Big Cypress National Preserve, Florida

    USGS Publications Warehouse

    Miller, Ronald L.; McPherson, Benjamin F.

    2001-01-01

    Trace elements and organic contaminants in bottom-sediment samples collected from 10 sites on the Barron River Canal and from one site on the Turner River in October 1998 had patterns of distribution that indicated different sources. At some sites on the Barron River Canal, lead, copper, and zinc, normalized to aluminum, exceeded limits normally considered as background and may be enriched by human activities. Polynuclear aromatic hydrocarbons and p-cresol, normalized against organic carbon, had patterns of distribution that indicated local sources of input from a road or vehicular traffic or from an old creosote wood treatment facility. Phthalate esters and the traces elements arsenic, cadmium, and zinc were more widely distributed with the highest normalized concentrations occurring at the Turner River background site, probably due to the high percentage of fine sediment (74% less than 63 micrometers) and high organic carbon concentration (42%) at that site and the binding effect of organic carbon on trace elements and trace organic compounds. Low concentrations of pesticides or pesticide degradation products were detected in bottom sediment (DDD and DDE, each less than 3.5 µg/kg) and water (9 pesticides, each less than 0.06 µ/L), primarily in the northern reach of the Barron River Canal where agriculture is a likely source. Although a few contaminants approached criteria that would indicate adverse effects on aquatic life, none exceeded the criteria, but the potential synergistic effects of mixtures of contaminants found at most sites are not included in the criteria.

  5. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.

  6. Differential Effects of Low-Molecular-Weight Organic Acids on the Mobilization of Soil-Borne Arsenic and Trace Metals.

    PubMed

    Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia

    2017-08-21

    A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.

  7. Trace Element Analysis of Biological Samples.

    ERIC Educational Resources Information Center

    Veillon, Claude

    1986-01-01

    Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…

  8. Trace elements in streambed sediments of small subtropical streams on O'ahu, Hawai'i: Results from the USGS NAWQA program

    USGS Publications Warehouse

    De Carlo, E. H.; Tomlinson, M.S.; Anthony, S.S.

    2005-01-01

    Data are presented for trace element concentrations determined in the <63 ??m fraction of streambed sediment samples collected at 24 sites on the island of O'ahu, Hawai'i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors. Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai'i, as well as in the context of the abundance of fine-grained sediment in the streambed of O'ahu streams. Statistical methods including cluster analysis, Kruskal-Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream. The findings of this study are generally similar to but differ slightly from previous work on sediments and suspended particulate matter in streams, from two urban watersheds of O'ahu, Hawai'i. Inter-element associations in the latter were often stronger and indicated a mixture of anthropogenic, agricultural and basaltic sources of trace elements. Some elements fell into different statistical categories in the two studies, owing in part to differences in study design and the hydrogeological constraints on the respective study areas.

  9. Trace elements in sediments, blue spotted tilapia Oreochromis leucostictus (Trewavas, 1933) and its parasite Contracaecum multipapillatum from Lake Naivasha, Kenya, including a comprehensive health risk analysis.

    PubMed

    Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz

    2014-06-01

    This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.

  10. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study

    PubMed Central

    McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.

    2014-01-01

    With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136

  11. Growth and elemental content of two tree species growing on abandoned coal fly ash basins. [Liquidambar styraciflua L. ; Platanus occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, C.L.; Adriano, D.C.

    Differences in aboveground tissue concentrations of trace elements were assessed for sweetgum (Liquidambar styraciflua L.) and sycamore (Plantanus occidentalis L.) growing on two abandoned coal fly ash basins and a control soil. The wet basin (pH = 5.58) had originally received precipitator ash in an ash-water slurry, while the dry basin (pH = 8.26) had received both precipitator and bottom ash in dry form. In general, trees from the wet basin exhibited elevated trace element concentrations in comparison to the controls, while the dry basin trees exhibited reduced concentrations. On eof the most striking differenced in elemental concentrations among themore » ash basin and control trees was observed for Mn, with the control trees exhibiting concentrations orders of magnitude greater than the ash basin trees. Differences in foliar trace element concentrations among the sites can generally be explained by differences in substrate trace element concentrations and/or substrate pH. While trees from the wet ash basin generally had the highest trace element concentrations, these trees also attained the greatest height and diameter growth, suggesting that the elevated trace element concentrations in the wet basin substrate are not limiting the establishment of these two species. The greater height and diameter growth of the wet basin trees is presumably a result of the greater water-holding capacity of the substrate on this site. Differences in growth and tissue concentrations between sweetgum and sycamore highlight the importance of using more than one species when assessing metal toxicity or deficiency on a given substrate.« less

  12. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  13. Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone

    DOE PAGES

    Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...

    2015-10-07

    Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sablock, J.

    A trace element signature, a characteristic pattern of enrichment and depletion of trace elements, was determined for a group of siliciclastic-carbonate Oxfordian and Kimmeridgian sedimentary strata, collected from outcrops in western Montana, southeastern British Columbia and southern Alberta. The average values, by petrofacies, of 10 major and 18 trace elements were measured for 40 samples. These data were normalized to Upper Continental Crust (UCC), and plotted against averaged published values of graywackes from the same facies. The rare earth elements (REEs), as well as Ti, Zr, Nb and Y are considered immobile even through diagenesis, and at least low levelmore » metamorphism. So these elements should form a reliable part of the geochemical signature. Compared to UCC and average graywacke, Jurassic samples are very depleted in Zr, Nb and Y. Oxfordian samples have slightly higher rare earth element values, i.e. La, Ce and Nd, than either other Jurassic samples or average graywacke. The most likely source of REE values are garnets and tourmaline which occur as inclusions in monocrystalline quartz grains. This pattern, and petrological study, point to a sedimentary source area, deficient in feldspar, heavy minerals and rock fragments. The consistency of the signature throughout this time may indicate slow uplift of a widespread sedimentary source area, or could be an effect of greater mixing and shorter residence time of dissolved materials in an epeiric sea.« less

  15. A review on the elemental contents of Pakistani medicinal plants: Implications for folk medicines.

    PubMed

    Aziz, Muhammad Abdul; Adnan, Muhammad; Begum, Shaheen; Azizullah, Azizullah; Nazir, Ruqia; Iram, Shazia

    2016-07-21

    Substantially, plants produce chemicals such as primary and secondary metabolites, which have significant applications in modern therapy. Indigenous people mostly rely on traditional medicines derived from medicinal plants. These plants have the capacity to absorb a variety of toxic elements. The ingestion of such plants for medicinal purpose can have imperative side effects. Hence, with regard to the toxicological consideration of medicinal plants, an effort has been made to review the elemental contents of ethno medicinally important plants of Pakistan and to highlight the existing gaps in knowledge of the safety and efficacy of traditional herbal medications. Literature related to the elemental contents of ethno medicinal plants was acquired by utilizing electronic databases. We reviewed only macro-elemental and trace elemental contents of 69 medicinal plant taxa, which are traditionally used in Pakistan for the treatment of sundry ailments, including anemia, jaundice, cancer, piles, diarrhea, dysentery, headache, diabetes, asthma, blood purification, sedative and ulcer. A majority of plants showed elemental contents above the permissible levels as recommended by the World health organization (WHO). As an example, the concentrations of Cadmium (Cd) and Lead (Pb) were reportedly found higher than the WHO permissible levels in 43 and 42 medicinal plants, respectively. More specifically, the concentrations of Pb (54ppm: Silybum marianum) and Cd (5.25ppm: Artemisia herba-alba) were found highest in the Asteraceae family. The reported medicinal plants contain a higher amount of trace and toxic elements. Intake of these plants as traditional medicines may trigger the accumulation of trace and toxic elements in human bodies, which can cause different types of diseases. Thus, a clear understanding about the nature of toxic substances and factors affecting their concentrations in traditional medicines are essential prerequisites for efficacious herbal therapeutics with lesser or no side effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Chemometric evaluation of concentrations of trace elements in intervertebral disc tissue in patient with degenerative disc disease.

    PubMed

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Gasik, Zuzanna; Frankowski, Marcin; Dąbrowski, Mikołaj; Molisak, Bartłomiej; Kaczmarczyk, Jacek; Gasik, Robert

    2017-12-23

    The work is designed to uncover the pattern of mutual relation among trace elements and epidemiological data in the degenerated intervertebral disk tissue in humans. Hitherto the reason of the degenerative process is not fully understood. Trace elements are the basic components of the biological compound related both its metabolism as well as environmental exposure. The relation pattern among elements occurs gives new perspective in solving the cause of the disease. We have analysed trace elements content in the 30 intervertebral disc from 22 patients with degenerative disc disease. The concentrations of Al, Cu, Cd, Mo, Ni and Pb were determined with Atomic Absorption Spectrometry. To analyse the multidimentional relation between trace element concentration and epidemiological data the chemometric analysis was applied. The similarity have been shown in occurrence of following pairs: Cd-Mo as well as Mg-Zn. The second pair was correlated with Pb concentration. Pb levels are observed to be competitive to Cu concentration. Cd concentration was related to Zn and Mg deficiency. No single but rather cluster of epidemiological data show observable influence on the TE tissue variance. Zn and Cu was related to the male sex. Operation with orthopedic implants were related to combined Al, Mo and Zn concentration. This is the first chemometric analysis of trace elements in disk tissue. It shows multidimentional relations that are missed by the classical statistic. The analysis shows significant relation. The nature of the relations is the basis for further metabolic and environmental research.

  17. Australasian Society for Parenteral and Enteral Nutrition guidelines for supplementation of trace elements during parenteral nutrition.

    PubMed

    Osland, Emma J; Ali, Azmat; Isenring, Elizabeth; Ball, Patrick; Davis, Melvyn; Gillanders, Lyn

    2014-01-01

    This work represents the first part of a progressive review of AuSPEN's 1999 Guidelines for Provision of Micronutrient Supplementation in Adult Patients receiving Parenteral Nutrition, in recognition of the developments in the literature on this topic since that time. A systematic literature review was undertaken and recommendations were made based on the available evidence and with consideration to specific elements of the Australian and New Zealand practice environment. The strength of evidence underpinning each recommendation was assessed. External reviewers provided feedback on the guidelines using the AGREE II tool. Reduced doses of manganese, copper, chromium and molybdenum, and an increased dose of selenium are recommended when compared with the 1999 guidelines. Currently the composition of available multi-trace element formulations is recognised as an obstacle to aligning these guidelines with practice. A paucity of available literature and limitations with currently available methods of monitoring trace element status are acknowledged. The currently unknown clinical impact of changes to trace element contamination of parenteral solutions with contemporary practices highlights need for research and clinical vigilance in this area of nutrition support practice. Trace elements are essential and should be provided daily to patients receiving parenteral nutrition. Monitoring is generally only required in longer term parenteral nutrition, however should be determined on an individual basis. Industry is encouraged to modify existing multi-trace element solutions available in Australia and New Zealand to reflect changes in the literature outlined in these guidelines. Areas requiring research are highlighted.

  18. Feasibility of the detection of trace elements in particulate matter using online High-Resolution Aerosol Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salcedo, D.; Laskin, Alexander; Shutthanandan, V.

    The feasibility of using an online thermal-desorption electron-ionization high-resolution aerosol mass spectrometer (AMS) for the detection of particulate trace elements was investigated analyzing data from Mexico City obtained during the MILAGRO 2006 field campaign, where relatively high concentrations of trace elements have been reported. This potential application is of interest due to the real-time data provided by the AMS, its high sensitivity and time resolution, and the widespread availability and use of this instrument. High resolution mass spectral analysis, isotopic ratios, and ratios of different ions containing the same elements are used to constrain the chemical identity of the measuredmore » ions. The detection of Cu, Zn, As, Se, Sn, and Sb is reported. There was no convincing evidence for the detection of other trace elements commonly reported in PM. The elements detected tend to be those with lower melting and boiling points, as expected given the use of a vaporizer at 600oC in this instrument. Operation of the AMS vaporizer at higher temperatures is likely to improve trace element detection. The detection limit is estimated at approximately 0.3 ng m-3 for 5-min of data averaging. Concentration time series obtained from the AMS data were compared to concentration records determined from offline analysis of particle samples from the same times and locations by ICP (PM2.5) and PIXE (PM1.1 and PM0.3). The degree of correlation and agreement between the three instruments (AMS, ICP, and PIXE) varied depending on the element. The AMS shows promise for real-time detection of some trace elements, although additional work including laboratory calibrations with different chemical forms of these elements are needed to further develop this technique and to understand the differences with the ambient data from the other techniques. The trace elements peaked in the morning as expected for primary sources, and the many detected plumes suggest the presence of multiple point sources, probably industrial, in Mexico City which are variable in time and space, in agreement with previous studies.« less

  19. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.

  20. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  1. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  2. Concentration of trace elements on branded cigarette in Malaysia

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Yasir, Muhamad Samudi; Rahman, Irman Abdul; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd

    2016-01-01

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing the neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 1012 n cm-2 s-1. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO).

  3. Horizontal and vertical variability of soil properties in a trace element contaminated area

    NASA Astrophysics Data System (ADS)

    Burgos, Pilar; Madejón, Engracia; Pérez-de-Mora, Alfredo; Cabrera, Francisco

    2008-02-01

    The spatial distribution of some soil chemical properties and trace element contents of a plot affected by the Aznalcóllar mine spill were investigated using statistical and geostatistical methods to assess the extent of soil contamination. Total and EDTA-extractable soil trace element concentrations and total S content showed great variability and high coefficients of variation in the three examined depths. Soil in the plot was found to be significantly contaminated by As, Cd, Cu, Pb and Zn within a wide range of pH. Total trace element concentrations at all depths (0-60 cm) were much higher than background values of non-affected soil, indicating that despite the clean-up operations, the concentration of trace elements in the experimental plot was still high. The spatial distribution of the different variables was estimated by kriging to design contour maps. These maps allowed the identification of specific zones with high metal concentrations and low pH values corresponding to spots of residual sludge. Moreover, kriged maps showed distinct spatial distribution and hence different behaviour for the elements considered. This information may be applied to optimise remediation strategies in highly and moderately contaminated areas.

  4. Geochemistry of zircons from basic rocks of the Korosten anorthosite-mangerite-charnockite-granite complex, north-western region of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Shumlyanskyy, Leonid; Belousova, Elena; Petrenko, Oksana

    2017-09-01

    The concentrations of 26 trace elements have been determined by laser ablation ICP-MS in zircons from four samples of basic rocks of the Korosten anorthosite-mangerite-charnockite-granite plutonic complex, the Ukrainian Shield. Zircons from the Fedorivka and Torchyn gabbroic intrusions and Volynsky anorthosite massif have distinctive abundances of many trace elements (REE, Sr, Y, Mn, Th). Zircons from the gabbroic massifs are unusually enriched in trace elements, while zircons from pegmatites in anorthosite are relatively depleted in trace elements. High concentrations of trace elements in zircons from gabbroic intrusions can be explained by their crystallization from residual interstitial melts enriched in incompatible elements. The zircons studied demonstrate a wide range of Ti concentrations, which reflects their temperature of crystallization: the zircons most enriched in Ti, from mafic pegmatites of the Horbuliv quarry (20-40 ppm), have the highest temperature of crystallization (845 ± 40 °C). Lower (720-770 °C) temperatures of zircon crystallization in gabbroic rocks are explained by its crystallization from the latest portions of the interstitial melt or by simultaneous crystallization of ilmenite. The Ce anomaly in zircons correlates with the degree of oxidation of the coexisting ilmenite.

  5. Ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples

    NASA Technical Reports Server (NTRS)

    Meyer, C., Jr.; Anderson, D. H.; Bradley, J. G.

    1974-01-01

    The ion microprobe was used to measure the composition and distribution of trace elements in lunar plagioclase, and these analyses are used as criteria in determining the possible origins of some nonmare lunar samples. The Apollo 16 samples with metaclastic texture and high-bulk trace-element contents contain plagioclase clasts with extremely low trace-element contents. These plagioclase inclusions represent unequilibrated relicts of anorthositic, noritic, or troctolitic rocks that have been intermixed as a rock flour into the KREEP-rich matrix of these samples. All of the plagioclase-rich inclusions which were analyzed in the KREEP-rich Apollo 14 breccias were found to be rich in trace elements. This does not seem to be consistent with the interpretation that the Apollo 14 samples represent a pre-Imbrium regolith, because such an ancient regolith should have contained many plagioclase clasts with low trace-element contents more typical of plagioclase from the pre-Imbrium crust. Ion-microprobe analyses for Ba and Sr in large plagioclase phenocrysts in 14310 and 68415 are consistent with the bulk compositions of these rocks and with the known distribution coefficients for these elements. The distribution coefficient for Li (basaltic liquid/plagioclase) was measured to be about 2.

  6. Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe

    USGS Publications Warehouse

    Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.

    1981-01-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.

  7. Spatial and temporal variability of trace element concentrations in an urban subtropical watershed, Honolulu, Hawaii

    USGS Publications Warehouse

    Heinen, De Carlo E.; Anthony, S.S.

    2002-01-01

    Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input. ?? 2002 Elsevier Science Ltd. All rights reserved.

  8. Influence of dietary chromium yeast supplementation on apparent trace elements metabolism in growing camel (Camelus dromedarius) reared under hot summer conditions.

    PubMed

    Alhidary, Ibrahim A; Alsofi, M A; Abdoun, K A; Samara, E M; Okab, A B; Al-Haidary, A A

    2018-03-01

    This study aimed to evaluate the effect of dietary chromium (Cr) supplementation on the apparent metabolism of some trace elements in camel calves reared under hot summer conditions. The study was conducted on a total of 15 male camel calves (5-6 months old) reared under hot summer conditions for 12 weeks. The animals were housed individually under shelter and divided into three dietary treatment groups (diets supplemented with 0.0, 0.5, or 1.0 mg Cr/kg DM), five animals each. At the end of the study, a metabolic trial was conducted on all camels for the evaluation of trace elements metabolism. Cr excretion, absorption, and retention showed an increasing trend with the increasing level of dietary Cr supplementation. Dietary Cr supplementation at 0.5 mg Cr/kg DM to camel calves resulted in a significant (P < 0.05) increase in Cu and an increasing trend in Zn and Mn excretion via urine and feces. However, Fe retention increased significantly (P < 0.05) in camel calves fed on diet supplemented with Cr. Dietary Cr supplementation to camel calves resulted in an increasing trend of plasma Cr concentration, while plasma concentration of Cu and Zn tended to decrease and without any effect on plasma Fe concentration. The results of the present study suggests that care should be taken for the negative interaction of Cr with the utilization of other trace elements, in cases where Cr is supplemented to the diet as a feed additive to promote growth and immunity under hot climatic conditions.

  9. Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination.

    PubMed

    Malandrino, Pasqualino; Russo, Marco; Ronchi, Anna; Minoia, Claudio; Cataldo, Daniela; Regalbuto, Concetto; Giordano, Carla; Attard, Marco; Squatrito, Sebastiano; Trimarchi, Francesco; Vigneri, Riccardo

    2016-08-01

    The increased thyroid cancer incidence in volcanic areas suggests an environmental effect of volcanic-originated carcinogens. To address this problem, we evaluated environmental pollution and biocontamination in a volcanic area of Sicily with increased thyroid cancer incidence. Thyroid cancer epidemiology was obtained from the Sicilian Regional Registry for Thyroid Cancer. Twenty-seven trace elements were measured by quadrupole mass spectrometry in the drinking water and lichens (to characterize environmental pollution) and in the urine of residents (to identify biocontamination) in the Mt. Etna volcanic area and in adjacent control areas. Thyroid cancer incidence was 18.5 and 9.6/10(5) inhabitants in the volcanic and the control areas, respectively. The increase was exclusively due to the papillary histotype. Compared with control areas, in the volcanic area many trace elements were increased in both drinking water and lichens, indicating both water and atmospheric pollution. Differences were greater for water. Additionally, in the urine of the residents of the volcanic area, the average levels of many trace elements were significantly increased, with values higher two-fold or more than in residents of the control area: cadmium (×2.1), mercury (×2.6), manganese (×3.0), palladium (×9.0), thallium (×2.0), uranium (×2.0), vanadium (×8.0), and tungsten (×2.4). Urine concentrations were significantly correlated with values in water but not in lichens. Our findings reveal a complex non-anthropogenic biocontamination with many trace elements in residents of an active volcanic area where thyroid cancer incidence is increased. The possible carcinogenic effect of these chemicals on the thyroid and other tissues cannot be excluded and should be investigated.

  10. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  11. Trace elements study of high purity nanocrystalline silicon carbide (3C-SiC) using k0-INAA method

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin; Jazbec, Anze

    2017-07-01

    Silicon carbide (3C-SiC) nanoparticles have been irradiated by neutron flux (2×1013 n·cm-2·s-1) at TRIGA Mark II type research reactor. After neutron irradiation, the radioisotopes of trace elements in the nanocrystalline 3C-SiC were studied as time functions. The identification of isotopes which significantly increased the activity of the samples as a result of neutron radiation was carried out. Nanocrystalline 3C-SiC are synthesized by standard laser technique and the purity of samples was determined by the k0-based Instrumental Neutron Activation Analysis (k0-INAA) method. Trace elements concentration in the 3C-SiC nanoparticles were determined by the radionuclides of appropriate elements. The trace element isotopes concentration have been calculated in percentage according to k0-INAA method.

  12. Concentrations of selected trace elements in mineral and spring bottled waters on the Serbian market.

    PubMed

    Ristić, M; Popović, I; Pocajt, V; Antanasijević, D; Perić-Grujić, A

    2011-01-01

    Eight selected trace elements, which are generally included in regulations, were analyzed in 23 types of bottled waters. Ten mineral and seven spring bottled waters were from the Serbian market and six mineral bottled waters were obtained in different EU countries. For the purpose of comparison, selected tap waters were also analyzed. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of trace elements (arsenic, cadmium, copper, manganese, nickel, lead and antimony). Results were compared with the Serbian regulations for bottled water, EU regulations and guideline values set by the World Health Organization for drinking water. With few exceptions, the trace element levels of most bottled waters were below the guideline values. However, a higher content of antimony was observed in waters from polyethylene terephthalate (PET) containers, indicating a potential leaching of this element from the plastic packaging.

  13. Information Summary, Area of Concern: Grand Calumet River, Indiana

    DTIC Science & Technology

    1991-03-01

    Indiana Harbor and Adjacent Lake Michigan (Source Rl, Table 4) 10 Concentrations of 26 Major, Minor and Trace Elements in Sediments from Indiana Harbor...2 Dec 84 (Source R39, Table 2) 68 Concentrations of Major, Minor , and Trace Elements in Fish and Crayfish from Indiana Harbor and Adjacent Lake...Table 21b) 71 Catch per Unit Effort in Crayfish Traps (Source Rl, Table 21c) 72 Concentratiors of Major, Minor , and Trace Elements in Periphyton and

  14. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel.

    PubMed

    de Winter, Niels J; Snoeck, Christophe; Claeys, Philippe

    2016-01-01

    The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal's diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet.

  15. Seasonal Cyclicity in Trace Elements and Stable Isotopes of Modern Horse Enamel

    PubMed Central

    Snoeck, Christophe; Claeys, Philippe

    2016-01-01

    The study of stable isotopes in fossil bioapatite has yielded useful results and has shown that bioapatites are able to faithfully record paleo-environmental and paleo-climatic parameters from archeological to geological timescales. In an effort to establish new proxies for the study of bioapatites, intra-tooth records of enamel carbonate stable isotope ratios from a modern horse are compared with trace element profiles measured using laboratory micro X-Ray Fluorescence scanning. Using known patterns of tooth eruption and the relationship between stable oxygen isotopes and local temperature seasonality, an age model is constructed that links records from six cheek upper right teeth from the second premolar to the third molar. When plotted on this age model, the trace element ratios from horse tooth enamel show a seasonal pattern with a small shift in phase compared to stable oxygen isotope ratios. While stable oxygen and carbon isotopes in tooth enamel are forced respectively by the state of the hydrological cycle and the animal’s diet, we argue that the seasonal signal in trace elements reflects seasonal changes in dust intake and diet of the animal. The latter explanation is in agreement with seasonal changes observed in carbon isotopes of the same teeth. This external forcing of trace element composition in mammal tooth enamel implies that trace element ratios may be used as proxies for seasonal changes in paleo-environment and paleo-diet. PMID:27875538

  16. Connecting pigment composition and dissolved trace elements to phytoplankton population in the southern Benguela Upwelling zone (St. Helena Bay)

    NASA Astrophysics Data System (ADS)

    Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.

    2017-12-01

    Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.

  17. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    PubMed

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Voris, P.; Cataldo, D.A.; Garland, T.R.

    An evaluation of the terrestrial transport, transformations and ecological effects of phosphorus (red phosphorus-butyl rubber (RP/BR)), smoke/obscurant was performed to characterize the effects on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of representative of soils of those sites; and (3) soil microbiological communities. The influence and interactions of smoke/obscurant concentration relative humidity and wind speed was assessed. Toxicity symptoms for plants from repeated or a single exposure included leaf tip burn, leaf curl, leaf abscission and drop, floral abortion, chlorosis, neucrotic spotting, wilting, dessication and dieback for ponderosa pine,more » short needle pine, sagebrush, a native grass (Blando Brome) and bushbean. Soils data suggest an increase in the mobility of selected trace elements after exposure; however, this effect appears to be ameliorated with time. This phenomenon is influenced by soil type, which is a reflection of the buffering capacity of the exposed soil (i.e., Burbank, Quallayute, Shawano, and Yamac) as well as the concentration and duration of exposure. Increased mobility of trace elements is also evidenced in the trace element content of plants grown on soils after exposure to RP/BR smoke. Soil Microbial Community effects show a reduction in the production of nitrate after soil is exposed to RP/BR smoke. This indicates a reduction in ammonium oxidizing bacterial populations, specifically Nitrosomonas and probably Nitrobacter. For the most part most of the plant, soil and soil microbial effects are transient.« less

  19. Trace element geochemistry of Archean volcanic rocks

    NASA Technical Reports Server (NTRS)

    Jahn, B.-M.; Shih, C.-Y.; Murthy, V. R.

    1974-01-01

    The K, Rb, Sr, Ba and rare-earth-element contents of some Archean volcanic rocks from the Vermilion greenstone belt, northeast Minnesota, were determined by the isotopic dilution method. The characteristics of trace element abundances, supported by the field occurrences and major element chemistry, suggest that these volcanic rocks were formed in an ancient island arc system.

  20. Al-26, Pu-244, Ti-50, REE, and trace element abundances in hibonite grains from CM and CV meteorites

    NASA Technical Reports Server (NTRS)

    Fahey, A. J.; Mckeegan, K. D.; Zinner, E.; Goswami, J. N.

    1987-01-01

    Hibonites from the CM meteorites Murchison, Murray, and Cold Bokkeveld, and hibonites and Ti-rich pyroxene from the CV chondrite Allende are studied. Electron microprobe measurements of major element concentrations and track and ion probe measurements of Mg and Ti isotopic ratios, rare earth elements (REEs), and trace element abundances are analyzed. Correlations between isotopic anomalies in Ti, Al-26, Pu-244, and Mg-26(asterisk) are examined. Ti isotopic anomalies are compared with REE and trace element abundance patterns. Reasons for the lack of Al-26 in the hibonites are investigated and discussed. It is observed that there is no correlation between the Ti isotopic compositions, and the presence of Mg-26(asterisk), Pu-244, and REE and trace element patterns in individual hibonite samples. The data reveal that hibonites are not interstellar dust grains but formed on a short time scale and in localized regions of the early solar system.

  1. Trace element partitioning during the retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.H.; Dale, L.S.; Chapman, J.f.

    1987-05-01

    A bulk sample of oil shale from the Julia Creek deposit in Queensland was retorted under Fischer assay conditions at temperatures ranging from 250 to 550 /sup 0/C. The distributions of the trace elements detected in the shale oil and retort water were determined at each temperature. Oil distillation commenced at 300 /sup 0/C and was essentially complete at 500 /sup 0/C. A number of trace elements were progressively mobilized with increasing retort temperature up to 450 /sup 0/C. The following trace elements partitioned mainly to the oil: vanadium, arsenic, selenium, iron, nickel, titanium, copper, cobalt, and aluminum. Elements thatmore » also partitioned to the retort waters included arsenic, selenium, chlorine, and bromine. Element mobilization is considered to be caused by the volatilization of organometallic compounds, sulfide minerals, and sodium halides present in the oil shale. The results have important implications for shale oil refining and for the disposal of retort waters. 22 references, 5 tables.« less

  2. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Paula; Burgos, Pilar; Cabrera, Francisco; Lepp, Nicholas W; Madejón, Engracia

    2011-10-01

    We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4-6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000 °C

    NASA Astrophysics Data System (ADS)

    Ayers, John C.; Peters, Timothy J.

    2018-02-01

    Hydrothermal zircon grains have trace element characteristics such as low Th/U, high U, and high rare earth element (REE) concentrations that distinguish them from magmatic, metamorphic, and altered zircon grains, but it is unclear whether these characteristics result from distinctive fluid compositions or zircon/fluid fractionation effects. New experiments aimed at measuring zircon/fluid trace element partition coefficients Dz/f involved recrystallizing natural Mud Tank zircon with low trace element concentrations in the presence of H2O, 1 m NaOH, or 1 m HCl doped with ∼1000 ppm of rare earth elements (REE), Y, U and Th and ∼500 ppm of Li, B, P, Nb, Ba, Hf, and Ta. Experiments were run for 168 h at 1.5 GPa, 800-1000 °C, and fO2 = NNO in a piston cylinder apparatus using the double capsule method. LA-ICP-MS analysis shows that run product zircon crystals have much higher trace element concentrations than in Mud Tank zircon starting material. Dz/f values were estimated from run product zircon analyses and bulk composition using mass balance. Most elements behave incompatibly, with median Dz/f being highest for Hf = 8 and lowest for B = 0.02. Addition of NaOH or HCl had little influence on Dz/f values. Dz/f for LREE are anomalously high, likely due to contamination of run product zircon with quenched solutes enriched in incompatible elements, so DLREE were estimated using lattice strain theory. Brice curves for +3 ions yield zircon/fluid DLu/DLa of ∼800-5000. A Brice curve fit to +4 ions yielded DCe4+ values. Estimated concentrations of Ce3+ and Ce4+ show that the average Ce4+/Ce3+ in zircon of 27 is much higher than in fluid of 0.02. Th and U show little fractionation, with median DTh/DU = 0.7, indicating that the low Th/U in natural hydrothermal zircon is inherited from the fluid. Natural fluid compositions estimated from measured Dz/f and published compositions of hydrothermal zircon grains from aplite and eclogite reflect the mineralogy of the host rock, e.g., fluid in equilibrium with eclogite garnet is depleted in heavy REE relative to middle REE, and has low Th/U.

  4. Evolution of the Campanian Ignimbrite Magmatic System II: Trace Element and Th Isotopic Evidence for Open-System Processes

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.; Fowler, S.; Belkin, H.; de Vivo, B.

    2005-12-01

    The Campanian Ignimbrite, a large volume (~200 km3 DRE) trachytic to phonolitic ignimbrite was deposited at ~39.3 ka and represents the largest of a number of highly explosive volcanic events in the region near Naples, Italy. Thermodynamic modeling of the major element evolution using the MELTS algorithm (see companion contribution by Fowler et al.) provides detailed information about the identity of and changes in proportions of solids along the liquid line of descent during isobaric fractional crystallization. We have derived trace element mass balance equations that explicitly accommodate changing mineral-melt bulk distribution coefficients during crystallization and also simultaneously satisfy energy and major element mass conservation. Although major element patterns are reasonably modeled assuming closed system fractional crystallization, modeling of trace elements that represent a range of behaviors (e.g. Zr, Nb, Th, U, Rb, Sm, Sr) yields trends for closed system fractionation that are distinct from those observed. These results suggest open-system processes were also important in the evolution of the Campanian magmatic system. Th isotope data yield an apparent isochron that is ~20 kyr younger than the age of the deposit, and age-corrected Th isotope data indicate that the magma body was an open-system at the time of eruption. Because open-system processes can profoundly change isotopic characteristics of a magma body, these results illustrate that it is critical to understand the contribution that open-system processes make to silicic magma bodies prior to assigning relevance to age or timescale information derived from isotope systematics. Fluid-magma interaction has been proposed as a mechanism to change isotopic and elemental characteristics of magma bodies, but an evaluation of the mass and thermal constraints on such a process suggest large-scale fluid-melt interaction at liquidus temperatures is unlikely. In the case of the magma body associated with the Campanian Ignimbrite, the most likely source of open-system signatures is assimilation of partial melts of compositionally heterogeneous basement composed of older cumulates and intrusive equivalents of volcanic activity within the Campanian region. Additional trace element modeling, explicitly evaluating the mass and energy balance effects that fluid, solids, and melt have on trace element evolution, will further elucidate the contributions of open vs. closed system processes within the Campanian magma body.

  5. Use of an ultra-clean sampling technique with inductively coupled plasma-mass spectrometry to determine trace-element concentrations in water from the Kirkwood-Cohansey Aquifer system, coastal plain, New Jersey

    USGS Publications Warehouse

    Ivahnenko, Tamara; Szabo, Zoltan; Hall, G.S.

    1996-01-01

    Water samples were collected during 1993 from 22 public supply wells screened in the Kirkwood-Cohansey aquifer system; concentrations of 18 trace elements were determined primarily by using inductively coupled plasma-mass spectrometry (ICP-MS) techniques, though graphite furnace atomic adsorption, hydride generation, and cold- vapor flameless atomic adsorption techniques were used for thallium, arsenic, and mercury, respectively, at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL). In addition, laboratory measurements of alkalinity and turbidity were made. The ground-water samples were collected by using ultra-clean sampling protocols developed by the USGS for collecting ground-water samples in areas with water containing low concentrations of trace elements. This technique is based on recently gained experience in sampling surface water for these elements. Field parameters (water temperature, specific conductance, pH, and dissolved-oxygen concentration) were monitored prior to sample collection. Three equipment blanks were collected to ensure that low-level trace-element contamination did not occur during sample collection. One split sample and a commercially- prepared reference standard were submitted to the NWQL o evaluate laboratory precision and accuracy, respectively. Trace-element concentrations in 10 sample splits and one equipment blank were also determined at the Rutgers University Chemistry Department laboratory. Results of the ICP-MS analyses and cold vapor flameless atomic absorption indicated that five trace elements-- cobalt, copper, lead, mercury, and nickel--were detectable in low concentrations (<0.1-29 mg/L) in most of the samples from the 22 wells, and four elements--aluminum, barium, manganese and zinc--were detected in higher concentrations than the other elements (30-710 mg/L for aluminum; 4-180 mg/L for barium, manganese, and zinc). The remaining nine trace elements were present in concentrations consistently lower than the minimum reporting limit. Turbidity was low (less than 1 nephelometric turbidity unit (NTU)), indicating that the trace-element concentrations were present in the dissolved phase and ideally would be reproducible in the absence of highly variable concentrations of particulates. The concentration of lead in one sample exceeded the U.S. Environmental Protection Agency (USEPA) action level of 15 mg/L; concentrations ranged from <1 to 16 mg/L. Mercury was frequently detected; concentrations ranged from <0.1 to 1.1 mg/L but did not exceed the USEPA maximum contaminant level. Results of analyses of the equipment blanks indicated that samples collected by using the new ultra-clean sampling protocols were free of low-level (< 1mg/L) trace-element contamination. The analysis of the split sample sent to the NWQL had a difference of 5 percent or less for all constituents except aluminum, for which the analysis had a difference of 10 percent. Results of ICP-MS analyses of split water samples sent to the Rutgers University Chemistry Department laboratory were, in general, in good agreement (within 10 percent) with those of the NWQL. Results of the analysis of the commercial standard agreed (within 5 percent) with the known concentrations of the trace elements. The quality-assurance data (three blanks, one split sample, and one standard), although not statistically evaluated because of the small data set, indicate that the measured trace-element concentrations are precise and accurate and that the samples were free of contamination at the microgram-per-liter level of contamination.

  6. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F.

    2012-01-01

    Pennsylvanian coals in the Appalachian Basin host pyrite that is locally enriched in potentially toxic trace elements such as As, Se, Hg, Pb, and Ni. A comparison of pyrite-rich coals from northwestern Alabama, eastern Kentucky, and West Virginia reveals differences in concentrations and mode of occurrence of trace elements in pyrite. Pyrite occurs as framboids, dendrites, or in massive crystalline form in cell lumens or crosscutting veins. Metal concentrations in pyrite vary over all scales, from microscopic to mine to regional, because trace elements are inhomogeneously distributed in the different morphological forms of pyrite, and in the multiple generations of sulfide mineral precipitates. Early diagenetic framboidal pyrite is usually depleted in As, Se, and Hg, and enriched in Pb and Ni, compared to other pyrite forms. In dendritic pyrite, maps of As distribution show a chemical gradient from As-rich centers to As-poor distal branches, whereas Se concentrations are highest at the distal edges of the branches. Massive crystalline pyrite that fills veins is composed of several generations of sulfide minerals. Pyrite in late-stage veins commonly exhibits As-rich growth zones, indicating a probable epigenetic hydrothermal origin. Selenium is concentrated at the distal edges of veins. A positive correlation of As and Se in pyrite veins from Kentucky coals, and of As and Hg in pyrite-filled veins from Alabama coals, suggests coprecipitation of these elements from the same fluid. In the Kentucky coal samples (n = 18), As and Se contents in pyrite-filled veins average 4200 ppm and 200 ppm, respectively. In Alabama coal samples, As in pyrite-filled veins averages 2700 ppm (n = 34), whereas As in pyrite-filled cellular structures averages 6470 ppm (n = 35). In these same Alabama samples, Se averages 80 ppm in pyrite-filled veins, but was below the detection limit in cell structures. In samples of West Virginia massive pyrite, As averages 1700 ppm, and Se averages 270 ppm (n = 24). The highest concentration of Hg (≤ 102 ppm) is in Alabama pyrite veins. Improved detailed descriptions of sulfide morphology, sulfide mineral paragenesis, and trace-element concentration and distribution allow more informed predictions of: (1) the relative rate of release of trace elements during weathering of pyrite in coals, and (2) the relative effectiveness of various coal-cleaning procedures of removing pyrite. For example, trace element-rich pyrite has been shown to be more soluble than stoichiometric pyrite, and fragile fine-grained pyrite forms such as dendrites and framboids are more susceptible to dissolution and disaggregation but less amenable to removal during coal cleaning.

  7. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    PubMed

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Selenium deficiency risk predicted to increase under future climate change

    PubMed Central

    Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.

    2017-01-01

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487

  9. Selenium deficiency risk predicted to increase under future climate change.

    PubMed

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  10. Infrared trace element detection system

    DOEpatents

    Bien, F.; Bernstein, L.S.; Matthew, M.W.

    1988-11-15

    An infrared trace element detection system includes an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined. 11 figs.

  11. Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia.

    PubMed

    Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V

    2016-09-01

    Age-related differences in the trace element content of hair have been reported. However, some discrepancies in the data exist. The primary objective of this study was to estimate the change in hair trace elements content in relation to age. Six hundred and eighteen women and 438 men aged from 10-59 years took part in the current cross-sectional study. Hair Cr, Mn, Ni, Si, Al, As, Be, Cd and Pb tended to decrease with age in the female sample, whereas hair Cu, Fe, I, Se, Li and Sn were characterised by an age-associated increase. Hair levels of Cr, Cu, I, Mn, Ni, Si and Al in men decreased with age, whereas hair Co, Fe, Se, Cd, Li and Pb content tended to increase. Hair mercury increased in association with age in men and in women, whereas hair vanadium was characterised by a significant decrease in both sexes. The difference in hair trace element content between men and women decreased with age. These data suggest that age-related differences in trace element status may have a direct implication in the ageing process.

  12. Infrared trace element detection system

    DOEpatents

    Bien, Fritz; Bernstein, Lawrence S.; Matthew, Michael W.

    1988-01-01

    An infrared trace element detection system including an optical cell into which the sample fluid to be examined is introduced and removed. Also introduced into the optical cell is a sample beam of infrared radiation in a first wavelength band which is significantly absorbed by the trace element and a second wavelength band which is not significantly absorbed by the trace element for passage through the optical cell through the sample fluid. The output intensities of the sample beam of radiation are selectively detected in the first and second wavelength bands. The intensities of a reference beam of the radiation are similarly detected in the first and second wavelength bands. The sensed output intensity of the sample beam in one of the first and second wavelength bands is normalized with respect to the other and similarly, the intensity of the reference beam of radiation in one of the first and second wavelength bands is normalized with respect to the other. The normalized sample beam intensity and normalized reference beam intensity are then compared to provide a signal from which the amount of trace element in the sample fluid can be determined.

  13. A factor influence study of trace element bioaccumulation in moss bags.

    PubMed

    Cesa, M; Campisi, B; Bizzotto, A; Ferraro, C; Fumagalli, F; Nimis, P L

    2008-10-01

    Moss bags of Rhynchostegium riparioides were exposed to different water concentrations of 11 trace elements under laboratory conditions, according to a saturated fractional factorial design (67 treated combinations), with the aim of measuring (1) element uptake and (2) the main effects and first-order interactions of influent factors. Bioaccumulation was directly proportional to water concentration, but the uptake ratio (ranging from 10(2) to 10(5)) also depended on the concentration of other metals. The highest uptake ratios were observed for Al, Cu, Cr, Hg, and Pb. The multiple regression model showed that interactions among elements exist and induce both antagonism (Fe is the most frequent competitor) and synergism (Cr exerts a great influence on Pb and Zn uptake). Interactions might be relatively strong (as for As, Cr, and Pb) or weak (Cd and Hg). This evidence should be taken into consideration in biomonitoring surveys of industrial sites, where effluents release more than one contaminant.

  14. Standard Reference Line Combined with One-Point Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) to Quantitatively Analyze Stainless and Heat Resistant Steel.

    PubMed

    Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong

    2018-01-01

    Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.

  15. What do the trace metal contents of urine and toenail samples from Qatar׳s farm workers bioindicate?

    PubMed

    Kuiper, Nora; Rowell, Candace; Nriagu, Jerome; Shomar, Basem

    2014-05-01

    Qatar׳s farm workers provide a unique population for exposure study: they are young, healthy males. This study combined trace element profiles in urine and toenail with survey information from 239 farm workers to assess the extent to which the biomarkers provide complementary exposure information. Urinary Mo levels (average=114 µg/L) were elevated; average urinary values (µg/L) for all other elements were: V (1.02), Cr (0.55), Mn (2.15), Fe (34.1), Co (0.47), Ni (2.95), Cu (15.0), As (47.8), Se (25.7), Cd (1.09), Ba (22.5), Pb (2.50) and U (0.15). Average toenail concentrations (mg/kg) were: Mn (2.48), Cu (4.43), As (0.26), Se (0.58), Mo (0.07), Cd (0.03), Ba (1.00), Pb (0.51) and U (0.02). No significant association was found between corresponding elements in urine and toenails. Elemental profiles suggest groundwater (with the exception of Mo) and soil-dust-crop exposure pathways cannot account for elemental variations. The main factors moderating trace element contents are related to depuration processes involving participants׳ trace element body burden prior to work in Qatar, and interactions of trace element metabolic cycles which over-ride the exposure footprint. Toenail and urine need to be carefully validated before reliable use as biomarkers of exposure in general populations for most elements in the study. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Petroleum formation during serpentinization: the evidence of trace elements

    NASA Astrophysics Data System (ADS)

    Szatmari, P.; Fonseca, T. C.; Miekeley, N. F.

    2002-05-01

    An organic source of petroleum formation is well attested by many biomarkers. This need not, however, exclude contribution from inorganic sources. During serpentinization, in the absence of free oxygen, oxidation of bivalent Fe to magnetite breaks up the water molecule, generating hydrogen and creating one of the most reducing environments near the Earth's surface (Janecky & Seyfried, 1986). Szatmari (1989) proposed that some petroleum forms at plate boundaries by Fischer-Tropsch-type synthesis over serpentinizing peridotites and suggested that Ni, an element rare in the continental crust but important in both petroleum and the mantle, may be indicative of such a source. Recently, Holm and Charlou (2001) observed hydrocarbon formation by Fischer-Tropsch-type synthesis over serpentinizing peridotites of the Mid-Atlantic Ridge. To test whether the relative amounts of other trace elements in petroleum are in agreement with a serpentinizing source, we analyzed by internally coupled plasma-mass spectroscopy (ICP-MS) 22 trace elements in 68 oils sampled in seven sedimentary basins throughout Brazil. We found that trace elements in the oils correlate well with mantle peridotites and reflects the process of hydrothermal serpentinization during continental breakup. Four groups may be distinguished. In serpentinites, trace elements of the first group, Ti, Cr, Mn, and Fe, are largely retained in low-solubility magnetite and other spinels formed during serpentinization or inherited from the original peridotites. In the oils, when normalized to mantle peridotites, these elements are at relatively low levels, about 10,000 times less than their abundances in mantle peridotites, reflecting their low availability from stable minerals. In contrast, trace elements of the second group, which includes V, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Ba, La, Ce, and Nd, pass during serpentinization mostly into serpentine minerals or solution. In the oils, when normalized to mantle peridotites, these elements are at higher levels than those of the first group, about 300 times less than their abundances in mantle peridotites, reflecting their higher availability during serpentinization. Within both groups, trace metal ratios and A/(A+B) type proportionalities in the oils are close to mantle peridotites. V behaves somewhat differently: in lacustrine sequences V contents in the oils are low and the ratios of V to other elements of the second group are mantle-like, whereas in marine sequences V and its ratios to other trace elements rise by orders of magnitude. Trace elements commonly enriched in formation fluids and hydrothermal brines (Rb, Sr, Ba, Cu, Zn), when normalized to mantle peridotites, are enriched in the oils by about 0.5 order of magnitude relative to other elements of the second group. The third group of elements includes S, Mo, and As. These elements occur in the oils at abundances similar to sea water and are, when normalized to mantle peridotites and Ni, enriched in the oils by several orders of magnitude, indicating sea water reacting with peridotites during sepentinization as their possible source. Finally trace elements of the fourth group, such as Pb and Ag, are enriched in the oils by several orders of magnitude relative to both mantle peridotites and sea water and were presumably mobilized from shales by hydrothermal fluids. References:Holm, N.G. and Charlou, J.L., 2001, EPSL 191, 1-8. Janecky, D.R. and Seyfried, W.E., 1986, Geochim. Cosmochim. Acta 50, 1357-1378. Szatmari, P., 1989, AAPG Bull. 73, 989-998.

  17. Posterior Cord Syndrome and Trace Elements Deficiency as an Uncommon Presentation of Common Variable Immunodeficiency

    PubMed Central

    dos Santos Mota, Ananda; Morais Monteiro, Priscila; Carvalho, Angela Cristina Gouvêa; Fernandes Diniz, Barbara; Gemal Lanzieri, Pedro; Carneiro Ramos, Ricardo; Mocarzel, Luis Otavio

    2017-01-01

    Diarrhea is one of the most common symptoms in common variable immunodeficiency, but neurologic manifestations are rare. We presented a 50-year-old woman with recurrent diarrhea and severe weight loss that developed a posterior cord syndrome. Endoscopy found a duodenal villous blunting, intraepithelial lymphocytosis, and lack of plasma cells and magnetic resonance imaging of the spine was normal. Laboratory assays confirmed common variable immunodeficiency syndrome and showed low levels of trace elements (copper and zinc). Treatment was initiated with parenteral replacement of trace elements and intravenous human immunoglobulin and the patient improved clinically. In conclusion, physicians must be aware that gastrointestinal and neurologic disorders may be related to each other and remember to request trace elements laboratory assessment. PMID:28356913

  18. In Situ Trace Element Analysis of an Allende Type B1 CAI: EK-459-5-1

    NASA Technical Reports Server (NTRS)

    Jeffcoat, C. R.; Kerekgyarto, A.; Lapen, T. J.; Andreasen, R.; Righter, M.; Ross, D. K.

    2014-01-01

    Variations in refractory major and trace element composition of calcium, aluminum-rich inclusions (CAIs) provide constraints on physical and chemical conditions and processes in the earliest stages of the Solar System. Previous work indicates that CAIs have experienced complex histories involving, in many cases, multiple episodes of condensation, evaporation, and partial melting. We have analyzed major and trace element abundances in two core to rim transects of the melilite mantle as well as interior major phases of a Type B1 CAI (EK-459-5-1) from Allende by electron probe micro-analyzer (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to investigate the behavior of key trace elements with a primary focus on the REEs Tm and Yb.

  19. Application of multivariate analysis to investigate the trace element contamination in top soil of coal mining district in Jorong, South Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.

    2018-02-01

    Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

  20. Re-187-Os-187, Pt-190-Os-186 Isotopic and Highly Siderophile Element Systematics of Group IVA Irons

    NASA Technical Reports Server (NTRS)

    Walker, R. J.; McCoy, T. J.; Schulte, R. F.; McDonough, W. F.; Ash, R. D.

    2005-01-01

    We have recently completed Re-187-Os-187 and Pt-190-Os-186 isotopic and elemental studies of the two largest magmatic iron meteorite groups, IIAB and IIIAB [1]. These studies revealed closed-system behavior of both isotopic systems, but complex trace element behavior for Re, Pt and Os in group IIIAB. Here we examine isotopic and trace elemental systematics of group IVA irons. The IVA irons are not as extensively fractionated as IIAB and IIIAB and their apparently less complex crystallization history may make for more robust interpretation of the relative partitioning behavior of Re, Pt and Os, as well as the other highly siderophile elements (HSE) measured here; Pd, Ru and Ir [e.g. 2]. An additional goal of our continuing research plan for iron meteorites is to assess the possibility of relating certain ungrouped irons with major groups via trace element modeling. Here, the isotopic and trace element systematics of the ungrouped irons Nedagolla and EET 83230 are compared with the IVA irons.

  1. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.

    PubMed

    Rivelli, Anna Rita; De Maria, Susanna; Puschenreiter, Markus; Gherbin, Piergiorgio

    2012-04-01

    We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.

  2. Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Hinz, E. A.; Kohn, M. J.

    2009-12-01

    Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates, consistent with a double-medium diffusion model in which microdomains with slow diffusivities are bounded by fast-diffusing pathways.

  3. Copper and Zinc Deficiency in a Patient Receiving Long-Term Parenteral Nutrition During a Shortage of Parenteral Trace Element Products.

    PubMed

    Palm, Eric; Dotson, Bryan

    2015-11-01

    Drug shortages in the United States, including parenteral nutrition (PN) components, have been common in recent years and can adversely affect patient care. Here we report a case of copper and zinc deficiency in a patient receiving PN during a shortage of parenteral trace element products. The management of the patient's deficiencies, including the use of an imported parenteral multi-trace element product, is described. © 2014 American Society for Parenteral and Enteral Nutrition.

  4. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS.

    PubMed

    Bonta, Maximilian; Török, Szilvia; Hegedus, Balazs; Döme, Balazs; Limbeck, Andreas

    2017-03-01

    Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

  5. Effects of Different Levels of Molybdenum on Rumen Microbiota and Trace Elements Changes in Tissues from Goats.

    PubMed

    Zhou, Sihui; Zhang, Caiying; Xiao, Qingyang; Zhuang, Yu; Gu, Xiaolong; Yang, Fan; Xing, Chenghong; Hu, Guoliang; Cao, Huabin

    2016-11-01

    Molybdenum (Mo) is an essential trace element for animals and human beings. However, the negative effects on rumen function and distribution of trace elements in tissues induced by excessive Mo have not been well understood. Therefore, the purpose of present study was to investigate the impact of Mo on rumen microbiota, distribution of trace elements in various organs, and hematological parameters of goats. A total of 36 goats were randomly distributed into three groups with equal number and low-Mo and high-Mo groups were orally administered ammonium molybdate at 15 and 45 mg · Mo · kg -1  · BW respectively, while the control group received corresponding quantitative deionized water. The results showed that the total number of ciliate and protozoa protein concentration decreased significantly (P < 0.01) on days 25 and 50. Concentrations of ammonia nitrogen and bacterial protein were significantly higher (P < 0.05) in low-Mo group, while they were lower (P < 0.05) in high-Mo group than the control group on days 25 and 50. In addition, Mo accumulated in serum and all detected tissues. Copper (Cu) and zinc (Zn) contents significantly decreased (P < 0.05) in hair and serum on days 25 and 50, while Cu contents increased (P < 0.05) and the change of Zn contents were not obvious (P > 0.05) in other tissues on days 25 and 50. Besides, there was no obvious variation in iron (Fe) contents during whole experiment period (P > 0.05). Furthermore, excessive Mo content had no significant effect on red blood cell (RBC) counts and hemoglobin (HGB) concentration (P > 0.05) on days 25 and 50, while white blood cell (WBC) counts increased significantly (P < 0.05) on day 50. These results indicated that excessive Mo content could impact the balance of ruminal microorganisms and interfere with the absorption and distribution of Mo and Cu mainly.

  6. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can rarely still be resolved analytically. Matrix effects are demonstrated for PPP analysis of diverse rock compositions and basalt glass analysis when externally calibrated based on SRM 610 and SRM 612 glasses; employing basalt glass GSD-1G or BCR-2G for external standardisation basically eliminates these problems. Perhaps the most prominent progress of the LA-ICP-MS PPP analytical procedure presented here is the fact that trace elements not commonly analysed, i.e. new, unconventional geochemical tracers, can be measured straightforwardly, including volatile elements, the flux elements Li and B, the chalcophile elements As, Sb, Tl, Bi, and elements that alloy with metal containers employed in conventional glass production approaches. The method presented here thus overcomes many common problems and limitations in analytical geochemistry and is shown to be an efficient alternative for bulk rock trace elements analysis.

  7. An optimized chronology for a stalagmite using seasonal trace element cycles from Shihua Cave, Beijing, North China

    NASA Astrophysics Data System (ADS)

    Ban, F.; Baker, A.; Marjo, C.; Duan, W.; Li, X.; Coleborn, K.; Akter, R.; Nagra, G.

    2017-12-01

    Stalagmites play an increasingly important role in the paleoclimatic reconstruction from seasonal to orbital timescales. One of the important reasons is that 230Th-dating can provide an absolute age enabling more accurate knowledge of the stalagmite growth. Additionally, annual trace element and optical layers can provide complementary method for determining a precise age and seasonal resolution. The trace elements of a stalagmite (XMG) in Beijing Shihua Cave, which is located in the East Asian monsoon region, were analyzed by laser ablation ICP-MS and compared with stalagmite laminae. The results show that: (1) the polished section of the topmost 4 mm of stalagmite XMG has obvious bi-optical layers (fluorescence and visible light) under a conventional transmission microscope. In the rest of the sample laminae are not observed using this method. (2) The variations of P/Ca, Sr/Ca, Ba/Ca, U/Ca and Mg/Ca show seasonal cycles throughout the sample. Sr/Ca is inversely correlated to P/Ca, and its peaks correspond with the (non-fluorescing) white layers, which deposit in late winter and spring when the climate is dry. The peaks of P/Ca match closely with the (fluorescing) opaque layers, because P is a soil-derived element which increases in the high rainfall monsoon period. (3) The PCA of the five trace elements showed that the cycles of PC1 could represent the annual cycle. This stalagmite was deposited over 148 ± 4 years through peak counting and the cycles of PC1 correspond well with the annual layers. Trace element cyclicity as shown by PC1 can increase the accuracy of stalagmite dating, especially in the absence of obvious laminae. The trace elements can be used as the marker of seasonal changes in a strongly contrasting wet-dry monsoon climate regime. Keywords: high-precision dating; LA-ICP-MS; stalagmite; trace elements; seasonal cycles; Shihua Cave

  8. Evaluation of frictional melting on the basis of trace element analyses of fault rocks

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Ujiie, K.

    2016-12-01

    Pseudotachylytes (solidified frictional melts produced during seismic slip) found in exhumed accretionary complexes are considered to have formed originally at seismogenic depths, and help our understanding of the dynamics of earthquake faulting in subduction zones. The frictional melting should affect rock chemistry. Actually, major element compositions of unaltered pseudotachylyte matrix in the Shimanto accretionary complex are reported to be similar to that of illite, implying disequilibrium melting in the slip zone (Ujiie et al., 2007). Bulk-rock trace element analyses of the pseudotachylyte-bearing fault rocks also revealed their shift to the clay-mineral-like compositions (Honda et al., 2011). Toward better understanding of the frictional melting using chemical means, we carried out detailed major and trace element analyses for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., 2007). About one milligram each of samples was collected from a rock chip along the microstructure by using the PC-controlled micro-drilling apparatus, and then analyzed by ICP-MS. Host rocks showed a series of compositional trends controlled by mixing of detrital sedimentary components. Unaltered part of the pseudotachylyte vein, on the other hand, showed striking enrichment of fluid-immobile trace elements, consistent with selective melting of fine-grained, clay-rich matrix of the fault rock. Importantly, completely altered parts of the dark veins exhibit essentially the same characteristics as the unaltered part, indicating that the trace element composition of the pseudotachylyte is well preserved even after considerable alteration in the later stages. These results demonstrate that trace element and structural analyses are useful to detect preexistence of pseudotachylytes resulting from selective frictional melting of clay minerals. It has been controversial that pseudotachylytes are rarely formed or rarely preserved. Trace element analyses on clay-rich localized slipping zones shed light on this topic. References: Ujiie et al. (2007) J. Struct. Geol. 29, 599-613; Honda et al. (2011) GRL 38, L06310.

  9. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China.

    PubMed

    Dong, Zhiwen; Kang, Shichang; Qin, Xiang; Li, Xiaofei; Qin, Dahe; Ren, Jiawen

    2015-10-01

    Trace element pollution resulting from anthropogenic emissions is evident throughout most of the atmosphere and has the potential to create environmental and health risks. In this study we investigated trace element deposition in the snowpacks at two different locations in the northern Tibetan Plateau, including the Laohugou (LHG) and the Tanggula (TGL) glacier basins, and its related atmospheric pollution information in these glacier areas, mainly focusing on 18 trace elements (Li, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Nb, Mo, Cd, Sb, Cs, Ba, Tl, and Pb). The results clearly demonstrate that pronounced increases of both concentrations and crustal enrichment factors (EFs) are observed in the snowpack at the TGL glacier basin compared to that of the LHG glacier basin, with the highest EFs for Sb and Zn in the TGL basin, whereas with the highest EFs for Sb and Cd in the LHG basin. Compared with other studies in the Tibetan Plateau and surrounding regions, trace element concentration showed gradually decreasing trend from Himalayan regions (southern Tibetan Plateau) to the TGL basin (central Tibetan Plateau), and to the LHG basin (northern Tibetan Plateau), which probably implied the significant influence of atmospheric trace element transport from south Asia to the central Tibetan Plateau. Moreover, EF calculations at two sites showed that most of the heavy metals (e.g., Cu, Zn, Mo, Cd, Sb, and Pb) were from anthropogenic sources and some other elements (e.g., Li, Rb, and Ba) were mainly originated from crustal sources. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm and CALIOP/CALIPSO transect showed significant influence of atmospheric pollutant transport from south Asia to the Tibetan Plateau, which probably caused the increased concentrations and EFs of trace element deposition in the snowpack on the TGL glacier basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  11. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    Wohlgemuth-Ueberwasser, Cora C.; Viljoen, Fanus; Petersen, Sven; Vorster, Clarisa

    2015-06-01

    The key for understanding the trace metal inventory of currently explored VHMS deposits lies in the understanding of trace element distribution during the formation of these deposits on the seafloor. Recrystallization processes already occurring at the seafloor might liberate trace elements to later hydrothermal alteration and removement. To investigate the distribution and redistribution of trace elements we analyzed sulfide minerals from 27 black smoker samples derived from three different seafloor hydrothermal fields: the ultramafic-hosted Logatchev hydrothermal field on the Mid-Atlantic Ridge, the basaltic-hosted Turtle Pits field on the mid-atlantic ridge, and the felsic-hosted PACMANUS field in the Manus basin (Papua New Guinea). The sulfide samples were analyzed by mineral liberation analyser for the modal abundances of sulfide minerals, by electron microprobe for major elements and by laser ablation-inductively coupled plasma-mass spectrometry for As, Sb, Se, Te, and Au. The samples consist predominantly of chalcopyrite, sphalerite, pyrite, galena and minor isocubanite as well as inclusions of tetrahedrite-tennantite. Laser ablation spectra were used to evaluate the solubility limits of trace elements in different sulfide minerals at different textures. The solubility of As, Sb, and Au in pyrite decreases with increasing degree of recrystallization. When solubility limits are reached these elements occur as inclusions in the different sulfide phases or they are expelled from the mineral phase. Most ancient VHMS deposits represent felsic or bimodal felsic compositions. Samples from the felsic-hosted PACMANUS hydrothermal field at the Pual ridge (Papua New Guinea) show high concentrations of Pb, As, Sb, Bi, Hg, and Te, which is likely the result of an additional trace element contribution derived from magmatic volatiles. Co-precipitating pyrite and chalcopyrite are characterized by equal contents of Te, while chalcopyrite that replaced pyrite (presumably during black smoker growth) is enriched in Te relative to pyrite. These higher Te concentrations may be related to higher fluid temperature.

  12. Effect of combustion temperature on the emission of trace elements under O2/CO2 atmosphere during coal combustion

    NASA Astrophysics Data System (ADS)

    Qu, Chengrui; Zhang, Mo; Mann, Michael. D.

    2018-03-01

    The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.

  13. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    PubMed

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  14. Bags with oven-dried moss for the active monitoring of airborne trace elements in urban areas.

    PubMed

    Giordano, S; Adamo, P; Monaci, F; Pittao, E; Tretiach, M; Bargagli, R

    2009-10-01

    To define a harmonized methodology for the use of moss and lichen bags as active monitoring devices of airborne trace elements in urban areas, we evaluated the element accumulation in bags exposed in Naples in different spring weather conditions for 6- and 12-weeks. Three different pre-exposure treatments were applied to moss and lichen materials: water-washing, acid-washing and oven-drying. During the different exposure periods in the Naples urban environment the moss accumulated always higher amounts of elements (except Hg) than lichens and the element accumulation increased during wetter weather and higher PM(10) conditions. The oven pre-treatment did not substantially modify the morphology and element composition of moss and the exposure in bags of this material for 6-weeks was sufficient to detect the pattern of airborne trace elements.

  15. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; organic compounds and trace elements in bed sediment and fish tissue, 1992-93

    USGS Publications Warehouse

    Carter, L.F.; Anderholm, S.K.

    1997-01-01

    The occurrence and distribution of contaminants in aquatic systems are major components of the National Water-Quality Assessment (NAWQA) Program. Bed-sediment samples were collected at 18 sites in the Rio Grande Valley study unit between September 1992 and March 1993 to characterize the geographic distribution of organic compounds, including chlorinated insecticides, polychlorinated biphenyls (PCB's), and other chlorinated hydrocarbons, and also trace elements. Two-millimeter-size- fraction sediment was analyzed for organic compounds and less than 63-micron-size-fraction sediment was analyzed for trace elements. Concentrations of p,p'-DDE were detected in 33 percent of the bed-sediment samples. With the exception of DDT-related compounds, no other organochlorine insecticides or polychlorinated biphenyls were detected in samples of bed sediment. Whole-body fish samples were collected at 11 of the bed- sediment sites and analyzed for organic compounds. Organic compounds were reported more frequently in samples of fish, and more types of organic compounds were found in whole-body fish samples than in bed-sediment samples. Concentrations of p,p'-DDE were detected in 91 percent of whole-body fish samples. Polychlorinated biphenyls, cis-chlordane, trans-chlordane, trans- nonachlor, and hexachlorobenzene were other organic compounds detected in whole-body samples of fish from at least one site. Because of the extent of mineralized areas in the Rio Grande Basin arsenic, cadmium, copper, lead, mercury, selenium, and zinc concentrations in bed-sediment samples could represent natural conditions at most sites. However, a combination of natural conditions and human activities appears to be associated with elevated trace-element concentrations in the bed-sediment sample from the site Rio Grande near Creede, Colorado, because this sample exceeded the background trace-element concentrations calculated for this study. Fish-liver samples were collected at 12 of the bed-sediment sites and analyzed for trace elements. Certain trace elements were detected at higher concentrations in fish-liver samples than in bed-sediment samples from the same site. Both bed-sediment and fish-tissue samples are necessary for a complete environmental assessment of the occurrence and distribution of trace elements.

  16. Reference Values of 14 Serum Trace Elements for Pregnant Chinese Women: A Cross-Sectional Study in the China Nutrition and Health Survey 2010-2012.

    PubMed

    Liu, Xiaobing; Zhang, Yu; Piao, Jianhua; Mao, Deqian; Li, Yajie; Li, Weidong; Yang, Lichen; Yang, Xiaoguang

    2017-03-21

    The development of reference values of trace elements is recognized as a fundamental prerequisite for the assessment of trace element nutritional status and health risks. In this study, a total of 1400 pregnant women aged 27.0 ± 4.5 years were randomly selected from the China Nutrition and Health Survey 2010-2012 (CNHS 2010-2012). The concentrations of 14 serum trace elements were determined by high-resolution inductively coupled plasma mass spectrometry. Reference values were calculated covering the central 95% reference intervals (P2.5-P97.5) after excluding outliers by Dixon's test. The overall reference values of serum trace elements were 131.5 (55.8-265.0 μg/dL for iron (Fe), 195.5 (107.0-362.4) μg/dL for copper (Cu), 74.0 (51.8-111.3) μg/dL for zinc (Zn), 22.3 (14.0-62.0) μg/dL for rubidium (Rb), 72.2 (39.9-111.6) μg/L for selenium (Se), 45.9 (23.8-104.3) μg/L for strontium (Sr), 1.8 (1.2-3.6) μg/L for molybdenum (Mo), 2.4 (1.2-8.4) μg/L for manganese (Mn), 1.9 (0.6-9.0) ng/L for lead (Pb), 1.1 (0.3-5.6) ng/L for arsenic (As), 835.6 (219.8-4287.7) ng/L for chromium (Cr), 337.9 (57.0-1130.0) ng/L for cobalt (Co), 193.2 (23.6-2323.1) ng/L for vanadium (V), and 133.7 (72.1-595.1) ng/L for cadmium (Cd). Furthermore, some significant differences in serum trace element reference values were observed between different groupings of age intervals, residences, anthropometric status, and duration of pregnancy. We found that serum Fe, Zn, and Se concentrations significantly decreased, whereas serum Cu, Sr, and Co concentrations elevated progressively compared with reference values of 14 serum trace elements in pregnant Chinese women. The reference values of serum trace elements established could play a key role in the following nutritional status and health risk assessment.

  17. Trace Element Study of H Chondrites: Evidence for Meteoroid Streams.

    NASA Astrophysics Data System (ADS)

    Wolf, Stephen Frederic

    1993-01-01

    Multivariate statistical analyses, both linear discriminant analysis and logistic regression, of the volatile trace elemental concentrations in H4-6 chondrites reveal compositionally distinguishable subpopulations. Observed difference in volatile trace element composition between Antarctic and non-Antarctic H4-6 chondrites (Lipschutz and Samuels, 1991) can be explained by a compositionaily distinct subpopulation found in Victoria Land, Antarctica. This population of H4-6 chondrites is compositionally distinct from non-Antarctic H4-6 chondrites and from Antarctic H4 -6 chondrites from Queen Maud Land. Comparisons of Queen Maud Land H4-6 chondrites with non-Antarctic H4-6 chondrites do not give reason to believe that these two populations are distinguishable from each other on the basis of the ten volatile trace element concentrations measured. ANOVA indicates that these differences are not the result of trivial causes such as weathering and analytical bias. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. Given the differences in terrestrial age between Victoria Land, Queen Maud Land, and modern H4-6 chondrite falls, these results are consistent with a variation in H4-6 chondrite flux on a 300 ky timescale. This conclusion requires the existence of co-orbital meteoroid streams. Statistical analyses of the volatile trace elemental concentrations in non-Antarctic modern falls of H4-6 chondrites also demonstrate that a group of 13 H4-6 chondrites, Cluster 1, selected exclusively for their distinct fall parameters (Dodd, 1992) is compositionally distinguishable from a control group of 45 non-Antarctic modern H4-6 chondrites on the basis of the ten volatile trace element concentrations measured. Model-independent randomization-simulations based on both linear discriminant analysis and logistic regression verify these results. While ANOVA identifies two possible causes for this difference, analytical bias and group classification, a test validation experiment verifies that group classification is the more significant cause of compositional difference between Cluster 1 and non-Cluster 1 modern H4-6 chondrite falls. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. This suggests that these meteorites are fragments of a co-orbital meteorite stream derived from a single parent body.

  18. Trace elements in groundwater used for water supply in Latvia

    NASA Astrophysics Data System (ADS)

    Retike, Inga; Kalvans, Andis; Babre, Alise; Kalvane, Gunta; Popovs, Konrads

    2014-05-01

    Latvia is rich with groundwater resources of various chemical composition and groundwater is the main drinking source. Groundwater quality can be easily affected by pollution or overexploitation, therefore drinking water quality is an issue of high importance. Here the first attempt is made to evaluate the vast data base of trace element concentrations in groundwater collected by Latvian Environment, Geology and Meteorology Centre. Data sources here range from National monitoring programs to groundwater resources prospecting and research projects. First available historical records are from early 1960, whose quality is impossible to test. More recent systematic research has been focused on the agricultural impact on groundwater quality (Levins and Gosk, 2007). This research was mainly limited to Quaternary aquifer. Monitoring of trace elements arsenic, cadmium and lead was included in National groundwater monitoring program of Latvia in 2008 and 2009, but due to lack of funding the monitoring was suspended until 2013. As a result there are no comprehensive baseline studies regarding the trace elements concentration in groundwater. The aim of this study is to determine natural major and trace element concentration in aquifers mainly used for water supply in Latvia and to compare the results with EU potable water standards. A new overview of artesian groundwater quality will be useful for national and regional planning documents. Initial few characteristic traits of trace element concentration have been identified. For example, elevated fluorine, strontium and lithium content can be mainly associated with gypsum dissolution, but the highest barium concentrations are found in groundwaters with low sulphate content. The groundwater composition data including trace element concentrations originating from heterogeneous sources will be processed and analyzed as a part of a newly developed geologic and hydrogeological data management and modeling system with working name "GeoVipum". This study is supported by the European Social Fund project Nr.2013/0054/2DP/2.1.1.1.0/13/APIA/VIAA/007 in Latvia and European Social Fund Mobilitas grant No MJD309 in Estonia. Reference: Levins I., Gosk, E. 2007. Trace elements in groundwater as indicators of anthropogenic impact. Environmental Geology, 55, 285-290.

  19. Lunar Ferroan Anorthosite Petrogenesis: Clues from Trace Element Distributions in FAN Subgroups

    NASA Astrophysics Data System (ADS)

    Floss, Christine; James, Odette B.; McGee, James J.; Crozaz, Ghislaine

    1998-04-01

    The rare earth elements (REE) and selected other trace elements were measured in plagioclase and pyroxene from nine samples of the lunar ferroan anorthosite (FAN) suite of rocks. Samples were selected from each of four FAN subgroups previously defined by James et al. (1989). Plagioclase compositions are homogeneous within each sample, but high- and low-Ca pyroxenes from lithic clasts typically have different REE abundances from their counterparts in the surrounding granulated matrices. Measured plagioclase/low-Ca pyroxene concentration ratios for the REE have steeper patterns than experimentally determined plagioclase/low-Ca pyroxene partition coefficients in most samples. Textural and trace element evidence suggest that, although subsolidus equilibration may be responsible for some of the discrepancy, plagioclase compositions in most samples have been largely unaffected by intermineral redistribution of the REE. The REE systematics of plagioclase from the four subgroups are broadly consistent with their derivation through crystallization from a single evolving magma. However, samples from some of the subgroups exhibit a decoupling of plagioclase and pyroxene compositions that probably reflects the complexities inherent in crystallization from a large-scale magmatic system. For example, two anorthosites with very magnesian mafic minerals have highly evolved trace element compositions; major element compositions in plagioclase also do not reflect the evolutionary sequence recorded by their REE compositions. Finally, a noritic anorthosite breccia with relatively ferroan mafic minerals contains several clasts with high and variable REE and other trace element abundances. Although plagioclase REE compositions are consistent with their derivation from a magma with a KREEPy trace element signature, very shallow REE patterns in the pyroxenes suggest the addition of a component enriched in the light REE.

  20. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  1. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    In order to grow on soils that vary widely in chemical composition, plants have evolved mechanisms for regulating the elemental composition of their tissues to balance the mineral nutrient and trace element bioavailability in the soil with the requirements of the plant for growth and development. T...

  2. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials

    DOE PAGES

    Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso; ...

    2017-02-02

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less

  3. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less

  4. [Determination of trace metals in atmospheric dry deposition with a heavy matrix of PUF by inductively coupled plasma mass spectroscopy after microwave digestion].

    PubMed

    Pan, Yue-peng; Wang, Yue-si; Yang, Yong-jie; Wu, Dan; Xin, Jin-yuan; Fan, Wen-yan

    2010-03-01

    Interest in atmospheric dry deposition results mostly from concerns about the effects of the deposited trace elements entering waterbody, soil and vegetation as well as their subsequent health effects. A microwave assisted digestion method followed by inductively coupled plasma mass spectrometric (MAD-ICP/MS) analysis was developed to determine the concentrations of a large number of trace metals in atmospheric dry deposition samples with a heavy matrix of polyurethane foam (PUF). A combination of HNO3-H2O2-HF was used for digestion. The experimental protocol for the microwave assisted digestion was established using two different SRMs (GBW 07401, Soil and GBW 08401, Coal fly ash). Subsequently, blanks and limits of detection for total trace metal concentrations were determined for PUF filter which was used for dry deposition sampling. Finally, the optimized digestion method was applied to real world atmospheric dry deposition samples collected at 10 sites in Jingjinji area in winter from Dec. 2007 to Feb. 2008. The results showed that the area-averaged total mass fluxes ranged between 85 and 912 mg x (m2 x d)(-1), and fluxes of most elements were highest at Baoding and lowest at Xinglong. In addition, the elemental fluxes in urban areas of Beijing, Tianjin and Tangshan were measured to be higher than that in suburb and rural sites. The average fluxes of crust elements (A1, Fe, Mn, K, Na, Ca and Mg) were one to three orders of magnitude higher than anthropogenic elements (Cu, Pb, Cr, Ni, V, Zn and Ba), varying from 151 to 16034 microg x (m2 x d)(-1) versus 14 to 243 microg x (m2 x d)(-1). Zinc was the most abundant heavy metal and calcium the highest of the crust elements while the elements Mo, Co, Cd, As and Be deposited less or even could not be detected. The anthropogenic and crustal contributions were estimated by employing enrichment factors (EF) calculated relative to the average crustal composition. The EF values of all elements except Pb and Zn were below 10, suggesting that local soil and/or dust generally dominate in the dry deposition flux.

  5. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy.

    PubMed

    Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos

    2018-03-01

    Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Trace element reference values in tissues from inhabitants of the European Community. III. The control of preanalytical factors in the biomonitoring of trace elements in biological fluids.

    PubMed

    Minoia, C; Pietra, R; Sabbioni, E; Ronchi, A; Gatti, A; Cavalleri, A; Manzo, L

    1992-06-09

    In the context of a programme concerning the determination of trace elements in body fluids and tissues to establish trace element reference values, research has been undertaken on the control of preanalytical factors in order to develop sufficiently accurate and precise guidelines to be applied in routine work by using techniques such as graphite furnace atomic absorption spectroscopy (GFAAS). Aspects investigated are related to the risk of contamination during blood collection and the use of anticoagulants; the risk of losses during storage and freeze-drying as well as the possible risk of contamination arising from trace elements in airborne particulates of the laboratory environment. For the analysis of Al, Ba, Cd, Co, Cr, Mn, Mo, Ni, Sb, W, V and Zn in blood, Teflon cannula is the method of choice. The anticoagulants do not introduce disturbing contaminations of Rb, Se, Zn, while contaminations were observed for Co, Cr, Mn. Radiotracers in 'metabolized form' (radiolabelled rat or rabbit tissues from animals administered with radioisotopes) show that samples stored for 1 month at -20 degrees C have no significant trace metal losses. Strict ambient air quality standard has to be respected (continuous monitoring) due to the possibility of element contaminations inside the laboratory. The use of matrix modifiers could represent a toxicological risk to the operators. Critical factors should be considered ('metal sheets') for each element in each matrix. For instance 27 factors for Cr in serum have been suggested.

  7. Trace elements in Zn Pb Ag deposits and related stream sediments, Brooks Range Alaska, with implications for Tl as a pathfinder element

    USGS Publications Warehouse

    Graham, G.E.; Kelley, K.D.; Slack, J.F.; Koenig, A.E.

    2009-01-01

    The Zn-Pb-Ag metallogenic province of the western and central Brooks Range, Alaska, contains two distinct but mineralogically similar deposit types: shale-hosted massive sulphide (SHMS) and smaller vein-breccia occurrences. Recent investigations of the Red Dog and Anarraaq SHMS deposits demonstrated that these deposits are characterized by high trace-element concentrations of As, Ge, Sb and Tl. This paper examines geochemistry of additional SHMS deposits (Drenchwater and Su-Lik) to determine which trace elements are ubiquitously elevated in all SHMS deposits. Data from several vein-breccia occurrences are also presented to see if trace-element concentrations can distinguish SHMS deposits from vein-breccia occurrences. Whole-rock geochemical data indicate that Tl is the most consistently and highly concentrated characteristic trace element in SHMS deposits relative to regional unmineralized rock samples. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of pyrite and sphalerite indicate that Tl is concentrated in pyrite in SHMS. Stream sediment data from the Drenchwater and Su-Lik SHMS show that high Tl concentrations are more broadly distributed proximal to known or suspected mineralization than As, Sb, Zn and Pb anomalies. This broader distribution of Tl in whole-rock and particularly stream sediment samples increases the footprint of exposed and shallowly buried SHMS mineralization. High Tl concentrations also distinguish SHMS mineralization from the vein-breccia deposits, as the latter lack high concentrations of Tl but can otherwise have similar trace-element signatures to SHMS deposits. ?? 2009 AAG/Geological Society of London.

  8. Regulation of trace elements and redox status in striatum of adult rats by long-term aerobic exercise depends on iron uptakes.

    PubMed

    Wu, Hua-Bo; Xiao, De-Sheng

    2017-03-06

    We investigated the effects of aerobic exercise (AE) on trace element contents and redox status in the striatum of rats with different diet iron. Weaned female rats were randomly fed with iron-adequate diet (IAD), iron-deficient diet (IDD), and iron-overloaded diet (IOD). After feeding their respective diet for 1 month, the rats fed with same diet were divided into swimming and maintaining sedentary (S) group. After 3 months, the non-heme iron (NHI), Mn, Cu, and Zn in the striatum were measured. Meanwhile, malonaldehyde acid (MDA), total superoxide dismutase activity, hydroxyl radical scavenging activity, and total antioxidant capacity were also analyzed. As compared with respective S rats, Mn, Cu, and Zn contents were significantly decreased in IDDE, but no significantly changes could be seen in IADE or IODE. A negative correlation of NHI with Cu contents in IDDE and positive correlations of NHI with Cu, or Zn contents in IADE, or with Mn or Cu contents in IODE were observed. In addition, striatum MDA was significantly decreased and anti-oxidative variables were increased in IODE compared to IODS. Our results suggest that the modification of trace elements and redox status in the striatum of rats caused by AE depends on dietary iron contents and that AE may also regulate the metabolic relationship of iron storage with other trace elements. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Trace elements in feed, manure, and manured soils.

    PubMed

    Sheppard, S C; Sanipelli, B

    2012-01-01

    Modern animal feeds often include nutritional mineral supplements, especially elements such as Cu, P, Se, and Zn. Other sources of trace elements also occur in livestock systems, such as pharmaceutical use of As and Zn to control gut flora, Bi in dairy for mastitis control, and Cu as hoof dips. Additionally, potential exists for inadvertent inclusion of trace elements in feeds or manures. There is concern about long-term accumulation of trace elements in manured soil that may even exceed guideline "safe" concentrations. This project measured ∼60 elements in 124 manure samples from broiler, layer, turkey, swine grower, swine nursery, sow, dairy, and beef operations. The corresponding feeds were also analyzed. In general, concentrations in manure were two- to fivefold higher than those in feed: the manure/feed concentration ratios were relatively consistent for all the animal-essential elements and were numerically similar for many of the non-nutrient elements. To confirm the potential for accumulation in soil, total trace element concentrations were measured in the profiles of 10 manured and 10 adjacent unmanured soils. Concentrations of several elements were found to be elevated in the manured soils, with Zn (and P) the most common. One soil from a dairy standing yard had concentrations of B that exceeded soil health guideline concentrations. Given that the Cu/P and Zn/P ratios found in manure were greater than typically reported in harvested crop materials, these elements will accumulate in soil even if manure application rates are managed to prevent accumulation of P in soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Temporal and diurnal analysis of trace elements in the Cryospheric water at remote Laohugou basin in northeast Tibetan Plateau.

    PubMed

    Dong, Zhiwen; Kang, Shichang; Qin, Dahe; Qin, Xiang; Yan, Fangping; Du, Wentao; Wei, Ting

    2017-03-01

    An evaluation of glacial meltwater chemistry is needed under recent dramatic glacier melting when water resources might be significantly impacted. This study investigated trace elements variation in the meltwater stream, and its related aquatic environmental information, at the Laohugou (LHG) glacier basin (4260 m a.s.l.) at a remote location in northeast Tibetan Plateau. We focused on the spatial, temporal and diurnal change of trace elements during the glacier ablation period. Results showed evident elements spatial difference on the glacier surface meltwater, as most of the elements showed increased concentration at the terminus compared to higher elevations sites. Dominant elements in the meltwater were Ba, Sr and Cr, whereas elements with high enrichment factors (EFs) were Sb, Ni, Mo and Zn. Temporal change of some trace elements concentration (e.g. Sc, Cu, and Rb) indicated increasing trend with accelerated snow-ice melting, whereas others (e.g. Ni, Zn, and Pb) showed decreasing trend. We find that, trace elements showed evident diurnal change and a peak value of concentration was observed each day at about 15:00-17:00, and the diurnal change was influenced by runoff level and pH. Moreover, EFs calculations revealed that heavy metals were partially originated from regional anthropogenic sources. Overall, the accelerated diurnal and temporal snow-ice melting (with high runoff level) were correlated to increased elemental concentration, pH, EC and elemental change mode, and thus this work is of great importance for evaluating the impacts of accelerated glacier melting to meltwater chemistry and downstream ecosystem in the northeast Tibetan Plateau. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China.

    PubMed

    Qie, Guanghao; Wang, Yan; Wu, Chen; Mao, Huiting; Zhang, Ping; Li, Tao; Li, Yaxin; Talbot, Robert; Hou, Chenxiao; Yue, Taixing

    2018-06-01

    The concentrations of particulate mercury (PHg) and other trace elements in PM 2.5 and PM 10 in the atmosphere were measured at the summit of Mount Tai during the time period of 15 June - 11 August 2015. The average PHg concentrations were 83.33 ± 119.1 pg/m 3 for PM 2.5 and 174.92 ± 210.5 pg/m 3 for PM 10 . Average concentrations for other trace elements, including Al, Ca, Fe, K, Mg, Na, Pb, As, Se, Cu, Cd, Cr, V, Mo, Co, Ag, Ba, Mn, Zn and Ni ranged from 0.06 ng/m 3 (Ag) to 354.33 ng/m 3 (Ca) in PM 2.5 and 0.11 ng/m 3 (Co) to 592.66 ng/m 3 (Ca) in PM 10 . The average concentrations of PHg were higher than those at other domestic mountain sites and cities in other counties, lower than those at domestic city sites. Other trace elements showed concentrations lower than those at the domestic mountain sites. Due possibly to increased control of emissions and the proportion of new energy, the PHg and trace element concentrations decreased, but the PHg showed concentrations higher than those at the Mountain sites, this showed that the reasons was not only severely affected by anthropogenic emissions, but also associated with other sources. The concentration changed trend of the main trace elements indicated that PHg, trace elements and particle matters present positive correlation and fine particulate matter has a greater surface area which was conductive to adsorption of Hg and trace elements to particles. On June 19, June 27 and July 6, according to the peak of mercury and trace elements, we can predict the potential sources of these three days. The results of principal component analysis (PCA) suggested that, crustal dust, coal combustion, and vehicle emissions were the main emission sources of PHg and other trace elements in Mount Tai. The 24-h backward trajectories and potential source contribution function (PSCF) analysis revealed that air masses arriving at Mount Tai were mainly affected by Shandong province. Mount Tai was subjected to five main airflow trajectories. Clusters 1, 2, 3, and 5 represented four pathways for local and regional sources and cluster 4 originated long-distance transportation. Central Shandong was the main source regions of PHg, Pb, Se, As, Cu and Cd. Southeastern and northwestern Shandong province and northern Jiangsu province were the most polluted source regions of Mn, Zn, and Ni. The crustal elements Fe and Ca had similar distributions of potential source regions, suggested by the highest PSCF values in southeastern Shandong and northern Jiangsu. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Predicting Water Quality Problems Associated with Coal Fly Ash Disposal Facilities Using a Trace Element Partitioning Study

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.

    2006-12-01

    For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the type of coal burned. Preliminary studies show that in some fly ash samples, significant amounts of As, B, Mo, Se, Sr and V are associated with the soluble and exchangeable fraction, and thus would be highly mobile in the environment. Lead, on the other hand, is mainly associated with the amorphous Fe and Mn oxide fractions and would be highly immobile in oxidizing conditions, but mobile in reducing conditions. Ni and Cr show different associations in different fly ash samples. In most fly ash samples, significant amounts of the trace elements are associated with more stable fractions that do not threaten the environment. The study of trace element partitioning in coal fly ash thus helps us to predict their leaching behavior under various conditions.

  13. Calibration-Free Laser-Induced Breakdown Spectroscopy (CF-LIBS) with Standard Reference Line for the Analysis of Stainless Steel.

    PubMed

    Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo

    2017-08-01

    In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.

  14. Concentration of trace elements on branded cigarette in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul

    Tobacco is a plant that is used as a recreational drug since the beginning of its use by the Native Americans. Now with the development of the tobacco industry, smoking has become a norm for the public in Malaysia. Trace elements in plants are mostly due to the uptake processes from the soils into the roots of the plants. The concentration of the elements may also be influenced by the elements contained in the water and also fertilizers. This paper aim to analyze the concentration of the trace elements contained in the branded cigarettes sold in Malaysia by utilizing themore » neutron activation analysis. The tobaccos were taken out from the cigarettes. The collected samples were air dried and passed through 2 mm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia Triga Mark II reactor with a neutron flux of 2.0 x 10{sup 12} n cm{sup -2} s{sup -1}. The samples then were analyzed using ORTEC Gamma Spectrometer a co-axial n-type HPGe detector with resolution of 2.0 keV at 1332 keV and relative efficiency of 20%. The data obtained could help in assessing the concentration of the trace elements that complying with the standard limitation dose proposed by World Health Organization (WHO)« less

  15. Atmospheric wet deposition of trace elements to a suburban environment, Reston, Virginia, USA

    USGS Publications Warehouse

    Conko, Kathryn M.; Rice, Karen C.; Kennedy, Margaret M.

    2004-01-01

    Wet deposition from a suburban area in Reston, Virginia was collected during 1998 and analyzed to assess the anion and trace-element concentrations and depositions. Suburban Reston, approximately 26 km west of Washington, DC, is densely populated and heavily developed. Wet deposition was collected bi-weekly in an automated collector using trace-element clean sampling and analytical techniques. The annual volume-weighted concentrations of As, Cd, and Pb were similar to those previously reported for a remote site on Catoctin Mt., Maryland (70 km northwest), which indicated a regional signal for these elements. The concentrations and depositions of Cu and Zn at the suburban site were nearly double those at remote sites because of the influence of local vehicular traffic. The 1998 average annual wet deposition (μg m−2 yr−1) was calculated for Al (52,000), As (94), Cd (54), Cr (160), Cu (700), Fe (23,000), Mn (2000), Ni (240), Pb (440), V (430), and Zn (4100). The average annual wet deposition (meq m−2 yr−1) was calculated for H+ (74), Cl− (8.5), NO3− (33), and SO42− (70). Analysis of digested total trace-element concentrations in a subset of samples showed that the refractory elements in suburban precipitation comprised a larger portion of the total deposition of trace elements than in remote areas.

  16. Is trace element concentration correlated to parasite abundance? A case study in a population of the green frog Pelophylax synkl. hispanicus from the Neto River (Calabria, southern Italy).

    PubMed

    De Donato, Carlo; Barca, Donatella; Milazzo, Concetta; Santoro, Raffaella; Giglio, Gianni; Tripepi, Sandro; Sperone, Emilio

    2017-06-01

    Bioaccumulation of 13 trace elements in the livers of 38 Pelophylax sinkl. hispanicus (Ranidae) and its helminth communities were studied and compared among three sites, each with a different degree of pollution along River Neto (south Italy) during September, 2014. Trace element concentrations in water and liver were measured using inductively coupled plasma mass spectrometry. For most elements, the highest concentration was recorded in the frogs inhabiting the third site, the one with the highest degree of pollution. The trend of trace element concentration in the liver can be represented as follows: Cu > Zn > Mn > Se > Cr. Concentrations of some elements in water and liver samples were significantly different among the three sites and this is evidenced by the bioaccumulation in the frogs. Four species of helminths, all belonging to Nematoda, were found: Rhabdias sp., Oswaldocruzia filiformis (Goeze, 1782), Cosmocerca ornata (Dujarden, 1845), Seuratascaris numidica (Seurat, 1917). The parasite survey presents an important difference of prevalence and average number of helminths in frogs between the three sites. Correlating parasitological and ecotoxicological data showed a strong positive correlation between prevalence and number of parasites with some trace elements such as Mn, Co, Ni, As, Se, and Cd.

  17. The Asian clam Corbicula fluminea as a biomonitor of trace element contamination: Accounting for different sources of variation using an hierarchical linear model

    USGS Publications Warehouse

    Shoults-Wilson, W. A.; Peterson, J.T.; Unrine, J.M.; Rickard, J.; Black, M.C.

    2009-01-01

    In the present study, specimens of the invasive clam, Corbicula fluminea, were collected above and below possible sources of potentially toxic trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the Altamaha River system (Georgia, USA). Bioaccumulation of these elements was quantified, along with environmental (water and sediment) concentrations. Hierarchical linear models were used to account for variability in tissue concentrations related to environmental (site water chemistry and sediment characteristics) and individual (growth metrics) variables while identifying the strongest relations between these variables and trace element accumulation. The present study found significantly elevated concentrations of Cd, Cu, and Hg downstream of the outfall of kaolin-processing facilities, Zn downstream of a tire cording facility, and Cr downstream of both a nuclear power plant and a paper pulp mill. Models of the present study indicated that variation in trace element accumulation was linked to distance upstream from the estuary, dissolved oxygen, percentage of silt and clay in the sediment, elemental concentrations in sediment, shell length, and bivalve condition index. By explicitly modeling environmental variability, the Hierarchical linear modeling procedure allowed the identification of sites showing increased accumulation of trace elements that may have been caused by human activity. Hierarchical linear modeling is a useful tool for accounting for environmental and individual sources of variation in bioaccumulation studies. ?? 2009 SETAC.

  18. Effects of three types of trace element supplementation on the fertility of three commercial dairy herds.

    PubMed

    Black, D H; French, N P

    2004-05-22

    The effects on the fertility of three commercial dairy herds of three types of copper- and selenium-containing mineral supplements was investigated. As the cows on each farm were dried off they were allocated to one of three treatment groups, and treated with either subcutaneous injections of copper and selenium, or two matrix intraruminal trace element boluses, or two glass intraruminal trace element boluses. When the data from the 406 cows on the three farms were combined, there was a significant difference between the conception rates of the three groups (P < 0.001). The cows treated with the glass boluses conceived at a rate 1.8 times greater than those treated by injection (P < 0.001), and at a rate 1.5 times greater than those treated with matrix boluses (P = 0.002). These differences were associated with a significantly higher likelihood of service resulting in a conception in the group treated with glass boluses than in the group treated by injection (P = 0.004). After adjusting for time from calving, time from treatment, time of year and farm, there was a significant (P = 0.012) difference in glutathione peroxidase activities between the treatments, with the group treated by injection having a significantly lower activity than the groups treated with boluses.

  19. Effect of hereditary haemochromatosis genotypes and iron overload on other trace elements.

    PubMed

    Beckett, Jeffrey M; Ball, Madeleine J

    2013-02-01

    Hereditary haemochromatosis is a common genetic disorder involving dysregulation of iron absorption. There is some evidence to suggest that abnormal iron absorption and metabolism may influence the status of other important trace elements. In this study, the effect of abnormal HFE genotypes and associated iron overload on the status of other trace elements was examined. Dietary data and blood samples were collected from 199 subjects (mean age = 55.4 years; range = 21-81 years). Dietary intakes, serum selenium, copper and zinc concentrations and related antioxidant enzymes (glutathione peroxidase and superoxide dismutase) in subjects with normal HFE genotype (n = 118) were compared to those with abnormal HFE genotype, with both normal iron status (n = 42) and iron overload (n = 39). For most dietary and biochemical variables measured, there were no significant differences between study groups. Red cell GPx was significantly higher in male subjects with normal genotypes and normal iron status compared to those with abnormal genotypes and normal iron status (P = 0.03) or iron overload (P = 0.001). Red cell GPx was also highest in normal women and significantly lower in the abnormal genotype and normal iron group (P = 0.016), but not in the iron overload group (P = 0.078). Although it may not be possible to exclude a small effect between the genotype groups on RBC GPx, overall, haemochromatosis genotypes or iron overload did not appear to have a significant effect on selenium, copper or zinc status.

  20. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.

    PubMed

    Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang

    2015-07-07

    In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications.

Top