Sample records for trace element emissions

  1. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  2. Effects of reaction conditions on the emission behaviors of arsenic, cadmium and lead during sewage sludge pyrolysis.

    PubMed

    Han, Hengda; Hu, Song; Syed-Hassan, Syed Shatir A; Xiao, Yiming; Wang, Yi; Xu, Jun; Jiang, Long; Su, Sheng; Xiang, Jun

    2017-07-01

    Sewage sludge is an important class of bioresources whose energy content could be exploited using pyrolysis technology. However, some harmful trace elements in sewage sludge can escape easily to the gas phase during pyrolysis, increasing the potential of carcinogenic material emissions to the atmosphere. This study investigates emission characteristics of arsenic, cadmium and lead under different pyrolysis conditions for three different sewage sludge samples. The increased temperature (within 723-1123K) significantly promoted the cadmium and lead emissions, but its influence on arsenic emission was not pronounced. The releasing rate order of the three trace elements is volatile arsenic compounds>cadmium>lead in the beginning of pyrolysis. Fast heating rates promoted the emission of trace elements for the sludge containing the highest amount of ash, but exhibited an opposite effect for other studied samples. Overall, the high ash sludge released the least trace elements almost under all reaction conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  4. Emissions Inventory of PM2.5 Trace Elements across the United States

    EPA Science Inventory

    This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM 2.5 emissions in ...

  5. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echalar, F.; Gaudichet, A.; Cachier, H.

    1995-11-15

    This report characterizes and compares trace element emissions from fires of three different types of savannas and from the southwestern amazonian rain forest. This study tries to verify a fingerprint that may characterize savanna fires or tropical biomass burning.

  6. Emissions inventory of PM2.5 trace elements across the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Reff; Prakash V. Bhave; Heather Simon

    2009-08-15

    This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM2.5 emissions in the NEI were organized and aggregated into a set of 84 source categories for which chemical speciation profiles are available (e.g., Unpaved Road Dust, Agricultural Soil, Wildfires). Emission estimates for ten metals classified as Hazardous Air Pollutants (HAP) were refined using data from a recent HAP NEI. All emissions were spatially gridded, and U.S. emissions maps for dozens of trace elements (e.g., Fe,more » Ti) are presented for the first time. Nationally, the trace elements emitted in the highest quantities are silicon (3.8 x 10{sup 5} ton/yr), aluminium (1.4 x 10{sup 5} ton/yr), and calcium (1.3 x 10{sup 5} ton/yr). Our chemical characterization of the PM2.5 inventory shows that most of the previously unspeciated emissions are comprised of crustal elements, potassium, sodium, chlorine, and metal-bound oxygen. Coal combustion is the largest source of S, Se, Sr, Hg and primary sulfates. This work also reveals that the largest PM2.5 sources lacking specific speciation data are off-road diesel-powered mobile equipment, road construction dust, marine vessels, gasoline-powered boats, and railroad locomotives. 28 refs., 4 figs.« less

  7. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...

  8. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...

  9. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.

  10. EMISSIONS INVENTORY OF PM 2.5 TRACE ELEMENTS ACROSS THE U.S.

    EPA Science Inventory

    This abstract describes work done to speciate PM2.5 emissions into emissions of trace metals to enable concentrations of metal species to be predicted by air quality models. Methods are described and initial results are presented. A technique for validating the resul...

  11. Emissions and efficiency performance of industrial-coal-stoker fired boilers: inorganic trace elements and polynuclear aromatic hydrocarbon emissions. Volume 2. [74 inorganic trace elements and 21 polycyclic aromatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    This report presents the results of tests for polynuclear aromatic hydrocarbons (PAH) and inorganic trace elements in the effluent of eleven coal stoker fired boilers. These data are part of a larger stoker test program whose main objective was to produce information which will increase the ability of the boiler manufacturers to design and fabricate stoker boilers that are an economical and environmentally satisfactory alternative to oil and gas-fired units. The objectives of the SASS testing portion of this program are to determine the organic and inorganic makeup of boiler emissions which cannot be detected by using the standard EPAmore » Method 5 train. SASS tests were conducted in accordance with EPA Level 1 guidelines. Twenty-three SASS tests were run on 11 different coal stoker fired boilers to determine emissions data for 74 inorganic trace elements and 21 PAHs. The emissions of most concern are the suspected carcinogens or the emissions with high probability of being carcinogens. The inorganic trace elements that were investigated and are listed as carcinogens and high probability carcinogens by the Office of Air Quality Planning and Standards are: arsenic, beryllium, cadmium, and nickel. The SASS emissions data are presented in three different sets of units: nonograms per joule of energy input, micrograms per dry standard cubic meter of flue gas sampled, and grams per kilograms of fuel input. To protect the interests of the host boiler facilities, each site has been given a letter designation. A complete description of each unit and all tests run at each site can be found in the corresponding site reports referenced at the end of this report. This report contains a description of the test equipment and procedures, analytical procedures, data reduction techniques, the test data, and a brief description of each facility tested and the coals fired. 4 figures, 16 tables.« less

  12. Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy.

    PubMed

    Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro

    2012-08-01

    Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.

  13. Atmospheric transport of trace elements and nutrients to the oceans

    PubMed Central

    Chance, R.

    2016-01-01

    This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035252

  14. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    NASA Astrophysics Data System (ADS)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  15. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China.

    PubMed

    Qie, Guanghao; Wang, Yan; Wu, Chen; Mao, Huiting; Zhang, Ping; Li, Tao; Li, Yaxin; Talbot, Robert; Hou, Chenxiao; Yue, Taixing

    2018-06-01

    The concentrations of particulate mercury (PHg) and other trace elements in PM 2.5 and PM 10 in the atmosphere were measured at the summit of Mount Tai during the time period of 15 June - 11 August 2015. The average PHg concentrations were 83.33 ± 119.1 pg/m 3 for PM 2.5 and 174.92 ± 210.5 pg/m 3 for PM 10 . Average concentrations for other trace elements, including Al, Ca, Fe, K, Mg, Na, Pb, As, Se, Cu, Cd, Cr, V, Mo, Co, Ag, Ba, Mn, Zn and Ni ranged from 0.06 ng/m 3 (Ag) to 354.33 ng/m 3 (Ca) in PM 2.5 and 0.11 ng/m 3 (Co) to 592.66 ng/m 3 (Ca) in PM 10 . The average concentrations of PHg were higher than those at other domestic mountain sites and cities in other counties, lower than those at domestic city sites. Other trace elements showed concentrations lower than those at the domestic mountain sites. Due possibly to increased control of emissions and the proportion of new energy, the PHg and trace element concentrations decreased, but the PHg showed concentrations higher than those at the Mountain sites, this showed that the reasons was not only severely affected by anthropogenic emissions, but also associated with other sources. The concentration changed trend of the main trace elements indicated that PHg, trace elements and particle matters present positive correlation and fine particulate matter has a greater surface area which was conductive to adsorption of Hg and trace elements to particles. On June 19, June 27 and July 6, according to the peak of mercury and trace elements, we can predict the potential sources of these three days. The results of principal component analysis (PCA) suggested that, crustal dust, coal combustion, and vehicle emissions were the main emission sources of PHg and other trace elements in Mount Tai. The 24-h backward trajectories and potential source contribution function (PSCF) analysis revealed that air masses arriving at Mount Tai were mainly affected by Shandong province. Mount Tai was subjected to five main airflow trajectories. Clusters 1, 2, 3, and 5 represented four pathways for local and regional sources and cluster 4 originated long-distance transportation. Central Shandong was the main source regions of PHg, Pb, Se, As, Cu and Cd. Southeastern and northwestern Shandong province and northern Jiangsu province were the most polluted source regions of Mn, Zn, and Ni. The crustal elements Fe and Ca had similar distributions of potential source regions, suggested by the highest PSCF values in southeastern Shandong and northern Jiangsu. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, Steven; Bernstein, Lawrence S.; Bien, Fritz

    1988-01-01

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas.

  17. Spark discharge trace element detection system

    DOEpatents

    Adler-Golden, S.; Bernstein, L.S.; Bien, F.

    1988-08-23

    A spark discharge trace element detection system is provided which includes a spark chamber including a pair of electrodes for receiving a sample of gas to be analyzed at no greater than atmospheric pressure. A voltage is provided across the electrodes for generating a spark in the sample. The intensity of the emitted radiation in at least one primary selected narrow band of the radiation is detected. Each primary band corresponds to an element to be detected in the gas. The intensity of the emission in each detected primary band is integrated during the afterglow time interval of the spark emission and a signal representative of the integrated intensity of the emission in each selected primary bond is utilized to determine the concentration of the corresponding element in the gas. 12 figs.

  18. STATUS OF RESEARCH ON AIR QUALITY: MERCURY, TRACE ELEMENTS, AND PARTICULATE MATTER. (R827649)

    EPA Science Inventory

    The Air Quality Conference reviewed the state of science and policy on the pollutants mercury, trace elements, and particulate matter (PM) in the environment. Critical issues dealing with impacts on health and ecosystems, emission prevention and control, measurement methods, a...

  19. Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies

    NASA Astrophysics Data System (ADS)

    Phillips-Smith, Catherine; Jeong, Cheol-Heon; Healy, Robert M.; Dabek-Zlotorzynska, Ewa; Celo, Valbona; Brook, Jeffrey R.; Evans, Greg

    2017-08-01

    The province of Alberta, Canada, is home to three oil sands regions which, combined, contain the third largest deposit of oil in the world. Of these, the Athabasca oil sands region is the largest. As part of Environment and Climate Change Canada's program in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring program, concentrations of trace elements in PM2. 5 (particulate matter smaller than 2.5 µm in diameter) were measured through two campaigns that involved different methodologies: a long-term filter campaign and a short-term intensive campaign. In the long-term campaign, 24 h filter samples were collected once every 6 days over a 2-year period (December 2010-November 2012) at three air monitoring stations in the regional municipality of Wood Buffalo. For the intensive campaign (August 2013), hourly measurements were made with an online instrument at one air monitoring station; daily filter samples were also collected. The hourly and 24 h filter data were analyzed individually using positive matrix factorization. Seven emission sources of PM2. 5 trace elements were thereby identified: two types of upgrader emissions, soil, haul road dust, biomass burning, and two sources of mixed origin. The upgrader emissions, soil, and haul road dust sources were identified through both the methodologies and both methodologies identified a mixed source, but these exhibited more differences than similarities. The second upgrader emissions and biomass burning sources were only resolved by the hourly and filter methodologies, respectively. The similarity of the receptor modeling results from the two methodologies provided reassurance as to the identity of the sources. Overall, much of the PM2. 5-related trace elements were found to be anthropogenic, or at least to be aerosolized through anthropogenic activities. These emissions may in part explain the previously reported higher levels of trace elements in snow, water, and biota samples collected near the oil sands operations.

  20. Determination of rare earth elements in geological materials by inductively coupled argon plasma/atomic emission spectrometry

    USGS Publications Warehouse

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    Inductively coupled argon plasma/optical emission spectrometery (ICAP/OES) is useful as a simultaneous, multielement analytical technique for the determination of trace elements in geological materials. A method for the determination of trace-level rare earth elements (REE) in geological materials using an ICAP 63-channel emission spectrometer is described. Separation and preconcentration of the REE and yttrium from a sample digest are achieved by a nitric acid gradient cation exchange and hydrochloric acid anion exchange. Precision of 1-4% relative standard deviation and comparable accuracy are demonstrated by the triplicate analysis of three splits of BCR-1 and BHVO-1. Analyses of other geological materials including coals, soils, and rocks show comparable precision and accuracy.

  1. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study

    PubMed Central

    McComb, Jacqueline Q.; Rogers, Christian; Han, Fengxiang X.; Tchounwou, Paul B.

    2014-01-01

    With industrialization, great amounts of trace elements and heavy metals have been excavated and released on the surface of the earth and dissipated into the environments. Rapid screening technology for detecting major and trace elements as well as heavy metals in variety of environmental samples is most desired. The objectives of this study were to determine the detection limits, accuracy, repeatability and efficiency of a X-ray fluorescence spectrometer (Niton XRF analyzer) in comparison with the traditional analytical methods, inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma optical emission spectrometer (ICP-MS) in screening of major and trace elements of environmental samples including estuary soils and sediments, contaminated soils, and biological samples. XRF is a fast and non-destructive method in measuring the total concentration of multi--elements simultaneously. Contrary to ICP-OES and ICP-MS, XRF analyzer is characterized by the limited preparation required for solid samples, non-destructive analysis, increased total speed and high throughout, the decreased production of hazardous waste and the low running costs as well as multi-elemental determination and portability in the fields. The current comparative study demonstrates that XRF is a good rapid non-destructive method for contaminated soils, sediments and biological samples containing higher concentrations of major and trace elements. Unfortunately, XRF does not have sensitive detection limits of most major and trace elements as ICP-OES or ICP-MS but it may serve as a rapid screening tool for locating hot spots of uncontaminated field soils and sediments. PMID:25861136

  2. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  3. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey.

    PubMed

    Sanal, Hasan; Güler, Zehra; Park, Young W

    2011-01-01

    The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.

  4. Emission spectrographic determination of volatile trace elements in geologic materials by a carrier distillation technique

    USGS Publications Warehouse

    Barton, H.N.

    1986-01-01

    Trace levels of chalcophile elements that form volatile sulfide minerals are determined in stream sediments and in the nonmagnetic fraction of a heavy-mineral concentrate of stream sediments by a carrier distillation emission spectrographic method. Photographically recorded spectra of samples are visually compared with those of synthetic standards for the two sample types. Rock and soil samples may also be analyzed by comparison with the stream-sediment standards. A gallium oxide spectrochemical carrier/buffer enhances the early emission of the volatile elements. Detection limits in parts per million attained are: Sb 5, As 20, Bi 0.1, Cd 1, Cu 1, Pb 2, Ag 0.1, Zn 2, and Sn 0.1. A comparison with other methods of analysis, total-burn emission and atomic absorption spectroscopy, shows good correlation for standard reference for materials and samples from a variety of geologic terranes. ?? 1986.

  5. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    PubMed

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future. Copyright © 2016. Published by Elsevier B.V.

  6. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. EXHAUST EMISSION PATTERNS FROM TWO LIGHT-DUTY DIESEL AUTOMOBILES

    EPA Science Inventory

    Particulate and gaseous emissions from two light-duty diesel automobiles were examined over six operating cycles. Particulate characterizations included mass emission rate, soluble organic content, and trace element content determinations. The particulate matter was sampled using...

  8. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGES

    Xu, Ning; Gallimore, David; Lujan, Elmer; ...

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  9. On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions

    NASA Astrophysics Data System (ADS)

    Kam, Winnie; Liacos, James W.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos

    2012-12-01

    An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10-2.5, PM2.5-0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10-2.5 while emission factors for PAHs and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of PAHs resulted in higher levels of PAHs in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of PAHs in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19-C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1-2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

  10. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China.

    PubMed

    Chen, Jian; Liu, Guijian; Kang, Yu; Wu, Bin; Sun, Ruoyu; Zhou, Chuncai; Wu, Dun

    2013-02-01

    Coal is one of the major energy resources in China, with nearly half of produced Chinese coal used for power and heat generation. The large use of coal for power and heat generation in China may result in significant atmospheric emissions of toxic volatile trace elements (i.e. F, As, Se, Hg, and Sb). For the purpose of estimating the atmospheric emissions from coal-fired power and heat generation in China, a simple method based on coal consumption, concentration and emission factor of trace element was adopted to calculate the gaseous emissions of elements F, As, Se, Hg, and Sb. Results indicate that about 162161, 236, 637, 172, and 33 t F, As, Se, Hg, and Sb, respectively, were introduced into atmosphere from coal combustion by power and heat generation in China in 2009. The atmospheric emissions of F, As, Se, Hg, and Sb by power and heat generation increased from 2005 to 2009 with increasing coal consumptions. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Baudelet, Matthieu; Yu, Jin; Bossu, Myriam; Jovelet, Julien; Wolf, Jean-Pierre; Amodeo, Tanguy; Fréjafon, Emeric; Laloi, Patrick

    2006-10-01

    Using femtosecond laser-induced breakdown spectroscopy, the authors have analyzed five different species of bacterium. Line emissions from six trace mineral elements, Na, Mg, P, K, Ca, and Fe, have been clearly detected. Their intensities correspond to relative concentrations of these elements contained in the analyzed samples. The authors demonstrate that the concentration profile of trace elements allows unambiguous discrimination of different bacteria. Quantitative differentiation has been made by representing bacteria in a six-dimension hyperspace with each of its axis representing a detected trace element. In such hyperspace, representative points of different species of bacterium are gathered in different and distinct volumes.

  12. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions.

    PubMed

    Yang, Zhenzhou; Zhang, Yingyi; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2016-04-01

    To promote the utilization of waste material as alternative fuel, the mono- and co-combustion characteristics of sewage sludge (SS) and coal gangue (CG) were systematically investigated, with emphasis on environmental influences. The emission of SO2, NOx as well as the trace elements during combustion of SS and CG were studied with regard to the effects of their chemistries, structures and interactions. Results showed that co-combustion can be beneficial for ignition performance. A synergic effect on both desulfurization and denitrification can be expected at ca. 800°C. Further, an enhanced retention of trace elements during co-combustion was also observed, especially for Pb and Zn. On the basis of the results, it can be expected that, with proper operation, co-combustion of SS and CG can be a promising method for the disposal of these two wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors.

    PubMed

    Ying, Qi; Feng, Miao; Song, Danlin; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Kleeman, Michael J; Li, Xinghua

    2018-05-15

    Contributions to 15 trace elements in airborne particulate matter with aerodynamic diameters <2.5μm (PM 2.5 ) in China from five major source sectors (industrial sources, residential sources, transportation, power generation and windblown dust) were determined using a source-oriented Community Multiscale Air Quality (CMAQ) model. Using emission factors in the composite speciation profiles from US EPA's SPECIATE database for the five sources leads to relatively poor model performance at an urban site in Beijing. Improved predictions of the trace elements are obtained by using adjusted emission factors derived from a robust multilinear regression of the CMAQ predicted primary source contributions and observation at the urban site. Good correlations between predictions and observations are obtained for most elements studied with R>0.5, except for crustal elements Al, Si and Ca, particularly in spring. Predicted annual and seasonal average concentrations of Mn, Fe, Zn and Pb in Nanjing and Chengdu are also consistently improved using the adjusted emission factors. Annual average concentration of Fe is as high as 2.0μgm -3 with large contributions from power generation and transportation. Annual average concentration of Pb reaches 300-500ngm -3 in vast areas, mainly from residential activities, transportation and power generation. The impact of high concentrations of Fe on secondary sulfate formation and Pb on human health should be evaluated carefully in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  16. Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Pu, Wei; Zhang, Xueying; Ren, Yong; Huang, Jianping

    2015-08-01

    We collected 92 snow samples from 13 sites across northeastern China from January 7 to February 15, 2014. The surface snow samples were analyzed for the major water-soluble ions (SO42-, NO3-, F-, Cl-, Na+, K+, Ca2+, Mg2+, and NH4+) and trace element (Al, As, Mn, V, Cd, Cu, Pb, Zn, Fe, Cr, and Ni). The results indicated that the higher concentrations of NO3- and SO42- and the trace elements Zn, Pb, Cd, Ni, and Cu were likely attributable to enhanced local industrial emissions in East Asia especially in China. In addition, snow samples characterized by higher enrichment factors of trace elements (Cu, Cd, As, Zn, Pb) were indicative of an anthropogenic source. Emissions from fossil fuel combustion and biomass burning were likely important contributors to the chemical elements in seasonal snow with long-range transport. On the other hand, the large attribution of K+ appeared in the higher latitude demonstrated that biomass burning was a dominated factor of the chemical species in seasonal snow in the higher latitude of China than that in the lower latitude. Finally, an interannual comparison with the 2010 China snow survey also confirmed the source attributions of chemical speciation in seasonal snow in these regions.

  17. Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles.

    PubMed

    Bukowiecki, Nicolas; Lienemann, Peter; Hill, Matthias; Figi, Renato; Richard, Agnes; Furger, Markus; Rickers, Karen; Falkenberg, Gerald; Zhao, Yongjing; Cliff, Steven S; Prevot, Andre S H; Baltensperger, Urs; Buchmann, Brigitte; Gehrig, Robert

    2009-11-01

    Hourly trace element measurements were performed in an urban street canyon and next to an interurban freeway in Switzerland during more than one month each, deploying a rotating drum impactor (RDI) and subsequent sample analysis by synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). Antimony and other brake wear associated elements were detected in three particle size ranges (2.5-10, 1-2.5, and 0.1-1 microm). The hourly measurements revealed that the effect of resuspended road dust has to be taken into account for the calculation of vehicle emission factors. Individual values for light and heavy duty vehicles were obtained for stop-and-go traffic in the urban street canyon. Mass based brake wear emissions were predominantly found in the coarse particle fraction. For antimony, determined emission factors were 11 +/- 7 and 86 +/- 42 microg km(-1) vehicle(-1) for light and heavy duty vehicles, respectively. Antimony emissions along the interurban freeway with free-flowing traffic were significantly lower. Relative patterns for brake wear related elements were very similar for both considered locations. Beside vehicle type specific brake wear emissions, road dust resuspension was found to be a dominant contributor of antimony in the street canyon.

  18. Environmental assessment of a wood-waste-fired industrial firetube boiler. Volume 1. Technical results. Final report, January 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1987-03-01

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue gas organics in two boiling point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace element content determinations. Totalmore » organic emissions from the boiler were 5.7 mg/dscm, about 90% of which consisted of volatile compounds.« less

  19. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    USDA-ARS?s Scientific Manuscript database

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  20. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  1. Elemental profiling and geographical differentiation of Ethiopian coffee samples through inductively coupled plasma-optical emission spectroscopy (ICP-OES), ICP-mass spectrometry (ICP-MS) and direct mercury analyzer (DMA).

    PubMed

    Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su

    2016-12-01

    This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Multi-elemental analysis of aqueous geological samples by inductively coupled plasma-optical emission spectrometry

    USGS Publications Warehouse

    Todorov, Todor I.; Wolf, Ruth E.; Adams, Monique

    2014-01-01

    Typically, 27 major, minor, and trace elements are determined in natural waters, acid mine drainage, extraction fluids, and leachates of geological and environmental samples by inductively coupled plasma-optical emission spectrometry (ICP-OES). At the discretion of the analyst, additional elements may be determined after suitable method modifications and performance data are established. Samples are preserved in 1–2 percent nitric acid (HNO3) at sample collection or as soon as possible after collection. The aqueous samples are aspirated into the ICP-OES discharge, where the elemental emission signals are measured simultaneously for 27 elements. Calibration is performed with a series of matrix-matched, multi-element solution standards.

  3. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  4. [Age and gender characteristics of the content of macro- and trace elements in the organisms of the children from the European North].

    PubMed

    Soroko, S I; Maksimova, I A; Protasova, O V

    2014-01-01

    By means of the nuclear-emission spectral analysis with inductively connected argon plasma were studied the contents of 28 macro- and trace elements (Al, Ag, Li, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Mg, Mn, Na, Ni, Mo, P, Zn, Se, Tl, Pb, Sr, S, Si) in the hair of children and teenagers living in the European North of the Russian Federation (Arkhangelsk region). There were revealed both: decrease and increase of some elements' contents. Also were revealed the dynamics of mentioned elements contents in the hair of the same children in different years. Significant individual variability of the macro and trace elements' status of children-northerners and some gender dependence were revealed.

  5. Relationships between carapace sizes and plasma major and trace element status in captive hawksbill sea turtles (Eretmochelys imbricata).

    PubMed

    Suzuki, Kazuyuki; Noda, Jun; Yanagisawa, Makio; Kawazu, Isao; Sera, Kouichiro; Fukui, Daisuke; Asakawa, Mitsuhiko; Yokota, Hiroshi

    2012-12-01

    The aim of this study was to evaluate the relationships between carapace parameters as indicators of age and plasma elements in 25 captive hawksbill sea turtles. Particle-induced X-ray emission allowed detection of 23 trace and major elements. There were significant but weak correlations between the virtual carapace surface area and plasma bromide (r = -0.552, P<0.01), phosphorus (r = 0.547, P<0.01), lead (r =-0.434, P<0.05) and strontium (r = 0.599, P<0.01), while there were no significant correlations with other elements. These results suggest that major and trace plasma elements in captive sea turtles show almost no variation with carapace parameters, suggesting that the increase in plasma elements seen in wild sea turtles might be the result of marine pollution.

  6. The Release of Trace Elements in the Process of Coal Coking

    PubMed Central

    Konieczyński, Jan; Zajusz-Zubek, Elwira; Jabłońska, Magdalena

    2012-01-01

    In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury. PMID:22666104

  7. Application of relativistic electrons for the quantitative analysis of trace elements

    NASA Astrophysics Data System (ADS)

    Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.

    1984-04-01

    Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.

  8. Environmental assessment of a wood-waste-fired industrial firetube boiler. Volume 2. Data supplement. Final report, January 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1987-03-01

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue-gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semivolatile organic priority pollutants, and flue-gas concentrations of 65 trace elements; Method 5 sampling for particulates; controlled condensation system (CSS) sampling for SO/sub 2/ and SO/sub 3/; and grab sampling of boiler bottom ash for trace-element-content determinations. Emission levels of five polycyclic organicmore » matter species and phenol were quantitated: except for naphthalene, all were emitted at less than 0.4 microgram/dscm.« less

  9. On the elemental analysis of different cigarette brands using laser induced breakdown spectroscopy and laser-ablation time of flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ahmed, Nasar; Umar, Zeshan A.; Ahmed, Rizwan; Aslam Baig, M.

    2017-10-01

    We present qualitative and quantitative analysis of the trace elements present in different brands of tobacco available in Pakistan using laser induced breakdown spectroscopy (LIBS) and Laser ablation Time of Flight Mass Spectrometer (LA-TOFMS). The compositional analysis using the calibration free LIBS technique is based on the observed emission spectra of the laser produced plasma plume whereas the elemental composition analysis using LA-TOFMS is based on the mass spectra of the ions produced by laser ablation. The optical emission spectra of these samples contain spectral lines of calcium, magnesium, sodium, potassium, silicon, strontium, barium, lithium and aluminum with varying intensities. The corresponding mass spectra of the elements were detected in LA-TOF-MS with their composition concentration. The analysis of different brands of cigarettes demonstrates that LIBS coupled with a LA-TOF-MS is a powerful technique for the elemental analysis of the trace elements in any solid sample.

  10. Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants--temporal trends and spatial variation characteristics.

    PubMed

    Tian, Hezhong; Liu, Kaiyun; Zhou, Junrui; Lu, Long; Hao, Jiming; Qiu, Peipei; Gao, Jiajia; Zhu, Chuanyong; Wang, Kun; Hua, Shenbing

    2014-03-18

    Coal-fired power plants are the important sources of anthropogenic atmospheric releases of various hazardous trace elements (HTE) because a large quantity of emissions can cause wide dispersion and possible long-distance transportation. To obtain the temporal trends and spatial variation characteristics of various HTE discharged from coal-fired power plants of China, a multiple-year comprehensive emission inventory of HTE including Hg, As, Se, Pb, Cd, Cr, Ni, and Sb has been established for the period 2000-2010. Thanks to the cobenefit removal effects of conventional particulate matter/sulfur dioxide/nitrogen oxides (PM/SO2/NOx) control devices, emissions of these 8 toxic elements have shown a gradual decline since the peak in 2006. The total emissions of Hg, As, Se, Pb, Cd, Cr, Ni, and Sb are substantial and are estimated at about 118.54, 335.45, 459.4, 705.45, 13.34, 505.03, 446.42, and 82.33 tons (t), respectively, in 2010. Shandong, Jiangsu, Shanxi, and Hebei always rank among the top ten provinces with the highest emissions. Further, future emissions for 2015 and 2020 are projected with scenario analysis. Advanced technologies and integrated management strategies to control HTE are in great need.

  11. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland.

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; Fisk, Aaron T; Peacock, Elizabeth; Sonne, Christian

    2011-08-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg(2+)-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements.

  12. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland

    USGS Publications Warehouse

    Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.

    2011-01-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.

  13. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  14. [Determination and correlation analysis of trace elements in Boletus tomentipes].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao

    2011-07-01

    The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.

  15. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, P.R.; Meeker, K.; Finnegan, D.

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gasesmore » and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.« less

  16. PM2.5 Emission Elemental Composition from Diverse Combustion Sources in the Metropolitan Area of Mexico City

    PubMed Central

    Mugica, V.; Mugica, F.; Torres, M.; Figueroa, J.

    2008-01-01

    A field study was carried out from 2003 to 2004 with the aim to develop the PM2.5 emission source profiles from light-duty gasoline and heavy-duty diesel vehicles, as well as emission source profiles from waste incineration, wood burning, LP gas combustion, and meat broiling. Over 25 chemical species were quantified from the fine particles emitted by the different combustion sources investigated, including organic and elemental carbon, ions, and elements. The OC/TC ratio found in the different PM2.5 profiles was dissimilar as well as the sulfate, nitrate, ammonium, soil species, and trace element content. Consequently, these combustion emission profiles could be used in source reconciliation studies for fine particles. PMID:18379705

  17. Effect of combustion temperature on the emission of trace elements under O2/CO2 atmosphere during coal combustion

    NASA Astrophysics Data System (ADS)

    Qu, Chengrui; Zhang, Mo; Mann, Michael. D.

    2018-03-01

    The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.

  18. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    PubMed

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Trace elements and common ions in southeastern Idaho snow: Regional air pollutant tracers for source area emissions

    USGS Publications Warehouse

    Abbott, M.; Einerson, J.; Schuster, P.; Susong, D.; Taylor, Howard E.; ,

    2004-01-01

    Snow sampling and analysis methods which produce accurate and ultra-low measurements of trace elements and common ion concentration in southeastern Idaho snow, were developed. Snow samples were collected over two winters to assess trace elements and common ion concentrations in air pollutant fallout across the southeastern Idaho. The area apportionment of apportionment of fallout concentrations measured at downwind location were investigated using pattern recognition and multivariate statistical technical techniques. Results show a high level of contribution from phosphates processing facilities located outside Pocatello in the southern portion of the Eastern Snake River Plain, and no obvious source area profiles other than at Pocatello.

  20. Development of Desolvation System for Single-cell Analysis Using Droplet Injection Inductively Coupled Plasma Atomic Emission Spectroscopy.

    PubMed

    Ishihara, Yukiko; Aida, Mari; Nomura, Akito; Miyahara, Hidekazu; Hokura, Akiko; Okino, Akitoshi

    2015-01-01

    With a view to enhance the sensitivity of analytical instruments used in the measurement of trace elements contained in a single cell, we have now equipped the previously reported micro-droplet injection system (M-DIS) with a desolvation system. This modified M-DIS was coupled to inductively coupled plasma atomic emission spectroscopy (ICP-AES) and evaluated for its ability to measure trace elements. A flow rate of 100 mL/min for the additional gas and a measurement point -7.5 mm above the load coil (ALC) have been determined to be the optimal parameters for recording the emission intensity of the Ca(II) spectral lines. To evaluate the influence of the desolvation system, we recorded the emission intensities of the Ca(I), Ca(II), and H-β spectral lines with and without inclusion of the desolvation system. The emission intensity of the H-β spectral line reduces and the magnitude of the Ca(II)/Ca(I) emission intensity ratio increases four-fold with inclusion of the desolvation system. Finally, the elements Ca, Mg, and Fe present in a single cell of Pseudococcomyxa simplex are simultaneously determined by coupling the M-DIS equipped with the desolvation system to ICP-AES.

  1. Trace elemental analysis of bituminuos coals using the Heidelberg proton microprobe

    USGS Publications Warehouse

    Chen, J.R.; Kneis, H.; Martin, B.; Nobiling, R.; Traxel, K.; Chao, E.C.T.; Minkin, J.A.

    1981-01-01

    Trace elements in coal can occur as components of either the organic constituents (macerals) or the inorganic constituents (minerals). Studies of the concentrations and distribution of the trace elements are vital to understanding the geochemical millieu in which the coal was formed and in evaluating the attempts to recover rare but technologically valuable metals. In addition, information on the trace element concentrations is important in predicting the environmental impact of burning particular coals, as many countries move toward greater utilization of coal reserves for energy production. Traditionally, the optical and the electron microscopes and more recently the electron microprobe have been used in studying the components of coal. The proton-induced X-ray emission (PIXE) microprobe offers a new complementary approach with an order of magnitude or more better minimum detection limit. We present the first measurements with a PIXE microprobe of the trace element concentrations of bituminous coal samples. Elemental analyses of the coal macerals-vitrinite, exinite, and inertinite-are discussed for three coal samples from the Eastern U.S.A., three samples from the Western U.S.A., and one sample from the Peoples Republic of China. ?? 1981.

  2. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  3. Quelccaya Ice Core Evidence of Widespread Atmospheric Pollution from Colonial Metallurgy after the Spanish Conquest of South America (1532 AD)

    NASA Astrophysics Data System (ADS)

    Gabrielli, P.; Uglietti, C.; Cooke, C. A.; Thompson, L. G.

    2014-12-01

    A few ice core records recovered from remote arctic regions suggest a widespread impact of toxic trace elements (Pb, Cu, Sb, As and Bi) to the North Hemisphere atmosphere prior to the onset of the Industrial Revolution (1780s-1830s). In the Southern Hemisphere, evidence for preindustrial trace element emissions are, to date, limited to sediment cores recovered from lakes located within the immediate airshed of major metallurgical centers of South America. Thus it remains unresolved whether they could have had a larger scale impact. Here, we present an annually resolved ice core record of anthropogenic trace element deposition from the remote drilling site of the Quelccaya Ice Cap (Peru) that spans 793-1989 AD. During the pre-Inca period (i.e., prior to ~1450 AD) the deposition of trace elements was dominated by the fallout of aeolian dust from the deglaciated margins of the ice cap and of ash from occasional volcanic eruptions. In contrast, the ice core record indicates a clear anthropogenic signal emerging after the onset of large scale colonial mining and metallurgy (1532-1820 AD), ~300 years prior to the Industrial Revolution during the last part of the Little Ice Age. This shift was coincidental with a major technological transition for silver extraction (1572 AD), from lead-based smelting to mercury amalgamation, that initiated a major increase in ore mining and milling that likely resulted in an increase of metallic dust emissions. While atmospheric trace element deposition resulting from colonial metallurgy was certainly much larger than during the pre-Colonial period, trace element fallout during the Colonial era was still several factors lower than during the 20th century, when the construction of the trans-Andean railway and highways promoted a widespread societal and industrial development of South America.

  4. Investigation of spatial and historical variations of air pollution around an industrial region using trace and macro elements in tree components.

    PubMed

    Odabasi, Mustafa; Tolunay, Doganay; Kara, Melik; Ozgunerge Falay, Ezgi; Tuna, Gizem; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Elbir, Tolga

    2016-04-15

    Several trace and macro elements (n=48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Preparation and provisional certification of NBL Spectrographic Impurity Standards, CRM 123 (1-7) and 124 (1-7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoliquido, P.M.

    This report describes the design, production, and provisional certification of two new certified reference materials (CRMs): CRM No. 123 (1-7), U/sub 3/O/sub 8/ containing 18 trace elements, and CRM No. 124 (1-7), U/sub 3/O/sub 8/ containing 24 trace elements. The elements to be included and concentrations to be used were decided on the basis of information gathered from users of a previous CRM of this type, CRM No. 98 (1-7). The new CRMs were prepared by the addition of trace elements to high purity U/sub 3/O/sub 8/. Provisional certification was accomplished by an interlaboratory program in which four different laboratoriesmore » analyzed the materials by carrier distillation dc arc emission spectrography.« less

  7. Trace elements and nitrogen content in naturally growing moss Hypnum cupressiforme in urban and peri-urban forests of the Municipality of Ljubljana (Slovenia).

    PubMed

    Berisha, S; Skudnik, M; Vilhar, U; Sabovljević, M; Zavadlav, S; Jeran, Z

    2017-02-01

    We monitored trace metals and nitrogen using naturally growing moss Hypnum cupressiforme Hedw. in urban and peri-urban forests of the City Municipality of Ljubljana. The aim of this study was to explore the differences in atmospheric deposition of trace metals and nitrogen between urban and peri-urban forests. Samples were collected at a total of 44 sites in urban forests (forests within the motorway ring road) and peri-urban forests (forests outside the motorway ring road). Mosses collected in urban forests showed increased trace metal concentrations compared to samples collected from peri-urban forests. Higher values were significant for As, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Tl and V. Within the motorway ring road, the notable differences in element concentrations between the two urban forests were significant for Cr, Ni and Mo. Factor analysis showed three groups of elements, highlighting the contribution of traffic emissions, individual heating appliances and the resuspension of contaminated soils and dust as the main sources of trace elements in urban forests.

  8. Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): part 1--major and trace element composition.

    PubMed

    Calabrese, S; D'Alessandro, W; Bellomo, S; Brusca, L; Martin, R S; Saiano, F; Parello, F

    2015-01-01

    Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Trace and major element levels in rats after oral administration of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) seeds.

    PubMed

    Aksoy, Laçine; Sözbilir, Nalan Bayşu

    2015-10-01

    The study investigated the toxic effects of diesel and biodiesel derived from opium poppy (Papaver somniferum L.) oil seeds on the trace and major elements in kidney, lung, liver, and serum of rats. By the end of 21 days, trace and major element concentrations in kidney, lung, and liver tissues and the serum were measured using inductively coupled plasma-optical emission spectroscopy. We observed that trace and major element levels in kidney, lung, and liver tissues and the serum changed. Especially, important differences were detected in trace and major element concentrations in kidney and lung tissues. In kidney tissue, the concentration differences of calcium, sodium, and zinc (Zn) were found between diesel and biodiesel groups. In lung tissue, the concentration differences of cadmium, lithium, magnesium, manganese, and Zn were found between diesel and biodiesel groups. Among the significant findings, Zn concentration in serum and liver tissue of diesel and biodiesel were different from control (p < 0.05). However, the metal levels of biodiesel group were similar to control group. Due to lesser toxicity of biodiesel, it could be considered as an alternate fuel. © The Author(s) 2013.

  10. PM2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis.

    PubMed

    Mainka, Anna; Zajusz-Zubek, Elwira; Kaczmarek, Konrad

    2015-07-14

    Indoor air quality (IAQ) in nursery schools is an emerging public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than older children. Among air pollutants, fine particulate matter (PM2.5) is of the greatest interest mainly due to its strong association with acute and chronic effects on children's health. In this paper, we present concentrations of PM2.5 and the composition of its trace elements at naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter and spring seasons. The results indicate there is a problem with elevated concentrations of PM2.5 inside the examined classrooms. The children's exposure to trace elements was different based on localization and season. PM2.5 concentration and its trace element composition have been studied using correlation coefficients between the different trace elements, the enrichment factor (EF) and principal component analysis (PCA). PCA allowed the identification of the three components: anthropogenic and geogenic sources (37.2%), soil dust contaminated by sewage sludge dumping (18.6%) and vehicular emissions (19.5%).

  11. Trace-Element Analysis by Use of PIXE Technique on Agricultural Products

    NASA Astrophysics Data System (ADS)

    Takagi, A.; Yokoyama, R.; Makisaka, K.; Kisamori, K.; Kuwada, Y.; Nishimura, D.; Matsumiya, R.; Fujita, Y.; Mihara, M.; Matsuta, K.; Fukuda, M.

    2009-10-01

    In order to examine whether a trace-element analysis by PIXE (Particle Induced X-ray Emission) gives a clue to identify production area of agricultural products, we carried out a study on soy beans as an example. In the present study, a proton beam at the energy of 2.3MeV was provided by Van de Graaff accelerator at Osaka University. We used a Ge detector with Be window to measure X-ray spectra. We prepared sample soy beans from China, Thailand, Taiwan, and 7 different areas in Japan. As a result of PIXE analysis, 5 elements, potassium, iron, zinc, arsenic and rubidium, have been identified. There are clear differences in relative amount of trace-elements between samples from different international regions. Chinese beans contain much more Rb than the others, while there are significant differences in Fe and Zn between beans of Thailand and Taiwan. There are relatively smaller differences among Japanese beans. This result shows that trace-elements bring us some practical information of the region where the product grown.

  12. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  13. Electrostatic precipitator performance and trace element emissions from two Kraft recovery boilers.

    PubMed

    Lind, Terttaliisa; Hokkinen, Jouni; Jokiniemi, Jorma K; Hillamo, Risto; Makkonen, Ulla; Raukola, Antti; Rintanen, Jaakko; Saviharju, Kari

    2006-01-15

    Fine particle emissions from combustion sources have gained attention recently due to their adverse effects on human health. The emission depends on the combustion process, fuel, and particulate removal technology. Particle concentrations at Kraft recovery boiler exits are very high, and the boilers are typically equipped with electrostatic precipitators (ESP). However, little data are available on the ESP performance in recovery boilers. Particle concentrations and size distributions were determined at two modern, operating recovery boilers. In addition, we determined the fractional collection efficiency of the ESPs by simultaneous measurements at the ESP inlet and outlet and the particulate emissions of trace metals. The particle mass concentration atthe ESP inlet was 11-24 g/Nm3 at the two boilers. Particle emissions were 30-40 mg/ Nm3 at boiler A and 12-15 mg/Nm3 at boiler B. The particle size distributions had a major particle mode at around 1 microm. These fume particles contained most of the particle mass. The main components in the particles were sodium and sulfate with minor amounts of chloride, potassium, and presumably some carbonate. The ESP collection efficiency was 99.6-99.8% at boiler A and 99.9% at boiler B. The particle penetration through the ESP was below 0.6% in the entire fume particle size range of 0.3-3 microm. Trace element emissions from both boilers were well below the limit values set by EU directive for waste incineration.

  14. [Analysis of primary elemental speciation distribution in mungbean during enzymatic hydrolization].

    PubMed

    Li, Ji-Hua; Huang, Mao-Fang; Zhu, De-Ming; Zheng, Wei-Wan; Zhong, Ye-Jun

    2009-03-01

    In the present paper, trace elements contents of cuprum, zincum, manganese and ferrum in mungbean and their primary speciation distribution during enzymatic hydrolization were investigated with ICP-AES OPTIMA 5300DV plasma emission spectroscopy. The trace elements were separated into two forms, i.e. dissolvable form and particulate form, by cellulose membrane with 0.45 microm of pore diameter. All the samples were digested by strong acid (perchloric acid and nitric acid with 1 : 4 ratio ). The parameters of primary speciations of the four elements were calculated and discussed. The results showed: (1) Contents of cuprum, zincum, manganese and ferrum in mungbean were 12.77, 31.26, 18.14 and 69.38 microg x g(-1) (of dry matter), respectively. Different treatment resulted in different elemental formulation in product, indicating that more attention should be paid to the trace elements pattern when producing mungbean beverage with different processes. (2) Extraction rates of cuprum, zincum, manganese and ferrum in extract were 68.84%, 51.84%, 63.97% and 30.40% with enzymatic treatments and 36.22%, 17.58%, 7.85% and 22.99% with boil treatment, respectively. Both boil and enzymatic treatments led to poor elemental extraction rates, which proved that it was necessary to take deep enzymatic hydrolysis treatment in mungbean beverage process as the trace element utilization rate was concerned. (3) Amylase, protease and cellulose showed different extraction effectiveness of the four trace elements. Generally, protease exhibited highest efficiency for the four elements extraction. All of the four trace elements were mostly in dissolvable form in all hydrolysates and soup. (4) Relative standard deviations and recovery yields are within 0.12%-0.90% (n = 11) and 98.6%-101.4%, respectively. The analysis method in this paper proved to be accurate.

  15. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  16. Spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Cooke, Colin A.; Kirk, Jane L.; Muir, Derek C. G.; Wiklund, Johan A.; Wang, Xiaowa; Gleason, Amber; Evans, Marlene S.

    2017-12-01

    The mining and processing of the Athabasca oil sands (Alberta, Canada) has been occurring for decades; however, a lack of consistent regional monitoring has obscured the long-term environmental impact. Here, we present sediment core results to reconstruct spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region. Early mining operations (during the 1970s and 1980s) led to elevated V and Pb inputs to lakes located <50 km from mining operations. Subsequent improvements to mining and upgrading technologies since the 1980s have reduced V and Pb loading to near background levels at many sites. In contrast, Hg deposition increased by a factor of ~3 to all 20 lakes over the 20th century, reflecting global-scale patterns in atmospheric Hg emissions. Base cation deposition (from fugitive dust emissions) has not measurably impacted regional lake sediments. Instead, results from a principal components analysis suggest that the presence of carbonate bedrock underlying lakes located close to development appears to exert a first-order control over lake sediment base cation concentrations and overall lake sediment geochemical composition. Trace element concentrations generally did not exceed Canadian sediment quality guidelines, and no spatial or temporal trends were observed in the frequency of guideline exceedence. Our results demonstrate that early mining efforts had an even greater impact on trace element cycling than has been appreciated previously, placing recent monitoring efforts in a critical long-term context.

  17. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  18. Identifying the origins of local atmospheric deposition in the steel industry basin of Luxembourg using the chemical and isotopic composition of the lichen Xanthoria parietina.

    PubMed

    Hissler, Christophe; Stille, Peter; Krein, Andreas; Geagea, Majdi Lahd; Perrone, Thierry; Probst, Jean-Luc; Hoffmann, Lucien

    2008-11-01

    Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production.

  19. Trace elements levels in the serum, urine, and semen of patients with infertility.

    PubMed

    Sağlam, Hasan Salih; Altundağ, Hüseyin; Atik, Yavuz Tarık; Dündar, Mustafa Şahin; Adsan, Öztug

    2015-01-01

    Studies suggest that trace elements may have an adverse impact on male reproduction, even at low levels. We tried to investigate the relationships between these metals and semen quality in various body fluids among men with infertility. A total of 255 samples of blood, semen, and urine were collected from 85 men suffering from infertility. Inductively coupled plasma-optical emission spectrometry was used for the determination of 22 trace elements. We compared the results of the semen parameters with the results of the element determinations. Because of the high proportion of samples with values lower than the limit of detection for a number of the elements, only 8 of a total 22 trace elements were determined in the samples. When the concentrations of sperm were classified according to the World Health Organization's guidelines for normospermia, oligospermia, and azoospermia, statistically significant differences were found among Zn, Ca, Al, Cu, Mg, Se, and Sr concentrations in various serum, sperm, and urine samples (P < 0.05). In the present study, we found significant correlations between concentrations of Zn, Ca, Al, Cu, Mg, Se, and Sr and semen parameters in various body fluids.

  20. Key issues of ultraviolet radiation of OH at high altitudes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-01

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A2Σ+→ X2Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  1. Trace elements in sediments, blue spotted tilapia Oreochromis leucostictus (Trewavas, 1933) and its parasite Contracaecum multipapillatum from Lake Naivasha, Kenya, including a comprehensive health risk analysis.

    PubMed

    Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz

    2014-06-01

    This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.

  2. Plasma lead, silicon and titanium concentrations are considerably higher in green sea turtle from the suburban coast than in those from the rural coast in Okinawa, Japan

    PubMed Central

    TSUKANO, Kenji; SUZUKI, Kazuyuki; NODA, Jun; YANAGISAWA, Makio; KAMEDA, Kazunari; SERA, Koichiro; NISHI, Yasunobu; SHIMAMORI, Toshio; MORIMOTO, Yasuyo; YOKOTA, Hiroshi; ASAKAWA, Mitsuhiko

    2017-01-01

    The purpose of this study was to compare the concentration of trace elements in the plasma of sea turtles that inhabited the suburban (Okinawa Main Island, n=8) and the rural coast (Yaeyama Island, n=57) in Okinawa, Japan. Particle induced X-ray emission allowed detection of 20 trace and major elements. The wild sea turtles in the suburban coast in Okinawa were found to have high concentrations of Pb, Si and Ti in the plasma when compared to the rural area but there were no significant changes in the Al, As and Hg concentrations. These results may help to suggest the status of some elements in a marine environment. Further, monitoring the plasma trace and major element status in sea turtles can be used as a bio-monitoring approach by which specific types of elements found here could indicate effects that are related to human activities. PMID:29070764

  3. Trace elements content in the selected medicinal plants traditionally used for curing skin diseases by the natives of Mizoram, India.

    PubMed

    Rajan, Jay Prakash; Singh, Kshetrimayum Birla; Kumar, Sanjiv; Mishra, Raj Kumar

    2014-09-01

    To determine the trace elements content in the selected medicinal plants, namely, Eryngium foetidum L., Mimosa pudica L., Polygonum plebeium, and Prunus cerasoides D. Don traditionally used by the natives of the Mizoram, one of the north eastern states in India as their folklore medicines for curing skin diseases like eczema, leg and fingers infection, swelling and wound. A 3 MeV proton beam of proton induced X-ray emission technique, one of the most powerful techniques for its quick multi elemental trace analysis capability and high sensitivity was used to detect and characterized for trace elements. The studies revealed that six trace elements, namely, Fe, Zn, Cu, Mn, V, and Co detected in mg/L unit were present in varying concentrations in the selected medicinal plants with high and notable concentration of Fe, Zn, Mn and appreciable amount of the Cu, Co and V in all the plants. The results of the present study support the therapeutic usage of these medicinal plants in the traditional practices for curing skin diseases since they are found to contain appreciable amount of the Fe, Zn, Cu, Mn, V and Co. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. PM2.5 in Urban and Rural Nursery Schools in Upper Silesia, Poland: Trace Elements Analysis

    PubMed Central

    Mainka, Anna; Zajusz-Zubek, Elwira; Kaczmarek, Konrad

    2015-01-01

    Indoor air quality (IAQ) in nursery schools is an emerging public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than older children. Among air pollutants, fine particulate matter (PM2.5) is of the greatest interest mainly due to its strong association with acute and chronic effects on children’s health. In this paper, we present concentrations of PM2.5 and the composition of its trace elements at naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter and spring seasons. The results indicate there is a problem with elevated concentrations of PM2.5 inside the examined classrooms. The children’s exposure to trace elements was different based on localization and season. PM2.5 concentration and its trace element composition have been studied using correlation coefficients between the different trace elements, the enrichment factor (EF) and principal component analysis (PCA). PCA allowed the identification of the three components: anthropogenic and geogenic sources (37.2%), soil dust contaminated by sewage sludge dumping (18.6%) and vehicular emissions (19.5%). PMID:26184269

  5. The content of trace element iron is a key factor for competition between anaerobic ammonium oxidation and methane-dependent denitrification processes.

    PubMed

    Lu, Yong-Ze; Fu, Liang; Li, Na; Ding, Jing; Bai, Ya-Nan; Samaras, Petros; Zeng, Raymond Jianxiong

    2018-05-01

    Coupling of anaerobic ammonium oxidation (Anammox) with denitrifying anaerobic methane oxidation (DAMO) is a sustainable pathway for nitrogen removal and reducing methane emissions from wastewater treatment processes. However, studies on the competitive relation between Anammox bacteria and DAMO bacteria are limited. Here, we investigated the effects of variations in the contents of trace element iron on Anammox and DAMO microorganisms. The short-term results indicated that optimal concentrations of iron, which obviously stimulated the activity of Amammox bacteria, DAMO bacteria and DAMO archaea, were 80, 20, and 80 μM, respectively. The activity of Amammox bacteria increased more significant than DAMO bacteria with increasing contents of trace element iron. After long-term incubation with high content of trace element iron of 160 μM in the medium, Candidatus Brocadia (Amammox bacteria) outcompeted Candidatus Methylomirabilis oxyfera (DAMO bacteria), and ANME-2d (DAMO archaea) remarkably increased in number and dominated the co-culture systems (64.5%). Meanwhile, with further addition of iron, the removal rate of ammonium and nitrate increased by 13.6 and 9.2 times, respectively, when compared with that noted in the control. As far as we know, this study is the first to explore the important role of trace element iron contents in the competition between Anammox bacteria and DAMO bacteria and further enrichment of DAMO archaea by regulating the contents of trace element iron. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Sampling and analysis techniques for monitoring serum for trace elements.

    PubMed

    Ericson, S P; McHalsky, M L; Rabinow, B E; Kronholm, K G; Arceo, C S; Weltzer, J A; Ayd, S W

    1986-07-01

    We describe techniques for controlling contamination in the sampling and analysis of human serum for trace metals. The relatively simple procedures do not require clean-room conditions. The atomic absorption and atomic emission methods used have been applied in studying zinc, copper, chromium, manganese, molybdenum, selenium, and aluminum concentrations. Values obtained for a group of 16 normal subjects agree with the most reliable values reported in the literature, obtained by much more elaborate techniques. All of these metals can be measured in 3 to 4 mL of serum. The methods may prove especially useful in monitoring concentrations of essential trace elements in blood of patients being maintained on total parenteral nutrition.

  7. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less

  8. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to manuka honey.

    PubMed

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.

  9. Determination of Mineral, Trace Element, and Pesticide Levels in Honey Samples Originating from Different Regions of Malaysia Compared to Manuka Honey

    PubMed Central

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869

  10. Assessment of health risk related to the ingestion of trace metals through fish consumption in Todos os Santos Bay.

    PubMed

    de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, Willian Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso

    2017-05-01

    This study was carried out to evaluate the concentration of trace elements (As, Cd, Cu, Pb, and Zn) in the muscle of carnivorous fish species from three different areas of Todos os Santos Bay (BTS), Bahia State, Brazil. Trace elements were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES), and consumption rates advisory for minimizing chronic systemic effects in children and adults were estimated. As concentrations in fish samples from Jiribatuba were higher than legal limits set by FAO, and Cd concentrations in fish from Iguape Bay were high in comparison with FAO and EC. This study provides information about the fish consumption limits, considering the elements concentrations observed in the analyses, in particular As and Cd, necessary for minimizing potential health risks.

  11. Simultaneous trace multielement determination by ICP-OES after solid phase extraction with modified octadecyl silica gel.

    PubMed

    Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal

    2009-10-15

    Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.

  12. Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea

    PubMed Central

    Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere

    2016-01-01

    This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi, Meriandra dianthera, Lepidium sativum, Brassica nigra, and Nigella sativa. These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different (P < 0.05). PMID:27795982

  13. Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea.

    PubMed

    Sium, Mussie; Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere

    This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi , Meriandra dianthera , Lepidium sativum , Brassica nigra, and Nigella sativa . These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different ( P < 0.05).

  14. Baseline study on essential and trace elements in polished rice from South Korea.

    PubMed

    Jung, Myung Chae; Yun, Seong-Taek; Lee, Jin-Soo; Lee, Jong-Un

    2005-09-01

    In 2000, 63 (polished) white rice samples were collected in eight administrative areas all over South Korea and analyzed for 16 elements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Potassium had the highest content, next to Mg, Ca, Si, Zn, Na, Al and Fe. Most of the samples contained worldwide average concentrations of essential and trace elements in rice grains reported by various researches. For inter-area differences in those elements in the rice, the statistical analysis showed no significant differences (p > 0.05) among the eight administrative areas, suggesting that inter-area differences were not substantial in most cases. Thus, the present data can be used as national background levels of elements in rice produced in South Korea. Using the published data on daily consumption of rice in South Korea, it was possible to estimate the daily intake of As, Cd, Cu, Pb and Zn via rice. The results showed that a regular consumption of rice produced in Korea plays an important role in accumulation of essential and trace elements in Korean, especially for farm-households consuming relatively large amounts of rice.

  15. Key issues of ultraviolet radiation of OH at high altitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the verticalmore » distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.« less

  16. Wash effect of atmospheric trace metals wet deposition and its source characteristic in subtropical watershed in China.

    PubMed

    Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Tian, Jing; Wen, Xuefa

    2016-10-01

    In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.

  17. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  18. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2014-10-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  19. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China.

    PubMed

    Dong, Zhiwen; Kang, Shichang; Qin, Xiang; Li, Xiaofei; Qin, Dahe; Ren, Jiawen

    2015-10-01

    Trace element pollution resulting from anthropogenic emissions is evident throughout most of the atmosphere and has the potential to create environmental and health risks. In this study we investigated trace element deposition in the snowpacks at two different locations in the northern Tibetan Plateau, including the Laohugou (LHG) and the Tanggula (TGL) glacier basins, and its related atmospheric pollution information in these glacier areas, mainly focusing on 18 trace elements (Li, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Nb, Mo, Cd, Sb, Cs, Ba, Tl, and Pb). The results clearly demonstrate that pronounced increases of both concentrations and crustal enrichment factors (EFs) are observed in the snowpack at the TGL glacier basin compared to that of the LHG glacier basin, with the highest EFs for Sb and Zn in the TGL basin, whereas with the highest EFs for Sb and Cd in the LHG basin. Compared with other studies in the Tibetan Plateau and surrounding regions, trace element concentration showed gradually decreasing trend from Himalayan regions (southern Tibetan Plateau) to the TGL basin (central Tibetan Plateau), and to the LHG basin (northern Tibetan Plateau), which probably implied the significant influence of atmospheric trace element transport from south Asia to the central Tibetan Plateau. Moreover, EF calculations at two sites showed that most of the heavy metals (e.g., Cu, Zn, Mo, Cd, Sb, and Pb) were from anthropogenic sources and some other elements (e.g., Li, Rb, and Ba) were mainly originated from crustal sources. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm and CALIOP/CALIPSO transect showed significant influence of atmospheric pollutant transport from south Asia to the Tibetan Plateau, which probably caused the increased concentrations and EFs of trace element deposition in the snowpack on the TGL glacier basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  1. Trace element bias in the use of CO2 vents as analogues for low pH environments: Implications for contamination levels in acidified oceans

    NASA Astrophysics Data System (ADS)

    Vizzini, S.; Di Leonardo, R.; Costa, V.; Tramati, C. D.; Luzzu, F.; Mazzola, A.

    2013-12-01

    Research into the effects of ocean acidification on marine ecosystems has increasingly focused on natural CO2 vents, although their intrinsic environmental complexity means observations from these areas may not relate exclusively to pH gradients. In order to assess trace element levels and distribution in the Levante Bay (Vulcano Island, NE Sicily, Italy) and its suitability for studying biological effects of pH decline, Ba, Fe and trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn) in sediment were analysed from 7 transects. Where present, Cymodocea nodosa leaves and epiphytes were also analysed. At the spatial scale of the bay, trace element concentrations in sediments and biota showed wide variability, possibly related to both input from fluid emissions and seawater physico-chemical variables (i.e. pH and Eh), which may considerably affect the solubility and bioavailability of potentially harmful trace elements. According to two pollution indices (MSPI: Marine Sediment Pollution Index and SQG-Q: Sediment Quality Guideline Quotient), the bay can be considered to be affected by low contamination with moderate potential for adverse biological effects, especially in the area between about 150 and 350 m from the primary vent, where localized detrimental effects on biota may occur. Generally, biological samples showed concentrations that were comparable with the lower values of seagrass ranges. The overall results of this study support the complex spatial dynamics of trace elements in the CO2 vent studied, which are constrained by both direct input from the vent and/or biogeochemical processes affecting element precipitation at the sediment-seawater interface. Consequently, great caution should be used when relating biological changes along pH gradients to the unifactorial effect of pH only, as interactions with concurrent, multiple stressors, including trace element enrichments, may occur. This finding has implications for the use of CO2 vents as analogues in ocean acidification research. They should be considered more appropriately as analogues for low pH environments with non-negligible trace element contamination which, in a scenario of continuous increase in anthropogenic pollution, may be very common.

  2. Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES).

    PubMed

    Engelhard, Carsten; Scheffer, Andy; Nowak, Sascha; Vielhaber, Torsten; Buscher, Wolfgang

    2007-02-05

    A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min(-1) in contrast to 15 L min(-1) using conventional ICP sources. The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source. Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44+/-0.04 and 3.19+/-0.21 microg g(-1) for Co and Mn in the CRM 075c and 2.32+/-0.09, 81.8+/-0.4, 32.2+/-3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.

  3. Biological application of laser induced breakdown spectroscopy technique for determination of trace elements in hair.

    PubMed

    Emara, Elshaimaa M; Imam, Hisham; Hassan, Mouyed A; Elnaby, Salah H

    2013-12-15

    Analysis of trace elements in mammalian hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during growth. Using LIBS technique, Na, K, Ca, Mg, Si, Fe, Pb and Zn were detected in a single strand of horse hair. The results obtained through LIBS technique on hair samples were compared with the traditional technique (AAS) on digested acidified solution of the same samples. The effects of the experimental parameters on the emission lines were studied and the local thermodynamic equilibrium (LTE) in produced plasma was investigated. The transient plasma condition was verified at specific time region (1500-2000 ns) in the plasma evolution corresponding to its dynamic expanding characteristic. The relative mass concentrations of Fe and Zn were calculated by setting the concentration of C as the calibration. The information obtained from the trace elements' spectra of horse hair in this study substantiates the potential of hair as a biomarker. © 2013 Elsevier B.V. All rights reserved.

  4. Blood-collection device for trace and ultra-trace metal specimens evaluated.

    PubMed

    Moyer, T P; Mussmann, G V; Nixon, D E

    1991-05-01

    We evaluated the evacuated phlebotomy tube designed specifically for trace metal analysis by Sherwood Medical Co. Pools of human serum containing known concentrations of aluminum, arsenic, calcium, cadmium, copper, chromium, iron, lead, magnesium, manganese, mercury, selenium, and zinc were exposed to the tube and rubber stopper for defined periods ranging from 5 min to 24 h. Analysis for each element was performed in a randomized fashion under rigidly controlled conditions by use of standard electrothermal atomization atomic absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy, and cold vapor atomic absorption spectrometry. In addition, for comparative purposes, we collected blood samples from normal volunteers by use of ultra-clean polystyrene phlebotomy syringes as well as standard evacuated phlebotomy tubes. We conclude that, except for lead, there was no significant contribution of any trace element studied from the evaluated tube and stopper to the serum. Because whole blood is the usual specimen for lead testing, the observation of a trace amount of lead in this tube designed for serum collection is trivial.

  5. Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: A case-study in Svalbard.

    PubMed

    Marquès, Montse; Sierra, Jordi; Drotikova, Tatiana; Mari, Montse; Nadal, Martí; Domingo, José L

    2017-11-01

    A combined assessment on the levels and distribution profiles of polycyclic aromatic hydrocarbons (PAHs) and trace elements in soils from Pyramiden (Central Spitsbergen, Svalbard Archipelago) is here reported. As previously stated, long-range atmospheric transport, coal deposits and previous mining extractions, as well as the stack emissions of two operative power plants at this settlement are considered as potential sources of pollution. Eight top-layer soil samples were collected and analysed for the 16 US EPA priority PAHs and for 15 trace elements (As, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sn, Tl, V and Zn) during late summer of 2014. The highest levels of PAHs and trace elements were found in sampling sites located near two power plants, and at downwind from these sites. The current PAH concentrations were even higher than typical threshold values. The determination of the pyrogenic molecular diagnostic ratios (MDRs) in most samples revealed that fossil fuel burning might be heavily contributing to the PAHs levels. Two different indices, the Pollution Load Index (PLI) and the Geoaccumulation Index (Igeo), were determined for assessing soil samples with respect to trace elements pollution. Samples collected close to the power plants were found to be slightly and moderately polluted with zinc (Zn) and mercury (Hg), respectively. The Spearman correlation showed significant correlations between the concentrations of 16 PAHs and some trace elements (Pb, V, Hg, Cu, Zn, Sn, Be) with the organic matter content, indicating that soil properties play a key role for pollutant retention in the Arctic soils. Furthermore, the correlations between ∑16 PAHs and some trace elements (e.g., Hg, Pb, Zn and Cu) suggest that the main source of contamination is probably pyrogenic, although the biogenic and petrogenic origin of PAHs should not be disregarded according to the local geology. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  7. Comparative trace elemental analysis of cancerous and non-cancerous tissues of rectal cancer patients using PIXE

    NASA Astrophysics Data System (ADS)

    Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.

    2017-08-01

    Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.

  8. Investigation of the behavior of potentially hazardous trace elements in Kentucky coals and combustion byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.D.; Blanchard, L.J.; Srikantapura, S.

    1996-12-31

    The minor- and trace-element content of coal is of great interest because of the potentially hazardous impact on human health and the environment resulting from their release during coal combustion. Of the one billion tons of coal mined annually in the United States, 85-90% is consumed by coal-fired power plants. Potentially toxic elements present at concentrations as low as a few egg can be released in large quantities from combustion of this magnitude. Of special concern are those trace elements that occur naturally in coal which have been designated as potential hazardous air pollutants (HAPs) in the 1990 Amendments tomore » the Clean Air Act. The principle objective of this work was to investigate a combination of physical and chemical coal cleaning techniques to remove 90 percent of HAP trace elements at 90 percent combustibles recovery from Kentucky No. 9 coal. Samples of this coal were first subjected to physical separation by flotation in a Denver cell. The float fraction from the Denver cell was then used as feed material for hydrothermal leaching tests in which the efficacy of dilute alkali (NaOH) and acid (HNO{sub 3}) solutions at various temperatures and pressures was investigated. The combined column flotation and mild chemical cleaning strategy removed 60-80% of trace elements with greater than 85, recovery of combustibles from very finely ground (-325 mesh) coal. The elemental composition of the samples generated at each stage was determined using particle induced X-ray emission (PIXE) analysis. PIXE is a rapid, instrumental technique that, in principle, is capable of analyzing all elements from sodium through uranium with sensitivities as low as 1 {mu}g/g.« less

  9. Identification of deposit types of natural corundum by PIXE

    NASA Astrophysics Data System (ADS)

    Chulapakorn, T.; Intarasiri, S.; Bootkul, D.; Singkarat, S.

    2014-07-01

    Natural corundum, one of the most important exports of Thailand, is a rare, durable and valuable gemstone. The value of these precious stones is determined by their visual appearances, including brilliance, color, fire (light dispersion) and luster. Corundum is an allochromatic mineral whose trace element concentration depends on the origin and has influence on price setting. This work attempts to use an alternative method to identify the geological deposits of rubies and sapphires found in the Thai market which came from various countries, e.g., Africa, Cambodia, Myanmar, Sri Lanka, Thailand and USA. Interrelations between most important major trace elements are the main results of this work. Quantitative analysis of trace elements were performed by particle-induced X-ray emission (PIXE) technique, using 2-MeV proton beam generated and accelerated by the 1.7 MV tandem accelerator at Chiang Mai University. The trace elements of interest are Ti, Cr, Fe and Ga. We have found that the relationships between the ratios of trace element concentration can be used to classify the deposit type. Moreover, this method shows a clear separation between two main types of geological deposits, basaltic and metamorphic deposits, which further helps in determining the gemstone origin. For example, the gemstones from Cambodia, Thailand and the USA can be classified as the basaltic deposits with their high concentration in Fe but low in Ti, while the gemstones from Africa, Myanmar and Sri Lanka are metamorphic deposits because they have low Fe but high Ti concentrations. Both deposits required plots of pairs of trace elements and their ratios in population field appearance in order to distinguish their origins. The advantageous of these methods appear to be a new and a sustainable procedure for determining gemstone origins.

  10. The bark of the branches of holm oak (Quercus ilex L.) for a retrospective study of trace elements in the atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drava, Giuliana, E-mail: drava@difar.unige.it; Bri

    Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10–15 years with annual resolution. In the present study, the concentrations ofmore » As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the “a posteriori” reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. - Highlights: • Branch bark allows the historical reconstruction of atmospheric trace elements. • This approach is simple, reliable, widely applicable and “a posteriori”. • Downward time trends were found for Cd, Pb and Zn; upward trend for V.« less

  11. Inductively coupled plasma optical emission spectrometry for trace multi-element determination in vegetable oils, margarine and butter after stabilization with propan-1-ol and water

    NASA Astrophysics Data System (ADS)

    de Souza, Roseli M.; Mathias, Bárbara M.; da Silveira, Carmem Lúcia P.; Aucélio, Ricardo Q.

    2005-06-01

    The quantitative evaluation of trace elements in foodstuffs is of considerable interest due to the potential toxicity of many elements, and because the presence of some metallic species might affect the overall quality (flavor and stability) of these products. In the present work, an inductively coupled plasma optical emission spectrometric method has been developed for the determination of six elements (Cd, Co, Cr, Cu, Ni and Mn) in olive oil, soy oil, margarine and butter. Organic samples (oils and fats) were stabilized using propan-1-ol and water, which enabled long-time sample dispersion in the solution. This simple sample preparation procedure, together with an efficient sample introduction strategy (using a Meinhard K3 nebulizer and a twister cyclonic spray chamber), facilitated the overall analytical procedure, allowing quantification using calibration curves prepared with inorganic standards. Internal standardization (Sc) was used for correction of matrix effects and signal fluctuations. Good sensitivities with limits of detection in the ng g -1 range were achieved for all six elements. These sensitivities were appropriate for the intended application. The method was tested through the analysis of laboratory-fortified samples with good recoveries (between 91.3% and 105.5%).

  12. The influence of seafloor hydrothermal activity on major and trace elements of the sediments from the South Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua

    2017-10-01

    Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. Results revealed that the contents of elements (e.g., Fe, Mn, Cu, Zn, V, Co) were high in samples 22V-TVG10 and 26V-TVG05 from the sites near the hydrothermal areas, and low in sample 22V-TVG14, which was collected far from the hydrothermal areas. The contents of Ca, Sr and Ba in the samples showed opposite trends. A positive correlation between the concentrations of metallic elements (Cu, Zn, Co, Ni, Pb, V) and Fe in the samples were observed. These results are consistent with chemical evolution of the dispersing hydrothermal plume.

  13. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  14. The bark of the branches of holm oak (Quercus ilex L.) for a retrospective study of trace elements in the atmosphere.

    PubMed

    Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2017-04-01

    Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10-15 years with annual resolution. In the present study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the "a posteriori" reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants.

    PubMed

    Raja, R; Nayak, A K; Shukla, A K; Rao, K S; Gautam, Priyanka; Lal, B; Tripathi, R; Shahid, M; Panda, B B; Kumar, A; Bhattacharyya, P; Bardhan, G; Gupta, S; Patra, D K

    2015-11-01

    Thermal power stations apart from being source of energy supply are causing soil pollution leading to its degradation in fertility and contamination. Fine particle and trace element emissions from energy production in coal-fired thermal power plants are associated with significant adverse effects on human, animal, and soil health. Contamination of soil with cadmium, nickel, copper, lead, arsenic, chromium, and zinc can be a primary route of human exposure to these potentially toxic elements. The environmental evaluation of surrounding soil of thermal power plants in Odisha may serve a model study to get the insight into hazards they are causing. The study investigates the impact of fly ash-fugitive dust (FAFD) deposition from coal-fired thermal power plant emissions on soil properties including trace element concentration, pH, and soil enzymatic activities. Higher FAFD deposition was found in the close proximity of power plants, which led to high pH and greater accumulation of heavy metals. Among the three power plants, in the vicinity of NALCO, higher concentrations of soil organic carbon and nitrogen was observed whereas, higher phosphorus content was recorded in the proximity of NTPC. Multivariate statistical analysis of different variables and their association indicated that FAFD deposition and soil properties were influenced by the source of emissions and distance from source of emission. Pollution in soil profiles and high risk areas were detected and visualized using surface maps based on Kriging interpolation. The concentrations of chromium and arsenic were higher in the soil where FAFD deposition was more. Observance of relatively high concentration of heavy metals like cadmium, lead, nickel, and arsenic and a low concentration of enzymatic activity in proximity to the emission source indicated a possible link with anthropogenic emissions.

  16. A comparison of the techniques of PIXE, PIGE and INAA by reference to the elemental analysis of porcine brain samples

    NASA Astrophysics Data System (ADS)

    Stedman, J. D.; Spyrou, N. M.

    1994-12-01

    The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.

  17. Tellurium in active volcanic environments: Preliminary results

    NASA Astrophysics Data System (ADS)

    Milazzo, Silvia; Calabrese, Sergio; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Parello, Francesco

    2014-05-01

    Tellurium is a toxic metalloid and, according to the Goldschmidt classification, a chalcophile element. In the last years its commercial importance has considerably increased because of its wide use in solar cells, thermoelectric and electronic devices of the last generation. Despite such large use, scientific knowledge about volcanogenic tellurium is very poor. Few previous authors report result of tellurium concentrations in volcanic plume, among with other trace metals. They recognize this element as volatile, concluding that volcanic gases and sulfur deposits are usually enriched with tellurium. Here, we present some results on tellurium concentrations in volcanic emissions (plume, fumaroles, ash leachates) and in environmental matrices (soils and plants) affected by volcanic emissions and/or deposition. Samples were collected at Etna and Vulcano (Italy), Turrialba (Costa Rica), Miyakejima, Aso, Asama (Japan), Mutnovsky (Kamchatka) at the crater rims by using common filtration techniques for aerosols (polytetrafluoroethylene filters). Filters were both eluted with Millipore water and acid microwave digested, and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Volcanic ashes emitted during explosive events on Etna and Copahue (Argentina) were analyzed for tellurium bulk composition and after leaching experiments to evaluate the soluble fraction of tellurium. Soils and leaves of vegetation were also sampled close to active volcanic vents (Etna, Vulcano, Nisyros, Nyiragongo, Turrialba, Gorely and Masaya) and investigated for tellurium contents. Preliminary results showed very high enrichments of tellurium in volcanic emissions comparing with other volatile elements like mercury, arsenic, thallium and bismuth. This suggests a primary transport in the volatile phase, probably in gaseous form (as also suggested by recent studies) and/or as soluble salts (halides and/or sulfates) adsorbed on the surface of particulate particles and ashes. First estimates of volcanic flux of tellurium from Etna range from 1 to 5 tons per year, confirming that this volcano is one of the biggest point sources of trace elements to the atmosphere. Analysis of tellurium in soils and plants close to active vents allowed to highlight the impact of this toxic elements, particularly evident close to the craters. Especially, the leaves of plants used as bioaccumulators of trace metals, showed also high enrichment of tellurium in comparison with other toxic elements.

  18. Comparison of analytical performances of inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry for trace analysis of bismuth and bismuth oxide

    NASA Astrophysics Data System (ADS)

    Medvedev, Nickolay S.; Shaverina, Anastasiya V.; Tsygankova, Alphiya R.; Saprykin, Anatoly I.

    2018-04-01

    The paper presents а comparison of analytical performances of inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectrometry (ICP-AES) for trace analysis of high purity bismuth and bismuth oxide. Matrix effects in the ICP-MS and ICP-AES methods were studied as a function of Bi concentration, ICP power and nebulizer flow rate. For ICP-MS the strong dependence of the matrix effects versus the atomic mass of analytes was observed. For ICP-AES the minimal matrix effects were achieved for spectral lines of analytes with low excitation potentials. The optimum degree of sample dilution providing minimum values of the limits of detection (LODs) was chosen. Both methods let us to reach LODs from n·10-7 to n·10-4 wt% for more than 50 trace elements. For most elements the LODs of ICP-MS were lower in comparison to ICP-AES. Validation of accuracy of the developed techniques was performed by "added-found" experiments and by comparison of the results of ICP-MS and ICP-AES analysis of high-purity bismuth oxide.

  19. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources.

    PubMed

    Moreira, Tiana Carla Lopes; de Oliveira, Regiani Carvalho; Amato, Luís Fernando Lourenço; Kang, Choong-Min; Saldiva, Paulo Hilário Nascimento; Saiki, Mitiko

    2016-05-01

    It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Paytan, Adina; Chase, Zanna; Measures, Christopher; Beck, Aaron J.; SañUdo-Wilhelmy, Sergio A.; Post, Anton F.

    2008-03-01

    We present the first comprehensive investigation of the concentrations, fluxes and sources of aerosol trace elements over the Gulf of Aqaba. We found that the mean atmospheric concentrations of crustally derived elements such as Al, Fe and Mn (1081, 683, and 16.7 ng m-3) are about 2-3 times higher than those reported for the neighboring Mediterranean area. This is indicative of the dominance of the mineral dust component in aerosols over the Gulf. Anthropogenic impact was lower in comparison to the more heavily populated areas of the Mediterranean. During the majority of time (69%) the air masses over the Gulf originated from Europe or Mediterranean Sea areas delivering anthropogenic components such as Cu, Cd, Ni, Zn, and P. Airflows derived from North Africa in contrast contained the highest concentrations of Al, Fe, and Sr but generally lower Cu, Cd, Ni, Zn, and P. Relatively high Pb, Ni, and V were found in the local and Arabian airflows suggesting a greater influence of local emission of fuel burning. We used the data and the measured trace metal seawater concentrations to calculate residence times of dissolved trace elements in the upper 50 m surface water of the Gulf (with respect to atmospheric input) and found that the residence times for most elements are in the range of 5-37 years while Cd and V residence times are longer.

  1. Trace elemental correlation study in malignant and normal breast tissue by PIXE technique

    NASA Astrophysics Data System (ADS)

    Raju, G. J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G. A. V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P. V. B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka

    2006-06-01

    Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors.

  2. Concentrations of trace elements and PCDD/Fs around a municipal solid waste incinerator in Girona (Catalonia, Spain). Human health risks for the population living in the neighborhood.

    PubMed

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2018-07-15

    Previously to the modernization of the municipal solid waste incinerator (MSWI) of Campdorà (Girona, Catalonia, Spain) two sampling campaigns (2015 and 2016) were conducted. In each campaign, 8 soil and 4 air samples (PM 10 and total particle phase and gas phase) were collected. The levels of As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Tl and V, and PCDD/Fs were analysed at different distances and wind directions around the MSWI. Environmental levels of trace elements and PCDD/Fs were used to assess exposure and health risks (carcinogenic and non-carcinogenic) for the population living around the facility. In soils, no significant differences were observed for trace elements and PCDD/Fs between both campaigns. In air, significant higher levels of As, Cd, Co, Mn, Ni, Pb, Tl and V were detected in 2016. Regarding soil levels, only Cd (distances) and As, Cu, Mn, and Ni (wind directions) showed significant differences. No differences were noted in the concentrations of trace elements and PCDD/Fs in air levels with respect to distances and directions to the MSWI. No differences were registered in air levels (elements and PCDD/Fs) between points influenced by MSWI emissions and background point. However some differences in congener profile were noted regarding from where back-trajectories come from (HYSPLIT model results), pointing some influence of Barcelona metropolitan area. The concentrations of trace elements and PCDD/Fs were similar -or even lower- than those reported around other MSWIs in Catalonia and various countries. Non-carcinogenic risks were below the safety limit (HQ<1). In turn, carcinogenic risks due to exposure to trace elements and PCDD/Fs were in acceptable ranges, according to national and international standard regulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Selected trace elements in the Sacramento River, California: occurrence and distribution.

    PubMed

    Taylor, H E; Antweiler, R C; Roth, D A; Alpers, C N; Dileanis, P

    2012-05-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements-including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium-were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.

  4. Impact of transient soil water simulation to estimated nitrogen leaching and emission at high- and low-deposition forest sites in southern California

    Treesearch

    Yuan Yuan; Thomas Meixner; Mark E. Fenn; Jirka Simunek

    2011-01-01

    Soil water dynamics and drainage are key abiotic factors controlling losses of atmospherically deposited N in Southern California. In this paper soil N leaching and trace gaseous emissions simulated by the DAYCENT biogeochemical model using its original semi‐dynamic water flow module were compared to that coupled with a finite element transient water flow...

  5. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    Treesearch

    T. J. Christian; R. J. Yokelson; B. Cardenas; L. T. Molina; G. Engling; S.-C. Hsu

    2009-01-01

    In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC), anhydrosugars, Cl-, NO-3 , and 20 metals from 10 cooking fires, four garbage fires, three brick making kilns, three charcoal making kilns, and two crop residue fires. Biofuel use has been estimated at over 2600...

  6. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico

    Treesearch

    T. J. Christian; R. J. Yokelson; B. Cardenas; L. T. Molina; G. Engling; S.-C. Hsu

    2010-01-01

    In central Mexico during the spring of 2007 we measured the initial emissions of 12 gases and the aerosol speciation for elemental and organic carbon (EC, OC), anhydrosugars, Cl-, NO-3 , and 20 metals from 10 cooking fires, four garbage fires, three brick making kilns, three charcoal making kilns, and two crop residue fires. Global biofuel use has been...

  7. PROTON MICROPROBE ANALYSIS OF TRACE-ELEMENT VARIATIONS IN VITRINITES IN THE SAME AND DIFFERENT COAL BEDS.

    USGS Publications Warehouse

    Minkin, J.A.; Chao, E.C.T.; Blank, Herma; Dulong, F.T.

    1987-01-01

    The PIXE (proton-induced X-ray emission) microprobe can be used for nondestructive, in-situ analyses of areas as small as those analyzed by the electron microprobe, and has a sensitivity of detection as much as two orders of magnitude better than the electron microprobe. Preliminary studies demonstrated that PIXE provides a capability for quantitative determination of elemental concentrations in individual coal maceral grains with a detection limit of 1-10 ppm for most elements analyzed. Encouraged by the earlier results, we carried out the analyses reported below to examine trace element variations laterally (over a km range) as well as vertically (cm to m) in the I and J coal beds in the Upper Cretaceous Ferron Sandstone Member of the Mancos Shale in central Utah, and to compare the data with the data from two samples of eastern coals of Pennsylvanian age.

  8. Bioacumulation of trace elements in the crab Ucides cordatus (Linnaeus, 1763) from the macrotidal mangrove coast region of the Brazilian Amazon.

    PubMed

    Silva, Bruna Mariáh da S E; Morales, Gundisalvo P; Gutjahr, Ana Lúcia N; Freitas Faial, Kelson do C; Carneiro, Bruno S

    2018-03-14

    In this study, trace element concentrations were measured in chelipod and gill samples of the crab U. cordatus by induced coupled plasma optical emission spectrometry (ICP OES). The element average concentrations between the structures were statistically compared. Gill concentrations of Cu and Zn were higher in female crabs, while in chelipods, Pb concentrations were higher in males. The concentration of Zn in crabs from Curuçá City were higher than the recommended by health agencies, but the provisional tolerable daily intake value (PTDI), for Zn and Cu, showed only 10 and 23% contribution, respectively. The bioaccumulation factor was higher than 1 for Cu (gills and chelipods) and Zn (only for chelipods), which suggests bioaccumulation for these elements. Further metallomic and oxidative stress analyses are suggested, in order to evaluate possible protein and/or enzymatic biomarkers of toxicity.

  9. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    NASA-Lewis Research Center's work on accurate measurement of trace level of metals in various fuels is presented. The differences between laboratories and between analytical techniques especially for concentrations below 10 ppm, are discussed, detailing the Atomic Absorption Spectrometry (AAS) and DC Arc Emission Spectrometry (dc arc) techniques used by NASA-Lewis. Also presented is the design of an Interlaboratory Study which is considering the following factors: laboratory, analytical technique, fuel type, concentration and ashing additive.

  10. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  11. Migration of 18 trace elements from ceramic food contact material: influence of pigment, pH, nature of acid and temperature.

    PubMed

    Demont, M; Boutakhrit, K; Fekete, V; Bolle, F; Van Loco, J

    2012-03-01

    The effect of pH, nature of acid and temperature on trace element migration from ceramic ware treated with 18 commercially available glazes was studied. Besides of the well-studied lead and cadmium, migration of other toxic and non toxic elements such as aluminum, boron, barium, cobalt, chrome, copper, iron, lithium, magnesium, manganese, nickel, antimony, tin, strontium, titanium, vanadium, zinc and zirconium was investigated in order to evaluate their potential health hazards. Trace element concentrations were determined with Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). This study suggests that there is indeed a health risk concerning the possible migration of other elements than lead and cadmium. At low pH (2

  12. Trace element distribution in the snow cover from an urban area in central Poland.

    PubMed

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-05-01

    This work presents the first results from winter field campaigns focusing on trace metals and metalloid chemistry in the snow cover from an urbanized region in central Poland. Samples were collected between January and March 2013 and trace element concentrations were determined using GF-AAS. A large inter-seasonal variability depending on anthropogenic emission, depositional processes, and meteorological conditions was observed. The highest concentration (in μg L(-1)) was reported for Pb (34.90), followed by Ni (31.37), Zn (31.00), Cu (13.71), Cr (2.36), As (1.58), and Cd (0.25). In addition, several major anthropogenic sources were identified based on principal component analysis (PCA), among which the most significant was the activity of industry and coal combustion for residential heating. It was stated that elevated concentrations of some trace metals in snow samples were associated with frequent occurrence of south and southeast advection of highly polluted air masses toward the sampling site, suggesting a large impact of regional urban/industrial pollution plumes.

  13. Analysis of memory consolidation and evocation in rats by proton induced X-ray emission

    NASA Astrophysics Data System (ADS)

    Jobim, P. F. C.; dos Santos, C. E. I.; Maurmann, N.; Reolon, G. K.; Debastiani, R.; Pedroso, T. R.; Carvalho, L. M.; Dias, J. F.

    2014-08-01

    It is well known that trace elements such as Mg, Ca, Fe, Cu and Zn have a key role in synapse plasticity and learning. Learning process is conventionally divided in three distinct and complementary stages: memory acquisition, consolidation and evocation. Consolidation is the stabilization of the synaptic trace formed by acquisition, while evocation is the recall of this trace. Ion-based techniques capable of providing information concerning the elemental composition of organic tissues may be helpful to improve our understanding on memory consolidation and evocation processes. In particular, the Particle-Induced X-ray Emission (PIXE) technique can be used to analyze different biological tissues with good accuracy. In this work we explore the versatility of PIXE to measure the elemental concentrations in rat brain tissues in order to establish any possible correlation between them and the memory consolidation and evocation processes. To this end, six groups of middle-age male Wistar rats were trained and tested in a step-down Inhibitory Avoidance conditioning. After the behavior tests, the animals were decapitated in accordance with the legal procedures and their brains were removed and dissected for the PIXE analyses. The results demonstrated that there are differences in the elemental concentration among the groups and such variations may be associated with their availability to the learning processes (by memory consolidation and evocation). Moreover, the control groups circumvent the possibility that a non-specific event involved in learning tasks cause such variations. Our results suggest that PIXE may be a useful tool to investigate memory consolidation and evocation in animal models.

  14. A methodology for quantifying trace elements in the exoskeletons of Florida stone crab (Menippe mercenaria) larvae using inductively coupled plasma optical emission spectrometry (ICP–OES)

    USGS Publications Warehouse

    Gravinese, Philip M.; Flannery, Jennifer A.; Toth, Lauren T.

    2016-11-23

    The larvae of the Florida stone crab, Menippe mercenaria, migrate through a variety of habitats as they develop and, therefore, experience a broad range of environmental conditions through ontogeny. Environmental variability experienced by the larvae may result in distinct elemental signatures within the exoskeletons, which could provide a tool for tracking the environmental history of larval stone crab populations. A method was developed to examine trace-element ratios, specifically magnesium-to-calcium (Mg/Ca) and strontium-to-calcium (Sr/Ca) ratios, in the exoskeletons of M. mercenaria larvae. Two developmental stages of stone crab larvae were analyzed—stage III and stage V. Specimens were reared in a laboratory environment under stable conditions to quantify the average ratios of Mg/Ca and Sr/Ca of larval stone crab exoskeletons and to determine if the ratios differed through ontogeny. The elemental compositions (Ca, Mg, and Sr) in samples of stage III larvae (n = 50 per sample) from 11 different broods (mean Sr/Ca = 5.916 ± 0.161 millimole per mole [mmol mol−1]; mean Mg/Ca = 218.275 ± 59.957 mmol mol−1) and stage V larvae (n = 10 per sample) from 12 different broods (mean Sr/Ca = 6.110 ± 0.300 mmol mol−1; mean Mg/Ca = 267.081 ± 67.211 mmol mol–1) were measured using inductively coupled plasma optical emission spectrometry (ICP–OES). The ratio of Sr/Ca significantly increased from stage III to stage V larvae, suggesting an ontogenic shift in Sr/Ca ratios between larval stages. The ratio of Mg/Ca did not change significantly between larval stages, but variability among broods was high. The method used to examine the trace-element ratios provided robust, highly reproducible estimates of Sr/Ca and Mg/Ca ratios in the larvae of M. mercenaria, demonstrating that ICP–OES can be used to determine the trace-element composition of chitinous organisms like the Florida stone crab.

  15. Effect of Trona on the leaching of trace elements from coal fly ash.

    DOT National Transportation Integrated Search

    2013-07-01

    Fly ashes were sampled from the ESPs by on-site contractors during air emission control tests. The injection tests were short-term, : lasting approximately three hours per test condition. EPRI received three batches of samples since November 2011, re...

  16. Using Gamma ray and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to Evaluate Elemental Sequences in Cap-carbonates and Cap-like Carbonates of the Death Valley Region

    NASA Astrophysics Data System (ADS)

    Holter, S. A.; Theissen, K. M.; Hickson, T. A.; Bostick, B.

    2004-12-01

    The Snowball Earth theory of Hoffman et al. (1998) proposes dramatic post-glacial chemical weathering as large concentrations of carbon were removed from the atmosphere. This would result in a large input of terrigenous material into the oceans; hence, we might expect that carbonates formed under these conditions would demonstrate elevated K, U, Th levels in comparison to carbonates formed under more typical conditions. In January of 2004 we collected spectral gamma data (K, U, Th) and hand samples from cap carbonates (Noonday Dolomite) and cap-like carbonates (Beck Spring Dolomite) of the Death Valley region in order to explore elemental changes in post-snowball Earth oceans. Based on our spectral gamma results, Th/U ratio trends suggested variations in the oxidation state of the Precambrian ocean. We pursued further investigations of trace elements to ascertain the reliability of these results by using ICP-OES. A suite of 25 trace elements was measured, most notably including U and Th. The ICP-OES data not only allow us to compare elemental changes between cap-carbonates and cap-like carbonates, but they also allow for a comparison of optical emission spectrometry and hand held gamma spectrometry methods. Both methods show similar trends in U and Th values for both the cap-carbonates and cap-like carbonates.

  17. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain

    NASA Astrophysics Data System (ADS)

    Castillo, Sonia; de la Rosa, Jesús D.; Sánchez de la Campa, Ana M.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío

    2013-10-01

    The present study seeks to estimate the impact of industrial emissions and harbour activities on total atmospheric deposition in an Atlantic coastal area in the southwest of the Iberian Peninsula. Three large industrial estates and a busy harbour have a notable influence on air quality in the city of Huelva and the surrounding area. The study is based on a geochemical characterization of trace elements deposited (soluble and insoluble fractions) in samples collected at a rate of 15 days/sample from June 2008 to May 2011 in three sampling sites, one in the principal industrial belt, another in the city of Huelva, and the last, 56 km outside Huelva city in an area of high ecological interest. The industrial emissions emitted by the Huelva industrial belt exert a notable influence on atmospheric deposition. Major deposition fluxes were registered for Fe, Cu, V, Ni, P, Pb, As, Sn, Sb, Se and Bi, principally in the insoluble fraction, derived from industrial funnel emissions and from harbour activities. Metals such as Mn, Ni, Cu and Zn, and elements such as P also have a significant presence in the soluble fraction converting them into potentially bio-available nutrients for the living organism in the ocean. A principal component analysis certifies three common emissions sources in the area: 1) a mineral factor composed mainly of elements derived from silicate minerals mixed with certain anthropogenic species (Mg, K, Sr, Na, Al, Ba, LREE, Li, Mn, HREE, Ti, Fe, Se, V, SO-, Ni, Ca and P); 2) an industrial factor composed of the same trace elements in the three areas (Sb, Mo, Bi, As, Pb, Sn and Cd) thus confirming the impact of the emissions from the Huelva industrial belt on remote areas; and 3) a marine factor composed of Na, Cl, Mg and SO.

  18. Major and minor oxide and trace element determination in silicate rocks by direct current plasma optical emission echelle spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankston, D.C.; Humphris, S.E.; Thompson, G.

    1979-07-01

    A technique for the determination of major concentrations of SiO/sub 2/, Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/, MgO, CaO, Na/sub 2/O, and K/sub 2/O, minor levels of TiO/sub 2/, P/sub 2/O/sub 5/, and MnO, and trace concentrations of Ba, Cr, Cu, Ni, Sr, V, and Zn, in semi-microsamples 200 mg) of powdered whole rock, is described. Chemically diverse standard reference rocks are used both for calibration and assessment of accuracy. A lithium metaborate fusion melt of each standard or sample is dissolved in dilute HNO/sub 3/ containing Cs/sup +/ at a level of 0.2% (w/v). The resulting solution is usedmore » to perform all analyses except those for Na/sub 2/O and K/sub 2/O, which are determined in a portion of the original sample solution wherein the Cs/sup +/ concentration has been raised to 0.32% (w/v). Analyses of both portions of each sample solution are performed using an optical emission spectrometer/spectrograph equipped with an echelle monochromator and a dc argon plasma excitation source. Trace element detection limits ranged from 2 ppM for Cu to 15 ppM for Zn. A study of precision based on replicate determinations in three splits of the proposed USGS reference basalt BHVO-1 yielded the following results: (1) For analyses of the major and minor oxide constituents, values of the percent relative standard deviation (RSD) ranged from 1 for CaO, to 21 for P/sub 2/O/sub 5/. 2) For trace element determinations, values of the RSD ranged from 2 for Cu, to 19 for Zn. 2 figures, 11 tables.« less

  19. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    A review of the techniques used at Lewis Research Center (LeRC) in trace metals analysis is presented, including the results of Atomic Absorption Spectrometry and DC Arc Emission Spectrometry of blank levels and recovery experiments for several metals. The design of an Interlaboratory Study conducted by LeRC is presented. Several factors were investigated, including: laboratory, analytical technique, fuel type, concentration, and ashing additive. Conclusions drawn from the statistical analysis will help direct research efforts toward those areas most responsible for the poor interlaboratory analytical results.

  20. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements.

  1. Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry.

    PubMed

    Feist, Barbara; Mikula, Barbara

    2014-03-15

    A method of separation and preconcentration of cadmium, cobalt, copper, nickel, lead, and zinc at trace level using activated carbon is proposed. Activated carbon with the adsorbed trace metals was mineralised using a high-pressure microwave mineraliser. The heavy metals were determined after preconcentration by inductively coupled plasma optical emission spectrometry (ICP-OES). The influence of several parameters, such as pH, sorbent mass, shaking time was examined. Moreover, effects of inorganic matrix on recovery of the determined elements were studied. The experiment shows that foreign ions did not influence recovery of the determined elements. The detection limits (DL) of Cd, Co, Cu, Ni, Pb, and Zn were 0.17, 0.19, 1.60, 2.60, 0.92 and 1.50 μg L(-)(1), respectively. The recovery of the method for the determined elements was better than 95% with relative standard deviation from 1.3% to 3.7%. The preconcentration factor was 80. The proposed method was applied for determination of Cd, Co, Cu, Ni, Pb, and Zn in fruits materials. Accuracy of the proposed method was verified using certified reference material (NCS ZC85006 Tomato). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. [Presence of the trace elements from carbon dioxide absorbent containing lime using a circular apparatus during general anesthesia. ].

    PubMed

    Macheta, A; Słodowski, W; Kocot, M; Muszyński, T; Rokita, E; Andres, J

    2001-01-01

    The aim of the study was to evaluate release of the trace elements from carbon dioxide absorbent containing soda lime during general anesthesia. We compared two suppliers Polish "Polfa" and German "Dräger". Following trace elements were evaluated: chromium, copper, zinc, cadmium, lead, nickel in soda lime. In blood of the patients we evaluated: copper, zinc, lead, cadmium, bromine, rubidium, iron, mercury. Proton Induced X-ray Emission (PIXE) was used to measure concentrations of the elements. Probes of soda lime were analyzed before anesthesia (Polfa, Dräger), 6 hr after the use (Polfa only) and after 10 weeks (Dräger only). 10 patients were divided in two equal groups, one was anesthetized using soda lime from Polfa and another one from Dräger. Blood samples were taken before anesthesia, immediately after and the next day. Mean values of the concentrations of the elements in soda lime coming from Polfa ranged from 0.20 ppm (nickel) to 7.19 ppm (zinc). In Dräger the measurements were from 0.22 ppm (nickel) to 3.70 ppm (zinc). Mean concentrations of trace elements in blood samples were between 0.20 ppm (lead) and 487 ppm (iron) for the patients anesthetized with Polfa soda lime. In Dräger the measurements ranged from 0.15 ppm (lead) to 485 ppm (iron). Concentrations of cadmium and mercury were below the method's limit. Mean values were almost the same in all time points. Statistical analysis was done using paired t-tests. Values of P < 0.05 were consider significant. We concluded that there were no statistically significant differences between examined groups. Thus, we can say that trace elements were not released from soda lime and concentrations of examined elements in patients' blood were not affected by general anesthesia.

  3. Selected trace elements in the Sacramento River, California: Occurrence and distribution

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, David A.; Dileanis, Peter D.; Alpers, Charles N.

    2012-01-01

    The impact of trace elements from the Iron Mountain Superfund site on the Sacramento River and selected tributaries is examined. The concentration and distribution of many trace elements—including aluminum, arsenic, boron, barium, beryllium, bismuth, cadmium, cerium, cobalt, chromium, cesium, copper, dysprosium, erbium, europium, iron, gadolinium, holmium, potassium, lanthanum, lithium, lutetium, manganese, molybdenum, neodymium, nickel, lead, praseodymium, rubidium, rhenium, antimony, selenium, samarium, strontium, terbium, thallium, thulium, uranium, vanadium, tungsten, yttrium, ytterbium, zinc, and zirconium—were measured using a combination of inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry. Samples were collected using ultraclean techniques at selected sites in tributaries and the Sacramento River from below Shasta Dam to Freeport, California, at six separate time periods from mid-1996 to mid-1997. Trace-element concentrations in dissolved (ultrafiltered [0.005-μm pore size]) and colloidal material, isolated at each site from large volume samples, are reported. For example, dissolved Zn ranged from 900 μg/L at Spring Creek (Iron Mountain acid mine drainage into Keswick Reservoir) to 0.65 μg/L at the Freeport site on the Sacramento River. Zn associated with colloidal material ranged from 4.3 μg/L (colloid-equivalent concentration) in Spring Creek to 21.8 μg/L at the Colusa site on the Sacramento River. Virtually all of the trace elements exist in Spring Creek in the dissolved form. On entering Keswick Reservoir, the metals are at least partially converted by precipitation or adsorption to the particulate phase. Despite this observation, few of the elements are removed by settling; instead the majority is transported, associated with colloids, downriver, at least to the Bend Bridge site, which is 67 km from Keswick Dam. Most trace elements are strongly associated with the colloid phase going downriver under both low- and high-flow conditions.

  4. Atmospheric deposition of trace elements at urban and forest sites in central Poland - Insight into seasonal variability and sources

    NASA Astrophysics Data System (ADS)

    Siudek, Patrycja; Frankowski, Marcin

    2017-12-01

    This paper includes the results of chemical composition of bulk deposition samples collected simultaneously at urban (Poznań city) and forest (Jeziory) sites in central Poland, between April 2013 and October 2014. Rainwater samples were analyzed for trace elements (As, Zn, Ni, Pb, Cu, Cr, Cd) and physicochemical parameters. Overall, three metals, i.e. Zn, Pb and Cu were the most abundant anthropogenic constituents of rainwater samples from both locations. In Poznań city, the rainwater concentrations of trace elements did not differ significantly between spring and summer. However, they were elevated and more variable during the cold season (fall and winter), suggesting strong contribution from local high-temperature processes related to coal combustion (commercial and residential sector). In contrast to the urban site, relatively low variability in concentrations was found for Cu, Ni, Zn at the forest site, where direct impact of emission from vehicle traffic and coal-fired combustion (power plants) was much lower. The bulk deposition fluxes of Ni, As, Pb and Zn at this site exhibited a clear trend, with higher values during the cold season (fall and winter) than in spring and summer. At the urban site, the sums of total bulk deposition fluxes of Zn, Cu, Pb, Ni, As, Cr, Cd were as follows: 8460.4, 4209.2, 2247.4, 1882.1, 606.6, 281.6 and 31.4 μg m- 2. In addition, during the winter season, a significantly higher deposition fluxes of Cu and Zn were observed for rain (on average 103.8 and 129.4 μg m- 2, respectively) as compared to snow (19.7 μg Cu m- 2 and 54.1 μg Zn m- 2). This suggests that different deposition pattern of trace elements for rain, mixed and snow was probably the effect of several factors: precipitation type, changes in emission and favorable meteorological situation during rain events.

  5. Interspecies and interregional comparisons of the chemistry of PAHs and trace elements in mosses Hylocomium splendens (Hedw.) B.S.G. and Pleurozium schreberi (Brid.) Mitt. from Poland and Alaska

    USGS Publications Warehouse

    Migaszewski, Z.M.; Galuszka, A.; Crock, J.G.; Lamothe, P.J.; Dolegowska, S.

    2009-01-01

    Comparative biogeochemical studies performed on the same plant species in remote areas enable pinpointing interspecies and interregional differences of chemical composition. This report presents baseline concentrations of PAHs and trace elements in moss species Hylocomium splendens and Pleurozium schreberi from the Holy Cross Mountains (south-central Poland) (HCM) and Wrangell-Saint Elias National Park and Preserve (Alaska) and Denali National Park and Preserve (Alaska). Total PAH concentrations in the mosses of HCM were in the range of 473-2970 ??g kg-1 (dry weight basis; DW), whereas those in the same species of Alaska were 80-3390 ??g kg-1 DW. Nearly all the moss samples displayed the similar ring sequence: 3 > 4 > 5 > 6 for the PAHs. The 3 + 4 ring/total PAH ratios show statistically significant differences between HCM (0.73) and Alaska (0.91). The elevated concentrations of PAHs observed in some sampling locations of the Alaskan parks were linked to local combustion of wood, with a component of vehicle particle- and vapor-phase emissions. In HCM, the principal source of PAH emissions has been linked to residential and industrial combustion of coal and vehicle traffic. In contrast to HCM, the Alaskan mosses were distinctly elevated in most of the trace elements, bearing a signature of??the underlying geology. H.??splendens and P. schreberi showed diverse bioaccumulative capabilities of PAHs in all three study areas. ?? 2008 Elsevier Ltd.

  6. Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain).

    PubMed

    López, J M; Callén, M S; Murillo, R; García, T; Navarro, M V; de la Cruz, M T; Mastral, A M

    2005-09-01

    An assessment of the air quality of Zaragoza (Spain) was performed by determining the trace element content in airborne PM10 in a sampling campaign from July 2001 to July 2002. Samples were collected in a heavy traffic area with a high volume air sampler provided with a PM10 cutoff inlet. The levels of 16 elements (Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) were quantified after collecting the PM10 on Teflon-coated glass fiber filters (GFF). Regarding the PM10, 32% exceedance of the proposed PM10 daily limit was obtained, some of them corresponding to summer and autumn periods. The limit values of toxic trace elements from US-EPA, WHO, and EC were not exceeded, considering Zaragoza as a moderately polluted city under the current air quality guidelines. The contribution of anthropogenic sources to atmospheric elemental levels was reflected by the high values of enrichment factors for Zn, Pb, and Cu compared to the average crustal composition. Statistical analyses also determined the contribution of different sources to the PM10, finding that vehicle traffic and anthropogenic emissions related to combustion and industrial processes were the main pollutant sources as well as natural sources associated with transport of dust from Africa for specific dates. Regarding the influence of meteorological conditions on PM10 and trace elements concentrations, it was found that calm weather conditions with low wind speed favor the PM10 collection and the pollution for trace elements, suggesting the influence of local sources.

  7. Quantifying Volcanic Emissions of Trace Elements to the Atmosphere: Ideas Based on Past Studies

    NASA Astrophysics Data System (ADS)

    Rose, W. I.

    2003-12-01

    Extensive data exist from volcanological and geochemical studies about exotic elemental enrichments in volcanic emissions to the atmosphere but quantitative data are quite rare. Advanced, highly sensitive techniques of analysis are needed to detect low concentrations of some minor elements, especially during major eruptions. I will present data from studies done during low levels of activity (incrustations and silica tube sublimates at high temperature fumaroles, from SEM studies of particle samples collected in volcanic plumes and volcanic clouds, from geochemical analysis of volcanic gas condensates, from analysis of treated particle and gas filter packs) and a much smaller number that could reflect explosive activity (from fresh ashfall leachate geochemistry, and from thermodynamic codes modeling volatile emissions from magma). This data describes a highly variable pattern of elemental enrichments which are difficult to quantify, generalize and understand. Sampling in a routine way is difficult, and work in active craters has heightened our awareness of danger, which appropriately inhibits some sampling. There are numerous localized enrichments of minor elements that can be documented and others can be expected or inferred. There is a lack of systematic tools to measure minor element abundances in volcanic emissions. The careful combination of several methodologies listed above for the same volcanic vents can provide redundant data on multiple elements which could lead to overall quantification of minor element fluxes but there are challenging issues about detection. For quiescent plumes we can design combinations of measurements to quantify minor element emission rates. Doing a comparable methodology to succeed in measuring minor element fluxes for significant eruptions will require new strategies and/or ideas.

  8. Modelling and mapping trace element accumulation in Sphagnum peatlands at the European scale using a geomatic model of pollutant emissions dispersion.

    PubMed

    Diaz-de-Quijano, Maria; Joly, Daniel; Gilbert, Daniel; Toussaint, Marie-Laure; Franchi, Marielle; Fallot, Jean-Michel; Bernard, Nadine

    2016-07-01

    Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Heavy Metals in the Environment-Historical Trends

    NASA Astrophysics Data System (ADS)

    Callender, E.

    2003-12-01

    These six metals, commonly classified as heavy metals, are a subset of a larger group of trace elements that occur in low concentration in the Earth's crust. These heavy metals were mined extensively for use in the twentieth century Industrial Society. Nriagu (1988a) estimated that between 0.5 (Cd) and 310 (Cu) million metric tons of these metals were mined and ultimately deposited in the biosphere. In many instances, the inputs of these metals from anthropogenic sources exceed the contributions from natural sources (weathering, volcanic eruptions, forest fires) by several times ( Adriano, 1986). In this chapter, heavy metals (elements having densities greater than 5) and trace elements (elements present in the lithosphere in concentrations less than 0.1%) are considered synonymous.It has been observed in the past that the rate of emission of these trace metals into the atmosphere is low due to their low volatility. However, with the advent of large-scale metal mining and smelting as well as fossil-fuel combustion in the twentieth century, the emission rate of these metals has increased dramatically. As most of these emissions are released into the atmosphere where the mammals live and breathe, we see a great increase in the occurrence of health problems such as lead (Pb) poisoning, cadmium (Cd) Itai-itai disease, chromium (Cr), and nickel (Ni) carcinogenesis.In this chapter, the author has attempted to present a synopsis of the importance of these metals in the hydrocycle, their natural and anthropogenic emissions into the environment, their prevalent geochemical form incorporated into lacustrine sediments, and their time-trend distributions in watersheds that have been impacted by urbanization, mining and smelting, and other anthropogenic activities. These time trends are reconstructed from major-minor-trace-element distributions in age-dated sediment cores, mainly from reservoirs where the mass sedimentation rates (MSRs) are orders of magnitude greater than those in natural lakes, the consequences of which tend to preserve the heavy-metal signatures and minimize the metal diagenesis (Callender, 2000). This chapter focuses mainly on the heavy metals in the terrestrial and freshwater environments whilst the environmental chemistry of trace metals in the marine environment is discussed in Volume 6, Chapter 3 of the Treatise on Geochemistry.The data presented in Table 2, Table 3, Table 4 and Table 5 are updated as much as possible, with many of the references postdate the late 1980s. Notable exceptions are riverine particulate matter chemistry ( Table 2), some references in Table 3, and references concerning the geochemical properties of the six heavy metals discussed in this chapter. There appears to be no recent publication that updates the worldwide average for riverine particulate matter trace metal chemistry ( Martin and Whitfield, 1981; Martin and Windom, 1991). This is supported by the fact that two recent references ( Li, 2000; Chester, 2000) concerning marine chemistry still refer to this 1981 publication. As for references in Table 3, there is a very limited data available concerning the pathways of heavy-metal transport to lakes. Some of the important works have been considered and reviewed in this chapter. In addition, the analytical chemistry of the sedimentary materials has changed little over the past 30 years until the advent and use of inductively coupled plasma/mass spectrometry (ICP/MS) in the late 1990s. Extensive works concerning the geochemical properties of heavy metals have been published during the past 40 years and to the author's knowledge these have survived the test of time.

  10. Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context

    NASA Astrophysics Data System (ADS)

    Goix, Sylvaine; Resongles, Eléonore; Point, David; Oliva, Priscia; Duprey, Jean Louis; de la Galvez, Erika; Ugarte, Lincy; Huayta, Carlos; Prunier, Jonathan; Zouiten, Cyril; Gardon, Jacques

    2013-12-01

    Monitoring atmospheric trace elements (TE) levels and tracing their source origin is essential for exposure assessment and human health studies. Epiphytic Tillandsia capillaris plants were used as bioaccumulator of TE in a complex polymetallic mining/smelting urban context (Oruro, Bolivia). Specimens collected from a pristine reference site were transplanted at a high spatial resolution (˜1 sample/km2) throughout the urban area. About twenty-seven elements were measured after a 4-month exposure, also providing new information values for reference material BCR482. Statistical power analysis for this biomonitoring mapping approach against classical aerosols surveys performed on the same site showed the better aptitude of T. Capillaris to detect geographical trend, and to deconvolute multiple contamination sources using geostatistical principal component analysis. Transplanted specimens in the vicinity of the mining and smelting areas were characterized by extreme TE accumulation (Sn > Ag > Sb > Pb > Cd > As > W > Cu > Zn). Three contamination sources were identified: mining (Ag, Pb, Sb), smelting (As, Sn) and road traffic (Zn) emissions, confirming results of previous aerosol survey.

  11. Detection of trace metallic elements in oral lichenoid contact lesions using SR-XRF, PIXE, and XAFS

    PubMed Central

    Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Omagari, Daisuke; Komiyama, Kazuo; Miyazaki, Serika; Numako, Chiya; Noguchi, Tadahide; Jinbu, Yoshinori; Kusama, Mikio; Mori, Yoshiyuki

    2015-01-01

    Oral lichen planus (OLP) and oral lichenoid contact lesions (OLCL) are chronic inflammatory mucocutaneous reactions with a risk of malignant transformation that alter the epithelium. OLP and OLCL have similar clinical and histopathological features and it is difficult to distinguish one from the other. Metallic restorations are suspected to generate OLCLs. Trace metal analysis of OLCL specimens may facilitate the discrimination of symptoms and identification of causative metallic restorations. The purpose of this study was to assess OLCL tissue samples for the prevalence of metallic elements derived from dental restorations, and to discriminate OLCL from OLP by using synchrotron radiation-excited X-ray fluorescence analysis (SR-XRF), particle-induced X-ray emission (PIXE), and X-ray absorption fine structure (XAFS). Typical elements of dental materials were detected in the OLCL, whereas no obvious element accumulation was detected in OLP and negative control specimens. The origin of the detected metallic elements was presumed to be dental alloys through erosion. Therefore, our findings support the feasibility of providing supporting information to distinguish OLCL from OLP by using elemental analysis. PMID:26085368

  12. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    PubMed

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was validated by national standards and the results are in agreement with certified values. The method is simple, rapid, is an advanced analytical method for the determination of trace amounts of geochemical samples' boron, molybdenum, silver, tin and lead, and has a certain practicality.

  13. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory.

    PubMed

    Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J

    2007-01-01

    Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.

  14. Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens.

    PubMed

    Agnan, Y; Séjalon-Delmas, N; Probst, A

    2013-01-01

    Lichens have long been known to be good indicators of air quality and atmospheric deposition. Xanthoria parietina was selected to investigate past (sourced from a herbarium) and present-day trace metal pollution in four sites from South-West France (close to Albi). Enrichment factors, relationships between elements and hierarchical classification indicated that the atmosphere was mainly impacted by coal combustion (as shown by As, Pb or Cd contamination) during the early twentieth century, whereas more recently, another mixture of pollutants (e.g. Sb, Sn, Pb and Cu) from local factories and car traffic has emerged. The Rare Earth Elements (REE) and other lithogenic elements indicated a higher dust content in the atmosphere in the early twentieth century and a specific lithological local signature. In addition to long-range atmospheric transport, local urban emissions had a strong impact on trace element contamination registered in lichens, particularly for contemporary data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns

    USGS Publications Warehouse

    Silva, L.F.O.; Oliveira, M.L.S.; Boit, K.M.; Finkelman, R.B.

    2009-01-01

    The current paper presents the concentration, distribution, and modes of occurrence of trace elements of 13 coals from south Brazil. The samples were collected in the state of Santa Catarina. Chemical analyses and the high ash yields indicate that all studied coals are rich in mineral matter, with SiO2 and Al2O3 dominating as determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Quartz is the main mineral species and is associated with minor levels of feldspars, kaolinite, hematite, and iron-rich carbonates. The contents of trace elements, including As, Pb, Cd, Ni, Cr, Mn, Be, V, U, Zn, Li, Cu, Tl, and Ni, in coals were determined. A comparison of ranges and means of elemental concentrations in Santa Catarina, Brazil, and world coals shows that the ranges of most elements in Santa Catarina coal are very close to the usual worldwide concentration ranges in coal. ?? Springer Science+Business Media B.V. 2008.

  16. Comprehensive laboratory measurements of biomass-burning emissions: 1. Emissions from Indonesian, African, and other fuels

    NASA Astrophysics Data System (ADS)

    Christian, T. J.; Kleiss, B.; Yokelson, R. J.; Holzinger, R.; Crutzen, P. J.; Hao, W. M.; Saharjo, B. H.; Ward, D. E.

    2003-12-01

    Trace gas and particle emissions were measured from 47 laboratory fires burning 16 regionally to globally significant fuel types. Instrumentation included the following: open-path Fourier transform infrared spectroscopy; proton transfer reaction mass spectrometry; filter sampling with subsequent analysis of particles with diameter <2.5 μm for organic and elemental carbon and other elements; and canister sampling with subsequent analysis by gas chromatography (GC)/flame ionization detector, GC/electron capture detector, and GC/mass spectrometry. The emissions of 26 compounds are reported by fuel type. The results include the first detailed measurements of the emissions from Indonesian fuels. Carbon dioxide, CO, CH4, NH3, HCN, methanol, and acetic acid were the seven most abundant emissions (in order) from burning Indonesian peat. Acetol (hydroxyacetone) was a major, previously unobserved emission from burning rice straw (21-34 g/kg). The emission factors for our simulated African fires are consistent with field data for African fires for compounds measured in both the laboratory and the field. However, the higher concentrations and more extensive instrumentation in this work allowed quantification of at least 10 species not previously quantified for African field fires (in order of abundance): acetaldehyde, phenol, acetol, glycolaldehyde, methylvinylether, furan, acetone, acetonitrile, propenenitrile, and propanenitrile. Most of these new compounds are oxygenated organic compounds, which further reinforces the importance of these reactive compounds as initial emissions from global biomass burning. A few high-combustion-efficiency fires emitted very high levels of elemental (black) carbon, suggesting that biomass burning may produce more elemental carbon than previously estimated.

  17. Decadal trends in atmospheric deposition in a high elevation station: Effects of climate and pollution on the long-range flux of metals and trace elements over SW Europe

    NASA Astrophysics Data System (ADS)

    Camarero, Lluís; Bacardit, Montserrat; de Diego, Alberto; Arana, Gorka

    2017-10-01

    Atmospheric deposition collected at remote, high elevation stations is representative of long-range transport of elements. Here we present time-series of Al, Fe, Ti, Mn, Zn, Ni, Cu, As, Cd and Pb deposition sampled in the Central Pyrenees at 2240 m a.s.l, representative of the fluxes of these elements over South West Europe. Trace element deposition did not show a simple trend. Rather, there was statistical evidence of several underlying factors governing the variability of the time-series recorded: seasonal cycles, trends, the effects of the amount of precipitation, climate-controlled export of dust, and changes in anthropogenic emissions. Overall, there were three main modes of variation in deposition. The first mode was related to North Atlantic Oscillation (NAO), and affected Al, Fe, Ti, Mn and Pb. We interpret this as changes in the dust export from Northern Africa under the different meteorological conditions that the NAO index indicates. The second mode was an upward trend related to a rise in the frequency of precipitation events (that also lead to an increase in the amount). More frequent events might cause a higher efficiency in the scavenging of aerosols. As, Cu and Ni responded to this. And finally, the third mode of variation was related to changes in anthropogenic emissions of Pb and Zn.

  18. Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer

    USGS Publications Warehouse

    MacKey, E.A.; Cronise, M.P.; Fales, C.N.; Greenberg, R.R.; Leigh, S.D.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Oflaz, R.; Sieber, J.R.; Rearick, M.S.; Wood, L.J.; Yu, L.L.; Wilson, S.A.; Briggs, P.H.; Brown, Z.A.; Budahn, J.; Kane, P.F.; Hall, W.L.

    2007-01-01

    During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials. ?? Springer-Verlag 2007.

  19. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  20. Measurement techniques for trace metals in coal-plant effluents: A brief review

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1979-01-01

    The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.

  1. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    PubMed Central

    Wang, Zhenzhen; Deguchi, Yoshihiro; Yan, Junjie; Liu, Jiping

    2015-01-01

    The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS) and laser breakdown time-of-flight mass spectrometry (LB-TOFMS). Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application. PMID:25769051

  2. Near-road enhancement and solubility of fine and coarse particulate matter trace elements near a major interstate in Detroit, Michigan

    EPA Science Inventory

    Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physi...

  3. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Determination of trace elements in dairy milk collected from the environment of coal-fired power plant.

    PubMed

    Ramamurthy, N; Thillaivelavan, K

    2005-01-01

    In the present study the environmental effects on herbivores mammals in and around Coal-fired power plant were studied by collecting the various milk samples of Cow and Buffalo in clean polyethylene bottles. Milk samples collected at five different locations along the banks of the Paravanaru river in and around Neyveli area. These samples were prepared for trace metal determination. The concentration of trace metals (Cu, Zn, Ni, Cd, Cr, Mn, Co and Hg) were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Cold Vapour Atomic Absorption Spectrometry (CVAAS). It is observed that the samples contain greater amounts of trace metals than that in the unexposed areas. Obviously the milk samples are contaminated with these metals due to fly ash released in such environment.

  5. The Study of Carious Teeth by Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hamzaoui, S.; Nouir, R.; Jaidene, N.

    2017-03-01

    The aim of this work is a multi-component analysis of the element composition of the enamel and carious parts of teeth and the quantification of enamel demineralization using laser-induced breakdown spectroscopy (LIBS). For each tooth the P/Ca ratios of the emission line intensities in the enamel part and those in the carious regions were compared. Since zinc is a trace element, the same procedure was performed for Zn/Ca ratios in the enamel and carious parts. These comparisons showed that the mineral loss from carious lesions occurs at different rates for the studied elements. Calcium has the highest casualty rate. On the other hand, the zinc level diminishes also in the carious region but at a lower rate. The lines were obtained from plume plasma emission generated on the enamel and carious regions.

  6. (Pre-) historic changes in natural and anthropogenic heavy metals deposition inferred from two contrasting Swiss Alpine lakes

    NASA Astrophysics Data System (ADS)

    Thevenon, Florian; Guédron, Stéphane; Chiaradia, Massimo; Loizeau, Jean-Luc; Poté, John

    2011-01-01

    Continuous high-resolution sedimentary record of heavy metals (chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn), and mercury (Hg)), from lakes Lucerne and Meidsee (Switzerland), provides pollutant deposition history from two contrasting Alpine environments over the last millennia. The distribution of conservative elements (thorium (Th), scandium (Sc) and titanium (Ti)) shows that in absence of human disturbances, the trace element input is primarily controlled by weathering processes (i.e., runoff and erosion). Nonetheless, the enrichment factor (EF) of Pb and Hg (that are measured by independent methods), and the Pb isotopic composition of sediments from the remote lake Meidsee (which are proportionally more enriched in anthropogenic heavy metals), likely detect early mining activities during the Bronze Age. Meanwhile, the deposition of trace elements remains close to the range of natural variations until the strong impact of Roman activities on atmospheric metal emissions. Both sites display simultaneous increases in anthropogenic trace metal deposition during the Greek and Roman Empires (ca 300 BC to AD 400), the Late Middle Ages (ca AD 1400), and the Early Modern Europe (after ca AD 1600). However, the greatest increases in anthropogenic metal pollution are evidenced after the industrial revolution of ca AD 1850, at low and high altitudes. During the twentieth century, industrial releases multiplied by ca 10 times heavy metal fluxes to hydrological systems located on both sides of the Alps. During the last decades, the recent growing contribution of low radiogenic Pb further highlights the contribution of industrial sources with respect to wood and coal burning emissions.

  7. Particle-induced X-ray emission analysis of elements in plasma from wild and captive sea turtles (Eretmochelys imbricata, Chelonia mydas, and Caretta caretta) in Okinawa, Japan.

    PubMed

    Suzuki, Kazuyuki; Noda, Jun; Yanagisawa, Makio; Kawazu, Isao; Sera, Kouichiro; Fukui, Daisuke; Asakawa, Mitsuhiko; Yokota, Hiroshi

    2012-09-01

    The aim of this study was to evaluate the reliability of direct determination of trace and major element concentrations in plasma samples from wild (six hawksbill, nine green, and nine loggerhead) and captive sea turtles (25 howksbill, five green, and three loggerhead) in Okinawa, Japan. The particle induced X-ray emission method allowed detection of 23 trace and major elements (Al, As, Br, Ca, Cl, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Ni, P, Pb, S, Se, Si, Sr, Ti, Y, and Zn). The wild sea turtles were found to have high concentrations of As and Pb in plasma compared with captive, but there were no significant changes in the Al and Hg concentrations. Loggerhead sea turtles were found to have significantly higher accumulation of As and Pb in plasma in comparison to other species. These findings may be useful when adjusting environmental and species-related factors in severely polluted marine ecosystems. Our results indicate that measuring the plasma As and Pb concentrations in wild sea turtles might be of help to assess the level of pollution in marine ecosystems, keeping in mind that loggerhead sea turtles had been shown to have higher levels of As and Pb in plasma.

  8. Temporal-resolved characterization of laser-induced plasma for spectrochemical analysis of gas shales

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang

    2016-07-01

    Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the complex composition of shale materials, the omnipresent "matrix effect" is still a great challenging for the performance of quantitative LIBS measurement even in the framework of the LTE approach.

  9. Quantifying trace elements in the emitted particulate matter during cooking and health risk assessment.

    PubMed

    Gorjinezhad, Soudabeh; Kerimray, Aiymgul; Amouei Torkmahalleh, Mehdi; Keleş, Melek; Ozturk, Fatma; Hopke, Philip K

    2017-04-01

    Particulate matter (PM) measurements were conducted during heating corn oil, heating corn oil mixed with the table salt and heating low fat ground beef meat using a PTFE-coated aluminum pan on an electric stove with low ventilation. The main objectives of this study were to measure the size segregated mass concentrations, emission rates, and fluxes of 24 trace elements emitted during heating cooking oil or oil with salt and cooking meat. Health risk assessments were performed based on the resulting exposure to trace elements from such cooking activities. The most abundant elements (significantly different from zero) were Ba (24.4 ug m -3 ) during grilling meat and Ti during heating oil with salt (24.4 ug m -3 ). The health assessment indicates that the cooking with an electric stove with poor ventilation leading to chronic exposures may pose the risk of significant adverse health effects. Carcinogenic risk exceeded the acceptable level (target cancer risk 1 × 10 -6 , US EPA 2015) by four orders of magnitude, while non-carcinogenic risk exceeded the safe level (target HQ = 1, US EPA 2015) by a factor of 5-20. Cr and Co were the primary contributors to the highest carcinogenic and non-carcinogenic risks, respectively.

  10. Bioacumulation of trace elements in hepatic and renal tissues of the white mullet Mugil curema Valenciennes, 1836 (Actinopterygii, Mugilidae) in two coastal systems in southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandez, W. S.; Dias, J. F.; Boufleur, L. A.; Amaral, L.; Yoneama, M. L.; Dias, J. F.

    2014-01-01

    The aim of this study is to investigate the presence and the concentration of trace elements in hepatic and renal tissues of white mullet (Mugil curema) by Particle-induced X-ray emission (PIXE). Fish specimens were collected in two coastal areas of São Paulo state-Brazil: the Santos estuary (from March 2009 to February 2010) and the Cananéia-Iguape coastal estuarine system (from May 2008 to April 2009). For the elemental analysis, n = 470 sample tissues (liver and kidney) were pooled according to location and type of organ. Trace elements such as Fe, Cu, Zn and Br were observed in both tissues of M. curema with concentrations ranging from 800 μg g-1 for Fe to 7 μg g-1 for Cu. The concentrations of Cu and Zn showed statistical significant differences among the tissues of M. curema (p < 0.05). Relatively higher concentrations of Cu and Zn were observed in the liver tissue. There was no significantly difference in the elemental concentrations between the two studied areas. The Cu levels in liver tissues of M. curema were found to be above the maximum limits for consumption, according to the United States Environmental Protection Agency (EPA) and Brazilian National Health Surveillance Agency (ANVISA).

  11. Trace element distribution in the rat cerebellum

    NASA Astrophysics Data System (ADS)

    Kwiatek, W. M.; Long, G. J.; Pounds, J. G.; Reuhl, K. R.; Hanson, A. L.; Jones, K. W.

    1990-04-01

    Spatial distributions and concentrations of trace elements (TE) in the brain are important because TE perform catalytic and structural functions in enzymes which regulate brain function and development. We have investigated the distributions of TE in rat cerebellum. Structures were sectioned and analyzed by the Synchrotron Radiation Induced X-ray Emission (SRIXE) method using the NSLS X-26 white-light microprobe facility. Advantages important for TE analysis of biological specimens with X-ray microscopy include short time of measurement, high brightness and flux, good spatial resolution, multielemental detection, good sensitivity, and nondestructive irradiation. Trace elements were measured in thin rat brain sections of 20 μm thickness. The analyses were performed on sample volumes as small as 0.2 nl with Minimum Detectable Limits (MDL) of 50 ppb wet weight for Fe, 100 ppb wet weight for Cu, and Zn, and 1 ppm wet weight for Pb. The distribution of TE in the molecular cell layer, granule cell layer and fiber tract of rat cerebella was investigated. Both point analyses and two-dimensional semiquantitative mapping of the TE distribution in a section were used. All analyzed elements were observed in each structure of the cerebellum except mercury which was not observed in granule cell layer or fiber tract. This approach permits an exacting correlation of the TE distribution in complex structure with the diet, toxic elements, and functional status of the animal.

  12. Trace elements and antibacterial activity in amniotic fluid.

    PubMed

    Honkonen, E; Näntö, V; Hyörä, H; Vuorinen, K; Erkkola, R

    1986-01-01

    Antibacterial activity and trace element concentrations in amniotic fluid (AF) were determined in a population of 39 pregnant women in the second half of gestation. Antibacterial activity in each AF was measured by a spectrophotometric micromethod after 18 h incubation at 37 degrees C using Escherichia coli K 12 as a reference bacterium. Concentrations of zinc, iron, copper, calcium, potassium and bromine were measured by particle-induced X-ray emission method and the zinc concentration was also measured by atomic absorption spectrophotometry. Phosphate concentration was determined by direct albumin adding method. In AFs with good antibacterial activity significantly lower concentrations of potassium and bromine were found when compared to AFs with lower antibacterial activity. Concentrations of zinc, iron, copper, calcium or phosphate did not correlate with antibacterial activity in AF.

  13. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    USGS Publications Warehouse

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore types and help detect technologically important trace elements.

  14. PIXE analysis of ancient Chinese Changsha porcelain

    NASA Astrophysics Data System (ADS)

    Lin, E. K.; Yu, Y. C.; Wang, C. W.; Liu, T. Y.; Wu, C. M.; Chen, K. M.; Lin, S. S.

    1999-04-01

    In this work, proton induced X-ray emission (PIXE) method was applied for the analysis of ancient Chinese Changsha porcelain produced in the Tang dynasty (AD 618-907). A collection of glazed potsherds was obtained in the complex of the famous kiln site at Tongguan, Changsha city, Hunan province. Studies of elemental composition were carried out on ten selected Changsha potsherds. Minor and trace elements such as Ti, Mn, Fe, Co, Cu, Rb, Sr, and Zr in the material of the porcelain glaze were determined. Variation of these elements from sample to sample was investigated. Details of results are presented and discussed.

  15. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  16. Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice

    NASA Astrophysics Data System (ADS)

    Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja

    2017-04-01

    Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental proxies in glaciers partially affected by melting. References Della Lunga, D., Müller, W., Rasmussen, S. O. & Svensson, A. 2014: Location of cation impurities in NGRIP deep ice revealed by cryo-cell UV-laser-ablation ICPMS, Journal of Glaciology, 60, 970-988. Eichler, A., Schwikowski, M., Gäggeler, H. W. 2001: Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192-203. Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffmann, E. & Skole, J. 2001: Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores, Fresenius' Journal of Analytical Chemistry, 370, 629-636. Schwikowski, M., Barbante, C., Doering, T., Gäggeler, H. W., Boutron, C., Schotterer, U., Tobler, L., van de Velde, K., Ferrari, C., Cozzi, G., Rosman, K., Cescon, P. 2004: Post-17th-Century Changes of European Lead Emissions Recorded in High-Altitude Alpine Snow and Ice, Environmental Science & Technology, 38, 957-964. Sneed, S. B., Mayewski, P. A., Sayre, W. G., Handley, M. J., Kurbatov, A. V., Taylor, K. C., Bohleber, P., Wagenbach, D., Erhardt, T. & Spaulding, N. E. 2015: New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores, Journal of Glaciology, 61, 233-242.

  17. Determination of trace elements of Egyptian cane sugar (Naga Hammady factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analyses.

    PubMed

    Awadallah, R M; Sherif, M K; Mohamed, A E; Grass, F

    1984-01-01

    INAA, AAS and ICP-AES techniques are applied to the determination of trace amounts of Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in the stalks of sugar cane plant after extracting juice, raw juice principal (mixed) juice, juice withdrawn from the successive stages of sugar industry, sirup, deposits from evaporators, molasse, A-? and B-sugar and in the soil samples (collected from the field supplying the factories by cane plants) taken from the immediate vicinity of the plant roots at surface, 30 and 60 cm depth. The results obtained are in a good agreement of the safety baselines of using juice as beverage, molasse derivatives (honey, sweets, ...) as diet for common people in the developed countries and in industry (methanol, ethanol, acetone & acetic acid, ...) and sugar sweeting for many purposes (in beverages, desserts, ...). Differences of trace elements concentrations in soil samples may be reasoned to geochemical and biogeochemical fractionation while those in juice may be due to the changes in the environmental conditions, chemical composition and botanic structures. Variations in trace element contents in the products formed during the successive stages of sugar industry may be a result of evaporation, filtration processes, chemical treatments or corrosion of vessels, containers or engines. Trace elements are very important where they are responsible for enzymatic and biochemical reactions, matabolism, health and diseases.

  18. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    NASA Astrophysics Data System (ADS)

    Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard

    2004-10-01

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).

  19. Chemical and toxicological properties of emissions from CNG transit buses equipped with three-way catalysts compared to lean-burn engines and oxidation catalyst technologies

    NASA Astrophysics Data System (ADS)

    Yoon, Seungju; Hu, Shaohua; Kado, Norman Y.; Thiruvengadam, Arvind; Collins, John F.; Gautam, Mridul; Herner, Jorn D.; Ayala, Alberto

    2014-02-01

    Chemical and toxicological properties of emissions from compressed natural gas (CNG) fueled transit buses with stoichiometric combustion engines and three-way catalyst (TWC) exhaust control systems were measured using a chassis dynamometer testing facility and compared to the data from earlier CNG engine and exhaust control technologies. Gaseous and particulate matter emissions from buses with stoichiometric engines and TWC were significantly lower than the emissions from buses with lean-burn engines. Carbonyls and volatile organic compounds (VOCs) from buses with stoichiometric engines and TWC were lower by more than 99% compared to buses with lean-burn engines. Elemental and organic carbons (EC and OC), polycyclic aromatic hydrocarbons (PAHs), and trace elements from buses with stoichiometric engines and TWC were effectively controlled and significantly lower than the emissions from buses with lean-burn engines. Potential mutagenicity measured using a microsuspension modification of the Salmonella/microsome assay was lower by more than 99% for buses with stoichiometric engines and TWC, compared to buses with lean-burn engines and OxC.

  20. Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan.

    PubMed

    Hsu, Chin-Yu; Chiang, Hung-Che; Lin, Sheng-Lun; Chen, Mu-Jean; Lin, Tzu-Yu; Chen, Yu-Cheng

    2016-01-15

    This study investigated seasonal variations in PM10 and PM2.5 mass and associated trace metal concentrations in a residential area in proximity to the crude oil refinery plants and industrial parks of central Taiwan. Particle measurements were conducted during winter, spring and summer in 2013 and 2014. Twenty-six trace metals in PM10 and PM2.5 were analyzed using ICP-MS. Multiple approaches of the backward trajectory model, enrichment factor (EF), Lanthanum enrichment and positive matrix fraction (PMF) were used to identify potential sources of particulate metals. Mean concentrations of PM10 in winter, spring and summer were 76.4 ± 22.6, 33.2 ± 9.9 and 37.4 ± 17.0 μg m(-3), respectively, while mean levels of PM2.5 in winter, spring and summer were 47.8 ± 20.0, 23.9 ± 11.2 and 16.3 ± 8.2 μg m(-3), respectively. The concentrations of carcinogenic metals (Ni, As and adjusted Cr(VI)) in PM10 and PM2.5 exceeded the guideline limits published by WHO. The result of EF analysis confirmed that Mo, Sb, Cd, Zn, Mg, Cr, As, Pb, Cu, Ni and V were attributable to anthropogenic emission. PMF analysis demonstrated that trace metals in PM10 and PM2.5 were from the similar sources, such as coal combustion, oil combustion and traffic-related emission, except for soil dust and crustal element emissions only observed in PM10 and secondary aluminum smelter only observed in PM2.5. Considering health-related particulate metals, the traffic-related emission and coal combustion for PM10 and PM2.5, respectively, are important to control for reducing potential carcinogenic risk. The results could aid efforts to clarify the impact of source-specific origins on human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Improving Precision, Maintaining Accuracy, and Reducing Acquisition Time for Trace Elements in EPMA

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Singer, J.; Armstrong, J. T.

    2016-12-01

    Trace element precision in electron probe micro analysis (EPMA) is limited by intrinsic random variation in the x-ray continuum. Traditionally we characterize background intensity by measuring on either side of the emission line and interpolating the intensity underneath the peak to obtain the net intensity. Alternatively, we can measure the background intensity at the on-peak spectrometer position using a number of standard materials that do not contain the element of interest. This so-called mean atomic number (MAN) background calibration (Donovan, et al., 2016) uses a set of standard measurements, covering an appropriate range of average atomic number, to iteratively estimate the continuum intensity for the unknown composition (and hence average atomic number). We will demonstrate that, at least for materials with a relatively simple matrix such as SiO2, TiO2, ZrSiO4, etc. where one may obtain a matrix matched standard for use in the so called "blank correction", we can obtain trace element accuracy comparable to traditional off-peak methods, and with improved precision, in about half the time. Donovan, Singer and Armstrong, A New EPMA Method for Fast Trace Element Analysis in Simple Matrices ", American Mineralogist, v101, p1839-1853, 2016 Figure 1. Uranium concentration line profiles from quantitative x-ray maps (20 keV, 100 nA, 5 um beam size and 4000 msec per pixel), for both off-peak and MAN background methods without (a), and with (b), the blank correction applied. We see precision significantly improved compared with traditional off-peak measurements while, in this case, the blank correction provides a small but discernable improvement in accuracy.

  2. Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples

    NASA Astrophysics Data System (ADS)

    Betti, Maria; Aldave de las Heras, Laura

    2004-09-01

    Glow discharge (GD) spectrometry as applied to characterize nuclear samples as well as for the determination of radionuclides in environmental samples is reviewed. The use of instrumentation for direct current (d.c.) glow discharge mass spectrometry (GDMS) and radio frequency glow discharge optical emission spectrometry (rf GDOES), installed inside a glove-box for the handling of radioactive samples as well as the two installations and their analytical possibilities, is described in detail. The applications of GD techniques for the characterization of samples of nuclear concern both with respect to their major and trace elements, as well as to the matrix isotopic composition are presented. Procedures for quantitative determination of major, minor, and trace elements in conductive samples are reported. As for non-conductive samples three different approaches for their measurement can be followed. Namely, the use of rf sources, the mixing of the sample with a binder conducting host matrix, and the use of a secondary cathode. In the case of oxide-based samples, the employment of a tantalum secondary cathode, acting as an oxygen getter, reduces the availability of oxygen to form polyatomic species and to produce quenching. Considerations on the use of the relative sensitivity factors (RSFs) in different matrices are reported. The analytical capabilities of GDMS are compared with ICP-MS in terms of accuracy, precision, and detection limit for the determination of trace elements in uranium oxide specimens. As for the determination of isotopic composition, GDMS was found to be competitive with thermal ionisation mass spectrometry (TIMS) as well as for bulk determinations of major elements with titration methods. Applications of GDMS to the determination of radioisotopes in environmental samples, as well for depth profiling of trace elements in oxide layers, are discussed.

  3. Trace Element Determination from the Guliya Ice Core to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years

    NASA Astrophysics Data System (ADS)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.

    2014-12-01

    The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.

  4. Dietary reconstruction from trace element analysis and dental microwear in an Early Medieval population from Gán (Galanta district, Slovakia).

    PubMed

    Bodoriková, Silvia; Tibenská, Kristína Domonkosová; Katina, Stanislav; Uhrová, Petra; Dörnhöferová, Michaela; Takács, Michal; Urminský, Jozef

    2013-01-01

    The aim of the study was to determine the diet of an historical human population using the trace elements in dental tissues and dental buccal microwear. Although 38 individuals had been buried in the cemetery, preservation of the remains did not allow analysis of all of them. A total of 13 individuals were analysed, of which the samples for trace-element analysis consisted of 12 permanent premolars from 12 individuals. Buccal microwear was studied in a sample of nine teeth from nine individuals. Both trace-element and microwear analyses were performed on eight individuals. All analyzed teeth were intact, with fully developed roots, without dental calculus and macro-abrasion. Concentrations of Sr, Zn, and Ca, and their ratios, were used to determine the relative proportions of plant and animal protein in the diet. Samples were analyzed using optical emission spectrometry with inductively coupled plasma. The values of the Sr and Zn concentrations indicate that a diet of the investigated population was of a mixed character with approximately the same proportion of plants and meat in their food. Buccal microwear was studied in molds ofbuccal surfaces and observed at 100x magnification with a scanning electron microscope (SEM). Length and orientation of striations were determined with the SigmaScan Pro 5.0 image analysis program. The results obtained from microwear analysis correspond with those from trace-element analysis and showed that the population consumed a mixed diet. The density of the scratches indicates that the diet contained a considerable vegetable component. The high number of vertical scratches and their high average length suggest that individuals also consumed a large portion of meat. The results of both analyses showed that there were also individuals whose diet had probably been poor, i.e. richer in animal protein, which probably could be related to their health or social status in the population.

  5. Stream-sediment samples reanalyzed for major, rare earth, and trace elements from seven 1:250,000-scale quadrangles, south-central Alaska, 2007-09

    USGS Publications Warehouse

    Gamble, Bruce M.; Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.

    2010-01-01

    During the 1960s through the 1980s, the U.S. Geological Survey conducted reconnaissance geochemical surveys of drainage basins throughout most of the Iliamna, Lake Clark, Lime Hills, and Talkeetna 1:250,000-scale quadrangles and parts of the McGrath, Seldovia, and Tyonek 1:250,000-scale quadrangles in Alaska. These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources and provide data that may be used to determine regional-scale element baselines. This report provides new data for 1,075 of the previously collected stream-sediment samples. The new analyses include a broader spectrum of elements and provide data that are more precise than the original analyses. All samples were analyzed for arsenic by hydride generation atomic absorption spectrometry, for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation, and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry after sodium peroxide sinter at 450 degrees Celsius.

  6. Trace Element Studies on Tinospora cordifolia (Menispermaceae), Ocimum sanctum (Lamiaceae), Moringa oleifera (Moringaceae), and Phyllanthus niruri (Euphorbiaceae) Using PIXE.

    PubMed

    Gowrishankar, Ramadurai; Kumar, Manish; Menon, Vinay; Divi, Sai Mangala; Saravanan, M; Magudapathy, P; Panigrahi, B K; Nair, K G M; Venkataramaniah, K

    2010-03-01

    Traditionally, Tinospora cordifolia (Willd.) Hook. F. & Thomson (Menispermaceae), Ocimum sanctum L. (Lamiaceae), Moringa oleifera Lam. (Moringaceae), and Phyllanthus niruri L. (Euphorbiaceae) are some of the commonly used medicinal plants in India for curing ailments ranging from common cold, skin diseases, and dental infections to major disorders like diabetes, hypertension, jaundice, rheumatism, etc. To understand and correlate their medicinal use, trace element studies on the aqueous extract of these medicinal plants have been carried out using particle-induced X-ray emission technique. A 2-MeV proton beam was used to identify and characterize major and minor elements namely Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, and Sr in them. Results have revealed that these elements are present in varying concentrations in the selected plants. Notable results include very high concentrations of Cl, K, and Ca in all the leaf samples, appreciable levels of Mn in all plants, high Zn content in T. cordifolia, and the aqueous extract of Moringa leaves compared to others and relative higher concentrations of Cr in all the plants.

  7. Environmental impact of volcanic emissions at Nyiragongo (DRC)

    NASA Astrophysics Data System (ADS)

    Scaglione, Sarah; Calabrese, Sergio; Bobrowski, Nicole; Giuffrida, Giovanni; D'Alessandro, Walter; Brusca, Lorenzo; Bellomo, Sergio; Liotta, Marcello; Minani, Abel; Shamavu, Patient; Pandolfo, Francesco; Tedesco, Dario

    2015-04-01

    The large amount of trace elements emitted from volcanoes has a strong impact on the close surrounding areas. Nyiragongo Volcano (Democratic Republic of Congo) belongs to the Virunga volcanic chain and is one of the most active volcanoes in Africa. It is characterized by the presence of an active and permanent lava lake with a persistent degassing activity. During a field trip in October-November 2014, we investigated the impact of the volcanogenic deposition in the surrounding of the crater by using different sampling techniques. Rain-gauges were used to collect atmospheric bulk deposition. Active and passive biomonitoring techniques (moss-bags and leaves of endemic plants - Senecio spp. and Amarantus viridis) were applied in order to investigate the dispersion of volcanic gas and particle emissions. We collected daily rainfall events at various sites: seven samples at the crater rim (on the western and southern side, 3470 m a.s.l.), one sample at the village Kibati (south-eastern flank, 1955 m a.s.l.) located at the up-wind base of the volcano (representing the local background), and four samples in the city of Goma (southern flank of the volcano, 1500 m a.s.l.). In order to implement our dataset, several samples of rainwater, amaranth leaves, soils and atmospheric depositions (by moss-bags and filters exposition) were sampled after the field trip by the researchers of the Goma Volcano Observatory (GVO). Since, the prevalent wind direction was blowing the plume in westerly or southwesterly direction, we exposed the raingauges in the villages of Bulengo, Rusayo and Kingi in the southwestern side respect to the volcano, and Kibumba in the southesthern as a background site, at increasing distance from the rim. In the same sites, leaves of Amarantus viridis, which is one of the principal vegetables eaten by the local population, were collected. Rainwater, moss bags and plant samples were analyzed for major and trace elements by IC, ICP-OES and ICP-MS. The large amount of emitted volcanic gases and particles includes sulfur, halogens and trace elements, that strongly affect rainwater chemistry and have a widespread impact on the surrounding vegetation of the volcano. Indeed, rainwater samples collected at the rim of the crater have low pH values (≈ 3), high concentration of F- and Cl- (up to 12.0 and 12.8 mg/l, respectively) and dissolved toxic elements (such as Al, As, Cd, Cu, Fe and Pb), whereas samples from the city of Goma have pH values above 5 and the same elements show orders of magnitude lower concentrations. The biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. The data will be compared to earlier measurements taken in December 2011 and the impact of a slightly decreasing gas emission on the vegetation will be discussed.

  8. METHOD 200.5 - DETERMINATION OF TRACE ELEMENTS IN DRINKING WATER BY AXIALLY VIEWED INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROMETRY

    EPA Science Inventory

    2.0 SUMMARY OF METHOD
    2.1. A 50 mL aliquot of a well-mixed, non-filtered, acid preserved aqueous sample is accurately transferred to clean 50-mL plastic disposable digestion tube containing a mixture of nitric and hydrochloric acids. The aliquot is heated to 95 degrees C (+ o...

  9. Online, real-time detection of volatile emissions from plant tissue.

    PubMed

    Harren, Frans J M; Cristescu, Simona M

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.

  10. Online, real-time detection of volatile emissions from plant tissue

    PubMed Central

    Harren, Frans J. M.; Cristescu, Simona M.

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants. PMID:23429357

  11. Trace elemental analysis of Indian natural moonstone gems by PIXE and XRD techniques.

    PubMed

    Venkateswara Rao, R; Venkateswarulu, P; Kasipathi, C; Sivajyothi, S

    2013-12-01

    A selected number of Indian Eastern Ghats natural moonstone gems were studied with a powerful nuclear analytical and non-destructive Proton Induced X-ray Emission (PIXE) technique. Thirteen elements, including V, Co, Ni, Zn, Ga, Ba and Pb, were identified in these moonstones and may be useful in interpreting the various geochemical conditions and the probable cause of their inceptions in the moonstone gemstone matrix. Furthermore, preliminary XRD studies of different moonstone patterns were performed. The PIXE technique is a powerful method for quickly determining the elemental concentration of a substance. A 3MeV proton beam was employed to excite the samples. The chemical constituents of moonstones from parts of the Eastern Ghats geological formations of Andhra Pradesh, India were determined, and gemological studies were performed on those gems. The crystal structure and the lattice parameters of the moonstones were estimated using X-Ray Diffraction studies, trace and minor elements were determined using the PIXE technique, and major compositional elements were confirmed by XRD. In the present work, the usefulness and versatility of the PIXE technique for research in geo-scientific methodology is established. © 2013 Elsevier Ltd. All rights reserved.

  12. Screening of trace elements in hair of the female population with different types of cancers in Wielkopolska region of Poland.

    PubMed

    Czerny, Bogusław; Krupka, Krzysztof; Ożarowski, Marcin; Seremak-Mrozikiewicz, Agnieszka

    2014-01-01

    Cancer constitutes a major health problem worldwide. Thus, search for reliable and practical markers of the disease process remains the key issue of the diagnostic process. The study aims at linking the trace element status of an organism, assessed by hair analysis, with the occurrence of cancer diseases. Hair samples were collected from 299 patients with cancer diseases confirmed by a histopathological test and from 100 controls. Cancer patients were divided into three groups, depending on cancer type: hormone-dependent cancer, cancer of the alimentary tract, and cancer with high glycolytic activity. Mineral element analysis of hair was performed using an atomic emission spectrophotometer with inductively coupled plasma (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS). Statistically significantly lower concentrations of selenium, zinc, copper, germanium and boron, iron, and magnesium were observed in the three groups of cancer patients. Disturbance in the axis glucose-insulin and changes in concentrations of heavy metals and toxic elements were also noted. It seems safe to conclude that our results confirmed usefulness of hair element analysis in screening tests for the assessment of the biomarker of various cancer diseases in a female population.

  13. Re-evaluation and extension of the scope of elements in US Geological Survey Standard Reference Water Samples

    USGS Publications Warehouse

    Peart, D.B.; Antweiler, Ronald C.; Taylor, Howard E.; Roth, D.A.; Brinton, T.I.

    1998-01-01

    More than 100 US Geological Survey (USGS) Standard Reference Water Samples (SRWSs) were analyzed for numerous trace constituents, including Al, As, B, Ba, Be, Bi, Br, Cd, Cr, Co, Cu, I, Fe, Pb, Li, Mn, Mo, Ni, Rb, Sb, Se, Sr, Te, Tl, U, V, Zn and major elements (Ca, Mg, Na, SiO2, SO4, Cl) by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. In addition, 15 USGS SRWSs and National Institute of Standards and Technology (NIST) standard reference material (SRM) 1641b were analyzed for mercury using cold vapor atomic fluorescence spectrometry. Also USGS SRWS Hg-7 was analyzed using isotope dilution-inductively coupled plasma mass spectrometry. The results were compared with the reported certified values of the following standard reference materials: NIST SRM 1643a, 1643b, 1643c and 1643d and National Research Council of Canada Riverine Water Reference Materials for Trace Metals SLRS-1, SLRS-2 and SLRS-3. New concentration values for trace and major elements in the SRWSs, traceable to the certified standards, are reported. Additional concentration values are reported for elements that were neither previously published for the SRWSs nor traceable to the certified reference materials. Robust statistical procedures were used that were insensitive to outliers. These data can be used for quality assurance/quality control purposes in analytical laboratories.

  14. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.

    PubMed

    Mokhtar, Mutahharah M; Taib, Rozainee M; Hassim, Mimi H

    2014-08-01

    The Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft), which replaces the Malaysia Environmental Quality (Clean Air) 1978, specifies limits to additional pollutants from power generation using fossil fuel. The new pollutants include Hg, HCl, and HF with limits of 0.03, 100, and 15 mg/N-m3 at 6% O2, respectively. These pollutants are normally present in very small concentrations (known as trace elements [TEs]), and hence are often neglected in environmental air quality monitoring in Malaysia. Following the enactment of the new regulation, it is now imperative to understand the TEs behavior and to assess the capability of the existing abatement technologies to comply with the new emission limits. This paper presents the comparison of TEs behavior of the most volatile (Hg, Cl, F) and less volatile (As, Be, Cd, Cr, Ni, Se, Pb) elements in subbituminous and bituminous coal and coal combustion products (CCP) (i.e., fly ash and bottom ash) from separate firing of subbituminous and bituminous coal in a coal-fired power plant in Malaysia. The effect of air pollution control devices configuration in removal of TEs was also investigated to evaluate the effectiveness of abatement technologies used in the plant. This study showed that subbituminous and bituminous coals and their CCPs have different TEs behavior. It is speculated that ash content could be a factor for such diverse behavior In addition, the type of coal and the concentrations of TEs in feed coal were to some extent influenced by the emission of TEs in flue gas. The electrostatic precipitator (ESP) and seawater flue gas desulfurization (FGD) used in the studied coal-fired power plant were found effective in removing TEs in particulate and vapor form, respectively, as well as complying with the new specified emission limits. Implications: Coals used by power plants in Peninsular Malaysia come from the same supplier (Tenaga Nasional Berhad Fuel Services), which is a subsidiary of the Malaysia electricity provider (Tenaga Nasional Berhad). Therefore, this study on trace elements behavior in a coal-fired power plant in Malaysia could represent emission from other plants in Peninsular Malaysia. By adhering to the current coal specifications and installation of electrostatic precipitator (ESP) and flue gas desulfurization, the plants could comply with the limits specified in the Malaysian Department of Environment (DOE) Scheduled Waste Guideline for bottom ash and fly ash and the Proposed New Environmental Quality (Clean Air) Regulation 201X (Draft).

  15. Modeling the global emission, transport and deposition of trace elements associated with mineral dust

    DOE PAGES

    Zhang, Y.; Mahowald, N.; Scanza, R. A.; ...

    2015-10-12

    Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less

  16. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece.

    PubMed

    Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini

    2006-12-01

    Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P<0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities.

  17. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achariya Suriyawong; Rogan Magee; Ken Peebles

    2009-05-15

    This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5more » {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.« less

  18. Trace elements in sera from patients with renal disease

    NASA Astrophysics Data System (ADS)

    Miura, Yoshinori; Nakai, Keiko; Sera, Kouichiro; Sato, Michirou

    1999-04-01

    In hemodialysis (HD) patients, an accumulation of trace elements such as aluminum, copper, silicon and vanadium has been reported. Aluminum-caused encephalopathy and aluminum-related bone diseases are important trace element-related complications. Using particle induced X-ray emission (PIXE) we determined concentrations of aluminum, silicon, copper, zinc, selenium and bromine in sera of 29 patients with HD, 14 nondialysis patients with renal disease (RD) and 27 normal controls. The concentration of serum silicon of the patients with HD was 107.4 ± 61.3 μmol/l, which is markedly higher than that of normal controls (48.3 ± 25.8 μmol/l, p < 0.0001). The serum concentrations of zinc and bromine in patients with HD were 11.9 ± 1.7 and 21.3 ± 3.0 μmol/l, respectively. Both were markedly lower than those of normal controls (15.6 ± 2.6, 69.2 ± 8.3 μmol/l, p < 0.0001). The concentrations of aluminium and bromine in the serum of patients with RD were 171.9 ± 64.3 and 81.9 ± 11.6 μmol/l, which were markedly higher than those of normal controls ( p < 0.0001, p < 0.001). No significant differences were observed in the concentration of copper and selenium among three groups.

  19. Reconstruction of dietary habits on the basis of dental microwear and trace elements analysis of individuals from Gán cemetery (district Galanta, Slovakia).

    PubMed

    Tibenská, Kristína Domonkosová; Bodoriková, Silvia; Katina, Stanislav; Kovácsová, Veronika; Kubová, Jana; Takács, Michal

    2010-01-01

    The aim of the study was to determine the diet of a historical human population. Dental microwear and trace elements were analyzed. Although 38 individuals had been buried in the cemetery, only 13 of them were suitable for the analysis of trace elements and 17 skeletal remains for microwear analysis. Buccal microwear has been studied in a sample of 17 teeth from Gán cemetery. Teeth molds of the buccal surface were obtained and observed at 120x magnification with a scanning electron microscope (SEM). Length and orientation of each striation have been determined with a SigmaScan Pro 5.0 image analysis program. The results of the analysis from Gán were compared with the previous study in a sample of 153 molar teeth from different modern hunter-gatherer, pastorals, and agriculturalist groups, with different diets (Inuit, Fueguians, Bushmen, Australian aborigines, Andaman's, Indians from Vancouver, Veddahs, Tasmanians, Lapps, and Hindus), preserved at museum collections. Buccal dental microwear density and length by orientation showed almost an inclination to hunter-gatherers from tropic and arid climates. The sample for the trace elements analysis consisted of 10 permanent molars and 3 permanent premolars. All analyzed teeth were intact, with fully developed roots, without dental caries, calculus and abrasion. Samples were analyzed using the method of optical emission spectrometry with inductively coupled plasma. Three elements: Ca, Sr, and Zn were chosen as basic diet determinants. Concentrations of these elements and their ratios were used for description of a relative proportion of plant and animal protein in a diet. The values of the Sr and Zn concentrations indicate that a diet of investigated population was rich in plant food. Higher Sr values in women can indicate lower proportion of animal protein in a diet, but significant differences have not been found. Differences between non-adult and adult individuals and between individuals with and without grave furnishings have also not been significant.

  20. Trace element distribution in waters of the northern catchment area of Lake Linneret, northern Israel

    NASA Astrophysics Data System (ADS)

    Sandler, A.; Brenner, I. B.; Halicz, L.

    1988-02-01

    Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.

  1. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.

    PubMed

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-10-01

    Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.

  2. Extensive 1-year survey of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  3. Atmospheric inorganic trace contaminants in Finland, especially in the Gulf of Finland area

    NASA Astrophysics Data System (ADS)

    Jalkanen, Liisa Maria

    Atmospheric aerosol samples were collected at Utö and Virolahti in the Gulf of Finland area and Ähtäri in Central Finland using a filter pack. The samples were analysed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass-spectrometry (ICP-MS) for 34 elements including halogens and heavy metals. A very simple and quantitative acid digestion method was developed for the dissolution of the aerosol samples for ICP-MS analysis. Analysis of the elemental data is given using trajectories, principal component analysis and long-range transport modelling. The average total (fine + coarse) atmospheric concentrations range at Utö from 0.083 ng m -3 for Cd to 730 ng m-3 for Na. The sea areas (Utö, Virolahti, Hailuoto) have most of the heavy metal air pollution in Finland, as witnessed by the aerosol concentration and wet deposition data. There is a clear decreasing gradient in the deposition of As, Cd, Cr, Pb, and V from South to North in Finland. In general, the trace element concentrations and deposition are lower in Finland than in Central Europe. The effect of large particulate emission sources in Estonia can be seen in the elemental concentrations of atmospheric particles and in the deposition around the eastern Gulf of Finland region. There has been a remarkable decrease in heavy metal emissions in Finland during the 1990s. However, due to long-range transport, the decrease in deposition as witnessed by analysis of these concentrations in precipitation and moss is much less than would be expected.

  4. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999.

    Treesearch

    J.W. Harden; J.C. Neff; D.V. Sandberg; M.R. Turetsky; R. Ottmar; G. Gleixner; T.L. Fries; K.L. Manies

    2004-01-01

    Wildfires represent one of the most common disturbances in boreal regions, and have the potential to reduce C, N, and Hg stocks in soils while contributing to atmospheric emissions. Organic soil layers of the forest floor were sampled before and after the FROSTFIRE experimental burn in interior Alaska, and were analyzed for bulk density, major and trace elements, and...

  5. Numerical simulation of trace element transport on subsurface environment pollution in coal mine spoil.

    PubMed

    Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu

    2006-01-01

    An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.

  6. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Optimizing critical source control of five priority-regulatory trace elements from industrial wastewater in China: Implications for health management.

    PubMed

    Wu, Wenjun; Wang, Jinnan; Yu, Yang; Jiang, Hongqiang; Liu, Nianlei; Bi, Jun; Liu, Miaomiao

    2018-04-01

    Anthropogenic emissions of toxic trace elements (TEs) have caused worldwide concern due to their adverse effects on human health and ecosystems. Based on a stochastic simulation of factors' probability distribution, we established a bottom-up model to estimate the amounts of five priority-regulatory TEs released to aquatic environments from industrial processes in China. Total TE emissions in China in 2010 were estimated at approximately 2.27 t of Hg, 310.09 t of As, 318.17 t of Pb, 79.72 t of Cd, and 1040.32 t of Cr. Raw chemicals, smelting, and mining were the leading sources of TE emissions. There are apparent regional differences in TE pollution. TE emissions are much higher in eastern and central China than in the western provinces and are higher in the south than in the north. This spatial distribution was characterized in detail by allocating the emissions to 10 km × 10 km grid cells. Furthermore, the risk control for the overall emission grid was optimized according to each cell's emission and risk rank. The results show that to control 80% of TE emissions from major sources, the number of top-priority control cells would be between 200 and 400, and less than 10% of the total population would be positively affected. Based on TE risk rankings, decreasing the population weighted risk would increase the number of controlled cells by a factor of 0.3-0.5, but the affected population would increase by a factor of 0.8-1.5. In this case, the adverse effects on people's health would be reduced significantly. Finally, an optimized strategy to control TE emissions is proposed in terms of a cost-benefit trade-off. The estimates in this paper can be used to help establish a regional TE inventory and cyclic simulation, and it can also play supporting roles in minimizing TE health risks and maximizing resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey.

    PubMed

    Ozden, Banu; Guler, Erkan; Vaasma, Taavi; Horvath, Maria; Kiisk, Madis; Kovacs, Tibor

    2018-08-01

    Coal, residues and waste produced by the combustion of the coal contain naturally occurring radionuclides such as 238 U, 226 Ra, 210 Pb, 232 Th and 40 K and trace elements such as Cd, Cr, Pb, Ni and Zn. In this work, coal and its combustion residues collected from Yatagan and Yenikoy coal fired thermal power plants (CPPs) in Turkey were studied to determine the concentrations of natural radionuclides and trace elements, and their enrichments factors to better understand the radionuclide concentration processes within the combustion system. In addition, the utilization of coal fly ash as a secondary raw material in building industry was also studied in terms of radiological aspects. Fly ash samples were taken at different stages along the emission control system of the thermal power plants. Activity concentrations of naturally occurring radionuclides were determined with Canberra Broad Energy Germanium (BEGe) detector BE3830-P and ORTEC Soloist PIPS type semiconductor detector. The particle size distribution and trace elements contents were determined in various ash fractions by the laser scattering particle size distribution analyzer and inductively coupled plasma (ICP-OES). From the obtained data, natural radionuclides tend to condense on fly ash with and the activity concentrations increase as the temperature drop in CPPs. Measured 210 Pb and 210 Po concentration varied between 186 ± 20-1153 ± 44 Bq kg -1 , and 56 ± 5-1174 ± 45 Bq kg -1 , respectively. The highest 210 Pb and 210 Po activity concentrations were determined in fly ash taken from the temporary storage point as 1153 ± 44 Bq kg -1 and 1174 ± 45 Bq kg -1 , respectively. There were significant differences in the activity concentrations of some natural radionuclide and trace elements (Pb and Zn) contents in ash fractions among the sampling point inside both of the plants (ANOVA, p < 0.001). Coal and ash sample analysis showed an increase activity concentration and enrichment factors towards the electrostatic precipitators for both of the power plants. The enrichment factors for Zn follow a similar trend as Pb, increasing in value towards the end of the emission control system. The calculated activity indexes were above 1.0 value for both of the power plants, assuming the utilization of fly ash at 100%. It can be concluded that the reuse of fly ash as a secondary raw material may not be hazardous depending on the percentage of utilization of ash. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Potential health impacts of burning coal beds and waste banks

    USGS Publications Warehouse

    Finkelman, R.B.

    2004-01-01

    Uncontrolled release of pollutants from burning coal beds and waste banks presents potential environmental and human health hazards. On a global scale, the emissions of large volumes of greenhouse gases from burning coal beds may contribute to climate change that alters ecosystems and patterns of disease occurrence. On regional and local scales, the emissions from burning coal beds and waste banks of acidic gases, particulates, organic compounds, and trace elements can contribute to a range of respiratory and other human health problems. Although there are few published reports of health problems caused by these emissions, the potential for problems can be significant. In India, large numbers of people have been displaced from their homes because of health problems caused by emissions from burning coal beds. Volatile elements such as arsenic, fluorine, mercury, and selenium are commonly enriched in coal deposits. Burning coal beds can volatilize these elements, which then can be inhaled, or adsorbed on crops and foods, taken up by livestock or bioaccumulated in birds and fish. Some of these elements can condense on dust particles that can be inhaled or ingested. In addition, selenium, arsenic, lead, tin, bismuth, fluorine, and other elements condense where the hot gaseous emissions come in contact with ambient air, forming mats of concentrated efflorescent minerals on the surface of the ground. These mats can be leached by rainwater and washed into local water bodies providing other potential routes of exposure. Although there are little data linking burning coal beds and waste banks to known health problems, a possibly analogous situation exists in rural China where mineralized coal burned in a residential environment has caused widespread and severe health problems such as fluorosis and arseniasis. ?? 2004 Elsevier B.V. All rights reserved.

  10. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    NASA Astrophysics Data System (ADS)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  11. The Spectral and Chemical Measurement of Pollutants on Snow Near South Pole, Antarctica

    NASA Technical Reports Server (NTRS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-01-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from less than 1 W m(exp. -2) for clean snow to approximately 70 W m(exp. -2) for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  12. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica

    NASA Astrophysics Data System (ADS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-06-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from <1 W m-2 for clean snow to 70 W m-2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  13. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  14. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  15. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution impact studies require knowledge of the natural background concentrations and knowledge of pollutant behavior. For example, it is generally accepted that rare earth elements (REEs) in waters behave as good analogues for the actinides, whose natural levels are quite low and rarely measured. Water quality investigations have clearly been a stimulus for measurement of toxic heavy metals in order to understand their behavior in natural systems.From a more fundamental point of view, it is crucial to understand the behavior of trace elements in geological processes, in particular during chemical weathering and transport by waters. Trace elements are much more fractionated by weathering and transport processes than major elements, and these fractionations give clues for understanding the nature and intensity of the weathering+transport processes. This has not only applications for weathering studies or for the past mobilization and transport of elements to the ocean (potentially recorded in the sediments), but also for the possibility of better utilization of trace elements in the aqueous environment as an exploration tool.In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a "field approach" by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters will be reviewed. Regulation by surfaces is of major importance for a great range of elements. Although for both colloids and surface interactions, some progress has been made, we are still far from a unified model that can accurately predict trace-element concentrations in natural water systems. This is mainly due to our poor physical description of natural colloids, surface site complexation, and their interaction with solutes.

  16. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  17. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  18. Trace Elements and Healthcare: A Bioinformatics Perspective.

    PubMed

    Zhang, Yan

    2017-01-01

    Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.

  19. Trace-element measurements in atmospheric biomonitors—A look at the relative performance of INAA and PIXE on olive-tree bark

    NASA Astrophysics Data System (ADS)

    Pacheco, Adriano M. G.; Freitas, Maria do Carmo; Reis, Miguel A.

    2003-06-01

    As part of an ongoing evaluation of its suitability for atmospheric biomonitoring, bark from olive trees ( Olea europaea Linn.) has been collected and searched for trace elements by means of two nuclear-analytical techniques—instrumental neutron activation analysis (INAA) and proton-induced X-ray emission (PIXE). The sampling for the present study was carried out across two separate sections of an established grid for air-quality surveys in mainland Portugal. The dual location comprises 58 collection sites—littoral-north (29 sites) and littoral-centre (29 sites). Both techniques are intrinsically accurate and may be seen to complement each other in the way that, as a whole, they yield 46 elements, with an overlap of 16 elements. Among the latter, this paper focuses on four of them and looks into their joint determination. Descriptive statistics for soil-related Al and Ti, and for sea-related Cl and Br, show results for each element to be fairly comparable. The degree of association between elemental patterns by either technique, as seen through nonparametric tests (Kendall's RK), is outstanding. No statistical evidence (Wilcoxon's T) for relative bias in correlated samples—consistently higher or lower results by one technique—could be found as well. As far as this study goes, INAA and PIXE may be used interchangeably for determining the present elements in olive-tree bark.

  20. Major and trace elements in organically or conventionally produced milk.

    PubMed

    Hermansen, John E; Badsberg, Jens H; Kristensen, Troels; Gundersen, Vagn

    2005-08-01

    A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.

  1. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

    PubMed Central

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W.; Fallmann, Katharina; Puschenreiter, Markus

    2013-01-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils. PMID:23645938

  2. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    PubMed

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  3. Development of a certified reference material (NMIJ CRM 7531-a) for the determination of trace cadmium and other elements in brown rice flour.

    PubMed

    Miyashita, Shin-ichi; Inagaki, Kazumi; Narukawa, Tomohiro; Zhu, Yanbei; Kuroiwa, Takayoshi; Hioki, Akiharu; Chiba, Koichi

    2012-01-01

    A certified reference material (CRM) for trace cadmium and other elements in brown rice flour was developed at the National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder after drying and frozen pulverization of fresh brown rice obtained from a Japanese domestic market. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), ICP high-resolution mass spectrometry, isotope-dilution ICP-MS, ICP optical emission spectrometry, and graphite-furnace atomic-absorption spectrometry. Property values were provided for six elements (Mn, Fe, Cu, Zn, As, and Cd). The concentration range of the property values was from 0.280 mg kg(-1) of As to 31.8 mg kg(-1) of Zn. The combined relative standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, characterization, difference among analytical methods, dry-mass correction factor, and calibration standard. The range of the relative combined standard uncertainties was from 1.1% of Zn to 1.6% of As.

  4. Measurement of trace elements in tree rings using the PIXE method

    NASA Astrophysics Data System (ADS)

    Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji

    1998-03-01

    Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.

  5. Analysis of elemental composition of porcelains unearthed from Waguantan kiln site by PIXE-RBS

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Zhang, K.; Xia, C. D.; Liu, M. T.; Zhu, J. J.; An, Z.; Bai, B.

    2015-03-01

    A method combining proton-induced X-ray emission spectrometry (PIXE) and Rutherford backscattering spectrometry (RBS) was used to determine the composition of 61 porcelain shards from the Yuan Dynasty (1271-1368 A.D.) unearthed from the Waguantan kiln site at Tianzhu County in Guizhou Province, China. Based on our previous experimental setup, an electron gun device with a LaB6 crystal cathode was installed to solve the problem created when the incident proton beams generated electric charge accumulations on the surfaces of the insulating porcelain samples, which induced a large bremsstrahlung background. The use of the electron gun has largely eliminated the large bremsstrahlung background and has therefore improved the detection limits for elements, especially for trace elements, and made it possible to determine the origin of the porcelains based on the trace elements. Major and trace elemental compositions of the porcelain bodies and glazes measured by PIXE and RBS were analyzed by the factor analysis method. The factor analysis showed that a few pieces of porcelain with a style similar to the porcelain of the Longquan kiln among the unearthed porcelains from the Waguantan kiln site did not have obvious differences in elemental compositions from other remaining porcelains unearthed from the Waguantan kiln site, indicating that the pieces of unearthed porcelain with the Longquan kiln style did in fact belong to the product fired locally by imitating the model of the Longquan celadon with local raw materials. This result therefore indicated that the Longquan kiln technology that originated from the Five Dynasties (907-960 A.D.) had been propagated to the Waguantan kiln site of Guizhou Province in the Yuan Dynasty.

  6. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    NASA Astrophysics Data System (ADS)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  7. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis.

    PubMed

    Lin, Kuo-Hsiung; Chiang, Hung-Lung

    2014-04-30

    Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200-500°C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)-MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25-28 mg/g, iron 1.3-1.7 mg/g, tin 0.8-1.0mg/g and magnesium 0.4-1.0mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68-73%, hydrogen was 10-14%, nitrogen was 4-5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500°C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    PubMed Central

    van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.

    2010-01-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062

  9. Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.

    PubMed

    Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W

    2010-10-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.

  10. Three dimensional ray tracing of the Jovian magnetosphere in the low frequency range

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.

    1984-01-01

    Ray tracing studies of Jovian low frequency emissions were studied. A comprehensive three-dimensional ray tracing computer code for examination of model Jovian decametric (DAM) emission was developed. The improvements to the computer code are outlined and described. The results of the ray tracings of Jovian emissions will be presented in summary form.

  11. Influence of soil composition on the major, minor and trace metal content of Velebit biomedical plants.

    PubMed

    Zeiner, Michaela; Juranović Cindrić, Iva; Požgaj, Martina; Pirkl, Raimund; Šilić, Tea; Stingeder, Gerhard

    2015-03-15

    The use of medical herbs for the treatment of many human diseases is increasing nowadays due to their mild features and low side effects. Not only for their healing properties, but also for their nutritive value supplementation of diet with various herbs is recommended. Thus also their analysis is of rising importance. While total elemental compositions are published for many common herbs, the origin of toxic as well as beneficial elements is not yet well investigated. Thus different indigenous medicinal plants, namely Croatian spruce (Picea abies), savory (Satureja montana L.), mountain yarrow (Achillea clavennae), showy calamint (Calamintha grandiflora), micromeria (Micromeria croatica), yellow gentian (Gentiana lutea) and fir (Abies alba) together with soil samples were collected in the National Park Northern Velebit. The macro- and trace elements content, after microwave digestion, was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). The study focuses on the one hand on essential elements and on the other hand on non-essential elements which are considered as toxic for humans, covering in total Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Discrimination among spawning concentrations of Lake Superior lake herring based on trace element profiles in sagittae

    USGS Publications Warehouse

    Bronte, Charles R.; Hesselberg, Robert J.; Shoesmith, John A.; Hoff, Michael H.

    1996-01-01

    Little is known about the stock structure of lake herring Coregonus artedi in Lake Superior, and recent increases in harvestable stock sizes has led to expanded exploitation in some areas. Research on marine teleosts has demonstrated that chemical differences in sagittal otoliths can be used for identification of fish stocks. We used plasma emission spectrophotometry to measure the concentrations of 10 trace elements in the sagittal otoliths from lake herring captured at eight spawning sites in Lake Superior and from Little Star Lake, an inland lake outside the Lake Superior basin. Discriminant function analysis indicated that elemental concentrations provided site-specific information but that considerable overlap existed among some locations, especially those in western Lake Superior. Correct classification rates varied from 12.0% to 86.1% and were generally higher for spawning locations from embayments in eastern Lake Superior and for the outgroup population from Little Star Lake. The results presented here demonstrate the potential usefulness of this technique for strictly freshwater species, especially those that live in highly oligotrophic waters such as Lake Superior.

  13. A modification of the U.S. Geological Survey one-sixth order semiquantitative spectrographic method for the analysis of geologic materials that improves limits of determination of some volatile to moderately volatile elements

    USGS Publications Warehouse

    Detra, D.E.; Cooley, Elmo F.

    1988-01-01

    A modification of the one-sixth order semi-quantitative emission spectrographic method for the analysis of 30 elements in geologic materials (Grimes and Marranzino 1968) improves the limits of determination of some volatile to moderately volatile elements. The modification uses a compound-pendulum-mounted filter to regulate the amount of emitted light passing into the spectrograph. One hundred percent transmission of emitted light is allowed during the initial 20 seconds of the burn, then continually reduced to 40 percent over the next 32 seconds using the pendulum-mounted filter, and followed by an additional 68 seconds of burn time. The reduction of light transmission during the latter part of the burn decreases spectral background and the line emission of less volatile elements commonly responsible for problem-causing interferences. The sensitivity of the method for some geochemically important trace elements commonly determined in mineral exploration (Ag, As, Au, Be, Bi, Cd, Cr, Cu, Pb, Sb, Sn, and Zn) is improved up to five-fold under ideal conditions without compromising precision or accuracy

  14. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  15. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion.

    PubMed

    Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-09-01

    Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A. viridis regulates its internal trace element concentrations by compartmentalization and excretion and that these features contribute to its resilience and potential success at the trace element-rich high pCO2 vent. PMID:25250210

  17. Applying of Factor Analyses for Determination of Trace Elements Distribution in Water from River Vardar and Its Tributaries, Macedonia/Greece

    PubMed Central

    Popov, Stanko Ilić; Stafilov, Trajče; Šajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina

    2014-01-01

    A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country. PMID:24587756

  18. Applying of factor analyses for determination of trace elements distribution in water from Vardar and its tributaries, Macedonia/Greece.

    PubMed

    Popov, Stanko Ilić; Stafilov, Trajče; Sajn, Robert; Tănăselia, Claudiu; Bačeva, Katerina

    2014-01-01

    A systematic study was carried out to investigate the distribution of fifty-six elements in the water samples from river Vardar (Republic of Macedonia and Greece) and its major tributaries. The samples were collected from 27 sampling sites. Analyses were performed by mass spectrometry with inductively coupled plasma (ICP-MS) and atomic emission spectrometry with inductively coupled plasma (ICP-AES). Cluster and R mode factor analysis (FA) was used to identify and characterise element associations and four associations of elements were determined by the method of multivariate statistics. Three factors represent the associations of elements that occur in the river water naturally while Factor 3 represents an anthropogenic association of the elements (Cd, Ga, In, Pb, Re, Tl, Cu, and Zn) introduced in the river waters from the waste waters from the mining and metallurgical activities in the country.

  19. Trace elements as quantitative probes of differentiation processes in planetary interiors

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1980-01-01

    The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.

  20. Parenteral trace element provision: recent clinical research and practical conclusions

    PubMed Central

    Stehle, P; Stoffel-Wagner, B; Kuhn, K S

    2016-01-01

    The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended. PMID:27049031

  1. Trace Elements Characteristic Based on ICP-AES and the Correlation of Flavonoids from Sparganii rhizoma.

    PubMed

    Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan

    2018-04-01

    The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.

  2. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  3. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  4. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula).

    PubMed

    Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric

    2016-10-01

    In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Corrosion phenomena in electron, proton and synchrotron X-ray microprobe analysis of Roman glass from Qumran, Jordan

    NASA Astrophysics Data System (ADS)

    Janssens, K.; Aerts, A.; Vincze, L.; Adams, F.; Yang, C.; Utui, R.; Malmqvist, K.; Jones, K. W.; Radtke, M.; Garbe, S.; Lechtenberg, F.; Knöchel, A.; Wouters, H.

    1996-04-01

    A series of 89 glass fragments of Roman glass are studied using electron, proton and synchrotron radiation induced X-ray emission from microscopic areas on the sample surface. The glass originates from Qumran, Jordan and was buried for 1900 years. The weathering layers that result from the extended contact with ground water have been studied, next to the trace composition of the original glass of these pieces. The latter information indicates that at Qumran, large quantities of glass objects were being used in Ancient times. Cross-sectional profiles of the glass show a complex migration behaviour of various groups of major and trace elements.

  6. Trace desulfurization. [DOE patent application

    DOEpatents

    Chen, H.L.; Stevens, C.G.

    A method for reducing a trace concentration of sulfur-containing compounds in a gas stream from about one part in 10/sup 4/ to about one part in 10/sup 7/. The method includes the steps of irradiating the gas stream with an energy source which has a central emission frequency chosen to substantially match a wavelength of energy absorption of the sulfur-containing compounds and of subsequently contacting the gas stream with a reactive surface which includes a reactant selected from elemental metals and metal oxides so that metallic sulfur-containing compounds are formed. The reduction in concentration allows the gas stream to be processed in certain reactions having catalysts which would otherwise be poisoned by the sulfur-containing compounds.

  7. Characterizing marine particles and their impact on biogeochemical cycles in the GEOTRACES program

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Hayes, Christopher T.

    2015-04-01

    Trace elements and their isotopes (TEIs) are of priority interest in several subdisciplines of oceanography. For example, the vital role of trace element micronutrients in regulating the growth of marine organisms, which, in turn, may influence the structure and composition of marine ecosystems, is now well established (Morel and Price, 2003; Twining and Baines, 2013). Natural distributions of some TEIs have been severely impacted by anthropogenic emissions, leading to substantial perturbations of natural ocean inventories. Pb and Hg, for example, (Lamborg et al., 2002; Schaule and Patterson, 1981), may represent a significant threat to human food supply. Furthermore, much of our knowledge of past variability in the ocean environment, including the ocean's role in climate change, has been developed using TEI proxies archived in marine substrates such as sediments, corals and microfossils. Research in each of these areas relies on a comprehensive knowledge of the distributions of TEIs in the ocean, and on the sensitivity of these distributions to changing environmental conditions. With numerous processes affecting the regional supply and removal of TEIs in the ocean, a comprehensive understanding of the marine biogeochemical cycles of TEIs can be attained only by a global, coordinated, international effort. GEOTRACES, an international program designed to study the marine biogeochemical cycles of trace elements and their isotopes (Anderson et al., 2014; Henderson et al., 2007), aims to achieve these goals.

  8. A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology

    PubMed Central

    Ragimov, Aligejdar; Faizullin, Rashat; Valiev, Vsevolod

    2017-01-01

    Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water. PMID:29065586

  9. Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release.

    PubMed

    Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E

    2016-04-01

    Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.

  10. Chemical characterization of the fine particle emissions from commercial aircraft engines during the Aircraft Particle Emissions eXperiment (APEX) 1 to 3.

    PubMed

    Kinsey, J S; Hays, M D; Dong, Y; Williams, D C; Logan, R

    2011-04-15

    This paper addresses the need for detailed chemical information on the fine particulate matter (PM) generated by commercial aviation engines. The exhaust plumes of seven turbofan engine models were sampled as part of the three test campaigns of the Aircraft Particle Emissions eXperiment (APEX). In these experiments, continuous measurements of black carbon (BC) and particle surface-bound polycyclic aromatic compounds (PAHs) were conducted. In addition, time-integrated sampling was performed for bulk elemental composition, water-soluble ions, organic and elemental carbon (OC and EC), and trace semivolatile organic compounds (SVOCs). The continuous BC and PAH monitoring showed a characteristic U-shaped curve of the emission index (EI or mass of pollutant/mass of fuel burned) vs fuel flow for the turbofan engines tested. The time-integrated EIs for both elemental composition and water-soluble ions were heavily dominated by sulfur and SO(4)(2-), respectively, with a ∼2.4% median conversion of fuel S(IV) to particle S(VI). The corrected OC and EC emission indices obtained in this study ranged from 37 to 83 mg/kg and 21 to 275 mg/kg, respectively, with the EC/OC ratio ranging from ∼0.3 to 7 depending on engine type and test conditions. Finally, the particle SVOC EIs varied by as much as 2 orders of magnitude with distinct variations in chemical composition observed for different engine types and operating conditions.

  11. New Perspectives on the Essential Trace Elements.

    ERIC Educational Resources Information Center

    Frieden, Earl

    1985-01-01

    Provides a comprehensive overview of the 19 essential trace elements, examining: the concept of essentiality; evolution of these elements; possible future essential elements; the lanthanides and actinides; how essential trace elements work; the metalloenzymes; the nonmetals; iodine and the thyroid hormones; and antagonism among these elements. (JN)

  12. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  13. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  14. Emissions factors for gaseous and particulate pollutants from offshore diesel engine vessels in China

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Chen, Y.; Tian, C.; Li, J.; Zhang, G.; Matthias, V.

    2015-09-01

    Shipping emissions have significant influence on atmospheric environment as well as human health, especially in coastal areas and the harbor districts. However, the contribution of shipping emissions on the environment in China still need to be clarified especially based on measurement data, with the large number ownership of vessels and the rapid developments of ports, international trade and shipbuilding industry. Pollutants in the gaseous phase (carbon monoxide, sulfur dioxide, nitrogen oxides, total volatile organic compounds) and particle phase (particulate matter, organic carbon, elemental carbon, sulfates, nitrate, ammonia, metals) in the exhaust from three different diesel engine power offshore vessels in China were measured in this study. Concentrations, fuel-based and power-based emissions factors for various operating modes as well as the impact of engine speed on emissions were determined. Observed concentrations and emissions factors for carbon monoxide, nitrogen oxides, total volatile organic compounds, and particulate matter were higher for the low engine power vessel than for the two higher engine power vessels. Fuel-based average emissions factors for all pollutants except sulfur dioxide in the low engine power engineering vessel were significantly higher than that of the previous studies, while for the two higher engine power vessels, the fuel-based average emissions factors for all pollutants were comparable to the results of the previous studies. The fuel-based average emissions factor for nitrogen oxides for the small engine power vessel was more than twice the International Maritime Organization standard, while those for the other two vessels were below the standard. Emissions factors for all three vessels were significantly different during different operating modes. Organic carbon and elemental carbon were the main components of particulate matter, while water-soluble ions and elements were present in trace amounts. Best-fit engine speeds during actual operation should be based on both emissions factors and economic costs.

  15. Subtask 4.8 - Fate and Control of Mercury and Trace Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlish, John; Lentz, Nicholas; Martin, Christopher

    2011-12-31

    The Center for Air Toxic Metals® (CATM®) Program at the Energy & Environmental Research Center (EERC) continues to focus on vital basic and applied research related to the fate, behavior, measurement, and control of trace metals, especially mercury, and the impact that these trace metals have on human health and the environment. For years, the CATM Program has maintained an international perspective, performing research and providing results that apply to both domestic and international audiences, with reports distributed in the United States and abroad. In addition to trace metals, CATM’s research focuses on other related emissions and issues that impactmore » trace metal releases to the environment, such as SO x, NO x, CO 2, ash, and wastewater streams. Of paramount interest and focus has been performing research that continues to enable the power and industrial sectors to operate in an environmentally responsible manner to meet regulatory standards. The research funded by the U.S. Department of Energy’s (DOE’s) National Energy Technology Laboratory (NETL) through CATM has allowed significant strides to be made to gain a better understanding of trace metals and other emissions, improve sampling and measurement techniques, fill data gaps, address emerging technical issues, and develop/test control technologies that allow industry to cost-effectively meet regulatory standards. The DOE NETL–CATM research specifically focused on the fate and control of mercury and trace elements in power systems that use CO 2 control technologies, such as oxycombustion and gasification systems, which are expected to be among those technologies that will be used to address climate change issues. In addition, research addressed data gaps for systems that use conventional and multipollutant control technologies, such as electrostatic precipitators, selective catalytic reduction units, flue gas desulfurization systems, and flue gas-conditioning methods, to understand mercury interactions, develop better control strategies and, in some cases, prevent mercury from being reemitted. This research also addressed stakeholder concerns and questions related to sampling and analytical methods for mercury, especially for continuous mercury monitors and sorbent trap methods for future compliance. Advancements were made toward the development of a much simpler dry-based method for measurement of halogens and trace metals. Finally, this research resulted in significant outcomes related to mercury and selenium concentrations in freshwater fish and how it is associated with other elements, thereby potentially impacting health; this has greatly enhanced the understanding of the second-order mechanism of mercury toxicity. The outcomes of this research have been shared with stakeholders in various domestic and international forums, working groups, conferences, educational settings, and published documents, with information available and accessible to those most impacted or interested in timely and current results on toxic metals. This subtask was funded through the EERC–DOE Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291.« less

  16. [Proposal of new trace elements classification to be used in nutrition, oligotherapy and other therapeutics strategies].

    PubMed

    Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María

    2014-12-17

    1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  17. Trace elements have limited utility for studying migratory connectivity in shorebirds that winter in Argentina

    USGS Publications Warehouse

    Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I.

    2010-01-01

    Trace-element analysis has been suggested as a tool for the study of migratory connectivity because (1) trace-element abundance varies spatially in the environment, (2) trace elements are assimilated into animals' tissues through the diet, and (3) current technology permits the analysis of multiple trace elements in a small tissue sample, allowing the simultaneous exploration of several elements. We explored the potential of trace elements (B, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, As, Sr, Cs, Hg, Tl, Pb, Bi, Th, and U) to clarify the migratory connectivity of shorebirds that breed in North America and winter in southern South America. We collected 66 recently replaced secondary feathers from Red Knots (Calidris canutus) at three sites in Patagonia and 76 from White-rumped Sandpipers (C. fuscicollis) at nine sites across Argentina. There were significant differences in trace-element abundance in shorebird feathers grown at different nonbreeding sites, and annual variability within a site was small compared to variability among sites. Across Argentina, there was no large-scale gradient in trace elements. The lack of such a gradient restricts the application of this technique to questions concerning the origin of shorebirds to a small number of discrete sites. Furthermore, our results including three additional species, the Pectoral Sandpiper (C. melanotos), Wilson's Phalarope (Phalaropus tricolor), and Collared Plover (Charadrius collaris), suggest that trace-element profiles change as feathers age. Temporal instability of trace-element values could undermine their application to the study of migratory connectivity in shorebirds. ?? The Cooper Ornithological Society 2010.

  18. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  19. High time-resolved elemental components in fine and coarse particles in the Pearl River Delta region of Southern China: Dynamic variations and effects of meteorology.

    PubMed

    Zhou, Shengzhen; Davy, Perry K; Wang, Xuemei; Cohen, Jason Blake; Liang, Jiaquan; Huang, Minjuan; Fan, Qi; Chen, Weihua; Chang, Ming; Ancelet, Travis; Trompetter, William J

    2016-12-01

    Hourly-resolved PM 2.5 and PM 10-2.5 samples were collected in the industrial city Foshan in the Pearl River Delta region, China. The samples were subsequently analyzed for elemental components and black carbon (BC). A key purpose of the study was to understand the composition of particulate matter (PM) at high-time resolution in a polluted urban atmosphere to identify key components contributing to extreme PM concentration events and examine the diurnal chemical concentration patterns for air quality management purposes. It was found that BC and S concentrations dominated in the fine mode, while elements with mostly crustal and oceanic origins such as Si, Ca, Al and Cl were found in the coarse size fraction. Most of the elements showed strong diurnal variations. S did not show clear diurnal variations, suggesting regional rather than local origin. Based on empirical orthogonal functions (EOF) method, 3 forcing factors were identified contributing to the extreme events of PM 2.5 and selected elements, i.e., urban direct emissions, wet deposition and a combination of coarse mode sources. Conditional probability functions (CPF) were performed using wind profiles and elemental concentrations. The CPF results showed that BC and elemental Cl, K, Fe, Cu and Zn in the fine mode were mostly from the northwest, indicating that industrial emissions and combustion were the main sources. For elements in the coarse mode, Si, Al, K, Ca, Fe and Ti showed similar patterns, suggesting same sources such as local soil dust/construction activities. Coarse elemental Cl was mostly from the south and southeast, implying the influence of marine aerosol sources. For other trace elements, we found vanadium (V) in fine PM was mainly from the sources located to the southeast of the measuring site. Combined with CPF results of S and V in fine PM, we concluded shipping emissions were likely an important elemental emission source. Copyright © 2016. Published by Elsevier B.V.

  20. Size-resolved trace metal characterization of aerosols emitted by four important source types in Switzerland

    NASA Astrophysics Data System (ADS)

    Buerki, Peter R.; Gaelli, Brigitte C.; Nyffeler, Urs P.

    In central Switzerland five types of emission sources are mainly responsible for airborne trace metals: traffic, industrial plants burning heavy oil, resuspension of soil particles, residential heatings and refuse incineration plants. The particulate emissions of each of these source types except refuse incineration were sampled using Berner impactors and the mass and elemental size distributions of Cd, Cu, Mn, Pb, Zn, As and Na determined. Cd, Na and Zn are not characteristic for any of these source types. As and Cu, occurring in the fine particle fractions are characteristic for heavy oil combustion, Mn for soil dust and sometimes for heavy and fuel oil combustion and Pb for traffic aerosols. The mass size distributions of aerosols originating from erosion and abrasion processes show a maximum mass fraction in the coarse particle range larger than about 1 μm aerodynamic equivalent diameters (A.E.D.). Aerosols originating from combustion processes show a second maximum mass fraction in the fine particle range below about 0.5μm A.E.D. Scanning electron microscopy combined with an EDS analyzer was used for the morphological characterization of emission and ambient aerosols.

  1. Tracing carbonaceous sources by using particulate carbon and sulfate in precipitation in Calgary, Alberta Canada

    NASA Astrophysics Data System (ADS)

    Ge, C.; Stenhouse, K. J.; Du, K.; Xing, Z.; Norman, A. L.

    2016-12-01

    Carbonaceous matter is often the dominant contributor to Particulate Matter (PM) which has a significant influence on climate, air quality and human health. The measurement of particulate carbon in rainfall in Calgary, Alberta has not been studied. This study reports the sulfate and the first concentrations of particulate carbon (PC) in rainfall in Calgary. It traces seasonal carbonaceous sources for the purpose of understanding sources for air quality control. Precipitation samples are collected twice a day at the University of Calgary. Thermo-optical methods are used to analyze concentrations of PC, including elemental carbon (EC), primary organic carbon (POC) and secondary organic carbon (SOC). Sulfate concentrations are measured using ion chromatography. In this study, sources from long range transport and local emissions are examined. We emphasized the apportionment of OC/EC in oil and gas emissions and diurnal variations in transportation emissions. Weekly average data for dry deposition were calculated to estimate the scavenging ratio of EC/POC/SOC and ions in precipitation. The results of this study will be presented with an emphasis on the relationship of carbonaceous material and sulfate. A range of apportionment methods have been applied to examine limitations in quantifying SOC in fall.

  2. Dependence of precipitation of trace elements on pH in standard water

    NASA Astrophysics Data System (ADS)

    Verma, Shivcharan; Mohanty, Biraja P.; Singh, K. P.; Behera, B. R.; Kumar, Ashok

    2018-04-01

    The present work aimed to study the dependence of precipitation of trace elements on the pH of solution. A standard solution was prepared by using ultrapure deionized water (18.2 MΩ/cm) as the solvent and 11 water-soluble salts having different elements as solutes. Five samples of different pH values (2 acidic, 2 basic, and 1 neutral) were prepared from this standard solution. Sodium-diethyldithiocarbamate was used as the chelating agent to precipitate the metal ions present in these samples of different pH values. The targets were prepared by collecting these precipitates on mixed cellulose esters filter of 0.4 μm pore size by vacuum filtration. Elemental analysis of these targets was performed by particle-induced X-ray emission (PIXE) using 2.7 MeV protons from the single Dee variable energy cyclotron at Panjab University, Chandigarh, India. PIXE data were analyzed using GUPIXWIN software. For most of the elements, except Hg with oxidation state +2, such as Co, Ni, Zn, Ba, and Cd, a general trend of enhancement in precipitation was observed with the increase in pH. However, for other elements such as V, As, Mo, Ag, and Bi, which have oxidation state other than +2, no definite pattern was observed. Precipitation of Ba and As using this method was negligible at all five pH values. From these results, it can be concluded that the precipitation and recovery of elements depend strongly on the pH of the water sample.

  3. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  4. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  5. Inductively Coupled Plasma Optical Emission Spectrometry for Rare Earth Elements Analysis

    NASA Astrophysics Data System (ADS)

    He, Man; Hu, Bin; Chen, Beibei; Jiang, Zucheng

    2017-01-01

    Inductively coupled plasma optical emission spectrometry (ICP-OES) merits multielements capability, high sensitivity, good reproducibility, low matrix effect and wide dynamic linear range for rare earth elements (REEs) analysis. But the spectral interference in trace REEs analysis by ICP-OES is a serious problem due to the complicated emission spectra of REEs, which demands some correction technology including interference factor method, derivative spectrum, Kalman filtering algorithm and partial least-squares (PLS) method. Matrix-matching calibration, internal standard, correction factor and sample dilution are usually employed to overcome or decrease the matrix effect. Coupled with various sample introduction techniques, the analytical performance of ICP-OES for REEs analysis would be improved. Compared with conventional pneumatic nebulization (PN), acid effect and matrix effect are decreased to some extent in flow injection ICP-OES, with higher tolerable matrix concentration and better reproducibility. By using electrothermal vaporization as sample introduction system, direct analysis of solid samples by ICP-OES is achieved and the vaporization behavior of refractory REEs with high boiling point, which can easily form involatile carbides in the graphite tube, could be improved by using chemical modifier, such as polytetrafluoroethylene and 1-phenyl-3-methyl-4-benzoyl-5-pyrazone. Laser ablation-ICP-OES is suitable for the analysis of both conductive and nonconductive solid samples, with the absolute detection limit of ng-pg level and extremely low sample consumption (0.2 % of that in conventional PN introduction). ICP-OES has been extensively employed for trace REEs analysis in high-purity materials, and environmental and biological samples.

  6. Elemental Geochemistry of Samples From Fault Segments of the San Andreas Fault Observatory at Depth (SAFOD) Drill Hole

    NASA Astrophysics Data System (ADS)

    Tourscher, S. N.; Schleicher, A. M.; van der Pluijm, B. A.; Warr, L. N.

    2006-12-01

    Elemental geochemistry of mudrock samples from phase 2 drilling of the San Andreas Fault Observatory at Depth (SAFOD) is presented from bore hole depths of 3066 m to 3169 m and from 3292 m to 3368 m, which contain a creeping section and main trace of the fault, respectively. In addition to preparation and analysis of whole rock sample, fault grains with neomineralized, polished surfaces were hand picked from well-washed whole rock samples, minimizing the potential contamination from drilling mud and steel shavings. The separated fractions were washed in deionized water, powdered using a mortar and pestle, and analyzed using an Inductively Coupled Plasma- Optical Emission Spectrometer for major and minor elements. Based on oxide data results, systematic differences in element concentrations are observed between the whole rock and fault rock. Two groupings of data points are distinguishable in the regions containing the main trace of the fault, a shallow part (3292- 3316 m) and a deeper section (3320-3368 m). Applying the isocon method, assuming Zr and Ti to be immobile elements in these samples, indicates a volume loss of more than 30 percent in the shallow part and about 23 percent in the deep part of the main trace. These changes are minimum estimates of fault-related volume loss, because the whole rock from drilling samples contains variable amount of fault rock as well. Minimum estimates for volume loss in the creeping section of the fault are more than 50 percent when using the isocon method, comparing whole rock to plucked fault rock. The majority of the volume loss in the fault rocks is due to the dissolution and loss of silica, potassium, aluminum, sodium and calcium, whereas (based on oxide data) the mineralized surfaces of fractures appear to be enriched in Fe and Mg. The large amount of element mobility within these fault traces suggests extensive circulation of hydrous fluids along fractures that was responsible for progressive dissolution and leaching of the wall rock during faulting.

  7. Wet deposition of trace elements and radon daughter systematics in the South and equatorial Atlantic atmosphere

    NASA Astrophysics Data System (ADS)

    Kim, Guebuem; Church, Thomas M.

    2002-09-01

    Atmospheric samples were collected aboard ship in the South and equatorial Atlantic (35°S-10°N) between 19 May and 20 June 1996. We measured 222Rn in air, 210Pb in aerosol, and trace elements (Fe, Mn, Zn, Pb, Cu, Cd, Ni, and Cr), 210Pb, and 210Po in precipitation samples. The large variation of 222Rn in air suggests a significant change in the incursion of continental air with time and latitude in the remote Atlantic. In the equatorial and subtropical Atlantic (20°S-10°N), 222Rn activity was lower but 210Pb/222Rn ratios were higher than those at higher latitudes. The higher 210Pb/222Rn ratios in the equatorial Atlantic appear to be due to prevailing trade easterly winds which transport a supported source of 210Pb in Saharan dust from the African Sahel. The enrichment of noncrustal trace elements in precipitation samples from the remote equatorial Atlantic was small on account of the remoteness from the continental emission regions and as a result of dilution with Saharan dust. The wet depositional fluxes of major crustal elements (Fe and Mn) were two- to three-fold higher, while those of Cd and Zn were two- to ten-fold lower, in the South and equatorial Atlantic relative to the western North Atlantic (Bermuda) or North Atlantic coast (Lewes, Delaware). Thus, dominant wet precipitation of Saharan dust in the Intertropical Convergence Zone (ITCZ) areas of the equatorial Atlantic appears to be a large potential source of micronutrients (i.e., Fe) to surface seawater.

  8. Obsidian provenance determination by using the beam stability controlled BSC-XRF and the PIXE-alpha portable spectrometers of the LANDIS laboratory of the LNS-INFN and IBAM-CNR in Catania (Italy)

    NASA Astrophysics Data System (ADS)

    Pappalardo, L.; Bracchitta, D.; Palio, O.; Pappalardo, G.; Rizzo, F.

    2012-04-01

    About 1300 obsidian artefacts coming from various archaeological sites of Sicily were analyzed by using the BSC-XRF (Beam Stability Controlled - X-ray Fluorescence) and PIXE-alpha (Particle Induced X-ray Emission, using low energy alpha particles) portable spectrometers developed at the Landis laboratory at the LNS-INF and IBAM-CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of the Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on Rb, Sr, Y, Zr, Nb trace element concentrations where deduced through the use of a method that makes use of a multi parameter linear regression, previously The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In the present work the two instrumental devices are presented. The data are from: Milena (Cl), Ustica (Pa), Rocchicella (Ct), Poggio dell'Acquila (Ct), San Marco (Ct), Villaggio del Petraro* (Sr) and Licodia Eubea* (Ct). Results on compositional data for trace elements and major elements allowed to identify Lipari and Pantelleria islands as the only two sources of the analysed samples. Analyses carried out on vitreous artefact found in Rocchicella, showed for the first time that the Palagonite was used as row material. *Preliminary data. Topic of conference: Application of XRS in archaeometry Kind of presentation: oral

  9. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations.

    PubMed

    Rovira, Joaquim; Sierra, Jordi; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2018-05-01

    Particulate matter (PM) composition has a key role in a wide range of health outcomes, such as asthma, chronic obstructive pulmonary disease, lung cancer, cardiovascular disease, and death, among others. Montcada i Reixac, a municipality located in the Barcelona metropolitan area (Catalonia, Spain), for its location and orography, is an interesting case- study to investigate air pollution. The area is also characterized by the presence of different industrial emission sources, including a cement factory and a large waste management plant, as well as an intense traffic. In this study, PM 10 levels, trace elements, ions, and carbonaceous particles were determined for a long time period (2013-2016) in this highly polluted area. PM 10 samples were collected during six consecutive days in two campaigns (cold and warm) per year. A number of elements (As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, K, La, Li, Hg, Mg, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Th, Ti, Tl, U, V, W, Y, Yb, and Zr), ions (Cl - , SO 4 2- , NO 3 - , and NH 4 + ), and carbonaceous content (total carbon, organic plus elemental carbon, and CO 3 2- ), were analysed. These data were used to identify the PM 10 main components: mineral matter, sea spray, secondary inorganic aerosols, organic matter plus elemental carbon, trace elements or indeterminate fraction. Although a clear seasonality (cold vs. warm periods) was found, there were no differences between working days and weekends. Obviously, the cement plant influences the surrounding environment. However, no differences in trace elements related with the cement plant activity (Al, Ca, Ni and V) between weekdays and weekends were noted. However, some traffic-related elements (i.e., Co, Cr, Mn, and Sb) showed significantly higher concentrations in weekdays. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Elemental and structural studies at the bone-cartilage interface

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Kaabar, W.; Gundogdu, O.

    2012-02-01

    The techniques μProton-Induced X-and γ-ray Emission, μ-PIXE and μ-PIGE, were used to investigate trace and essential element distributions in sections of normal and osteoarthritic (OA) human femoral head. μ-PIGE yielded 2-D mappings of Na and F while Ca, Z, P and S were mapped by μ-PIXE. The concentration of chondroitin sulphate supporting functionality in healthy cartilage is significantly reduced in OA samples. Localised Zn points to osteoblastic/osteoclastic activity at the bone-cartilage interface. Small-angle X-ray scattering applied to decalcified OA-affected tissue showed spatial alterations of collagen fibres of decreased axial periodicity compared to normal collagen type I.

  11. A critical review of inductively coupled plasma-mass spectrometry for geoanalysis, geochemistry and hydrology, Part 1. Analytical performance

    USGS Publications Warehouse

    Brenner, I.B.; Taylor, Howard E.

    1992-01-01

    Present-day inductively coupled plasma-mass spectrometry (ICP-MS) instrumentation is described briefly. Emphasis is placed on performance characteristics for geoanalysis, geochemistry, and hydrology. Applications where ICP-MS would be indispensable are indicated. Determination of geochemically diagnostic trace elements (such as the rare earth elements [REE], U and Th), of isotope ratios for fingerprinting, tracer and other geo-isotope applications, and benchmark isotope dilution determinations are considered to be typical priority applications for ICP-MS. It is concluded that ICP-MS furnishes unique geoanalytical and environmental data that are not readily provided by conventional spectroscopic (emission and absorption) techniques.

  12. The emerging Medical and Geological Association.

    USGS Publications Warehouse

    Finkelman, R.B.; Centeno, J.A.; Selinus, O.

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort.

  13. The Emerging Medical and Geological Association

    PubMed Central

    Finkelman, Robert B; Centeno, Jose A; Selinus, Olle

    2005-01-01

    The impact on human health by natural materials such as water, rocks, and minerals has been known for thousands of years but there have been few systematic, multidisciplinary studies on the relationship between geologic materials and processes and human health (the field of study commonly referred to as medical geology). In the past few years, however, there has been a resurgence of interest in medical geology. Geoscientists working with medical researchers and public health scientists have made important contributions to understanding novel exposure pathways and causes of a wide range of environmental health problems such as: exposure to toxic levels of trace essential and non-essential elements such as arsenic and mercury; trace element deficiencies; exposure to natural dusts and to radioactivity; naturally occurring organic compounds in drinking water; volcanic emissions, etc. By linking with biomedical/public health researchers geoscientists are finally taking advantage of this age-old opportunity to help mitigate environmental health problems. The International Medical Geology Association has recently been formed to support this effort. PMID:16555612

  14. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.

    PubMed

    Huang, Wen; Duan, Dandan; Zhang, Yulong; Cheng, Hefa; Ran, Yong

    2014-08-30

    Suspended particulate matter (SPM) and colloidal matter (COM) in annual dry and wet deposition samples in urban Guangzhou were for the first time collected, and their trace metals were investigated by using inductively coupled plasma mass spectrometry (ICP-MS). The deposition flux of SPM and of metal elements varied largely among the investigated seasons, and reached the maximum in spring. The correlation analysis indicated that significant correlations existed among some of the metal elements in the deposition samples. The enrichment factors (EF) of metals in COM in the deposition ranging from 79.66 to 130,000 were much higher than those of SPM ranging from 1.65 to 286.48, indicating the important role of COM. The factor analysis showed that emissions from street dust, non-ferrous metal production, and heavy fuel oil were major sources of the trace metals. Positive matrix factorization (PMF) model was used to quantitatively estimate anthropogenic source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  16. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    PubMed

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  17. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  18. Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (Swan Lake), northern China.

    PubMed

    Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei

    2017-06-30

    Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Source holder collimator for encapsulating radioactive material and collimating the emanations from the material

    DOEpatents

    Laurer, G.R.

    1974-01-22

    This invention provides a transportable device capable of detecting normal levels of a trace element, such as lead in a doughnutshaped blood sample by x-ray fluorescence with a minimum of sample preparation in a relatively short analyzing time. In one embodiment, the blood is molded into a doughnut-shaped sample around an annular array of low-energy radioactive material that is at the center of the doughnut-shaped sample but encapsulated in a collimator, the latter shielding a detector that is close to the sample and facing the same so that the detector receives secondary emissions from the sample while the collimator collimates ths primary emissions from the radioactive material to direct these emissions toward the sample around 360 deg and away from the detector. (Official Gazette)

  20. Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, Central Andes

    NASA Astrophysics Data System (ADS)

    Cereceda-Balic, F.; Palomo-Marín, M. R.; Bernalte, E.; Vidal, V.; Christie, J.; Fadic, X.; Guevara, J. L.; Miro, C.; Pinilla Gil, E.

    2012-02-01

    Seasonal snow precipitation in the Andes mountain range is evaluated as an environmental indicator of the composition of atmospheric emissions in Santiago de Chile metropolitan area, by measuring a set of representative trace elements in snow samples by ICP-MS. Three late winter sampling campaigns (2003, 2008 and 2009) were conducted in three sampling areas around Cerro Colorado, a Central Andes mountain range sector NE of Santiago (36 km). Nevados de Chillán, a sector in The Andes located about 500 km south from the metropolitan area, was selected as a reference area. The experimental results at Cerro Colorado and Nevados de Chillán were compared with previously published data of fresh snow from remote and urban background sites. High snow concentrations of a range of anthropogenic marker elements were found at Cerro Colorado, probably derived from Santiago urban aerosol transport and deposition combined with the effect of mining and smelting activities in the area, whereas Nevados de Chillán levels roughly correspond to urban background areas. Enhanced concentrations in surface snow respect to deeper samples are discussed. Significant differences found between the 2003, 2008 and 2009 anthropogenic source markers profiles at Cerro Colorado sampling points were correlated with changes in emission sources at the city. The preliminary results obtained in this study, the first of this kind in the southern hemisphere, show promising use of snow precipitation in the Central Andes as a suitable matrix for receptor model studies aimed at identifying and quantifying pollution sources in Santiago de Chile.

  1. Stream-sediment samples reanalyzed for major, rare earth, and trace elements from ten 1:250,000-scale quadrangles, south-central Alaska, 2007-08

    USGS Publications Warehouse

    Bailey, Elizabeth A.; Shew, Nora B.; Labay, Keith A.; Schmidt, Jeanine M.; O'Leary, Richard M.; Detra, David E.

    2010-01-01

    During the 1960s through the 1980s, the U.S. Geological Survey (USGS) conducted reconnaissance geochemical surveys of the drainage basins throughout most of the Anchorage, Bering Glacier, Big Delta, Gulkana, Healy, McCarthy, Mount Hayes, Nabesna, Talkeetna Mountains, and Valdez 1:250,000-scale quadrangles in Alaska as part of the Alaska Mineral Resource Assessment Program (AMRAP). These geochemical surveys provide data necessary to assess the potential for undiscovered mineral resources on public and other lands, and provide data that may be used to determine regional-scale element baselines. This report provides new data for 366 of the previously collected stream-sediment samples. These samples were selected for reanalysis because recently developed analytical methods can detect additional elements of interest and have lower detection limits than the methods used when these samples were originally analyzed. These samples were all analyzed for arsenic by hydride generation atomic absorption spectrometry (HGAAS), for gold, palladium, and platinum by inductively coupled plasma-mass spectrometry after lead button fire assay separation (FA/ICP-MS), and for a suite of 55 major, rare earth, and trace elements by inductively coupled plasma-atomic emission spectrometry and inductively coupled plasma-mass spectrometry (ICP-AES-MS) after sodium peroxide sinter at 450 degrees Celsius.

  2. Distribution of elements in seeds of some wild and cultivated fruits. Nutrition and authenticity aspects.

    PubMed

    Krstić, Đurđa; Vukojević, Vesna; Mutić, Jelena; Fotirić Akšić, Milica; Ličina, Vlado; Milojković-Opsenica, Dušanka; Trifković, Jelena

    2018-06-24

    Compositional, functional and nutritional properties of fruits are important for defining its quality. Regarding the fact that fruit seeds are also considered to be a good source of bioactive components, their exploitation should be greater. Twenty macro, micro and trace elements were identified and quantified in seeds of 70 genuine wild and cultivated fruits species/cultivars by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Additionally, sophisticated chemometric techniques were applied to establish criteria for classification of analysed samples. Calcium and P were the most abundant elements, followed by K and Na. Micro and trace elements content were differing among the different cultivars/genotypes. The content of Ba, Pb and Sr were statistically significantly higher in wild fruits, while Fe, Mg, Mn, Ni and Zn were higher in cultivated fruits. All employed statistical procedures (Kruskal-Wallis, Mann-Whitney U-test, and PCA) confirm unique set of parameters that could be used as phytochemical biomarkers to differentiate fruit seeds samples belonging to different cultivars/genotypes according to their botanical origin. This kind of investigation may contribute for the inter-cultivar/genetic discrimination and enhancing the possibilities of acquiring a valuable authenticity factor. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Bioaccessibility assessment of toxic and essential elements in produced pulses, Bahia, Brazil.

    PubMed

    Santos, Wagna Piler Carvalho; Ribeiro, Nubia Moura; Santos, Daniele Cristina Muniz Batista; Korn, Maria Graças Andrade; Lopes, Mariângela Vieira

    2018-02-01

    The objective of this study was to analyze the effect of heat treatment on the bioaccessibility of major (K, Ca, Mg, P) and trace elements (As, Ba, Cu, Fe, Mn, Cd, Cr, Hg, Mo, Ni, Pb, Se, Sb, Sn, and Zn) in three different pulse species: Vigna unguiculata L. Walp (cowpea beans), Cajanus cajan L. (pigeon pea) and Lablab purpureus L. Sweet (mangalo). Analyte concentrations were determined in the samples by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. The results showed that thermal processing can affect the concentrations of the elements investigated in pulse samples. The influence of the heat treatment can range between legume species and chemical elements, as well as with the type of heat treatment, dry, wet, conductive heating and using microwaves. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  5. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less

  6. Chemical composition of PM2.5 at an urban site of Chengdu in southwestern China

    NASA Astrophysics Data System (ADS)

    Tao, Jun; Cheng, Tiantao; Zhang, Renjian; Cao, Junji; Zhu, Lihua; Wang, Qiyuan; Luo, Lei; Zhang, Leiming

    2013-07-01

    PM2.5 aerosols were sampled in urban Chengdu from April 2009 to January 2010, and their chemical compositions were characterized in detail for elements, water soluble inorganic ions, and carbonaceous matter. The annual average of PM2.5 was 165 μg m-3, which is generally higher than measurements in other Chinese cities, suggesting serious particulate pollution issues in the city. Water soluble ions contributed 43.5% to the annual total PM2.5 mass, carbonaceous aerosols including elemental carbon and organic carbon contributed 32.0%, and trace elements contributed 13.8%. Distinct daily and seasonal variations were observed in the mass concentrations of PM2.5 and its components, reflecting the seasonal variations of different anthropogenic and natural sources. Weakly acidic to neutral particles were found for PM2.5. Major sources of PM2.5 identified from source apportionment analysis included coal combustion, traffic exhaust, biomass burning, soil dust, and construction dust emissions. The low nitrate: sulfate ratio suggested that stationary emissions were more important than vehicle emissions. The reconstructed masses of ammonium sulfate, ammonium nitrate, particulate carbonaceous matter, and fine soil accounted for 79% of the total measured PM2.5 mass; they also accounted for 92% of the total measured particle scattering.

  7. Rainwater analysis by synchrotron radiation-total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    López, María L.; Ceppi, Sergio A.; Asar, María L.; Bürgesser, Rodrigo E.; Ávila, Eldo E.

    2015-11-01

    Total reflection X-ray fluorescence analysis excited with synchrotron radiation was used to quantify the elemental concentration of rainwater in Córdoba, Argentina. Standard solutions with gallium as internal standard were prepared for the calibration curves. Rainwater samples of 5 μl were added to an acrylic reflector, allowed to dry, and analyzed for 200 s measuring time. The elemental concentrations of As, Ca, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sr, V, and Zn were determined. The electrical conductivity, pH, and elemental concentrations were compared to data previously reported for the soluble fraction of rainwater at different sites. A factor analysis was performed in order to determine the sources that contributed to the elemental concentration in rainwater. Anthropogenic sources were identified as traffic pollution, vehicular emissions, and metallurgical factories. The quality of rainwater was analyzed by comparing the concentrations of all the elements in rainwater samples with the WHO guideline values for drinking water. The results show the need to control the atmospheric emissions in order to preserve the quality of rainwater. SR-TXRF analysis of chemical composition of rainwater in Córdoba represents the very first contribution in the region to the knowledge of the concentration of trace metals in the soluble fraction of rainwater. These data are scarce, especially in the Southern Hemisphere.

  8. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    PubMed Central

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  9. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  10. INAA Application for Trace Element Determination in Biological Reference Material

    NASA Astrophysics Data System (ADS)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  11. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city.

    PubMed

    Jaiprakash; Habib, Gazala

    2017-05-15

    This study reports emission factors of PM 2.5 , elemental carbon (EC), organic carbon (OC), ions, trace elements and mass absorption cross-sections (MAC) of aerosol emitted from the on-road operation of light duty vehicles of different vintages. A portable dilution system was used to achieve complete quenching of aerosol at near ambient condition. The particles were collected on the filters and analyzed for chemical and light absorbing properties of aerosol. The diesel-powered passenger cars emitted higher PM 2.5 (56-356mgkm -1 ) with a large fraction of EC (37-65%), while emissions from gasoline (46-78mgkm -1 ), and CNG vehicles (33-34mgkm -1 ) were low and contained low EC (5-15%) and remarkably high OC (46-91%). The MAC of aerosols for diesel vehicles (32-208m 2 g -1 of PM 2.5 ) were well explained by EC content (31-62%) and showed similarity with MAC values reported for wood fuel combustion in cooking stoves indicating the two sources cannot be resolved on the basis of light absorption properties in source apportionment studies. Ionic contributions to PM 2.5 were highest for 4W-gasoline (11-19%) compared to 4W-diesel (7-11%), and CNG (9-10%). The abundance of ions such as Na + , Ca 2+ , SO 4 2- , NO 3 - , and NH 4 + could be due to use of lubricant oil and abrasive nature of engine of old vehicles. Trace elements (Al, Fe, Zn, Pb, and Cu) emitted from after-treatment devices, additives in lube oil, and wearing of engine components, were found to be 2-14%, 3-8% and 11-12% of total PM 2.5 for 4W of diesel, gasoline, and CNG respectively. This study indicates that aerosol emissions from on-road vehicles show a strong dependency on vehicle maintenance, engine type and after-treatment techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.

    2016-09-01

    Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the trace elements Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive trace element fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of trace element abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in addition a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical contaminants of kyanite products, besides Fe, Ca, and Mg, appears predictable from the observed correlation of Ti with formation temperature. Iron will be hard to predict because its incorporation is mainly controlled by the oxidizing conditions during kyanite formation and the estimation of these conditions requires advanced analytical methods. Magnesium and Ca are consistently low in all investigated samples. From a regional exploration viewpoint, group C and D kyanites have the lowest Ti and relative low Fe and, therefore, will be most refractory. Due to their attractive blue colour, kyanite-bearing rocks of group C have potential as ornamental or dimension stone.

  13. Trace gas emissions from nursery crop production using different fertilizer methods

    USDA-ARS?s Scientific Manuscript database

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  14. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  15. Aerosol deposition (trace elements and black carbon) over the highest glacier of the Eastern European Alps during the last centuries

    NASA Astrophysics Data System (ADS)

    Bertò, Michele; Barbante, Carlo; Gabrieli, Jacopo; Gabrielli, Paolo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Ginot, Patrick; Fain, Xavier

    2016-04-01

    Ice cores are an archive of a wide variety of climatic and environmental information from the past, retaining them for hundreds of thousands of years. Anthropogenic pollutants, trace elements, heavy metals and major ions, are preserved as well providing insights on the past atmospheric circulations and allowing evaluating the human impact on the environment. Several ice cores were drilled in glaciers at mid and low latitudes, as in the European Alps. The first ice cores drilled to bedrock in the Eastern Alps were retrieved during autumn 2011 on the "Alto dell`Ortles glacier", the uppermost glacier of the Ortles massif (3905m, South Tirol, Italy), in the frame of the "Ortles Project". A preliminary dating of the core suggests that it should cover at least 300-400 years. Despite the summer temperature increase of the last decades this glacier still contain cold ice. Indeed, O and H isotopes profiles well describe the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). Moreover, this glacier is located close to densely populated and industrialized areas and can be used for reconstructing for the first time past and recent air pollution and the human impact in the Eastern European Alps. The innermost part of the core is under analysis by means of a "Continuous Flow Analysis" system. This kind of analysis offers a high resolution in data profiles. The separation between the internal and the external parts of the core avoid any kind of contamination. An aluminum melting head melts the core at about 2.5 cm min-1. Simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) are performed. A fraction of the melt water is collected by an auto-sampler for further analysis. The analyzed elements are Li, Na, Mg, Al, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Rb, Ag, Cd, Sb, I, Ba, Pt, Tl, Pb and U. Trace elements concentrations in the Ortles snow are related to the emissions from the Po Valley, one of the most polluted region of Europe. The results show an increase in the concentration of many heavy metals due to anthropogenic emissions, mainly from the onset of the Industrial Revolution. rBC is one of the most important aerosol species affecting the climate system, particularly the glaciers, by modifying the radiative energy balance. A significant increase of rBC was found in the ice identifying this kind of aerosol as a responsible in forcing the end of the LIA.

  16. Copper, zinc, gallium and germanium distributions in taenite lamellae of iron meteorites and their importance for cooling rate estimations

    NASA Astrophysics Data System (ADS)

    Braun-Dullaeus, Karl-Ulrich; Traxel, Kurt

    1995-02-01

    One method forestimating cooling rates of meteorite parent bodies is to model measured nickel distributions in taenite lamellae of iron meteorites. Goldstein and Ogilvie ( Geochim. Cosmochim. Acta29, 893, 1965) and Rasmussen ( Icarus45, 564, 1981) developed techniques based on this idea to examine the cooling history in the temperature range between ˜700 and ˜400°C. As a result of Instrumental Neutron Activation Analysis (INAA) Rasmussen et al. ( Meteoritics23, 105, 1988) postulated that some trace elements would also be good cooling rate indicators. They argued that elements with distinct diffusion behavior are sensitive to different temperature ranges. The new Heidelberg proton microprobe uses the method of Proton Induced X-ray Emission (PIXE) for elemental analysis. This microprobe is an appropriate instrument to measure distributions of trace elements with a spatial resolution of 2 μm. We demonstrated on the iron meteorites Cape York (Agpalilik), Toluca and Odessa that the elements copper, zinc, gallium and germanium imitate the profiles of nickel in taenite lamella. The interpretation of the Zn, Ga and Ge profiles leads to the conclusion that these elements undergo diffusion mechanisms comparable to those of Ni. The numerical simulation of Cu distributions with a simplified model points out that little new information can be obtained about the cooling history of the meteorites by modelling Cu profiles. To simulate Zn, Ga or Ge distributions, the use of ternary phase diagrams is necessary.

  17. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants.

    PubMed

    Zajusz-Zubek, Elwira; Radko, Tomasz; Mainka, Anna

    2017-08-01

    Samples of PM1 were collected in the surroundings of coking plants located in southern Poland. Chemical fractionation provided information on the contents of trace elements As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in all mobile (F1-F3) and not mobile (F4) fractions of PM1 in the vicinity of large sources of emissions related to energochemical processing of coal during the summer. The determined enrichment factors indicate the influence of anthropogenic sources on the concentration of the examined elements contained in PM1 in the areas subjected to investigation. The analysis of health risk for the assumed scenario of inhabitant exposure to the toxic effect of elements, based on the values of the hazard index, revealed that the absorption of the examined elements contained in the most mobile fractions of particulate matter via inhalation by children and adults can be considered potentially harmless to the health of people inhabiting the surroundings of coking plants during the summer (HI < 1). It has been estimated that due to the inhalation exposure to carcinogenic elements, i.e., As, Cd, Co, Cr, Ni and Pb, contained in the most mobile fractions (F1 + F2) of PM1, approximately four adults and one child out of one million people living in the vicinity of the coking plants may develop cancer.

  18. Elemental distribution patterns in the skins of false killer whales (Pseudorca crassidens) from a mass stranding in South Africa, analysed using micro-PIXE

    NASA Astrophysics Data System (ADS)

    Mouton, M.; Botha, A.; Thornton, M.; Mesjasz-Przybyłowicz, J.; Przybyłowicz, W. J.

    2015-11-01

    Several studies revealed that anthropogenic activities often cause toxic concentrations of some elements, such as mercury, which bio-accumulate through the marine food chain, impacting negatively on the health of animals in the top trophic levels, such as a variety of marine mammals. Moreover, analysis of cetacean skin has been reported to be a reliable, long-term and mostly non-invasive method to monitor bio-accumulation of chemicals in cetacean populations. Several elements, including trace elements, occur naturally in cetacean skin, although nothing is known about their distribution patterns and little about safe base line concentrations. In May 2009, 42 false killer whales (FKWs) beached and died at Kommetjie in the Western Cape of South Africa. Skin samples of these FKWs were collected and analysed to determine elemental distribution patterns. The concentrations and distribution patterns of the major, as well as detectable trace elements were determined in skin samples from ten randomly selected FKW individuals, using micro-PIXE (particle-induced X-ray emission) analysis. Results revealed differences between the distribution patterns of elements in the skin sections. Fe, for example, was found to be concentrated in the dermal papillae, whereas the highest Zn concentrations occurred in the epidermis and particularly in the epidermal papillae. Since these essential elements mediate factors such as host immunity, from skin integrity to humoral immunity, knowledge of their typical distribution patterns can be of great value in studies of bio-accumulation. This is the first report of micro-PIXE being employed to study elemental distribution in cetacean skin and the resulting elemental distribution maps can serve as reference in future environmental pollution studies.

  19. The effect of tissue structure and soil chemistry on trace element uptake in fossils

    NASA Astrophysics Data System (ADS)

    Hinz, Emily A.; Kohn, Matthew J.

    2010-06-01

    Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.

  20. A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins.

    PubMed

    Espejo, Winfred; Celis, José E; GonzÃlez-Acuña, Daniel; Banegas, Andiranel; Barra, Ricardo; Chiang, Gustavo

    2018-01-01

    Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

  1. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    PubMed

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Quantifying impacts on air quality of vehicular emissions in Sao Paulo and Rio de Janeiro

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Godoy, José Marcus; Luiza Godoy, Maria; Junior, Djacinto

    2016-04-01

    Vehicular emissions in megacities such as Sao Paulo and Rio de Janeiro are increasingly becoming a global issue. The São Paulo Metropolitan Area (SPMA), located in Southeast of Brazil, is a megacity with a population of 18 million people, with 7 million cars and large-scale industrial emissions. Rio de Janeiro is also a large city with different meteorology than São Paulo. All cars in Brazil runs gasohol, with 23% ethanol in gasoline, and for the last 10 years, flex cars that can run on gasohol, ethanol or any mixture dominate the market. Overall ethanol accounts for about 30-40% of fuel burned in both cities. To improve the understanding of vehicular emission impacts on aerosol composition and life cycle in these two large megacities a source apportionment study, combining online and offline measurements, was performed. Aerosols were collected for one year to capture seasonal variability at 4 sites in each city, with inorganic and organic aerosol component being sampled. Organic and elemental carbon were measured using a Sunset Laboratory Dual Optics (transmission and reflectance) Carbon Analyzer and about 22 trace elements has been measured using polarized X-Ray Fluorescence (XRF). Aerosol mass and black carbon were also measured, as well as trace gases to help in aerosol source apportionment. In Sao Paulo, the average PM2.5 mass concentration obtained varied from 9.6 to 12.2 μg m-3 for the several sites, and similar concentrations were measured in Rio de Janeiro. At all sites, organic matter (OM) has dominated fine mode aerosol concentration with 42 to 60% of the aerosol mass. EC accounted for 21 to 31% of fine mode aerosol mass concentration. Sulfate accounted for 21 to 26% of PM2.5 for the sites. Aerosol source apportionment was done with receptor analysis and integration with online data such as PTR-MS, Aethalometers, Nephelometers and ACSM helped to apportion vehicular emissions. For the 8 sites operated in Sao Paulo and Rio de Janeiro, vehicular emissions accounts for about 63% of PM2.5. Results are very similar for the different sites and cities.

  3. Loess as an environmental archive of atmospheric trace element deposition

    NASA Astrophysics Data System (ADS)

    Blazina, T.; Winkel, L. H.

    2013-12-01

    Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.

  4. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  5. [Contents of ten trace elements in Epimedium acuminatum Franch. and its different processed products].

    PubMed

    Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y

    2001-03-01

    Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.

  6. Statistical evaluation of an inductively coupled plasma atomic emission spectrometric method for routine water quality testing

    USGS Publications Warehouse

    Garbarino, J.R.; Jones, B.E.; Stein, G.P.

    1985-01-01

    In an interlaboratory test, inductively coupled plasma atomic emission spectrometry (ICP-AES) was compared with flame atomic absorption spectrometry and molecular absorption spectrophotometry for the determination of 17 major and trace elements in 100 filtered natural water samples. No unacceptable biases were detected. The analysis precision of ICP-AES was found to be equal to or better than alternative methods. Known-addition recovery experiments demonstrated that the ICP-AES determinations are accurate to between plus or minus 2 and plus or minus 10 percent; four-fifths of the tests yielded average recoveries of 95-105 percent, with an average relative standard deviation of about 5 percent.

  7. Effects of fertilizer placement on trace gas emissions from container-grown plant production

    USDA-ARS?s Scientific Manuscript database

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  8. Effects of fertilizer placement on trace gas emissions from nursery container production

    USDA-ARS?s Scientific Manuscript database

    Increased trace gas emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are widely believed to be a primary cause of global warming. Agriculture is a large contributor to these emissions; however, its role in climate change is unique in that it can act as a source of trace gas ...

  9. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    PubMed Central

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  10. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  11. Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.

    PubMed

    Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan

    2014-04-01

    The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.

  12. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  13. Methods for detecting the mobility of trace elements during medium-temperature pyrolysis

    USGS Publications Warehouse

    Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola

    1983-01-01

    The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.

  14. The role of high-energy synchrotron radiation in biomedical trace element research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pounds, J.G.; Long, G.J.; Kwiatek, W.M.

    1987-01-01

    This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation andmore » maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.« less

  15. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  16. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-01-01

    The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.

  17. Remediation using trace element humate surfactant

    DOEpatents

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  18. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    PubMed

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator.

    PubMed

    Sluchyk, Victor; Sluchyk, Iryna; Shyichuk, Alexander

    2014-10-01

    The level of environmental pollution in the city of Ivano-Frankivsk (Western Ukraine) has been assessed by means of roadside poplar trees as bioindicators. Dividable apical meristem cells of rudimentary leaves were quantitatively analysed for mitotic activity and distribution. Anaphases were further examined for chromosomal aberrations. Male catkins were also examined for sterile pollens. Accumulation of trace elements in vegetative buds was also evaluated in order to reveal source(s) of environmental pollution. Poplar trees growing in the urban environment proved to have increased chromosomal aberrations (up to 4-fold) and increased pollen sterility (up to 4-fold) as well as decreased mitotic activity (by factor 1.5) as compared to control sampling site. The biomarker data correlate moderately with increased (up to 4-fold) concentrations of Ni, Zn, Pb, Cd and Cu in vegetative tissues suggesting that probable cause of the environmental cytotoxicity may be vehicle emissions. The maximum increase in chromosomal aberrations (7-fold) and the minimum mitotic activity (half of the control one) were recorded in poplar trees growing in industrial suburb in vicinity of large cement production plant. Taking in mind insignificant bioaccumulation of trace elements in the industrial suburb, the high environmental toxicity has been ascribed to contamination in cement and asbestos particulates.

  20. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal.

    PubMed

    Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A

    2018-10-15

    The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils.

    PubMed

    Rueda-Holgado, F; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2016-02-01

    Fractionation of elemental contents in atmospheric samples is useful to evaluate pollution levels for risk assessment and pollution sources assignment. We present here the main results of long-term characterization of atmospheric deposition by using a recently developed atmospheric elemental fractionation sampler (AEFS) for major and trace elements monitoring around an important industrial complex located in Puchuncaví region (Chile). Atmospheric deposition samples were collected during two sampling campaigns (2010 and 2011) at four sampling locations: La Greda (LG), Los Maitenes (LM), Puchuncaví (PU) and Valle Alegre (VA). Sample digestion and ICP-MS gave elements deposition values (Al, As, Ba, Cd, Co, Cu, Fe, K, Mn, Pb, Sb, Ti, V and Zn) in the insoluble fraction of the total atmospheric deposition. Results showed that LG location, the closest location to the industrial complex, was the more polluted sampling site having the highest values for the analyzed elements. PU and LM were the next more polluted and, finally, the lowest elements concentrations were registered at VA. The application of Principal Component Analysis and Cluster Analysis identified industrial, traffic and mineral-crustal factors. We found critical loads exceedances for Pb at all sampling locations in the area affected by the industrial emissions, more significant in LG close to the industrial complex, with a trend to decrease in 2011, whereas no exceedances due to atmospheric deposition were detected for Cd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr.

    PubMed

    Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L

    2011-03-15

    The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Constraints on the bioavailability of trace elements to terrestrial fauna at mining and smelting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.; Schoof, R.; LaTier, A.

    1995-12-31

    At mining and smelting sites, the bioavailability of waste-related trace elements to terrestrial wildlife is limited by mineralogy of the waste material and the geochemistry of the waste-soil mixture. For example, encapsulation of trace elements in inert mineral matrices limits the assimilation of particle-associated trace elements that are ingested by wildlife. The bioavailability of arsenic, cadmium, copper, lead, silver, and zinc at mining and smelting sites in Oklahoma and Montana was evaluated based on analysis of waste material, soil chemistry, and concentrations of trace elements in whole-body samples of key food web species. Concentrations of trace elements were generally elevatedmore » relative to reference area values for selected species of vegetation, insects, spiders, and small mammals. Soil-to-tissue bioconcentration factors derived from field data at these sites were generally low (< 1), with the exception of cadmium in vegetation. For all of the trace elements evaluated, wildlife exposure models indicate that the potential for transfer of contaminants to wildlife species of public concern and high trophic-level predators is limited. Moreover, laboratory feeding experiments conducted with cadmium and lead indicate that the assimilation of waste-related trace elements by mammals is relatively low (24--47 percent for lead in blood and bone; 22--44 percent for cadmium in kidney). The relatively low bioavailability of trace elements at mining and smelting sites should be considered when estimating exposure of ecological receptors and when deriving soil cleanup criteria based on measured or modeled ecological risk.« less

  4. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-09-01

    The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Comprehensive chemical characterization of industrial PM2.5 from steel industry activities

    NASA Astrophysics Data System (ADS)

    Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas

    2017-03-01

    Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg g-1 of PM2.5) but also, in a lesser extent, of Fe, Mn, Ti and Zn. We also highlighted high contribution of calcium ranging from 0.123 to 0.558 g g-1 for all of the industrial complexes under study. Since calcium is also widely used as a proxy of the dust contributions in source apportionment studies, our results suggest that this assumption should be reexamined in environments impacted by industrial emissions.

  6. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  7. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  8. Origin and distribution of trace elements in high-elevation precipitation in southern China.

    PubMed

    Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing

    2012-09-01

    During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.

  9. Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlawatsch, S.; Garbe-Schonberg, C.D.; Lechtenberg, F.

    Trace element profiles in ferromanganese nodules from the western Baltic Sea were analyzed with laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and synchrotron-based micro-X-ray radiation techniques (fluorescence: mSXRF, and diffraction: mXRD) at high spatial resolution in growth direction. Of the trace elements studied (Zn, Cu, Cd, Ni, Co, Mo, Ba), Zn showed the most significant enrichment, with values in the outermost surface layers of up to six-fold higher than those found in older core parts. The high-resolution Zn profiles provide the necessary temporal resolution for a dating method analogous to dendrochronology. Profiles in various samples collected during two decadesmore » were matched and the overlapping sections used for estimation of the accretion rates. Assuming a continuous accretion of these relatively fast growing nodules (on average 20 mm a-1) over the last century, the Zn enrichment was thus assessed to have commenced around 1860/70 in nodules from the Kiel Bight and in 1880/90 from Mecklenburg Bight, reflecting the enhanced heavy metal emissions with rising industrialization in Europe. Apart from the obvious success with Zn, only As and Co show significant but only 1.5-fold enrichments in the most recent growth layers of the nodules. Other anthropogenic trace metals like Cu and Cd are not at all enriched, which, together with the distinct early-diagenetic Fe/Mn banding, weakens the potential of the nodules for retrospective monitoring.« less

  10. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    NASA Astrophysics Data System (ADS)

    Sergeant, C.; Vesvres, M. H.; Devès, G.; Guillou, F.

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  11. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.

    PubMed

    Shah, Sandip D; Cocker, David R; Miller, J Wayne; Norbeck, Joseph M

    2004-05-01

    Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.

  12. Signals of pollution revealed by trace elements in recent snow from mountain glaciers at the Qinghai-Tibetan plateau.

    PubMed

    Li, Yuefang; Li, Zhen; Cozzi, Giulio; Turetta, Clara; Barbante, Carlo; Huang, Ju; Xiong, Longfei

    2018-06-01

    In order to extract pollution signal of trace elements (TEs) in glacier snow at the Qinghai-Tibetan plateau of China by human activities, concentrations of 18 TEs (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y and Th in digested snow samples from five glaciers in April-May 2013 before monsoon season were measured. Results shown that higher TEs concentrations were found in glaciers at the northern plateau while lower concentrations in glaciers at the central and southern plateau. Discussion revealed that EF values calculated from elements with mass fraction <30% such as Ti and Al, etc in traditional acid leached samples, will overestimate at least 4.6 times the contribution of other sources than dust for TEs such as Sb, Sr, As, Cu and Pb etc. Analysis indicated that most TEs mainly originated from dust sources, whereas Pb, Cu, Mo and Sb showed occasionally significant contributions from polluted sources in three snow pits and the GRHK surface snow samples. The pollution probably originated from mining and smelting, road transport emissions on the plateau and some regions outside of the plateau. Dust provenance tracing results based on REEs indicated that Taklimakan Desert, Qaidam Basin, and Tibetan surface soil were the potential dust sources for the studied glaciers, while the Indian Thar Desert was an occasional dust sources for YZF,XDKMD and GRHK snow samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Elemental composition of airborne particulates and source identification - An extensive one year survey. [in Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 60 chemical elements in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1 year period during 1971 and 1972 (45 to 50 sampling days). Analytical methods used included instrumental neutron activation, emission spectroscopy, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, the analytical methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data are discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  14. Trends in Trace Element Fractionation Between Foraminiferal Species and the Role of Biomineralization

    NASA Astrophysics Data System (ADS)

    Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.

    2017-12-01

    Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.

  15. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead.

    PubMed

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-07-01

    Hazardous Trace elements (HTEs) emitted from coal combustion has raised widespread concern. Studies on the emission characteristics of five HTEs, namely arsenic (As), chromium (Cr), barium (Ba), manganese (Mn), lead (Pb) at three different loads (100%, 83%, 71% output) and different coal types were performed on a 350 MW coal-fired power plant equipped with SCR, ESP + FF, and WFGD. HTEs in the flue gas at the inlet/outlet of each air pollution control device (APCD) were sampled simultaneously based on US EPA Method 29. During flue gas HTEs sampling, coal, bottom ash, fly ash captured by ESP + FF, fresh desulfurization slurry, desulfurization wastewater were also collected. Results show that mass balance rate for the system and each APCD is in an acceptable range. The five studied HTEs mainly distribute in bottom and ESP + FF ash. ESP + FF have high removal efficiency of 99.75-99.95%. WFGD can remove part of HTEs further. Total removal rate across the APCDs ranges from 99.84 to 99.99%. Concentration of HTEs emitted to atmosphere is within the extremely low scope of 0.11-4.93 μg/m 3 . Emission factor of the five studied HTEs is 0.04-1.54 g/10 12 J. Content of As, Pb, Ba, Cr in solid samples follows the order of ESP + FF ash > bottom ash > gypsum. More focus should be placed on Mn in desulfuration wastewater, content of which is more than the standard value. This work is meaningful for the prediction and removal of HTEs emitted from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. PM2.5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model.

    PubMed

    Kfoury, Adib; Ledoux, Frédéric; Roche, Cloé; Delmaire, Gilles; Roussel, Gilles; Courcot, Dominique

    2016-02-01

    The constrained weighted-non-negative matrix factorization (CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM2.5 (particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque, Northern France. Semi-diurnal PM2.5 samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma--atomic emission spectrometry (ICP-AES), ICP--mass spectrometry (ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO3(-), SO4(2-), NH4(+) and total carbon are the main PM2.5 constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them, secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM2.5 concentration. The steelwork facilities contribute in about 2% of the total PM2.5 concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn. Copyright © 2015. Published by Elsevier B.V.

  17. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999

    USGS Publications Warehouse

    Harden, J.W.; Neff, J.C.; Sandberg, D.V.; Turetsky, M.R.; Ottmar, R.; Gleixner, G.; Fries, T.L.; Manies, K.L.

    2004-01-01

    Wildfires represent one of the most common disturbances in boreal regions, and have the potential to reduce C, N, and Hg stocks in soils while contributing to atmospheric emissions. Organic soil layers of the forest floor were sampled before and after the FROSTFIRE experimental burn in interior Alaska, and were analyzed for bulk density, major and trace elements, and organic compounds. Concentrations of carbon, nutrients, and several major and trace elements were significantly altered by the burn. Emissions of C, N, and Hg, estimated from chemical mass balance equations using Fe, Al, and Si as stable constituents, indicated that 500 to 900 g C and up to 0 to 4 ?? 10-4 g Hg/M2 were lost from the site. Calculations of nitrogen loss range from -4 to +6 g/m2 but were highly variable (standard deviation 19), with some samples showing increased N concentrations post-burn potentially from canopy ash. Noncombustible major nutrients such as Ca and K also were inherited from canopy ash. Thermogravimetry indicates a loss of thermally labile C and increase of lignin-like C in char and ash relative to unburned counterparts. Overall, atmospheric impacts of boreal fires include large emissions of C, N and Hg that vary greatly as a function of severe fire weather and its access to deep organic layers rich in C, N, and Hg. In terrestrial systems, burning rearranges the vertical distribution of nutrients in fuels and soils, the proximity of nutrients and permafrost to surface biota, and the chemical composition of soil including its nutrient and organic constituents, all of which impact C cycling. Copyright 2004 by the American Geophysical Union.

  18. Planning studies for measurement of chemical emissions in stack gases of coal-fired power plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, W.J.; Gooch, J.P.; Dahlin, R.S.

    1983-03-01

    Airborne emissions from coal-fired power plants consist of sulfur, nitrogen, and carbon oxides, as well as traces of certain metals or elements, radionuclides, and organic compounds that have the potential of producing adverse health effects if inhaled. To assess this potential toxicity, samples must be obtained and characterized on the basis of quantity, their chemistry, and toxicity. Sample representativeness and use of proper chemical-biological procedures are the critical for providing input into current research directed toward source apportionment and inhalation toxicology. Obtaining a valid stack sample (gases and particles) from each of more than 1500 US coal-fired power plant ismore » not practical; consequently 33 plants have been selected, taking into account plant design and operating parameters that can affect the characteristics of stack chemical emissions. Since such a program has an estimated cost of $20 million over many years, it is recommended that the initial program consists of sampling only six of the 33 units, selected with EPRI guidance, at an estimated cost of $3.5 million over a 30 month period. The plan is directed at in-stack sampling, plume and atmospheric transformations being beyond the project scope. Various stack sampling methods are considered. For particles, a modified SASS train seems best, and for gases, either resin traps or impingers are probably best. Artifact formation must be minimized. Chemical analysis procedures are to be guided by the known toxicity of species present. Procedures are outlined for organics (volatile and nonvolatile), trace elements, inorganics, and gases. Bioassay methods are restricted to in vitro, subdivided into those assays that detect genetic and direct cellular toxicity.« less

  19. Diesel emissions significantly influence composition and mutagenicity of ambient particles: a case study in São Paulo, Brazil.

    PubMed

    Carvalho-Oliveira, R; Pozo, R M K; Lobo, D J A; Lichtenfels, A J F C; Martins-Junior, H A; Bustilho, J O W V; Saiki, M; Sato, I M; Saldiva, P H N

    2005-05-01

    In 2003, a bus strike paralyzed the fleet of buses in Sao Paulo, Brazil during 3 days, from 6 to 8 of April, the complete interruption of services being achieved on the 7th. We evaluated the effect of the absence of this source of pollution on the composition, mutagenicity, and toxicity of the fine particulate material collected during this period. Particles were sampled in glass fiber filters on days 7 and 15 of April of 2003 (strike and nonstrike days, respectively), using a high-volume sampler. Trace element determinations (As, Br, Co, Cl, Fe, La, Mn, Sb, Sc, and Th) of particulate material samples were carried out by neutron activation analysis. Sulfur determination was done by X-ray fluorescence analysis. The ratio between nonstrike/strike concentrations of hydrocarbons associated with automotive emissions (benzene, toluene, ethyl-benzene, and xylenes; BTEX) was determined by gas chromatography/mass spectrometry. Mutagenesis of testing solutions was determined by means of the Tradescantia micronucleus assay in early tetrads of Tradescantia pallida. The inhibition of mitosis of the cells of the primary meristema of the root tips of Allium cepa was used as an index of the toxicity. Fine particle trace element contents were lower during the strike. The concentrations of sulfur and BTEX were 50% and 39.3% lower, respectively, on the strike day. A significant (P=0.038) reduction of micronuclei induced by fine particles sampled during the strike was observed. No effect of the strike on toxicity was detected. These results indicate that a program aiming to reduce emissions of the bus fleet in our town may impact positively the air quality by reducing the mutagenic potential of ambient particles.

  20. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Ślachciński, Mariusz

    2017-07-01

    A miniaturized optical emission spectrometer (OES) with capacitively coupled argon microwave microplasma (μCMP) as and excitation source and chemical vapor generation (CVG) for sample introduction was constructed for the determination of trace Hg, As, Sb and Se. The applied method enabled simultaneous determination of hydride-forming elements (As, Sb, Se) and volatile Hg. Mercury cold vapor and the hydride volatile species of As, Sb and Se were generated when standard or sample solutions were separated from the liquid phase for transport to the capacitively coupled microwave microplasma and detection of their atomic emission. A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. The experimental concentration detection limits (LODs) for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 3.0, 1.4, 1.5 and 3.8 ng mL- 1 for Hg, As, Sb and Se, respectively. The method was validated by the analysis of three Certified Reference Materials (NIST 2711, NRCC DOLT-2, NIST 1643e) of different matrix composition and by the standard addition technique. The method offers relatively good precision (RSD ranged from 5% to 8%) for microsampling (200 μL) analysis. The measured of contents of elements in certified reference materials were in good agreement with the certified values (Hg 1.99-6.25 μg g- 1, As 16.6-105 μg g- 1, Sb 19.4-56.88 μg g- 1, Se 1.52-11.68 μg g- 1), according to the Student t-test, for a confidence level of 95%.

  1. Pollution Detection Devices

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Barringer Research, Inc.'s COSPEC IVB (correlation spectrometer) can sense from a considerable distance emissions from a volcanic eruption. Remote sensor is capable of measuring sulfur dioxide and nitrogen dioxide in the atmosphere. An associated product, GASPEC, a compression of Non-dispersive Gas Filter Spectrometer, is an infrared/ultraviolet gas analyzer which can be used as either a ground based detector or in aircraft/spacecraft applications. Extremely sensitive, it is useful in air pollution investigations for detecting a variety of trace elements, vapors, which exist in the atmosphere in small amounts.

  2. Quarterly technical progress report, April-June 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1984-04-01

    Progress reports are presented for the following tasks: (1) preparation of low-rank coals; application of liquefaction processes to low-rank coals; (2) slagging fixed-bed gasification; (3) atmospheric fluidized-bed combustion of low-rank coal; (4) ash fouling and combustion modification for low-rank coal; (5) combined flue gas cleanup/simultaneous SO/sub x/-NO/sub x/ control; (6) particulate control and hydrocarbons and trace element emissions from low-rank coals; (7) waste characterization and disposal; and (9) exploratory research.

  3. Interaction of root exudates with the mineral soil constituents and their effect on mineral weathering

    NASA Astrophysics Data System (ADS)

    Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.

    2012-04-01

    Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the biogeochemical processes acting in the rhizosphere which can play an important role in the availability of trace elements (either nutrient or toxic) for plant uptake. Research is supported by MIUR - FIRB "Futuro in ricerca", internal grant of Unibz (TN5031 & TN5046) and the Autonomous Province of Bolzano (Rhizotyr TN5218).

  4. Chemical speciation using high energy resolution PIXE spectroscopy in the tender X-ray range

    NASA Astrophysics Data System (ADS)

    Kavčič, Matjaž; Petric, Marko; Vogel-Mikuš, Katarina

    2018-02-01

    High energy resolution X-ray emission spectroscopy employing wavelength dispersive (WDS) crystal spectrometers can provide energy resolution on the level of core-hole lifetime broadening of the characteristic emission lines. While crystal spectrometers have been traditionally used in combination with electron excitation for major and minor element analysis, they have been rarely considered in proton induced X-ray emission (PIXE) trace element analysis mainly due to low detection efficiency. Compared to the simplest flat crystal WDS spectrometer the efficiency can be improved by employing cylindrically or even spherically curved crystals in combination with position sensitive X-ray detectors. When such spectrometer is coupled to MeV proton excitation, chemical bonding effects are revealed in the high energy resolution spectra yielding opportunity to extend the analytical capabilities of PIXE technique also towards chemical state analysis. In this contribution we will focus on the high energy resolution PIXE (HR-PIXE) spectroscopy in the tender X-ray range performed in our laboratory with our home-built tender X-ray emission spectrometer. Some general properties of high energy resolution PIXE spectroscopy in the tender X-ray range are presented followed by an example of sulfur speciation in biological tissue illustrating the capabilities as well as limitations of HR-PIXE method used for chemical speciation in the tender X-ray range.

  5. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-02-21

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.

  6. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Origin and spatial distribution of metals in moss samples in Albania: A hotspot of heavy metal contamination in Europe.

    PubMed

    Lazo, Pranvera; Steinnes, Eiliv; Qarri, Flora; Allajbeu, Shaniko; Kane, Sonila; Stafilov, Trajce; Frontasyeva, Marina V; Harmens, Harry

    2018-01-01

    This study presents the spatial distribution of 37 elements in 48 moss samples collected over the whole territory of Albania and provides information on sources and factors controlling the concentrations of elements in the moss. High variations of trace metals indicate that the concentrations of elements are affected by different factors. Relations between the elements in moss, geochemical interpretation of the data, and secondary effects such as redox conditions generated from local soil and/or long distance atmospheric transport of the pollutants are discussed. Zr normalized data, and the ratios of different elements are calculated to assess the origin of elements present in the current moss samples with respect to different geogenic and anthropogenic inputs. Factor analysis (FA) is used to identify the most probable sources of the elements. Four dominant factors are identified, i.e. natural contamination; dust emission from local mining operations; atmospheric transport of contaminants from local and long distance sources; and contributions from air borne marine salts. Mineral particle dust from local emission sources is classified as the most important factor affecting the atmospheric deposition of elements accumulated in the current moss samples. The open slag dumps of mining operation in Albania is probably the main factor contributing to high contents of Cr, Ni, Fe, Ti and Al in the moss. Enrichment factors (EF) were calculated to clarify whether the elements in the present moss samples mainly originate from atmospheric deposition and/or local substrate materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Determination of trace metals in drinking water in Irbid City-Northern Jordan.

    PubMed

    Alomary, Ahmed

    2013-02-01

    Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water.

  9. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  10. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  11. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  12. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  13. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  14. The effects of trace element content on pyrite oxidation rates

    NASA Astrophysics Data System (ADS)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the variability of trace element content from the pyrite samples. These data were then used to select areas of interest for NanoSIMS analyses, which in turn was used to select areas for TEM and APT. These analyses show that the trace element content of pyrite can be highly variable, which may significantly affect the rate of pyrite oxidation.

  15. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  16. Iron deficiency cause changes in photochemistry, thylakoid organization, and accumulation of photosystem II proteins in Chlamydomonas reinhardtii.

    PubMed

    Devadasu, Elsin Raju; Madireddi, Sai Kiran; Nama, Srilatha; Subramanyam, Rajagopal

    2016-12-01

    A trace element, iron (Fe) plays a pivotal role in photosynthesis process which in turn mediates the plant growth and productivity. Here, we have focused majorly on the photochemistry of photosystem (PS) II, abundance of proteins, and organization of supercomplexes of thylakoids from Fe-depleted cells in Chlamydomonas reinhardtii. Confocal pictures show that the cell's size has been reduced and formed rosette-shaped palmelloids; however, there is no cell death. Further, the PSII photochemistry was reduced remarkably. Further, the photosynthetic efficiency analyzer data revealed that both donor and acceptor side of PSII were equally damaged. Additionally, the room-temperature emission spectra showed the fluorescence emission maxima increased due to impaired energy transfer from PSII to PSI. Furthermore, the protein data reveal that most of the proteins of reaction center and light-harvesting antenna were reduced in Fe-depleted cells. Additionally, the supercomplexes of PSI and PSII were destabilized from thylakoids under Fe-deficient condition showing that Fe is an important element in photosynthesis mechanism.

  17. Source Apportionment of PM2.5 in Delhi, India Using PMF Model.

    PubMed

    Sharma, S K; Mandal, T K; Jain, Srishti; Saraswati; Sharma, A; Saxena, Mohit

    2016-08-01

    Chemical characterization of PM2.5 [organic carbon, elemental carbon, water soluble inorganic ionic components, and major and trace elements] was carried out for a source apportionment study of PM2.5 at an urban site of Delhi, India from January, 2013, to December, 2014. The annual average mass concentration of PM2.5 was 122 ± 94.1 µg m(-3). Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon. A receptor model, positive matrix factorization (PMF) was applied for source apportionment of PM2.5 mass concentration. The PMF model resolved the major sources of PM2.5 as secondary aerosols (21.3 %), followed by soil dust (20.5 %), vehicle emissions (19.7 %), biomass burning (14.3 %), fossil fuel combustion (13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %).

  18. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    PubMed Central

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  19. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous concentric annuli towards crystal rims. Conversely, the medium rare earth elements (e.g. Gd, Eu and Sm) exhibit bowl-shaped zoning from core to rim, with no annuli, and core and rim compositions of the medium rare earth elements are the same throughout the population within crystals of differing size. Cr exhibits pronounced spiral zoning, and the average Cr content increases towards garnet rims. In all cases, spirals are centered on the geometric core of the crystals. These LA-ICP-MS maps highlight the complexity of garnet growth over a single prograde event, and indicate that there is still much to be learnt from the analysis of garnet using ever-improving analytical methods. We explore the potential causes of the variations in the distribution of trace elements in garnet, and assess how these zoning patterns may be used to refine our understanding of the intricacies of garnet crystallisation and the spatial and temporal degree of trace element equilibration during metamorphism.

  20. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    PubMed

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  1. Serum Concentration of Macro-, Micro-, and Trace Elements in Silver Fox (Vulpes vulpes) and Their Interrelationships with Morphometric, Densitometric, and Mechanical Properties of the Mandible.

    PubMed

    Tatara, Marcin R; Łuszczewska-Sierakowska, Iwona; Krupski, Witold

    2017-12-20

    The optimal content of macro-, micro-, and trace elements in tissues ensures proper systemic growth and development and optimal health status in animals and humans. However, very little is known on the elemental content in the plasma compartment in Silver fox. The aim of this study was to determine the content of selected elements in serum obtained from 8-month-old female (N = 8) and male (N = 7) silver foxes. Moreover, relationships of the evaluated elements with the morphological, densitometric, and mechanical parameters of the mandible were determined. Serum content of 12 different elements was measured using inductively coupled plasma-atomic emission spectrometry. The morphometric and densitometric properties of the mandible were determined using quantitative computed tomography method, while mechanical endurance was tested using a three-point bending test. Serum concentration of calcium was significantly higher by 20% in male foxes (P = 0.01), while manganese concentration was significantly lower in males by over 17% (P = 0.03). Positive correlations of serum concentration of calcium, phosphorus, and magnesium with the morphological traits of the mandible such as weight, length, and bone volume were stated (P < 0.05). In the group of elements playing regulatory functions, the positive relationships between serum concentrations of selenium, chromium, manganese, copper, and cobalt were found (P < 0.05). The elaborated experimental model may serve for further studies on foxes, especially focused on nutritional factors affecting elemental homeostasis, whole-body metabolism, and systemic growth and development. Daily diet formulation and precise delivery for farm foxes, together with relatively large animal population maintained at the same environmental conditions, regularly subjected to slaughter procedure, enable economical experimentation with various dietary and pharmacological manipulations.

  2. Trace elements in Mediterranean seagrasses and macroalgae. A review.

    PubMed

    Bonanno, Giuseppe; Orlando-Bonaca, Martina

    2018-03-15

    This review investigates the current state of knowledge on the levels of the main essential and non-essential trace elements in Mediterranean vascular plants and macroalgae. The research focuses also on the so far known effects of high element concentrations on these marine organisms. The possible use of plants and algae as bioindicators of marine pollution is discussed as well. The presence of trace elements is overall well known in all five Mediterranean vascular plants, whereas current studies investigated element concentrations in only c. 5.0% of all native Mediterranean macroalgae. Although seagrasses and macroalgae can generally accumulate and tolerate high concentrations of trace elements, phytotoxic levels are still not clearly identified for both groups of organisms. Moreover, although the high accumulation of trace elements in seagrasses and macroalgae is considered as a significant risk for the associated food webs, the real magnitude of this risk has not been adequately investigated yet. The current research provides enough scientific evidence that seagrasses and macroalgae may act as effective bioindicators, especially the former for trace elements in sediments, and the latter in seawater. The combined use of seagrasses and macroalgae as bioindicators still lacks validated protocols, whose application should be strongly encouraged to biomonitor exhaustively the presence of trace elements in the abiotic and biotic components of coastal ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  4. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  5. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  6. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  7. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  8. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465

  9. Evaluation of dietary exposure to minerals, trace elements and heavy metals from the muscle tissue of the lionfish Pterois volitans (Linnaeus 1758).

    PubMed

    Hoo Fung, Leslie A; Antoine, Johann M R; Grant, Charles N; Buddo, Dayne St A

    2013-10-01

    Twenty-five samples of Pterois volitans caught in Jamaican waters were analyzed for 25 essential, non-essential and toxic elements using Graphite Furnace Atomic Absorption Spectrophotometry (GF-AAS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Instrumental Neutron Activation Analysis (INAA). The mean values for calcium (355 mg/kg), copper (107 μg/kg), iron (0.81 mg/kg), potassium (3481 mg/kg), magnesium (322 mg/kg), manganese (0.04 mg/kg), selenium (0.47 mg/kg), sodium (700 mg/kg) and zinc (4.46 mg/kg) were used to estimate dietary intake. The percentage contribution to provisional tolerable weekly intake for a 70 kg male and a 65 kg female were also estimated for the toxic elements arsenic (1.28% M, 1.38% F), cadmium (0.26% M. 0.28% F), mercury (3.85% M, 4.15% F) and lead (0.17% M, 0.18% F). To further assess the risk of mercury toxicity and the role of mitigation provided by selenium, selenium-mercury molar ratios were calculated for all samples. All samples were shown to have a molar excess of selenium. In addition the suggested selenium health benefit value was calculated, and was positive for all samples. It was concluded that P. volitans appears to contribute modestly to mineral and trace element nutrition, while not being a significant contributor to dietary exposure of toxic elements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.

    PubMed

    Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta

    2018-02-24

    Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.

  11. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician

    PubMed Central

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-01-01

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized. PMID:28452962

  12. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients.

    PubMed

    Fessler, Theresa A

    2013-12-01

    Parenteral nutrition (PN) is a life-sustaining therapy for hundreds of thousands of people who have severe impairment of gastrointestinal function. Trace elements are a small but very important part of PN that can be overlooked during busy practice. Serious complications can result from trace element deficiencies and toxicities, and this is especially problematic during times of product shortages. Practical information on parenteral trace element use can be gleaned from case reports, some retrospective studies, and very few randomized controlled trials. A general knowledge of trace element metabolism and excretion, deficiency and toxicity symptoms, products, optimal dosages, and strategies for supplementation, restriction, and monitoring will equip practitioners to provide optimal care for their patients who depend on PN.

  13. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician.

    PubMed

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-04-28

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.

  14. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  15. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  16. Trace metals in Antarctica related to climate change and increasing human impact.

    PubMed

    Bargagli, R

    2000-01-01

    Metals are natural constituents of the abiotic and biotic components of all ecosystems, and under natural conditions they are cycled within and between the geochemical spheres--the atmosphere, lithosphere, hydrosphere, and biosphere--at quite steady fluxes. In the second half of the twentieth century, the huge increase in energy and mineral consumption determined anthropogenic emissions of several metals exceeding those from natural sources, e.g., volcanoes and windborne soil particles. In the Northern Hemisphere, the biogeochemical cycles of Pb, Cd, Zn, Cu, and other metals were significantly altered, even in Arctic regions. On the contrary, available data on trace metal concentrations in abiotic matrices from continental Antarctica, summarized in this review, suggest that the biogeochemical cycle of Pb is probably the only one that has been significantly altered by anthropogenic emissions in Antarctica and elsewhere in the Southern Hemisphere, especially in the period 1950-1975. Environmental contamination by other metals from anthropogenic sources in Antarctica itself can generally only be detected in snow samples taken within a range of a few kilometers or several hundred meters from scientific stations. Local metal pollution from human activities in Antarctica may compromise studies aimed at assessing the biogeochemical cycle of trace elements and the effects of global climate change. Thus, this review focuses on concentrations of metals in atmospheric particulate, snow, surface soils, and freshwater from the Antarctic continent and surface sediments and seawater from the Southern Ocean, which can plausibly be regarded as global background values of trace elements. These baselines are also necessary in view of the construction of new stations, the expansion of existing facilities to support research, and the growth of tourism and fisheries. Despite difficulties in making comparisons with data from other remote areas of the world, concentrations of trace metals in most samples of atmospheric particulates, snow, ice, soils, and marine sediments from Antarctica can be taken as global background levels. Comparison between the results of trace element surveys in marine waters of the Southern Ocean and in other seas is practically impossible. The upwelling or subduction of water masses, the seasonality in ice cover and in phytoplankton biomass, the low fallout of atmospheric dust, and many other peculiar characteristics of the Southern Ocean make concentrations of trace metals in surface waters quite variable in space and time. The depletion of nutrients in surface waters, which is a regular feature of many marine environments, rarely occurs in the Southern Ocean. Waters in some regions are characterized by very low concentrations of Fe and Mn, whereas in others the content of Cd is relatively high at the beginning of summer and may decrease about one order of magnitude during the phytoplankton bloom. Although in most Antarctic coastal ecosystems the input of metals from geochemical and anthropogenic sources and from long-range transport is negligible, concentrations of Cd in the waters and biota may be higher than in waters and related species of organisms from polluted coastal areas. Like the Southern Ocean, Antarctic lakes have many peculiar characteristics. They are often perennially ice covered and without outlet, and their water, which is gained only from short-term melting of snow and glaciers in summer, is lost mainly by sublimation of surface ice. Several lakes are distinctly stratified: the water under the ice may be cool, rich in oxygen, and among the cleanest and clearest of natural waters, whereas water near the bottom becomes anoxic, tepid, and richer in major and trace elements. Considering the specificity of Antarctic environments, to evaluate the extent and consequences of global changes and increasing human activities in Antarctica itself, research on the biogeochemistry of trace metals and monitoring programs

  17. Elevated gas flux and trace metal degassing from the 2014-2015 fissure eruption at the Bárðarbunga volcanic system, Iceland

    NASA Astrophysics Data System (ADS)

    Gauthier, Pierre-Jean; Sigmarsson, Olgeir; Gouhier, Mathieu; Haddadi, Baptiste; Moune, Séverine

    2016-03-01

    The 2014 Bárðarbunga rifting event in Iceland resulted in a 6-month long eruption at Holuhraun. This eruption was characterized by high lava discharge rate and significant gas emission. The SO2 flux for the first 3 months was measured with satellite sensors and the petrologic method. High-resolution time series of the satellite data give 1200 kg/s that concurs with 1050 kg/s obtained from melt inclusion minus degassed lava sulfur contents scaled to the mass of magma produced. A high-purity gas sample, with elevated S/Cl due to limited chlorine degassing, reveals a similar degassing pattern of trace metals as observed at Kīlauea (Hawai'i) and Erta Ale (Ethiopia). This suggests a common degassing mechanism at mantle plume-related volcanoes. The trace metal fluxes, calculated from trace element to sulfur ratios in the gas sample and scaled to the sulfur dioxide flux, are 1-2 orders of magnitude stronger at Holuhraun than Kīlauea and Erta Ale. In contrast, volcanoes at convergent margins (Etna and Stromboli, Italy) have 1-2 orders of magnitude higher trace element fluxes, most likely caused by abundant chlorine degassing. This emphasizes the importance of metal degassing as chlorine species. Short-lived disequilibria between radon daughters, 210Pb-210Bi-210Po measured in the gas, suggest degassing of a continuously replenished magma batch beneath the eruption site. Earlier and deep degassing phase of carbon dioxide and polonium is inferred from low (210Po/210Pb) in the gas, consistent with magma transfer rate of 0.75 m/s.

  18. Volatile Emissions from Subduction-related Volcanoes: Major and Trace Elements

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Hilton, D. R.

    2003-12-01

    Present-day volatile emissions associated with subduction zone volcanism can be estimated in two ways. One approach is to assume magma production rate at arcs is 20% that of MOR and scale to the MOR 3He flux (1000 mol/yr) to obtain a mantle-derived arc He-3 flux of 200+/-40 mol/yr. This flux and measured gas ratios (xI/3He where xI is the gas species of interest) obtained from volcanic and hydrothermal samples is then used to calculate volatile emissions. A global arc CO2 flux of 0.3 to 3.1 x 1012 mol/yr has been obtained in this way. Another approach is to use individual arc volcano SO2 fluxes (determined by remote sensing) in combination with CO2/SO2 ratios of high temperature fumaroles to calculate volcanic CO2 fluxes. Integrating over an individual arc, and using a power-law distribution to include non-measured volcanoes, it is possible to produce a volatile flux estimate for a particular arc. Summing over all arcs allows a global estimate (e.g. ˜ 1.6 x1012 mol/yr for arc CO2). There are caveats with both methods. In the former case, it is assumed that the mantle wedge is characterized by a similar 3He content to MORB-source. In the latter case, the distribution of SO2 fluxes is decidedly uneven necessitating poorly-justified extrapolations. For example, there is little data available from the I-B-M, Lesser Antilles and Philippines whereas Central American volcanoes have numerous published SO2 fluxes. A further issue (in addition to geographical bias), is the absence of volatile fluxes from submarine arcs. Despite these problems, global estimates of SO2 and CO2 fluxes by both methods vary by only one order of magnitude [1]. It is emphasized that these are present-day estimates as paleo-degassing rates of arc magmas are poorly constrained and depend entirely on estimates of magma intrusion and extrusion rates [2]. The same approach has been used for other species although the flux of magmatic N2, H2O, HCl, HF from arcs remains poorly constrained (N2: ˜ 6 x108 to 2 x1010 mol/yr; H2O: ˜ 8 x1012 mol/yr; HCl ˜1 x1010 to 4x1011 mol/yr, HF: ˜3 x109 to 3 x1011 mol/yr)[1,3]. Due to the preferential partitioning of HCl and HF into volcano hosted hydrothermal systems, fluxes from magma bodies are probably much larger than what is emitted into the atmosphere. Trace element emissions from subduction related volcanoes are also poorly constrained but are potentially significant. High temperature (>700C) volcanic gas samples show that concentrations of Be, Rb, Sr, Ru, Rh, Pd, Cd, W, Re, Pt, Pb, Bi, Se, Sc are in the 5 to 1300 ug/L range and up to 25000 ug/L of B have been measured [4,5]. Using these concentrations and the global arc SO2 flux gives estimates of trace element fluxes on the order of 3 x104 to 8 x106 mol/yr (and 3 x109 mol/yr of B). These flux estimates are certainly upper limits because low temperature (<200C) gases that make up the majority of emissions have much lower trace element concentrations. Further work is needed to better constrain volatile contributions of volcanoes to the atmosphere, and to improve global geochemical models which assess the impact of volcanic gases on the atmosphere. {[1]} Hilton, Fischer & Marty (2002) Rev. Min. vol 47 for review [2] Kerrick Rev. Geophys. (2001) vol. 39 #4. [3] Symnods, Rose & Reed (1988) nature vol 334, p. 415 [4] Fischer, Shuttleworth & O'Day (1998) Fres. J. Anal. Chem. vol 362, p. 457 [5] Taran et al., (1995) Gochim. Cosmochim. Acta vol. 59, p. 1749

  19. Submicron hard X-ray fluorescence imaging of synthetic elements.

    PubMed

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  1. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  2. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race.

    PubMed

    Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija

    2017-05-01

    The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Total elemental composition of soils contaminated with wastewater irrigation by combining IBA techniques

    NASA Astrophysics Data System (ADS)

    Huerta, L.; Contreras-Valadez, R.; Palacios-Mayorga, S.; Miranda, J.; Calva-Vasquez, G.

    2002-04-01

    The purpose of this work was to obtain the total elemental composition of agricultural soils irrigated with well water and wastewater. The studied area is located in the Valle del Mezquital in Hidalgo State, Mexico. The studied soils were collected, every two months during one year. Particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA) were applied for elemental analysis. PIXE analyses gave elemental contents of major and trace elements (Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Y, Zr, and Pb). Total concentrations of Na, Mg, C, N and O were obtained by RBS and NRA. PIXE analyses were carried out with 2 MeV proton beams, RBS with 2 MeV helium ions, while NRA was applied with a 1.2 MeV deuterium beam. Results indicated that heavy metal total concentrations exceed the critical soil total concentrations according to environmental regulations.

  4. Mass distribution and elemental analysis of the resultant atmospheric aerosol particles generated in controlled biomass burning processes

    NASA Astrophysics Data System (ADS)

    Ordou, N.; Agranovski, I. E.

    2017-12-01

    Air contamination resulting from bushfires is becoming increasingly important research question, as such disasters frequently occur in many countries. The objectives of this project were focused on physical and chemical characterisations of particulate emission resulting from burning of common representatives of Australian vegetation under controlled laboratory conditions. It was found that leaves are burned mostly with flaming phase and producing black smoke resulting in larger particles compared to white smoke in case of branches and grass, dominated by smouldering phase, producing finer particles. Following elemental analysis determined nine main elements in three different size fractions of particulate matter for each category of burning material, ranging from 14.1 μm to particle sizes below 2.54 μm. Potassium was found to be one of the main biomass markers, and sulphur was the ubiquitous element among the smoke particles followed by less prevalent trace elements like Na, Al, Mg, Zn, Si, Ca, and Fe.

  5. Ascertaining serum levels of trace elements in melanoma patients using PIXE and HR-ICPMS

    NASA Astrophysics Data System (ADS)

    Bernardes, S.; Tabacniks, M. H.; Santos, I. D. A. O.; Oliveira, A. F.; Shie, J. N.; Sarkis, J. E. S.; Oliveira, T.

    2014-01-01

    Melanoma is a serious and deadly form of skin cancer. However, patients' chances of survival and recovery are considerably increased when it is diagnosed and treated in its early stages. In this study, trace element concentrations in serum samples from patients with melanoma were measured using PIXE (Proton Induced X-ray Emission) and HR-ICPMS (High-Resolution Inductively Coupled Plasma Mass Spectrometry), with the purpose of correlating these concentrations with the disease. Blood samples from 30 melanoma patients and 116 healthy donors were collected at São Paulo Hospital (protocol CEP 1036/08 UNIFESP). Relevant clinical information on the patients has also been included in the statistical analysis. Analysis of the control group showed different P and Mg concentrations in individuals above and below 40 years of age. P, S, Ca, Cu and Zn concentrations in healthy individuals differed according to gender, highlighting the necessity to include age and gender variables in the case-control analysis. There were also differences in K, S, Ca and Se concentrations between the control and melanoma groups.

  6. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    PubMed

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zee, Ralph; Schindler, Anton; Duke, Steve

    The objective of this project is to conduct research to determine the feasibility of using alternate fuel sources for the production of cement. Successful completion of this project will also be beneficial to other commercial processes that are highly energy intensive. During this report period, we have completed all the subtasks in the preliminary survey. Literature searches focused on the types of alternative fuels currently used in the cement industry around the world. Information was obtained on the effects of particular alternative fuels on the clinker/cement product and on cement plant emissions. Federal regulations involving use of waste fuels weremore » examined. Information was also obtained about the trace elements likely to be found in alternative fuels, coal, and raw feeds, as well as the effects of various trace elements introduced into system at the feed or fuel stage on the kiln process, the clinker/cement product, and concrete made from the cement. The experimental part of this project involves the feasibility of a variety of alternative materials mainly commercial wastes to substitute for coal in an industrial cement kiln in Lafarge NA and validation of the experimental results with energy conversion consideration.« less

  8. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    PubMed Central

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined. PMID:6337825

  9. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  10. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from garbage burning, wood and dung cooking fires, motorcycles and brick kilns

    NASA Astrophysics Data System (ADS)

    Jayarathne, T. S.; Rathnayake, C.; Stockwell, C.; Daugherty, K.; Islam, R. M.; Christian, T. J.; Bhave, P.; Praveen, P. S.; Panday, A. K.; Adhikari, S.; Rasmi, M.; Goetz, D.; DeCarlo, P. F.; Saikawa, E.; Yokelson, R. J.; Stone, E. A.

    2016-12-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in-situ characterization of widespread and under-sampled combustion sources in South Asia by determining emission factors (EF) for fine particulate matter (PM2.5), organic carbon (OC), elemental carbon, inorganic ions, trace metals, and organic species. Garbage burning had the highest EF PM2.5 among the sampled sources ranging 7-124 g kg-1, with maximum EFs for garbage burned under higher moisture conditions. Garbage burning emissions contained high concentrations of polycyclic aromatic compounds (PAHs) and heavy metals (Pb, Cd, Zn) that are associated with acute and chronic health effects. Triphenylbenzene and antimony (Sb) were unique to garbage burning are good candidates for tracing this source. Cook stove emissions varied largely by stove technology (traditional mud stove, 3-stone cooking fire, chimney stove, etc.) and biomass fuel (dung, hardwood, twigs, and mixtures thereof). Burning dung consistently emitted more PM2.5 than burning wood and contained characteristic fecal sterols and stanols. Motorcycle emissions were evaluated before and after servicing, which decreased EF PM2.5 from 8.8 g kg-1 to 0.7 g kg-1. Organic species analysis indicated that this reduction in PM2.5­ is largely due to a decrease in emission of motor oil. For brick kilns, the forced draft zig-zag kilns had higher EF PM2.5 (12-19 g kg-1) compared to clamp kilns (8-13 g kg-1) and also exhibited chemical differences. PM2.5 emitted from the zig-zag kiln were mainly OC (7%), sulfate (32%) and uncharacterized chemical components (60%), while clamp kiln emissions were dominated by OC (64%) and ammonium sulfate (36%). The quantitative emission factors developed in this study may be used for source apportionment and to update regional emission inventories.

  11. Melt inclusion study of the most recent basanites from El Hierro and Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Gomez-Ulla, Alejandra; Sigmarsson, Olgeir; Huertas, Maria Jose; Ancochea, Eumenio

    2015-04-01

    The latest eruptions of both Lanzarote (one of the oldest and easternmost of the Canary Island archipelago) and El Hierro (the youngest and westernmost) produced basanite lavas. Major, volatile and trace element concentrations of melt inclusion (MI) hosted in olivine for both eruptions have been analysed. The basanites display primitive mantle normalized trace element spectra suggesting a magma source largely composed of recycled oceanic crust. In addition, beneath Lanzarote an interaction with a carbonatitic fluid phase or metasome would explain eccentric Ba/U and other trace element ratios. Contribution of carbonatitic component would readily account for extremely volatile-rich (Cl, F, S) MI from Lanzarote (Cl=1577-2500 ppm) whereas the maximum for El Hierro is 1080 ppm. The submarine character of the 2011-12 eruption off El Hierro appears to have affected the degassing behavior, whereas estimated sulfur emission to the atmosphere during the historical Lanzarote eruptions are amongst the highest observed so far. An estimated magma volume (VDRE) of 0.02 km3 yields atmospheric mass loading of 0.2 Mt SO2 from the 1824 Lanzarote eruption. Scaling the volume of the 1824 Lanzarote eruption to that of the previous Timanfaya eruption (1730-6; 5 km3) results in estimated 12 Mt SO2, an atmospheric mass loading only outnumbered by the historical Laki and Eldgjá eruptions in Iceland. The significantly greater volatile budget of basanites from Lanzarote compared to El Hierro is thus controlled by more fertile source composition closer to the African continent.

  12. Major- and Trace-Element Concentrations in Soils from Two Geochemical Surveys (1972 and 2005) of the Denver, Colorado, Metropolitan Area

    USGS Publications Warehouse

    Kilburn, James E.; Smith, David B.; Closs, L. Graham; Smith, Steven M.

    2007-01-01

    Introduction This report contains major- and trace-element concentration data for soil samples collected in 1972 and 2005 from the Denver, Colorado, metropolitan area. A total of 405 sites were sampled in the 1972 study from an area approximately bounded by the suburbs of Golden, Thornton, Aurora, and Littleton to the west, north, east, and south, respectively. This data set included 34 duplicate samples collected in the immediate vicinity of the primary sample. In 2005, a total of 464 sites together with 34 duplicates were sampled from the same approximate localities sampled in 1972 as well as additional sites in east Aurora and the area surrounding the Rocky Mountain Arsenal. Sample density for both surveys was on the order of 1 site per square mile. At each site, sample material was collected from a depth of 0-5 inches. Each sample collected was analyzed for near-total major- and trace-element composition by the following methods: (1) inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for aluminum, antimony, arsenic, barium, beryllium, bismuth, cadmium, calcium, cerium, cesium, chromium, cobalt, copper, gallium, indium, iron, lanthanum, lead, lithium, magnesium, manganese, molybdenum, nickel, niobium, phosphorus, potassium, rubidium, scandium, silver, sodium, strontium, sulfur, tellurium, thallium, thorium, tin, titanium, tungsten, uranium, vanadium, yttrium, and zinc; and (2) hydride generation-atomic absorption spectrometry for selenium. The samples collected in 2005 were also analyzed by a cold vapor-atomic absorption method for mercury. This report makes available the analytical results of these studies.

  13. Environmental assessment of incinerator residue utilisation.

    PubMed

    Toller, S; Kärrman, E; Gustafsson, J P; Magnusson, Y

    2009-07-01

    Incineration ashes may be treated either as a waste to be dumped in landfill, or as a resource that is suitable for re-use. In order to choose the best management scenario, knowledge is needed on the potential environmental impact that may be expected, including not only local, but also regional and global impact. In this study, A life cycle assessment (LCA) based approach was outlined for environmental assessment of incinerator residue utilisation, in which leaching of trace elements as well as other emissions to air and water and the use of resources were regarded as constituting the potential environmental impact from the system studied. Case studies were performed for two selected ash types, bottom ash from municipal solid waste incineration (MSWI) and wood fly ash. The MSWI bottom ash was assumed to be suitable for road construction or as drainage material in landfill, whereas the wood fly ash was assumed to be suitable for road construction or as a nutrient resource to be recycled on forest land after biofuel harvesting. Different types of potential environmental impact predominated in the activities of the system and the use of natural resources and the trace element leaching were identified as being relatively important for the scenarios compared. The scenarios differed in use of resources and energy, whereas there is a potential for trace element leaching regardless of how the material is managed. Utilising MSWI bottom ash in road construction and recycling of wood ash on forest land saved more natural resources and energy than when these materials were managed according to the other scenarios investigated, including dumping in landfill.

  14. Evidence of global-scale As, Mo, Sb, and Tl atmospheric pollution in the antarctic snow.

    PubMed

    Hong, Sungmin; Soyol-Erdene, Tseren-Ochir; Hwang, Hee Jin; Hong, Sang Bum; Hur, Soon Do; Motoyama, Hidaeki

    2012-11-06

    We report the first comprehensive and reliable time series for As, Mo, Sb, and Tl in the snowpack from Dome Fuji in the central East Antarctic Plateau. Our results show significant enrichment of these elements due to either anthropogenic activities or large volcanic eruptions during the past 50 years. With respect to the values reported from 1960 to 1964, we observed the maximum increases in crustal enrichment factors (EFs) for As (a factor of ~15), Mo (~4), Sb (~4), and Tl (~2) during the period between the 1970s and 1990s, reflecting the global dispersion of anthropogenic pollutants of these elements, even to the most remote areas on Earth. Such enrichments are likely related to emissions of trace elements from nonferrous metal smelting and fossil fuel combustion processes in South America, especially in Chile. A drastic decrease in the As concentration and its EF values was observed after the year 2000 in response to the introduction of environmental regulations in the 1990s to reduce As emissions from the copper industry, primarily in Chile. The observed decrease suggests that governmental regulations for pollution control are effective in reducing air pollution at both the regional and global level.

  15. Progress of pharmacogenomic research related to minerals and trace elements.

    PubMed

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  16. Stability of hydrophilic vitamins mixtures in the presence of electrolytes and trace elements for parenteral nutrition: a nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza

    2015-03-25

    In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Toxic effects of trace elements on newborns and their birth outcomes.

    PubMed

    Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-15

    Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ambient methods and apparatus for rapid laser trace constituent analysis

    DOEpatents

    Snyder, Stuart C.; Partin, Judy K.; Grandy, Jon D.; Jeffery, Charles L.

    2002-01-01

    A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.

  19. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  20. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  1. In vitro analysis of the properties of Beiqishen tea.

    PubMed

    Blázovics, A; Szentmihályi, K; Lugasi, A; Balázs, A; Hagymási, K; Bányai, E; Then, M; Rapavi, E; Héthelyi, E

    2003-10-01

    Chinese Beiqishen tea was studied in an in vitro test system. Phytochemical screening, trace element analysis, and the analysis of antioxidant properties were carried out. Characteristic constituents were determined by chromatographic (capillary gas chromatography and GCQ Ion Trap mass spectrometry) and spectrometric (ultraviolet and UV-VIS) methods. Element concentrations were determined by inductively coupled plasma optical emission spectrometry. Antioxidant capacity was studied by spectrophotometric and luminometric techniques using a Berthold Lumat 9501 luminometer. Hydrogen-donating activity, reducing power, and total scavenger capacity were measured. Total polyphenol content was 20.77 +/- 0.52 g/100 g of drug; total flavonoid content was 0.485 +/- 0.036 g/100 g of drug; and tannin content was 9.063 +/- 0.782 g/100 g of drug. Caffeine content was 1.08 mg/100 g of drug. Essential oils were identified by gas chromatography: (+)-limonene (21%), p-cymene (1.7%), estragol (3.2%), beta-ocimene (1.4%), and thymol (2.6%). Metallic ion analysis showed significantly high concentrations of Al, As, Ba, Cr, Cu, Fe, Mn, Ni, and Ti in the drug. Antioxidant and scavenger properties were identified as a function of concentration. The tea infusion contained some non-desirable trace elements and caffeine in addition to polyphenols and tannins in high concentrations. Therefore, the consumption of this tea may involve risks.

  2. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  3. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  5. Environmental assessment of a wood-waste-fired industrial watertube boiler. Volume 1. Technical results. Final report, March 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, C.; Waterland, L.R.

    1987-03-01

    The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue-gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less

  6. Environmental assessment of a wood-waste-fired industrial watertube boiler. Volume 2. Data supplement. Final report, March 1981-March 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castaldini, C.; Waterland, L.R.

    1987-03-01

    The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic and organic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less

  7. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  8. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace elements and other sources of bias and variability in the sampling process. Trace elements have both natural and anthropogenic sources that may affect the sampling process, including the sample-collection and handling materials used in many trace-element monitoring studies. Trace elements also react with these materials within the timescales typical for collection, processing and analysis of runoff samples. To study the characteristics and potential effects of trace elements in highway and urban runoff, investigators typically sample one or more operationally defined matrixes including: whole water, dissolved (filtered water), suspended sediment, bottom sediment, biological tissue, and contaminant sources. The sampling and analysis of each of these sample matrixes can provide specific information about the occurrence and distribution of trace elements in runoff and receiving waters. There are, however, technical concerns specific to each matrix that must be understood and addressed through use of proper collection and processing protocols. Valid protocols are designed to minimize inherent problems and to maximize the accuracy, precision, comparability, and representativeness of data collected. Documentation, including information about monitoring protocols, quality assurance and quality control efforts, and ancillary data also is necessary to establish data quality. This documentation is especially important for evaluation of historical traceelement monitoring data, because trace-element monitoring protocols and analysis methods have been constantly changing over the past 30 years.

  9. Ray Tracing Methods in Seismic Emission Tomography

    NASA Astrophysics Data System (ADS)

    Chebotareva, I. Ya.

    2018-03-01

    Highly efficient approximate ray tracing techniques which can be used in seismic emission tomography and in other methods requiring a large number of raypaths are described. The techniques are applicable for the gradient and plane-layered velocity sections of the medium and for the models with a complicated geometry of contrasting boundaries. The empirical results obtained with the use of the discussed ray tracing technologies and seismic emission tomography results, as well as the results of numerical modeling, are presented.

  10. EFFECTS OF COFIRING LIGNIN AND BIOSOLIDS WITH COAL ON FIRESIDE PERFORMANCE AND COMBUSTION PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin C. Galbreath

    2002-08-01

    Lignin, derived from municipal solid waste and biosolid feedstocks using Masada Resource Group's patented CES OxyNol{trademark} process, and acidified biosolids were evaluated as supplemental fuels with coal for producing steam and electricity. Tests were conducted in a pilot-scale (550,000-Btu/hr [580-MJ/hr]) combustion system to evaluate the effects of coal characteristics, blend mixture (on a dry wt% basis) and furnace exit gas temperature (FEGT) on boiler heat-exchange surface slagging and fouling, NO{sub x} and SO{sub x} production, fly ash characteristics, and combustion efficiency. The effects of blending lignin and acidified biosolids with coal on fuel handling and pulverization characteristics were also addressed.more » An 80 wt% Colorado--20 wt% subbituminous Powder River Basin coal blend from the Tennessee Valley Authority Colbert Steam Plant, hereafter referred to as the Colbert coal, and a bituminous Pittsburgh No. 8 coal were tested. The lignin and acidified biosolids were characterized by possessing higher moisture content and lower carbon, hydrogen, and heating values relative to the coals. Ash contents of the fuels were similar. The lignin also possessed higher concentrations of TiO{sub 2}, CaO, and SO{sub 3} and lower concentrations of SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, K{sub 2}O, and N relative to the coals. The sulfur content of lignin could be reduced through a more thorough washing and drying of the lignin in an efficient commercial-scale dewatering device. Acidified biosolids were distinguished by higher concentrations of P{sub 2}O{sub 5} and MgO and lower SiO{sub 2} and Al{sub 2}O{sub 3} relative to the other fuels. Trace element concentrations, especially for Cr, Pb, Hg, and Ni, were generally greater in the lignin and acidified biosolid fuels relative to the Colbert coal. Maximum trace element emission factors were calculated for 95:5 Colbert coal--lignin and 90:5:5 Colbert coal--lignin--acidified biosolid blends and compared to U.S. Environmental Protection Agency emission factors for pulverized coal-fired units that are unequipped with pollution control devices. Calculated maximum trace element emission factors for the fuel blends were generally less than or within the range of those for the uncontrolled coal-fired units, except for Cr and Pb which were greater.« less

  11. Removal of ash, sulfur, and trace elements of environmental concern from eight selected Illinois coals

    USGS Publications Warehouse

    Demir, I.

    1998-01-01

    Release analysis (RA) and float-sink (F-S) data were generated to assess the beneficiation potential of washed coals from selected Illinois coal preparation plants through the use of advanced physical cleaning at -60 mesh size. Generally, the F-S process removed greater amounts of ash, sulfur, and trace elements of environmental concern from the coals than the RA process, indicating that the cleanability of Illinois coals by advanced methods can be estimated best by F-S testing. At an 80%-combustibles recovery, the ash yield in the clean F-S products decreased by 47-75%, relative to the parent coals. Average decreases for the elements As(67%), Cd(78%), Hg(73%), Mn(71%), and P(66%) exceeded the average decrease for ash yield (55%). Average decreases for other elements were: Co(31%), Cr(27%), F(39%), Ni(25%), Pb(50%), S(28%), Sb(20%), Se(39), Th(32%), and U(8%). Only Be was enriched (up to 120%) in the clean products relative to the parent coals. These results suggested that the concentration of elements with relatively high atmospheric mobilities (As, Cd, F, Hg, Pb, and Se) during coal combustion can be reduced substantially in Illinois coals through the use of advanced physical cleaning. Advanced physical cleaning can be effective also for the removal of inorganic S. Environmental risks from the emission of other elements with enrichment or relatively low cleanabilities could be small because these elements generally have very low concentrations in Illinois coals or are largely retained in solid residues during coal combustion. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  12. Fish gelatin thin film standards for biological application of PIXE

    NASA Astrophysics Data System (ADS)

    Manuel, Jack E.; Rout, Bibhudutta; Szilasi, Szabolcs Z.; Bohara, Gyanendra; Deaton, James; Luyombya, Henry; Briski, Karen P.; Glass, Gary A.

    2014-08-01

    There exists a critical need to understand the flow and accumulation of metallic ions, both naturally occurring and those introduced to biological systems. In this paper the results of fabricating thin film elemental biological standards containing nearly any combination of trace elements in a protein matrix are presented. Because it is capable of high elemental sensitivity, particle induced X-ray emission spectrometry (PIXE) is an excellent candidate for in situ analysis of biological tissues. Additionally, the utilization of microbeam PIXE allows the determination of elemental concentrations in and around biological cells. However, obtaining elemental reference standards with the same matrix constituents as brain tissue is difficult. An excellent choice for simulating brain-like tissue is Norland® photoengraving glue which is derived from fish skin. Fish glue is water soluble, liquid at room temperature, and resistant to dilute acid. It can also be formed into a thin membrane which dries into a durable, self-supporting film. Elements of interest are introduced to the fish glue in precise volumetric additions of well quantified atomic absorption standard solutions. In this study GeoPIXE analysis package is used to quantify elements intrinsic to the fish glue as well as trace amounts of manganese added to the sample. Elastic (non-Rutherford) backscattered spectroscopy (EBS) and the 1.734 MeV proton-on-carbon 12C(p,p)12C resonance is used for a normalization scheme of the PIXE spectra to account for any discrepancies in X-ray production arising from thickness variation of the prepared standards. It is demonstrated that greater additions of the atomic absorption standard cause a viscosity reduction of the liquid fish glue resulting in thinner films but the film thickness can be monitored by using simultaneous PIXE and EBS proton data acquisition.

  13. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    USGS Publications Warehouse

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.

  14. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  15. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy.

    PubMed

    Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla

    2009-04-01

    The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.

  16. The effect of pasteurization on trace elements in donor breast milk.

    PubMed

    Mohd-Taufek, N; Cartwright, D; Davies, M; Hewavitharana, A K; Koorts, P; McConachy, H; Shaw, P N; Sumner, R; Whitfield, K

    2016-10-01

    Premature infants often receive pasteurized donor human milk when mothers are unable to provide their own milk. This study aims to establish the effect of the pasteurization process on a range of trace elements in donor milk. Breast milk was collected from 16 mothers donating to the milk bank at the Royal Brisbane and Women's Hospital. Samples were divided into pre- and post-pasteurization aliquots and were Holder pasteurized. Inductively coupled plasma mass spectrometry was used to analyze the trace elements zinc (Zn), copper (Cu), selenium (Se), manganese (Mn), iodine (I), iron (Fe), molybdenum (Mo) and bromine (Br). Differences in trace elements pre- and post-pasteurization were analyzed. No significant differences were found between the trace elements tested pre- and post-pasteurization, except for Fe (P<0.05). The median (interquartile range, 25 to 75%; μg l(-1)) of trace elements for pre- and post- pasteurization aliquots were-Zn: 1639 (888-4508), 1743 (878-4143), Cu: 360 (258-571), 367 (253-531), Se: 12.34 (11.73-17.60), 12.62 (11.94-16.64), Mn: (1.48 (1.01-1.75), 1.49 (1.11-1.75), I (153 (94-189), 158 (93-183), Fe (211 (171-277), 194 (153-253), Mo (1.46 (0.37-2.99), 1.42 (0.29-3.73) and Br (1066 (834-1443), 989 (902-1396). Pasteurization had minimal effect on several trace elements in donor breast milk but high levels of inter-donor variability of trace elements were observed. The observed decrease in the iron content of pasteurized donor milk is, however, unlikely to be clinically relevant.

  17. Chemical analysis and geochemical associations in Devonian black shale core samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.

  18. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, fingerprinting metal ratio, and emission factor

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Tsai, C.-J.; Wu, Y.-C.; Zhang, R.; Chi, K.-H.; Huang, Y.-T.; Lin, S.-H.; Hsu, S.-C.

    2014-05-01

    Traffic emissions are a significant source of airborne particulate matter (PM) in ambient environments. These emissions contain high abundance of toxic metals and thus pose adverse effects on human health. Size-fractionated aerosol samples were collected from May to September 2013 by using micro-orifice uniform deposited impactor (MOUDI). Sample collection was conducted simultaneously at the inlet and outlet sites of Hsuehshan Tunnel in northern Taiwan, which is the second longest freeway tunnel (12.9 km) in Asia. Such endeavor aims to characterize the chemical constituents, size distributions, and fingerprinting ratios, as well as the emission factors of particulate metals emitted by vehicle fleets. A total of 36 metals in size-resolved aerosols were determined through inductively coupled plasma mass spectrometry. Three major groups, namely, tailpipe emissions (Zn, Pb, and V), wear debris (Cu, Cd, Fe, Ga, Mn, Mo, Sb, and Sn), and resuspended dust (Ca, Mg, K, and Rb), of airborne PM metals were categorized on the basis of the results of enrichment factor, correlation matrix, and principal component analysis. Size distributions of wear-originated metals resembled the pattern of crustal elements, which were predominated by super-micron particulates (PM1-10). By contrast, tailpipe exhaust elements such as Zn, Pb, and V were distributed mainly in submicron particles. By employing Cu as a tracer of wear abrasion, several inter-metal ratios, including Fe/Cu (14), Ba/Cu (1.05), Sb/Cu (0.16), Sn/Cu (0.10), and Ga/Cu (0.03), served as fingerprints for wear debris. Emission factor of PM10 mass was estimated to be 7.7 mg vkm-1. The metal emissions were mostly predominated in super-micron particles (PM1-10). Finally, factors that possibly affect particulate metal emissions inside Hsuehshan Tunnel are discussed.

  19. NATIONAL- AND STATE-LEVEL EMISSIONS ESTIMATES OF RADIATIVELY IMPORTANT TRACE GASES (RITGS) FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report documents the development of national- and state- level emissions estimates of radiatively important trace gases (RlTGs). Emissions estimates are presented for the principal anthropogenic sources of carbon dioxide (CO2), methane (CH4), chlorofluorocarbons (CFCs), and o...

  20. Effects of sea-level changes on mid-ocean ridge magmatism and implications for emission rates of carbon.

    NASA Astrophysics Data System (ADS)

    Cerpa, N.; Katz, R. F.; Keller, T.

    2017-12-01

    Glacial cycles move water between ice sheets and the ocean, and hence cause regional pressure changes in the solid Earth. The rate of sea-level (SL) change during this cycle is comparable to the rate of mantle upwelling beneath mid-ocean ridges (MORs), and hence we expect the induced pressure variations to modify the rate and depth of silicate melting. SL variations may therefore induce changes in the supply and composition of magma at MORs, which could affect the flux of carbon into the climate system. Likewise, the trace-element geochemistry of magmas tapped by ridge volcanism may vary during these cycles due to variations in melt flux. Such variations may have been recorded by sediment-hosted volcanic glass fragments [Ferguson et al., 2017]. We investigate these questions using computational models of melt production and transport in which volatiles participate in the thermodynamics of melting. Published models of the effect of SL on MORs predict up to 10% variation in carbon emission rates for absolute changes in SL of 50-100 m with possible lag times of several tens of kyrs [Burley et al., 2015; Hasenclever et al., 2017]. A major assumption of those models is that water and carbon are passive, incompatible elements. But small concentrations of those volatiles affect the solidus of mantle peridotite and increase the volume of upper mantle undergoing partial melting. Hence the current predictions of variation in MOR carbon emission might be an underestimate. Moreover, published models neglect the effects of volatiles on melt transport. Recents studies have demonstrated that volatiles can induce channelized transport [Keller and Katz 2016], potentially affecting the rate at which carbon is extracted from the mantle. In this study, we investigate the interplay between SL variations, melting, and segregation of volatile-rich melts. We use two-phase magma/mantle dynamics coupled to melting models that treat water and carbon dioxide as thermodynamic components. We compare models of equilibrium and disequilibrium melting to assess the influence of reaction kinetics on magma productivity at MORs during SL variations. Our calculations provide new estimates of the lag and amplitude of carbon emissions during glacial cycles. We address the impact of SL variations on the trace-element composition of magmas.

  1. Study on elemental fingerprint of traditional marine Chinese medicine oysters from Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Zheng, Yongjun; Zheng, Kang; Li, Yantuan

    2012-09-01

    In order to investigate the relationship between the trace elements and the characteristics of the oysters, we analyzed the trace elements present in the germplasm of oysters from different producing areas in the Jiaozhou Bay. The element fingerprints were established to reflect the elemental characteristics of the oysters. Concentration patterns of the elements were deciphered by principle component analysis (PCA) and hierarchical cluster analysis (HCA). The six regions were discriminated with accuracy using HCA and PCA based on the concentration of 16 trace elements. The elements were viewed as characteristic elements of the oysters and the fingerprints of these elements could be used to distinguish the quality of the oysters.

  2. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    USGS Publications Warehouse

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  3. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. I. FIFTEEN TRACE ELEMENTS IN NEW YORK, N.Y. (1971-72)

    EPA Science Inventory

    Previous studies have revealed that hair trace element concentrations can reflect exposure in cases of frank poisoning and deficiency. Correlations have been found also in some populations living in regions where metallurgic processes are conducted. This study reports significant...

  4. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  5. Measurement of Trace Elements During the Development and Immune Response of Heliothis virescens Larvae

    USDA-ARS?s Scientific Manuscript database

    While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...

  6. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  7. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  9. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  10. The measurement of trace emissions and combustion characteristics for a mass fire [Chapter 32

    Treesearch

    Ronald A. Susott; Darold E. Ward; Ronald E. Babbitt; Don J. Latham

    1991-01-01

    Concerns increase about the effects of emissions from biomass burning on global climate. While the burning of biomass constitutes a large fraction of world emissions, there are insufficient data on the combustion efficiency, emission factors, and trace gases produced in these fires, and on how these factors depend on the highly variable chemistry and burning condition...

  11. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  12. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  13. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  14. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).

  15. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm.

    PubMed

    Zhu, LiuCun; Chen, XiJia; Kong, Xiangyin; Cai, Yu-Dong

    2016-11-01

    Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    PubMed

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems. Environ Toxicol Chem 2017;36:2916-2924. © 2017 SETAC. © 2017 SETAC.

  17. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  18. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on molecular mechanisms involved in such processes as inorganic carbon fixation, organic carbon respiration, or nitrogen transformation, they explain how the cycles of trace elements are critically linked to those of major nutrients such as carbon or nitrogen. But we have relatively little understanding of the binding molecules and the enzymes that mediate the biochemical role of trace metals in the marine environment. In this sense, this chapter is more a "preview" than a review of the field of marine bioinorganic chemistry. To exemplify the concepts and methods of this field, we have chosen to focus on one of its most important topics: the potentially limiting role of trace elements in primary marine production. As a result we center our discussion on particular subsets of organisms, biogeochemical cycles, and trace elements. Our chief actors are marine phytoplankton, particularly eukaryotes, while heterotrophic bacteria make only cameo appearances. The biogeochemical cycles that will serve as our plot are those of the elements involved in phytoplankton growth, the major algal nutrients - carbon, nitrogen, phosphorus, and silicon - leaving aside, e.g., the interesting topic of the marine sulfur cycle. Seven trace metals provide the intrigue: manganese, iron, nickel, cobalt, copper, zinc, and cadmium. But several other trace elements such as selenium, vanadium, molybdenum, and tungsten (and, probably, others not yet identified) will assuredly add further twists in future episodes.We begin this chapter by discussing what we know of the concentrations of trace elements in marine microorganisms and of the relevant mechanisms and kinetics of trace-metal uptake. We then review the biochemical role of trace elements in the marine cycles of carbon, nitrogen, phosphorus, and silicon. Using this information, we examine the evidence, emanating from both laboratory cultures and field measurements, relevant to the mechanisms and the extent of control by trace metals of marine biogeochemical cycles. Before concluding with a wistful glimpse of the future of marine bioinorganic chemistry we discuss briefly some paleoceanographic aspects of this new field: how the chemistry of the planet "Earth" - particularly the concentrations of trace elements in the oceans - has evolved since its origin, chiefly as a result of biological processes and how the evolution of life has, in turn, been affected by the availability of essential trace elements.

  19. Manipulations of soil microbiota for C sequestration and mitigation of greenhouse gas emissions in managed systems

    USDA-ARS?s Scientific Manuscript database

    Soil microbes dominate processes that regulate soil trace gas emissions and soil C and N dynamics. Intensive management in agroecosystems provides unique opportunities to assess the effectiveness of microbial manipulations to enhance soil C retention and reduce trace gas emissions. While reduced til...

  20. Irrigation and fertilizer placement effects on trace gas emissions from an ornamental crop

    USDA-ARS?s Scientific Manuscript database

    Agriculture is a large contributor of trace gas emissions and much of the work on reducing greenhouse gas (GHG) emissions has focused on row crops, pastures, forestry, and animal production systems; however, little emphasis has been placed on specialty crop industries such as horticulture. A horticu...

  1. Environmental assessment of a watertube boiler firing a coal-water slurry. Volume 2. Data supplement. Final report, January 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1986-02-01

    This report is a compendium of detailed test sampling and analysis data obtained in field tests of a watertube industrial boiler burning a coal/water slurry (CWS). Test data reported include preliminary stack test data, boiler operating data, and complete flue-gas emission results. Flue-gas emission measurements included continuous monitoring for criteria pollutants; onsite gas chromatography (GC) for volatile hydrocarbons (Cl-C6); Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR), liquidmore » column (LC) chromatography separation, and low-resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), and trace-element emissions using spark-source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS); N/sub 2/O emissions by gas chromatography/electron-capture detector (GC/ECD); and biological assay testing of SASS and ash-stream samples.« less

  2. Subtask 4.24 - Field Evaluation of Novel Approach for Obtaining Metal Emission Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlish, John; Laudal, Dennis; Thompson, Jeffrey

    2013-12-31

    Over the past two decades, emissions of mercury, nonmercury metals, and acid gases from energy generation and chemical production have increasingly become an environmental concern. On February 16, 2012, the U.S. Environmental Protection Agency (EPA) promulgated the Mercury and Air Toxics Standards (MATS) to reduce mercury, nonmercury metals, and HCl emissions from coal-fired power plants. The current reference methods for trace metals and halogens are wet-chemistry methods, EPA Method (M) 29 and M26A, respectively. As a possible alternative to EPA M29 and M26A, the Energy & Environmental Research Center (EERC) has developed a novel multielement sorbent trap (ME-ST) method tomore » be used to sample for trace elements and/or halogens. Testing was conducted at three different power plants, and the results show that for halogens, the ME-ST halogen (ME-ST-H) method did not show any significant bias compared to EPA M26A and appears to be a potential candidate to serve as an alternative to the reference method. For metals, the ME-ST metals (ME-ST-M) method offers a lower detection limit compared to EPA M29 and generally produced comparable data for Sb, As, Be, Cd, Co, Hg, and Se. Both the ME-ST-M and M29 had problems associated with high blanks for Ni, Pb, Cr, and Mn. Although this problem has been greatly reduced through improved trap design and material selection, additional research is still needed to explore possible longer sampling durations and/or selection of lower background materials before the ME-ST-M can be considered as a potential alternative method for all the trace metals listed in MATS.« less

  3. Advanced Hybrid Particulate Collector Project Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.J.

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the bestmore » method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting« less

  4. PIXE analysis of ancient Chinese Qing dynasty porcelain

    NASA Astrophysics Data System (ADS)

    Cheng, Huansheng; He, Wenquan; Tang, Jiayong; Yang, Fujia; Wang, Jianhua

    1996-09-01

    The major and minor chemical compositions and trace element content of white glaze made in Qing dynasty at kuan kiln have been determined by PIXE. Experimental results show that trace element contents RbSrZr are useful to distinguish the place of production of ancient porcelain. In the porcelain from different kilns situated in a same province, the trace element contents can be different from each other. Determining and comparing the major and minor compositions and trace elemental concentrations in white glaze by PIXE technique, we can distinguish a precious Qing dynasty porcelain made at kuan kiln from a fake.

  5. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Trace elements in streambed sediment and fish livers, 1995-96

    USGS Publications Warehouse

    Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.

    2000-01-01

    In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.

  6. The effect of acidified sample storage time on the determination of trace element concentration in ice cores by ICP-SFMS

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.

    2012-12-01

    Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.

  7. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem.

    PubMed

    Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-01-01

    Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (C org ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and C org than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.

  8. Trace gas and particulate emissions from biomass burning in temperate ecosystems

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Winstead, Edward L.; Stocks, Brian J.

    1991-01-01

    Emissions measured from fires in graminoid wetlands, Mediterranean chaparrals, and boreal forests, suggest that such ecosystemic parameters as fuel size influence combustion emissions in ways that are broadly predictable. The degree of predictability is most noticeable when wetland fire-related results are compared with boreal forest emissions; the inorganic fraction of the particulate emissions is close in composition irrespective of the ecosystem. It is found that both aerosol and trace gas emissions are influenced by the phase of combustion.

  9. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.

  10. Trace element levels and cognitive function in rural elderly Chinese.

    PubMed

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W; Ma, Feng; Hall, Kathleen S; Murrell, Jill R; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C

    2008-06-01

    Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Three trace elements-calcium, cadmium, and copper-were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p <.0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p =.0044 and p =.0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population.

  11. Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.

    PubMed

    Guyot, Hugues; Saegerman, Claude; Lebreton, Pascal; Sandersen, Charlotte; Rollin, Frédéric

    2009-01-01

    Selenium (Se), iodine (I), zinc (Zn) and copper (Cu) deficiencies in cattle have been reported in Europe. These deficiencies are often associated with diseases. The aim of the study was to assess trace element status in Belgian cattle herds showing pathologies and to compare them to healthy cattle herds. Eighty-two beef herds with pathologies, 11 healthy beef herds, 65 dairy herds with pathologies and 20 healthy dairy herds were studied during barn period. Blood and/or milk samples were taken in healthy animals. Plasma Zn, Cu, inorganic I (PII) and activity of glutathione peroxidase in erythrocytes (GPX) were assayed. In milk, I concentration was measured. Data about pathologies and nutrition in the herds were collected. According to defined thresholds, it appeared that a large proportion of deficient herds belonged to "sick" group of herds. This conclusion was supported by the mean value of trace elements and by the fact that a majority of individual values of trace elements was below the threshold. Dairy herds had mean values of trace elements higher than beef herds. More concentrates and minerals were used in healthy herds versus "sick" herds. These feed supplements were also used more often in dairy herds, compared to beef herds. Trace elements deficiencies are present in cattle herds in Belgium and are linked to diseases. Nutrition plays a major role in the trace elements status.

  12. Long-term anaerobic digestion of food waste stabilized by trace elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less

  13. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  14. Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds.

    PubMed

    Oyewumi, Oluyinka; Schreiber, Madeline E

    2017-08-01

    Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60-70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Chemical composition and source apportionment of PM10 at an urban background site in a high-altitude Latin American megacity (Bogota, Colombia).

    PubMed

    Ramírez, Omar; Sánchez de la Campa, A M; Amato, Fulvio; Catacolí, Ruth A; Rojas, Néstor Y; de la Rosa, Jesús

    2018-02-01

    Bogota registers frequent episodes of poor air quality from high PM 10 concentrations. It is one of the main Latin American megacities, located at 2600 m in the tropical Andes, but there is insufficient data on PM 10 source contribution. A characterization of the chemical composition and the source apportionment of PM 10 at an urban background site in Bogota was carried out in this study. Daily samples were collected from June 2015 to May 2016 (a total of 311 samples). Organic carbon (OC), elemental carbon (EC), water soluble compounds (SO 4 2- , Cl - , NO 3 - , NH 4 + ), major elements (Al, Fe, Mg, Ca, Na, K, P) and trace metals (V, Cd, Pb, Sr, Ba, among others) were analyzed. The results were interpreted in terms of their variability during the rainy season (RS) and the dry season (DS). The data obtained revealed that the carbonaceous fraction (∼51%) and mineral dust (23%) were the main PM 10 components, followed by others (15%), Secondary Inorganic Compounds (SIC) (11%) and sea salt (0.4%). The average concentrations of soil, SIC and OC were higher during RS than DS. However, peak values were observed during the DS due to photochemical activity and forest fires. Although trace metals represented <1% of PM 10 , high concentrations of toxic elements such as Pb and Sb on RS, and Cu on DS, were obtained. By using a PMF model, six factors were identified (∼96% PM 10 ) including fugitive dust, road dust, metal processing, secondary PM, vehicles exhaust and industrial emissions. Traffic (exhaust emissions + road dust) was the major PM 10 source, accounting for ∼50% of the PM 10 . The results provided novel data about PM 10 chemical composition, its sources and its seasonal variability during the year, which can help the local government to define control strategies for the main emission sources during the most critical periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  17. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  18. Heavy metals concentrations in scalp hairs of ASGM miners and inhabitants of the Gorontalo Utara regency

    NASA Astrophysics Data System (ADS)

    Indriati Arifin, Yayu; Sakakibara, Masayuki; Sera, Koichiro

    2017-06-01

    We performed the Particle Induced X-ray Emission (PIXE) analysis on scalp hair samples of 115 ASGM miners and inhabitants of Gorontalo Utara regency. Along with mercury (Hg), we presented other trace elements such as Copper (Cu) and Manganese (Mn). Concentrations of Cu, Mn and Hg in the scalp hairs of ASGM miners are higher non miners. Significant and positive correlations coefficients between Cu and Hg concentration with Mn concentration may indicate that there are still unknown metabolism process related with ASGM activities.

  19. Scaling up in the face of uncertainty - controls on trace gas fluxes in heterogeneous landscapes (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, E. S.; Helton, A. M.; Morse, J. L.; Poole, G. C.

    2013-12-01

    Wetlands are the dominant natural source of methane to the global atmosphere and can be important sites of either N2O emission or consumption. Changes in the spatial extent or inundation frequency and duration may lead to substantial shifts in the contribution of wetland ecosystems to global CH4 and N2O emissions. Trace gases are produced at the scale of individual microbes, each of which respond dynamically to the local availability of electron donors and acceptors. Within landscape patches, substrate supply and redox conditions are strongly controlled by variation in water table elevation and vertical hydrologic exchange. At the landscape scale, lateral exchange between patches and the extent and duration of inundation. Accurate estimates of trace gas emissions from wetlands are hard to estimate given the dynamic patterns of redox potential within the soil column and across the landscape that redistribute electron donors and acceptors both vertically and laterally. In five years of trace gas flux measurement and modeling at TOWER, a 440 ha restored wetland in coastal NC, we have developed both simulation and statistical models to estimate landscape level trace gas fluxes. Yet, because trace gas emissions are highly variable in both time and space, our qualitative and quantitative attempts at upscaling trace gas emissions typically generate estimates with extremely high uncertainty. In this talk we will explore the challenges inherent to the estimation of landscape scale trace gas fluxes at the scale of our individual ecosystem as well as the difficulties in extrapolating across multiple ecosystem studies.

  20. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  1. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer

    PubMed Central

    Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan

    2015-01-01

    Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410

  3. A high-resolution historical sediment record of nutrients, trace elements and organochlorines (DDT and PCB) deposition in a drinking water reservoir (Lake Brêt, Switzerland) points at local and regional pollutant sources.

    PubMed

    Thevenon, Florian; de Alencastro, Luiz Felippe; Loizeau, Jean-Luc; Adatte, Thierry; Grandjean, Dominique; Wildi, Walter; Poté, John

    2013-03-01

    The (137)Cs and (210)Pb dating of a 61-cm long sediment core retrieved from a drinking water reservoir (Lake Brêt) located in Switzerland revealed a linear and relatively high sedimentation rate (~1 cm year(-1)) over the last decades. The continuous centimeter scale measurement of physical (porewater and granulometry), organic (C(org), P, N, HI and OI indexes) and mineral (C(min) and lithogenic trace elements) parameters therefore enables reconstructing the environmental history of the lake and anthropogenic pollutant input (trace metals, DDT and PCBs) at high resolution. A major change in the physical properties of the lowermost sediments occurred following the artificial rise of the dam in 1922. After ca. 1940, there was a long-term up-core increase in organic matter deposition attributed to enhance primary production and anoxic bottom water conditions due to excessive nutrient input from a watershed predominantly used for agriculture that also received domestic effluents of two wastewater-treatment plants. This pattern contrasts with the terrigenous element input (Eu, Sc, Mg, Ti, Al, and Fe) which doubled after the rising of the dam but continuously decreased during the last 60 years. By comparison, the trace metals (Cu, Pb and Hg) presented a slight enrichment factor (EF) only during the second part of the 20th century. Although maximum EF Pb (>2) occurred synchronously with the use of leaded gasoline in Switzerland (between ca. 1947 and 1985) the Hg and Cu profiles exhibited a relatively similar trend than Pb during the 20th century, therefore excluding the alkyl-lead added to petrol as the dominant (atmospheric) source of lead input to Lake Brêt. Conversely, the Cu profile that did not follow the decrease registered in Pb and Hg during the last 10 years, suggests an additional source of Cu probably linked to the impact of agricultural activities in the area. In absence of heavy industries in the catchment, the atmospheric deposition of DDT and PCBs via surface runoff followed the historical emissions of POPs in Switzerland. Such result highlights the regional contamination of freshwater resources by the large-scale emission of toxic industrial chemicals in the 1960s and 1970s as well as the efficiency of the regulatory measures subsequently taken. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The occurrence and distribution of selected trace elements in the upper Rio Grande and tributaries in Colorado and Northern New Mexico

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.

    2001-01-01

    Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.

  5. PIXE analysis of tumors and localization behavior of a lanthanide in nude mice

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu

    1984-04-01

    We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.

  6. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  7. Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia

    NASA Astrophysics Data System (ADS)

    Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe

    2008-02-01

    Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.

  8. Trace gas emissions from chaparral and boreal forest fires

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggan, Philip J.; Stocks, Brian J.; Brass, James A.; Ambrosia, Vincent G.

    1989-01-01

    Using smoke samples collected during low-level helicopter flights, the mixing ratios of CO2, CO, CH4, total nonmethane hydrocarbons, H2, and N2O over burning chaparral in southern California and over a burning boreal forest site in northern Ontario, Canada, were determined. Carbon dioxide-normalized emission ratios were determined for each trace gas for conditions of flaming, mixed, and smoldering combustion. The emission ratios for these trace gases were found to be highest for the smoldering combustion, generally thought to be the least efficient combustion stage. However, high emission ratios for these gases could be also produced during very vigorous flaming combustion.

  9. Long-term anaerobic digestion of food waste stabilized by trace elements.

    PubMed

    Zhang, Lei; Jahng, Deokjin

    2012-08-01

    The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.

  10. Concentrations of mercury and other trace elements in walleye, smallmouth bass, and rainbow trout in Franklin D. Roosevelt Lake and the upper Columbia River, Washington, 1994

    USGS Publications Warehouse

    Munn, M.D.; Cox, S.E.; Dean, C.J.

    1995-01-01

    Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.

  11. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    PubMed

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  12. Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy).

    PubMed

    Frontalini, Fabrizio; Buosi, Carla; Da Pelo, Stefania; Coccioni, Rodolfo; Cherchi, Antonietta; Bucci, Carla

    2009-06-01

    In order to assess the response of benthic foraminifera to trace element pollution, a study of benthic foraminiferal assemblages was carried out into sediment samples collected from the Santa Gilla lagoon (Sardinia, Italy). The lagoon has been contaminated by industrial waste, mainly trace elements, as well as by agricultural and domestic effluent. The analysis of surficial sediment shows enrichment in trace elements, including Cr, Cu, Hg, Ni, Pb and Zn. Biotic and abiotic data, analyzed with multivariate techniques of statistical analysis, reveal a distinct separation of both the highly polluted and less polluted sampling sites. The innermost part of the lagoon, comprising the industrial complex at Macchiareddu, is exposed to a high load of trace elements which are probably enhanced by their accumulation in the finer sediment fraction. This area reveals lower diversity and higher percentages of abnormalities when compared to the outermost part of the lagoon.

  13. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  14. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Kuroiwa, Takayoshi; Chiba, Koichi

    2011-01-01

    A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 µm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.

  15. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  16. Characterization of Hatay honeys according to their multi-element analysis using ICP-OES combined with chemometrics.

    PubMed

    Yücel, Yasin; Sultanoğlu, Pınar

    2013-09-01

    Chemical characterisation has been carried out on 45 honey samples collected from Hatay region of Turkey. The concentrations of 17 elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Ca, K, Mg and Na were the most abundant elements, with mean contents of 219.38, 446.93, 49.06 and 95.91 mg kg(-1) respectively. The trace element mean contents ranged between 0.03 and 15.07 mg kg(-1). Chemometric methods such as principal component analysis (PCA) and cluster analysis (CA) techniques were applied to classify honey according to mineral content. The first most important principal component (PC) was strongly associated with the value of Al, B, Cd and Co. CA showed eight clusters corresponding to the eight botanical origins of honey. PCA explained 75.69% of the variance with the first six PC variables. Chemometric analysis of the analytical data allowed the accurate classification of the honey samples according to origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    NASA Astrophysics Data System (ADS)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  18. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    PubMed

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.

  19. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility.

    PubMed

    Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-10-01

    The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.

  20. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  1. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review

    PubMed Central

    Hussain, Mohsina

    2016-01-01

    Human body requires certain essential elements in small quantities and their absence or excess may result in severe malfunctioning of the body and even death in extreme cases because these essential trace elements directly influence the metabolic and physiologic processes of the organism. Rapid urbanization and economic development have resulted in drastic changes in diets with developing preference towards refined diet and nutritionally deprived junk food. Poor nutrition can lead to reduced immunity, augmented vulnerability to various oral and systemic diseases, impaired physical and mental growth, and reduced efficiency. Diet and nutrition affect oral health in a variety of ways with influence on craniofacial development and growth and maintenance of dental and oral soft tissues. Oral potentially malignant disorders (OPMD) are treated with antioxidants containing essential trace elements like selenium but even increased dietary intake of trace elements like copper could lead to oral submucous fibrosis. The deficiency or excess of other trace elements like iodine, iron, zinc, and so forth has a profound effect on the body and such conditions are often diagnosed through their early oral manifestations. This review appraises the biological functions of significant trace elements and their role in preservation of oral health and progression of various oral diseases. PMID:27433374

  2. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  3. Phytoaccumulation of trace elements by wetland plants. 2: Water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.L.; Zayed, A.M.; Qian, J.H.

    Wetland plants are being used successfully for the phytoremediation of trace elements in natural and constructed wetlands. This study demonstrates the potential of water hyacinth (Eichhornia crassipes), an aquatic floating plant, for the phytoremediation of six trace elements. The ability of water hyacinth to take up and translocate six trace elements--As(V), Cd(II), Cr(VI), Cu(II), Ni(II), and Se(VI)--was studied under controlled conditions. Water hyacinth accumulated Cd and Cr best, Se and Cu at moderate levels, and was a poor accumulator of As and Ni. The highest levels of Cd found in shoots and roots were 371 and 6103 mg kg[sup [minus]1]more » dry wt., respectively, and those of Cr were 119 and 32951 mg kg[sup [minus]1] dry wt, respectively. Cadmium, Cr, Cu, Ni, and As were more highly accumulated in roots than in shoots. In contrast, Se was accumulated more in shoots than in roots at most external concentrations. Water hyacinth had high trace element bioconcentration factors when supplied with low external concentrations of all six elements, particularly Cd, Cr, and Cu. Therefore, water hyacinth will be very efficient at phytoextracting trace elements from wastewater containing low concentrations of these elements. The authors conclude that water hyacinth is a promising candidate for phytoremediation of wastewater polluted with Cd, Cr, Cu, and Se.« less

  4. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  5. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  6. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  7. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    NASA Astrophysics Data System (ADS)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  8. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  9. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study.

  10. Composition of Renaissance paint layers: simultaneous particle induced X-ray emission and backscattering spectrometry.

    PubMed

    de Viguerie, L; Beck, L; Salomon, J; Pichon, L; Walter, Ph

    2009-10-01

    Particle induced X-ray emission spectroscopy (PIXE) is now routinely used in the field of cultural heritage. Various setups have been developed to investigate the elemental composition of wood/canvas paintings or of cross-section samples. However, it is not possible to obtain information concerning the quantity of organic binder. Backscattering spectrometry (BS) can be a useful complementary method to overcome this limitation. In the case of paint layers, PIXE brings the elemental composition (major elements to traces) and the BS spectrum can give access to the proportion of pigment and binder. With the use of 3 MeV protons for PIXE and BS simultaneously, it was possible to perform quantitative analysis including C and O for which the non-Rutherford cross sections are intense. Furthermore, with the use of the same conditions for PIXE and BS, the experiment time and the potential damage by the ion beam were reduced. The results obtained with the external beam of the Accélérateur Grand Louvre pour l'Analyse Elementaire (AGLAE) facility on various test painting samples and on cross sections from Italian Renaissance masterpieces are shown. Simultaneous combination of PIXE and BS leads to a complete characterization of the paint layers: elemental composition and proportion of the organic binder have been determined and thus provide useful information about ancient oil painting recipes.

  11. Co-occurrence profiles of trace elements in potable water systems: a case study.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N

    2014-11-01

    Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.

  12. A simple model for closure temperature of a trace element in cooling bi-mineralic systems

    NASA Astrophysics Data System (ADS)

    Liang, Yan

    2015-09-01

    Closure temperature is defined as the lower temperature limit at which the element of interest effectively ceases diffusive exchange with its surrounding medium during cooling. Here we generalize the classic equation of Dodson (1973) for cooling mono-mineralic systems to cooling bi-mineralic aggregates by considering diffusive exchange of a trace element between the two minerals in a closed system. We present a simple analytical model that includes key parameters affecting the closure temperature of a trace element in cooling bi-mineralic systems: cooling rate, temperature-dependent diffusion coefficients for the trace element in the two minerals, temperature-dependent partition coefficient of the trace element between the two minerals, effective grain sizes of the two minerals, and volume proportions of the minerals in the system. We show that closure temperatures of a trace element in cooling bi-mineralic systems are bounded by the closure temperatures of the trace element in the two mono-mineralic systems and that our generalized model reduces to Dodson's equation when one of the mineral serves as "an effective infinite" reservoir to the other mineral. Application to closure temperatures of REE in orthopyroxene and clinopyroxene bi-mineralic systems highlights the importance of REE diffusion and partitioning in the pyroxenes as well as clinopyroxene modal abundance and grain size in the systems. Closure temperatures for REE in two-pyroxene bearing equigranular rocks are controlled primarily by diffusion in orthopyroxene unless the modal abundance of clinopyroxene is very small. This has important bearings on the interpretation of temperatures derived from the REE-in-two-pyroxene thermometer.

  13. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  15. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  16. Physical and chemical characterisation of PM emissions from two ships operating in European Emission Control Areas

    NASA Astrophysics Data System (ADS)

    Moldanová, J.; Fridell, E.; Winnes, H.; Holmin-Fridell, S.; Boman, J.; Jedynska, A.; Tishkova, V.; Demirdjian, B.; Joulie, S.; Bladt, H.; Ivleva, N. P.; Niessner, R.

    2013-04-01

    Emissions of particulate matter (PM) from shipping contribute significantly to the anthropogenic burden of PM. The environmental effects of PM from shipping include negative impact on human health through increased concentrations of particles in many coastal areas and harbour cities and the climate impact. The PM emitted by ship engines consists of organic carbon (OC), elemental or black carbon (EC/BC), sulphate, inorganic compounds containing V, Ni, Ca, Zn and other metals and associated water. The chemical composition and physical properties of PM vary with type of fuel burned, type of engine and engine operation mode. While primary PM emissions of species like V, Ni and Ca are supposed to be determined by composition of fuel and lubricant oil, emissions of particulate OC, EC and sulphate are affected both by fuel quality and by operation mode of the engine. In this paper a number of parameters describing emission factors (EFs) of gases and of particulate matter from ship engines were investigated during 2 on-board measurement campaigns for 3 different engines and 3 different types of fuels. The measured EFs for PM mass were in the range 0.3 to 2.7 g/kg-fuel with lowest values for emissions from combustion of marine gas oil (MGO) and the highest for heavy fuel oil (HFO). Emission factors for particle numbers EF(PN) in the range 5 × 1015-1 × 1017 #/kg-fuel were found, the number concentration was dominated by particles in the ultrafine mode and ca. 2/3 of particles were non-volatile. The PM mass was dominated by particles in accumulation mode. Main metal elements in case of HFO exhaust PM were V, Ni, Fe, Ca and Zn, in case of MGO Ca, Zn and P. V and Ni were typical tracers of HFO while Ca, Zn and P are tracers of the lubricant oil. EC makes up 10-38% of the PM mass, there were not found large differences between HFO and MGO fuels. EC and ash elements make up 23-40% of the PM mass. Organic matter makes up 25-60% of the PM. The measured EF(OC) were 0.59 ± 0.15 g/kg-fuel for HFO and 0.22 ± 0.01 g/kg-fuel for MGO. The measured EF(SO42-) were low, ca. 100-200 mg/kg-fuel for HFO with 1% fuel sulphur content (FSC), 70-85 mg/kg-fuel for HFO with 0.5% FSC and 3-6 mg/kg-fuel for MGO. This corresponds to 0.2-0.7% and 0.01-0.02% of fuel S converted to PM sulphate for HFO and MGO, respectively. The (scanning) transmission electron microscopy (TEM and STEM) images of the collected PM have shown three different types of particles: (1) soot composed mainly of C, O, sometimes N, and with traces of Si, S, V, Ca and Ni; (2) char and char-mineral particles composed of C, O, Ca and S (sometimes Si and Al) with traces of V and Ni and sometimes P and (3) amorphous, probably organic particles containing sulphur and some vanadium. The maps of elements obtained from STEM showed heterogeneous composition of primary soot particles with respect to the trace metals and sulphur. Composition of the char-mineral particles indicates that species like CaSO4, CaO and/or CaCO3, SiO2 and/or Al2SiO5, V2O5 and Fe3O4 may be present; the last two were also confirmed by analyses of FTIR spectra of the PM samples. The TPO of PM from the ship exhaust samples showed higher soot oxidation reactivity compared to automotive diesel soot, PM from the HFO exhaust is more reactive than PM from the MGO exhaust. This higher oxidation reactivity could be explained by high content of catalytically active contaminants; in particular in the HFO exhaust PM for which the energy-dispersive X-ray spectroscopy (EDXRF) analyses showed high content of V, Ni and S. Oxidative potential measured as a rate of consumption of consumption of Dithiothreitol (DTT) was for the first time measured on PM from ship exhaust. The obtained values were between 0.01 and 0.04 nmol-DTT/min/μg-PM, quite similar to oxidative potentials of PM collected in urban and traffic sites. The data obtained during the experiments add information on emission factors for both gaseous and PM-bound compounds from ship engines using different fuels and under different engine load conditions. Observed variability of the EFs illustrates uncertainties of these emission factors as a result of measurement uncertainties, influences from trace components of fuels and lubricants and from differences between individual engines.

  17. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    PubMed

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM 10 and PM 2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM 10 , 0.38 for PM 25 , 20.7 for SO 2 , and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM 10 , 0.30 for PM 2 5 , 7.5 for SO 2 , and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM 10 , 0.87 for PM 25 , 46.7 for SO 2 , and 15 for CO, while those of the BB-coal were 2.51 for PM 10 , 0.79 for PM 2.5 , 19.9 for SO 2 , and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM 10 , 0.12 for PM 2.5 , 6.4 for SO 2 , and 2.0 for CO, while those of the BB-coal were 0.30 for PM 10 , 0.094 for PM 2.5 , 2.4 for SO 2 , and 1.7 for CO. PM 10 and PM 2.5 elemental compositions are also presented for both types of coal tested in the study.

  18. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    PubMed

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  19. Sequential patterns of essential trace elements composition in Gracilaria verrucosa and its generated products

    NASA Astrophysics Data System (ADS)

    Izzati, Munifatul; Haryanti, Sri; Parman, Sarjana

    2018-05-01

    Gracilaria widely known as a source of essential trace elements. However this red seaweeds also has great potential for being developed into commercial products. This study examined the sequential pattern of essential trace elements composition in fresh Gracilaria verrucosa and a selection of its generated products, nemely extracted agar, Gracilaria salt and Gracilaria residue. The sample was collected from a brackish water pond, located in north part Semarang, Central Java. The collected sample was then dried under the sun, and subsequently processed into aformentioned generated products. The Gracilaria salt was obtain by soaking the sun dried Gracilaria overnight in fresh water overnight. The resulted salt solution was then boiled leaving crystal salt. Extracted agar was obtained with alkali agar extraction method. The rest of remaining material was considered as Gracilaria residue. The entire process was repeated 3 times. The compositin of trace elements was examined using ICP-MS Spectrometry. Collected data was then analyzed by ANOVA single factor. Resulting sequential pattern of its essential trace elements composition was compared. A regular table salt was used as controls. Resuts from this study revealed that Gracilaria verrucosa and its all generated products all have similarly patterned the composition of essential trace elements, where Mn>Zn>Cu>Mo. Additionally this pattern is similar to different subspecies of Gracilaria from different location and and different season. However, Gracilaria salt has distinctly different pattern of sequential essential trace elements composition compared to table salt.

  20. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lie, Zener Sukra; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id; Pardede, Marincan

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities inducedmore » by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.« less

Top