Sample records for trace element zoning

  1. Trace element mobility at the slab-mantle interface: constraints from "hybrid

    NASA Astrophysics Data System (ADS)

    Marocchi, M.; Tropper, P.; Mair, V.; Bargossi, G. M.; Hermann, J.

    2009-04-01

    Subduction mélanges and hybrid rocks are considered, together with mafic rocks, metasediments and serpentinite as an important volatile-bearing portion of subducting slabs (cf. Spandler et al., 2008 and references therein; Miller et al., 2009). In particular, metasomatic rocks occurring in exhumed HP mélanges have recently attracted growing interest for two main reasons: i) metasomatic rocks forming at the interface between ultramafic and crustal rocks of subducting slabs constitute new bulk compositions which can affect the redistribution of major and trace elements and modify the composition of slab fluids moving to the mantle wedge and ii) these mineral assemblages, consisting mainly of hydrous phases can potentially store and transport water at great depth in subduction zones. Ultramafic rocks belonging to the Hochwart peridotite (Ulten Zone, central-eastern Italian Alps) preserve a series of metasomatic mineral zones generated by infiltration of hydrous fluids/melts, which occurred at the gneiss-peridotite interface (Tumiati et al., 2007; Marocchi et al., 2009). The peridotite body of Mt. Hochwart represents an almost unique occurrence where subduction-related mantle metasomatism can be studied on an outcrop scale. The ultramafic body consists of metaperidotites exposed as a hectometre-size lens along a steep gully, associated to monomineralic zones that developed at the contact between the peridotite body and the garnet-bearing gneiss country rocks. The formation of the metasomatic zones composed exclusively of hydrous phases involved extensive H2O-metasomatism as already documented for the Ulten peridotites (Scambelluri et al., 2006; Marocchi et al., 2007). Whole-rock geochemistry and trace element composition of hydrous phases (phlogopite and amphibole) in different metasomatic zones indicate mobility of many elements, including elements such as Ta, which are considered to have scarce mobility in fluids. Trace element composition of accessory minerals in the phlogopite-rich zone suggests that the trace element signature of subduction zone fluids may be fractionated in this zone. The progressive depletion in some trace elements (LREE and LILE) and enrichment in Li from the gneiss towards the peridotite suggests a strong influence of bulk composition on the trace element budget of hydrous minerals. Since these metasomatic zones can be representative of the processes occurring at the slab-mantle interface, we can infer that metasomatic reactions between slab-derived fluids and ultramafic mantle wedge will follow a specific series of reactions and create mineral zones similar to those observed in this study. Despite the mobility of many elements, in the trace element profiles for amphibole and phlogopite across the different zones, we observe a rapid decrease even of the "fluid mobile" element contents within the reaction zone. With the exception of Li, we assist to an abrupt decrease of most of trace element concentrations going towards the peridotite side contact. Thus, according to the present study, it is not likely that the "crustal trace element signature" (i.e. LILE and LREE-enriched) could be able to travel far into the mantle. Our results further favour the evidence that the primary composition of subduction zone fluids reaching the source region of arc magmas is substantially modified by metasomatic reactions occurring in the mantle wedge. Furthermore, we underline that metasomatic rocks such as those observed at Mt. Hochwart are potentially able to transport H2O and other trace elements to greater depths in subduction zones. References: Marocchi M, Hermann J, Morten L (2007)-Lithos 99: 85-104. Marocchi M, Mair V, Tropper P, Bargossi GM (2009)-Mineral Petrol, in press Miller DP, Marschall RH, Schumacher JC (2009)- Lithos 107: 53-67. Scambelluri M, Hermann J, Morten L, Rampone E (2006)- Contrib Mineral Petrol 151:372-394. Spandler CJ, Hermann J, Faure K, Mavrogenes JA, Arculus RJ (2008)- Contrib Mineral Petrol 155: 181-198. Tumiati S, Godard G, Martin S, Klőtzli U, Monticelli D (2007)- Lithos 94: 148-167.

  2. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  3. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous concentric annuli towards crystal rims. Conversely, the medium rare earth elements (e.g. Gd, Eu and Sm) exhibit bowl-shaped zoning from core to rim, with no annuli, and core and rim compositions of the medium rare earth elements are the same throughout the population within crystals of differing size. Cr exhibits pronounced spiral zoning, and the average Cr content increases towards garnet rims. In all cases, spirals are centered on the geometric core of the crystals. These LA-ICP-MS maps highlight the complexity of garnet growth over a single prograde event, and indicate that there is still much to be learnt from the analysis of garnet using ever-improving analytical methods. We explore the potential causes of the variations in the distribution of trace elements in garnet, and assess how these zoning patterns may be used to refine our understanding of the intricacies of garnet crystallisation and the spatial and temporal degree of trace element equilibration during metamorphism.

  4. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    PubMed

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Dilbert, C.A.

    1984-01-01

    Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.

  6. Cryptic trace-element alteration of Anorthosite, Stillwater complex, Montana

    USGS Publications Warehouse

    Czamanske, G.K.; Loferski, P.J.

    1996-01-01

    Evidence of cryptic alteration and correlations among K, Ba, and LREE concentrations indicate that a post-cumulus, low-density aqueous fluid phase significantly modified the trace-element contents of samples from Anorthosite zones I and II of the Stillwater Complex, Montana. Concentrations of Ba, Ca, Co, Cr, Cu, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Sr, Th, Zn, and the rare-earth elements (REE) were measured in whole rocks and plagioclase separates from five traverses across the two main plagioclase cumulate (anorthosite) zones and the contiguous cumulates of the Stillwater Complex in an attempt to better understand the origin and solidification of the anorthosites. However, nearly the entire observed compositional range for many trace elements can be duplicated at a single locality by discriminating between samples rich in oikocrystic pyroxene and those which are composed almost entirely of plagioclase and show anhedral-granular texture. Plagioclase separates with high trace-element contents were obtained from the pyroxene-poor samples, for which maps of K concentration show plagioclase grains to contain numerous fractures hosting a fine-grained, K-rich phase, presumed to be sericite. Secondary processes in layered intrusions have the potential to cause cryptic disturbance, and the utmost care must be taken to ensure that samples provide information about primary processes. Although plagioclase from Anorthosite zones I and II shows significant compositional variation, there are no systematic changes in the major- or trace-element compositions of plagioclase over as much as 630 m of anorthosite thickness or 18 km of strike length. Plagioclase in the two major anorthosite zones shows little distinction in trace-element concentrations from plagioclase in the cumulates immediately below, between, and above these zones.

  7. Spatial distribution of dust-bound trace elements in Pakistan and their implications for human exposure.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Kanwal, Ayesha; Bhowmik, Avit Kumar; Sohail, Mohammad; Ullah, Rizwan; Ali, Syeda Maria; Alamdar, Ambreen; Ali, Nadeem; Fasola, Mauro; Shen, Heqing

    2016-06-01

    This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Metasomatic Reaction Zones as Monitors of Trace Element Transfer at the Slab-Mantle Interface: the Case of the Hochwart Peridotite (Ulten Zone, Italy)

    NASA Astrophysics Data System (ADS)

    Marocchi, M.; Hermann, J.; Bargossi, G. M.; Mair, V.; Morten, L.

    2006-12-01

    Ultramafic blocks belonging to the Hochwart peridotite outcrop (Ulten Zone, Italian Alps) preserve a series of metasomatic mineral zones generated by infiltration of Si-rich hydrous fluids which occurred at the gneiss- peridotite interface. The age of the high pressure metamorphism for the Hochwart complex has been constrained at 330 Ma (Tumiati et al., 2003, EPSL, 210, 509-526). The country rocks are stromatic gneisses consisting mainly of quartz, K-feldspar, garnet, kyanite, biotite and muscovite. The ultramafic body consists of strongly serpentinized metaperidotites which are exposed as a hectometre-size lens along a steep gully, associated to monomineralic zones that developed at the contact between the peridotite body and the garnet gneiss country rocks. The composition of the metasomatic zones has been investigated in detail and records an order of metasomatic zoning formed by phlogopite-rich to tremolite-anthophyllite-rich rocks going from the host gneiss towards the peridotite. In some cases, the ultramafics fade into the gneisses developing serpentine and talc which has replaced, presumably at lower temperatures, the serpentine matrix and occurs in association with chlorite. Phlogopite aggregates (phlogopitite) with accessory minerals (quartz + zircon + apatite) and metabasic pods (phlogopite and hornblende) also occur. Black tourmaline (schorl-dravite solid solution) has been found for the first time in the contact near the phlogopite zone, suggesting an external addition of elements (boron and fluorine) to the system at high temperature. The formation of the metasomatic zones composed exclusively of hydrous phases must have involved extensive H2O-metasomatism as already documented for the Ulten peridotites. The source for these fluids can be a system of trondhjemitic-pegmatitic dikes cutting the peridotite that would have channelled aqueous fluids into the ultramafic rocks. Whole-rock geochemistry and trace element (LA ICP-MS) composition of hydrous phases (phlogopite and amphibole) in different metasomatic zones indicate mobility of many elements, including elements such as Ta which are considered to have scarce mobility in fluids. Trace element composition of accessory minerals in the phlogopite-rich zone suggests that the trace element signature of subduction zone fluids may be fractionated in this zone. The progressive depletion in some trace elements (LREE) and enrichment in LILE and Li from the peridotite towards the gneiss suggests a strong influence of bulk composition on the trace element budget of hydrous minerals. Since the ultramafic blocks can be representative of metasomatic processes occurring at the slab-mantle interface, we can infer that metasomatic reactions between slab-derived fluids and ultramafic mantle wedge will follow a specific series of reactions, creating mineral zonation similar to those observed in this study. Our results further favour the evidence that the primary composition of subduction zone fluids is modified substantially by metasomatic reactions occurring in the mantle wedge.

  9. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  10. Guidelines for collecting and processing samples of stream bed sediment for analysis of trace elements and organic contaminants for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.; Capel, Paul D.

    1994-01-01

    A major component of the U.S. Geological Survey's National Water-Quality Assessment program is to assess the occurrence and distribution of trace elements and organic contaminants in streams. The first phase of the strategy for the assessment is to analyze samples of bed sediments from depositional zones. Fine-grained particles deposited in these zones are natural accumulators of trace elements and hydrophobic organic compounds. For the information to be comparable among studies in many different parts of the Nation, strategies for selecting stream sites and depositional zones are critical. Fine-grained surficial sediments are obtained from several depositional zones within a stream reach and composited to yield a sample representing average conditions. Sample collection and processing must be done consistently and by procedures specifically designed to separate the fine material into fractions that yield uncontaminated samples for trace-level analytes in the laboratory. Special coring samplers and other instruments made of Teflon are used for collection. Samples are processed through a 2.0-millimeter stainless-steel mesh sieve for organic contaminate analysis and a 63-micrometer nylon-cloth sieve for trace-element analysis. Quality assurance is maintained by strict collection and processing procedures, duplicate samplings, and a rigid cleaning procedure.

  11. An ion microprobe study of the intra-crystalline behavior of REE and selected trace elements in pyroxene from mare basalts with different cooling and crystallization histories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, C.K.; Papike, J.J.; Simon, S.B.

    1989-05-01

    To study the effects of crystallization sequence and rate on trace element zoning characteristics of pyroxenes, the authors used combined electron microprobe-ion microprobe techniques on four nearly isochemical Apollo 12 and 15 pigeonite basalts with different cooling rates and crystallization histories. Major and minor element zoning characteristics are nearly identical to those reported in the literature. All the pyroxenes have similar chondrite-normalized REE patterns: negative Eu anomalies, positive slopes as defined by Yb/Ce, and slopes of REE patterns from Ce to Sm much steeper than from Gd to Yb. These trace element zoning characteristics in pyroxene and the partitioning ofmore » trace elements between pyroxene and the melt are intimately related to the interplay among the efficiency of the crystallization process, the kinetics at the crystal-melt interface, the kinetics of plagioclase nucleation and the characteristics of the crystal chemical substitutions within both the pyroxene and the associated crystallizing phases (i.e. plagioclase).« less

  12. Distribution and mobility of selenium and other trace elements in shallow groundwater of the western San Joaquin Valley, California

    USGS Publications Warehouse

    Deverel, S.J.; Milliard, S.P.

    1988-01-01

    Samples of shallow groundwater that underlies much of the irrigated area in the western San Joaquin Valley, CA, were analyzed for various major ions and trace elements, including selenium. Concentrations of the major ions generally were similar for groundwater collected in the two primary geologic zones - the alluvial fan and basin trough. Selenium concentrations are significantly (α = 0.05) higher in the groundwater of the alluvial-fan zone than in that of the basin-trough zone. The concentrations of oxyanion trace elements were significantly correlated (α = 0.05) with groundwater salinity, but the correlations between selenium and salinity and between molybdenum and salinity were significantly different (α = 0.05) in the alluvial-fan geologic zone compared with those in the basin-trough geologic zone. The evidence suggests that the main factors affecting selenium concentrations in the shallow groundwater are the degree of groundwater salinity and the geologic source of the alluvial soil material.

  13. Three-dimensional flow and trace metal mobility in shallow Chalk groundwater, Dorset, United Kingdom

    NASA Astrophysics Data System (ADS)

    Schürch, Marc; Edmunds, W. Michael; Buckley, David

    2004-06-01

    The three-dimensional groundwater flow and the hydrogeochemical regime have been determined in the Bere Stream valley, North Dorset Downs, southern England. The dual porosity characteristics of the Portsdown Chalk have been established using geophysical and hydrochemical borehole logging. Chemical properties have been established using major and trace element analyses of depth samples and groundwaters. The study site is located at the unconfined-confined boundary of the Chalk aquifer, where it is overflowing in the observation boreholes. The Chalk dips locally at about 5 m/km to the south-east under Palaeogene confining beds and three distinctive flow horizons may be recognised. The Chalk groundwater is of Ca-HCO 3 type and three separate geochemical groundwater zones were also determined with depth, having different oxygen levels and trace element characteristics. (1) A shallow O 2-rich zone with around 80% dissolved O 2 and low trace element concentrations. (2) A mixing and transition zone with significant concentrations of trace elements and high trace metal concentrations at its base: manganese 29 μg/l, nickel 55 μg/l, cadmium 146 μg/l, and zinc 214 μg/l. (3) A deeper zone with depleted oxygen (5-20% dissolved O 2) and with longer water residence times shown by higher Mg/Ca and K/Na ratios as well as higher Sr and F. The groundwater geochemistry in the Chalk aquifer is dominated by incongruent reactions with the fine-grained carbonate sediments, which release trace element impurities to the water. Some of the metals are co-precipitated with Mn- and Fe-oxide phases on fissure surfaces, whilst producing a purer calcite. During subsequent recrystallisation to purer iron- and manganese-oxides on fissure surfaces under specific geochemical and hydrodynamic conditions, trace metals are released into the fissure water. The results demonstrate the need to monitor quality stratification and the changes in the groundwater baseline chemistry in areas close to the redox boundary which, in the dual porosity Chalk is likely to be a diffuse zone with exchange between oxygen poor matrix waters and more oxic water flowing through the fissures.

  14. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    NASA Astrophysics Data System (ADS)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the analyzed trace elements in groundwater do not pose any significant threat to the population living in this area.

  15. Feasibility of estimating cementation rates in a brittle fault zone using Sr/Ca partition coefficients for sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Foit, Franklin F.

    2000-04-01

    Cement phases such as calcite or quartz often incorporate trace elements from the parent fluids as they crystallize. Experimental sedimentary diagenesis indicates that trace element partition coefficients reflect rates of cementation. The applicability of these findings to fault zone cementation is examined as we make a preliminary attempt to estimate calcite cementation rate in a brittle fault zone directly from the fault-rock composition data. Samples for this study were collected from the Knoxville outcrop of the Saltville fault in Tennessee. The cementation rates for the fault rock samples range from 1×10 -12 to 3×10 -13 m3/ h per m, in agreement with some experimental rates and the rates reported for samples from the DSDP sites. When applied to a non-responsive pore-system model, these rates result in rapid precipitation sealing indicating the influence exerted by the surface-area/volume ratio of the pore network. We find it feasible to obtain a reasonable range of values for the cementation rate using the trace element partition method. However, the study also indicates the need for relatively accurate values for the trace/carrier element ratio in the fault zone syntectonic pore fluid, and exhumed cement.

  16. Orthopyroxene as a recorder of primitive achondrite petrogenesis: Major-, minor-, and trace-element systematics of orthopyroxene in Lodran. [Abstract only

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Spilde, M. N.; Fowler, G. W.; Shearer, C. K.

    1994-01-01

    Considerable attention has been paid recently to the primitive achondrites because they may form a link between chondrites and more differentiated achondrite meteorites. A recent paper by Miyamoto and Takeda addresses the thermal history of lodranites Yamato 74357 and MAC 88177 as inferred from chemical zoning of pyroxene and olivine determined by electron microprobe analyses. Their results suggested that interstitial melt was present and then extracted. We have taken the analysis of Lodran-type meteorites one step further by incorporating the techniques of Electromagnetic Pulse/Wavelength Dispersive Spectroscopy (EMP/WDS) compositional imaging and scanning ion mass spectroscopy (SIMS) analysis. Orthopyroxene in Lodran is strongly zoned in CaO, Al2O3, TiO2, and Cr2O3 within the last 10-30 microns from the grain boundaries. The rims are reversely zoned in Mg-Fe, exhibiting Mg enrichment, and compositions change from a fairly uniform Wo3En94 within the grains to Wo1En96 at the rims. CaO drops from 1.6 to 0.6 wt% and Al2O3, TiO2, and Cr2O3 exhibit similar depletions. MnO is fairly uniform throughout the grains at around 0.5 wt%. Olivine is also reversely zoned with respect to not only grain boundaries but also to fractures within the grains, giving many olivine grains a complex, patchy zoning pattern. Some of the core-rim trace-element systematics for orthopyroxene are illustrated. Because of the rather narrow zoned rims in Lodran orthopyroxene and the low trace-element abundances, it is difficult to clearly resolve the trace-element systematics. Nevertheless it is evident that the cores are enriched in the incompatible trace elements Ce, Nd, Dy, Er, Yb, Y, and Zr relative to the rims.

  17. Evaluation of frictional melting on the basis of trace element analyses of fault rocks

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Ujiie, K.

    2016-12-01

    Pseudotachylytes (solidified frictional melts produced during seismic slip) found in exhumed accretionary complexes are considered to have formed originally at seismogenic depths, and help our understanding of the dynamics of earthquake faulting in subduction zones. The frictional melting should affect rock chemistry. Actually, major element compositions of unaltered pseudotachylyte matrix in the Shimanto accretionary complex are reported to be similar to that of illite, implying disequilibrium melting in the slip zone (Ujiie et al., 2007). Bulk-rock trace element analyses of the pseudotachylyte-bearing fault rocks also revealed their shift to the clay-mineral-like compositions (Honda et al., 2011). Toward better understanding of the frictional melting using chemical means, we carried out detailed major and trace element analyses for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., 2007). About one milligram each of samples was collected from a rock chip along the microstructure by using the PC-controlled micro-drilling apparatus, and then analyzed by ICP-MS. Host rocks showed a series of compositional trends controlled by mixing of detrital sedimentary components. Unaltered part of the pseudotachylyte vein, on the other hand, showed striking enrichment of fluid-immobile trace elements, consistent with selective melting of fine-grained, clay-rich matrix of the fault rock. Importantly, completely altered parts of the dark veins exhibit essentially the same characteristics as the unaltered part, indicating that the trace element composition of the pseudotachylyte is well preserved even after considerable alteration in the later stages. These results demonstrate that trace element and structural analyses are useful to detect preexistence of pseudotachylytes resulting from selective frictional melting of clay minerals. It has been controversial that pseudotachylytes are rarely formed or rarely preserved. Trace element analyses on clay-rich localized slipping zones shed light on this topic. References: Ujiie et al. (2007) J. Struct. Geol. 29, 599-613; Honda et al. (2011) GRL 38, L06310.

  18. Application of major and trace elements as well as boron isotopes for tracing hydrochemical processes: the case of Trifilia coastal karst aquifer, Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, G.

    2009-09-01

    The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.

  19. Characterization of frictional melting processes in subduction zone faults by trace element and isotope analyses

    NASA Astrophysics Data System (ADS)

    Ishikawa, T.; Ujiie, K.

    2017-12-01

    Pseudotachylytes found in exhumed accretionary complexes, which are considered to be formed originally at seismogenic depths, are of great importance for elucidating frictional melting and concomitant dynamic weakening of the fault during earthquake in subduction zones. However, fluid-rich environment of the subduction zone faults tends to cause extensive alteration of the pseudotachylyte glass matrix in later stages, and thus it has been controversial that pseudotachylytes are rarely formed or rarely preserved. Chemical analysis of the fault rocks, especially on fluid-immobile trace elements and isotopes, can be a useful means to identify and quantify the frictional melting occurred in subduction zone faults. In this paper, we report major and trace element and Sr isotope compositions for pseudotachylyte-bearing dark veins and surrounding host rocks from the Mugi area of the Shimanto accretionary complex (Ujiie et al., J. Struct. Geol. 2007). Samples were collected from a rock chip along the microstructure using a micro-drilling technique, and then analyzed by ICP-MS and TIMS. Major element compositions of the dark veins showed a clear shift from the host rock composition toward the illite composition. The dark veins, either unaltered or completely altered, were also characterized by extreme enrichment in some of the trace elements such as Ti, Zr, Nb and Th. These results are consistent with disequilibrium melting of the fault zone. Model calculations revealed that the compositions of the dark veins can be produced by total melting of clay-rich matrix in the source rock, leaving plagioclase and quartz grains almost unmolten. The calculations also showed that the dark veins are far more enriched in melt component than that expected from the source rock compositions, suggesting migration and concentration of frictional melt during the earthquake faulting. Furthermore, Sr isotope data of the dark veins implied the occurrence of frictional melting in multiple stages. These results demonstrate that trace element and isotope analyses are useful not only to detect preexistence of pseudotachylytes but also to evaluate the frictional melting in subduction zone faults quantitatively.

  20. Trace elements in garnet reveal multiple fluid pulses in eclogite, Ring Mountain, CA

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Page, F. Z.; Lozier, E.; Feineman, M. D.; Zack, T.; Mertz-Kraus, R.

    2017-12-01

    Garnetite veins in a hornblende-eclogite block from Ring Mountain, CA, offer a unique opportunity to investigate the chemical composition of fluid interactions during mélange formation in subduction zones. Garnet occurs as matrix porphyroblasts (2-5 mm) and in 1-5 cm garnetite veins that are laterally continuous up to 10 m across the outcrop. Garnet at the vein edges is slightly larger (300-600 µm) than within the veins (5-50 µm), and records a protracted history of vein garnet growth. Major and trace element concentrations in garnet were determined using EPMA and LA-ICP-MS, respectively. Detailed rim-to-rim trace element traverses were performed using 12 µm spots at 15 µm spacing across one matrix garnet (2 mm) and three vein edge garnet grains (375-570 µm). Zoning in Mn, Ca, and rare earth elements (REE) reveal 5 distinct garnet growth zones. Zone 1, found only in matrix garnet cores, is characterized by decreasing Mn and increasing Ca and is interpreted to reflect prograde zoning. Zones 2-5 are found in the mantles and rims of matrix garnet, and comprise the entirety of vein garnet. Garnet growth in Zones 2-5 is likely heavily influenced by internally- and externally-derived fluids, based on texture and chemistry. One key fluid-related texture of Zones 2-5 is oscillatory birefringence zoning, likely the result of incorporation of small amounts of water into the garnet structure (i.e., hydrogrossular). Zones 2 and 3 are characterized by progressive enrichment in heavy to middle REE from Zone 2 outward into Zone 3. We attribute this to diffusion-limited uptake of REE, wherein the heaviest REE are incorporated first, followed by progressively lighter REE. Zone 3 is also characterized by a high-Mn annulus that appears decoupled from the trace elements. Zone 4 is characterized by a sudden drop in Ca and enrichment in MREE, particularly Dy and Tb, possibly due to epidote breakdown. Zone 5 is characterized by strong enrichment in Mn+REE, with high-HREE and high-MREE oscillatory zones. Oxygen isotope values (δ18O, VSMOW) in Zone 1 (matrix cores) and Zones 2-4 are consistently 10 ‰, indicating that the fluid source for Zones 2-4 is likely internally-derived, or derived from mélange of similar bulk composition. δ18O values for Zone 5 cluster at 7 ‰, which indicates the addition of an externally-derived fluid with low δ18O and high Mn+REE.

  1. Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, J.N.

    1989-01-01

    The abundance, P-T stability, solubility, and element-partitioning behavior of minerals such as rutile, garnet, sphene, apatite, zircon, zoisite, and allanite are critical variables in models for mass transfer from the slab to the mantle wedge in deep regions of subduction zones. The influence of these minerals on the composition of subduction-related magmas has been inferred (and disputed) from inverse modelling of the geochemistry of island-arc basalt, or by experiment. Although direct samples of the dehydration + partial-melting region of a mature subduction zone have not been reported from subduction complexes, garnet amphibolites from melanges of circumpacific and Caribbean blueschist terranes reflect high T (>600??C) conditions in shallower regions. Such rocks record geochemical processes that affected deep-seated, high-T portions of paleo-subduction zones. In the Catalina Schist, a subduction-zone metamorphic terrane of southern California, metasomatized and migmatitic garnet amphibolites occur as blocks in a matrix of meta-ultramafic rocks. This mafic and ultramafic complex may represent either slab-derived material accreted to the mantle wedge of a nascent subduction zone or a portion of a shear zone closely related to the slab-mantle wedge contact, or both. The trace-element geochemistry of the complex and the distribution of trace elements among the minerals of garnet amphibolites were studied by INAA, XRF, electron microprobe, and SEM. In order of increasing alteration from a probable metabasalt protolith, three common types of garnet amphibolite blocks in the Catalina Schist are: (1) non-migmatitic, clinopyroxene-bearing blocks, which are compositionally similar to MORB that has lost an albite component; (2) garnet-amphibolite blocks, which have rinds that reflect local interaction between metabasite, metaperidotite, and fluid; and (3) migmatites that are extremely enriched in Th, HFSE, LREE, and other trace elements. These trace-element enrichments are mineralogically controlled by rutile, garnet, sphene, apatite, zircon, zoisite, and allanite. Alkali and alkaline earth elements are much less enriched in the solid assemblage, and thus appear to be decoupled from the other elements in the inferred metasomatic process(es). The compositions of migmatitic garnet amphibolite blocks seem to complement that of "average" island-arc tholeiite. Trace-element metasomatism reflects fluid-solid, rather than melt-solid, interaction. The metasomatic effects indicate that H2O-rich fluid, perhaps with a significant component of Na-Al silicate and alkalis, carried Th, U, Sr, REE, and HFSE. Fractionations of LREE in migmatites resemble those of migmatitic metasedimentary rocks underlying the mafic and ultramafic complex. "Exotic" LREE deposited in allanite in migmatites could have been derived from fluids in equilibrium with subducted sediment. If the paleo-subduction zone represented by the mafic and ultramafic complex of the Catalina Schist had continued its thermal and fluid evolution, a selvage of similarly enriched rocks might have been generated along the slab-mantle wedge contact between ~30 and 85 km depth. Rocks affected by "subduction-zone metasomatism," although rarely recognized at the surface, could be volumetrically significant products of the initiation of subduction and may prove to be geochemical probes of convergent margins that approach the significance of xenoliths in the study of other magmatic environments. ?? 1989.

  2. Nanogeochemistry of hydrothermal magnetite

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Simon, Adam C.; Suvorova, Alexandra; Knipping, Jaayke; Roberts, Malcolm P.; Rubanov, Sergey; Dodd, Aaron; Saunders, Martin

    2018-06-01

    Magnetite from hydrothermal ore deposits can contain up to tens of thousands of parts per million (ppm) of elements such as Ti, Si, V, Al, Ca, Mg, Na, which tend to either structurally incorporate into growth and sector zones or form mineral micro- to nano-sized particles. Here, we report micro- to nano-structural and chemical data of hydrothermal magnetite from the Los Colorados iron oxide-apatite deposit in Chile, where magnetite displays both types of trace element incorporation. Three generations of magnetites (X-Z) were identified with concentrations of minor and trace elements that vary significantly: SiO2, from below detection limit (bdl) to 3.1 wt%; Al2O3, 0.3-2.3 wt%; CaO, bdl-0.9 wt%; MgO, 0.02-2.5 wt%; TiO2, 0.1-0.4 wt%; MnO, 0.04-0.2 wt%; Na2O, bdl-0.4 wt%; and K2O, bdl-0.4 wt%. An exception is V2O3, which is remarkably constant, ranging from 0.3 to 0.4 wt%. Six types of crystalline nanoparticles (NPs) were identified by means of transmission electron microscopy in the trace element-rich zones, which are each a few micrometres wide: (1) diopside, (2) clinoenstatite; (3) amphibole, (4) mica, (5) ulvöspinel, and (6) Ti-rich magnetite. In addition, Al-rich nanodomains, which contain 2-3 wt% of Al, occur within a single crystal of magnetite. The accumulation of NPs in the trace element-rich zones suggest that they form owing to supersaturation from a hydrothermal fluid, followed by entrapment during continuous growth of the magnetite surface. It is also concluded that mineral NPs promote exsolution of new phases from the mineral host, otherwise preserved as structurally bound trace elements. The presence of abundant mineral NPs in magnetite points to a complex incorporation of trace elements during growth, and provides a cautionary note on the interpretation of micron-scale chemical data of magnetite.

  3. Enzyme leaching of surficial geochemical samples for detecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota

    USGS Publications Warehouse

    Clark, Robert J.; Meier, A.L.; Riddle, G.; ,

    1990-01-01

    One objective of the International Falls and Roseau, Minnesota, CUSMAP projects was to develop a means of conducting regional-scale geochemical surveys in areas where bedrock is buried beneath complex glacially derived overburden. Partial analysis of B-horizon soils offered hope for detecting subtle hydromorphic trace-element dispersion patterns. An enzyme-based partial leach selectively removes metals from oxide coatings on the surfaces of soil materials without attacking their matrix. Most trace-element concentrations in the resulting solutions are in the part-per-trillion to low part-per-billion range, necessitating determinations by inductively coupled plasma/mass spectrometry. The resulting data show greater contrasts for many trace elements than with other techniques tested. Spatially, many trace metal anomalies are locally discontinuous, but anomalous trends within larger areas are apparent. In many instances, the source for an anomaly seems to be either basal till or bedrock. Ground water flow is probably the most important mechanism for transporting metals toward the surface, although ionic diffusion, electrochemical gradients, and capillary action may play a role in anomaly dispersal. Sample sites near the Rainy Lake-Seine River fault zone, a regional shear zone, often have anomalous concentrations of a variety of metals, commonly including Zn and/or one or more metals which substitute for Zn in sphalerite (Cd, Ge, Ga, and Sn). Shifts in background concentrations of Bi, Sb, and As show a trend across the area indicating a possible regional zoning of lode-Au mineralization. Soil anomalies of Ag, Co, and Tl parallel basement structures, suggesting areas that may have potential for Cobalt/Thunder Baytype silver viens. An area around Baudette, Minnesota, which is underlain by quartz-chlorite-carbonate-altered shear zones, is anomalous in Ag, As, Bi, Co, Mo, Te, Tl, and W. Anomalies of Ag, As, Bi, Te, and W tend to follow the fault zones, suggesting potential for lode-Au deposits. Soil anomalies of Co, Mo, and Tl appear to follow northwest-striking structures that cross the shear zones, suggesting that Thunder Bay-type mineralization may have overprinted earlier mineralization along the shear zones.

  4. Trace Element Composition of Phytoplankton Along the US GEOTRACES Pacific Zonal Transect: Comparing Single-Cell SXRF Quotas, Chemical Leaching, and Bulk Particle Digestion

    NASA Astrophysics Data System (ADS)

    Ohnemus, D.; Rauschenberg, S.; Twining, B. S.

    2014-12-01

    The elemental stoichiometries of phytoplankton are critical ecological and chemical parameters due to biological participation in, if not control over, the marine cycles of many GEOTRACES trace elements and isotopes (TEI). Elemental stoichiometries in euphotic zone protists can be used as end-members in biogeochemical models for bioactive elements (e.g. Fe, Si) and can provide insight into relationships found in the deep ocean and sediments (e.g. Cd:P, Zn:Si) due to broad and organism-specific geochemical links. Though sub-euphotic zone (e.g. hydrothermal, margin-sourced lateral) inputs and processes are also interesting aspects of these cycles, biological incorporation of TEIs in the euphotic zone is, fundamentally, where "the rubber meets the road." Using the 2013 Pacific GEOTRACES super stations and Peruvian coastal transect as ecological waypoints, we present and compare results from three methods for studying trace elemental composition of phytoplankton: single-cell synchrotron x-ray fluorescence (SXRF); weak chemical leaching (acetic acid/hydroxylamine); and total chemical digestion (HNO3/HCl/HF). This combination of techniques allows examination of taxon-specific trends in biotic stoichiometry across the Eastern Pacific and also provides traditional bulk chemical metrics for both biotic and bulk shallow particulate composition.

  5. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile

    NASA Astrophysics Data System (ADS)

    Broughm, Shannon G.; Hanchar, John M.; Tornos, Fernando; Westhues, Anne; Attersley, Samuel

    2017-12-01

    Interpretation of the mineralizing environment of magnetite-apatite deposits remains controversial with theories that include a hydrothermal or magmatic origin or a combination of those two processes. To address this controversy, we have analyzed the trace element content of magnetite from precisely known geographic locations and geologic environments from the Precambrian magnetite-apatite ore and host rocks in Kiruna, Sweden, and the Pliocene-Holocene El Laco volcano in the Atacama desert of Chile. Magnetite samples from Kiruna have low trace element concentrations with little chemical variation between the ore, host, and related intrusive rocks. Magnetite from andesite at El Laco, and dacite from the nearby Láscar volcano, has high trace element concentrations typical of magmatic magnetite. El Laco ore magnetite have low trace element concentrations and displays growth zoning in incompatible elements (Si, Ca, and Ce), compatible elements (Mg, Al, and Mn), large-ion lithophile element (Sr), and high field strength element (Y, Nb, and Th). The El Laco ore magnetite are similar in composition to magnetite that has been previously interpreted to have crystallized from hydrothermal fluids; however, there is a significant difference in the internal zoning patterns. At El Laco, each zoned element is either enriched or depleted in the same layers, suggesting the magnetite crystallized from a volatile-rich, iron-oxide melt. In general, the compositions of magnetite from these two deposits plot in very wide fields that are not restricted to the proposed fields in published discriminant diagrams. This suggests that the use of these diagrams and genetic models based on them should be used with caution.

  6. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    PubMed Central

    Rompalski, Przemysław; Cybulski, Krzysztof; Chećko, Jarosław

    2014-01-01

    The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB), which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn. PMID:24967424

  7. SIMS analyses of minor and trace element distributions in fracture calcite from Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Denniston, Rhawn F.; Shearer, Charles K.; Layne, Graham D.; Vaniman, David T.

    1997-05-01

    Fracture-lining calcite samples from Yucca Mountain, Nevada, obtained as part of the extensive vertical sampling in studies of this site as a potential high-level waste repository, have been characterized according to microbeam-scale (25-30 μm) trace and minor element chemistry, and cathodoluminescent zonation patterns. As bulk chemical analyses are limited in spatial resolution and are subject to contamination by intergrown phases, a technique for analysis by secondary ion mass spectrometry (SIMS) of minor (Mn, Fe, Sr) and trace (REE) elements in calcite was developed and applied to eighteen calcite samples from four boreholes and one trench. SIMS analyses of REE in calcite and dolomite have been shown to be quantitative to abundances < 1 × chondrite. Although the low secondary ion yields associated with carbonates forced higher counting times than is necessary in most silicates, Mn, Fe, Sr, and REE analyses were obtained with sub-ppm detection limits and 2-15% analytical precision. Bulk chemical signatures noted by Vaniman (1994) allowed correlation of minor and trace element signatures in Yucca Mountain calcite with location of calcite precipitation (saturated vs. unsaturated zone). For example, upper unsaturated zone calcite exhibits pronounced negative Ce and Eu anomalies not observed in calcite collected below in the deep unsaturated zone. These chemical distinctions served as fingerprints which were applied to growth zones in order to examine temporal changes in calcite crystallization histories; analyses of such fine-scale zonal variations are unattainable using bulk analytical techniques. In addition, LREE (particularly Ce) scavenging of calcite-precipitating solutions by manganese oxide phases is discussed as the mechanism for Ce-depletion in unsaturated zone calcite.

  8. Spinel from Apollo 12 Olivine Mare Basalts: Chemical Systematics of Selected Major, Minor, and Trace Elements

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.; Spilde, M. N.

    2002-01-01

    Spinels from Apollo 12 Olivine basalts have been studied by Electron and Ion microprobe techniques. The zoning trends of major, minor and trace elements provide new insights into the conditions under which planetary basalts form. Additional information is contained in the original extended abstract.

  9. Magma Chamber of the 26.5 ka Oruanui Eruption, Taupo Volcano, New Zealand

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Anderson, A. T.; Wilson, C. J.; Davis, A. M.

    2004-12-01

    We have investigated melt inclusions and their host quartz crystals from the Bishop-Tuff-sized 26.5 ka Oruanui eruption at Taupo volcano, New Zealand. Compositions (major and trace elements, H2O and CO2) of melt inclusions and cathodoluminescence (CL) images of quartz were obtained for eight individual pumices from early, middle and late depositional units. All melt inclusions are high-silica weakly peraluminous rhyolites. Melt inclusions for different eruptive phases have similar ranges of H2O contents (3.8-5.2 wt %), but late-erupted samples have higher CO2 contents (mostly > 140 ppm). A positive correlation between CO2 and compatible trace elements such as Sr suggests that crystallization and melt entrapment occurred under gas-saturated conditions. Trace elements variations in melt inclusions are consistent with fractionation of 30-40 wt % crystals (plagioclase+quartz+pyroxene+amphibole). Crystal contents in pumices, trace-element contents in melt inclusions, and CL zoning patterns of quartz show no correlation with eruptive phases, suggesting that the Oruanui magma was well mixed before eruption. Some Oruanui quartz crystals contain distinctive CL zonings with a jagged ('restitic') core mantled by a black CL zone. Trace element variations in melt inclusions in the 'restitic' cores are consistent with fractionation of Ba-bearing minerals such as sanidine and/or biotite, both of which are rare or absent in rocks erupted from Taupo volcanic center. The above evidence suggests that Oruanui rhyolite is generated by assimilation of previous intruded rocks or country rocks, differentiated by crystal fractionation, and then mixed prior to eruption. Despite the differences in trace element and volatile contents, and crystal assemblages, both Bishop Tuff and Oruanui magmas involve crystal fractionation as one of the main differentiation mechanisms during their evolution. However, there are pronounced differences in the pre-eruptive stratification of the two chambers, which may reflect the tectonic settings, eruption rates, and ages of the systems.

  10. The spatial distribution of major and trace elements in the surface sediments from the northeastern Beibu Gulf, South China Sea

    NASA Astrophysics Data System (ADS)

    Ge, Q.; Xue, Z. G.

    2017-12-01

    Major and trace elements contents and grain size were analyzed for surface sediments retrieved from the northeastern Beibu (Tonkin) Gulf. The study area was divided into four zones: Zone I locates in the northeastern coastal area of the gulf, which received large amount of the fluvial materials from local rivers; Zone II locates in the center of the study area, where surface sediments is from multiple sources; Zone III locates in the Qiongzhou Strait, which is dominated by material from the Pearl River and Hainan Island; Zone IV locates in the southwest of the study area, and the sediments mainly originated from the Red River. Statistical analyses of sediment geochemical characteristics reveal that grain size is the leading factor for elementary distribution, which is also influenced by hydrodynamics, mineral composition of terrigenous sediments, anthropogenic activity, and authigenic components.

  11. The role of high-energy synchrotron radiation in biomedical trace element research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pounds, J.G.; Long, G.J.; Kwiatek, W.M.

    1987-01-01

    This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation andmore » maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.« less

  12. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2017-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation thus plays an important role in resetting U-Pb systematics and allows the timing of shear zone development to be linked to the early stages of eclogite exhumation at ca. 405 Ma. Atom-probe analyses of adjacent subgrains, one that has recrystallized and one with an inherited age, will provide insight into trace-element mobility on the nm-scale.

  13. Deformation Enhanced Recrystallization of Titanite: Insight from the Western Gneiss Region Ultrahigh-Pressure Terrane

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Reddy, S. M.; Blatchford, H.; Whitney, D. L.; Kirkland, C. L.; Teyssier, C.; Evans, N. J.; McDonald, B.

    2016-12-01

    Titanite readily recrystallizes due to metamorphism, deformation, and/or fluids making it an ideal chronometer for tracking the exhumation of high-grade rocks. The Western Gneiss Region (WGR), Norway, is a giant UHP terrane exhumed as a fairly coherent slab. Parts of the WGR underwent little deformation during exhumation; however, meters-scale shear zones, located across the WGR, deformed over a range of pressures, from (U)HP to amphibolite facies. Titanite from quartzofeldpathic gneiss within, directly adjacent to, and 300 m away from a mylonitic shear zone within the southern WGR have been analyzed to track exhumation and investigate effects of deformation on recrystallization and trace-element mobility. EBSD was used to characterize the microstructural evolution of the gneisses, and trace-element concentrations and timing of recrystallization were estimated by split-stream LA-ICPMS. Titanite grain size decreases from outside (>200) to inside (<75 µm) the shear zone. Gneiss in and directly adjacent to the shear zone contain partially to completely recrystallized grains, with 207-corrected 206Pb/238U ages of <405 Ma. Gneiss within the shear zone shows a greater percentage of recrystallized grains. EBSD data indicate that some titanite comprises multiple subgrains within an optically coherent single grain. Subgrains in titanite cores show evidence of inherited radiogenic Pb, whereas subgrains in rims and tails of deformed sigma grains were recrystallized. In a gneiss directly adjacent to the shear zone, optically coherent grains are zoned, with increasing Sr and decreasing Zr from core to rim; titanite subgrains within the shear-zone gneiss are too small to analyze. In comparison, titanite from the gneiss outside the shear zone does not show any internal microstructures or evidence for Scandian recrystallization and has low U and high 204Pb. These results show that most trace elements are unaffected by deformation of titanite; however, Pb is mobile. Deformation thus plays an important role in resetting U-Pb systematics and allows the timing of shear zone development to be linked to the early stages of eclogite exhumation at ca. 405 Ma. Atom-probe analyses of adjacent subgrains, one that has recrystallized and one with an inherited age, will provide insight into trace-element mobility on the nm-scale.

  14. Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Xia, Qiong-Xia; Zhou, Li-Gang

    2017-09-01

    Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet-forming reactions and the property of metamorphic fluids or anatectic melts. Mineral inclusions not only present key clues to identify the different origins of garnet, but also serve as sound candidates for the temporal constraint on garnet growth.

  15. Geochemistry of continental subduction-zone fluids

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Hermann, Joerg

    2014-12-01

    The composition of continental subduction-zone fluids varies dramatically from dilute aqueous solutions at subsolidus conditions to hydrous silicate melts at supersolidus conditions, with variable concentrations of fluid-mobile incompatible trace elements. At ultrahigh-pressure (UHP) metamorphic conditions, supercritical fluids may occur with variable compositions. The water component of these fluids primarily derives from structural hydroxyl and molecular water in hydrous and nominally anhydrous minerals at UHP conditions. While the breakdown of hydrous minerals is the predominant water source for fluid activity in the subduction factory, water released from nominally anhydrous minerals provides an additional water source. These different sources of water may accumulate to induce partial melting of UHP metamorphic rocks on and above their wet solidii. Silica is the dominant solute in the deep fluids, followed by aluminum and alkalis. Trace element abundances are low in metamorphic fluids at subsolidus conditions, but become significantly elevated in anatectic melts at supersolidus conditions. The compositions of dissolved and residual minerals are a function of pressure-temperature and whole-rock composition, which exert a strong control on the trace element signature of liberated fluids. The trace element patterns of migmatic leucosomes in UHP rocks and multiphase solid inclusions in UHP minerals exhibit strong enrichment of large ion lithophile elements (LILE) and moderate enrichment of light rare earth elements (LREE) but depletion of high field strength elements (HFSE) and heavy rare earth elements (HREE), demonstrating their crystallization from anatectic melts of crustal protoliths. Interaction of the anatectic melts with the mantle wedge peridotite leads to modal metasomatism with the generation of new mineral phases as well as cryptic metasomatism that is only manifested by the enrichment of fluid-mobile incompatible trace elements in orogenic peridotites. Partial melting of the metasomatic mantle domains gives rise to a variety of mafic igneous rocks in collisional orogens and their adjacent active continental margins. The study of such metasomatic processes and products is of great importance to understanding of the mass transfer at the slab-mantle interface in subduction channels. Therefore, the property and behavior of subduction-zone fluids are a key for understanding of the crust-mantle interaction at convergent plate margins.

  16. Trace element fluxes in sediments of an environmentally impacted river from a coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S

    2015-10-01

    Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.

  17. Geochemical study of stream waters affected by mining activities in the SE Spain

    NASA Astrophysics Data System (ADS)

    Garcia-Lorenzo, Maria Luz; Perez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Bech, Jaime

    2015-04-01

    Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. According to transport process, three types of pollution could be established: a) Primary contamination, formed by residues placed close to the contamination sources; b) Secondary contamination, produced as a result of transport out of its production areas; c) Tertiary contamination. The aim of this work was to study trace element in water samples affected by mining activities and to apply the MINTEQ model for calculating aqueous geochemical equilibria. The studied area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. As a result, a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues are present. For this study, 36 surficial water samples were collected after a rain episode in 4 different areas. In these samples, the trace element content was determined by by flame atomic absorption spectrometry (Fe and Zn), electrothermal atomization atomic absorption spectrometry (Pb and Cd), atomic fluorescence spectrometry (As) and ICP-MS for Al. MINTEQA2 is a geochemical equilibrium speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting and was applied to collected waters. Zone A: A5 is strongly influenced by tailing dumps and showed high trace element content. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH. The MINTEQ model application suggested that Zn and Cd could precipitate as carbonate (hidrocincite, smithsonite and otavite). A9 also showed acid pH and high trace element content; is influenced by tailing dumps and also by waters from gully watercourses, transporting materials from Sierra Minera. The MINTEQ simulation showed that Pb and Ca could precipitate as sulphates (anglesite and gypsum). Waters affected by secondary contamination have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The MINTEQ model results showed that in A10 and A14, Al could precipitate as diaspore but also carbonates could be formed, particularly dolomite. These model in A12 sample showed that soluble Zn could precipitate as carbonate and Al as oxyhydroxide, similarly than in A13. A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. The speciation model showed that in A2, Cd and Zn could precipitate as carbonates while Al as oxihydroxide. In A6, the model suggested that soluble Pb could precipitate as carbonate (hidrocerusite and cerusite) or as hydroxide; Al as diaspore, Ca as calcite and Fe as hematite. Zone B: All waters are strongly affected by mining activities and showed acid pH, high trace element content and high content of soluble sulphates. The MINTEQ results showed that in B8, Fe could precipitate as hydroxychloride and in B12 could form alunite. In B9, B10, B13 y B14, the model estimates the precipitation of anglesite, gypsum and Fe hydroxichloride (B9 and B10), diaspore in B13 and B14, and gypsum and Fe hydroxychloride in B13. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As, Zn and Cd. In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. In all samples, except C2, the MINTEQ model showed that a lot of efflorescences could be formed, mainly sulphates. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. MINTEQ model results showed that elements could precipitate as jarosite but also anglesite in D8 and gypsum in D9, D11 and D12. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements. The MINTEQ model suggested that Al could precipitate as diaspore, gibbsite and alunite. The applied model is an appropriate tool for the analysis of waters affected by mining activities. The obtained simulations confirm natural attenuation processes.

  18. SIMS Investigations on Growth and Sector Zoning in Natural Hydrothermal Quartz: Isotopic and Trace Element Analyses

    NASA Astrophysics Data System (ADS)

    May, E.; Vennemann, T. W.; Baumgartner, L. P.; Meisser, N.

    2014-12-01

    Quartz is the most abundant mineral in the Earth's crust and is found in virtually every geological context. Despite its ubiquity and the detailed studies on the conditions of quartz crystallization, some questions concerning its growth and sector zoning with regard to trace element incorporation and oxygen isotope fractionations and the implications thereof for interpretations on the conditions of formation remain (e.g., Jourdan et al., 2009). This study presents new in-situ measurements of trace element and oxygen isotope ratios on natural hydrothermal quartz from an extensional gold-bearing quartz vein in the western Swiss Alps. The temperature of formation of the veins is estimated by quartz-hematite oxygen isotope thermometry to be about 360°C. A detailed SEM-CL study of this sample shows cyclic lamellar growth, alternating with phases of dissolution that are directly followed by macro-mosaic growth of the quartz, before returning to a cyclic lamellar growth again. Trace element concentrations (measured for Na, K, Li, Al, and Ti) notably showed Al/Si variations of three orders of magnitude and coupled Al and Li variations, likely substituting for Si in different growth zones with lower values in macro-mosaic zones precipitating after the period of dissolution. The oxygen isotope composition of the crystal, in contrast, is homogeneous through all growth zones (δ18O values between 15.6‰ and 16.2‰) indicating that the fluid must have been buffered by the host-rock and/or the source of the fluid remained the same despite the period of quartz dissolution. Furthermore, the temperature during crystallization of the quartz crystal has likely also remained similar. The fact that no variations are measured in oxygen isotope compositions but some variations in trace element contents may suggest that changes in pressure were important during the formation of this quartz crystal. Give the pressure effects on the solubility of quartz (Fournier and Potter, 1982), both the cyclic character of quartz growth and perhaps also the changes in Al/Si may be related to pressure variations caused by seismic activity during retrograde Alpine metamorphism. A-L. Jourdan et al. (2009) Mineralogical Magazine, 73, 615-632. R.O. Fournier and R.W. Potter (1982) Geochimica et Cosmochimica Acta, 46, 1969-1973.

  19. Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from Bahía Concepción, Gulf of California.

    PubMed

    Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Baturina, Elena Lounejeva; Sánchez-Rodríguez, Ignacio; Delgadillo-Hinojosa, Francisco; Borges-Souza, José

    2018-03-01

    We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, C org , S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Mapping age and trace elements using laser ablation split-stream (LASS) ICPMS

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Hacker, B. R.; Cottle, J. M.

    2012-12-01

    One of the biggest challenges in the determination of the timing and rates of metamorphic processes is tying the age of a particular mineral to the conditions (i.e., pressure, temperature, fluid composition) at which that phase grew. Conventional microbeam techniques increase our understanding of crustal evolution by enabling this linkage; e.g., x-ray maps of monazite allow us to pinpoint grain segments that grew under a different set of conditions, cathodoluminescence images of zircon reveal zoning patterns and hence targets for dating different metamorphic and/or igneous events, and rare-earth element (REE) transects across garnet reveal the budget of a variety of trace elements during a metamorphic episode, to name but a few. More recent advances in LA-ICPMS and SIMS have allowed the ability to produce age maps or trace element maps—thus further our understanding of crystallization processes—but not both. Here we employ laser ablation split-stream (LASS) to quantitatively image the age, and trace element signature of datable phases such as zircon, monazite, titanite, and rutile in metamorphic rocks on the micron scale. By mapping the age and TE signature of a metamorphic phase, we can better interpret the metamorphic stage at which all portions of that phase grew, and relate it to other phases/portions of phases within that rock, such as garnet. For example, zircons and monazites from from eclogites reveal complex zoning in REEs indicating growth prior to, during, and post eclogite-facies metamorphism; those zones correspond to distinct age domains. Metamorphosed titanite reveals differences in diffusivities of TEs in inherited portions of the grain; e.g., Pb-loss is more prominent than diffusion of REEs, which in turn diffuse faster than higher charged ions, such as Th.

  1. Trace Element Zoning and Incipient Metamictization in a Lunar Zircon: Application of Three Microprobe Techniques

    NASA Technical Reports Server (NTRS)

    Wopenka, Brigitte; Jollife, Bradley L.; Zinner, Ernst; Kremser, Daniel T.

    1996-01-01

    We have determined major (Si, Zr, Hf), minor (Al, Y, Fe, P), and trace element (Ca, Sc, Ti, Ba, REE, Th, U) concentrations and Raman spectra of a zoned, 200 microns zircon grain in lunar sample 14161,7069, a quartz monzodiorite breccia collected at the Apollo 14 site. Analyses were obtained on a thin section in situ with an ion microprobe, an electron microprobe, and a laser Raman microprobe. The zircon grain is optically zoned in birefringence, a reflection of variable (incomplete) metamictization resulting from zo- nation in U and Th concentrations. Variations in the concentrations of U and Th correlate strongly with those of other high-field-strength trace elements and with changes in Raman spectral parameters. Concentrations of U and Th range from 21 to 55 ppm and 6 to 31 ppm, respectively, and correlate with lower Raman peak intensities, wider Raman peaks, and shifted Si-O peak positions. Concentrations of heavy rare earth elements range over a factor of three to four and correlate with intensities of fluorescence peaks. Correlated variations in trace element concentrations reflect the original magmatic differentiation of the parental melt approx. 4 b.y. ago. Degradation of the zircon structure, as reflected by the observed Raman spectral parameters, has occurred in this sample over a range of alpha-decay event dose from approx. 5.2 x 10(exp 14) to 1.4 x 10(exp 15) decay events per milligram of zircon, as calculated from the U and Th concentrations. This dose is well below the approx. 10(exp 16) events per milligram cumulative dose that causes complete metamictization and indicates that laser Raman microprobe spectroscopy is an analytical technique that is very sensitive to the radiation-induced damage in zircon.

  2. Mineralogical study of stream waters and efflorescent salts in Sierra Minera, SE Spain

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Garcia-Lorenzo, Maria luz; Martinez-Sanchez, Maria Jose; Hernandez, Carmen; Hernandez-Cordoba, Manuel

    2015-04-01

    Trace elements contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by water run-off in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. The studied area, Sierra Minera, is close to the mining region of La Unión (Murcia, SE Spain). This area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. Studied area showed a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues. As a consequence of the long period of mining activity, large volumes of wastes were generated during the mineral concentration and smelting processes. Historically, these wastes were dumped into watercourses, filling riverbeds and contaminating their surroundings. 40 sediment samples were collected from the area affected by mining exploitations, and at increasing distances from the contamination sources in 4 zones In addition, 36 surficial water samples were collected after a rain episode The Zn and Fe content was determined by flame atomic absorption spectrometry (FAAS). The Pb and Cd content was determined by electrothermal atomization atomic absorption spectrometry (ETAAS). The As content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer and Al content was determined by ICP-MS. Mineralogical composition of the samples was made by X Ray Diffraction (XRD) analysis using Cu-Kα radiation with a PW3040 Philips Diffractometer. Zone A: Water sample collected in A5 is strongly influenced by a tailing dump, and showed high trace element contents. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH.The DRX results of evaporate water showed that halite, hexahydrite and gypsum are present: halite corroborates the sea influence and gypsum and hexahydrite the importance of soluble sulphates. A9 water showed acid pH and high trace elements content; is influenced by the tailing dump and also by waters from El Beal gully watercourse, transporting materials from Sierra Minera Waters affected by secondary contamination are influenced by mining wastes, the sea water and also are affected by agricultural activities (nitrate content). These waters have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The DRX analysis in the evaporate if A14 showed that halite and gypsum are present: halite confirms the seawater influence and gypsum the relationship between calcium and sulphates A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. Zone B: All waters are strongly affected by mining activities and showed: acid pH, high trace element content and high content of soluble sulphates. The evaporate of B8 and B12 showed the presence of soluble sulphates: gypsum, halite, bianchite, paracoquimbite, halotrichite and siderotil in B8; gypsum, bianchite, paracoquimbite and coquimbite in B12; gypsum, hexahydrite, carnalite, bianchite, copiapite and sideroti in B10 and polihalite, gypsum, bianchite, coquimbite and paracoquimbite in B14. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps and sampling points are located close to them. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As (remains soluble) and Zn and Cd (high mobility). In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. However, the As remains soluble. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. Some differences were found from the high and the low part: samples located in the lower part (D2-D7) showed higher As content while Zn is higher in the high part (D8-D13) The DRX analysis in evaporates suggest that in D4 copiapite, coquimbite, gypsum, bianchite and ferrohexahydrite are formed and in D11 gypsum, bianchite, halotrichite and siderotil. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements.

  3. Marine Biogeochemistry of Particulate Trace Elements in the Exclusive Economic Zone (eez) of the State of Qatar

    NASA Astrophysics Data System (ADS)

    Yigiterhan, O.; Al-Ansari, I. S.; Abdel-Moati, M.; Murray, J. W.; Al-Ansi, M.

    2016-02-01

    We focus on the trace element geochemistry of particulate matter in the Exclusive Economic Zone (EEZ) of Qatar. A main goal of this research was to analyze a complete suite of trace elements on particulate matter samples from the water column from different oceanographic biogeochemical zones of the EEZ around Qatar. The sample set also includes plankton samples which are the main source of biogenic particles, dust samples which are a source of abiological particles to surface seawater and surface sediments which can be a source of resuspended particles and a sink for settling particles. The 15 metals and 2 non-metals analyzed in this study will be Al, Ti, V, Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn, Mo, Ag, Ba, U and P, N. Many factors control the composition of trace elements in marine particles. Most of these are important in the EEZ of Qatar, including:1. Natural sources: These are rivers, atmospheric dust, sediment resuspension and leaks from oil beds. However, due to very limited rainfall rivers play no major role in Qatar but resuspension of shallow carbonate rich sediments and input of atmospheric dust are important due to strong currents and surrounding deserts.2. Adsorption/desorption: These chemical processes occur everywhere in the ocean and transfer metals between particles and the solution phase.3. Biological uptake: This process is likewise a universal ocean process and results in transport of metals from the solution phase to biological particles.4. Redox conditions: These are important chemical reactions in the oxic, suboxic and anoxic zones. This can be the dominant controlling mechanism in the northeastern hypoxic deeper waters of the Qatar EEZ.5. Anthropogenic sources: The eastern part of the Qatar contains numerous industrial sites, petroleum/gas platforms and refineries. There are numerous industrial sources but the main hot spots are the port of Doha and the industrial cities of Mesaieed, Khor Al-Odaid, and Ras Laffan. We aimed to determine the influence of the different current systems, water masses, and terrestrial inputs on the distribution, fractionation, and fate of trace metal contaminants and elemental pollutants. We have also observed the level of anthropogenic enrichments for some of the elements which have not been previously documented. This research should be viewed as the first stage of a complete study.

  4. Assessing the elements mobility through the regolith and their potential as tracers for hydrological processes

    NASA Astrophysics Data System (ADS)

    Moragues-Quiroga, Cristina; Hissler, Christophe; Chabaux, François; Legout, Arnaud; Stille, Peter

    2017-04-01

    Regoliths encompass different materials from the fresh bedrock to the top of the organic horizons. The regolith is a major component of the critical zone where fluxes of water, energy, solutes and matter occur. Therefore, its bio-physico-chemical properties drastically impact the water that percolates and/or stores in its different parts (organic and mineral soil horizons, and weathered and fractured bedrock). In order to better understand the critical zone functioning, we propose to assess the interaction between chemical elements from the regolith matrix and water during drainage infiltration. For this, we focus firstly on the potential mobility of different groups of major and trace elements according to a leaching experiment made on 10 different layers of a 7.5 m depth slate regolith, which covers a large part of the Rhenish Massif. Secondly, we carried out Sr-Nd-Pb-U-Th isotope analyses for 5 of these samples in both the untreated and leached samples. Given the specific chemical and mineralogical composition of each sampled material, our approach enables to trace the origin of major and trace elements and eventually assess their mobility. The results deliver valuable information on exchange processes at the water-mineral interface in the different zones of the regolith, which could improve the selection of tracers for the study of hydrological processes.

  5. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones

    NASA Astrophysics Data System (ADS)

    You, C.-F.; Castillo, P. R.; Gieskes, J. M.; Chan, L. H.; Spivack, A. J.

    1996-05-01

    Chemical evaluation of fluids affected during progressive water-sediment interactions provides critical information regarding the role of slab dehydration and/or crustal recycling in subduction zones. To place some constraints on geochemical processes during sediment subduction, reactions between décollement sediments and synthetic NaCl-CaCl 2 solutions at 25-350°C and 800 bar were monitored in laboratory hydrothermal experiments using an autoclave apparatus. This is the first attempt in a single set of experiments to investigate the relative mobilities of many subduction zone volatiles and trace elements but, because of difficulties in conducting hydrothermal experiments on sediments at high P-T conditions, the experiments could only be designed for a shallow (˜ 10 km) depth. The experimental results demonstrate mobilization of volatiles (B and NH 4) and incompatible elements (As, Be, Cs, Li, Pb, Rb) in hydrothermal fluids at relatively low temperatures (˜ 300°C). In addition, a limited fractionation of light from heavy rare earth elements (REEs) occurs under hydrothermal conditions. On the other hand, the high field strength elements (HFSEs) Cr, Hf, Nb, Ta, Ti, and Zr are not mobile in the reacted fluids. The observed behavior of volatiles and trace elements in hydrothermal fluids is similar to the observed enrichment in As, B, Cs, Li, Pb, Rb, and light REEs and depletion in HFSEs in arc magmas relative to magmas derived directly from the upper mantle. Thus, our work suggests a link between relative mobilities of trace elements in hydrothermal fluids and deep arc magma generation in subduction zones. The experimental results are highly consistent with the proposal that the addition of subduction zone hydrous fluids to the subarc mantle, which has been depleted by previous melting events, can produce the unique characteristics of arc magmas. Moreover, the results suggest that deeply subducted sediments may no longer have the composition necessary to generate the other distinct characteristics, such as the B-δ 11 B and B- 10Be systematics, of arc lavas. Finally, the mobilization of B, Cs, Pb, and light REEs relative to heavy REEs in the hydrothermal fluids fractionate the ratios of B/Be, B/Nb, Cs/Rb, Pb/Ce, La/Ba and LREE/HREE, which behave conservatively during normal magmatic processes. These results demonstrate that the composition of slab-derived fluids has great implications for the recycling of elements; not only in arc magmas but also in mantle plumes.

  6. Petrologic and chemical changes in ductile shear zones as a function of depth in the continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Yue

    Petrologic and geochemical changes in ductile shear zones are important for understanding deformational and geochemical processes of the continental crust. This study examines three shear zones that formed under conditions varying from lower greenschist facies to upper amphibolite facies in order to document the petrologic and geochemical changes of deformed rocks at various metamorphic grades. The studied shear zones include two greenschist facies shear zones in the southern Appalachians and an upper amphibolite facies shear zone in southern Ontario. The mylonitic gneisses and mylonites in the Roses Mill shear zone of central Virginia are derived from a ferrodiorite protolith and characterized by a lower greenschist facies mineral assemblage. Both pressure solution and recrystallization were operative deformation mechanisms during mylonitization in this shear zone. Strain-driven dissolution and solution transfer played an important role in the mobilization of felsic components (Si, Al, K, Na, and Ca). During mylonitization, 17% to 32% bulk rock volume losses of mylonites are mainly attributed to removal of these mobile felsic components by a fluid phase. Mafic components (Fe, Mg, Ti, Mn and P) and trace elements, REE, Y, V and Sc, were immobile. At Rosman, North Carolina, the Brevard shear zone (BSZ) shows a deformational transition from the coarse-grained Henderson augen gneiss (HAG) to proto-mylonite, mylonite and ultra-mylonite. The mylonites contain a retrograde mineral assemblage as a product of fluid-assisted chemical breakdown of K-feldspar and biotite at higher greenschist facies conditions. Recrystallization and intra-crystalline plastic deformation are major deformation mechanisms in the BSZ. Fluid-assisted mylonitization in the BSZ led to 6% to 23% bulk volume losses in mylonites. During mylonitization, both major felsic and mafic elements and trace elements, Rb, Sr, Zr, V, Sc, and LREE were mobile; however, the HREEs were likely immobile. A shear zone in the Parry Sound domain, Ontario, formed at upper amphibolite facies conditions. The deformation process of the shear zone involves fully plastic deformation and high-temperature dynamic recrystallization and annealing recovery of both quartz and plagioclase. Geochemical evidence indicates that the chemical changes in the deformed rocks resulted from mixing of mafic and felsic layers together with fluid-assisted mass transfer within the shear zone. A geochemical model that incorporates closed-system two-component mixing with open-system mass transfer can well explain the observed major and trace element data.

  7. Accessory minerals and subduction zone metasomatism: a geochemical comparison of two mélanges (Washington and California, U.S.A.)

    USGS Publications Warehouse

    Sorensen, Sorena S.; Grossman, Jeffrey N.

    1993-01-01

    Data from the Gee Point and Catalina mélanges suggest that the accessory minerals titanite, rutile, apatite, zircon and REE-rich epidote play a significant role in the enrichment of trace elements in both mafic and ultramafic rocks during subduction-related fluid-rock interaction. Mobilization of incompatible elements, and deposition of such elements in the accessory minerals of mafic and ultramafic rocks may be fairly common in fluid-rich metamorphic environments in subduction zones.

  8. Statistical analysis of major ion and trace element geochemistry of water, 1986-2006, at seven wells transecting the freshwater/saline-water interface of the Edwards Aquifer, San Antonio, Texas

    USGS Publications Warehouse

    Mahler, Barbara J.

    2008-01-01

    The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer. 

  9. Application of multivariate analysis to investigate the trace element contamination in top soil of coal mining district in Jorong, South Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.

    2018-02-01

    Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

  10. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  11. Horizontal and vertical variability of soil properties in a trace element contaminated area

    NASA Astrophysics Data System (ADS)

    Burgos, Pilar; Madejón, Engracia; Pérez-de-Mora, Alfredo; Cabrera, Francisco

    2008-02-01

    The spatial distribution of some soil chemical properties and trace element contents of a plot affected by the Aznalcóllar mine spill were investigated using statistical and geostatistical methods to assess the extent of soil contamination. Total and EDTA-extractable soil trace element concentrations and total S content showed great variability and high coefficients of variation in the three examined depths. Soil in the plot was found to be significantly contaminated by As, Cd, Cu, Pb and Zn within a wide range of pH. Total trace element concentrations at all depths (0-60 cm) were much higher than background values of non-affected soil, indicating that despite the clean-up operations, the concentration of trace elements in the experimental plot was still high. The spatial distribution of the different variables was estimated by kriging to design contour maps. These maps allowed the identification of specific zones with high metal concentrations and low pH values corresponding to spots of residual sludge. Moreover, kriged maps showed distinct spatial distribution and hence different behaviour for the elements considered. This information may be applied to optimise remediation strategies in highly and moderately contaminated areas.

  12. Has irrigated water from Mahaweli River contributed to the kidney disease of uncertain etiology in the dry zone of Sri Lanka?

    PubMed

    Diyabalanage, Saranga; Abekoon, Sumith; Watanabe, Izumi; Watai, Chie; Ono, Yuko; Wijesekara, Saman; Guruge, Keerthi S; Chandrajith, Rohana

    2016-06-01

    The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.

  13. Micron-Scale Correlations Among Ti, P, Ce, and Y in Hadean Jack Hills Zircons

    NASA Astrophysics Data System (ADS)

    Hofmann, A. E.; Cavosie, A. J.; Valley, J. W.; Eiler, J. M.

    2007-12-01

    Detrital zircons and the inclusions found therein are our only mineralogical constraints on geologic events that occurred on the Hadean Earth. These zircons are commonly small (ca. <100 μm in the longest dimension) and preserve micron to sub-micron chemical zonations indicative of a dynamic petrological history. Trace elements within zircon are of particular interest because concentrations and ratios of these elements can provide information regarding chemical and physical conditions during zircon growth. In this study, we analyzed Hadean-age detrital zircons from Archean metasediment in the Jack Hills (Australia) using the Caltech Microanalysis Center Cameca NanoSIMS 50L. Trace elements analyzed included Ti, P, Ce, and Y. Ti- thermometry [1,2,3] can potentially constrain growth and/or re-equilibration temperatures of zircons; P, Ce, and Y are known to enter the zircon lattice by the coupled xenotime-type substitution mechanism: (Y, REE)3+ + P5+ = Zr4+ + Si4+ [5]. The 89Y/28Si ratio was observed to correlate with, and was used as a proxy for, cathodoluminescence (CL) banding. Growth features manifested in CL (e.g., sector, oscillatory zoning) were observed in all zircons analyzed. CL zones vary from <1 μm to several microns in width; therefore, the NanoSIMS---with a beam diameter resolved to ca. 250 nm on the sample surface when operating with an O- primary beam---is uniquely suited for this scale of analysis. Regions displaying CL banding were imaged as 20 x 20 μm areas. All elements were normalized to 28Si; 49Ti/28Si ratios were converted to [Ti] via calibration based on analyses of synthetic, high-Ti zircons (provided by B. Watson) that were independently analyzed on Caltech's JEOL JXA-8200 electron microprobe. We observe three types of relationships between trace element distribution and CL banding in the zircons imaged: 1) strong positive correlations between CL banding, P, Ce, and Ti; 2) subtle positive correlations between CL banding, P, Ce, and Ti; 3) no correlation between minor/trace elements and CL banding. Positive correlations between CL banding, 3+ cations, and [Ti] have previously been reported by Holden et al. [4]. In this study, gradients at least as sharp as a factor of ~3 in [Ti] are observed between adjacent CL bands in the strongly correlated images. These images also have the highest absolute concentrations of trace elements and display both sector and oscillatory zoning in CL. The correlations observed may be due to: temperature-dependent equilibrium partitioning of all trace elements during rapid cycles in growth temperature; episodic diffusion-limited enrichment of incompatible trace elements in the boundary layer melt adjacent to growing crystals; and/or kinetically controlled, non- equilibrium crystal-melt partitioning caused by trace element enrichments in the boundary layer melt surrounding fast-growing grains (e.g., [6]). We will discriminate between these alternatives based on quantitative relationships between relative enrichments of [Ti] and other trace elements. [1]Watson, E.B. & Harrison, T.M. (2005) Science 308, 841-844. [2]Watson, E.B., Wark, D.A., & Thomas, J.B. (2006) CMP 151, 413-433. [3]Ferry, J.M. & Watson, E.B. (2007) CMP 154, 429-437. [4] Holden, P. et al. (2005) Eos Trans. AGU 86 (52) Fall Meet. Suppl., Abstract V41F-1539. [5] Speer, J.A. (1982) Zircon. In Rev. Min. 5 (ed. P.H. Ribbe), 67-112. [6] Watson, E.B. (2004) GCA 68, 1473-1488.

  14. Compositional and mineralogical zoning by inward crystallization of mafic magma: evidence from the Guwoon hornblende gabbro-diorite Complex, Hwacheon, Korea.

    NASA Astrophysics Data System (ADS)

    Park, Y.-R.; Kim, G.-Y.

    2009-04-01

    The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.

  15. Geochemistry of the Serifos calc-alkaline granodiorite pluton, Greece: constraining the crust and mantle contributions to I-type granitoids

    NASA Astrophysics Data System (ADS)

    Stouraiti, C.; Baziotis, I.; Asimow, P. D.; Downes, H.

    2017-11-01

    The Late Miocene (11.6-9.5 Ma) granitoid intrusion on the island of Serifos (Western Cyclades, Aegean Sea) is composed of syn- to post-tectonic granodiorite with quartz monzodiorite enclaves, cut by dacitic and aplitic dikes. The granitoid, a typical I-type metaluminous calcic amphibole-bearing calc-alkaline pluton, intruded the Cycladic Blueschists during thinning of the Aegean plate. Combining field, textural, geochemical and new Sr-Nd-O isotope data presented in this paper, we postulate that the Serifos intrusion is a single-zoned pluton. The central facies has initial 87Sr/86Sr = 0.70906 to 0.7106, ɛNd(t) = - 5.9 to - 7.5 and δ18Οqtz = + 10 to + 10.6‰, whereas the marginal zone (or border facies) has higher initial 87Sr/86Sr = 0.711 to 0.7112, lower ɛ Nd(t) = - 7.3 to - 8.3, and higher δ18Οqtz = + 10.6 to + 11.9‰. The small range in initial Sr and Nd isotopic values throughout the pluton is paired with a remarkable uniformity in trace element patterns, despite a large range in silica contents (58.8 to 72 wt% SiO2). Assimilation of a crustally derived partial melt into the mafic parental magma would progressively add incompatible trace elements and SiO2 to the evolving mafic starting liquid, but the opposite trend, of trace element depletion during magma evolution, is observed in the Serifos granodiorites. Thermodynamic modeling of whole-rock compositions during simple fractional crystallization (FC) or assimilation-fractional crystallization (AFC) processes of major rock-forming minerals—at a variety of pressure, oxidation state, and water activity conditions—fails to reproduce simultaneously the major element and trace element variations among the Serifos granitoids, implying a critical role for minor phases in controlling trace element fractionation. Both saturation of accessory phases such as allanite and titanite (at SiO2 ≥ 71 wt%)(to satisfy trace element constraints) and assimilation of partial melts from a metasedimentary component (to match isotopic data) must have accompanied fractional crystallization of the major phases.

  16. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    NASA Astrophysics Data System (ADS)

    Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.

    2017-07-01

    Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.

  17. Mobilisation of toxic trace elements under various beach nourishments.

    PubMed

    Pit, Iris R; Dekker, Stefan C; Kanters, Tobias J; Wassen, Martin J; Griffioen, Jasper

    2017-12-01

    To enhance protection and maintain wide beaches for recreation, beaches are replenished with sand: so-called beach nourishments. We compared four sites: two traditional beach nourishments, a mega beach nourishment and a reference without beach nourishment. Two sites contain calcareous-rich sand, whereas the other two sites have calcareous-poor sand. We aimed to understand hydrogeochemical processes to indicate factors critical for the mobility of trace elements at nourishments. We therefore analysed the chemical characteristics of sediment and pore water to ascertain the main drivers that mobilise toxic trace elements. With Dutch Quality Standards for soil and groundwater, the characteristics of sediment and pore water were compared to Target Values (the values at which there is a sustainable soil quality) and Intervention Values (the threshold above which the soil's functions are at risk). The pore water characteristics revealed that Target Values were regularly exceeded, especially for the nourishment sites and mainly for Mo (78%), Ni (24%), Cr (55%), and As (21%); Intervention Values for shallow groundwater were occasionally exceeded for As (2%), Cr (2%) and Zn (2%). The sediment characteristics did not exceed the Target Values and showed that trace elements were mainly present in the fine fraction of <150 μm. The oxidation of sulphide minerals such as pyrite resulted into the elevated concentration for all nourishment sites, especially when an unsaturated zone was present and influence of rainwater was apparent. To prevent trace metal mobility at a mega beach nourishment it is important to retain seawater influences and limit oxidation processes. In this respect, a shoreface nourishment is recommended rather than a mega beach nourishment with a thick unsaturated zone. Consequently, we conclude that whether a site is carbonate-rich or carbonate-poor is unimportant, as the influence of seawater will prevent decalcification, creating a low risk of mobilisation of trace elements. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Alteration and geochemical zoning in Bodie Bluff, Bodie mining district, eastern California

    USGS Publications Warehouse

    Herrera, P.A.; Closs, L.G.; Silberman, M.L.

    1993-01-01

    Banded, epithermal quartz-adularia veins have produced about 1.5 million ounces of gold and 7 million ounces of silver from the Bodie mining district, eastern California. The veins cut dacitic lava flows, pyroclastic rocks and intrusions. Sinter boulders occur in a graben structure at the top of Bodie Bluff and fragments of sinter and mineralized quartz veins occur in hydrothermal breccias nearby. Explosive venting evidently was part of the evolution of the ore-forming geothermal systems which, at one time, must had reached the paleosurface. Previous reconnaissance studies at Bodie Bluff suggested that the geometry of alteration mineral assemblages and distribution of some of the major and trace elements throughout the system correspond to those predicted by models of hot-spring, volcanic rock hosted precious metal deposits (Silberman, 1982; Silberman and Berger, 1985). The current study was undertaken to evaluate these sugestions further. About 500 samples of quartz veins and altered rocks, including sinter, collected over a vertical extent of 200 meters within Bodie Bluff were petrographically examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray fluorescence methods. The results of these analyses showed that, in general, alteration mineral assemblage and vertical geochemical zoning patterns follow those predicted for hot-spring deposits, but that geochemical zoning patterns for sinter and quartz veins (siliceous deposits), and altered wall rocks are not always similar. The predicted depth-concentration patterns for some elements, notably Au, Ag, Hg, and Tl in quartz veins, and Hg, As and Ag in wall rocks were not as expected, or were perturbed by the main ore producing zone. For both quartz veins and altered wall rocks, the main ore zone had elevated metal contents. Increased concentration of many of these elements could indicate proximity to this zone. However, irregularities in the distribution of some key elements, such as Au and Ag, relative to the predictive models suggest that a larger suite of elements be considered for exploration for ore zones within the district. ?? 1993.

  19. Volume gain during shearing of the Whatley Mill Gneiss, Pine Mountain Basement massif, eastern Alabama--A trace element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salpas, P.A.; Daniell, N.

    1993-03-01

    The Whatley Mill Gneiss is the most voluminous exposure of the Pine Mountain Basement massif in eastern Alabama. Its type lithology is a proto-mylonitic gneiss composed of K-spar augen, up to 5 cm in diameter, in a finer matrix of biotite, microcline, and quartz. Granulite-facies mineral assemblages in the Whatley Mill Gneiss have been completely retrograded to amphibolite- and greenschist-facies assemblages in response to deformation that produced shear zones paralleling the foliation of the gneiss. The augen gneiss and its associated mylonites are well-exposed in a creek bed in Chewacla State Park. At this location the mineralogy of the mylonitesmore » is dominated by quartz indicating that shearing was associated with influx of a silica-rich fluid. A detailed geochemical study of these rocks shows that the augen gneiss displays relatively little variation in its major and trace element compositions while the quartz-rich mylonites display wider ranges, are enriched in SiO[sub 2] and depleted in the REE and other incompatible trace elements relative to the augen gneiss. When standard composition/volume calculations are applied to the mylonites the results show (1) the bulk of all of the elements, including the REE, were immobile during shearing with the exceptions of Si and Al which were added; and, (2) volume changes calculated using the REE as immobile elements range from +70% to +350%. Though these volume changes seem excessive, they apply to meter-thick shear zones which may actually represent only a small fraction of the total volume of the augen gneiss. Consistent with previous interpretations of these shear zones, the calculated volume gains imply shearing during extension.« less

  20. Environmental background values of trace elements in sediments from the Jiaozhou Bay catchment, Qingdao, China.

    PubMed

    Xu, Fangjian; Liu, Zhaoqing; Yuan, Shengqiang; Zhang, Xilin; Sun, Zhilei; Xu, Feng; Jiang, Zuzhou; Li, Anchun; Yin, Xuebo

    2017-08-15

    Selected trace elements (As, Cr, Zn, Cu, Cd, Co, Pb and Ni) in 76 surface sediment samples collected from the rivers and the intertidal zone of Jiaozhou Bay (JZB) were evaluated to assess their environmental background values in the JZB catchment. Overall, the sediment quality in the area meets the China Marine Sediment Quality criteria. The background values (ranges) of the elements As, Cr, Zn, Cu, Cd, Co, Pb and Ni were, respectively, 8.28 (4.10-12.46), 67.96 (38.40-97.52), 56.80 (16.42-196.51), 19.13 (5.71-64.06), 0.10 (0.02-0.42), 6.51 (2.08-20.40), 17.97 (12.26-55.84) and 20.69 (10.43-30.95)mg/kg. The background values of most of the trace elements were lower than those in Chinese soil, the upper continental crust, global shales and global preindustrial sediments. The results may assist in defining future coastal and river management measures specifically targeted at monitoring trace element contamination in the JZB catchment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Connecting pigment composition and dissolved trace elements to phytoplankton population in the southern Benguela Upwelling zone (St. Helena Bay)

    NASA Astrophysics Data System (ADS)

    Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.

    2017-12-01

    Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.

  2. Major and trace element, and Sr isotope compositions of clinopyroxene phenocrysts in mafic dykes on Jiaodong Peninsula, southeastern North China Craton: Insights into magma mixing and source metasomatism

    NASA Astrophysics Data System (ADS)

    Liang, Yayun; Deng, Jun; Liu, Xuefei; Wang, Qingfei; Qin, Cheng; Li, Yan; Yang, Yi; Zhou, Mian; Jiang, Jieyan

    2018-03-01

    Early Cretaceous mafic dyke swarms are widely developed on Jiaodong Peninsula in the southeastern part of the North China Craton (NCC), but their petrogenesis remains enigmatic. We have examined the in-situ major element, trace element and Sr isotope compositions of the clinopyroxene phenocrysts in these dykes in order to evaluate the extent of magma mixing and source metasomatism. Depending on the type of mineral zoning, the clinopyroxene phenocrysts in our samples can be classified into two groups: Group I (reverse zoning) and Group II (no zoning). Based on core compositions, the Group I phenocrysts with obvious reverse zoning can be divided into two subgroups: Groups IA and IB. The cores of Group IA clinopyroxenes have low values of Mg#, low Al2O3 contents, high Na2O contents, and high 87Sr/86Sr ratios, and they were probably derived from newly accreted lower crust that formed through the underplating of basaltic magma. In contrast, the cores of Group IB clinopyroxenes have lower Mg# values and lower contents of Al2O3, ΣREE (total rare earth elements), and incompatible elements, but they have similar 87Sr/86Sr ratios; these cores crystallised from crust-derived andesitic-dacitic magma. Group IA and IB clinopyroxene phenocryst rims (Group I rims) all have similar compositions with higher values of Mg# and higher Al2O3, Cr and Ni contents than the cores. The rims have high 87Sr/86Sr ratios, are enriched in LREEs (light rare earth elements) and LILEs (large ion lithophile elements), and are depleted in HFSEs (high field strength elements); these characteristics indicate that all the high-Mg rims were derived from a similar magma, possibly a relatively primitive magma derived from lithospheric mantle. We suggest, therefore, that the reversely-zoned clinopyroxene phenocrysts (Group I) in the Jiaodong mafic dykes provide evidence of magma mixing between a magma derived from lithospheric mantle and crust-derived andesitic-dacitic melt alongside with the newly accreted lower crust. The Group II clinopyroxene phenocrysts, which lack zoning, display major and trace element compositions and 87Sr/86Sr ratios that are similar to those of the Group I rims, which indicates that all the high-Mg clinopyroxenes were derived from a common source in the lithospheric mantle. These high-Mg clinopyroxenes exhibit high 87Sr/86Sr ratios, high Sr contents and remarkable depletions in HFSEs, reflecting metasomatism of the mantle source by aqueous fluids derived by dehydration of the subducting slab and its marine sediments. The metasomatism of the source reveals that the lithospheric mantle beneath Jiaodong Peninsula was metasomatised by fluids from the subducting Paleo-Pacific slab. Progressive thinning of the lithosphere mantle under the NCC was induced by continuous thermo-mechanical erosion, promoting the partial melting of lithospheric mantle and generating the mafic dykes at Jiaodong. Table A2 Analytical results for the trace element standards used during LA-ICP-MS analyses of clinopyroxene phenocrysts. Table A3 Analytical results for the Sr isotope standards used during MC-ICP-MS analyses of clinopyroxene phenocrysts. Table A4 Major element contents (wt%) of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A5 Representative Sr isotopic compositions of clinopyroxene phenocrysts from the mafic dykes on Jiaodong Peninsula. Table A6 Geochemistry of the mafic dykes on Jiaodong Peninsula. Table A7 Partition coefficients (KD) and end-member components used for REE modeling.

  3. Trace element zoning as a record of chemical disequilibrium during garnet growth

    NASA Astrophysics Data System (ADS)

    Chernoff, Carlotta B.; Carlson, William D.

    1999-06-01

    Trace element concentrations in pelitic garnets from the Picuris Range of New Mexico display precipitous changes coincident with abrupt variations in Ca concentration. These patterns probably arise from the transitory participation of different trace element enriched phases in the garnet forming reaction. Changes in the reactant and product assemblages occur at different times during the reaction history for crystals of different size, so they cannot be the result of any event affecting the entire rock, such as a change in pressure, temperature, or fluid composition. Instead, they reflect kinetic factors that cause Ca, Y, Yb, P, Ti, Sc, Zr, Hf, Sr, Na, and Li to fail to achieve chemical equilibrium during garnet growth. Caution is needed to avoid misinterpreting excursions in the concentration of these elements as event markers recording simultaneous rockwide changes in intensive parameters, when in fact they may record transient disequilibrium states that are local in scope, and not contemporaneous.

  4. Major and trace elements in Mahogany zone oil shale in two cores from the Green River Formation, piceance basin, Colorado

    USGS Publications Warehouse

    Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.

    1983-01-01

    The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements and dilution of most trace elements as pointed out in several previous studies. Q-mode factor modeling is a statistical method used to group samples on the basis of compositional similarities. Factor end-member samples are chosen by the model. All other sample compositions are represented by varying proportions of the factor end-members and grouped as to their highest proportion. The compositional similarities defined by the Q-mode model are helpful in understanding processes controlling multi-element distributions. The models for each core are essentially identical. A four-factor model explains 70% of the variance in the CR-2 data and 64% of the O1-A data (the average correlation coefficients are 0. 84 and 0. 80, respectively). Increasing the number of factors above 4 results in the addition of unique instead of common factors. Table I groups the elements based on high factor-loading scores (the amount of influence each element has in defining the model factors). Similar elemental associations are found in both cores. Elemental abundances are plotted as a function of core depth using a five-point weighted moving average of the original data to smooth the curve (Figure 3 and 4). The plots are grouped according to the four factors defined by the Q-mode models and show similar distributions for elements within the same factor. Factor 1 samples are rich in most trace metals. High oil yield and the presence of illite characterize the end-member samples for this factor (3, 4) suggesting that adsorption of metals onto clay particles or organic matter is controlling the distribution of the metals. Precipitation of some metals as sulfides is possible (5). Factor 2 samples are high in elements commonly associated with minerals of detrital or volcanogenic origin. Altered tuff beds and lenses are prevalent within the Mahogany zone. The CR-2 end-member samples for this factor contain analcime (3) which is an alteration product within the tuff beds of the Green River Formation. Th

  5. [The status of soil contamination in areas of northern and northwestern Bohemia affected by pollution].

    PubMed

    Podlesáková, E; Nĕmecek, J; Vácha, R

    1999-10-20

    A regional study of soil contamination in North and Northwest immission-impacted Bohemian regions present the results of the assessment of soil loads of agricultural soils by hazardous trace elements and organic xenobiotic substances. The evaluation is based on the exceeding of background values of contaminants (upper limit of their variability). Two forms of soil loads by trace elements are differentiated, the anthropogenic and geogenic one. They occur simultaneously on the territory under study. Geogenic "loads" prevail (basalts, metallogenic zones). Anthropogenic contamination by both hazardous elements and organic xenobiotic substances occurs only in some parts of these severely immission-impacted regions.

  6. Linking major and trace element headwater stream concentrations to DOC release and hydrologic conditions in a bog and peaty riparian zone

    NASA Astrophysics Data System (ADS)

    Broder, Tanja; Biester, Harald

    2017-04-01

    Peatlands and organic-rich riparian zones are known to export large amounts of dissolved organic carbon (DOC) to surface water. In organic-rich, acidic headwater streams main carriers for element export are dissolved organic matter (DOM) and organic-iron complexes. In this environment DOM might also act as major carrier for metals, which otherwise may have a low solubility. This study examines annual and short term event-based variations of major and trace elements in a headwater catchment. Patterns are used to trace hydrological pathways and element sources under different hydrologic preconditions. Furthermore, it elucidates the importance of DOC as carrier of different elements in a bog and a peaty riparian catchment. The study was conducted in a small headwater stream draining an ombrotrophic peatland with an adjacent forested area with peaty riparian soils in the Harz Mountains (Germany). Discharge sampling was conducted weekly at two sites from snowmelt to begin of snowfall and in high resolution during selected discharge events in 2013 and 2014. Element concentrations were measured by means of ICP-MS and ICP-OES. A PCA was performed for each site and for annual and event datasets. Results show that a large number of element concentrations strongly correlate with DOC concentrations at the bog site. Even elements like Ca and Mg, which are known to have a low affinity to DOC. Congruently, the first principal component integrates the DOC pattern (element loadings > 0.8: Ca, Fe, Mg, Mn, Zn, As, Sr, Cd, DOC) and explained about 35 % of total variance and even 50 % during rain events (loadings > 0.8: Al, Ca, Fe, Mg, Mn, Zn, Li, Co, As, Sr, Cd, Pb, DOC). The study cannot verify that all correlating elements bind to DOC. It is likely that also a common mobilization pattern in the upper peat layer by plant decomposition causes the same response to changes in hydrologic pathways. Additionally, a low mineral content and an enrichment of elements like Fe and Mn in the upper peat layers due to prevailing redox conditions might play a major role in a bog environment. At the peaty riparian zone only Ca, Fe, and Sr strongly correlated with DOC over the annual record. The PCA of the annual record display no clear DOC component here, but indicates that DOC is influenced by Component one (element loadings > 0.8: Ca, Mg, Zn, Co, Sr) and two (Al, V, La, Pb, U) suggesting different DOC sources in the peaty riparian zone. A large number of elements correlate with DOC during rain event sampling at the riparian zone. In contrast to the bog site the event-based riparian zone PCA distinguished a clear discharge related component with mineral, groundwater related elements (K, Rb, In, Cs, NO3- and SO42-). Pattern of the mineral and DOC components prove that during base flow discharge is generated in a shallow groundwater layer and successively increases upward to the organic-rich upper soil layer with increasing discharge. Contrarily, bog element pattern confirm a dominating surface-near discharge, due to high hydraulic conductivities.

  7. Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: Evidence from jadeitite and related rocks from the Guatemala Suture Zone

    NASA Astrophysics Data System (ADS)

    Harlow, George E.; Flores, Kennet E.; Marschall, Horst R.

    2016-08-01

    Jadeitites in serpentinite mélanges are the product of crystallization from and/or metasomatism by aqueous fluids that transfer components from and within a subduction channel-the slab-mantle interaction volume-into discrete rock units, most commonly found within the serpentinized or serpentinizing portion of the channel or the overlying mantle rocks at high pressure (1 to > 2 GPa). Two serpentinite mélanges on either side of the Motagua fault system (MFS) of the Guatemala Suture Zone contain evidence of this process. Whole rock compositional analyses are reported here from 86 samples including jadeitites and the related rocks: omphacitites, albitites and mica rocks. The predominance of a single phase in most of these rocks is reflected in the major element compositions and aspects of the trace elements, such as REE abundances tracking Ca in clinopyroxene. Relative to N-MORB all samples show relative enrichments in the high field strength elements (HFSE) Hf, Zr, U, Th, and the LILE Ba and Cs, contrasted by depletions in K and in some cases Pb or Sr. Most jadeitites are also depleted in the highly compatible elements Cr, Sc and Ni despite their occurrence in serpentinite mélange; however, some omphacitite samples show the opposite. Trace elements in these jadeitite samples show a strong similarity with GLOSS (globally subducted oceanic sediment) and other terrigenous sediments in terms of their trace-element patterns, but are offset to lower abundances. Jadeitites thus incorporate a strong trace-element signature derived from sediments mixed with that from fluid derived from altered oceanic crust. Enrichment in the HFSE argues for mobility of these elements in aqueous fluids at high P/T conditions in the subduction channel and a remarkable lack of fractionation that might otherwise be expected from dissolution and fluid transport.

  8. Fluid-rock interaction during a large earthquake recorded in fault gouge: A case study of the Nojima fault, Japan

    NASA Astrophysics Data System (ADS)

    Bian, D.; Lin, A.

    2016-12-01

    Distinguishing the seismic ruptures during the earthquake from a lot of fractures in borehole core is very important to understand rupture processes and seismic efficiency. In particular, a great earthquake like the 1995 Mw 7.2 Kobe earthquake, but again, evidence has been limited to the grain size analysis and the color of fault gouge. In the past two decades, increasing geological evidence has emerged that seismic faults and shear zones within the middle to upper crust play a crucial role in controlling the architectures of crustal fluid migration. Rock-fluid interactions along seismogenic faults give us a chance to find the seismic ruptures from the same event. Recently, a new project of "Drilling into Fault Damage Zone" has being conducted by Kyoto University on the Nojima Fault again after 20 years of the 1995 Kobe earthquake for an integrated multidisciplinary study on the assessment of activity of active faults involving active tectonics, geochemistry and geochronology of active fault zones. In this work, we report on the signature of slip plane inside the Nojima Fault associated with individual earthquakes on the basis of trace element and isotope analyses. Trace element concentrations and 87Sr/86Sr ratios of fault gouge and host rocks were determined by an inductively coupled plasma mass spectrometer (ICP-MS) and thermal ionization mass spectrometry (TIMS). Samples were collected from two trenches and an outcrop of Nojima Fault which. Based on the geochemical result, we interpret these geochemical results in terms of fluid-rock interactions recorded in fault friction during earthquake. The trace-element enrichment pattern of the slip plane can be explained by fluid-rock interactions at high temperature. It also can help us find the main coseismic fault slipping plane inside the thick fault gouge zone.

  9. Trace element abundances of high-MgO glasses from Kilauea, Mauna Loa and Haleakala volcanoes, Hawaii

    USGS Publications Warehouse

    Wagner, T.P.; Clague, D.A.; Hauri, E.H.; Grove, T.L.

    1998-01-01

    We performed an ion-microprobe study of eleven high-MgO (6.7-14.8 wt%) tholeiite glasses from the Hawaiian volcanoes Kilauea, Mauna Loa and Haleakala. We determined the rare earth (RE), high field strength, and other selected trace element abundances of these glasses, and used the data to establish their relationship to typical Hawaiian shield tholeiite and to infer characteristics of their source. The glasses have trace element abundance characteristics generally similar to those of typical shield tholeiites, e.g. L(light)REE/H(heavy)REE(C1) > 1. The Kilauea and Mauna Loa glasses, however, display trace and major element characteristics that cross geochemical discriminants observed between Kilauea and Mauna Loa shield lavas. The glasses contain a blend of these discriminating chemical characteristics, and are not exactly like the typical shield lavas from either volcano. The production of these hybrid magmas likely requires a complexly zoned source, rather than two unique sources. When corrected for olivine fractionation, the glass data show correlations between CaO concentration and incompatible trace element abundances, indicating that CaO may behave incompatibly during melting of the tholeiite source. Furthermore, the tholeiite source must contain residual garnet and clinopyroxene to account for the variation in trace element abundances of the Kilauea glasses. Inversion modeling indicates that the Kilauea source is flat relative to C1 chondrites, and has a higher bulk distribution coefficient for the HREE than the LREE.

  10. Laser ablation ICP-MS applications using the timescales of geologic and biologic processes

    NASA Astrophysics Data System (ADS)

    Ridley, W. I.

    2003-04-01

    Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is to correlate trace element variations with changes in environmental variables. Such studies are proving informative in climate change and habitat management. Again, such variations have been quantified with the availability of appropriate organic, carbonate and phosphate calibration standards.

  11. Along and Across Arc Variation of the Central Andes by Single Crystal Trace Element Analaysis

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Sundell, T.; Wilder, A.; Salings, E. E.

    2017-12-01

    Along arc and across arc geochemical variations at continental volcanic arcs are influenced by a number of factors including the composition and thickness of the continental crust, mantle heterogeneity, and fluids from the subducted slab. Whole rock geochemical trends along and across the arc front of the Central Volcanic Zone (CVZ) have been suggested to be primarily influenced by the composition and thickness of the crust. In the CVZ, Pb isotopic domains relate volcanic rock compositions to the crustal basement and systematically varies with crustal age. It has been shown repeatedly that incompatible trace element trends and trace element ratios can be used to infer systematic geochemical changes. However, there is no rule linking magmatic process or chemical heterogeneity/ homogeneity as a result of large crustal magma storage reservoirs such as MASH zones to the observed variation. Here we present a combination of whole rock major- and trace element data, isotopic data and in situ single crystal data from plagioclase, pyroxene and olivine for six stratovolcanoes along the arc front and in the back arc of the CVZ. We compare geochemical trends at the whole and single crystal scale. These volcanoes include lava flows and domes from Cerro Uturuncu in the back-arc, Aucanquilcha, Ollagüe, San Pedro-San Pablo, Lascar, and Lazufre from the arc front. On an arc-wide scale, whole rock samples of silicic lavas from these six composite volcanoes display systematically higher K2O, LILE, REE and HFSE contents and 87Sr/86Sr ratios with increasing distance from the arc-front. In contrast, the lavas have systematically lower Na2O, Sr, and Ba contents; LILE/HFSE ratios; 143Nd/144Nd ratios; and more negative Eu anomalies. Silicic magmas along the arc-front reflecting melting of young, mafic composition source rocks with the continental crust becoming increasingly older and more felsic toward the east. These trends are paralleled in the trace element compositions of plagioclase cores which systematically become less diverse in composition in younger lava flows from each center. We suggest these trends result from progressively smaller degrees of mantle partial melting, primary melt generation, and crustal hybridization with distance from the arc-front and varying influence of MASH zone processes.

  12. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry

    NASA Astrophysics Data System (ADS)

    Lambrecht, Glenn; Diamond, Larryn William

    2014-09-01

    Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

  13. The zonal distribution of selected elements above the Kalamazoo porphyry copper deposit, San Manuel district, Pinal County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.

    1976-01-01

    There may be many as-yet-undiscovered porphyry copper deposits that exist as blind deposits deep within exposed rock bodies. The Kalamazoo porphyry copper-molybdenum deposit is a blind deposit present at depths up to at least 1,000 m (about 3,200 ft) that contains zoning features common to many of the known porphyry copper deposits found in western North and South America. As the preliminary phase in a geochemical study of the Kalamazoo deposit, whole-rock samples of core and cuttings from two drill holes have been analyzed for 60 different elements. Each hole represents a different major rock unit and each has penetrated completely through all the existing alteration zones and the ore zone. Plots of concentration vs. depth for 17 selected elements show distinct high- or low-concentration zones that are spatially related to the ore zone. For most of the ore-related elements no significant correlation with the two lithologies is apparent. The spatial distribution and abundance of elements such as Co, Cu, S, Se, Mn, Tl, Rb, Zn, B, and Li may be useful in determining the direction for exploration to proceed to locate a blind deposit. Trace element studies should be valuable in evaluating areas containing extensive outcrops of rocks with disseminated pyrite. Elemental zoning should be at least as useful as alteration-mineralization zoning for evaluating rock bodies thought to contain blind deposits similar to the Kalamazoo deposit. ?? 1976.

  14. Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Barca, Donatella; Bohrson, Wendy A.; D'Oriano, Claudia; Giuffrida, Marisa; Nicotra, Eugenio; Pitcher, Bradley W.

    2016-04-01

    Trace element zoning in plagioclase of selected alkaline lavas from the historic (1607-1892 AD) and recent (1983-2013 AD) activity of Mt. Etna volcano has been used to explore the possible role that volcano-tectonics exert on magma transfer dynamics. The observed textural characteristics of crystals include near-equilibrium textures (i.e., oscillatory zoning) and textures with variable extent of disequilibrium (patchy zoning, coarse sieve textures and dissolved cores). Historic crystals exhibit lower K concentrations at lower anorthite contents, a feature in agreement with the general more potassic character of the recent lavas if compared to the historic products. Historic plagioclases have statistically higher Ba and lower Sr concentrations than the recent crystals, which result in different Sr/Ba ratios for the two suites of plagioclase. Variations in the anorthite content along core-to-rim profiles obtained on crystals with different types of textures for both the historic and recent eruptive periods were evaluated particularly versus Sr/Ba. At comparable average An contents, crystals characterized by oscillatory zoning, which are representative of near-equilibrium crystallization from the magma, display distinct Sr/Ba ratios. We suggest that these features are primarily related to recharge of a new, geochemically-distinct magma into the storage and transport system of the volcano. In addition to distinct trace element and textural characteristics of plagioclase, Sr diffusion modeling for plagioclase suggests that residence times are generally shorter for crystals found in recently erupted lavas (25-77 years, average 43 years) compared to those of the historic products (43-163 years, average 99 years). Shorter residences times correlate with gradual increases in eruption volume and eruption frequency rates through time. We attribute these features to an increasing influence, since the 17th century, of extensional tectonic structures within the upper 10 km of the Etnean crust, which have promoted shorter residence times and higher eruption frequency.

  15. Pyrite deformation and connections to gold mobility: insight from micro-structural analysis and trace element mapping

    NASA Astrophysics Data System (ADS)

    Dubosq, Renelle; Rogowitz, Anna; Lawley, Christopher; Schneider, David; Jackson, Simon

    2017-04-01

    Pyrite is an important and ubiquitous gold-bearing phase in many orogenic gold deposits making the study of its deformation behaviour under metamorphic conditions crucial to the understanding of gold (re)mobilization. However, pyrite deformation mechanisms and their influence on the retention or release of trace elements during deformation and metamorphism remain poorly understood. We propose a syn- to post-peak metamorphic and deformation driven gold upgrading model where gold is remobilized through deformation-induced diffusion pathways in the form of substructures in pyrite. The middle amphibolite facies assemblage (actinolite-biotite-plagioclase-almandine) of the Detour Lake deposit (Canada) makes it an ideal study area due to maximum temperatures reaching 550°C, exceeding the conditions for plastic deformation in pyrite (450°C). The world-class Detour Lake deposit, containing 16.4 Moz of Au at 1 g/t, is a Neoarchean orogenic gold ore body located in the northern Abitibi district within the Superior Province. The mine is situated along the high strain, sub-vertical ductile-brittle Sunday Lake Deformation Zone (SLDZ) parallel to the broadly E-W trending Abitibi greenstone belt. Herein we combine orientation contrast (OC) forescatter imaging, electron backscatter diffraction (EBSD) and 2D laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) trace element pyrite mapping to evaluate the influence of pyrite brittle and plastic deformation on the release of trace elements during syn-metamorphic gold remobilization. Local misorientation patterns in pyrite exhibit parallel bands that can be described by continuous rotation around one of the <100> axes, whereas higher strain areas reveal more heterogeneous misorientation patterns and the development of low-angle grain boundaries with late fractures indicative of dislocation creep and strain hardening. These late fractures are an important micro-structural setting for gold and clusters of precious-metal mineral inclusions (telluride minerals). Minor recrystallization processes can also be observed along phase boundaries between pyrite and more competent amphibole crystals. LA-ICP-MS trace element maps document primary, syn-metamorphic oscillatory zoning of some chalcophile and siderophile elements during crystallization of pyrite porphyroblasts. These primary pyrite features are cut by late metal-rich fractures suggesting that remobilization of gold occurred with trace element enrichment of other chalcophile and siderophile elements (Cu, Pb, Zn, Ag, Bi, Te), which post-dates the main period of syn-metamorphic pyrite crystallization at the margins of pre- to syn-deformation, high-grade gold veins. Pyrite grain boundaries and subgrains are also base and precious metal rich, suggesting that late gold remobilization also occurred during pyrite recrystallization. Additional trace element mapping will help determine to what extent pyrite plastic deformation facilitates the diffusion of gold and other trace elements during gold precipitation and remobilization, which, in turn, will inform the source to sink pathways of ore deposition.

  16. Strontium and Trace Metals in the Mississippi River Mixing Zone

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Marcantonio, F.

    2001-12-01

    Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.

  17. Clinopyroxene-melt element partitioning during interaction between trachybasaltic magma and siliceous crust: Clues from quartzite enclaves at Mt. Etna volcano

    NASA Astrophysics Data System (ADS)

    Mollo, S.; Blundy, J. D.; Giacomoni, P.; Nazzari, M.; Scarlato, P.; Coltorti, M.; Langone, A.; Andronico, D.

    2017-07-01

    A peculiar characteristic of the paroxysmal sequence that occurred on March 16, 2013 at the New South East Crater of Mt. Etna volcano (eastern Sicily, Italy) was the eruption of siliceous crustal xenoliths representative of the sedimentary basement beneath the volcanic edifice. These xenoliths are quartzites that occur as subspherical bombs enclosed in a thin trachybasaltic lava envelope. At the quartzite-magma interface a reaction corona develops due to the interaction between the Etnean trachybasaltic magma and the partially melted quartzite. Three distinct domains are observed: (i) the trachybasaltic lava itself (Zone 1), including Al-rich clinopyroxene phenocrysts dispersed in a matrix glass, (ii) the hybrid melt (Zone 2), developing at the quartzite-magma interface and feeding the growth of newly-formed Al-poor clinopyroxenes, and (iii) the partially melted quartzite (Zone 3), producing abundant siliceous melt. These features makes it possible to quantify the effect of magma contamination by siliceous crust in terms of clinopyroxene-melt element partitioning. Major and trace element partition coefficients have been calculated using the compositions of clinopyroxene rims and glasses next to the crystal surface. Zone 1 and Zone 2 partition coefficients correspond to, respectively, the chemical analyses of Al-rich phenocrysts and matrix glasses, and the chemical analyses of newly-formed Al-poor crystals and hybrid glasses. For clinopyroxenes from both the hybrid layer and the lava flow expected relationships are observed between the partition coefficient, the valence of the element, and the ionic radius. However, with respect to Zone 1 partition coefficients, values of Zone 2 partition coefficients show a net decrease for transition metals (TE), high-field strength elements (HFSE) and rare earth elements including yttrium (REE + Y), and an increase for large ion lithophile elements (LILE). This variation is associated with coupled substitutions on the M1, M2 and T sites of the type M1(Al, Fe3 +) + TAl = M2(Mg, Fe2 +) + TSi. The different incorporation of trace elements into clinopyroxenes of hybrid origin is controlled by cation substitution reactions reflecting local charge-balance requirements. According to the lattice strain theory, simultaneous cation exchanges across the M1, M2, and T sites have profound effects on REE + Y and HFSE partitioning. Conversely, both temperature and melt composition have only a minor effect when the thermal path of magma is restricted to 70 °C and the value of non-bridging oxygens per tetrahedral cations (NBO/T) shifts moderately from 0.31 to 0.43. As a consequence, Zone 2 partition coefficients for REE + Y and HFSE diverge significantly from those derived for Zone 1, accounting for limited cation incorporation into the newly-formed clinopyroxenes at the quartzite-magma interface.

  18. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China

    NASA Astrophysics Data System (ADS)

    Xiao, Xin; Zhou, Tao-fa; White, Noel C.; Zhang, Le-jun; Fan, Yu; Wang, Fang-yue; Chen, Xue-feng

    2018-03-01

    Xinqiao is a large copper-gold deposit and consists of two major mineralization types: stratabound and skarn. The skarn occurs along the contact between a quartz diorite intrusion and Carboniferous-Triassic limestone. Xinqiao has a strongly developed skarn zone, including endoskarn and exoskarn; the exoskarn is divided into proximal and distal exoskarn. We present systematic major, trace and rare earth element (REE) concentrations for garnets from the skarn zone, discuss the factors controlling the incorporation of trace elements into the garnets, and constrain the formation and evolution of the garnet from skarn zone in Xinqiao deposit. Grossular (Adr20-44Grs56-80) mostly occurs in endoskarn and has typical HREE-enriched and LREE-depleted patterns, with small Eu anomalies and low ∑REE. Garnets from the exoskarn show complex textures and chemical compositions. The composition of garnets range from Al-rich andradite (Adr63-81Grs19-47) to andradite (Adr67-98Grs2-33). Garnet in endoskarn has typical HREE-enriched and LREE-depleted patterns. Al-rich andradite in proximal skarn has small Eu anomalies and moderate ∑REE. Andradite from distal exoskarn shows strong positive Eu anomalies and has variable ∑REE. The U, Y, Fe and Al relationship with ∑REE shows that two mechanisms controlled incorporation of REE into the garnets: crystal chemistry (substitution and interstitial solid solution) mainly controlled in the endoskarn garnet (grossular) and the proximal exoskarn (Al-rich andradite), and fluid and rock chemistry (surface adsorption and occlusion) controlled REEs in the distal exoskarn. Furthermore, Al has a negative relationship with ∑REE indicating that REE3+ did not follow a coupled, YAG-type substitution into the garnets. Variations in textures and trace and rare earth elements of garnets suggest that the garnets in the endoskarn formed by slow crystal growth at low W/R ratios and near-neutral pH in a closed system during periods of diffusive metasomatism. The garnets in the exoskarn formed rapidly from externally derived fluids during advective metasomatism, and adsorption had a major control on the REE patterns in distal exoskarn. With the end of water-rock reaction, the contents of REE decreased in the hydrothermal fluid, and the system became nearly closed.

  19. Minor Elements in Nakhlite Pyroxenes: Does Cr Record Changes in REDOX Conditions during Crystallization?

    NASA Technical Reports Server (NTRS)

    McKay, G.; Schwandt, C.; Le, L.; Mikouchi, T.

    2007-01-01

    Nakhlites are olivine-bearing clinopyroxene cumulates. Based on petrographic characteristics, they may be divided into groups that cooled at different rates and may have been formed at different depths in a single flow. The order of cooling rate from slowest to fastest is NWA998

  20. Three types of element fluxes from metabasite into peridotite in analogue experiments: Insights into subduction-zone processes

    NASA Astrophysics Data System (ADS)

    Perchuk, A. L.; Yapaskurt, V. O.; Griffin, W. L.; Shur, M. Yu.; Gain, S. E. M.

    2018-03-01

    Piston-cylinder experiments with natural rocks and mineral separates were carried out at 750-900 °C and 2.9 GPa, conditions relevant to hot subduction zones, to study the mechanisms of metasomatic alteration of mantle-wedge rocks such as dunite and lherzolite, and the transfer of trace elements released from a carbonate-bearing amphibolite during its eclogitization. Element transfer from the slab to the mantle lithologies occurred in porous-, focused- and diffusive-flow regimes that remove melt and carbon, and partially water, from the metabasite layer. Porous flow is recorded by dissolution of clinopyroxene and growth of orthopyroxene ± garnet ± magnesite ± chlorite along grain boundaries in the peridotite layers, but is invisible in the metabasite layers. Porous flow of the same fluids/melts produces harzburgite mineralogy in both dunite and lherzolite. The transformation of lherzolite to harzburgite reflects breakdown of clinopyroxene in the lherzolite and diffusion of the liberated calcium into the metabasite layer, i.e. against the direction of major fluid/melt flow. Focused flow develops along the side walls of the capsules, producing a melt-free omphacite ± phengite ± quartz paragenesis in the metabasite, and melt segregations, separated from the host peridotite layers by newly-formed omphacite ± garnet ± phlogopite + orthopyroxene + magnesite. Diffusive flow leads to the formation of orthopyroxene ± magnesite ± garnet reaction zones at the metabasite-peridotite interface and some melt-peridotite interfaces. Melt segregations in the peridotite layers at 850-900 °C are rich in LREE and LILE, strongly depleted in Y and HREE, and have higher Sr/Y and La/Yb ratios than island arc andesites, dacites and rhyolites. These features, and negative anomalies in Nb-Ta and low Nb/Ta, resemble those of high-silica adakites and TTGs, but K2O is high compared to TTGs. Metasomatism in the dunite layer changes the REE patterns of dunite, recording chromatographic fractionation during porous melt flow. During metabasite-lherzolite interaction, the metabasite layer becomes mildly enriched in LREE; the lherzolite layer, in contrast, is generally depleted in LREE relative to the initial composition. This also indicates element transfer against the direction of fluid flow. Trace-element profiling reveals the development of Eu anomalies in the peridotite layers and the diffusion of many trace elements out of both layers toward the contact zone. The documented processes may be applicable to both Phanerozoic and Precambrian subduction zones.

  1. Trace elements transport in western Siberia rivers across a permafrost gradient

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Krickov, I. A.; Kopysov, S. G.; Kolesnichenko, L. G.; Vorobyev, S. N.; Kirpotin, S. N.

    2015-11-01

    Towards a better understanding of trace element transport in permafrost-affected Earth surface environments, we sampled ∼ 60 large and small rivers (< 100 to ≤ 150 000 km2 watershed area) of Western Siberia Lowland (WSL) during spring flood and summer and winter base-flow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ∼ 40 major and trace elements in dissolved (< 0.45 μm) fraction allowed establishing main environmental factors controlling the transport of metals and trace elements in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentration was evidenced. Three category of trace elements were distinguished according to their concentration - latitude pattern: (i) increasing northward in spring and winter (Fe, Al, Ga (only winter), Ti (only winter), REEs, Pb, Zr, Hf, Th (only winter)), linked to leaching from peat and/or redox processes and transport in the form of Fe-rich colloids, (ii) decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding and (iii) elements without distinct trend from S to N whose variations within each latitude range were higher than the difference between latitudinal ranges (B, Li, Ti (except summer), Cr, V, Mn, Zn, Cd, Cs, Hf, Th). In addition to these general features, specific, northward increase during spring period was mostly pronounced for Fe, Mn, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A spring time northward decrease was observed for Ni, Cu, Zr, Rb. The southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). The Principal Component Analysis demonstrated two main factors potentially controlling the ensemble of TE concentration variation. The first factor, responsible for 16-20 % of overall variation, included trivalent and tetravalent hydrolysates, Cr, V, and DOC and presumably reflected the presence of organo-mineral colloids, as also confirmed by previous studies in Siberian rivers. The 2nd factor (8-14 % variation) was linked to the latitude of the watershed and acted on elements affected by the groundwater feeding (DIC, Sr, Mo, As, Sb, U), whose concentration decreased significantly northward during all seasons. Overall, the rank of environmental factors on TE concentration in western Siberian rivers was latitude (3 permafrost zones) > season > watershed size. The effect of the latitude was minimal in spring for most TE but highly visible for Sr, Mo, Sb and U. The main factors controlling the shift of river feeding from surface and subsurface flow to deep underground flow in the permafrost-bearing zone were the depth of the active (unfrozen) seasonal layer and its position in organic or mineral horizons of the soil profile. In the permafrost-free zone, the relative role of carbonate mineral-bearing base rock feeding vs. bog water feeding determined the pattern of trace element concentration and fluxes in rivers of various size as a function of season. Comparison of obtained TE fluxes in WSL rivers with those of other subarctic rivers demonstrated reasonable agreement for most trace elements; the lithology of base rocks was the major factor controlling the magnitude of TE fluxes. The climate change in western Siberia and permafrost boundary migration will affect essentially the elements controlled by underground water feeding (DIC, alkaline-earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids. Plant litter-originated divalent metals present as organic complexes may be retained via adsorption on mineral horizon. However, due to various counterbalanced processes controlling element source and sinks in plants - peat - mineral soil - river systems, the overall impact of the permafrost thaw on TE export from the land to the ocean may be smaller than that foreseen by merely active layer thickening and permafrost boundary shift.

  2. Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir P.; Pokrovsky, Oleg S.; Vorobyev, Sergey N.; Krickov, Ivan V.; Manasypov, Rinat M.; Politova, Nadezhda V.; Kopysov, Sergey G.; Dara, Olga M.; Auda, Yves; Shirokova, Liudmila S.; Kolesnichenko, Larisa G.; Zemtsov, Valery A.; Kirpotin, Sergey N.

    2017-11-01

    In order to better understand the chemical composition of snow and its impact on surface water hydrochemistry in the poorly studied Western Siberia Lowland (WSL), the surface layer of snow was sampled in February 2014 across a 1700 km latitudinal gradient (ca. 56.5 to 68° N). We aimed at assessing the latitudinal effect on both dissolved and particulate forms of elements in snow and quantifying the impact of atmospheric input to element storage and export fluxes in inland waters of the WSL. The concentration of dissolved+colloidal (< 0.45 µm) Fe, Co, Cu, As and La increased by a factor of 2 to 5 north of 63° N compared to southern regions. The pH and dissolved Ca, Mg, Sr, Mo and U in snow water increased with the rise in concentrations of particulate fraction (PF). Principal component analyses of major and trace element concentrations in both dissolved and particulate fractions revealed two factors not linked to the latitude. A hierarchical cluster analysis yielded several groups of elements that originated from alumino-silicate mineral matrix, carbonate minerals and marine aerosols or belonging to volatile atmospheric heavy metals, labile elements from weatherable minerals and nutrients. The main sources of mineral components in PF are desert and semi-desert regions of central Asia. The snow water concentrations of DIC, Cl, SO4, Mg, Ca, Cr, Co, Ni, Cu, Mo, Cd, Sb, Cs, W, Pb and U exceeded or were comparable with springtime concentrations in thermokarst lakes of the permafrost-affected WSL zone. The springtime river fluxes of DIC, Cl, SO4, Na, Mg, Ca, Rb, Cs, metals (Cr, Co, Ni, Cu, Zn, Cd, Pb), metalloids (As, Sb), Mo and U in the discontinuous to continuous permafrost zone (64-68° N) can be explained solely by melting of accumulated snow. The impact of snow deposition on riverine fluxes of elements strongly increased northward, in discontinuous and continuous permafrost zones of frozen peat bogs. This was consistent with the decrease in the impact of rock lithology on river chemical composition in the permafrost zone of the WSL, relative to the permafrost-free regions. Therefore, the present study demonstrates significant and previously underestimated atmospheric input of many major and trace elements to their riverine fluxes during spring floods. A broader impact of this result is that current estimations of river water fluxes response to climate warming in high latitudes may be unwarranted without detailed analysis of winter precipitation.

  3. Assessing dorsal scute microchemistry for reconstruction of shortnose sturgeon life histories

    USGS Publications Warehouse

    Altenritter, Matthew E.; Kinnison, Michael T.; Zydlewski, Gayle B.; Secor, David H.; Zydlewski, Joseph D.

    2015-01-01

    The imperiled status of sturgeons worldwide places priority on the identification and protection of critical habitats. We assessed the micro-structural and micro-chemical scope for a novel calcified structure, dorsal scutes, to be used for reconstruction of past habitat use and group separation in shortnose sturgeon (Acipenser brevirostrum). Dorsal scutes contained a dual-layered structure composed of a thin multi-layered translucent zone lying dorsally above a thicker multi-layered zone. Banding in the thick multi-layered zone correlated strongly with pectoral fin spine annuli supporting the presence of chronological structuring that could contain a chemical record of past environmental exposure. Trace element profiles (Sr:Ca), collected using both wavelength dispersive electron microprobe analysis and laser ablation inductively coupled mass spectrometry, suggest scutes record elemental information useful for tracing transitions between freshwater and marine environments. Moreover, mirror-image like Sr:Ca profiles were observed across the dual-zone structuring of the scute that may indicate duplication of the microchemical profile in a single structure. Additional element:calcium ratios measured in natal regions of dorsal scutes (Ba:Ca, Mg:Ca) suggest the potential for further refinement of techniques for identification of river systems of natal origin. In combination, our results provide proof of concept that dorsal scutes possess the necessary properties to be used as structures for reconstructions of past habitat use in sturgeons. Importantly, scutes may be collected non-lethally and with less injury than current structures, like otoliths and fin spines, affording an opportunity for broader application of microchemical techniques.

  4. Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: a history of the local hydrography and global climate, 20 ka to the present

    USGS Publications Warehouse

    Piper, David Z.; Dean, Walter E.

    2002-01-01

    A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which recovered sediment that has been dated back to 20 ka (thousand years ago), was examined for its major-element-oxide and trace-element composition. Cadmium (Cd), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), vanadium (V), and zinc (Zn) can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The two marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly in the photic zone by phytoplankton, and (2) a hydrogenous fraction that has been derived from bottom water via adsorption and precipitation reactions. This suite of trace elements contrasts with a second suite of trace elements—barium (Ba), cobalt (Co), gallium (Ga), lithium (Li), the rare-earth elements, thorium (Th), yttrium (Y), and several of the major-element oxides—that has had solely a terrigenous source. The partitioning scheme, coupled with bulk sediment accumulation rates measured by others, allows us to determine the accumulation rate of trace elements in each of the three sediment fractions and of the fractions themselves. The current export of organic matter from the photic zone, redox conditions and advection of bottom water, and flux of terrigenous debris into the basin can be used to calculate independently trace-element depositional rates. The calculated rates show excellent agreement with the measured rates of the surface sediment. This agreement supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone (that is, primary productivity), bottom-water advection and redox, and provenance. Correspondence of extrema in the geochemical signals with global changes in sea level and climate demonstrates the high degree to which the basin hydrography and provenance have responded to the paleoceanographic and paleoclimatic regimes of the last 20 kyr. The accumulation rate of the marine fraction of Mo increased abruptly at about 14.8 ka (calendar years), from less than 0.5 µg cm-2 yr-1 to greater than 4 µg cm-2 yr-1. Its accumulation rate remained high but variable until 8.6 ka, when it decreased sharply to 1 µg cm-2 yr-1. It continued to decrease to 4.0 ka, to its lowest value for the past 15 kyr, before gradually increasing to the present. Between 14.8 ka and 8.6 ka, its accumulation rate exhibited strong maxima at 14.4, 13.0, and 9.9 ka. The oldest maximum corresponds to melt-water pulse IA into the Gulf of Mexico. A relative minimum, centered at about 11.1 ka, corresponds to melt-water pulse IB; a strong maximum occurs in the immediately overlying sediment. The maximum at 13.0 ka corresponds to onset of the Younger Dryas cold event. This pattern to the accumulation rate of Mo (and V) can be interpreted in terms of its deposition from bottom water of the basin, the hydrogenous fraction, under SO42- -reducing conditions, during times of intense bottom-water advection 14.8 ka to 11.1 ka and significantly less intense bottom-water advection 11 ka to the present. The accumulation rate of Cd shows a pattern that is only slightly different from that of Mo, although its deposition was determined largely by the rain rate of organic matter into the bottom water, a biogenic fraction whose deposition was driven by upwelling of nutrient-enriched water into the photic zone. Its accumulation exhibits only moderately high rates, on average, during both melt-water pulses. Its highest rate, and that of upwelling, occurred during the Younger Dryas, and again following melt-water pulse IB. The marine fractions of Cu, Ni, and Zn also have a strong biogenic signal. The siliciclastic terrigenous debris, however, represents the dominant source, and host, of Cu, Ni, and Zn. All four trace elements have a consid-erably weaker hydrogenous signal than biogenic signal. Accumulation rates of the terrigenous fraction, as reflected by accumulation rates of Th and Ga, show strong maxima at 16.2 and 12.7 ka and minima at 14.1 and 11.1 ka. Co, Li, REE, and Y have a similar distribution. The minima occurred during melt-water pulses IA and IB, the maxima during the Younger Dryas and the rise in sea level following the last glacial maximum.

  5. Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing

    USGS Publications Warehouse

    Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.

    2002-01-01

    At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements between altered glass and surrounding matrix and rim material. Calcium was mainly lost during this process, and other nonvolatile elements may have been mobile as well. Some unzoned, low-FeO chondrules appear to have fully altered mesostasis.

  6. Orthopyroxene oikocrysts in the MG1 chromitite layer of the Bushveld Complex: implications for cumulate formation and recrystallisation

    NASA Astrophysics Data System (ADS)

    Kaufmann, Felix E. D.; Vukmanovic, Zoja; Holness, Marian B.; Hecht, Lutz

    2018-02-01

    Two typical mineral textures of the MG 1 chromitite of the Bushveld Complex, South Africa, were observed; one characterised by abundant orthopyroxene oikocrysts, and the other by coarse-grained granular chromitite with only minor amounts of interstitial material. Oikocrysts form elongate clusters of several crystals aligned parallel to the layering, and typically have subhedral, almost chromite-free, core zones containing remnants of olivine. The core zones are surrounded by poikilitic aureoles overgrowing euhedral to subhedral chromite chadacrysts. Chromite grains show no preferred crystal orientation, whereas orthopyroxene grains forming clusters commonly share the same crystallographic orientation. Oikocryst core zones have lower Mg# and higher concentrations of incompatible trace elements compared to their poikilitic aureoles. Core zones are relatively enriched in REE compared to a postulated parental magma (B1) and did not crystallise in equilibrium with the surrounding minerals, whereas the composition of the poikilitic orthopyroxene is consistent with growth from the B1 magma. These observations cannot be explained by the classic cumulus and post-cumulus models of oikocryst formation. Instead, we suggest that the oikocryst core zones in the MG1 chromitite layer formed by peritectic replacement of olivine primocrysts by reaction with an upwards-percolating melt enriched in incompatible trace elements. Poikilitic overgrowth on oikocryst core zones occurred in equilibrium with a basaltic melt of B1 composition near the magma-crystal mush interface. Finally, adcumulus crystallisation followed by grain growth resulted in the surrounding granular chromitite.

  7. The phytoremediation potential of native plants on New Zealand dairy farms.

    PubMed

    Hahner, Jason L; Robinson, Brett H; Hong-Tao, Zhong; Dickinson, Nicholas M

    2014-01-01

    Ecological restoration of marginal land and riparian zones in agricultural landscapes in New Zealand enhances the provision of above-ground ecosystem services. We investigated whether native endemic plant assemblages have remediation potential, through modifying soil nutrient and trace element mobility. Analysis of native plant foliage in situ indicated that selective uptake of a range of commonly deficient trace elements including Zn, B, Cu, Mn and Co could provide a browse crop to avoid deficiencies of these elements in livestock, although some native plants may enhance the risk of Mo and Cd toxicity. Native plant rhizospheres were found to modify soil physico-chemistry and are likely to influence lateral and vertical fluxes of chemical elements in drainage waters. Native plants on marginal land in agricultural landscapes could add value to dairy production systems whilst helping to resolve topical environmental issues.

  8. Trace elements in magnetite as petrogenetic indicators

    NASA Astrophysics Data System (ADS)

    Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges; Méric, Julien; Boutroy, Emilie; Potvin-Doucet, Christophe

    2014-10-01

    We have characterized the distribution of 25 trace elements in magnetite (Mg, Al, Si, P, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Sn, Hf, Ta, W, and Pb), using laser ablation ICP-MS and electron microprobe, from a variety of magmatic and hydrothermal ore-forming environments and compared them with data from the literature. We propose a new multielement diagram, normalized to bulk continental crust, designed to emphasize the partitioning behavior of trace elements between magnetite, the melt/fluid, and co-crystallizing phases. The normalized pattern of magnetite reflects the composition of the melt/fluid, which in both magmatic and hydrothermal systems varies with temperature. Thus, it is possible to distinguish magnetite formed at different degrees of crystal fractionation in both silicate and sulfide melts. The crystallization of ilmenite or sulfide before magnetite is recorded as a marked depletion in Ti or Cu, respectively. The chemical signature of hydrothermal magnetite is distinct being depleted in elements that are relatively immobile during alteration and commonly enriched in elements that are highly incompatible into magnetite (e.g., Si and Ca). Magnetite formed from low-temperature fluids has the lowest overall abundance of trace elements due to their lower solubility. Chemical zonation of magnetite is rare but occurs in some hydrothermal deposits where laser mapping reveals oscillatory zoning, which records the changing conditions and composition of the fluid during magnetite growth. This new way of plotting all 25 trace elements on 1 diagram, normalized to bulk continental crust and elements in order of compatibility into magnetite, provides a tool to help understand the processes that control partitioning of a full suit of trace elements in magnetite and aid discrimination of magnetite formed in different environments. It has applications in both petrogenetic and provenance studies, such as in the exploration of ore deposits and in sedimentology.

  9. Microscale Characterization and Trace Element Distribution in Bacteriogenic Ferromanganese Coatings on Sand Grains from an Intertidal Zone of the East China Sea

    PubMed Central

    Yuan, Linxi; Sun, Liguang; Fortin, Danielle; Wang, Yuhong; Yin, Xuebin

    2015-01-01

    An ancient wood layer dated at about 5600 yr BP by accelerator mass spectrometry (AMS) 14C was discovered in an intertidal zone of the East China Sea. Extensive and horizontally stratified sediments with black color on the top and yellowish-red at the bottom, and some nodule-cemented concretions with brown surface and black inclusions occurred in this intertidal zone. Microscale analysis methods were employed to study the microscale characterization and trace element distribution in the stratified sediments and concretions. Light microscopy, scanning electron microscopy (SEM) and backscattered electron imaging (BSE) revealed the presence of different coatings on the sand grains. The main mineral compositions of the coatings were ferrihydrite and goethite in the yellowish-red parts, and birnessite in the black parts using X-ray powder diffraction (XRD). SEM observations showed that bacteriogenic products and bacterial remnants extensively occurred in the coatings, indicating that bacteria likely played an important role in the formation of ferromanganese coatings. Post-Archean Australian Shale (PAAS)-normalized middle rare earth element (MREE) enrichment patterns of the coatings indicated that they were caused by two sub-sequential processes: (1) preferentially release of Fe-Mn from the beach rocks by fermentation of ancient woods and colloidal flocculation in the mixing water zone and (2) preferential adsorption of MREE by Fe-Mn oxyhydroxides from the seawater. The chemical results indicated that the coatings were enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Ba, especially with respect to Co, Ni. The findings of the present study provide an insight in the microscale features of ferromanganese coatings and the Fe-Mn biogeochemical cycling during the degradation of buried organic matter in intertidal zones or shallow coasts. PMID:25786213

  10. Actualistic models of mantle metasomatism documented in a composite xenolith from Dish Hill, California

    USGS Publications Warehouse

    Nielson, J.E.; Budahn, J.R.; Unruh, D.M.; Wilshire, H.G.

    1993-01-01

    Major and trace-element whole rock and mineral variations in composite hornblendite-peridotite xenolith Ba-2-1, from Dish Hill, CA, are due to a single event of metasomatism in the mantle. The hornblendite is the crystallized selvage of a dike conduit charged with incompatible-element-enriched hydrous mafic magma. The magma infiltrated the refractory peridotite wallrock, reacted with its constituent minerals, and simultaneously deposited amphibole. The systematic data from this study show considerable variation in isotopic values and trace elements. These data provide insight into a mantle process that was defined previously from samples without context, lacking evidence about the number or source of metasomatic events. In the contact zone of Ba-2-1, peridotite is enriched in Fe, Ti, CO2) and H2O; clinopyroxene and amphibole also are enriched in Fe and Ti, but clinopyroxene appears slightly depleted in CaO. Compared to chondrites, peridotite, clinopyroxene, and probably amphibole are enriched in light rare earth (LREEcn) and other incompatible trace elements. Values of 87Sr 86Sr and 143Nd 144Nd in the contact zone are close to isotopic equilibrium with the dike. Whole rock and constituent clinopyroxene compositions change to those of refractory peridotite with distance from the contact. These compositional variations were modelled using Gresens' equation for whole-rock major and minor elements, and calculations for isotopic ratios and REEs, which emulate the effects of Chromatographic fractionation. The choice of endmembers was restricted to compositions actually present in mantle samples from Dish Hill. Model results indicate that: 1. (1) the variations can be explained as the result of a single metasomatic event, probably a single pulse of previously fractionated liquid; 2. (2) the ratio of total interacting liquid to peridotite was at least 1:3 by weight in the contact zone; and 3. (3) the composition of the metasomatic liquid changed progressively as it infiltrated beyond that zone. The small distance over which variations occur is due to the small amount of liquid that infiltrated. Only in the contact zone was peridotite wallrock saturated by a liquid composition similar to the dike. Comparison of the Ba-2-1 data with those of another xenolith from Dish Hill suggests that the compositional variations of mantle metasomatism result from both the compositional contrast between the metasomatizing liquid and wallrock and the relative abundances of each. Compositional and volumetric variations of mantle partial melts and their fractionates, and repeated events of melting and reaction in contiguous mantle, can create broad ranges of metasomatic "signatures" from the same process. ?? 1993.

  11. Trace element fluxes during the last 100 years in sediment near a nuclear power plant

    NASA Astrophysics Data System (ADS)

    Bojórquez-Sánchez, S.; Marmolejo-Rodríguez, A. J.; Ruiz-Fernández, A. C.; Sánchez-González, A.; Sánchez-Cabeza, J. A.; Bojórquez-Leyva, H.; Pérez-Bernal, L. H.

    2017-11-01

    The Salada coastal lagoon is located in Veracruz (Mexico) near the Laguna Verde Nuclear Power Plant (LVNPP). Currently, the lagoon receives the cooling waters used in the LVNPP. To evaluate the fluxes and mobilization of trace elements due to human activities in the area, two sediment cores from the coastal flood plains of Salada Lagoon were analysed. Cores were collected using PVC tubes. Sediments cores were analysed every centimetre for dating (210Pb by alpha detector) and trace metal analysis using ICP-Mass Spectrometry. The dating of both sediment cores covers the period from 1900 to 2013, which includes the construction of the LVNPP (1970's). The Normalized Enrichment Factor shows enrichment of Ag, As and Cr in both sediment cores. These enrichments correspond to the extent of mining activity (which reached a maximum in the 1900's) and to the geological setting of the coastal zone. The profiles of the element fluxes in both sediment cores reflected the construction and operation of the LVNPP; however, the elements content did not show evidence of pollution coming from the LVNPP.

  12. Fluid-rock interaction recorded in fault rocks of the Nobeoka Thrust, fossilized megasplay fault in an ancient accretionary complex

    NASA Astrophysics Data System (ADS)

    Hasegawa, R.; Yamaguchi, A.; Fukuchi, R.; Kitamura, Y.; Kimura, G.; Hamada, Y.; Ashi, J.; Ishikawa, T.

    2017-12-01

    The relationship between faulting and fluid behavior has been in debate. In this study, we clarify the fluid-rock interaction in the Nobeoka Thrust by major/trace element composition analysis using the boring core of the Nobeoka Thrust, an exhumed analogue of an ancient megasplay fault in Shimanto accretionary complex, southwest Japan. The hanging wall and the footwall of the Nobeoka Thrust show difference in lithology and metamorphic grade, and their maximum burial temperature is estimated from vitrinite reflectance analysis to be 320 330°C and 250 270°C, respectively (Kondo et al., 2005). The fault zone was formed in a fluid-rich condition, as evidenced by warm fluid migration suggested by fluid inclusion analysis (Kondo et al., 2005), implosion brecciation accompanied by carbonate precipitation followed by formation of pseudotachylyte (Okamoto et al., 2006), ankerite veins coseismically formed under reducing conditions (Yamaguchi et al., 2011), and quartz veins recording stress rotation in seismic cycles (Otsubo et al., 2016). In this study, first we analyzed the major/trace element composition across the principal slip zone (PSZ) of the Nobeoka Thrust by using fragments of borehole cores penetrated through the Nobeoka Thrust. Many elements fluctuated just above the PSZ, whereas K increase and Na, Si decrease suggesting illitization of plagioclase, as well as positive anomalies in Li and Cs were found within the PSZ. For more detail understanding, we observed polished slabs and thin sections of the PSZ. Although grain size reduction of deformed clast and weak development of foliation were observed entirely in the PSZ by macroscopic observation, remarkable development of composite planar fabric nor evidence of friction melting were absent. In this presentation, we show the result of major/trace element composition corresponding to the internal structure of PSZ, and discuss fluid-rock interaction and its impact to megasplay fault activity in subduction zones.

  13. Sinking fluxes of minor and trace elements in the North Pacific Ocean measured during the VERTIGO program

    NASA Astrophysics Data System (ADS)

    Lamborg, C. H.; Buesseler, K. O.; Lam, P. J.

    2008-07-01

    As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we collected and analyzed sinking particles using sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). In this paper, we present the results of minor and trace element determinations made on these samples. Minor and trace elements in the sinking material showed 2 trends in flux with depth: increasing and constant. The sinking particulate phase of some elements (Al, Fe, Mn) was dominated by material of lithogenic origin and exhibited flux that was constant with depth and consistent with eolian dust inputs (ALOHA), or increasing in flux with depth as a result of lateral inputs from a shelf (K2). This shelf-derived material also appears to have been confined to very small particles, whose inherent sinking rates are slow, and residence time within the mesopelagic "twilight zone" would be consequently long. Furthermore, the flux of this material did not change with substantial changes in the rain of biogenic material from the surface (K2), suggesting mechanistic decoupling from the flux of organic carbon and macronutrients. Micronutrient (Fe, Co, Zn and Cu) fluxes examined in a 1-D mass balance suggest widely differing sources and sinks in the water column as well as impacts from biological uptake and regeneration. For example, total Fe fluxes into and out of the euphotic zone appeared to be dominated by lithogenic material and far exceed biological requirements. The export flux of Fe, however, appeared to be balanced by the eolian input of soluble Fe. For Zn and Cu, the situation is reversed, with atmospheric inputs insufficient to support fluxes, and the cycling therefore dominated by the draw down of an internal pool. For Co, the situation lies in between, with important, but ultimately insufficient atmospheric inputs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, R.P.; Irifune, T.; Shimizu, N.

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110,more » 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as the product of melting of deeply recycled (subducted) Archean-age metasediments in the mantle transition zone [Murphy, D.T., Collerson, K.D., Kamber, B.S., 2002. Lamproites from Gaussberg, Antartica: possible transition zone melts of Archaean subducted sediments. J. Petrol. 43, 981-1001]. Here we report the results of phase equilibria experiments on two different natural sedimentary compositions (a high-grade metapelite with < 1 wt.% H{sub 2}O, and a marine 'mud' with 8 wt.% H{sub O}) at 16-23 GPa. In both materials, the high-pressure mineral assemblages contain {approx} 15-30 wt.% K-hollandite (KAlSi{sub 3}O{sub 8}), in addition to stishovite, garnet, an Al-silicate phase (kyanite or phase egg), and a Fe-Ti spinel (corundum). Ion microprobe analyses of K-hollandite for a range of trace elements reveal that this phase controls a significant proportion of the whole-rock budget of incompatible, large-ion lithophile elements (LILEs, e.g., Rb, Ba, Sr, K, Pb, La, Ce and Th). Comparisons between the abundances and ratios of these elements in K-hollandite with those in EM-I type ocean-island basalts from Pitcairn Island and related seamounts, and with the Gaussberg lamproites, indicate the presence of deeply recycled, continent-derived sediments in these lavas sources. Our results suggest that the incompatible trace-element signature of EM-I OIB reservoirs in general and of the Gaussberg lamproites in particular can be attributed to recycling of K-hollandite-bearing continental sediments to transition zone depths.« less

  15. Mantle metasomatism above subduction zones: Trace-element and radiogenic isotope characteristics of peridotite xenoliths from Batan Island (Philippines)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, Ph.; Dupuy, C.; Maury, R.

    1989-12-01

    Trace-element abundances and radiogenic isotope ratios have been determined for a suite of upper mantle-derived xenoliths collected from Pliocene-Quaternary andesitic lavas on Batan Island, northernmost Philippines. The xenoliths exhibit mineralogical changes and large ion lithophile enrichment indicative of metasomatism involving H{sub 2}O-rich fluids. Strontium and neodymium isotopes in the xenoliths are not totally consistent with those in host lavas, but a common signature is indicated by the fact that all samples plot below the mantle array. The flux of fluids in the mantle wedge probably occurred over a long period of time. The flux induced large but variable changes inmore » mineral and trace and isotopic compositions, and ultimately resulted in the melting of the peridotites and production of island-arc lavas.« less

  16. Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data

    NASA Astrophysics Data System (ADS)

    Araújo, Daniel Ferreira; Peres, Lucas G. M.; Yepez, Santiago; Mulholland, Daniel S.; Machado, Wilson; Tonhá, Myller; Garnier, Jérémie

    2017-10-01

    The Sepetiba Bay, Southeastern Brazil, has undergone intense environmental changes due to anthropogenic influence. This work aims to: (i) evaluate the changes in the drainage landscape use over the last decades, (ii) identify new and past punctual and diffuse anthropogenic sources and assess risks of man-induced disturbances of the coastal zones of Sepetiba. A multivariate statistics approach on the sediment's elemental geochemical dataset discriminated three groups: the electroplating waste-affected elements (As, Cd, Pb, Cu and Zn), terrigenous elements (Si, K, Ti, Al and Fe), and biogenic and carbonate-derived elements (Ca, Mg, Mn, P, Ni, and Cr). Sediment core profiles of trace elements evidence records of former environmental impacts from old metallurgical wastes. Analysis of two Landsat images from 30 years ago and 2015 reveals a decrease in the mangrove area of nearly 26%. The ongoing suppression of mangroves could enhance the release of trace elements into the Sepetiba Bay, increasing the risks to human and biota health.

  17. The first survey of airborne trace elements at airport using moss bag technique.

    PubMed

    Vuković, Gordana; Urošević, Mira Aničić; Škrivanj, Sandra; Vergel, Konstantin; Tomašević, Milica; Popović, Aleksandar

    2017-06-01

    Air traffic represents an important way of social mobility in the world, and many ongoing discussions are related to the impacts that air transportation has on local air quality. In this study, moss Sphagnum girgensohnii was used for the first time in the assessment of trace element content at the international airport. The moss bags were exposed during the summer of 2013 at four sampling sites at the airport 'Nikola Tesla' (Belgrade, Serbia): runway (two), auxiliary runway and parking lot. According to the relative accumulation factor (RAF) and the limit of quantification of the moss bag technique (LOQ T ), the most abundant elements in the samples were Zn, Na, Cr, V, Cu and Fe. A comparison between the element concentrations at the airport and the corresponding values in different land use classes (urban central, suburban, industrial and green zones) across the city of Belgrade did not point out that the air traffic and associated activities significantly contribute to the trace element air pollution. This study emphasised an easy operational and robust (bio)monitoring, using moss bags as a suitable method for assessment of air quality within various microenvironments with restriction in positioning referent instrumental devices.

  18. Volatile transfer and recycling at convergent margins: Mass-balance and insights from high-P/T metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.

    The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.

  19. Imprints of an "Arc" Signature onto Subduction Zone Eclogites from Central Guatemala

    NASA Astrophysics Data System (ADS)

    Simons, K. K.; Sorensen, S. S.; Harlow, G. E.; Brueckner, H. K.; Goldstein, S. L.; Hemming, N. G.; Langmuir, C. H.

    2007-12-01

    High-pressure, low-temperature (HP-LT) rocks associated with the Motagua fault zone in central Guatemala occur as tectonic blocks in serpentinite mélange. Dismembered jadeitite and albitite veins within the melange are crystallization products of subduction fluids at <400° C and 0.4-1.4 GPa. Lawsonite eclogites represent the deepest, coldest rocks, with peak metamorphic conditions of approx. 2.6 GPa and 480°C. They contain a subduction fluid overprint acquired during retrogression to blue- and green-schist-facies conditions, seen mostly as hydrous phases (e.g. phengite, glaucophane) in veins and overgrowths. The low temperatures recorded in these rocks indicate they have only seen an aqueous fluid, not a melt, and therefore, could provide a window into the acquisition of an arc signature at a cold margin. Trace-element patterns for both eclogite and jadeitite resemble arc lavas, with large enrichments in the most fluid mobile elements (e.g. Cs, Tl, Ba, Pb), moderate enrichments in U, Th, Be and LREE and generally little to no enrichment in HFSE and HREE, although enriched Nb in jadeitite indicates some HFSE mobility. Trace-element patterns also have similarities to average subducting sediment (GLOSS), with enrichments in Th, Be, Ba and Li that suggest a sediment contribution. Nd versus Sr isotopes lie to the right of the mantle array, indicating a hydrous fluid contribution from altered ocean crust or sediment. Overall, Guatemalan eclogites resemble counterparts from the Franciscan Complex (CA) and the Dominican Republic. Guatemalan and Franciscan eclogites are interpreted to have had a MORB protolith despite the arc trace element signature because of: 1) similarities in major elements to MORB; 2) HREE and HFSE abundances similar to MORB; and 3) high 143Nd/144Nd that overlap MORB values. The modifications that transformed these eclogites from a MORB trace element pattern to an arc one can be attributed to an aqueous subduction fluid at moderate depths (<75km). This transformation may be due to the increased solubilities of some minerals (e.g., jadeite, albite, clays, sulfates) at high pressure, high water/rock ratios from dehydration reactions, and an abundance of alkali-aluminosilicate components in subduction fluids. Together these may act to dissolve and transport trace elements (including elements considered insoluble like Nb) out of the slab and into the mantle wedge. The Guatemala data thus indicate that the arc geochemical fingerprint may be achieved at cold margins without the need for melting.

  20. Benthic foraminifera and trace element distribution: a case-study from the heavily polluted lagoon of Venice (Italy).

    PubMed

    Coccioni, Rodolfo; Frontalini, Fabrizio; Marsili, Andrea; Mana, Davide

    2009-01-01

    Living benthic foraminiferal assemblages were studied in surface samples collected from the lagoon of Venice (Italy) in order to investigate the relationship between these sensitive microorganisms and trace element pollution. Geochemical analysis of sediments shows that the lagoon is affected by trace element pollution (Cd, Cu, Ni, Pb, Zn and Hg) with the highest concentrations in its inner part, which corresponds to the Porto Marghera industrial area. The biocenosis are largely dominated by Ammonia tepida, Haynesina germanica and Cribroelphidium oceanensis and, subordinately, by Aubignyna perlucida, Ammonia parkinsoniana and Bolivina striatula. Biotic and abiotic factors were statistically analyzed with multivariate technique of cluster analysis and principal component analysis. The statistical analysis reveals a strong relationship between trace elements (in particular Mn, Pb and Hg) and the occurrence of abnormalities in foraminiferal tests. Remarkably, greater proportions of abnormal specimens are usually found at stations located close to the heaviest polluted industrial zone of Porto Marghera. This paper shows that benthic foraminifera can be used as useful and relatively speedy and inexpensive bio-indicators in monitoring the health quality of the lagoon of Venice. It also provides a basis for future investigations aimed at unraveling the benthic foraminiferal response to human-induced pollution in marine and transitional marine environments.

  1. Turbidite geochemistry and evolution of the Izu-Bonin arc and continents

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Hiscott, R. N.; Vidal, Ph.

    1994-10-01

    The major and trace element and NdPb isotopic composition of Oligocene to Pleistocene volcaniclastic sands and sandstones derived from the Izu Bonin island arc has been determined. Many characteristics of the igneous sources are preserved and record the geochemical evolution of juvenile proto-continental crust in an island arc. After an initial boninitic phase, arc geochemistry has varied primarily as the result of backarc basin formation. The Izu arc source became depleted in incompatible trace elements during backarc basin formation, and re-enriched after spreading stopped in the basin. Renewed rifting during the Pliocene to Recent caused felsic magmatism as a result of easier eruption of differentiates rather than as a result of crustal melting. Four isotopically-distinct source components are recognized. Their combination in the sources of the Izu-Bonin and Mariana arcs initially was similar but diverged after backarc basin formation. The Izu arc turbidites are more similar to Archean than post-Archean sedimentary rocks, indicating that the production of new upper crust at subduction zones has changed little over time. The turbidites are similar in major element composition to average continental crust but are depleted in incompatible trace elements, especially Th and Nb. Consequently, the net effect of adding juvenile arc crust to continents is to reverse the trend of planetary trace element differentiation instead of continuing the process.

  2. Crystallographic control of surface structure on the sectoral zoning of iron in a diopside from Orford nickel mine (Quebec), Canada

    NASA Astrophysics Data System (ADS)

    Paquette, J.; Zangooi, A.; Thornton, K.

    2004-05-01

    The influence of surface structure on partitioning between mineral and melt (or solution) has been noted by other workers in a handful of minerals, including calcite, dolomite, apatite, topaz and diamond. Each one of these minerals displays at least one crystallographic face where steps present during crystal growth are not equivalent by symmetry. When this is the case, sectors grown at the edge of these steps commonly show differential incorporation of minor or trace elements. In the diopside investigated here, electron probe microanalyses performed on the as-grown (100) surface of several crystals show concentric and sectoral zoning defined by variations in Fe content. Atomic force microscopy (AFM) was used to study the surfaces of the three crystallographic forms present on the diopside crystals, with the goal of relating the compositional zoning to the surface structure of the faces. The dominant {100} faces are covered with growth hillocks consisting of four vicinal faces defined by steps parallel to [010] and [001]. The steps are often bunched into macrosteps and the resulting hillocks are visible optically. The steps along the two crystallographic directions show significant differences in straightness and smoothness that indicate non-equivalent kinetics. The wavier steps correspond to Fe-enriched areas within the {100} sectors. The {010} faces, next in morphological importance, are dominated by a single step orientation and show no differential incorporation. They display topography related to polysynthetic twinning. The {110} faces are much smaller and very few show resolvable steps. Sector zoning (i.e. diffential partitioning among non-equivalent crystallographic faces) has been described in the past from pyroxenes. Explanations have invoked either differences in surface structure among non-equivalent faces or their unequal growth rates. This particular occurrence indicates that trace element incorporation is, in fact, highly site-specific and that significant compositioinal zoning can be induced on a single face without invoking the effect of growth rate. The natural diopside crystals from the Orford nickel mine (Brompton, Quebec) show a unusual bladed habit flattened on {100} faces. Exceptional fluid chemistry during crystallization may therefore be required for the persistence of steps responsible for differential incorporation. Nevertheless, whenever this zoning is present, the trace element involved cannot be expected to reflect thermodynamic equilibrium between the solid and the fluid from which it crystallized.

  3. Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordón Caulle, Chile.

    PubMed

    Alloway, B V; Pearce, N J G; Villarosa, G; Outes, V; Moreno, P I

    2015-12-02

    Within the volcanological community there is a growing awareness that many large- to small-scale, point-source eruptive events can be fed by multiple melt bodies rather than from a single magma reservoir. In this study, glass shard major- and trace-element compositions were determined from tephra systematically sampled from the outset of the Puyehue-Cordón Caulle (PCC) eruption (~1 km(3)) in southern Chile which commenced on June 4(th), 2011. Three distinct but cogenetic magma bodies were simultaneously tapped during the paroxysmal phase of this eruption. These are readily identified by clear compositional gaps in CaO, and by Sr/Zr and Sr/Y ratios, resulting from dominantly plagioclase extraction at slightly different pressures, with incompatible elements controlled by zircon crystallisation. Our results clearly demonstrate the utility of glass shard major- and trace-element data in defining the contribution of multiple magma bodies to an explosive eruption. The complex spatial association of the PCC fissure zone with the Liquiñe-Ofqui Fault zone was likely an influential factor that impeded the ascent of the parent magma and allowed the formation of discrete melt bodies within the sub-volcanic system that continued to independently fractionate.

  4. Multiple Sulfur Isotopes In The Molopo Farms Complex May Shed Light On Mechanisms Of Mineralization In The Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Magalhaes, N.; Feineman, M. D.; Bybee, G. M.; Penniston-Dorland, S.; Farquhar, J.; Draper, C.; Escobar, E.; Gates, M.; Renusch, J.

    2016-12-01

    The 2.056 Ga Bushveld Igneous Complex (BIC) is host to the world's largest layered mafic-ultramafic intrusion, the Rustenburg Layered Suite (RLS), which has >80% of the world's known platinum group elements (PGEs) reserves. The BIC results from large-volume melt extraction from the mantle and may provide insight into the formation and compositional evolution of continental crust. Despite its scientific and economic importance, the total magma volume is poorly known. This is in part because the relationship between the BIC and nearby intrusive bodies of similar age remains uncertain. In this study, we present major element, trace element, and multiple sulfur isotope data for a suite of samples spanning the stratigraphy of the Molopo Farms Complex (MFC), a layered mafic intrusion located 200 km west of the Far Western Limb of the RLS. Similar to the RLS, the MFC contains an ultramafic lower zone, a mafic main zone, and an incompatible element enriched granophyric unit near the contact with the roof rocks. However, it has no Critical Zone, and an insignificant concentration of PGEs. Since the PGEs in the RLS are primarily hosted in sulfides, it has been inferred that the mineralization is closely linked to the source and behavior of sulfur. The RLS displays mass independent fractionation of sulfur (S-MIF; denoted by Δ33S), which suggests incorporation of surface-derived materials into the magma prior to or during emplacement. Multiple sulfur isotopes of MFC samples also show non-zero mean Δ33S (0.04±0.02‰, 1sd), although it is lower than the mean for the RLS (0.11±0.02‰, 1sd). Similarities in trace element ratios between the MFC mafic zone and RLS marginal zone suggest the same parental magma contributed to both intrusions. Taken together, these results suggest that both the RLS and the MFC started with similar magmatic compositions, and while both assimilated sulfur with an Archean surface-derived component, the RLS received more of this component in proportion to its volume. The lack of PGE mineralization in the MFC may reflect the lesser addition of Archean sedimentary sulfur.

  5. Landslide-induced iron mobilisation shapes benthic accumulation of nutrients, trace metals and REE fractionation in an oligotrophic alpine stream

    NASA Astrophysics Data System (ADS)

    Johnston, Scott G.; Rose, Andrew L.; Burton, Edward D.; Webster-Brown, Jenny

    2015-01-01

    Large alpine landslides that entrain substantial organic material below the water table and create suspended floodplains may have long-term consequences for the mobilisation of redox sensitive elements, such as Fe, into streamwaters. In turn, the cycling of iron in aquatic systems can influence the fate of nutrients, alter primary productivity, enhance accumulation of trace metals and induce fractionation of rare earth elements (REE). In this study we examine a reach of a pristine oligotrophic alpine stream bracketing a 30 year-old landslide and explore the consequences of landslide-induced Fe mobilisation for aqueous geochemistry and the composition of benthic stream cobble biofilm. Elevated Fe2+ and Mn in landslide zone stream waters reflect inputs of circumneutral groundwater from the landslide debris-zone floodplain. Geochemical characteristics are consistent with reductive dissolution being a primary mechanism of Fe2+ and Mn mobilisation. Stream cobble biofilm in the landslide zone is significantly (P < 0.01) enriched in poorly crystalline Fe(III) (∼10-400 times background) and Mn (∼15-150 times background) (1 M HCl extractable; Fe(III)Ab). While the landslide zone accounts for less than ∼9% of the total stream length, we estimate it is responsible for approximately 60-80% of the stream's benthic biofilm load of poorly crystalline Fe(III) and Mn. Biofilm Fe(III) precipitates are comprised mainly of ferrihydrite, lepidocrocite and an organic-Fe species, while precipitate samples collected proximal to hyporheic seeps contain abundant sheath structures characteristic of the neutrophilic Fe(II)-oxidising bacteria Leptothrix spp. Stream-cobble Fe(III)-rich biofilm is accumulating PO43- (∼3-30 times background) and behaving as a preferential substrate for photosynthetic periphyton, with benthic PO43-, chlorophyll a, organic carbonHCl and total N all significantly positively correlated with Fe(III)Ab and significantly elevated within the landslide zone (P < 0.01). P K-edge XANES indicates P is associated with both ferric and Ca-phosphate minerals, while SEM-EDX elemental mapping of Fe(III) precipitates reveal strong spatial associations between P, Ca and Fe. Cobble Fe(III)-rich biofilm is also sorbing and accumulating multiple trace metals and REE. Within the landslide zone there are significant (P < 0.01) enrichments (up to ∼10-100 times background) for most trace metals examined here and metals display significant positive linear correlations with Fe(III)Ab on a log transformed basis. Stream cobble biofilm also exhibits distinct REE fractionation along the flow path, with light REE (La, Ce, Nd, Pr) preferentially partitioning to the Fe(III) and Mn-rich biofilm within the landslide zone. Accumulation of PO43- and trace metals in this relatively environmentally labile form may have implications for their bioavailability and downstream transport, but further research is required to assess possible ecological consequences. This study demonstrates the potential for large alpine landslides to encourage reach-scale circumneutral Fe mobilisation in adjacent streams, thereby shaping multiple aspects of benthic stream geochemistry for many years after the landslide event itself.

  6. Bioaccumulation of trace elements in Ruditapes philippinarum from China: public health risk assessment implications.

    PubMed

    Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan

    2013-04-02

    The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1-38.0, 49.5-168.3, 42.0-68.0, 4.19-8.71, 4.76-14.32, 0.41-1.11, 0.94-4.74, 0.32-2.59, 0.03-0.23 and 0.46-11.95 mg·kg(-1) dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption.

  7. Geochemistry of ocean floor serpentinites world-wide: constraints on the ultramafic input to subduction zones

    NASA Astrophysics Data System (ADS)

    Kodolányi, J.; Pettke, T.; Spandler, C.; Kamber, B.; Gméling, K.

    2009-04-01

    Serpentinite can be a major component of the upper part of the oceanic lithosphere and is a significant H2O-contributor to subduction zones (Scambelluri et al. 2004). Serpentinite dehydration releases large amounts of water through a very limited number of discontinuous reactions and it is therefore expected to have the potential of leaving a trace element chemical fingerprint in overlying rocks (Ulmer and Trommsdorff 1995; Scambelluri et al. 2004; see also Pettke et al. 2009). We present major and trace element whole rock (XRF, ICP-MS and PGAA) and in-situ mineral (EPMA and LA-ICP-MS) analyses of serpentinized peridotites sampled on DSDP/ODP drilling cruises, in order to chemically characterize the hydrated ultramafic input of subduction zones. The studied 39 samples cover all major geodynamic settings where serpentinites occur on recent ocean floors (fast and slow spreading mid-ocean ridges, passive margins and supra-subduction zones). All rock samples consist of one or two serpentine (srp) polymorphs, brucite (brc), magnetite (mag), and relic high-temperature mantle minerals: olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and spinel (spl). Serpentine + brc replace ol, forming a mesh-like network around relic crystal fragments. Magnetite usually forms strings of individual crystals along the srp mesh-network. Very rare iowaite (a H2O and Cl-bearing Fe-Mg oxy-hydroxide) remnants were found around the ol core of mesh srp and in the srp ± brc replacements after ol mesh cores. Orthopyroxene alters to bastitic pseudomorphs which consist of srp rarely accompanied by brc. Associated mag is generally absent. The degree of ol and opx alteration is variable, i.e., there are samples in which opx is completely whereas ol is only partially altered and vice versa, which suggests variable temperatures of alteration (alteration rate of opx is higher than that of ol above ca. 350 °C; Martin and Fyfe 1970). Clinopyroxene and spl appear to be weakly altered in thoroughly serpentinized samples. Where present, carbonate (cab) forms veins or fills former srp ± brc pseudomorphs after ol or opx. Major, minor and trace element chemistry of the serpentinites generally reflects that of their ultramafic precursor (Mg-rich and Si-poor rocks with low trace element contents). With respect to certain elements, however, we detect significant serpentinization-related changes. Besides their high H2O-contents (8.7-17.2 wt. %), the hydrated harzburgites and lherzolites also display high B and Cl concentrations (8-177 μg/g and 1160-5920 μg/g, respectively) relative to depleted mantle values (0.06 and 0.51 ppm, respectively; Salters and Stracke 2004). Supra-subduction zone serpentinites contain 10 to 100 times more Cs (0.04-1.2 μg/g) and Rb (0.1-7.1 μg/g) than samples from mid-ocean ridges and passive margins (Cs: below 0.07 μg/g; Rb: 0.004-1.17 μg/g). We often observe 100 to 1000-fold enrichments in U, Pb, Sr and Li relative to elements of similar compatibility in the mantle. In-situ mineral analyses suggest that B and Cl reside in serpentine minerals. Cesium and Rb whole rock and mineral chemical data correlate well, too. If carbonates are not present, the Sr budget of serpentinites is largely controlled by serpentine minerals that take up 0.36 to 21 μg/g Sr, i.e., orders of magnitude more than concentrations of precursor ol and opx. Bastites tend to have (about 1.5-4 times) higher trace-element concentrations than mesh rims, suggesting that precursor mineralogy (e.g. harzburgites vs. dunites) and alteration temperature (Martin and Fyfe 1970) can affect serpentinite chemistry. Enrichments of U, Pb and Li may have multiple origins, i.e., may be only partly related to serpentinization and low-temperature carbonate addition. Our study shows that serpentinites from representative geodynamic settings have variable, but generally depleted chemical character, inherited from precursor mantle rocks. However, notably B and Cl are enriched, but not uniformly so and independent of geodynamic setting. Supra-subduction zone serpentinites reveal additional enrichments in Cs, Rb, ±Sr, identifying an alteration fluid source that is not pure seawater. In conclusion, precursor mineralogy and magmatic history together with hydration temperature govern the trace element budget of ocean floor serpentinites, which, apart from supplying H2O to the subduction zone, may also be a significant source of B and Cl to the arc magma source and, depending on geodynamic setting, may even influence the element budget for Cs, Rb, Pb, U and .Sr. References: Martin B, Fyfe WS (1970) Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6: 185-202 Pettke T, Spandler C, Kodolányi J, Scambelluri M (2009) The chemical signatures of progressive dehydration stages in subducted serpentinites (this volume) Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5 Doi: 10.1029/2003GC000597 Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite Subduction: Implications for Fluid Processes and Trace-Element Recycling. Int Geol Rev 46: 595-613 Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268: 858-861

  8. Diffractive micro-optical element with nonpoint response

    NASA Astrophysics Data System (ADS)

    Soifer, Victor A.; Golub, Michael A.

    1993-01-01

    Common-use diffractive lenses have microrelief zones in the form of simple rings that provide only an optical power but do not contain any image information. They have a point-image response under point-source illumination. We must use a more complicated non-point response to focus a light beam into different light marks, letter-type images as well as for optical pattern recognition. The current presentation describes computer generation of diffractive micro- optical elements with complicated curvilinear zones of a regular piecewise-smooth structure and grey-level or staircase phase microrelief. The manufacture of non-point response elements uses the steps of phase-transfer calculation and orthogonal-scan masks generation or lithographic glass etching. Ray-tracing method is shown to be applicable in this task. Several working samples of focusing optical elements generated by computer and photolithography are presented. Using the experimental results we discuss here such applications as laser branding.

  9. Chemical and oxygen isotope zonings in garnet from subducted continental crust record mineral replacement and metasomatism

    NASA Astrophysics Data System (ADS)

    Vho, Alice; Rubatto, Daniela; Regis, Daniele; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2017-04-01

    Garnet is a key mineral in metamorphic petrology for constraining pressure, temperature and time paths. Garnet can preserve multiple growth stages due to its wide P-T stability field and the relatively slow diffusivity for major and trace elements at sub-solidus temperatures. Pressure-temperature-time-fluid paths of the host rock may be reconstructed by combining metamorphic petrology with microscale trace element and oxygen isotope measurements in garnet. Subduction zones represent relevant geological settings for geochemical investigation of element exchanges during aqueous fluid-rock interactions. The Sesia Zone consists of a complex continental sequence containing a variety of mono-metamorphic and poly-metamorphic lithologies such as metagranitoids, sediments and mafic boudins. The precursor Varisican-Permian amphibolite-facies basement (6-9 kbar 650-850°C; Lardeaux and Spalla, 1991; Robyr et al., 2013) experienced high pressure metamorphism (15-22 kbar 500-550°C; Regis, et al. 2014; Robyr et al., 2013) during Alpine subduction. In different lithologies of the Internal Complex (Eclogitic Micaschist Complex), including metabasites from the Ivozio Complex, Ti-rich metasediments from Val Malone and pre-Alpine Mn-quartzites associated to metagabbros from Cima Bonze, garnet is abundant and shows a variety of complex textures that cannot be reconciled with typical growth zoning, but indicate resorption and replacement processes and possible metasomatism. In-situ, microscale oxygen isotopes analysis of garnet zones was performed by ion microprobe with the SwissSIMS Cameca IMS 1280-HR at University of Lausanne and SHRIMP-SI at the Australian National University. Each sample has a distinct δ18O composition, and the δ18O values show different degrees of variation between domains. Homogeneously low values of < 5‰ are measured in the garnets from the Ivozio Complex metagabbro. Intragrain variations of up to 3.5‰ in the porphyroblasts from Val Malone metasediments, and variations up to 6.5‰ in Cima Bonze garnets suggest significant metasomatic replacement from external fluids. The combination of oxygen isotopes, trace element geochemistry and P-T modelling allows reconstructing the major stages of metasomatism, as well as identifying the nature of the fluid interacting with the rock at each metamorphic stage. REFERENCES Lardeaux, J. M., & Spalla, M. I. (1991). From granulites to eclogites in the Sesia zone (Italian Western Alps): A record of the opening and closure of the Piedmont ocean. Journal of Metamorphic Geology, 9, 35-59. Regis, D., Rubatto, D., Darling, J., Cenki-Tok, B., Zucali, M., & Engi, M. (2014). Multiple metamorphic stages within an eclogite-facies terrane (Sesia Zone, Western Alps) revealed by Th-U-Pb petrochronology. Journal of Petrology, 55(7), 1429-1456. Robyr, M., Darbellay, B., & Baumgartner, L. P. (2014). Matrix-dependent garnet growth in polymetamorphic rocks of the Sesia zone, Italian Alps. Journal of Metamorphic Geology, 32(1), 3-24.

  10. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils.

    PubMed

    Wang, Zhongwen; Shan, Xiao-Quan; Zhang, Shuzhen

    2002-03-01

    Rhizosphere is a microbiosphere and has quite different chemical, physical and biological properties from bulk soils. A greenhouse experiment was performed to compare the difference of fractionation and bioavailability of trace elements Cr, Ni, Zn, Cu, Pb and Cd between rhizosphere soil and bulk soil. In the meantime, the influence of air-drying on the fractionation and bioavailability was also investigated by using wet soil sample as a control. Soils in a homemade rhizobox were divided into four zones: rhizosphere, near rhizosphere, near bulk soil and bulk soil zones, which was designated as S1, S2, S3 and S4. Elemental speciations were fractionated to water soluble, exchangeable and carbonate bound (B1), Fe-Mn oxide bound (B2), and organic and sulfide bound (B3) by a sequential extraction procedure. Speciation differences were observed for elements Cr, Ni, Zn, Cu, Pb and Cd between the rhizosphere and bulk soils, and between the air-dried and wet soils as well. The concentrations of all six heavy metals in fraction B1 followed the order of S2 > S3 > S1 > S4 and for B2, the order was S2 > S3 S4 > S1. For B3, the order was S1 > S3 S4 > S2, while for Cd the order was S2 > S3 approximately/= S4 > S1. The air-drying increased elemental concentration in fractions B1 and B2 by 20-50% and decreased in fraction B3 by about 20-100%. Correlation analysis also indicated that the bioavailability correlation coefficient of fraction B1 in rhizosphere wet soil to plants was better than that between either air-dried or nonrhizosphere soils. Therefore, application of rhizosphere wet soils should be recommended in the future study on the speciation analysis of trace elements in soils and bioavailability.

  11. Trace elements records from vermetids aragonite as millennial paleo-oceanographic archives in the South-East Mediterranean

    NASA Astrophysics Data System (ADS)

    Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo

    2017-04-01

    The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative dominance of different climate systems and anthropogenic processes on the East Mediterranean environment.

  12. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Pettke, Thomas; Cannaò, Enrico

    2015-11-01

    Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 103 PM (primitive mantle), ∼102 PM Tl, Ba, while Rb, B, Sr, Li, U concentrations are of the order of 101 PM, and alkalis are ∼2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.

  13. Lithium Zoning in Kīlauea Olivine: Growth vs. Diffusion?

    NASA Astrophysics Data System (ADS)

    Shea, T.; Lynn, K. J.; Garcia, M. O.; Costa Rodriguez, F.

    2016-12-01

    Lithium is a fast-diffusing element with the potential to characterize magmatic processes that occur on timescales of hours to days [1]. However, Li diffusion in olivine is complex. Experimental studies show that it can diffuse via two paths: a `fast' interstitial mechanism and a `slow' vacancy mechanism [1]. Charge balancing relationships with other incompatible trace elements may also play a role in Li diffusion [2]. A detailed study of lithium zoning in natural olivine was undertaken to better understand how Li is correlated with other trace elements and determine if Li diffusion profiles can be used to extract meaningful timescales of magmatic processes. Olivine crystals from the Keanakāko`i explosive period at Kīlauea Volcano (HI) were used in this study because (a) the lavas and tephra generally contain phenocrysts of only olivine in a rapidly quenched glass, which avoid complications of multi-phase systems and post-eruptive diffusion; (b) we previously constrained the magmatic histories of these crystals using major and minor elements; and (c) at concentrations (e.g. 1-10 ppm) and temperatures (e.g. 1150-1250 °C) typical of Kīlauea basalts, Li diffusion is probably dominated by the vacancy mechanism [1]. Euhedral crystals were carefully oriented and mounted on either the a- or b- crystallographic axes (c-axis is always within the plane of section) and polished to the crystal core. High precision LA-ICP-MS analyses of Li (2σ = 0.08 ppm), Na, Al, P, and Cr complement EPMA profiles of Si, Mg, Fe, Ni, and Ca (200 nA current). Core-to-rim transects were collected along two axes (c and a or b) to identify potential diffusion anisotropy effects for Li and other elements. Li zoning is correlated with Na, indicative of a growth signature (also observed for Al, P, and Cr), or is decoupled from incompatible trace elements and have profiles that indicate diffusive re-equilibration. Modeling of Li diffusion profiles yields timescales of hours to days, which probably represent the final stages of magma transport from crustal magma reservoirs and allow ascent rates to be estimated. [1] Dohmen et al. (2010), Geochimica et Cosmochimica Acta, 74, 274-292. [2] Spandler and O'Neill (2010), Contributions to Mineralogy and Petrology, 159, 791-818.

  14. Application of gold compositional analyses to mineral exploration in the United States

    USGS Publications Warehouse

    Antweiler, J.C.; Campbell, W.L.

    1977-01-01

    Native gold is a mineral composed of Au, Ag and Cu in solid solution and it usually contains one or more trace metals as lattice impurities, as mineral inclusions, in grain boundaries or in surface coatings. Alloy proportions of Au, Ag and Cu, together with certain other elements, can be thought of as constituting a gold "signature". Gold is associated with a great variety of ore deposits and has characteristic signatures for each of several types of ore deposits. Signatures for gold derived from igneous-metamorphic, hypothermal, mesothermal and epithermal deposits reflect conditions of ore formation by their content of Ag, Cu and characteristic associated elements. At higher temperatures of ore formation, gold has low Ag and high Cu content, and Bi and Pb are the most abundant trace elements. But at lower temperatures of ore formation, Ag is high, Cu is low, and Pb is the most abundant trace element. The same trend in gold signatures is observable in gold mining districts, such as Central City, Colorado, where zoning as shown by mineral assemblages indicates ore deposition at progressively lower temperatures as the distance from a central high-temperature zone increases. The signatures of gold may be useful in searching for porphyry Cu deposits. Signatures from Butte (Montana), Mineral Park (Arizona) and Cala Abajo (Puerto Rico), on the basis of limited sampling, are similar and distinctive. They are characterized by a similar assemblage of trace elements and are relatively high in both Ag and Cu. Another application of gold compositional data is in tracing placer gold to its bedrock source. For example, the Ag content of placer gold in the Tarryall district of Colorado differed from that of nearly all of the bedrock sources of gold found by early prospectors. However, one lightly prospected area peripheral to the Tertiary quartz monzonite stock at Montgomery Gulch contains gold with a Ag content similar to that of the placer gold. This area is the most likely source of the gold in the productive placers and may be a potential exploration target. Gold signatures may be useful in prospecting for metals other than gold. Several metals of low crustal abundance - notably Sn, W, Mo and the Pt group metals - are detected in analyses of some gold samples and may indicate economic deposits of these metals. ?? 1977.

  15. Titanite petrochronology in the Fish Canyon Tuff

    NASA Astrophysics Data System (ADS)

    Schmitz, M. D.; Crowley, J. L.

    2014-12-01

    The petrologic complexity of the archtypical 'monotonous intermediate' Fish Canyon Tuff (FCT) has been previously established by a variety of mineralogical and geochemical proxies [1-2], and the unusual storage and eruptive dynamics of the FCT have been delineated by several geochronological studies [3-5]. Titanite is an apparent equilibrium phase in the penultimate FCT magma, and can be linked petrographically to hornblende crystals that preserve up-temperature core-to-rim zoning profiles. As a reactive, trace element-rich phase, we hypothesized that titanite may record an intracrystalline record of magma chamber dynamics. Titanite crystals from the same separate analyzed in [4] were oriented and doubly-polished to yield characteristic wedge-shaped cross-sectional wafers approximately 300 µm in thickness. BSE imaging guided LA-ICPMS analyses of a full suite of trace elements using a 25 µm beam diameter and crater depth on multiple locations across both sides of the wafer. Most titanite crystals are characterized by large variations in trace elements, including at least two generations of REE-enriched, actinide-poor, low Sr, large Eu anomaly cores overgrown by REE-depleted, actinide-rich, high Sr domains with small Eu anomalies and distinctive concave-up middle to heavy REE patterns. Trace element contents and patterns correlate strongly with Eu anomaly; intermediate compositions are abundant and spatially correlated to reaction zones between core and rim domains. Within the context of the batholithic rejuvenation model for the FCT magma [1-2], these trace element variations are interpreted to record the partial melting of a differentiated crystalline FCT precursor and its hybridization with a more 'mafic' flux. ID-TIMS dating of end-member titanites confirm older ages (ca 28.4 to 29.0 Ma) for cores and define a younger age for rejuvenation of ca 28.2 Ma, consistent with recent U-Pb zircon and 40Ar/39Ar studies [5-7]. [1] Bachmann & Dungan (2002) Am Mineral 87, 1062-1076. [2] Bachmann et al (2002) J Petrology 43, 1469-1503. [3] Bachmann et al (2007) Chem Geol 236, 134-166. [4] Schmitz & Bowring (2001) GCA 65, 2571-2587. [5] Wotzlaw et al (2013) Geology 41, 867-870. [6] Rivera et al. (2011) EPSL 311, 420-426. [7] Kuiper et al (2008) Science 320, 500-504.

  16. Geochemistry and petrogenesis of a peralkaline granite complex from the Midian Mountains, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Harris, N. B. W.; Marriner, G. F.

    1980-10-01

    A zoned intrusion with a biotite granodiorite core and arfvedsonite granite rim represents the source magma for an albitised granite plug near its eastern margin and radioactive siliceous veins along its western margin. A study of selected REE and trace elements of samples from this complex reveals that the albitised granite plug has at least a tenfold enrichment in Zr, Hf, Nb, Ta, Y, Th, U and Sr, and a greatly enhanced heavy/light REE ratio compared with the peralkaline granite. The siliceous veins have even stronger enrichment of these trace elements, but a heavy/light REE ratio and negative eu anomaly similar to the peralkaline granite. It is suggested that the veins were formed from acidic volatile activity and the plug from a combination of highly fractionated magma and co-existing alkaline volatile phase. The granodiorite core intrudes the peralkaline granite and has similar trace element geochemistry. The peralkaline granite is probably derived from the partial melting of the lower crust in the presence of halide-rich volatiles, and the granodiorite from further partial melting under volatile-free conditions.

  17. Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation

    USGS Publications Warehouse

    Rusk, B.G.; Lowers, H.A.; Reed, M.H.

    2008-01-01

    High-resolution electron microprobe maps show the distribution of Ti, Al, Ca, K, and Fe among quartz growth zones revealed by scanning electron microscope-cathodoluminescence (SEM-CL) from 12 hydrothermal ore deposits formed between ???100 and e1750 ??C. The maps clearly show the relationships between trace elements and CL intensity in quartz. Among all samples, no single trace element consistently correlates with variations in CL intensity. However in vein quartz from five porphyry-Cu (Mo-Au) deposits, CL intensity always correlates positively with Ti concentrations, suggesting that Ti is a CL activator in quartz formed at >400 ??C. Ti concentrations in most rutile-bearing vein quartz from porphyry copper deposits indicate reasonable formation temperatures of 2000 ppm, but in high-temperature quartz, Al concentrations are consistently in the range of several hundred ppm. Aluminum concentrations in quartz refl ect the Al solubility in hydrothermal fluids, which is strongly dependent on pH. Aluminum concentrations in quartz therefore reflect fluctuations in pH that may drive metal-sulfide precipitation in hydrothermal systems. ?? 2008 The Geological Society of America.

  18. Key issues of ultraviolet radiation of OH at high altitudes

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng; Fan, Jing

    2014-12-01

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A2Σ+→ X2Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the vertical distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.

  19. Changes in magma storage conditions following caldera collapse at Okataina Volcanic Center, New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Allison; Cooper, Kari M.; Leever, Marissa

    Large silicic volcanic centers produce both small rhyolitic eruptions and catastrophic caldera-forming eruptions. Although changes in trace element and isotopic compositions within eruptions following caldera collapse have been observed at rhyolitic volcanic centers such as Yellowstone and Long Valley, much still remains unknown about the ways in which magma reservoirs are affected by caldera collapse. We present 238U– 230Th age, trace element, and Hf isotopic data from individual zircon crystals from four eruptions from the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand, in order to assess changes in trace element and isotopic composition of the reservoir following the 45-kamore » caldera-forming Rotoiti eruption. Our data indicate that (1) mixing of magmas derived from crustal melts and mantle melts takes place within the shallow reservoir; (2) while the basic processes of melt generation likely did not change significantly between pre- and post-caldera rhyolites, post-caldera zircons show increased trace element and isotopic heterogeneity that suggests a decrease in the degree of interconnectedness of the liquid within the reservoir following collapse; and (3) post-caldera eruptions from different vents indicate different storage times of the amalgamated melt prior to eruption. Furthermore, these data further suggest that the timescales needed to generate large volumes of eruptible melt may depend on the timescales needed to increase interconnectedness and achieve widespread homogenization throughout the reservoir.« less

  20. Changes in magma storage conditions following caldera collapse at Okataina Volcanic Center, New Zealand

    DOE PAGES

    Rubin, Allison; Cooper, Kari M.; Leever, Marissa; ...

    2015-12-15

    Large silicic volcanic centers produce both small rhyolitic eruptions and catastrophic caldera-forming eruptions. Although changes in trace element and isotopic compositions within eruptions following caldera collapse have been observed at rhyolitic volcanic centers such as Yellowstone and Long Valley, much still remains unknown about the ways in which magma reservoirs are affected by caldera collapse. We present 238U– 230Th age, trace element, and Hf isotopic data from individual zircon crystals from four eruptions from the Okataina Volcanic Center, Taupo Volcanic Zone, New Zealand, in order to assess changes in trace element and isotopic composition of the reservoir following the 45-kamore » caldera-forming Rotoiti eruption. Our data indicate that (1) mixing of magmas derived from crustal melts and mantle melts takes place within the shallow reservoir; (2) while the basic processes of melt generation likely did not change significantly between pre- and post-caldera rhyolites, post-caldera zircons show increased trace element and isotopic heterogeneity that suggests a decrease in the degree of interconnectedness of the liquid within the reservoir following collapse; and (3) post-caldera eruptions from different vents indicate different storage times of the amalgamated melt prior to eruption. Furthermore, these data further suggest that the timescales needed to generate large volumes of eruptible melt may depend on the timescales needed to increase interconnectedness and achieve widespread homogenization throughout the reservoir.« less

  1. Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam)

    NASA Astrophysics Data System (ADS)

    Koukina, S. E.; Lobus, N. V.; Peresypkin, V. I.; Dara, O. M.; Smurov, A. V.

    2017-11-01

    Major (Si, Al, Fe, Ti, Mg, Ca, Na, K, S, P), minor (Mn) and trace (Li, V, Cr, Co, Ni, Cu, Zn, As, Sr, Zr, Mo, Cd, Ag, Sn, Sb, Cs, Ba, Hg, Pb, Bi and U) elements, their chemical forms and the mineral composition, organic matter (TOC) and carbonates (TIC) in surface sediments from the Cai River estuary and Nha Trang Bay were first determined along the salinity gradient. The abundance and ratio of major and trace elements in surface sediments are discussed in relation to the mineralogy, grain size, depositional conditions, reference background and SQG values. Most trace-element contents are at natural levels and are derived from the composition of rocks and soils in the watershed. A severe enrichment of Ag is most likely derived from metal-rich detrital heavy minerals such as Ag-sulfosalts. Along the salinity gradient, several zones of metal enrichment occur in surface sediments because of the geochemical fractionation of the riverine material. The parts of actually and potentially bioavailable forms (isolated by four single chemical reagent extractions) are most elevated for Mn and Pb (up to 36% and 32% of total content, respectively). The possible anthropogenic input of Pb in the region requires further study. Overall, the most bioavailable parts of trace elements are associated with easily soluble amorphous Fe and Mn oxyhydroxides. The sediments are primarily enriched with bioavailable metal forms in the riverine part of the estuary. Natural (such as turbidities) and human-generated (such as urban and industrial activities) pressures are shown to influence the abundance and speciation of potential contaminants and therefore change their bioavailability in this estuarine system.

  2. Spectral, electron microscopic and chemical investigations of gamma-induced purple color zonings in amethyst crystals from the Dursunbey-Balıkesir region of Turkey

    NASA Astrophysics Data System (ADS)

    Hatipoğlu, Murat; Kibar, Rana; Çetin, Ahmet; Can, Nurdoğan; Helvacı, Cahit; Derin, H.

    2011-07-01

    Amethyst crystals on matrix specimens from the Dursunbey-Balıkesir region in Turkey have five representative purple color zonings: dark purple, light purple, lilac, orchid, and violet. The purple color zonings have been analyzed with optical absorption spectra in the visible wavelength region, chemical full trace element analyses (inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectroscopy), and scanning electron microscopic images with high magnification. It can be proposed that the production of the purple color in amethyst crystals is due to three dominant absorption bands centered at 375, 530, and 675 nm, respectively. In addition, the purple color zonings are also due to four minor absorption bands centered at 435, 480, 620, and 760 nm. X-ray diffraction graphics of the investigated amethyst crystals indicate that these crystals are composed of a nearly pure alpha-quartz phase and do not include any moganite silica phase and/or other mineral implications. Trace element analyses of the amethyst crystals show five representative purple color zonings, suggesting that the absorption bands can be mainly attributed to extrinsic defects (chemical impurities). However, another important factor that influences all structural defects in amethyst is likely to be the gamma irradiation that exists during amethyst crystallization and its inclusion in host materials. This gamma irradiation originates from the large underlying intrusive granitoid body in the region of amethyst formation. Irradiation modifies the valence values of the impurity elements in the amethyst crystals. It is observed that the violet-colored amethyst crystals have the most stable and the least reversible coloration when exposed to strong light sources. This situation can be related to the higher impurity content of Fe (2.50 ppm), Co (3.1 ppm), Ni (38 ppm), Cu (17.9 ppm), Zn (10 ppm), Zr (3.9 ppm), and Mo (21.8 ppm).

  3. Genetic implications of the trace element distribution pattern in the upper knox carbonate rocks, copper ridge district, East Tennessee

    NASA Astrophysics Data System (ADS)

    Churnet, Habte G.; Misra, Kula C.

    1981-11-01

    The Lower Ordovician, Upper Knox Group rocks (the Kingsport and Mascot formations) in the Copper Ridge district consist predominantly of fine-grained dolostones, medium and coarser grained dolostones, and limestones. Dolomite crystals of medium and coarser grained dolostones show up to eight cathodoluminescent zones of variable width and intensity. Electron microprobe analyses indicate that the zoning is related to variation in Fe/Mn ratios, the brighter luminescent zones corresponding to lower ratios. Superposed on this growth zoning is a compositional zoning characterized by a general increase in Fe from core to rim of individual dolomite crystals. Field and petrographic studies (Churnet, 1979; Churnet et al., 1981) indicate that the fine-grained dolostones formed in supratidal to upper intratidal environments, whereas the precursor lime muds of the limestones as well as of the medium and coarser grained dolostones formed in shallow subtidal to lower intertidal environments. The large areal extent of the dolostones must have required a regionally abundant source of Mg such as marine water. Yet, both limestones and dolostones have low Na and Sr contents suggestive of their formation in solutions more dilute than normal marine water. It is proposed that the fine-grained dolostones formed by aggradation of initially very fine-grained dolostones in presence of fresh water, and that the limestones stabilized and the medium and coarser grained dolostones formed in environments of mixed marine and fresh waters. Considered in the light of ordering of partition coefficients, such a mixing model can account for the observed correlation pattern of trace elements (especially, SMn and SrFe) as well as the Fe distribution in the zoned dolomite crystals. Variation of the partition coefficient of Mn due to fluctuations in the relative proportions of fresh and marine waters in the diagenetic solution may explain the different Fe/Mn ratios observed in the growth zones (luminescence bands) of zoned dolomite crystals.

  4. Assessing trace element diffusion models in fossil and sub-fossil bone

    NASA Astrophysics Data System (ADS)

    Suarez, C. A.; Kohn, M. J.

    2012-12-01

    Three different diffusion models have been proposed to explain trace element uptake during fossilization of bone: diffusion-adsorption (DA), diffusion-recrystallization (DR), and double-medium diffusion (DMD). Theoretically, differences in trace element profiles, particularly the rare earth elements (REE) and U, can discriminate among these possibilities. In this study, we tested which model best explains natural samples by analyzing trace element profiles in natural bone using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Fossil bones ranging in age from a few ka to over 100 Ma were analyzed along traverses from the outer cortical edge to the inner marrow cavity margin. Forty major, minor and trace elements were analyzed, notably Ca, P, transition metals, Sr, Ba, REE, U, Th and Pb. Spatial and analytical resolutions were ~10 μm and ~100 ppb respectively. Many specimens show commonly observed exponential decreases in REE from the outer edge and marrow cavity, with relatively homogeneous U distributions. Yet, most significantly, specimens from American Falls (last interglacial) and Duck Point (last glacial maximum) show distinctive U plateaus adjacent to the outer and inner cortical bone margins. Whereas exponential profiles can be produced by different uptake processes, such plateaus are diagnostic of a DR mechanism. Our work is consistent with recent investigation of trace element diffusivities in modern fresh and deproteinated bone. These studies show similar diffusion rates for REE and U, so the profound disparity in U vs. REE profiles in most fossils cannot result solely from differences in volume diffusion within the context of DA and DMD. Rather, as a recrystallization front propagates into bone, the bone appears to encode changing soil water compositions with earlier vs. later compositions reflected in the bone margin vs. interior. Soil water U concentrations apparently remain nearly fixed during fossilization, whereas REE are rapidly stripped from the surrounding matrix, leading to nearly homogeneous U vs. steep REE profiles. However in our Pleistocene bones (American Falls and Duck Point), changes to U concentrations on the bone margin reveal more complex changes to boundary compositions, and eliminate both DA and DMD (alone) as the dominant mechanisms of trace element uptake. Our work reconciles disparate zoning patterns observed in fossil bone, and simplifies interpretations of soil or sediment water chemistry, but complicates U-series dating of fossils.

  5. Bioaccumulation of Trace Elements in Ruditapes philippinarum from China: Public Health Risk Assessment Implications

    PubMed Central

    Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan

    2013-01-01

    The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1–38.0, 49.5–168.3, 42.0–68.0, 4.19–8.71, 4.76–14.32, 0.41–1.11, 0.94–4.74, 0.32–2.59, 0.03–0.23 and 0.46–11.95 mg·kg−1 dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption. PMID:23549229

  6. Mantle sources and magma evolution of the Rooiberg lavas, Bushveld Large Igneous Province, South Africa

    NASA Astrophysics Data System (ADS)

    Günther, T.; Haase, K. M.; Klemd, R.; Teschner, C.

    2018-06-01

    We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr-143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with > 4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of < 4 wt%. The high- and low-Ti basaltic lavas have different incompatible trace element ratios (e.g. (La/Sm)N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures ( 4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative ɛNdi (- 5.2 to - 9.4) and radiogenic ɛSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10-20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM) component with harzburgitic composition. Regardless of which of the two scenarios is invoked, the lavas of the Rooiberg Group show geochemical similarities to the Jurassic Karoo flood basalts, implying that the Archean lithosphere strongly affected both of these large-scale melting events.

  7. Influence of sediment recycling on the trace element composition of primitive arc lavas

    NASA Astrophysics Data System (ADS)

    Collinet, M.; Jagoutz, O. E.

    2017-12-01

    Primitive calc-alkaline lavas from continental arcs are, on average, enriched in incompatible elements compared to those from intra-oceanic arcs. This relative enrichment is observed in different groups of trace elements: LILE (e.g. K, Rb), LREE to MREE (La-Dy) and HFSE (e.g.Zr, Nb) and is thought to result from (1) a transfer of material from the subducting slab to the mantle wedge at higher temperature than in intra-oceanic margins and/or (2) lower average degrees of melting in the mantle wedge, as a consequence of thicker overlying crusts and higher average pressures of melting. In addition to thicker overlying crusts and generally higher slab temperatures, continental margins are characterized by larger volumes of rock exposed above sea level and enhanced erosion rates compared to intra-oceanic arcs. As several geochemical signatures of arc lavas attest to the importance of sediment recycling in subduction zones, we explore the possibility that the high concentrations of incompatible elements in primitive lavas from continental arcs directly reflect a larger input of sediment to the subduction system. Previous efforts to quantify the sediment flux to oceanic trenches focused on the thickness of pelagic and hemipelagic sediments on top of the plate entering the subduction zone (Plank and Langmuir, 1993, Nature). These estimates primarily relied on the sediment layer drilled outboard from the subduction system and likely underestimate the volume of sediment derived from the arc itself. Accordingly, we find that such estimates of sediment flux do not correlate with the concentration of incompatible elements in primitive arc lavas. To account for regional contributions of coarser detrital sediments, usually delivered to oceanic trenches by turbidity currents, we apply to arc segments a model that quantifies the sediment load of rivers based on the average relief, area, temperature and runoff of their respective drainage areas (Syvitski et al., 2003, Sediment. Geol.). Our new estimates of sediment fluxes correlate positively with incompatible element concentrations in primitive arc lavas. We conclude that a large fraction of the local terrigenous sediments is subducted and contributes to the observed dichotomy in the trace element budget between primitive lavas from continental and oceanic margins.

  8. Magma evolution as seen through zircon geochemistry: an example from the Southern Adamello Batholith, N. Italy

    NASA Astrophysics Data System (ADS)

    Broderick, C.; Schaltegger, U.; Gerdes, A.; Frick, D.; Guenther, D.; Brack, P.

    2012-04-01

    Zircon is an ubiquitous accessory mineral often used for U-Pb geochronology but is also an important recorder of geochemical information. The trace element and isotopic characteristics of zircon yield potential for tracking changes in an evolving magma through time. With recent advances in U-Pb zircon geochronology, 10-100 ka to Ma timescales are observed for incremental pluton construction (Michel et al., 2008, Schaltegger et al., 2009). In observed 100 ka timescales of zircon crystallization, can zircon record the processes that produce trace element variations in a magma? This study focuses on the Val Fredda Complex (VFC) in the southern tip of the 43 to 33 Ma Adamello batholith, N. Italy. The VFC displays complex relationships among mafic melts that were injected into solidifying felsic magmas. Single zircon crystals were dated using CA-ID-TIMS. With permil uncertainties on 206Pb/238U zircon dates, zircons reveal complexities within single populations. The mafic units crystallized potential autocrystic zircons over a duration of 100 - 150ka, whereas the felsic units record up to 200ka of zircon crystallization. In order to understand these complex zircon populations, we analyzed Hf isotopes and trace elements, on the same volume of zircon used for U-Pb dating, following the TIMS-TEA method (Schoene et al., 2010). This detailed zircon study will allow us to look at how magmas are evolving with time. Hf isotopes of VFC mafic zircons reveal distinct ɛHf values between the three mafic units and their ɛHf values remain consistent through time, whereas the VFC felsic units record more complexity in their ɛHf values. We observe changes such as increasing and slight decreases in ɛHf with time which suggest different processes are occurring to produce the different felsic units. Trace element ratios in zircon reveal differences which allow us to make distinctions between felsic and mafic units (e.g. Th/U, (Lu/Gd)N, REEs). The VFC records 200 ka of zircon crystallization and our data suggests that zircons do in fact reflect changes in isotopic and in trace element signatures on 100 ka timescales. Although we observe changes in our trace elements, the TIMS-TEA method provides an average of trace element concentrations from a zircon volume, dominated by more marginal growth zones. Therefore we will compare our data with in situ methods to determine how our trace element data compares with trace elements across zircon profiles. We acknowledge funding of FNS in the frame of ProDoc Adamello 4-D. Michel et al., 2008, Geol. 36 : 459-462 ; Schaltegger et al., 2009, Earth Planet. Sci.Lett. 286: 208-218; Schoene et al., 2010, Geochim. Cosmochim. Acta 74, 7144-7159.

  9. Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone.

    PubMed

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Hu, Baoqing; Hou, Qingye; Yu, Tao; Li, Jie

    2016-12-15

    Industrialization and urbanization have led to a deterioration in air quality and provoked some serious environmental concerns. Fifty-four samples of atmospheric deposition were collected from an emerging industrial area and analyzed to determine the concentrations of 11 trace elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Se, S and Zn). Multivariate geostatistical analyses were conducted to determine the spatial distribution, possible sources and enrichment degrees of trace elements in atmospheric deposition. Results indicate that As, Fe and Mo mainly originated from soil, their natural parent materials, while the remaining trace elements were strongly influenced by anthropogenic or natural activities, such as coal combustion in coal-fired power plants (Pb, Se and S), manganese ore (Mn, Cd and Hg) and metal smelting (Cu and Zn). The results of ecological geochemical assessment indicate that Cd, Pb and Zn are the elements of priority concern, followed by Mn and Cu, and other heavy metals, which represent little threat to local environment. It was determine that the resuspension of soil particles impacted the behavior of heavy metals by 55.3%; the impact of the coal-fired power plants was 18.9%; and the contribution of the local manganese industry was 9.6%. The comparison of consequences from various statistical methods (principal component analysis (PCA), cluster analysis (CA), enrichment factor (EF) and absolute principle component score (APCS)-multiple linear regression (MLR)) confirmed the credibility of this research. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. The Trace Element Composition of Plankton and Dust in the Qatari EEZ

    NASA Astrophysics Data System (ADS)

    Turner, J.; Murray, J. W.; Yigiterhan, O.; Al-Ansari, I. S.; Al-Ansi, M.; Abdel-Moati, M.; Paul, B.; Nelson, A.

    2015-12-01

    We present data on elemental concentrations of plankton net tow samples from the Exclusive Economic Zone (EEZ) of Qatar in the Arabian Gulf as part of a broader study of biogenic and lithogenic influences on particulate trace metal concentrations in the surface ocean. There are relatively few analyses of planktonic trace metals and their associated role in the biogeochemical system. We had the opportunity to investigate the composition of plankton in a region heavily affected by dust, a significant factor for phytoplankton growth. Our samples were collected from 2012 to 2015 using trace metal clean net tows with mesh sizes of 50 and 200 microns for measurements of phytoplankton and zooplankton, respectively. Samples were totally digested and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS). The biogenic portion was determined by subtracting the lithogenic portion from the total concentration. The lithogenic fraction was defined as the concentration of aluminum in the sample multiplied by a [Me]/Al ratio. Using average Qatari dust for these ratios generated a significant amount of overcorrection, so ratios were established using average upper continental crust (UCC). This method still caused some overcorrection for the lithogenic portion resulting in negative excess values for barium, molybdenum, and lead. These same elements showed the least consistency between measurements. For the other elements, a relative stoichiometry for plankton was determined as Fe > Cu ≈ Zn > As ≈ Cr ≈ Mn ≈ Ni ≈ V > Cd ≈ Co. We also found a significant near shore enrichment for 9 out of 13 elements analyzed, indicative of a possible influence of coastal processes.

  11. Trace element diffusion in minerals: the role of multiple diffusion mechanisms operating simultaneously

    NASA Astrophysics Data System (ADS)

    Dohmen, R.; Marschall, H.; Wiedenbeck, M.; Polednia, J.; Chakraborty, S.

    2016-12-01

    Diffusion of trace elements, often with ionic charge that differs from those of ions in the regular structural sites of a mineral, controls a number of important processes in rocks, such as: (i) Closure of radiogenic isotopic systems, (e.g. Pb diffusion in rutile; REE diffusion in garnet); (ii) Closure of trace element thermometers (e.g., Zr in rutile, Mg in plagioclase, Al in olivine); (iii) Closure of element exchange between melt inclusions and host minerals (e.g., H, REE in olivine). In addition, preserved trace element zoning profiles in minerals can be used for diffusion chronometry (e.g. Nb in rutile, Mg in plagioclase). However, experimentally determined diffusion coefficients of these trace elements are in many cases controversial (e.g., REE in olivine: [1] vs. [2]; Mg in plagioclase: [3] vs. [4]). We have carried out experiments to study the diffusion behavior in olivine, rutile, and plagioclase, and are able to show that two mechanisms of diffusion, differing in rates by up to four orders of magnitude, may operate simultaneously in a given crystal. The two mechanisms result in complex diffusion profile shapes. As a general rule, the incorporation of heterovalent substituting elements in relatively high concentrations is necessary to activate two diffusion mechanisms. This behavior is produced by the control of these elements on the point defect chemistry of a mineral - these impurities become a majority point defect when a threshold concentration limit is exceeded. In certain cases, e.g., for Li in olivine, the trace element can also be incorporated in different sites, resulting in interaction of the different species with other point defects (vacancies) during diffusion. Thus, depending on the diffusion couple used in the experiment, the associated concentration gradients within the mineral, and the analytical techniques used to measure the diffusion profile, only one diffusion mechanism may be activated or detected. These studies allow us to explain some of the differing results noted above and such considerations need to be taken into account when modelling diffusion in natural systems. [1] Cherniak 2010, Am Mineral 95:362-368; [2] Spandler and O'Neill 2010, Contrib Mineral Petrol 159:791-818; [3] Faak et al. 2013 Geochim Cosmochim Acta 123:195-217; [4] Van Orman et al. 2014 Earth Planet Sci Lett 385:79-88

  12. The influence of stream bed geomorphology on chemical species within the hyporheic zone over time and space

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Reeder, W. J.; Farrell, T. B.; Benner, S. G.; Tonina, D.; Feris, K. P.

    2017-12-01

    The hyporheic zone is well established as an important zone of biogeochemical activity in streams and rivers. Multiple large scale flume experiments were carried out to mimic bedform-controlled hyporheic zones in small streams. The laboratory setting allowed for geochemical measurement resolution and replicates that would not be possible in a natural setting. Two flume experiments that consisted of three small streams with variable sizes of bedform dunes were carried out in which chemical species were measured in the surface water and along hyporheic flow lines in the subsurface. The species measured included dissolved oxygen, pH, alkalinity, major cations (Na+, Mg2+, Ca2+, K+, Si4+, Al3+), anions (NO3-, NO2-, SO42-, PO43-, Cl-), and many trace elements (As, Sr, Co, Ni, Cu, Zn, Pb, U, V). Observed spatial and temporal trends reflect microbiological processes, changing redox conditions, and chemical weathering. In general, microbial respiration causes DO to decrease with residence time, leading to aerobic and anaerobic zones that influence redox-sensitive species and pH gradients that influence mineral solubility. Most other species concentrations, including those of major cations and trace elements, increase with residence time and generally decrease over time elapsed during the experiment. The different dune morphologies dictate flow velocities in the hyporheic zone; for most species, steeper dunes with higher velocities had lower concentrations at the end of the experiment, indicating the role of dune shape in the weathering rates of minerals in hyporheic sediment and the concentrations of dissolved species entering the surface water over time. Many of the observed trends can be applied, at least qualitatively, to understanding how these species will behave in natural settings. This insight will contribute to the understanding of many of the applications of the hyporheic zone (e.g. bioremediation, habitat, greenhouse gas emissions, etc.).

  13. The potential of on-line continuous leach ICP-MS analysis for linking trace elements to mineralogy

    NASA Astrophysics Data System (ADS)

    Roskam, Gerlinde; Verheul, Marc; Moraetis, Daniel; Giannakis, George; van Gaans, Pauline

    2014-05-01

    A set of five soil samples was subjected to an on-line continuous leach inductively coupled plasma mass spectrometry experiment, with progressively reactive solvents (0.01M CaCl2, 0.1 M HNO3, 1M HNO3, 4M HNO3) Each sample was packed in a quartz tube (Ø= 1 cm, length 2 cm) and diluted 1:1 with acid washed quartz to prevent clogging. The gas that was produced during the extraction was removed by leading the effluent into a small container, from where the sample was directly pumped into the ICP-MS. 115In was used as an internal standard. Continuous leach experiments have the advantage of real time (every 2 seconds) full elemental analysis. Mineral breakdown reactions can be monitored via the major elements. The trace elements associated with the minerals are monitored simultaneously, thus eliminating the uncertainties of host mineral-trace element combinations in traditional off-line sequential extractions. The continuous leach experimental data are correlated to XRD-results for mineralogy and total elemental concentrations. The soil samples used were collected from different sites in the Koiliaris River watershed, Crete, Greece 1). The selection of the sites was based on variability in bedrock (limestone, metamorphic and alluvial sediments) and current land use (grape farming, olive trees). Soils were sampled at two depths: at the surface and just above the bedrock. No large differences in the major elements between the two depths were measured. To provide background to the on-line sequential data, also total concentrations of the major elements were analysed by XRF and the mineralogy was analysed by XRD. The fraction <2mm was sieved and digested with HF, HClO4 and HNO3 for additional trace element analysis. 1) See related abstract Roskam et al., 2014: REE profiles in continuous leach ICP-MS (CL-ICP-MS) experiments in soil, linked to REE profiles in surface water in the Koiliaris River Critical Zone Observatory (CZO), Crete, Greece.

  14. From soil water to surface water - how the riparian zone controls element transport from a boreal forest to a stream

    NASA Astrophysics Data System (ADS)

    Lidman, Fredrik; Boily, Åsa; Laudon, Hjalmar; Köhler, Stephan J.

    2017-06-01

    Boreal headwaters are often lined by strips of highly organic soils, which are the last terrestrial environment to leave an imprint on discharging groundwater before it enters a stream. Because these riparian soils are so different from the Podzol soils that dominate much of the boreal landscape, they are known to have a major impact on the biogeochemistry of important elements such as C, N, P and Fe and the transfer of these elements from terrestrial to aquatic ecosystems. For most elements, however, the role of the riparian zone has remained unclear, although it should be expected that the mobility of many elements is affected by changes in, for example, pH, redox potential and concentration of organic carbon as they are transported through the riparian zone. Therefore, soil water and groundwater was sampled at different depths along a 22 m hillslope transect in the Krycklan catchment in northern Sweden using soil lysimeters and analysed for a large number of major and trace elements (Al, As, B, Ba, Ca, Cd, Cl, Co, Cr, Cs, Cu, Fe, K, La, Li, Mg, Mn, Na, Ni, Pb, Rb, Se, Si, Sr, Th, Ti, U, V, Zn, Zr) and other parameters such as sulfate and total organic carbon (TOC). The results showed that the concentrations of most investigated elements increased substantially (up to 60 times) as the water flowed from the uphill mineral soils and into the riparian zone, largely as a result of higher TOC concentrations. The stream water concentrations of these elements were typically somewhat lower than in the riparian zone, but still considerably higher than in the uphill mineral soils, which suggests that riparian soils have a decisive impact on the water quality of boreal streams. The degree of enrichment in the riparian zone for different elements could be linked to the affinity for organic matter, indicating that the pattern with strongly elevated concentrations in riparian soils is typical for organophilic substances. One likely explanation is that the solubility of many organophilic elements increases as a result of the higher concentrations of TOC in the riparian zone. Elements with low or modest affinity for organic matter (e.g. Na, Cl, K, Mg and Ca) occurred in similar or lower concentrations in the riparian zone. Despite the elevated concentrations of many elements in riparian soil water and groundwater, no increase in the concentrations in biota could be observed (bilberry leaves and spruce shoots).

  15. The trace and Pb isotope chemistry of the Jan Mayen Fracture Zone and the extinct Aegir Ridge

    NASA Astrophysics Data System (ADS)

    Sayit, K.; Hanan, B. B.; Ito, G.; Howell, S. M.; Vogt, P. R.; Breivik, A. J.; Mjelde, R.; Pedersen, R.

    2012-12-01

    The extinct Aegir Ridge (AR) was active during the early opening of the N-Atlantic, 54 to 25 Ma, when spreading jumped to the Kolbeinsey Ridge. Crustal thickness produced by the AR is low (3.5 to 6 km), and the magmatically starved Norway Basin appears as a hole in the surrounding excess volcanism of the Iceland hotspot. Two possible alternatives are; either the lithospheric structure of the Jan Mayen micro-continent (JMMC) blocked the plume flow to the AR, and/or Iceland plume material reaching the ridge experienced a previous melt extraction, leading to relatively low melt production. We report the trace element and Pb isotope systematics of the mafic rocks dredged from the AR ~64-69° N and adjacent Jan Mayen FZ. On the basis of the immobile trace element chemistry, several groups are identified, with a large range of Zr/Nb (2.7-60.7). A very-depleted group ([Ce/Yb]N = 0.3) was found in the Jan Mayen FZ, while the most enriched, OIB-like group ([Ce/Yb]N = 12.4) was recovered from the ridge flank scarps. A notable feature of the Aegir samples is variable Th enrichment relative Nb (Th/Nb = 0.07-0.49), similar to subduction zone signatures. In terms of Pb isotopes, the samples show significant variations that correlate with trace element chemistry (206Pb/204Pb: 207Pb/204Pb: 208Pb/204Pb = 16.63-18.81:15.16-15.55:36.67-38.62). The Pb systematics of the Aegir rocks are compatible with a three-component mixing model with mixing trends between the C-like Iceland plume component and a mixture that is composed of EM-1-type material and depleted MORB asthenosphere. The presence of the C-like isotope compositions in the Aegir samples from the Jan Mayen FZ and ridge flank scarps suggests that Iceland plume material has been tapped. However, the very-depleted trace element signatures indicate that the plume component was previously melt depleted. Apparently, the JMMC impeaded flow of enriched plume material to the AR. The Aegir rocks Pb isotope signature may represent pollution of the NA MORB source, during early opening of the ocean basin, by material dispersed during interaction of the Iceland plume and the continental lithosphere.

  16. Key issues of ultraviolet radiation of OH at high altitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhuai; Wan, Tian; Jiang, Jianzheng

    2014-12-09

    Ultraviolet (UV) emissions radiated by hydroxyl (OH) is one of the fundamental elements in the prediction of radiation signature of high-altitude and high-speed vehicle. In this work, the OH A{sup 2}Σ{sup +}→X{sup 2}Π ultraviolet emission band behind the bow shock is computed under the experimental condition of the second bow-shock ultraviolet flight (BSUV-2). Four related key issues are discussed, namely, the source of hydrogen element in the high-altitude atmosphere, the formation mechanism of OH species, efficient computational algorithm of trace species in rarefied flows, and accurate calculation of OH emission spectra. Firstly, by analyzing the typical atmospheric model, the verticalmore » distributions of the number densities of different species containing hydrogen element are given. According to the different dominating species containing hydrogen element, the atmosphere is divided into three zones, and the formation mechanism of OH species is analyzed in the different zones. The direct simulation Monte Carlo (DSMC) method and the Navier-Stokes equations are employed to compute the number densities of the different OH electronically and vibrationally excited states. Different to the previous work, the trace species separation (TSS) algorithm is applied twice in order to accurately calculate the densities of OH species and its excited states. Using a non-equilibrium radiation model, the OH ultraviolet emission spectra and intensity at different altitudes are computed, and good agreement is obtained with the flight measured data.« less

  17. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source

    NASA Astrophysics Data System (ADS)

    Veter, Marina; Foley, Stephen F.; Mertz-Kraus, Regina; Groschopf, Nora

    2017-11-01

    Carbonate-rich ultramafic lamprophyres (aillikites) and associated rocks characteristically occur during the early stages of thinning and rifting of cratonic mantle lithosphere, prior to the eruption of melilitites, nephelinites and alkali basalts. It is accepted that they require volatile-rich melting conditions, and the presence of phlogopite and carbonate in the source, but the exact source rock assemblages are debated. Melts similar to carbonate-rich ultramafic lamprophyres (aillikites) have been produced by melting of peridotites in the presence of CO2 and H2O, whereas isotopes and trace elements appear to favor distinct phlogopite-bearing rocks. Olivine macrocrysts in aillikites are usually rounded and abraded, so that it is debated whether they are phenocrysts or mantle xenocrysts. We have analyzed minor and trace element composition in olivines from the type aillikites from Aillik Bay in Labrador, Canada. We characterize five groups of olivines: [1] mantle xenocrysts, [2] the main phenocryst population, and [3] reversely zoned crystals interpreted as phenocrysts from earlier, more fractionated, magma batches, [4] rims on the phenocrysts, which delineate aillikite melt fractionation trends, and [5] rims around the reversely zoned olivines. The main phenocryst population is characterized by mantle-like Ni (averaging 3400 μg g- 1) and Ni/Mg at Mg# of 88-90, overlapping with phenocrysts in ocean island basalts and Mediterranean lamproites. However, they also have low 100 Mn/Fe of 0.9-1.3 and no correlation between Ni and other trace elements (Sc, Co, Li) that would indicate recycled oceanic or continental crust in their sources. The low Mn/Fe without high Ni/Mg, and the high V/Sc (2-5) are inherited from phlogopite in the source that originated by solidification of lamproitic melts at the base of the cratonic lithosphere in a previous stage of igneous activity. The olivine phenocryst compositions are interpreted to result from phlogopite and not high modal pyroxene in the source. The presence of kimberlites and ultramafic lamprophyres of Mesozoic age in Greenland indicates the persistence of a steep edge to the cratonic lithosphere at a time when this had been removed from the western flank in Labrador.

  18. South-to-north pyroxenite-peridotite source variation correlated with an OIB-type to arc-type enrichment of magmas from the Payenia backarc of the Andean Southern Volcanic Zone (SVZ)

    NASA Astrophysics Data System (ADS)

    Brandt, Frederik Ejvang; Holm, Paul Martin; Søager, Nina

    2017-01-01

    New high-precision minor element analysis of the most magnesian olivine cores (Fo85-88) in fifteen high-MgO (Mg#66-74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite-pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios ( 1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.

  19. High H2O/Ce of K-rich MORB from Lena Trough and Gakkel Ridge, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Snow, J. E.; Feig, S. T.

    2014-12-01

    Lena Trough in the Arctic ocean is the oblique spreading continuation of Gakkel Ridge through the Fram Strait (eg Snow et al. 2011). Extreme trace element and isotopic compositions seen in Lena Trough basalt appear to be the enriched end member dominating the geochemistry of the Western Volcanic Zone of the Western Gakkel Ridge as traced by Pb isotopes, K2O/TiO2, Ba/Nb and other isotopic, major and trace element indicators of mixing (Nauret et al., 2011). This is in contrast to neighboring Gakkel Ridge which has been spreading for 50-60 million years. Basalts from Lena Trough also show a pure MORB noble gas signature (Nauret et al., 2010) and peridotites show no evidence of ancient components in their Os isotopes (Lassiter, et al., in press). The major and trace element compositions of the basalts, however are very distinct from MORB, being far more potassic than all but a single locality on the SW Indian Ridge. We determined H2O and trace element composiitions of a suite of 17 basalt glasses from the Central Lena Trough (CLT) and the Gakkel Western Volcanic Zone, including many of those previously analyzed by Nauret et al. (2012). The Western Gakkel glasses have high H2O/Ce for MORB (>300) suggesting a water rich source consistent with the idea that the northernmost Atlantic mantle is enriched in water (Michael et al., 1995). They are within the range of Eastern Gakkel host glasses determined by Wanless et al, 2013. The Lena Trough (CLT) glasses are very rich in water for MORB (>1% H2O) and are among the highest H2O/Ce (>400) ever measured in MORB aside from melt inclusions in olivine. Mantle melting dynamics and melt evolution cannot account for the H2O/Ce variations in MORB, as these elements have similar behavior during melting and crustal evolution. Interestingly, the H2O/K2O ratios in the basalts are only around 1. This is because the K2O levels in the CLT glasses are very high as well relative to REE. The absolutely linear relationship between H2O and K2O/TiO2 in Lena and Gakkel basalts shows that water systematics in these rocks are completely governed by source composition, with little or no modification by mantle melting dynamics or crystal fractionation. The geochemical influence of the WVZ enriched mantle source declines with distance from Lena Trough along Gakkel Ridge.

  20. Resolving the potential mantle reservoirs that influence volcanism in the West Antarctic Rift System

    NASA Astrophysics Data System (ADS)

    Maletic, E. L.; Darrah, T.

    2017-12-01

    Lithospheric extension and magmatism are key characteristics of active continental rift zones and are often associated with long-lasting alkaline magmatic provinces. In these settings, a relationship between lithospheric extension and mantle plumes is often assumed for the forces leading to rift evolution and the existence of a plume is commonly inferred, but typically only extension is supported by geological evidence. A prime example of long-lasting magmatism associated with an extensive area of continental rifting is the West Antarctic Rift System (WARS), a 2000 km long zone of ongoing extension within the Antarctic plate. The WARS consists of high alkaline silica-undersaturated igneous rocks with enrichments in light rare earth elements (LREEs). The majority of previous geochemical work on WARS volcanism has focused on bulk classification, modal mineralogy, major element composition, trace element chemistry, and radiogenic isotopes (e.g., Sr, Nd, and Pb isotopes), but very few studies have evaluated volatile composition of volcanics from this region. Previous explanations for WARS volcanism have hypothesized a plume beneath Marie Byrd Land, decompression melting of a fossilized plume head, decompression melting of a stratified mantle source, and mixing of recycled oceanic crust with one or more enriched mantle sources from the deep mantle, though researchers are yet to reach a consensus. Unlike trace elements and radiogenic isotopes which can be recycled between the crust and mantle and which are commonly controlled by degrees of partial melting and prior melt differentiation, noble gases are present in low concentrations and chemically inert, allowing them to serve as reliable tracers of volatile sources and subsurface processes. Here, we present preliminary noble gas isotope (e.g., 3He/4He, CO2/3He, CH4/3He, 40Ar/36Ar, 40Ar*/4He) data for a suite of lava samples from across the WARS. By coupling major and trace element chemistry with noble gas elemental and isotopic composition and other volatiles from a suite of volcanic rocks in the WARS, we can better constrain a magmatic source and provide geological evidence that could support or oppose the existence of a mantle plume, HIMU plume, or deconvolve mantle-lithosphere interactions.

  1. Albari granodiorite - a typical calcalkaline diapir of volcanic arc stage from the Arabian Shield

    NASA Astrophysics Data System (ADS)

    Radain, Abdulaziz A.

    Granodiorite rocks of the Arabian Shield are generally considered to be collision-related granitoids. However, there are some granodiorites that were formed during the volcanic arc stage. Major and trace elements studies are carried out on Albari diapiric granodiorite to reveal its tectonic environment. This intrusive rock type is common in the Taif arc province (Mahd adh Dhahab quadrangle) of the Asir microplate near the border of the southeast dipping subduction zone that ended up with arc-arc collision (Asir-Hijaz microplates) along the now known Bir Umq suture zone. The granodiorite exhibits a calcalkaline trend on ternary AFM and K 2ONa 2OCaO diagrams. Tectonic discrimination diagrams using multicationic parameters (R1 = 4Sill(Na+K)2(Fe+Ti); R2 = 6Ca+2Mg+Al), SiO 2-trace elements (Nb, Y, Rb), and Y versus Nb and Rb versus (Y+Nb) indicate a destructive active plate margin or volcanic arc stage tectonic environment. Albari calcalkaline granodiorite might have been derived directly from partial melting of subducted oceanic crust or overlying mantle contaminated with variable amounts of intermediate (quartz diorite, diorite, tonalite, trondhjemite) early and late volcanic arc-related plutonic country rocks.

  2. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach.

    PubMed

    Wickramarathna, Sudeera; Balasooriya, Shyamalie; Diyabalanage, Saranga; Chandrajith, Rohana

    2017-12-01

    Chronic kidney disease of unknown aetiologies (CKDu) is increasingly recognized in tropical regions and is now considered a global health problem. A detailed hydrogeochemical investigation has been performed in three CKDu hotspots in Sri Lanka to assess the geo-environmental aetiological factors influencing this disease. A total of 71 ground- and 26 surface water samples were collected from Girandurukotte, Wilgamuwa and Nikawewa regions and analysed for major constituents and trace elements. The affected regions are dominated by Ca-Mg-HCO 3 facies groundwater that is mainly controlled by silicate weathering. Higher levels of fluoride associated with higher hardness is the main feature of groundwater from CKDu regions compared to non-CKDu regions. Results showed that 65% of the wells in the affected regions exceeded the fluoride concentration of 0.5mg/L. Environmental isotopes of groundwater in the CKDu regions are represented by the regression line of δ 2 H=5.42δ 18 O-3.59 (r 2 =0.916) with a clear isotopic differentiation between local precipitation and groundwater. None of the trace elements exceeded the recommended scales and in most cases levels are negligible in both surface and groundwater in study areas. Therefore, the involvement of trace elements such as Cd, As and Pb can be ignored as causative factors for CKDu. This study highlights the synergistic influence of fluoride and hardness that could enhance the disease, and thereby refute earlier theories that attribute trace elements as causative factors for CKDu. Higher hardness in drinking water also restricts sufficient water uptake, particularly by farmers and which affects the physiological, biochemical and nutritional requirements. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Constraints on the Amount of deeply subducted Water from numerical Models in comparison with natural Samples

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, M.; Halama, R.

    2014-12-01

    The subduction of hydrated slab mantle to beyond-arc depths is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. During subduction of hydrated oceanic lithosphere, dehydration reactions in the downgoing plate lead to a partitioning of water between upper and lower plate. Water retained in the slab is recycled into the mantle where it controls its rheology and thus plate tectonic velocities. Hence, quantification of the water partitioning in subduction zones is crucial for the understanding of mass transfer between the Earth's surface and the mantle. Combined thermomechanical and thermodynamic models yield quantitative constraints on the water cycle in subduction zones, but unless model results can be linked to natural observations, the reliability of such models remains speculative. We present combined thermomechanical, thermodynamic and geochemical models of active and paleo-subduction zones, whose results can be tested with independent geochemical features in natural rocks. In active subduction zones, evidence for the validity of our model comes from the agreement between modeled and observed across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. In the Kamchatkan subduction zone, for example, the model successfully predicts complex geochemical patterns and the spatial distribution of arc volcanoes. In paleo-subduction zones (e.g. Western Gneiss Region and Western Alps), constraints on the water budget and dehydration behavior of the subducting slab come from trace element zoning patterns in ultra-high pressure (UHP) garnets. Distinct enrichments of Cr, Ni and REE in the UHP zones of the garnets can be reconciled by our models that predict intense rehydration and trace element re-enrichment of the eclogites at UHP conditions by fluids released from the underlying slab mantle. Models of present-day subduction zones indicate the presence of 2.5-6 wt.% of water within the uppermost 15 km of the subducted slab mantle. Depending on hydration depth, between 25 and 90% of this water is recycled into the deeper mantle. The Lower Devonian example from the Western Gneiss Region indicates that subduction of water into the Earth's deeper mantle is an active process at least since the middle Paleozoic.

  4. Sediment-peridotite interactions in a thermal gradient: mineralogic and geochemical effects and the "sedimentary signature" of arc magmas

    NASA Astrophysics Data System (ADS)

    Woodland, Alan; Girnis, Andrei; Bulatov, Vadim; Brey, Gerhard; Höfer, Heidi; Gerdes, Axel

    2017-04-01

    Strong thermal and chemical gradients are characteristic of the slab-mantle interface in subduction zones where relatively cold sediments become juxtaposed with hotter peridotite of the mantle wedge. The formation of arc magmas is directly related to mass transfer processes under these conditions. We have undertaken a series of experiments to simulate interactions and mass transfer at the slab-mantle interface. In addition to having juxtaposed sediment and peridotite layers, the experiments were performed under different thermal gradients. The sediment had a composition similar to GLOSS (1) and also served as the source of H2O, CO2 and a large selection of trace elements. The peridotite was a depleted garnet harzburgite formed from a mixture of natural hand-picked olivine, opx and garnet. Graphite was added to this mixture to establish a redox gradient between the two layers. Experiments were performed at 7.5-10 GPa to simulate the processes during deep subduction. The thermal gradient was achieved by displacing the sample capsule (Re-lined Pt) from the center of the pressure cell. The gradient was monitored with separate thermocouples at each end of the capsule and by subsequent opx-garnet thermometry across the sample. Maximum temperatures varied from 1400˚ -900˚ C and gradients ranged from 200˚ -800˚ C. Thus, in some experiments melting occurred in the sediment layer and in others this layer remained subsolidus, only devolatilizing. Major and trace elements were transported both in the direction of melt percolation to the hot zone, as well as down temperature. This leads to the development of zones with discrete phase assemblages. Olivine in the peridotite layer becomes converted to orthopyroxene, which is due to Si addition, but also migration of Mg and Fe towards the sediment. In the coldest part of a sample, the sediment is converted into an eclogitic cpx + garnet assemblage. A thin zone depleted in almost all trace elements is formed in peridotite directly above the sediment/peridotite boundary and defines the region of maximum metasomatic alteration. With a low Tmin, fluid-mobile Ba, Rb, Sr and Li are more strongly transported into the melt zone compared to HFSE and REE. At Tmin > 700˚ C, all incompatible elements are extracted from the solid into the melt. However, the mineral assemblage controls which elements are held back in the solid residue (i.e. MREE, HREE, Y, Sc, and to a lesser extent Ti, Zr and Hf in garnet). Peridotite-sediment interaction can produce humite-group minerals, particularly in the presence of F. Negative Nb-Ta anomalies are caused by rutile and/or humite phases. Transport of melt or fluid from the sediment to the overlying mantle wedge produces metasomatized magma sources from which basaltic melts with sedimentary geochemical signatures can be derived. Adding even 1% of melt or fluid to depleted mantle peridotite is sufficient to produce basaltic melts with incompatible element contents similar to those observed in natural subduction-related magmas. Such signatures are retained at 6.5 and even 10 GPa when Tmin < 700˚ C. Plank, T., Langmuir C., 1998. Chem. Geol. 145, 325-394.

  5. Trace-element record in zircons during exhumation from UHP conditions, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Gilotti, J.A.; Mazdab, F.K.; Wooden, J.L.

    2009-01-01

    Coesite-bearing zircon formed at ultrahigh-pressure (UHP) conditions share general characteristics of eclogite-facies zircon with trace-element signatures characterized by depleted heavy rare earth elements (HREE), lack of an Eu anomaly, and low Th/ U ratios. Trace-element signatures of zircons from the Caledonian UHP terrane in North-East Greenland were used to examine the possible changes in signature with age during exhumation. Collection and interpretation of age and trace-element analyses of zircon from three samples of quartzofeldspathic gneiss and two leucocratic intrusions were guided by core vs. rim zoning patterns as imaged by cathodoluminesence. Change from igneous to eclogite-facies metamorphic trace-element signature in protolith zircon is characterized by gradual depletion of HREE, whereas newly formed metamorphic rims have flat HREE patterns and REE concentrations that are distinct from the recrystallized inherited cores. The signature associated with eclogite-facies metamorphic zircon is observed in coesite-bearing zircon formed at 358 ?? 4 Ma, metamorphic rims formed at 348 ?? 5 Ma during the initial stages of exhumation, and metamorphic rims formed at 337 ?? 5 Ma. Zircons from a garnet-bearing granite emplaced in the neck of an eclogite boudin and a leucocratic dike that cross-cuts amphibolite-facies structural fabrics have steeply sloping HREE patterns, variably developed negative Eu anomalies, and low Th/U ratios. The granite records initial decompression melting and exhumation at 347 ?? 2 Ma and later zircon rim growth at 329 ?? 5. The leucocratic dike was likely emplaced at amphibolite-facies conditions at 330 ?? 2 Ma, but records additional growth of compositionally similar zircon at 321 ??2 Ma. The difference between the trace-element signature of metamorphic zircon in the gneisses and in part coeval leucocratic intrusions indicates that the zircon signature varies as a function of lithology and context, thus enhancing its ability to aid in the interpretation of U-Pb data and track the exhumation history of UHP terranes. The differences may reflect variation in elemental availability through breakdown reactions in quartzofeldpathic gneiss vs. availability during melt production and/or crystallization. UHP rocks in North-East Greenland began exhumation by 347 ?? 2 Ma, were still at HP eclogite-facies conditions at 337 ?? 5 Ma and were at amphibolite-facies conditions by 330 ?? 2 Ma. ?? 2009 E. Schweizerbart'sche Verlagsbuchhandlung.

  6. Trace elements in organisms of different trophic groups in the White Sea

    NASA Astrophysics Data System (ADS)

    Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.

    2015-09-01

    Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.

  7. Elemental micro-PIXE mapping of hypersensitive lesions in Lagenaria sphaerica (Cucurbitaceae) resistant to Sphaerotheca fuliginea (powdery mildew)

    NASA Astrophysics Data System (ADS)

    Weiersbye-Witkowski, I. M.; Przybylowicz, W. J.; Straker, C. J.; Mesjasz-Przybylowicz, J.

    1997-07-01

    Genotypes of the Southern African cucurbit, Lagenaria sphaerica, that are resistant to powdery-mildew ( Sphaerotheca fuliginea) exhibit foliar hypersensitive (HS) lesions on inoculation with this fungal pathogen. Elemental distributions across radially symmetrical HS lesions, surrounding unlesioned leaf tissue and uninoculated leaf tissue, were obtained using the true elemental imaging system (Dynamic Analysis) of the NAC Van de Graaff nuclear microprobe. Raster scans of 3 MeV protons were complemented by simultaneous PIXE and BS point analyses. The composition of cellulose (C 6H 10O 5) was used as constant matrix composition for scans, and the sample thickness was found from BS spectra. Si and elements heavier than Ca contributed to matrix composition within HS lesions and the locally elevated Ca raised the limits of detection for some trace metals of interest. In comparison to uninoculated tissue, inoculated tissue was characterised by higher overall concentrations of all measured elements except Cu. Fully developed, 6 day-old HS lesions and the surrounding tissue could be divided into five zones, centred on the fungal infection site. Each zone was characterized by distinct local elemental distributions (either depletion, or accumulation to potentially phytotoxic levels).

  8. Trace Element Determination from the Guliya Ice Core to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years

    NASA Astrophysics Data System (ADS)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.

    2014-12-01

    The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.

  9. Detrital Zircons From the Jack Hills and Mount Narryer, Western Australia: Geochronological, Morphological, and Geochemical Evidence for Diverse >4000 Ma Source Rocks

    NASA Astrophysics Data System (ADS)

    Crowley, J. L.; Myers, J. S.; Sylvester, P. J.; Cox, R. A.

    2004-05-01

    Detrital zircons from all major clastic units in the Jack Hills and Mount Narryer metasedimentary belts, Western Australia, were analyzed for morphology, internal zoning, inclusion mineralogy, age, and trace element concentrations (latter two obtained by laser-ablation microprobe ICPMS). The results show that zircons were derived from a wide diversity of rocks, including previously described, >4000 Ma grains that are older than any known terrestrial rocks. In three metaconglomerate samples from the western Jack Hills, 4200-3800 Ma zircons ("old grains") comprise 14% of the population, 3800-3600 Ma grains form only 2%, and 3550-3250 Ma zircons ("young grains") are dominant with a significant peak at 3380 Ma. Old and young grains are interpreted as being from similar rock types because they are indistinguishable in trace element concentrations, size (several hundred microns), morphology (subequant, typically fragmented), internal zoning (typically both oscillatory and sector), and U concentration (50-200 ppm). Many of these properties suggest an intermediate plutonic source, whereas an evolved granitic source was previously interpreted from rare-earth element and oxygen isotope data. Detrital zircons in quartzites and metaconglomerates at Mount Narryer differ significantly from zircons from the western Jack Hills. Old grains comprise only 3% (most of which are 4200-4100 Ma), 3800-3600 Ma zircons form 31%, and there are peaks at 3650, 3600, and 3500 Ma. Old and young grains have similar properties that suggest granitic sources, such as elongate prismatic morphology, oscillatory zoning, high U concentrations (100-600 ppm), and xenotime and monazite inclusions. Trace element concentrations are broadly similar to those in Jack Hills zircons, with notable exceptions being generally higher U, smaller Ce and Eu anomalies, and lower Nb/Ta. It is considered unlikely that Jack Hills zircons were derived from granitic gneisses that surround the metasedimentary belts because only a few detrital grains match gneiss zircons in age, morphology, and U concentration. The sources were probably distal, or perhaps destroyed or removed from the region during Neoarchean tectonism. In contrast, Mount Narryer zircons are similar to gneiss zircons, suggesting they were derived from the gneisses, which may include a minor, currently undiscovered 4200-4100 Ma granitic component. Such diversity in age and nature of Hadean detrital zircons is compelling evidence that Earth's crust was heterogeneous by 4200 Ma.

  10. Morphology, origin and infrared microthermometry of fluid inclusions in pyrite from the Radka epithermal copper deposit, Srednogorie zone, Bulgaria

    NASA Astrophysics Data System (ADS)

    Kouzmanov, Kalin; Bailly, Laurent; Ramboz, Claire; Rouer, Olivier; Bény, Jean-Michel

    2002-08-01

    Pyrite samples from the Radka epithermal, replacement type, volcanic rock-hosted copper deposit, Bulgaria, have been studied using near-infrared (IR) microscopy. Two generations of pyrite based on their textures, composition and behaviour in IR light can be distinguished. Electron microprobe analyses, X-ray elemental mapping and Fourier transform infrared spectroscopy were used to study the relationship between crystal zoning, trace element contents and IR transmittance of pyrite. The observed crystal zoning is related to variable arsenic contents in massive fine-grained and colloform pyrite from the early pyrite-quartz assemblage, and cobalt contents in pyrite crystals from the late quartz-pyrite vein assemblage. There is a negative correlation between trace element content and IR transmittance of pyrite. The IR transparency of pyrite is thus a sensitive indicator of changes in trace element concentrations. Fluid inclusions have only been found in the second pyrite generation. Scanning electron microscopy observations on open fluid inclusion cavities permitted the crystallographic features of vacuoles to be determined. A characteristic feature of primary fluid inclusions in pyrite is a negative crystal habit, shaped mainly by {100}, {111} and {210}. This complicated polyhedral morphology is the reason for the observed opacity of some isometric primary inclusions. Secondary fluid inclusion morphology depends on the nature of the surface of the healed fracture. Recognition of the primary or secondary origin of fluid inclusions is enhanced by using crystallographically oriented sections. Microthermometric measurements of primary inclusions indicate that the second pyrite generation was deposited at maximum P-T conditions of 400 °C and 430 bar and from a fluid of low bulk salinity (3.5-4.6 wt%), possibly KCl-dominant. There are large ranges for homogenisation temperatures in secondary inclusions because of necking-down processes. Decrepitation features of some of pyrite-hosted inclusions and of all inclusions in associated quartz indicate reheating of the veins to 500-550 °C. The late cobalt-rich quartz-pyrite vein assemblage in the Radka deposit may be the shallow manifestation of deeper and genetically related porphyry copper mineralisation. This is a common observation of many intermediate- to high-sulfidation epithermal replacement-type ore bodies in this ore district and possibly the Cretaceous Banat-Srednogorie metallogenic belt in general.

  11. Trace-element fingerprints of chromite, magnetite and sulfides from the 3.1 Ga ultramafic-mafic rocks of the Nuggihalli greenstone belt, Western Dharwar craton (India)

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.

    2015-06-01

    The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from andesitic melts, suggesting that magnetite crystallized from an evolved gabbroic melt. Enrichments of Ni, Co, Te, As and Bi in disseminated millerite and niccolite occurring within chromitites, and in disseminated bravoite within magnetites, reflect element mobility during serpentinization. Monosulfide solid solution inclusions within pyroxenes (altered to actinolite) in pyroxenite, and interstitial pyrites and chalcopyrites in magnetite, retain primary characteristics except for Fe-enrichment in chalcopyrite, probably due to sub-solidus re-equilibration with magnetite. Disseminated sulfides are depleted in platinum-group elements (PGE) due to late sulfide saturation and the PGE-depleted nature of the mantle source of the sill-like ultramafic-mafic plutonic rocks in the Nuggihalli greenstone belt.

  12. Soil fertility status and spatial distribution of selected trace elements in south-western Serbia

    NASA Astrophysics Data System (ADS)

    Mrvic, Vesna; Kostic-Kravljanac, Ljiljana; Cakmak, Dragan; Pivic, Radmila; Saljnikov, Elmira; Nikoloski, Mile; Perovic, Veljko

    2010-05-01

    Soil fertility status and spatial distribution of selected trace elements in south-western Serbia V. Mrvic, Lj. Kostic-Kravljanac, D. Čakmak, R. Pivić, E. Saljnikov, M. Nikoloski, V. Perović Institute of Soil Science, 11000 Belgrade, Serbia (vesnavmrvic@yahoo.com) Main characteristic of surface soil layer (pH in KCl, humus, available P and K), and content of trace elements (Ni, Cr, Cu, Zn, Pb, Cd, As, Hg) were analysed on area of southwestern Serbia, covering total 959 000 ha (one sample represents 1000 ha) . About 30 % of samples have very acid reaction. Main portion of soil samples (86%) is poorly suplied with available phosphorus (<8 mg/100g), and these are located under forests, meadows, pastures and orchards. Supplies of available potasium and humus are well. On the other hand, in small number of soil samples (4%), mostly on fertile alluvial soils, there are high P and K concentration, which are consequence of inadequate usage of mineral fertilizers. Content of trace elements in 70 % of soil samples is bellow maximum allowed concentration (MAC). The most frequente potential pollutants are Cr and Ni, which is assosiated with mafic and ultramafic rocks, which are common in this region (mountains naerby river Ibar - Troglav, Stolovi, Čemerno, Željin, Golija, Kopaonik; near Sjenica- peridotites of mn. Ozren). There are dominace of Eutric Leptosols soil type, with Ni content above 100 mg/kg, and in some samples above 1000 mg/kg. In smaller number of samples arsenic and lead exceed MAC, while other elements exceed MAD very rarelly. There are elevated Pb content in Kopaonik mountain area, and elevated As content besides this region, are in mine zone of Golija and Cemerno. These are mountain soils formed on acid igneous and metamorphic rocks, which are enriched with ores of Pb, Zn and other elements. Eventually negative influences of these elements on plants and other components of ecosystem may be esstimated only after detalied investigation.

  13. Magmatic processes revealed by anorthoclase textures and trace element modeling: The case of the Lajes Ignimbrite eruption (Terceira Island, Azores)

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Landi, Patrizia; Pimentel, Adriano; Zanon, Vittorio

    2017-11-01

    The Lajes Ignimbrite on Terceira Island (Azores) records the last major pyroclastic density current-forming eruption of Pico Alto Volcano that occurred ca. 21 kyrs ago. This comenditic trachyte ignimbrite contains up to 30 vol% of crystals, mostly anorthoclase. Geochemical investigation of the products collected throughout two key outcrops reveals that major element compositions are poorly variable, whereas trace elements show significant variability, pointing to the presence of a zoned magma reservoir. Thermometry and oxygen fugacity estimations yielded pre-eruptive temperatures of 850-900 °C and ΔNNO from - 2.4 to - 1.8. Melt-alkali-feldspar hygrometer indicates magmatic H2O contents ranging from 5.8 wt% in the upper part of the reservoir to 3.6 wt% at the bottom, indicating that the magma reservoir (confined at 4 km depth) was mainly water-undersaturated before the eruption, except for the topmost portion. Two types of anorthoclase crystals were identified. Type 1 crystals show reverse to oscillatory zoning with An contents of 0.4-2.1 mol% and Ba of 200-2000 ppm. They formed in the middle/upper portion of the reservoir, where fractional crystallization processes dominated. Type 2 crystals, mainly present in the less evolved products, are characterized by patchy-zoned cores with large dissolution pockets surrounded by thick oscillatory-zoned rims and show a wide compositional range (An of 0.5-4.7 mol% and Ba of 142-4824 ppm). Their zoning patterns, together with whole-rock and glass compositions of the juvenile clasts, are consistent with the involvement of an anorthoclase-bearing cumulate from the bottom of the reservoir that underwent partial melting. Crystal dissolution was likely induced by the presence of a heat source at depth, without any mass transfer to the eruptible magma, as suggested by the lack of petrographic and chemical evidences of mixing between the resident comenditic trachyte and a mafic/intermediate magma. Thermal instability generated convective plumes that were responsible for the admittance of crystals from the cumulate level into the intermediate portions of the magma reservoir and possibly acted as trigger of the explosive eruption.

  14. Serpentinite-driven Exhumation of the UHP Lago di Cignana Unit in the Fossil Alpine Plate Interface

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Gilio, M.; Angiboust, S.; Godard, M.; Pettke, T.

    2015-12-01

    The Lago di Cignana Unit (LCU) is a coesite- [1] and diamond-bearing [2] slice of oceanic-derived eclogites and metasediments recording Alpine UHP metamorphism at 600 °C-3.2 GPa (~110 km depth) [3]. The LCU is tectonically sandwiched between the eclogitic Zermatt-Saas Zone (ZSZ; 540 °C-3.2 GPa) [4] and the blueschist Combin Zone (400 °C-0.9 GPa) [5] along a tectonic structure joining HP units recording a ~1.2 GPa (40 km) pressure difference. So far, the ZSZ has been attributed to normal HP conditions and the mechanism driving exhumation and accretion of the LCU in its present structural position is not fully understood.We performed petrography and bulk-rock trace element analyses of rocks from LCU and ZSZ serpentinites. We observed that, while serpentinites in the core of the ZSZ show normal subduction zone trace elements and REE's patterns, the Ol+Ti-chu+Chl veins and host serpentinites enveloping the LCU are strongly enriched in sediment-derived fluid-mobile elements (U, Th, Nb, Ta, Ce, Y, As, Sb) and REE's: their patterns well match those of the closely associated LCU-UHP rocks.The presence of extremely enriched Ol+Ti-chu+Chl veins in the serpentinites at direct contact with the UHP Lago di Cignana Unit suggests that fluid exchange between serpentinite and LCU crustal rocks occurred at peak metamorphic conditions. Their coupling therefore occurred during subduction burial and/or peak UHP conditions. As such, the buoyancy force originating from the relatively light serpentinites fuelled the exhumation of the Lago di Cignana Unit. In this contest, the tectonic contact between the Zermatt-Saas Zone and the Combin Zone evolved into a true tectonic plate interface surface.1. Reinecke (1998). Lithos 42(3), 147-189; 2. Frezzotti et al. (2011). Nat. Geosci. 4(10), 703-706; 3. Groppo et al. (2009). J. Metam. Geol. 27(3), 207-231; 4. Angiboust et al. (2009). Terra Nova 21(3), 171-180; 5. Reddy et al. (1999). J. Metam. Geol. 17, 573-590.

  15. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    NASA Astrophysics Data System (ADS)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in <1 km) suggests an intense interaction between peridotites and rapid migrating fluids (∼1-25 m.y-1), erasing the initial high-δ11B subduction fluid signature within a short distance. The increase of peridotite δ11B with increasing deformation furthermore indicates that the flow of subduction fluids was progressively channelized in actively deforming shear zones parallel to the contact. Taken together, these results also suggest that the migration of subduction fluids/melts by porous flow through the subsolidus mantle wedge (i.e., above the plate interface at sub-arc depths) is unlikely to be an effective mechanism to transport slab-derived elements to the locus of partial melting in subduction zones.

  16. [Distribution iodine deficiency diseases in coastal areas depending on geochemical conditions].

    PubMed

    Kiku, P F; Andryukov, B G

    2014-01-01

    In the Primorsky Krai there was performed a population ecological and hygienic analysis of the relationship between the content of chemical elements in the soil and thyroid morbidity in the population of the region. The assessment of the prevalence of iodine deficiency and iodine deficiency diseases was carried out on the basis of the impact of the priority environmental toxic (strontium, nickel, cadmium, lead, arsenic, tin) and essential (nickel, iron, germanium, molybdenum, zinc, selenium) trace elements on the level of iodine deficiency diseases. The level of thyroid pathology in the territory of Primorye was established to be the highest one in areas characterized by the severe iodine deficiency (Northwest geochemical zones), where the structure of thyroid diseases is presented mainly by diffuse nontoxic goiter. Thyroid diseases associated with iodine deficiency in the population of different age groups are the result of multiple and combined imbalance of trace elements, which causes a relative (secondary) iodine deficiency. Thyroid disease in Primorye are environmentally caused diseases of technogenic origin, they are a consequence of the relative iodine deficiency, when on the background of normal iodine supply an imbalance of zinc, iron, cobalt, manganese with excess of such toxic trace elements as lead, strontium, nickel and chromium takes place. Thyroid pathology associated with iodine deficiency, along with other environmentally dependent diseases can be considered as a marker of ecological environment trouble.

  17. Magma volumes and storage in the middle crust

    NASA Astrophysics Data System (ADS)

    Memeti, V.; Barnes, C. G.; Paterson, S. R.

    2015-12-01

    Quantifying magma volumes in magma plumbing systems is mostly done through geophysical means or based on volcanic eruptions. Detailed studies of plutons, however, are useful in revealing depths and evolving volumes of stored magmas over variable lifetimes of magma systems. Knowledge of the location, volume, and longevity of stored magma is critical for understanding where in the crust magmas attain their chemical signature, how these systems physically behave and how source, storage levels, and volcanoes are connected. Detailed field mapping, combined with single mineral geochemistry and geochronology of plutons, allow estimates of size and longevity of melt-interconnected magma batches that existed during the construction of magma storage sites. The Tuolumne intrusive complex (TIC) recorded a 10 myr magmatic history. Detailed maps of the major units in different parts of the TIC indicate overall smaller scale (cm- to <1 km) compositional variation in the oldest, outer Kuna Crest unit and mainly larger scale (>10 km) changes in the younger Half Dome and Cathedral Peak units. Mineral-scale trace element data from hornblende of granodiorites to gabbros from the Kuna Crest lobe show distinct hornblende compositions and zoning patterns. Mixed hornblende populations occur only at the transition to the main TIC. This compositional heterogeneity in the first 1-2 myr points to low volume magmatism resulting in smaller, discrete and not chemically interacting magma bodies. Trace element and Sr- and Pb-isotope data from growth zones of K-feldspar phenocrysts from the two younger granodiorites indicate complex mineral zoning, but general isotopic overlap, suggesting in-situ, inter-unit mixing and fractionation. This is supported by hybrid zones between units, mixing of zircon, hornblende, and K-feldspar populations and late leucogranites. Thus, magma body sizes increased later resulting in overall more homogeneous, but complexly mixing magma mushes that fractionated locally.

  18. Young Marquesas volcanism finally located

    NASA Astrophysics Data System (ADS)

    Révillon, Sidonie; Guillou, Hervé; Maury, René C.; Chauvel, Catherine; Aslanian, Daniel; Pelleter, Ewan; Scao, Vincent; Loubrieu, Benoît; Patriat, Martin

    2017-12-01

    The Marquesas Island chain in Polynesia is quite unusual because the alignment of the islands on the Pacific oceanic plate (N40°W) does not follow the plate motion in the region (N65°W). The exact location of the active hotspot is unknown but has been predicted to underlie the Marquesas Fracture Zone Ridge. Nevertheless, no concrete evidence exists. Here, we document the occurrence on this ridge of fresh tephrites dated at 92 ka by the 40Arsbnd 39Ar method. The lavas dredged on a small seamount have trace element contents and Sr, Nd, Pb isotopic compositions typical of the southwest Marquesas Islands, the Fatu Hiva group. This discovery demonstrates that the Marquesas plume is still active and it puts new constraints on its present location. It also supports McNutt et al.'s (1989) interpretation of the Marquesas Fracture Zone Ridge as a very young volcanic construction underlain by a hotspot. We suggest that the present location of the Marquesas plume is under the ridge, at its intersection with the isotopic divide known along the Marquesas chain. We attribute the presence of young volcanic products 190 km southwest of this location to preferential magma flow along the Marquesas Fracture lithospheric weakness zone. We also suggest that the puzzling general direction of the archipelago is the consequence of a persistent low magma flux over the past 5 Ma that could only find its way to the surface through multiple weak zones in the Pacific plate. Table S2. Trace element compositions (ppm) of PLP-DR-01 samples. Table S3. Pb, Sr and Nd isotopic compositions of PLP-DR-01 samples. Table S4. Complete 40Arsbnd 39Ar data from incremental heating experiments for samples PLP-DR-01-04 and PLP-DR-01-06.

  19. Trace elements of concern affecting urban agriculture in industrialized areas: A multivariate approach.

    PubMed

    Boente, C; Matanzas, N; García-González, N; Rodríguez-Valdés, E; Gallego, J R

    2017-09-01

    The urban and peri-urban soils used for agriculture could be contaminated by atmospheric deposition or industrial releases, thus raising concerns about the potential risk to public health. Here we propose a method to evaluate potential soil pollution based on multivariate statistics, geostatistics (kriging), a novel soil pollution index, and bioavailability assessments. This approach was tested in two districts of a highly populated and industrialized city (Gijón, Spain). The soils showed anomalous content of several trace elements, such as As and Pb (up to 80 and 585 mg kg -1 respectively). In addition, factor analyses associated these elements with anthropogenic activity, whereas other elements were attributed to natural sources. Subsequent clustering also facilitated the differentiation between the northern area studied (only limited Pb pollution found) and the southern area (pattern of coal combustion, including simultaneous anomalies of trace elements and benzo(a)pyrene). A normalized soil pollution index (SPI) was calculated by kriging, using only the elements falling above threshold levels; therefore point-source polluted zones in the northern area and diffuse contamination in the south were identified. In addition, in the six mapping units with the highest SPIs of the fifty studied, we observed low bioavailability for most of the elements that surpassed the threshold levels. However, some anomalies of Pb contents and the pollution fingerprint in the central area of the southern grid call for further site-specific studies. On the whole, the combination of a multivariate (geo) statistic approach and a bioavailability assessment allowed us to efficiently identify sources of contamination and potential risks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Halogen and trace element geochemistry in Mid-Ocean Ridge basalts from the Australian-Antarctic Ridge (AAR)

    NASA Astrophysics Data System (ADS)

    Yang, Y. S.; Seo, J. H.; Park, S. H.; Kim, T.

    2015-12-01

    Australian-Antarctic Ridge (AAR) is an extension of easternmost SE Indian Mid-Ocean Ridge (MOR).We collected volcanic glasses from the "in-axis" of the KR1 and KR2 MOR, and the overlapping zones of the KR1 MOR and the nearby seamounts ("KR1 mixing"). We determined trace and halogen elements in the glasses. Halogen concentrations and its ratios in the glasses are important to understand the mantle metasomatism and volatile recycling. 52 of the collected glasses are "primitive" (higher than 6 wt% MgO), while 3 of them have rather "evolved" composition (MgO wt% of 1.72, 2.95 and 4.15). K2O concentrations and Th/Sc ratios in the glasses show a negative correlation with its MgO concentration. Incompatible element ratios such as La/Sm are rather immobile during a magma differentiation so the ratios are important to understand mantle composition (Hofmann et al. 2003). La/Sm ratios in the glasses are 0.95 ~ 3.28 suggesting that the AAR basalts can be classified into T-MORB and E-MORB (Schilling et al., 1983). La/Sm ratios are well-correlated with incompatible elements such as U, Ba, Nb, and negatively correlated with compatible elements such as Sc, Eu2+, Mg. The AAR glasses contain detectable halogen elements. The "KR1 mixing" glasses in halogen elements are more abundant than "in-axis" the glasses. Cl is the least variable element compared to the other halogens such as Br and I in the AAR. The "KR1 mixing" glasses have the largest variations of Br/Cl ratios compared to the "in-axis" glasses. The Cl/Br and Th/Sc ratios in the "in-axis" glasses and in the "KR1 mixing" glasses show positive and negative correlations, respectively. The Br-rich glasses in the "KR1 mixing" zone might be explained by a recycled Br-rich oceanic slab of paleo-subduction or by a hydrothermal alteration in the AAR. I composition in the glasses does not show a correlation other trace elements. The K/Cl and K/Ti ratios in the AAR glasses are similar to the basalts from the Galapagos Spreading Center (Geldmacher et al., 2010) and Pacific MORB. The AAR region closely located with Balleny hotspot (Lanyon et al., 1993) and Pacific-Antarctic Ridge. K2O/Nb and Zr/Nb ratios are very low compared with near Pacific-Antarctic Ridge and Southeast Indian Ridge. The ratios are close to the Balleny hotspot.

  1. Trace Elements in Basalts From the Siqueiros Fracture Zone: Implications for Melt Migration Models

    NASA Astrophysics Data System (ADS)

    Pickle, R. C.; Forsyth, D. W.; Saal, A. E.; Nagle, A. N.; Perfit, M. R.

    2008-12-01

    Incompatible trace element (ITE) ratios in MORB from a variety of locations may provide insights into the melt migration process by constraining aggregated melt compositions predicted by mantle melting and flow models. By using actual plate geometries to create a 3-D thermodynamic mantle model, melt volumes and compositions at all depths and locations may be calculated and binned into cubes using the pHMELTS algorithm [Asimow et al., 2004]. These melts can be traced from each cube to the surface assuming several migration models, including a simplified pressure gradient model and one in which melt is guided upwards by a low permeability compacted layer. The ITE ratios of all melts arriving at the surface are summed, averaged, and compared to those of the actual sample compositions from the various MOR locales. The Siqueiros fracture zone at 8° 20' N on the East Pacific Rise (EPR) comprises 4 intra-transform spreading centers (ITSCs) across 140 km of offset between two longer spreading ridges, and is an excellent study region for several reasons. First, an abundance of MORB data is readily available, and the samples retrieved from ITSCs are unlikely to be aggregated in a long-lived magma chamber or affected by along-axis transport, so they represent melts extracted locally from the mantle. Additionally, samples at Siqueiros span a compositional range from depleted to normal MORB within the fracture zone yet have similar isotopic compositions to samples collected from the 9-10° EPR. This minimizes the effect of assuming a uniform source composition in our melting model despite a heterogeneous mantle, allowing us to consistently compare the actual lava composition with that predicted by our model. Finally, it has been demonstrated with preliminary migration models that incipient melts generated directly below an ITSC may not necessarily erupt at that ITSC but migrate laterally towards a nearby ridge due to enhanced pressure gradients. The close proximity of the ITSCs at Siqueiros to the large ridges bounding the fracture zone provide a good opportunity to model this phenomenon and may help explain the variable ITE ratios found between samples collected within the transform and those near the ridges.

  2. Combined organic and inorganic geochemical reconstruction of paleodepositional conditions of a Pliocene sapropel from the eastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Rinna, J.; Warning, B.; Meyers, P. A.; Brumsack, H.-J.; Rullkötter, J.

    2002-06-01

    Layers of organic-carbon-rich sapropels in the sediment record of the Mediterranean Sea give evidence of repetitive changes in regional Plio-Pleistocene climate. Results from biomarker molecule and major and trace element analyses of closely spaced samples are used to reconstruct the conditions leading to deposition of a Pliocene sapropel at Ocean Drilling Program (ODP) Site 969 on the Mediterranean Ridge. Organic carbon concentrations increase from 0.2% outside the sapropel and peak to more than 30% within it. Major and trace elemental composition and biomarker-derived parameters indicate elevated productivity, depletion of water-column dissolved-oxygen content, and changes in sediment provenance in response to climatic changes. Budgets of rhenium, thallium, and other trace metals indicate that deep-water exchange between the Mediterranean subbasins and the Atlantic Ocean was not completely interrupted during sapropel formation. Enrichment factors of redox-sensitive and sulfide-forming trace metals as well as the presence of isorenieratene derivatives and high stanol/sterol ratios point to an extended zone of anoxic water masses. Depth profiles of biomarker compositions (sterols, long-chain alkenones, alkandiols and -ketols, fatty acids) indicate great floral diversity during deposition of a single sapropel and highlight the sensitive response of the marine community to variable environmental conditions. Changes in water mass circulation and eolian transport can be reconstructed by use of both lithogenic elements and average chain lengths of n-alkanes (ACL index).

  3. Decoupling of the Assimilation and Fractionation Signatures in a MASH Zone: Evidence from the Sierra Valle Fértil Mafic Zone, Argentina

    NASA Astrophysics Data System (ADS)

    Walker, B. A., Jr.; Bergantz, G. W.; Otamendi, J.; Ducea, M. N.; Cristofolini, E.

    2015-12-01

    The Sierra Valle Fértil (SVF) in northern Argentina is a tilted Ordovician fossil arc complex with continuous exposure from paleodepths of ~10 km to ~30 km. The system is layered when viewed at a large scale: shallow, granodiorite plutons give way to a heterogeneous granodiorite-tonalite zone, which in turn grades into a gabbro-tonalite zone at the base of the section. A metapelitic country rock package is interlayered throughout the magmatic complex, allowing for determination of emplacement depths within the section. Our work focuses on the lowermost domain of the SVF, as it preserves what we consider to be a frozen example of a MASH zone. Here, dominant rock types are hornblende gabbronorite and tonalitie variants, which appear to be interfingered as dm- to 10s of m-scale sheets. Mappable ultramafic pods containing dunites, websterites, troctolites, and minor anorthosites are also present. Field relations are consistent with a complex series of intrusive events. Much of the SVF mafic zone compositional array can be modeled by fractional crystallization where the mafic rocks are cumulate assemblages and the intermediate rocks are the daughter magmas. Amphibole and, perhaps more importantly, Fe-Ti oxide crystallization are likely the principal agents of silica enrichment. Metapelitic rocks exposed throughout the SVF are likely the vestiges of a country rock package that was melted (or reacted) and incorporated into SVF magmas, but field and compositional evidence for assimilation is cryptic in the mafic zone. While isotopic data (Sr, Nd, O) seem to implicate crustal contributions to the SVF mafic zone, incompatible major and trace elements typically associated with an "assimilation signature" (e.g., K, Rb, Ba) are sparse. Such elements are abundant in the metapelites and in igneous rocks farther up section. We interpret this isotopic and elemental decoupling as a byproduct of prolonged MASH processes in the lower crust. A high temperature and an increasingly mafic environment likely resulted in the development of a crystal mush inhospitable to crustally contributed incompatible elements. Over time, these elements were thoroughly flushed out of the MASH zone via melt extraction. Isotopes, then, may be the only residual evidence of assimilation within the SVF mafic zone.

  4. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    NASA Astrophysics Data System (ADS)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  5. Is Eruption Style Linked to Magma Residence Time at Kilauea Volcano? Results from Chemical Zoning in Olivine

    NASA Astrophysics Data System (ADS)

    Lynn, K. J.; Costa Rodriguez, F.; Shea, T.; Garcia, M. O.

    2015-12-01

    Kilauea is generally characterized by its modern effusive activity, but the past 2500 years were dominated by cycles of explosive and effusive eruptions lasting 100's of years (Swanson et al. 2012). These different eruption styles may reflect variable volatile contents in the source that control magma ascent rate and storage durations (e.g., Sides et al. 2014). A detailed petrological study of the dominantly explosive Keanakako'i tephras (1500-1820 CE) was undertaken to better understand the storage and transport conditions preceding high-energy eruptions. Here, we focus on preliminary results for olivine from the 1500 CE Basal Reticulite (>600 m fountain; May et al. 2015). Olivine major (Fe, Mg), minor (Mn, Ca, Ni) and trace (Li, Na, Al, P, Sc, Ti, V, Cr, Co, Zn) element traverses and 2D maps were collected for 10 crystals and reveal two major populations. The dominant population has homogeneous Fo89 and Fo87 cores with thin (3-12 μm) rims of intermediate composition (Fo87.5-88.5). Normal, reverse, and complex trace element zoning (Al, P, Ti, Cr) is prominent in these otherwise homogenous (Fo, Ni, Ca, Mn) crystals. 2D maps reveal early skeletal growth and the progressive decrease of Cr from core to rim suggests olivine and Cr-spinel crystallization, which should produce significant Fo zoning. Absence of Fo zoning could imply significant storage time in a reservoir allowing homogenization. The majority of rim compositions are out of equilibrium with adhering glass, and Fe-Mg modeling indicates that their residence within the carrier melt was of a few days. A second population consists of strongly zoned (normal and reverse) crystals with a wide range of core Fo (78 to 89) and Fo82-84 rims. Timescales from Fe-Mg zoning are up to 1 year, and may record storage histories before interaction with the carrier melt. The diversity in olivine zoning suggests at least two stages of magma mixing, and a more complex evolution for the magmas that fed the reticulite eruptions than a simple closed-system and fast transport of a volatile-rich magma from the source to the surface.

  6. Oxygen Isotopes in Intra-Back Arc Basalts from the Andean Southern Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Parks, B. H.; Wang, Z.; Saal, A. E.; Frey, F. A.; Blusztajn, J.

    2013-12-01

    The chemical compositions of volcanic rocks from the Andean Southern Volcanic Zone (SVZ) reflect complex and dynamic interactions among the subducting oceanic lithosphere, the mantle wedge, and the overlying continental crust. Oxygen isotope ratios of olivine phenocrysts can be a useful means to identifying their relative contributions to the arc magmatism. In this study, we report high-precision oxygen-isotope ratios of olivine phenocrysts in a set of intra-back arc basalts from the SVZ. The samples were collected from monogenetic cinder cones east of the volcanic front (35-39 degrees S), and have been geochemically well-characterized with major and trace element contents, and Sr-Nd-Pb isotope compositions. Compared to lavas from the volcanic front, these intra-back arc lavas have similar radiogenic isotope, and a more alkalic and primitive (higher MgO content) chemical composition. We determined the oxygen-isotope ratios using the CO2-laser-fluorination method set up at the Department of Geology and Geophysics, Yale University following the techniques reported in Wang et al (2011). The samples were analyzed with standards of Gore Mountain Garnet (5.77×0.12‰ 1σ; Valley et al., 1995) and Kilbourne Hole Olivine (5.23×0.07‰ 1σ; Sharp, 1990) in order to account for minor changes in the vacuum line during analyses. The obtained δ18OSMOW values of olivine phenocrysts from the intra-back arc basalts vary from 4.98×0.01 to 5.34×0.01‰. This range, surprisingly, is similar to the δ18O values of olivines from mantle peridotites (5.2×0.2‰). Preliminary results indicate significant correlations of 87Sr/86Sr, 143Nd/144Nd and trace element ratios of the basaltic matrix with the δ18O values of olivine phenocrysts, indicating at least three components involved in the formation of the arc volcanism. By comparing the δ18O with the variations of major and trace element contents (e.g., MgO, TiO2 and Ni), and trace element ratios (e.g. Ba/Nb), we evaluate the effects of fractionation crystallization, crustal contamination, the extent of slab flux, metasomatism, and melting of the mantle wedge on the intra-back arc lavas from the SVZ.

  7. Ablative and transport fractionation of trace elements during laser sampling of glass and copper

    NASA Astrophysics Data System (ADS)

    Outridge, P. M.; Doherty, W.; Gregoire, D. C.

    1997-12-01

    The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 10 4W cm -2 than at 0.62 × 10 4W cm -2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000° C exhibiting overall concentration increases of 20-1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50-100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.

  8. The Crystal Stratigraphy of Ontong Java Plateau Plagioclase Pegacrysts: New Insights into the Evolution of LIP Magmas.

    NASA Astrophysics Data System (ADS)

    Neal, C. R.; Kinman, W. S.

    2003-12-01

    The Ontong Java Plateau (OJP) is the world's largest LIP made up of 2 isotopically distinct lava types that comprise the Singgalo and Kwaimbaita formations (Tejada et al., 2002, J.Pet 43:449). Some Kwaimbaita basaltic flows contain plagioclase-rich cumulate xenoliths. As plagioclase is stable over a range of magmatic conditions, microanalysis of this phase allows the evolution of the parent magma(s) to be constrained (cf. Davidson & Tepley, 1997, Science 275:826). This crystal stratigraphy approach has been applied to cm-size plagioclase megacrysts from three basaltic units (5B, 6, and 7) recovered at ODP Leg 192 Site 1183. Core-to-rim trace element variations were quantified by LA-ICP-MS, major elements by EPMA, and compositional backscatter SEM imaging was used to investigate the subtle compositional zoning and textural features within the plagioclases. All 5 OJP megacrysts sampled show little core-to-rim anorthite variation (82 mol % An +/- 5%); An-rich plagioclase crystals are resistant to re-equilibration and are more likely to retain magmatic trace element signatures (Blundy & Wood, 1991, GCA 55:193). The Unit 7 (oldest) plagioclase contains a relatively Sr, Ga, REE, and Ti poor core bounded by a resorption surface and a relatively Sr, Ga, REE, and Ti rich zone suggesting this crystal was exposed to 2 compositionally distinct magmas. The Unit 6 plagioclase contains a relatively Sr, Ga, REE, and Ti poor core with increasing abundances toward the rim, consistent with evolution through fractional crystallization. This megacryst also contains a distinct resorption surface bounded by a core-like Sr, REE, and Ti poor zone. The three Unit 5B plagioclases display core-to-rim Sr and Ba increases with little core-to-rim REE and Ga variations. The uppermost Unit 5B crystal (youngest) exhibits a core-to-rim decrease in Ti, while the lower 2 crystals display the opposite relationship. We suggest the textural and trace element variations seen in OJP plagioclase megacrysts are again evidence of magma mixing. Reconstructed liquids suggest at least two distinct mixing end members: an enriched end member, similar to Singgalo-type lavas, and a depleted end member, similar to Kwaimbaita type lavas. As the Singgalo- and Kwaimbaita-type basalts are isotopically distinct (I(Sr) = 0.7041 and 0.7038, resp.), Sr isotope determinations of the different plagioclase zones through microdrilling is planned for the near future to test this hypothesis. If correct, it suggests that both the Kwaimbaita and Singgalo sources were active at the same time, which is in contrast to the stratigraphy determined by whole-rock compositions.

  9. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems. ?? 1994.

  10. Distribution of arsenic, selenium, and other trace elements in high pyrite Appalachian coals: evidence for multiple episodes of pyrite formation

    USGS Publications Warehouse

    Diehl, S.F.; Goldhaber, M.B.; Koenig, A.E.; Lowers, H.A.; Ruppert, L.F.

    2012-01-01

    Pennsylvanian coals in the Appalachian Basin host pyrite that is locally enriched in potentially toxic trace elements such as As, Se, Hg, Pb, and Ni. A comparison of pyrite-rich coals from northwestern Alabama, eastern Kentucky, and West Virginia reveals differences in concentrations and mode of occurrence of trace elements in pyrite. Pyrite occurs as framboids, dendrites, or in massive crystalline form in cell lumens or crosscutting veins. Metal concentrations in pyrite vary over all scales, from microscopic to mine to regional, because trace elements are inhomogeneously distributed in the different morphological forms of pyrite, and in the multiple generations of sulfide mineral precipitates. Early diagenetic framboidal pyrite is usually depleted in As, Se, and Hg, and enriched in Pb and Ni, compared to other pyrite forms. In dendritic pyrite, maps of As distribution show a chemical gradient from As-rich centers to As-poor distal branches, whereas Se concentrations are highest at the distal edges of the branches. Massive crystalline pyrite that fills veins is composed of several generations of sulfide minerals. Pyrite in late-stage veins commonly exhibits As-rich growth zones, indicating a probable epigenetic hydrothermal origin. Selenium is concentrated at the distal edges of veins. A positive correlation of As and Se in pyrite veins from Kentucky coals, and of As and Hg in pyrite-filled veins from Alabama coals, suggests coprecipitation of these elements from the same fluid. In the Kentucky coal samples (n = 18), As and Se contents in pyrite-filled veins average 4200 ppm and 200 ppm, respectively. In Alabama coal samples, As in pyrite-filled veins averages 2700 ppm (n = 34), whereas As in pyrite-filled cellular structures averages 6470 ppm (n = 35). In these same Alabama samples, Se averages 80 ppm in pyrite-filled veins, but was below the detection limit in cell structures. In samples of West Virginia massive pyrite, As averages 1700 ppm, and Se averages 270 ppm (n = 24). The highest concentration of Hg (≤ 102 ppm) is in Alabama pyrite veins. Improved detailed descriptions of sulfide morphology, sulfide mineral paragenesis, and trace-element concentration and distribution allow more informed predictions of: (1) the relative rate of release of trace elements during weathering of pyrite in coals, and (2) the relative effectiveness of various coal-cleaning procedures of removing pyrite. For example, trace element-rich pyrite has been shown to be more soluble than stoichiometric pyrite, and fragile fine-grained pyrite forms such as dendrites and framboids are more susceptible to dissolution and disaggregation but less amenable to removal during coal cleaning.

  11. Constraining the Protolith of Large, Macroscopically Layered Kyanite-bearing Eclogite Xenoliths from the Kaapvaal Craton, South Africa

    NASA Astrophysics Data System (ADS)

    Rebelo, C. C.; Gurney, J. J.; Richardson, S. H.; Shaw-Kahle, B.

    2015-12-01

    We describe the geochemistry of a suite of ten layered, kyanite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal Craton, South Africa. All samples are characterized by clear zonation corresponding to the presence or absence of kyanite and the state of preservation of clinopyroxene. The sampled zones are defined as KF (free of kyanite, with well-preserved garnet and clinopyroxene), KZ (preserved clinopyroxene is absent; garnet occurs with kyanite); and TZ (partially preserved clinopyroxene and more altered garnet; kyanite may or may not be present). We report on results of petrographic observations, mineral chemistry, and trace element and oxygen isotope analyses for the different zones. Results from adjacent zones are presented as geochemical transects perpendicular to the layering for each xenolith. We use the results to infer the geochemical evolution of likely protoliths for the various samples. Mineral chemistry of garnets across the different zones shows decreasing FeO*, Cr2O3, MgO and MnO and increasing in CaO from KF into KZ. Clinopyroxene shows increasing in Al2O3 and Na2O from KF into KZ. Clinopyroxenes approach a more jadeitic composition towards the KZ and are more diopsidic in KF. Trace element analyses were conducted with laser ablation ICP-MS on hand-picked mineral separates. Garnets show subchondritic LREE depletion and superchondritic HREE enrichment in both KF and KZ. Positive europium anomalies in garnet are present in all zones, with relatively larger anomalies in garnet grains from KZ. Preserved clinopyroxenes show complementary REE patterns to garnet grains, with superchondritic LREEs and subchondritic HREEs. For the suite of xenoliths, results from mass spectrometry on oxygen extracted by laser fluorination on mineral separates show that δ18O values are above the accepted mantle value and fall within the range of hydrothermally altered oceanic crustal material. At this stage of the research, the bulk protolith is interpreted to be of crustal origin.

  12. How does recycling of sediment components in arc magmatism really work?

    NASA Astrophysics Data System (ADS)

    Kelemen, P.; Hacker, B.; Austin, N.

    2007-12-01

    Past work indicates substantial recycling of a sediment component rich in LILE, Th, Sr, Pb and LREE in arcs. For example, in the relatively well-constrained case of Central America, Plank et al (Geology 02) estimate that 80% of subducted, sedimentary Th is recycled in arc magmas. To understand how such a component is transferred from subducted sediment to arc lava, we examined trace-element variation in (a) mid-crustal (0.4 GPa) contact metamorphic rocks (Austin & Kelemen, Fall 06 AGU) and (b) ultrahigh-pressure (UHP, > 3 GPa) metasediments. Most UHP samples were metamorphosed along subduction-zone geotherms (Hacker, Int Geol Rev 06), but some record substantially higher T (e.g., Erzgebirge & Kokchetav, Massone EPSL 03). Unmelted, mid-crustal metapelites are indistinguishable from pelitic sediments for the entire suite of elements analyzed by ICP-MS at WSU. Melt extraction from the mid-crustal metapelites led to systematic depletion of incompatible elements in high-grade hornfels. Depletion increases with decreasing distance to the contact with a mafic pluton, most clearly at peak T > 750°C. In contrast, although many UHP metapelites record PT above the aqueous fluid-saturated solidus, and have fluid inclusions and/or hydrous phases, compared to pelites they show no detectable depletion of "fluid-mobile" elements such as LILE (Cs, Rb, Ba, U, K), Sr and Pb, no depletion of "fluid-immobile, incompatible" elements such as Th and LREE, and no systematic change in key soluble/insoluble ratios such as Ba/Th or K/Zr up to ~1000 C. Mobility of incompatible elements is evident for T > 1000 C, well above PT for subduction-zone geotherms. Presumably, trace phases rich in LILE, Th and LREE persist to ~1050 C in metapelites at UHP conditions.How can our observations be reconciled with the recycled sediment component in arc lavas? Our preferred hypothesis is that low-density metasediments rise into the mantle wedge when heating yields viscosities low enough for density-driven instabilities (Ringwood JGSL 74; Marsh AJS 76; Gerya & Yuen EPSL 03; Kelemen et al, Treatise on Geochem 03). In the wedge, metasedimentary diapirs heat as they rise, and undergo large degrees of super-adiabatic partial melting which exhaust trace phases, releasing the sediment component observed in arcs.

  13. Petrography and trace element signatures in silicates and Fe-Ti-oxides from the Lanjiahuoshan deposit, Panzhihua layered intrusion, Southwest China

    NASA Astrophysics Data System (ADS)

    Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang

    2017-12-01

    Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.

  14. Tectonic analysis of folds in the Colorado plateau of Arizona

    NASA Technical Reports Server (NTRS)

    Davis, G. H.

    1975-01-01

    Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.

  15. Effect of Mantle Wedge Hybridization by Sediment Melt on Geochemistry of Arc Magma and Arc Mantle Source - Insights from Laboratory Experiments at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Dasgupta, R.; Tsuno, K.; Nelson, J. M.

    2015-12-01

    Generation of arc magmas involves metasomatism of the mantle wedge by slab-derived H2O-rich fluids and/or melts and subsequent melting of the modified source. The chemistry of arc magmas and the residual mantle wedge are not only regulated by the chemistry of the slab input, but also by the phase relations of metasomatism or hybridization process in the wedge. The sediment-derived silica-rich fluids and hydrous partial melts create orthopyroxene-rich zones in the mantle wedge, due to reaction of mantle olivine with silica in the fluid/melt [1,2]. Geochemical evidence for such a reaction comes from pyroxenitic lithologies coexisting with peridotite in supra-subduction zones. In this study, we have simulated the partial melting of a parcel of mantle wedge modified by bulk addition of sediment-derived melt with variable H2O contents to investigate the major and trace element chemistry of the magmas and the residues formed by this process. Experiments at 2-3 GPa and 1150-1300 °C were conducted on mixtures of 25% sediment-derived melt and 75% lherzolite, with bulk H2O contents varying from 2 to 6 wt.%. Partial reactive crystallization of the rhyolitic slab-derived melt and partial melting of the mixed source produced a range of melt compositions from ultra-K basanites to basaltic andesites, in equilibrium with an orthopyroxene ± phlogopite ± clinopyroxene ± garnet bearing residue, depending on P and bulk H2O content. Model calculations using partition coefficients (from literature) of trace elements between experimental minerals and silicate melt suggest that the geochemical signatures of the slab-derived melt, such as low Ce/Pb and depletion in Nb and Ta (characteristic slab signatures) are not erased from the resulting melt owing to reactive crystallization. The residual mineral assemblage is also found to be similar to the supra-subduction zone lithologies, such as those found in Dabie Shan (China) and Sanbagawa Belt (Japan). In this presentation, we will also compare the major and trace element characteristics of bulk rock and minerals found in orthopyroxenites from supra-subduction zones with the residua formed in our experiments, to differentiate between melt versus fluid, and sediment- versus basalt-derived flux in the mantle wedge. [1] Mallik et al. (2015) CMP169(5) [2] Sekine & Wyllie (1982) CMP 81(3)

  16. Melt migration and mantle chromatography, 2: a time-series Os isotope study of Mauna Loa volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Hauri, Erik H.; Kurz, Mark D.

    1997-12-01

    We have determined the major element, trace element, and Os isotopic compositions of a stratigraphic suite of tholeiitic basalts spanning >30,000 years of the eruptive history of Mauna Loa volcano. Good correlations are observed between Os isotopes and the isotopes of Sr, Nd, Pb and He. In addition, the isotopes correlate with fractionation-corrected major element abundances within this single volcano, and provide a record of increased melting of mafic material with time at Mauna Loa. Chromatographic element fractionation during melt transport is shown to be negligible based on the good correlations of the isotopes of the compatible element Os with the other incompatible element tracers. The temporal variation at Mauna Loa is best described by the translation of the volcano over a Hawaiian plume which is radially zoned in composition. The radial zonation is a predicted consequence of thermal entrainment during flow in a mantle plume conduit.

  17. High cell density media for Escherichia coli are generally designed for aerobic cultivations – consequences for large-scale bioprocesses and shake flask cultures

    PubMed Central

    Soini, Jaakko; Ukkonen, Kaisa; Neubauer, Peter

    2008-01-01

    Background For the cultivation of Escherichia coli in bioreactors trace element solutions are generally designed for optimal growth under aerobic conditions. They do normally not contain selenium and nickel. Molybdenum is only contained in few of them. These elements are part of the formate hydrogen lyase (FHL) complex which is induced under anaerobic conditions. As it is generally known that oxygen limitation appears in shake flask cultures and locally in large-scale bioreactors, function of the FHL complex may influence the process behaviour. Formate has been described to accumulate in large-scale cultures and may have toxic effects on E. coli. Although the anaerobic metabolism of E. coli is well studied, reference data which estimate the impact of the FHL complex on bioprocesses of E. coli with oxygen limitation have so far not been published, but are important for a better process understanding. Results Two sets of fed-batch cultures with conditions triggering oxygen limitation and formate accumulation were performed. Permanent oxygen limitation which is typical for shake flask cultures was caused in a bioreactor by reduction of the agitation rate. Transient oxygen limitation, which has been described to eventually occur in the feed-zone of large-scale bioreactors, was mimicked in a two-compartment scale-down bioreactor consisting of a stirred tank reactor and a plug flow reactor (PFR) with continuous glucose feeding into the PFR. In both models formate accumulated up to about 20 mM in the culture medium without addition of selenium, molybdenum and nickel. By addition of these trace elements the formate accumulation decreased below the level observed in well-mixed laboratory-scale cultures. Interestingly, addition of the extra trace elements caused accumulation of large amounts of lactate and reduced biomass yield in the simulator with permanent oxygen limitation, but not in the scale-down two-compartment bioreactor. Conclusion The accumulation of formate in oxygen limited cultivations of E. coli can be fully prevented by addition of the trace elements selenium, nickel and molybdenum, necessary for the function of FHL complex. For large-scale cultivations, if glucose gradients are likely, the results from the two-compartment scale-down bioreactor indicate that the addition of the extra trace elements is beneficial. No negative effects on the biomass yield or on any other bioprocess parameters could be observed in cultures with the extra trace elements if the cells were repeatedly exposed to transient oxygen limitation. PMID:18687130

  18. Trace elements in tourmalines from massive sulfide deposits and tourmalinites: Geochemical controls and exploration applications

    USGS Publications Warehouse

    Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.

    1996-01-01

    Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from <40 to 3,770 ppm Mn, <4 to 1,800 ppm Ni, <2 to 1,430 ppm Cu, <9 to 4,160 ppm Zn, 3 to 305 ppm Ga, <6 to 1,345 ppm Sr, <10 to 745 ppm Sn, <49 to 510 ppm Ba, and <3 to 4,115 ppm Pb. Individual grains and growth zones are relatively homogeneous, suggesting that these trace elements are contained within the crystal structure of the tourmaline, and are not present in inclusions. The highest base metal contents are in ore-related tourmaline samples from Kidd Creek (Ontario), Broken Hill (Australia), and Sazare (Japan). Tourmaline data from these and many other massive sulfide deposits cluster by sample and display broadly linear trends on Zn vs. Fe plots, suggesting chemical control by temperature and hydrothermal and/or metamorphic fluid-mineral equilibria. Significant Ni occurs only in samples from the Kidd Creek Cu-Zn-Pb-Ag deposit, which is associated with a large footwall ultramafic body. An overall antithetic relationship between Zn and Ni probably reflects fluid source controls. Mn is correlated with Fe in tourmalines from barren associations, and possibly in some tourmalines associated with sulfide vein deposits. Sn increases systematically with Fe content irrespective of association; the highest values are found in schorls from granites. Other trace elements are generally uncorrelated with major element concentrations (e.g., Sr-Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia) plot on the Pb-Zn join; no data fall on the Cu-Pb join, consistent with the lack of this metal association in massive sulfide deposits. The systematic relationship between base metal proportions in the tourmalines and the metallogeny of the host massive sulfide deposits indicates that the analyzed tourmalines retain a strong chemical signature of their original hydrothermal formation, in spite of variable metamorphic recrystallization. Such trace element patterns in massive sulfide tourmalines may be useful in mineral exploration, specifically for the evaluation of tourmaline concentrations in rocks, soils, and stream sediments.

  19. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    NASA Astrophysics Data System (ADS)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X-ray maps and SIMS depth vs. isotope concentration profiles reveal that pyrites from the TGS are characterized by chemical zoning where the studied elements occur in different mineralogical forms. Arsenic and Co occur as structurally bound elements in pyrite, Cu and Au in pyrite can occur as both solid solution and submicron-sized particles of chalcopyrite and native Au (or Au tellurides), respectively. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusions in quartz and calcite veins (high Cu/As ratios) and borehole fluid (low Cu/As ratios) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical zonation in pyrite. These observations provide direct evidence supporting the selective partitioning of metals into pyrite as a result of changes in ore-forming fluid composition, most likely due to separation of a single-phase fluid into a low-density vapor and a denser brine, capable of fractionating Cu and As.

  20. Assessment of groundwater quality by unsaturated zone study due to migration of leachate from Abloradjei waste disposal site, Ghana

    NASA Astrophysics Data System (ADS)

    Egbi, Courage Davidson; Akiti, Tetteh Thomas; Osae, Shiloh; Dampare, Samuel Boakye; Abass, Gibrilla; Adomako, Dickson

    2017-05-01

    Leachate generated by open solid waste disposal sites contains substances likely to contaminate groundwater. The impact of potential contaminants migrating from leachate on groundwater can be quantified by monitoring their concentration and soil properties at specific points in the unsaturated zone. In this study, physical and chemical analyses were carried out on leachate, soil and water samples within the vicinity of the municipal solid waste disposal site at Abloradjei, a suburb of Accra, Ghana. The area has seen a massive increase in population and the residents depend on groundwater as the main source of water supply. Results obtained indicate alkaline pH for leachate and acidic conditions for unsaturated zone water. High EC values were recorded for leachate and unsaturated zone water. Major ions (Ca2+, Na+, Mg2+, K+, NO3 -, SO4 2-, Cl-, PO4 3- were analysed in leachate, unsaturated zone water, soil solution and groundwater while trace metals (Al, Fe, Cu, Zn, Pb) were analysed in both soil and extracted soil solution. Concentrations of major ions were high in all samples indicating possible anthropogenic origin. Mean % gravel, % sand, % clay, bulk density, volumetric water content and porosity were 28.8, 63.93, 6.6, 1 g cm-3, 35 and 62.7 %, respectively. Distribution of trace elements showed Kd variation of Al > Cu > Fe > Pb > Zn in the order of sequential increasing solubility. It was observed that the quality of groundwater is not suitable for drinking.

  1. The Origin of The Piz Terri-Lunschania zone (Central Alps, Switzerland)

    NASA Astrophysics Data System (ADS)

    Galster, Federico; Stockli, Daniel

    2017-04-01

    The Piz Terri-Lunschania zone (PTLZ) represents a band of metasedimentary rocks embedded in a crucial knot at the NE border of the Lepontine dome, at the intersection of the Gotthard, Lucomagno, Simano, Adula and Grava nappes. Its origin and its position in the tectonostratigraphy of the Central Alps are still not completely understood. A better understanding of this sedimentary zone and its tectonic position could shed lights on the Helvetic-Penninic connection and facilitate the disentanglement of the Lepontine dome tectonics. In this study we combine structural and stratigraphic observations with detrital zircon (DZ) and detrital rutile (DR) U-Pb geochronology as well as mineral trace element data from Permian, Triassic and Jurassic sandstones. We compare these data with those from adjacent tectonic units and coeval strata in other portions of the Alpine chain. Maximal depositional ages, abrupt changes in provenances and stratigraphic correlations based on new DZ and DR U-Pb and trace element data allow for a better understanding of the sedimentary evolution of the Terri basin and its palaeogeographic position along the northern margin of the Alpine Tethys. In particular the DZ U-Pb signatures, with its abundant 260-280 Ma zircons and the scarcity of 290-350 Ma zircons, corroborates an Ultra-Adula origin of the PTLZ as proposed by Galster et al (2010; 2012) based on stratigraphic arguments and reinforces the notion of a Briançonnais influence on the stratigraphic record of this complex zone, a fact that has important tectonic and Palaeogeographic implications. Galster F, Cavargna-Sani M, Epard J-L, Masson H (2012) New stratigraphic data from the Lower Penninic between the Adula nappe and the Gotthard massif and consequences for the tectonics and the paleogeography of the Central Alps. Tectonophysics 579:37-55. doi: 10.1016/j.tecto.2012.05.029 Galster F, Epard J-L, Masson H (2010) The Soja and Luzzone-Terri nappes: Discovery of a Briançonnais element below the front of the Adula nappe (NE Ticino, Central Alps). Bulletin de la Société Vaudoise des Sciences naturelles 92:61-75.

  2. Unraveling the history of complex zoned garnets from the North Motagua Mélange (Guatemala)

    NASA Astrophysics Data System (ADS)

    Barickman, M. H.; Martin, C.; Flores, K. E.; Harlow, G. E.; Bonnet, G.

    2016-12-01

    The Guatemala Suture Zone (GSZ) is situated in central Guatemala, between the North American and Caribbean plates. Two serpentinite mélanges straddle the Motagua Fault system: the North Motagua Mélange (NMM) and the South Motagua Mélange (SMM). In this study, chemically zoned garnet grains from four eclogite blocks from the NMM were analyzed by EMPA for major elements and LA-ICP-MS for trace elements to unravel the geological history of the eclogites. These eclogites typically consist of euhedral to subhedral garnets, partly retrogressed omphacite grains, and accessory minerals such as phengite and epidote as inclusions in garnet. EBSD was employed to examine apparent garnet inclusions in garnet. The garnet grains in NMM eclogites display complex chemical zonations: all grains roughly show a spessartine-rich core, an almandine-rich core and/or intermediate zone, and a pyrope and grossular-rich rim. Additionally, crystal resorption can be observed between the different zones, and the pyrope-grossular rim can display oscillatory zoning. Finally, grossular-rich zones (crystallographically syntactic) within garnet are present in all studied samples. REE and spider diagrams do not show any significant difference in the patterns of the different zones within the garnet, or indicating that the chemical environment from which each garnet zone grew was broadly the same. The lack of significant variation in LILE content indicates that a fluid influx during garnet growth is unlikely. Consequently, we interpret that garnet grains grew in a largely closed system; however, the presence of the grossular-rich zones, argues for occasional excursions into conditions when either two garnets crystallized or Ca-rich overgrowths that were largely resorbed prior to subsequent continued garnet growth.

  3. Biogeochemical zonation of sulfur during the discharge of groundwater to lake in desert plateau (Dakebo Lake, NW China).

    PubMed

    Su, Xiaosi; Cui, Geng; Wang, Huang; Dai, Zhenxue; Woo, Nam-Chil; Yuan, Wenzhen

    2018-06-01

    As one of the important elements of controlling the redox system within the hyporheic and hypolentic zone, sulfur is involved in a series of complex biogeochemical processes such as carbon cycle, water acidification, formation of iron and manganese minerals, redox processes of trace metal elements and a series of important ecological processes. Previous studies on biogeochemistry of the hyporheic and hypolentic zones mostly concentrated on nutrients of nitrogen and phosphorus, heavy metals and other pollutants. Systematic study of biogeochemical behavior of sulfur and its main controlling factors within the lake hypolentic zone is very urgent and important. In this paper, a typical desert plateau lake, Dakebo Lake in northwestern China, was taken for example within which redox zonation and biogeochemical characteristics of sulfur affected by hydrodynamic conditions were studied based on not only traditional hydrochemical analysis, but also environmental isotope evidence. In the lake hypolentic zone of the study area, due to the different hydrodynamic conditions, vertical profile of sulfur species and environmental parameters differ at the two sites of the lake (western side and center). Reduction of sulfate, deposition and oxidation of sulfide, dissolution and precipitation of sulfur-bearing minerals occurred are responded well to Eh, dissolved oxygen, pH, organic carbon and microorganism according to which the lake hypolentic zone can be divided into reduced zone containing H 2 S, reduced zone containing no H 2 S, transition zone and oxidized zone. The results of this study provide valuable insights for understanding sulfur conversion processes and sulfur biogeochemical zonation within a lake hypolentic zone in an extreme plateau arid environment and for protecting the lake-wetland ecosystem in arid and semiarid regions.

  4. Mineralogical and geochemical characteristics of BERYL (AQUAMARINE) from the Erongo Volcanic Complex, Namibia

    NASA Astrophysics Data System (ADS)

    Lum, Jullieta Enone; Viljoen, Fanus; Cairncross, Bruce; Frei, Dirk

    2016-12-01

    The granite hosted pegmatites of the Erongo Volcanic Complex in central Namibia are well known for the wide variety of minerals present, of considerable interest to mineral collectors. These include (amongst others) often spectacular, museum quality examples of beryl, schorl, jeremejevite, fluorite, quartz, goethite and cassiterite. The locality is particularly recognized for hosting a variety of beryl types, including green, yellow (heliodor), colorless (goshenite) and blue/greenish blue (aquamarine) variants. Comprehensive geochemical studies of the Erongo beryls are very limited. The present contribution serves to document the visual characteristics (colour, colour zoning, inclusion content) as well as the major and trace element chemistry of 42 blue, two green and one colorless beryl from Erongo, and to compare these with other localities worldwide. The beryls from Erongo are generally subhedral to euhedral with a well-formed prismatic habit. Idiomorphic crystals, characterised by strong hexagonal prisms, are common. Beryl is commonly associated with schorl, quartz, muscovite, alkali feldspar, plagioclase feldspar, iron oxides, foitite, rossmanite and cassiterite. Aquamarines range from pale blue to deep blue or greenish blue, with marked colour zoning seen in a number of samples. One of the two green beryls examined is of a medium green colour, and is heavily included, while the other specimen has a pale yellowish green colour. The goshenite sample is colourless, clear, and transparent. Numerous cracks are present in the samples examined, and these are usually filled by iron oxides. Inclusions species encountered in the beryl samples are schorl, quartz, muscovite, feldspar, iron oxides and cassiterite, clearly reflective of the host pegmatite mineralogy. Aquamarine and green beryl contain iron as the main chromophore while goshenite is devoid of chromophores. Fe contents in beryl increase with colour intensity, consistent with the known chromatic effects of Fe in blue, yellow and green beryl. Consistently low Cr contents in all studied beryls do not concur with Cr being a chromophore element for green beryl. Marked compositional zoning is present, with variable Fe (0.79-3.19 wt% FeOT), Na (0.09-0.35 wt% Na2O), Al (15.99-18.18 wt% Al2O3) in aquamarine. Zoning patterns range from simple core-to-rim transitions, to more complex sector and/or oscillatory zoning. Trace element contents vary amongst the beryl types examined, with the highest contents and most extreme variations observed in the aquamarines. This is probably partly due to sampling bias relating to the size of the sample set examined. Octahedral cation substitution is dominant, with Na incorporated (over Cs) at the channels, in order to maintain charge balance. Inferences based on charge balance arguments suggest that tetrahedral Be-Li substitution in these beryls may also be present. Cs, Sc, Ga and Mn are positively correlated with Rb, consistent with the incorporation of these elements at the octahedral site (Sc, Mn and minor Ga) or the channel site (Cs, Rb), in order to preserve charge balance. In contrast, Ca, Zn and Ti do not correlate with Rb, nor with Cs. This is unexpected, as Ti and Ca are known to substitute at the octahedral site in beryl, while Ca may also enter the 2a channel site of beryl. The major and trace element chemistry of the beryls are generally similar to other worldwide beryl deposits of similar colour and do not serve to distinguish beryls from Erongo.

  5. A Missing Link in Understanding Mantle Wedge Melting, Higashi-akaishi Peridotite, Japan

    NASA Astrophysics Data System (ADS)

    Till, C. B.; Carlson, R. W.; Grove, T. L.; Wallis, S.; Mizukami, T.

    2009-12-01

    The Sanbagawa subduction-type metamorphic belt in SW Japan represents the deepest exposed portion of a Mesozoic accretionary complex along the Japanese island arc. Located on the island of Shikoku, the Higashi-akaishi peridotite body is the largest ultramafic lens within the Sanbagawa belt and is dominantly composed of dunite, lherzolite and garnet clinopyroxenite, interfingered in one locality with quartz-rich eclogite. Previous work indicates the P-T history of the peridotite includes rapid prograde metamorphism with peak temperatures of 700-810°C and pressures of 2.9-3.8 GPa at approximately 110-120 Ma. Here we present major and trace element and isotopic data for samples within the Higashi-akaishi peridotite body that suggest it records subduction zone melting processes. Ultramafic samples range from 40-52 wt. % SiO2 and 21-45 wt. % MgO with olivine and clinopyroxene Mg#s as high as 0.93 and have trace element concentrations diagnostic of subduction zone processes. The quartz-rich eclogite contains 62 wt. % SiO2, 6 wt. % MgO and 13 wt. % Al2O3 and has trace element concentrations that are enriched relative to the ultramafic samples. 87Sr/86Sr (.703237-.704288), 143Nd/144Nd (ɛNd=+2-6) and Pb isotopic compositions are within the range of Japanese arc rocks. 187Os/188Os values range from typical mantle values (0.123-0.129), to slightly elevated (0.133) in one peridotite with an unusually low Os content, to a high of 0.145 in the quartz-rich eclogite. The presence of garnet porphyroblasts that enclose primary euhedral chlorite, together with the chemical evidence, suggest these samples are associated with mantle melting in the presence of H2O near their peak P-T conditions and may represent both residues and trapped melts within a paleo-mantle wedge. The peak P-T conditions of these rocks are also similar to the solidus conditions of H2O-saturated fertile mantle based on experimental determinations. Thus the Higashi-akaishi peridotite may be a real world analog to hydrous mantle melting experiments and offer crucial evidence on the mechanisms of melting in the mantle wedge at subduction zones.

  6. Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils

    NASA Astrophysics Data System (ADS)

    Carte, J.; Fantle, M. S.

    2017-12-01

    An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.

  7. Integrated melt inclusion and crystal zoning study to track the timescales and pre-eruption dynamics of violent Strombolian eruptions at Llaima volcano, Chile

    NASA Astrophysics Data System (ADS)

    Ruth, D. C.; Costa Rodriguez, F.; Bouvet de Maisonneuve, C.; Calder, E. S.

    2013-12-01

    Melt inclusion compositions in crystals from many volcanic systems are notoriously variable and some times difficult to interpret. Their compositions can be a combination of rapid crystal growth, entrapment of local melt, and diffusive re-equilibration, among other processes. Additionally, chemical zoning in olivine records changing environmental conditions, most importantly temperature and magma composition. Many geochemical studies focus on either melt inclusion data or chemical zoning data to ascertain volcanic processes. Here we combine melt inclusion data with that of chemical zoning of the olivine host crystals from the 2008 violent Strombolian eruption of Llaima volcano, Chile, to obtain a more refined understanding of the processes related to crystal growth, melt inclusion formation, and magma dynamics. We investigated zoning characteristics in a suite of olivine crystals, created X-ray element maps (Al, Ca, Mg, P, Fe), and collected quantitative elemental abundances across chemical zones for detailed diffusion modeling. Melt inclusion compositions were collected via electron microprobe analysis and LA-ICPMS. We observe three types of zoning in the host olivine crystals: normal, reverse, and multiple zones with fluctuating Fo content. Reverse zoning was more common than the other types. Regardless of zoning character, multiple melt inclusions are present within a given olivine, often found near the crystal rim. For some of these melt inclusions, the olivine surrounding the melt inclusion was also zoned, often to a similar composition as the olivine rim. This implies that these inclusions remained connected with interstitial matrix melt until melt inclusion closure. These ';open' melt inclusions exhibited slightly different major (higher SiO2, Na2O+K2O, TiO2) and trace elements (positive Eu and Sr anomalies) compared to melt inclusions in the same olivine that were not surrounded by compositional zoning. Quantitative elemental profiles produce modeled timescales on the order of 10s-100s days prior to eruption. Zoning textures, melt inclusion compositions, and timescale modeling indicates that crystal dissolution (open melt inclusions), mafic magma injection (reverse zoning), and partial melting of upper crustal plagioclase-rich cumulates (positive Eu and Sr anomalies) were occurring in the months prior to the 2008 eruption. The combination of both melt inclusion data and textural data of the host crystals provides deeper insight into the nature and timing of deep and shallow reservoir processes that generate violent Strombolian eruptions at Llaima.

  8. Trace element distribution in waters of the northern catchment area of Lake Linneret, northern Israel

    NASA Astrophysics Data System (ADS)

    Sandler, A.; Brenner, I. B.; Halicz, L.

    1988-02-01

    Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.

  9. Zircon Zoning, Trace Elements and U-Pb Dates Reveal Crustal Foundering Beneath the Pamir

    NASA Astrophysics Data System (ADS)

    Hacker, B. R.; Shaffer, M. E. F.; Ratschbacher, L.; Kylander-Clark, A. R.

    2017-12-01

    Xenoliths that erupted in the SE Pamir of Tajikistan at 11.2 Ma from 1000-1050°C and 90 km depth illuminate what happens when crust founders into the mantle. The xenoliths are a broad range of crustal rock types and contain abundant xenoliths whose U-Pb isotopic ratios and trace-element contents were examined by laser-ablation split stream inductively coupled plasma mass spectrometry. Cathodoluminescence imaging of the grains shows igneous cores with oscillatory zoning overprinted by substantial recrystallization. The bulk of the U-Pb dates are concordant and range from 160 Ma to 11 Ma. The range of dates suggest that the xenoliths were likely derived from the Jurassic-Cretaceous Andean-style magmatic arc and its Proterozoic-Mesozoic host rocks along the southern margin of Asia. The zircons show distinct changes in Eu anomaly, Lu/Gd ratio, and Ti concentrations that are interpreted to indicate garnet growth and minimal heating at 22-20 Ma, and then 200-300°C of heating, 25 km of burial, and alkali-carbonate melt injection at 14-11 Ma. These changes are interpreted to coincide with: i) heat input due to Indian slab breakoff at 22‒20 Ma; ii) rapid thickening and foundering of the Pamir lithosphere at 14‒11 Ma, prior to and synchronous with collision between deep Indian and Asian lithospheres beneath the Pamir.

  10. Numerical simulation of trace element transport on subsurface environment pollution in coal mine spoil.

    PubMed

    Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu

    2006-01-01

    An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.

  11. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Distribution of major and trace elements in surface sediments of the western Gulf of Thailand: Implications to modern sedimentation

    NASA Astrophysics Data System (ADS)

    Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol

    2016-04-01

    In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.

  13. Accessory and rock forming minerals monitoring the evolution of zoned mafic ultramafic complexes in the Central Ural Mountains

    NASA Astrophysics Data System (ADS)

    Krause, J.; Brügmann, G. E.; Pushkarev, E. V.

    2007-04-01

    This study describes major and trace element compositions of accessory and rock forming minerals from three Uralian-Alaskan-type complexes in the Ural Mountains (Kytlym, Svetley Bor, Nizhnii Tagil) for the purpose of constraining the origin, evolution and composition of their parental melts. The mafic-ultramafic complexes in the Urals are aligned along a narrow, 900 km long belt. They consist of a central dunite body grading outward into clinopyroxenite and gabbro lithologies. Several of these dunite bodies have chromitites with platinum group element mineralization. High Fo contents in olivine (Fo 92-93) and high Cr/(Cr + Al) in spinel (0.67-0.84) suggest a MgO-rich (> 15 wt.%) and Al 2O 3-poor ultramafic parental magma. During its early stages the magma crystallized dominantly olivine, spinel and clinopyroxene forming cumulates of dunite, wehrlite and clinopyroxenite. This stage is monitored by a common decrease in the MgO content in olivine (Fo 93-86) and the Cr/(Cr + Al) value of coexisting accessory chromite (0.81-0.70). Subsequently, at subsolidus conditions, the chromite equilibrated with the surrounding silicates producing Fe-rich spinel while Al-rich spinel exsolved chromian picotite and chromian titanomagnetite. This generated the wide compositional ranges typical for spinel from Uralian-Alaskan-type complexes world wide. Laser ablation analyses (LA-ICPMS) reveal that clinopyroxene from dunites and clinopyroxenite from all three complexes have similar REE patterns with an enrichment of LREE (0.5-5.2 prim. mantle) and other highly incompatible elements (U, Th, Ba, Rb) relative to the HREE (0.25-2.0 prim. mantle). This large concentration range implies the extensive crystallization of olivine and clinopyroxene together with spinel from a continuously replenished, tapped and crystallizing magma chamber. Final crystallization of the melt in the pore spaces of the cooling cumulate pile explains the large variation in REE concentrations on the scale of a thin section, the REE-rich rims on zoned clinopyroxene phenocrysts (e.g. La Rim/La Core ˜ 2), and the formation of interstitial clinopyroxene with similar REE enrichment. Trace element patterns of the parental melt inferred from clinopyroxene analyses show negative anomalies for Ti, Zr, Hf, and a positive anomaly for Sr. These imply a subduction related geotectonic setting for the Uralian zoned mafic-ultramafic complexes. Ankaramites share many petrological and geochemical features with these complexes and could represent the parental melts of this class of mafic-ultramafic intrusions. Diopside from chromitites and cross cutting diopside veins in dunite has similar trace element patterns with LREE/HREE ratios (e.g. La/Lu = 5-60) much higher than those in diopside from all other lithologies. We suggest that the chromitites formed at high temperatures (800-900 °C) during the waning stages of solidification as a result of the interaction of an incompatible element-rich melt or fluid with the dunite cumulates.

  14. Transformation of organic carbon, trace element, and organo-mineral colloids in the mixing zone of the largest European Arctic river

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.; Gordeev, V. V.; Shevchenko, V. P.; Chupakov, A. V.; Vorobieva, T. Y.; Candaudap, F.; Casseraund, C.; Lanzanova, A.; Zouiten, C.

    2013-10-01

    The estuarine behavior of organic carbon (OC) and trace elements (TE) was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river is a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012) and winter (March 2009) baseflow, and the November-December 2011 ice-free period. Colloidal forms of OC and TE were assessed using three pore size cutoff (1, 10, and 50 kDa) using an in-situ dialysis procedure. Conventionally dissolved (< 0.22 μm) fractions demonstrated clear conservative behavior for Li, B, Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of freshwater with the White Sea; a significant (up to a factor of 10) concentration increase occurs with increases in salinity. Si and OC also displayed conservative behavior but with a pronounced decrease of concentration seawards. Rather conservative behavior, but with much smaller changes in concentration (variation within ±30%) over a full range of salinities, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and heavy REE. Strong non-conservative behavior with coagulation/removal at low salinities (< 5‰) was exhibited by Fe, Al, Zr, Hf, and light REE. Finally, certain divalent metals exhibited non-conservative behavior with a concentration gain at low (~2-5‰, Ba, Mn) or intermediate (~10-15‰, Ba, Zn, Pb, Cd) salinities, which is most likely linked to TE desorption from suspended matter or sediment outflux. The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW< 1 kDa fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved (< 0.22 μm) pool as the salinity increases. Similarly, the relative proportion of colloidal (1 kDa-0.22 μm) pool for the OC and insoluble TE bound to ferric colloids systematically decreased seaward, with the largest decrease occurring at low (< 5‰) salinities. Overall, the observed decrease of the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa-0.22 μm portion by the LMW< 1 kDa fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable) fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW< 1 kDa ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate vs. dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either a conservative (OC and related elements such as divalent metals) or non-conservative, coagulation-controlled (Fe, Al, and insoluble TE associated with organo-ferric colloids) behavior. The climate warming in high latitudes is likely to intensify the production of LMW< 1 kDa organic ligands and the associated TE; therefore, the delivery of potentially bioavailable trace metal micronutrients from the land to the ocean may increase.

  15. Dehydration and melting experiments constrain the fate of subducted sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Marie C.; Plank, Terry

    1999-12-01

    Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 +/- 25°C at 2 GPa, 810 +/- 15°C at 3 GPa, and 1025 +/- 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ~ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.

  16. Dehydration and melting experiments constrain the fate of subducted sediments

    NASA Astrophysics Data System (ADS)

    Johnson, Marie C.; Plank, Terry

    2000-12-01

    Geochemical tracers demonstrate that elements are cycled from subducted sediments into the arc melting regime at subduction zones, although the transfer mechanism is poorly understood. Are key elements (Th, Be, Rb) lost during sediment dehydration or is sediment melting required? To investigate this question, we conducted phase equilibria and trace element partitioning experiments on a pelagic red clay for conditions appropriate to the slab beneath arc volcanoes (2-4 GPa, 600°-1000°C). Using both piston cylinders and multianvils, we determined the solidus, phase stabilities, and major element compositions of coexisting phases. The solidus (H2O + Cl fluid-saturated) was located at 775 ± 25°C at 2 GPa, 810 ± 15°C at 3 GPa, and 1025 ± 25°C at 4 GPa with noevidence for complete miscibility between melt and fluid. This sediment composition produces a profusion of phases both above and below the solidus: garnet, jadeitic pyroxene, alkali-rich amphibole, phengite, biotite, magnetite, coesite, kyanite, apatite, zircon, Cl-rich fluids, and peraluminous to peralkaline granitic melts. At 2 GPa the phengite dehydration solidus is at 800°-825°C, while biotite breaks down between 850° and 900°C. To explore trace element partitioning across the solidus at 2 GPa, we used diamonds to trap fluids and melts. Both the bulk sediment residues and diamond traps were analyzed postexperiment by inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) for 40 elements for which we calculated bulk partition coefficients (D = Csolid/Cfluid). Below the solidus, Rb, Sr, Ba, and Pb showed the greatest mobility (D ˜ 0.5-1.0), while at the solidus, Th and Be became notably partitioned into the melt (D values changing from >2.0 to <1.0). K and Rb D values fall below 1.0 when the micas breakdown. Only at the solidus do Th and Rb attain similar partition coefficients, a condition required by arc data. Taken together, the experimental results indicate that critical elements (Th and Be) require sediment melting to be efficiently transferred to the arc. This conclusion is at odds with most thermal models for subduction zones, which predict slab temperatures more than 100°C lower than sediment solidi. Thus the condition of sediment melting (with oceanic crust dehydration) may provide new constraints on the next generation of thermal/geodynamical models of subduction zones.

  17. Combined visualization for noise mapping of industrial facilities based on ray-tracing and thin plate splines

    NASA Astrophysics Data System (ADS)

    Ovsiannikov, Mikhail; Ovsiannikov, Sergei

    2017-01-01

    The paper presents the combined approach to noise mapping and visualizing of industrial facilities sound pollution using forward ray tracing method and thin-plate spline interpolation. It is suggested to cauterize industrial area in separate zones with similar sound levels. Equivalent local source is defined for range computation of sanitary zones based on ray tracing algorithm. Computation of sound pressure levels within clustered zones are based on two-dimension spline interpolation of measured data on perimeter and inside the zone.

  18. Seventh Annual V. M. Goldschmidt Conference

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topics considered include: Subduction of the Aseismic Cocos Ridge Displaced Magma Sources Beneath the Cordillera de Talamanca, Costa Rica; Topography of Transition Zone Discontinuities: A Measure of 'Olivine' Content and Evidence for Deep Cratonic Roots; Uranium Enrichment in Lithospheric Mantle: Case Studies from French Massif Central; Rare-Earth-Element Anomalies in the Decollement Zone of the nankai Accretionary Prism, Japan: Evidence of Fluid Flow?; Rare Earth Elements in Japanese Mudrocks: The Influence of Provenance; The Evolution of Seawater Strontium Isotopes in the Last Hundred Million Years: Reinterpretation and Consequences for Erosion and Climate Models; From Pat to Tats: The Lead Isotope Legacy in the Studies of the Continental Crust-Upper Mantle System; Geochronology of the Jack Hills Detrital Zircons by Precise Uranium-Lead Isotope-Dilution Analysis of Crystal Fragments; Iridium in the Oceans; The Helium-Heat-Lead Paradox; Control of Distribution Patterns of Heavy Metals in Ganga Plain Around Kanpur Region, India, by Fluvial Geomorphic Domains; Geochemical and Isotopic Features of Ferrar Magmatic Provience (Victoria Land, Antarctica); Rare Earth Elements in Marine Fine-Grained Sediments from the Northwestern Portuguese Shelf (Atlantic); Aspects of Arc Fluxes; General Kinetic Model for Dolomite Precipitation Rate with Application to the Secular History of Seawater Composition; High-Precision Uranium-series Chronology from Speleothems; Trace-Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones; Rainfall Variations in Southeastern Australia over the Last 500,000 Years from Speleothem Deposition; The Role of Water in High-Pressure Fluids; The Kinetic Conditions of Metamorphic Minearogenesis: Evidence from Minerals and Assemblages.

  19. Wet deposition of trace elements and radon daughter systematics in the South and equatorial Atlantic atmosphere

    NASA Astrophysics Data System (ADS)

    Kim, Guebuem; Church, Thomas M.

    2002-09-01

    Atmospheric samples were collected aboard ship in the South and equatorial Atlantic (35°S-10°N) between 19 May and 20 June 1996. We measured 222Rn in air, 210Pb in aerosol, and trace elements (Fe, Mn, Zn, Pb, Cu, Cd, Ni, and Cr), 210Pb, and 210Po in precipitation samples. The large variation of 222Rn in air suggests a significant change in the incursion of continental air with time and latitude in the remote Atlantic. In the equatorial and subtropical Atlantic (20°S-10°N), 222Rn activity was lower but 210Pb/222Rn ratios were higher than those at higher latitudes. The higher 210Pb/222Rn ratios in the equatorial Atlantic appear to be due to prevailing trade easterly winds which transport a supported source of 210Pb in Saharan dust from the African Sahel. The enrichment of noncrustal trace elements in precipitation samples from the remote equatorial Atlantic was small on account of the remoteness from the continental emission regions and as a result of dilution with Saharan dust. The wet depositional fluxes of major crustal elements (Fe and Mn) were two- to three-fold higher, while those of Cd and Zn were two- to ten-fold lower, in the South and equatorial Atlantic relative to the western North Atlantic (Bermuda) or North Atlantic coast (Lewes, Delaware). Thus, dominant wet precipitation of Saharan dust in the Intertropical Convergence Zone (ITCZ) areas of the equatorial Atlantic appears to be a large potential source of micronutrients (i.e., Fe) to surface seawater.

  20. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  1. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  2. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution impact studies require knowledge of the natural background concentrations and knowledge of pollutant behavior. For example, it is generally accepted that rare earth elements (REEs) in waters behave as good analogues for the actinides, whose natural levels are quite low and rarely measured. Water quality investigations have clearly been a stimulus for measurement of toxic heavy metals in order to understand their behavior in natural systems.From a more fundamental point of view, it is crucial to understand the behavior of trace elements in geological processes, in particular during chemical weathering and transport by waters. Trace elements are much more fractionated by weathering and transport processes than major elements, and these fractionations give clues for understanding the nature and intensity of the weathering+transport processes. This has not only applications for weathering studies or for the past mobilization and transport of elements to the ocean (potentially recorded in the sediments), but also for the possibility of better utilization of trace elements in the aqueous environment as an exploration tool.In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a "field approach" by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters will be reviewed. Regulation by surfaces is of major importance for a great range of elements. Although for both colloids and surface interactions, some progress has been made, we are still far from a unified model that can accurately predict trace-element concentrations in natural water systems. This is mainly due to our poor physical description of natural colloids, surface site complexation, and their interaction with solutes.

  3. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  4. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  5. Trace Elements and Healthcare: A Bioinformatics Perspective.

    PubMed

    Zhang, Yan

    2017-01-01

    Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.

  6. Data from a thick unsaturated zone in Joshua Tree, San Bernardino County, California, 2007--09

    USGS Publications Warehouse

    Burgess, Matthew; Izbicki, John; Teague, Nicholas; O'Leary, David R.; Clark, Dennis; Land, Michael

    2012-01-01

    Data were collected on the physical properties of unsaturated alluvial deposits, the chemical composition of leachate extracted from unsaturated alluvial deposits, the chemical and isotopic composition of groundwater and unsaturated-zone water, and the chemical composition of unsaturated-zone gas at four monitoring sites in the southwestern part of the Mojave Desert in the town of Joshua Tree, San Bernardino County, California. The presence of denitrifying and nitrate-reducing bacteria from unsaturated alluvial deposits was evaluated for two of these monitoring sites that underlie unsewered residential development. Four unsaturated-zone monitoring sites were installed in the Joshua Tree area—two in an unsewered residential development and two adjacent to a proposed artificial-recharge site in an undeveloped area. The two boreholes in residential development areas were installed by using the ODEX air-hammer method. One borehole was drilled through the unsaturated zone to a depth of 541 ft (feet) below land surface; a well screened across the water table was installed. Groundwater was sampled from this well. The second borehole was drilled to a depth of 81 ft below land surface. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described. Core material was analyzed for water content, bulk density, matric potential, particle size, and water retention. The leachate from over 500 subsamples of cores and cuttings was analyzed for soluble anions, including fluoride, sulfate, bromide, chloride, nitrate, nitrite, and orthophosphate. Groundwater was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone water from suction-cup lysimeters was analyzed for major ions, inorganic compounds, select trace elements, and isotopic composition. Unsaturated-zone gas samples were analyzed for argon, oxygen, nitrogen, methane, carbon dioxide, ethane, nitrous oxide, and carbon monoxide. Drill cuttings were analyzed for denitrifying and nitrate-reducing bacteria. One of the boreholes installed adjacent to the Joshua Basin Water District proposed groundwater-recharge facility was installed by using the ODEX air-hammer method and the other was installed by using a 7.875-inch hollow-stem auger. Drilling procedures, lithologic and geophysical data, construction details, and instrumentation placed in these boreholes are described; however, geochemical data were not available at the time of publication.

  7. Assessment of Bioavailable Concentrations of Germanium and Rare Earth Elements in the Rhizosphere of White Lupin (Lupinus albus L.)

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Fischer, Ronny; Moschner, Christin; Székely, Balázs

    2015-04-01

    Concentrations of Germanium (Ge) and Rare Earth Elements in soils are estimated at 1.5 mg kg -1 (Ge), 25 mg kg -1 (La) and 20 mg kg -1 (Nd), which are only roughly smaller than concentrations of Pb and Zn. Germanium and rare earth elements are thus not rare but widely dispersed in soils and therefore up to date, only a few minable deposits are available. An environmental friendly and cost-effective way for Ge and rare earth element production could be phytomining. However, the most challenging part of a phytomining of these elements is to increase bioavailable concentrations of the elements in soils. Recent studies show, that mixed cultures with white lupine or other species with a high potential to mobilize trace metals in their rhizosphere due to an acidification of the soil and release of organic acids in the root zone could be a promising tool for phytomining. Complexation of Ge and rare earth elements by organic acids might play a key role in controlling bioavailability to plants as re-adsorption on soil particles and precipitation is prevented and thus, concentrations in the root zone of white lupine increase. This may also allow the complexes to diffuse along a concentration gradient to the roots of mixed culture growing species leading to enhanced plant uptake. However, to optimize mixed cultures it would be interesting to know to which extend mobilization of trace metals is dependent from chemical speciation of elements in soil due to the interspecific interaction of roots. A method for the identification of complexes of germanium and rare earth elements with organic acids, predominantly citric acid in the rhizosphere of white lupine was developed and successfully tested. The method is based on coupling of liquid chromatography with ICP-MS using a zic-philic column (SeQuant). As a preliminary result, we were able to show that complexes of germanium with citric acid exist in the rhizosphere of white lupin, what may contribute to the bioavailability of this element. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  8. The geochemical cycling of trace elements in a biogenic meromictic lake

    NASA Astrophysics Data System (ADS)

    Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara

    1994-10-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).

  9. The geochemical cycling of trace elements in a biogenic meromictic lake

    USGS Publications Warehouse

    Balistrieri, L.S.; Murray, J.W.; Paul, B.

    1994-01-01

    The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.

  10. Petrologic constraints on rift-zone processes - Results from episode 1 of the Puu Oo eruption of Kilauea volcano, Hawaii

    USGS Publications Warehouse

    Garcia, M.O.; Ho, R.A.; Rhodes, J.M.; Wolfe, E.W.

    1989-01-01

    The Puu Oo eruption in the middle of Kilauea volcano's east rift zone provides an excellent opportunity to utilize petrologic constraints to interpret rift-zone processes. Emplacement of a dike began 24 hours before the start of the eruption on 3 January 1983. Seismic and geodetic evidence indicates that the dike collided with a magma body in the rift zone. Most of the lava produced during the initial episode of the Puu Oo eruption is of hybrid composition, with petrographic and geochemical evidence of mixing magmas of highly evllved and more mafic compositions. Some olivine and plagioclase grains in the hybrid lavas show reverse zoning. Whole-rock compositional variations are linear even for normally compatible elements like Ni and Cr. Leastsquares mixing calculations yield good residuals for major and trace element analyses for magma mixing. Crystal fractionation calculations yield unsatisfactory residuals. The highly evolved magma is similar in composition to the lava from the 1977 eruption and, at one point, vents for these two eruptions are only 200 m apart. Possibly both the 1977 lava and the highly evolved component of the episode 1 Puu Oo lava were derived from a common body of rift-zone-stored magma. The more mafic mixing component may be represented by the most mafic lava from the January 1983 eruption; it shows no evidence of magma mixing. The dike that was intruded just prior to the start of the Puu Oo eruption may have acted as a hydraulic plunger causing mixing of the two rift-zone-stored magmas. ?? 1989 Springer-Verlag.

  11. Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.

    2016-09-01

    Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the trace elements Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive trace element fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of trace element abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in addition a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical contaminants of kyanite products, besides Fe, Ca, and Mg, appears predictable from the observed correlation of Ti with formation temperature. Iron will be hard to predict because its incorporation is mainly controlled by the oxidizing conditions during kyanite formation and the estimation of these conditions requires advanced analytical methods. Magnesium and Ca are consistently low in all investigated samples. From a regional exploration viewpoint, group C and D kyanites have the lowest Ti and relative low Fe and, therefore, will be most refractory. Due to their attractive blue colour, kyanite-bearing rocks of group C have potential as ornamental or dimension stone.

  12. Elemental Analysis of Zircon by High Mass Resolution USGS-Stanford SHRIMP-RG: Measuring and Evaluating Ti-in-zircon Temperatures and Compositional Characteristics

    NASA Astrophysics Data System (ADS)

    Wooden, J. L.; Mazdab, F. K.; Claiborne, L. L.; Miller, C. F.; Barth, A. P.

    2006-12-01

    High mass resolution of SHRIMP-RG permits measurement of a large set of trace elements for zircon, including 48Ti, Sc, and Nb (requiring better than 9,000 MR) and Be, B, F, P, 49Ti, V, Y, all the REE, Hf, Th, and U (Mazdab and Wooden 2006). A 15-20 micron spot allows analysis of numerous discrete CL zones from single zircons with minimal contributions from unknown material below the exposed surface. Data from suites of zircons from more than 20 individual granitoid samples suggest several general observations: (1) Temperatures calculated by Ti-in-zircon (Watson et al 2006) are entirely compatible with petrologic constraints; uncertainty in a(TiO2) introduces uncertainty in calculated T, but for reasonable values between 0.5 and 0.8 T's consistently fall between 650 and 900 C, mostly in the lower half of the range; (2) T can vary by 150-200 C within suites of zircons from individual samples and even in single zircons, where zonation may be normal (high to low, core to rim), reverse (low to high) or fluctuating; (3) Hf concentrations increase with decreasing T because of Zr/Hf fractionation between zircon and melt (Claiborne et al in press); (4) Many elements and element ratios show a co-variation with T and Hf concentration e.g., Th/U and MREE/HREE decrease with increasing Hf and decreasing T. Hf concentrations can continue to increase after a minimum T is reached, indicating continuing zircon growth from remaining (near eutectic?) melt. Yb/Gd (steepness of the HREE pattern) is an excellent monitor of fractionation, particularly at lower T (below 750 C) where the ratio increases rapidly. This trend may result from co-fractionation of accessory minerals and/or be driven by the thermodynamics of crystal growth, and/or may involve other factors and processes as yet poorly understood. Magmatic zircons commonly have a negative Eu anomaly of about 0.5 or lower which may change little or become more pronounced with falling T; anomalies probably reflect feldspar fractionation rather than magmatic oxidation conditions. Zircons typically have positive Ce anomalies that rise as T falls and Hf increases. This reflects either fractionation of minerals that incorporate Ce+3 but little Ce+4, or oxidation. U and Th concentrations are typically highest in low-T zones but often show very irregular patterns with T and Hf. Molar ratios of total 3+ ions over P are mostly 1-5, suggesting charge compensation other than the xenotime substitution (Mazdab and Wooden 2006). Random analyses of zircons for T and composition are of limited use given wide variation within single zircons. Process interpretations should be based on trends observed in multiple zircons from individual samples, as many samples have characteristics distinct from general trends. Hydrothermal zircon (Hoskin 2005) is not unusual as a rim zone and may reflect a fine intergrowth of other minerals (apatite, titanite, oxides) or unusual late stage growth conditions. Ti temperatures from these zones are often unreliable, and all analyses for Ti and trace elements should include screens (i.e. F, Al, Ca, Fe) for Ti-bearing minerals and other accessories. While trace element concentrations of zircons may not be diagnostic of rock types in general, careful analyses as described above provide invaluable information about magmatic and metamorphic processes.

  13. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance

    NASA Astrophysics Data System (ADS)

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.; Couëslan, Christopher; Xu, Cheng; Kynický, Jindřich; Mumin, A. Hamid; Yang, Panseok

    2017-03-01

    Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data ( 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (≥ 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 - and (VO4)3 - anions, substituting for (PO4)3 -, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 - groups are very likely present in some samples, Raman micro-spectroscopy proved inconclusive for apatites with small P-site deficiencies and other substituent elements in this site. Indicator REE ratios sensitive to redox conditions (δCe, δEu) and hydrothermal overprint (δY) form a fairly tight cluster of values (0.8-1.3, 0.8-1.1 and 0.6-0.9, respectively) and may be used in combination with trace-element abundances for the development of geochemical exploration tools. Hydrothermal apatite forms in carbonatites as the product of replacement of primary apatite, or is deposited in fractures and interstices as euhedral crystals and aggregates associated with typical late-stage minerals (e.g., quartz and chlorite). Hydrothermal apatite is typically depleted in Sr, REE, Mn and Th, but enriched in F (up to 4.8 wt.%) relative to its igneous precursor, and also differs from the latter in at least some of key REE ratios [e.g., shows (La/Yb)cn ≤ 25, or a negative Ce anomaly]. The only significant exception is Sr(± REE,Na)-rich replacement zones and overgrowths on igneous apatite from some dolomite(-bearing) carbonatites. Their crystallization conditions and source fluid appear to be very different from the more common Sr-REE-depleted variety. Based on the new evidence presented in this work, trace-element partitioning between apatite and carbonatitic magmas, phosphate solubility in these magmas, and compositional variation of apatite-group minerals from spatially associated carbonatitic rocks are critically re-evaluated.

  14. Atmospheric transport of trace elements and nutrients to the oceans

    PubMed Central

    Chance, R.

    2016-01-01

    This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035252

  15. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

    PubMed Central

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W.; Fallmann, Katharina; Puschenreiter, Markus

    2013-01-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils. PMID:23645938

  16. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    PubMed

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  17. Trace elements in native and improved paddy rice from different climatic regions of Sri Lanka: implications for public health.

    PubMed

    Diyabalanage, Saranga; Navarathna, Thamara; Abeysundara, Hemalika T K; Rajapakse, Sanath; Chandrajith, Rohana

    2016-01-01

    Samples of 226 new improved and 21 indigenous rice ( Oryza sativa L.) varieties were collected from the rice fields in three climatic zones of Sri Lanka and concentrations of 18 trace elements (Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Pb and Bi) were measured giving particular emphasis on Se, Cd and As using ICP-MS. The two way multivariate analysis of variance (MANOVA) method was employed to identify the differences in composition among rice from different climatic zones. The mean values obtained for both white and red rice were Se (36; 25 µg/kg), As (42; 45 µg/kg) and Cd (70; 123 µg/kg) on dry weight basis. However mean content of Se, As and Cd of native rice varieties were 69, 74 and 33 µg/kg, respectively. Statistical interpretations showed that in the majority of cases, there was a significant difference in Cd content among climatic zones whereas Se and Pb show differences between white and red rice varieties. Arsenic did not indicate any significant difference either between rice types or among climatic regions. Notably Se and As contents in indigenous rice were higher than that of improved rice types. To assess the safety of dietary of intake, daily intake of Se, Cd and As by rice were calculated. Non-gender specific Estimated Daily Intake (EDI) of Se, Cd and As consuming improved rice are 9.31, 24.1 and 12.2 µg day -1 , respectively. Since over 50 % of daily meals of people contain rice or rice based products, Se intake is expected to be deficient among the Sri Lankan population.

  18. Contamination of shallow ground water in the area of building 95, Picatinny Arsenal, New Jersey, 1985-90

    USGS Publications Warehouse

    Sargent, B.P.; Storck, D.A.

    1994-01-01

    A zone of contaminated ground water at Picatinny Arsenal has resulted from the operation of a metal- plating facility in building 95 during 1960-81, and the wastewater-treatment system that is in and adjacent to the building. Thirty-two monitoring wells were installed in 1989 to supplement 12 previously installed wells. All wells were sampled in 1989 and 1990 for analysis of ground water for inorganic constituents, trace elements, volatile organic compounds, and nutrients. Four wells also were sampled for analysis for base/neutral- and acid-extractable compounds and pesticides, and soil gas from the unsaturated zone at eight sites was analyzed for volatile organic compounds. Concentrations of dissolved solids and sulfate in the study area were consistently above the U.S. Environmental Protection Agency's secondary drinking-water regulations. The areal distribution of sulfate differed from that of the volatile organic compounds. Concentrations of trace elements were not elevated downgradient from the source. The estimated average velocity of contaminant movement is 0.1 to 1.1 feet per day. The major organic contaminants identified in the study area are trichloroethylene, tetrachloroethylene, and 1,1,1-trichloroethane. Trichloroethylene was detected in wells upgradient from the wastewater- treatment site. Tetrachloroethylene and 1,1,1-trichloroethane might originate at tanks in the basement of building 95 rather than at the adjacent wastewater-treatment system. The pre- dominant gas-phase contaminant, 1,1,1- trichloroethane, was detected at a maximum con- centration of 15.7 micrograms per liter. Both trichoroethylene and tetrachloroethylene were detected in concentrations greater than 0.10 micrograms per liter in five of the eight soil- gas samples, indicating that volatilization and diffusion through the unsaturated zone could be a significant mechanism of contaminant loss from the aquifer.

  19. The Surtsey Magma Series.

    PubMed

    Schipper, C Ian; Jakobsson, Sveinn P; White, James D L; Michael Palin, J; Bush-Marcinowski, Tim

    2015-06-26

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50(th) anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption's four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland's Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume.

  20. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: evidence of Cd, As and Ba fronts in upper layers

    NASA Astrophysics Data System (ADS)

    Carvalho, Lina; Monteiro, Rui; Figueira, Paula; Mieiro, Cláudia; Almeida, Joana; Pereira, Eduarda; Magalhães, Vítor; Pinheiro, Luís; Vale, Carlos

    2018-01-01

    Mud volcanoes are feature of the coastal margins where anaerobic oxidation of methane triggers geochemical signals. Elemental composition, percentage of fine particles and loss on ignition were determined in sediment layers of eleven gravity cores retrieved from four mud volcanoes (Sagres, Bonjardim, Soloviev and Porto) and three undefined structures located on the deep Portuguese margin of the Gulf of Cadiz. Calcium was positively correlated to Sr and inversely to Al as well as to most of the trace elements. Vertical profiles of Ba, Cd and As concentrations, and their ratios to Al, in Porto and Soloviev showed pronounced enhancements in the top 50-cm depth. Sub-surface enhancements were less pronounced in other mud volcanoes and were absent in sediments from the structures. These profiles were interpreted as diagenetic enrichments related to the anaerobic oxidation of methane originated from upward methane-rich fluxes. The observed barium fronts were most likely caused by the presence of barite which precipitated at the sulphate-methane transition zone. Cd and As enrichments have probably resulted from successive dissolution/precipitation of sulphides in response to vertical shifts of redox boundaries.

  1. Gliding Box method applied to trace element distribution of a geochemical data set

    NASA Astrophysics Data System (ADS)

    Paz González, Antonio; Vidal Vázquez, Eva; Rosario García Moreno, M.; Paz Ferreiro, Jorge; Saa Requejo, Antonio; María Tarquis, Ana

    2010-05-01

    The application of fractal theory to process geochemical prospecting data can provide useful information for evaluating mineralization potential. A geochemical survey was carried out in the west area of Coruña province (NW Spain). Major elements and trace elements were determined by standard analytical techniques. It is well known that there are specific elements or arrays of elements, which are associated with specific types of mineralization. Arsenic has been used to evaluate the metallogenetic importance of the studied zone. Moreover, as can be considered as a pathfinder of Au, as these two elements are genetically associated. The main objective of this study was to use multifractal analysis to characterize the distribution of three trace elements, namely Au, As, and Sb. Concerning the local geology, the study area comprises predominantly acid rocks, mainly alkaline and calcalkaline granites, gneiss and migmatites. The most significant structural feature of this zone is the presence of a mylonitic band, with an approximate NE-SW orientation. The data set used in this study comprises 323 samples collected, with standard geochemical criteria, preferentially in the B horizon of the soil. Occasionally where this horizon was not present, samples were collected from the C horizon. Samples were taken in a rectilinear grid. The sampling lines were perpendicular to the NE-SW tectonic structures. Frequency distributions of the studied elements departed from normal. Coefficients of variation ranked as follows: Sb < As < Au. Significant correlation coefficients between Au, Sb, and As were found, even if these were low. The so-called ‘gliding box' algorithm (GB) proposed originally for lacunarity analysis has been extended to multifractal modelling and provides an alternative to the ‘box-counting' method for implementing multifractal analysis. The partitioning method applied in GB algorithm constructs samples by gliding a box of certain size (a) over the grid map in all possible directions. An "up-scaling" partitioning process will begin with a minimum size or area box (amin) up to a certain size less than the total area A. An advantage of the GB method is the large sample size that usually leads to better statistical results on Dq values, particularly for negative values of q. Because this partitioning overlaps, the measure defined on these boxes is not statistically independent and the definition of the measure in the gliding boxes is different. In order to show the advantages of the GB method, spatial distributions of As, Sb, and Au in the studied area were analyzed. We discussed the usefulness of this method to achieve the numerical characterization of anomalies and its differentiation from the background from the available data of the geochemistry survey.

  2. Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    PubMed Central

    van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.

    2010-01-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062

  3. Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.

    PubMed

    Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W

    2010-10-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.

  4. Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates

    NASA Astrophysics Data System (ADS)

    Açlan, Mustafa; Altun, Yusuf

    2018-06-01

    The Esenköy pluton which is situated in the East Anatolian Accretionary Complex (EACC) is represented by I-type, metalumino, calc-alkaline, VAG + syn-COLG, gabbro, diorite, quartz diorite, tonalite and granodiorite type rocks. This paper presents the characteristics of the above granitoids on their major, trace, rare earth elements (REE) and their zircon U-Pb dating. Zircon U-Pb crystallisation ages for gabbro, tonalite and granodiorite are 22.3 ± 0.2 Ma, 21.7 ± 0.2 Ma and 21.8 ± 0.2 Ma respectively. Esenköy granitoids show medium and high-K calc-alkaline character, with six exceptional K-poor sample plot in tholeiitic series field. The Rb/Y-Nb/Y diagram for Esenköy granitoids display subduction zone enrichment trend. The data which obtained from major, trace and REE geochemical characteristics and 206Pb/238U ages indicate that the collision which is take place between Arabian and Eurasian plates along the Bitlis-Zagros suture zone has begun in the Early Miocene (Aquitanian) or before from Early Miocene.

  5. Tracing halogen and B cycling in subduction zones based on obducted, subducted and forearc serpentinites of the Dominican Republic.

    PubMed

    Pagé, Lilianne; Hattori, Keiko

    2017-12-19

    Serpentinites are important reservoirs of fluid-mobile elements in subduction zones, contributing to volatiles in arc magmas and their transport into the Earth's mantle. This paper reports halogen (F, Cl, Br, I) and B abundances of serpentinites from the Dominican Republic, including obducted and subducted abyssal serpentinites and forearc mantle serpentinites. Abyssal serpentinite compositions indicate the incorporation of these elements from seawater and sediments during serpentinization on the seafloor and at slab bending. During their subduction and subsequent lizardite-antigorite transition, F and B are retained in serpentinites, whilst Cl, Br and I are expelled. Forearc mantle serpentinite compositions suggest their hydration by fluids released from subducting altered oceanic crust and abyssal serpentinites, with only minor sediment contribution. This finding is consistent with the minimal subduction of sediments in the Dominican Republic. Forearc mantle serpentinites have F/Cl and B/Cl ratios similar to arc magmas, suggesting the importance of serpentinite dehydration in the generation of arc magmatism in the mantle wedge.

  6. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  7. Development of weathering profile of a forest hillslope in clay-rich sedimentary system

    NASA Astrophysics Data System (ADS)

    Nicklas, R. W.; Kim, H.; Bishop, J. K.; Rempe, D. M.

    2012-12-01

    Hillslopes are an essential element to the understanding of landscape evolution, storm flow generation and biogeochemical processes. Since 2008, extensive studies of climate variables, vegetation, soil moisture, subsurface hydrology, and water chemistry have taken place at a small forested hillslope, "Rivendell", at the Angelo Coast Range Reserve located at the headwaters of the Eel River, California. Here we report on the signature of weathering processes through analysis of core and soil samples collected during well drilling campaigns. Core samples from multiple depths at four wells (at creek edge, mid-slope, up-slope, and ridge-top) were selected and include 1) soil; 2) unsaturated fractured/ weathered zone; 3) zone of seasonal water table fluctuation within weathered bedrock; and 4) chronically saturated fresh bedrock zone. We also include soil samples from a groundwater seep located at the toe of the slope. The mineralogy of these samples was identified using X-ray diffraction. Samples were analyzed for salt and Ca(Mg)CO3 concentrations, and cation exchange capacity using Milli-Q water and acetic acid extraction and BaCl2-NH4Cl treatments, respectively. To further quantify the mineral dissolution and secondary mineral precipitation, a sequential extraction of trace metals were conducted - 1) exchangeable using MgCl2; 2) bound to carbonates using NaOAc; 3) bound to Fe-Mn oxides using NH2OH HCl; and 4) bound to organic matters using H2O2 and HNO3. The total elemental contents were determined using HF-HNO3-HClO4 dissolution. The mineralogy of the fresh bedrock zone showed similar patterns throughout the site -for clay minerals, chlorite, illite, interstratified illite/smectite were dominant; K-feldspar dominated the primary minerals. Shallow (<30 cm) soils had kaolinite, and chlorite was absent in some samples. CaCO3 was also predominantly found in the fresh bedrock zone and progressively increased with depth. The depletion profile of major cations (Ca, Na, Mg, K, and Si) and trace metals (Fe, Mn and Al) show the mineral dissolution fronts. K-feldspar, chlorite and CaCO3 dissolution and secondary mineral precipitation are thus the major processes that are critical to the interpretation of groundwater chemistry.

  8. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion.

    PubMed

    Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-09-01

    Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Environmental Geochemistry and Acid Mine Drainage Evaluation of an Abandoned Coal Waste Pile at the Alborz-Sharghi Coal Washing Plant, NE Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jodeiri Shokri, Behshad, E-mail: b.jodeiri@hut.ac.ir; Doulati Ardejani, Faramarz; Ramazi, Hamidreza

    In this paper, an abandoned waste coal pile, which is resulted from Alborz-Sharghi coal washing plant, NE of Iran was mineralogically and geochemically characterized to evaluate pyrite oxidation, acid mine drainage (AMD) generation, and trace element mobility. After digging ten trenches and vertical sampling, a quantitative method including the atomic absorption test, and the quality-based methods including optical study were carried out for determination of pyrite fractions in the waste pile. The geochemical results revealed that the fraction of remaining pyrite increased with depth, indicating that pyrite oxidation is limited to the shallower depths of the pile which were confirmedmore » by variations of sulfate, pH, EC, and carbonate with depth of the pile. To evaluate the trend of trace elements and mineralogical constituents of the waste particles, the samples were analyzed by using XRD, ICP-MS, and ICP-OES methods. The results showed the secondary and neutralizing minerals comprising gypsum have been formed below the oxidation zone. Besides, positive values of net neutralization potential indicated that AMD generation has not taken in the waste pile. In addition, variations of trace elements with depth reveal that Pb and Zn exhibited increasing trends from pile surface toward the bottom sampling trenches while another of them such as Cu and Ni had decreasing trends with increasing depth of the waste pile.« less

  10. Lower- and higher-order aberrations predicted by an optomechanical model of arcuate keratotomy for astigmatism.

    PubMed

    Navarro, Rafael; Palos, Fernando; Lanchares, Elena; Calvo, Begoña; Cristóbal, José A

    2009-01-01

    To develop a realistic model of the optomechanical behavior of the cornea after curved relaxing incisions to simulate the induced astigmatic change and predict the optical aberrations produced by the incisions. ICMA Consejo Superior de Investigaciones Científicas and Universidad de Zaragoza, Zaragoza, Spain. A 3-dimensional finite element model of the anterior hemisphere of the ocular surface was used. The corneal tissue was modeled as a quasi-incompressible, anisotropic hyperelastic constitutive behavior strongly dependent on the physiological collagen fibril distribution. Similar behaviors were assigned to the limbus and sclera. With this model, some corneal incisions were computer simulated after the Lindstrom nomogram. The resulting geometry of the biomechanical simulation was analyzed in the optical zone, and finite ray tracing was performed to compute refractive power and higher-order aberrations (HOAs). The finite-element simulation provided new geometry of the corneal surfaces, from which elevation topographies were obtained. The surgically induced astigmatism (SIA) of the simulated incisions according to the Lindstrom nomogram was computed by finite ray tracing. However, paraxial computations would yield slightly different results (undercorrection of astigmatism). In addition, arcuate incisions would induce significant amounts of HOAs. Finite-element models, together with finite ray-tracing computations, yielded realistic simulations of the biomechanical and optical changes induced by relaxing incisions. The model reproduced the SIA indicated by the Lindstrom nomogram for the simulated incisions and predicted a significant increase in optical aberrations induced by arcuate keratotomy.

  11. Modelling the petrogenesis of high Rb/Sr silicic magmas

    USGS Publications Warehouse

    Halliday, A.N.; Davidson, J.P.; Hildreth, W.; Holden, P.

    1991-01-01

    Rhyolites can be highly evolved with Sr contents as low as 0.1 ppm and Rb Sr > 2,000. In contrast, granite batholiths are commonly comprised of rocks with Rb Sr 100. Mass-balance modelling of source compositions, differentiation and contamination using the trace-element geochemistry of granites are therefore commonly in error because of the failure to account for evolved differentiates that may have been erupted from the system. Rhyolitic magmas with very low Sr concentrations (???1 ppm) cannot be explained by any partial melting models involving typical crustal source compositions. The only plausible mechanism for the production of such rhyolites is Rayleigh fractional crystallization involving substantial volumes of cumulates. A variety of methods for modelling the differentiation of magmas with extremely high Rb/Sr is discussed. In each case it is concluded that the bulk partition coefficients for Sr have to be large. In the simplest models, the bulk DSr of the most evolved types is modelled as > 50. Evidence from phenocryst/glass/whole-rock concentrations supports high Sr partition coefficients in feldspars from high silica rhyolites. However, the low modal abundance of plagioclase commonly observed in such rocks is difficult to reconcile with such simple fractionation models of the observed trace-element trends. In certain cases, this may be because the apparent trace-element trend defined by the suite of cognetic rhyolites is the product of different batches of magma with separate differentiation histories accumulating in the magma chamber roof zone. ?? 1991.

  12. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    USGS Publications Warehouse

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  13. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A. viridis regulates its internal trace element concentrations by compartmentalization and excretion and that these features contribute to its resilience and potential success at the trace element-rich high pCO2 vent. PMID:25250210

  14. Sodium metasomatism along the Melones fault zone, Sierra Nevada foothills, California, USA

    USGS Publications Warehouse

    Albino, G.V.

    1995-01-01

    Albitite, locally aegirine- and riebeckite-bearing, formed as a result of sodium metasomatism of felsic dykes and argillites along the Melones Fault Zone near Jamestown, California. Pyrite, magnetite, hematite and titanite are common in small amounts in altered dykes. The dykes were originally plagioclase-hornblende porphyritic, and had major and trace element abundances typical of calc-alkaline rocks, whereas they now have Na2O contents as high as 11.40%. Mass balance calculations indicate that alteration involved addition of large amounts of sodium, and the removal of SiO2 and K2O. Textural preservation, combined with volume factors calculated from specific gravity and whole rock analytical data, indicate that Na-metasomatism was essentially isovolumetric. -from Author

  15. Fish scales in sediments from off Callao, central Peru

    NASA Astrophysics Data System (ADS)

    Díaz-Ochoa, J. A.; Lange, C. B.; Pantoja, S.; De Lange, G. J.; Gutiérrez, D.; Muñoz, P.; Salamanca, M.

    2009-07-01

    We study fish scales as a proxy of fish abundance and preservation biases together with phosphorus from fish remains (P fish) in a sediment core retrieved off Callao, Peru (12°1'S, 77°42'W; water depth=179 m; core length=52 cm). We interpret our results as a function of changing redox conditions based on ratios of redox-sensitive trace elements (Cu/Al, Mo/Al, Ni/Al, Zn/Al, V/Al), terrigenous indicators (Fe in clays, Ti, Al), and biogenic proxies (CaCO 3, biogenic opal, total nitrogen, organic carbon, barite Ba). The core covers roughly 700 years of deposition, based on 210Pb activities extrapolated downcore and 14C dating at selected intervals. Our fish-scale record is dominated by anchovy ( Engraulis ringens) scales followed by hake ( Merluccius gayii) scales. The core presented an abrupt lithological change at 17 cm (corresponding to the early 19th century). Above that depth, it was laminated and was more organic-rich (10-15% organic carbon) than below, where the core was partly laminated and less organic-rich (<10%). The lithological shift coincides with abrupt changes in dry bulk density and in the contents of terrigenous and redox-sensitive trace elements, biogenic proxies, and fish scales. The remarkable increase in redox-sensitive trace elements in the upper 17 cm of the core suggests more reducing conditions when compared with deeper and older horizons, and is interpreted as an intensification of the oxygen minimum zone off Peru beginning in the early 19th century. Higher fish-scale contents and higher P fish/P total ratios were also observed within the upper 17 cm of the core. The behavior of biogenic proxies and redox-sensitive trace elements was similar; more reduced conditions corresponded to higher contents of CaCO 3, C org, total nitrogen and fish scales, suggesting that these proxies might convey an important preservation signal.

  16. The geology and geochemistry of Isla Floreana, Galápagos: A different type of late-stage ocean island volcanism: Chapter 6 in The Galápagos: A natural laboratory for the earth sciences

    USGS Publications Warehouse

    Harpp, Karen S.; Geist, Dennis J.; Koleszar, Alison M.; Christensen, Branden; Lyons, John; Sabga, Melissa; Rollins, Nathan; Harpp, Karen S.; Mittelstaedt, Eric; d'Ozouville, Noémi; Graham, David W

    2014-01-01

    Isla Floreana, the southernmost volcano in the Galápagos Archipelago, has erupted a diverse suite of alkaline basalts continually since 1.5 Ma. Because these basalts have different compositions than xenoliths and older lavas from the deep submarine sector of the volcano, Floreana is interpreted as being in a rejuvenescent or late-stage phase of volcanism. Most lavas contain xenoliths, or their disaggregated remains. The xenolithic debris and large ranges in composition, including during single eruptions, indicate that the magmas do not reside in crustal magma chambers, unlike magmas in the western Galápagos. Floreana lavas have distinctive trace element compositions that are rich in fluid-immobile elements (e.g., Ta, Nb, Th, Zr) and even richer in fluid-mobile elements (e.g., Ba, Sr, Pb). Rare earth element (REE) patterns are light REE-enriched and distinctively concave-up. Neodymium isotopic ratios are comparable to those from Fernandina, at the core of the Galápagos plume, but Floreana has the most radiogenic Sr and Pb isotopic ratios in the archipelago. These trace element patterns and isotopic ratios are attributed to a mixed source originating within the Galápagos plume, which includes depleted upper mantle, plume material rich in TITAN elements (Ti, Ta, Nb), and recycled oceanic crust that has undergone partial dehydration in an ancient subduction zone. Because Floreana lies at the periphery of the Galápagos plume, melting occurs mostly in the spinel zone, and enriched components dominate; the Floreana recycled mantle component influence is detectable in volcanoes along the entire southern periphery of the archipelago as well. Floreana is the only Galápagos volcano known to have undergone late-stage volcanism. Here, however, the secondary stage activity is more compositionally enriched than the shield-building phase, in contrast to what is observed in Hawai‘i, suggesting that the mechanism driving late-stage volcanism may vary among ocean island provinces.

  17. Geochemical, oxygen, and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: Evidence for ancient crust and Archean terrane juxtaposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, R.; Kerrich, R.; Maas, R.

    1993-02-01

    The Abitibi greenstone belt (AGB) and Pontiac Subprovince (PS) in the southwestern Superior Province are adjacent greenstone-plutonic and metasedimentary-dominated terranes, respectively, separated by a major fault zone. Metasediments from these two contrasting terranes are compared in terms of major- and trace-element and O- and Nd-isotope compositions, and detrital zircon ages. The following two compositional populations of metasediments are present in the low-grade, Abitibi southern volcanic zone: (1) a mafic-element-enriched population (MEP) characterized by flat, depleted REE patterns; enhanced Mg, Cr, Co, Ni, and Sc; low-incompatible-element contents; and minor or absent normalized negative troughs at Nb, Ta, and Ti; and (2)more » a low-mafic-element population (LMEP) featuring LREE-enriched patterns; enhanced Rb, Cs, Ba, Th, and U contents; and pronounced normalized negative troughs at Nb, Ta, and Ti. These geochemical features are interpreted to indicate that the MEP sediments were derived from an ultramafic- and mafic-dominated oceanic provenance, whereas the LMEP sediments represent mixtures of mafic and felsic are source rocks. The PS metasediments are essentially indistinguishable from Abitibi LMEP on the basis of major-element and transition metal abundances, suggesting comparable types of source rocks and degrees of maturity, but are distinct in terms of some trace elements and O-isotope compositions. The Pontiac metasediments are depleted in [sup 18]O and enriched in Cs, Ba, Pb, Th, U, Nb, Ta, Hf, Zr, and total REE and also have higher ratios of Rb/K, Cs/Rb, Ba/Rb, Ta/Nb, Th/La, and Ba/La relative to the Abitibi LMEP. Two subtypes of REE patterns have been identified in PS metasediments. The first subtype is interpreted to be derived from provenances of mixed mafic and felsic volcanic rocks, whereas the Eu-depleted type has features that are typical of post-Archean sediments or Archean K-rich granites and volcanic equivalents. 100 refs., 9 figs., 4 tabs.« less

  18. Trace elements as quantitative probes of differentiation processes in planetary interiors

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1980-01-01

    The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.

  19. Parenteral trace element provision: recent clinical research and practical conclusions

    PubMed Central

    Stehle, P; Stoffel-Wagner, B; Kuhn, K S

    2016-01-01

    The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended. PMID:27049031

  20. Trace Elements Characteristic Based on ICP-AES and the Correlation of Flavonoids from Sparganii rhizoma.

    PubMed

    Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan

    2018-04-01

    The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.

  1. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  2. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  3. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula).

    PubMed

    Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric

    2016-10-01

    In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology

    PubMed Central

    Ragimov, Aligejdar; Faizullin, Rashat; Valiev, Vsevolod

    2017-01-01

    Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water. PMID:29065586

  5. Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release.

    PubMed

    Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E

    2016-04-01

    Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.

  6. Trace element-protein interactions in endolymph from the inner ear of fish: implications for environmental reconstructions using fish otolith chemistry.

    PubMed

    Thomas, Oliver R B; Ganio, Katherine; Roberts, Blaine R; Swearer, Stephen E

    2017-03-22

    Otoliths, the biomineralised hearing "ear stones" from the inner ear of fish, grow throughout the lifespan of an individual, with deposition of alternating calciferous and proteinaceous bands occurring daily. Trace element : calcium ratios within daily increments measured by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) are often used in fisheries science to reconstruct environmental histories. There is, however, considerable uncertainty as to which elements are interacting with either the proteinaceous or calciferous zones of the otolith, and thus their utility as indicators of environmental change. To answer this, we used size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) of endolymph, the otolith growth medium, to determine the binding interactions for a range of elements. In addition, we used solution ICP-MS to quantify element concentrations in paired otolith and endolymph samples and determined relative enrichment factors for each. We found 12 elements that are present only in the proteinaceous fraction, 6 that are present only in the salt fraction, and 4 that are present in both. These findings have important implications for the reconstruction of environmental histories based on changes in otolith elemental composition: (1) elements occurring only in the salt fraction are most likely to reflect changes in the physico-chemical environment experienced during life; (2) elements occurring only in the proteinaceous fraction are more likely to reflect physiological rather than environmental events; and (3) elements occurring in both the salt and proteinaceous fractions are likely to be informative about both endogenous and exogenous processes, potentially reducing their utility in environmental reconstructions.

  7. New Perspectives on the Essential Trace Elements.

    ERIC Educational Resources Information Center

    Frieden, Earl

    1985-01-01

    Provides a comprehensive overview of the 19 essential trace elements, examining: the concept of essentiality; evolution of these elements; possible future essential elements; the lanthanides and actinides; how essential trace elements work; the metalloenzymes; the nonmetals; iodine and the thyroid hormones; and antagonism among these elements. (JN)

  8. Nitrogen trace gas emissions from a riparian ecosystem in southern Appalachia

    Treesearch

    John T. Walker; Christopher D. Geron; James M. Vose; Wayne T. Swank

    2002-01-01

    In this paper, we present two years of seasonal nitric oxide (NO), ammonia (NH3), and nitrous oxide (N2O) trace gas fluxes measured in a recovering riparian zone with cattle excluded and adjacent riparian zone grazed by cattle. In the recovering riparian zone, average NO, NH3, and N

  9. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  10. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  11. Accessory mineral records of tectonic environments? (Invited)

    NASA Astrophysics Data System (ADS)

    Storey, C.; Marschall, H. R.; Enea, F.; Taylor, J.; Jennings, E. S.

    2010-12-01

    Accessory mineral research continues to gather momentum as we seek to unleash their full potential. It is now widely recognised that robust accessory minerals, such as zircon, rutile, titanite, allanite and monazite, are archives of important trace elements that can help deduce metamorphic reaction history in metapelites, metabasites and other rock types. Moreover, they are important carriers of certain trace elements and govern or influence the products of partial melting and of fluid-rock interaction (e.g. magmas and mineralisation) in settings like subduction zones and hydrothermal systems. Perhaps most importantly, they can often be dated using the U-Th-Pb system. More recently, radiogenic (Lu-Hf, Sm-Nd, Rb-Sr) and stable (O) isotope systems have been applied and have further pushed the utility of accessory mineral research. In this talk I will discuss some of these advances towards one particular aim: the use of detrital accessory minerals for fingerprinting tectonic environments. This is a particularly laudable aim in Precambrian rocks, for which the preservation potential of orogenic belts and fossil subduction zones and their diagnostic metamorphic rocks is low. The implication is that our understanding of plate tectonics, particularly in the Archaean, is biased by the preserved in-tact rock record. An analogy is that Jack Hills zircons record evidence of Earth’s crust some 400 Ma before the preserved rock record begins. I will focus on some recent advances and new data from rutile and also the mineral inclusion record within zircon, which shows great promise for petrologic interpretation.

  12. Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Meshesha, Daniel; Shinjo, Ryuichi

    2008-09-01

    We discuss the spatial and temporal variation in the geochemistry of mantle sources which were sampled by the Eocene to Quaternary mafic magmas in the vicinity of the Afar and Kenya plume upwelling zones, East Africa. Despite the contributions of lithospheric and crustal sources, carefully screened Eocene to Quaternary mafic lavas display wide range of Sr-Nd-Pb isotopic and incompatible trace elemental compositions that can be attributed to significant intraplume heterogeneity. The geochemical variations reflect the involvement of at least four mantle plume components as sources for the northeastern Africa magmatism: (1) isotopically depleted but trace element-enriched component; (2) component characterized by radiogenic Pb isotope signatures (HIMU?); (3) enriched mantle-like component; and (4) high-3He/4He-type (as HT2-type basalts) plume component. The first component disappears in the Miocene-Quaternary magmatism, and the second component is hardly recognized after the eruption of Miocene basalt in southern Ethiopia. Plume-unrelated depleted asthenosphere starts to involve at a nascent stage of seafloor spreading centers in the Red Sea and Gulf of Aden. The other two-plume components have persisted from the late Eocene to present, but their proportions have changed through time and space. We propose a model of multiple impingements of plumelets within the broad upwelling zone connected to the African Superplume in the lower mantle beneath southern Africa. The plumelet contains a matrix of high-3He/4He-type component with blobs, streaks, or ribbons of other components.

  13. An upwelling model for the Phosphoria sea: A Permian, ocean-margin sea in the northwest United States

    USGS Publications Warehouse

    Piper, D.Z.; Link, P.K.

    2002-01-01

    The Permian Phosphoria Formation, a petroleum source rock and world-class phosphate deposit, was deposited in an epicratonic successor basin on the western margin of North America. We calculate the seawater circulation in the basin during deposition of the lower ore zone in the Meade Peak Member from the accumulation rates of carbonate fluorapatite and trace elements. The model gives the exchange rate of water between the Phosphoria sea and the open ocean to the west in terms of an upwelling rate (84 m yr-1) and residence time (4.2 yr) of seawater in the basin. These hydrographic properties supported a mean rate of primary productivity of 0.87 g m-2 d-1 of carbon in the uppermost few tens of meters of the water column (the photic zone) and denitrifying redox conditions in the bottom water (below approximately 150 m depth). High rain rates, onto the sea floor, of the organic matter that hosted the phosphate and several trace elements contributed to the accumulation of phosphorite, chert, and black shales and mudstones. Evaporation in the Goose Egg basin to the east of the Phosphoria basin ensured the import of surface seawater from the Phosphoria sea. Budgets of water, salt, phosphate, and oxygen, plus the minor accumulation of the biomarker gammacerane, show that exchange of water between the two basins was limited, possibly by the shallow carbonate platform that separated the two basins.

  14. Petrographic And Geochemical Relationships And Environmentally Significant Trace Element Contents Of Miocene Coals in The Çayirli (Erzincan) Area, Eastern Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Yalcin Erik, Nazan

    2014-05-01

    This study has done related to the petrographic, coal-quality and the environmental influences of the Çayırlı coal field in the Eastern Anatolia. The region is one of the best examples of a continental collision zone in the world and located in a North-south converging collision zone between the Eurasian and the Arabian Plates. The geological units on the North of the basin are the peridotites and on the South, the Upper Triassic to Lower Cretaceous limestone. Tertiary sedimentary units also occupy a significant part of the geological features. Lower Miocene sediments include recifal limestone, marls, green clay and coal seams. The Çayırlı mining area in Eastern Anatolia region, contains these Miocene aged coals. These coals is characterized by high vitrinite and inertinite and low liptinite contents. The coals are Bituminous coal rank, with vitrinite reflectance ranging from 0.53 to 0.58%. Chemically, the coal in this study is characterised by low moisture, ash yield and sulfur content. The Çayırlı coal consist mainly of SiO2 and CaO, with secondary Fe2O3, Al2O3, and minor proportions of TiO2, P2O5 and other oxides. Several trace elements of environmental concern namely As, U and Be in Çayırlı coal are above the world averages, while Ni and Pb concentrations are less than the world average. However, As, Co, Cr, Ni, Pb, U and V contents of this coal are below Turkish averages. It can clearly observed that the concentration of the elements is highest in the high ash coal levels. Among the potentially hazardous trace elements, Be, Co, Ni, Se and U may be of little or no health and environmental concerns, wheras As, Pb, Sb, and Th require further examination for their potential health and environmental concerns. These properties may be related to evaluation of the coal forming environment from more reducing contitions in a marine influenced lower delta plain environment for investigated coals. On the basis of analytical data, there is no possibility that the Çayırlı coals could be used for residential heating or industrial applications; when used, they cause significant of air pollution and healt problems.

  15. Timescale of Petrogenetic Processes Recorded in the Mount Perkins Magma System, Northern Colorado River Extension Corridor, Arizona

    NASA Technical Reports Server (NTRS)

    Danielson, Lisa R.; Metcalf, Rodney V.; Miller, Calvin F.; Rhodes Gregory T.; Wooden, J. L.

    2013-01-01

    The Miocene Mt. Perkins Pluton is a small composite intrusive body emplaced in the shallow crust as four separate phases during the earliest stages of crustal extension. Phase 1 (oldest) consists of isotropic hornblende gabbro and a layered cumulate sequence. Phase 2 consists of quartz monzonite to quartz monzodiorite hosting mafic microgranitoid enclaves. Phase 3 is composed of quartz monzonite and is subdivided into mafic enclave-rich zones and enclave-free zones. Phase 4 consists of aphanitic dikes of mafic, intermediate and felsic compositions hosting mafic enclaves. Phases 2-4 enclaves record significant isotopic disequilibrium with surrounding granitoid host rocks, but collectively enclaves and host rocks form a cogenetic suite exhibiting systematic variations in Nd-Sr-Pb isotopes that correlate with major and trace elements. Phases 2-4 record multiple episodes of magma mingling among cogenetic hybrid magmas that formed via magma mixing and fractional crystallization at a deeper crustal. The mafic end-member was alkali basalt similar to nearby 6-4 Ma basalt with enriched OIB-like trace elements and Nd-Sr-Pb isotopes. The felsic end-member was a subalkaline crustal-derived magma. Phase 1 isotropic gabbro exhibits elemental and isotopic compositional variations at relatively constant SiO2, suggesting generation of isotropic gabbro by an open-system process involving two mafic end-members. One end-member is similar in composition to the OIB-like mafic end-member for phases 2-4; the second is similar to nearby 11-8 Ma tholeiite basalt exhibiting low epsilon (sub Nd), and depleted incompatible trace elements. Phase 1 cumulates record in situ fractional crystallization of an OIB-like mafic magma with isotopic evidence of crustal contamination by partial melts generated in adjacent Proterozoic gneiss. The Mt Perkins pluton records a complex history in a lithospheric scale magma system involving two distinct mantle-derived mafic magmas and felsic magma sourced in the crust. Mixing and fractional crystallization of these magmas at various levels in the crust generated a suite of intermediate composition magmas. U-Pb zircon SHRIMP ages of phase 1 (15.7 +/- 0.2 Ma), phase 3 (15.8 +/- 0.2 Ma) and phase 4 (15.4 +/- 0.3 Ma) document a 100-300k year timescale for petrogenetic processes recorded in the Mt Perkins magma system.

  16. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  17. Petrography and geochemistry of the primary ore zone of the Kenticha rare metal granite-pegmatite field, Adola Belt, Southern Ethiopia: Implications for ore genesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Mohammedyasin, Mohammed Seid; Desta, Zerihun; Getaneh, Worash

    2017-10-01

    The aim of this work is to evaluate the genesis and tectonic setting of the Kenticha rare metal granite-pegmatite deposit using petrography and whole-rock geochemical analysis. The samples were analysed for major elements, and trace and rare earth elements by ICP-AES and ICP-MS, respectively. The Kenticha rare metal granite-pegmatite deposit is controlled by the N-S deep-seated normal fault that allow the emplacement of the granite-pegmatite in the study area. Six main mineral assemblages have been identified: (a) alaskitic granite (quartz + microcline + albite with subordinate muscovite), (b) aplitic layer (quartz + albite), (c) muscovite-quartz-microcline-albite pegmatite, (d) spodumene-microcline-albite pegmatite, partly albitized or greisenized, (e) microcline-albite-green and pink spodumene pegmatite with quartz-microcline block, which is partly albitized and greisenized, and (f) quartz core. This mineralogical zonation is also accompanied by variation in Ta ore concentration and trace and rare earth elements content. The Kenticha granite-pegmatite is strongly differentiated with high SiO2 (72-84 wt %) and enriched with Rb (∼689 ppm), Be (∼196 ppm), Nb (∼129 ppm), Ta (∼92 ppm) and Cs (∼150 ppm) and depleted in Ba and Sr. The rare earth element (REE) patterns of the primary ore zone (below 60 m depth) shows moderate enrichment in light REE ((La/Yb)N = ∼8, and LREE/HREE = ∼9.96) and negative Eu-anomaly (Eu/Eu* = ∼0.4). The whole-rock geochemical data display the Within Plate Granite (WPG) and syn-Collisional Granite (syn-COLG) suites and interpret as its formation is crustal related melting. The mineralogical assemblage, tectonic setting and geochemical signatures implies that the Kenticha rare metal bearing granite pegmatite is formed by partial melting of metasedimentary rocks during post-Gondwana assembly and further tantalite enrichment through later hydrothermal-metasomatic processes.

  18. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    NASA Astrophysics Data System (ADS)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  19. Petrogenesis of voluminous mid-Tertiary ignimbrites of the Sierra Madre Occidental, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Cameron, Maryellen; Bagby, William C.; Cameron, Kenneth L.

    1980-10-01

    The mid-Tertiary ignimbrites of the Sierra Madre Occidental of western Mexico constitute the largest continuous rhyolitic province in the world. The rhyolites appear to represent part of a continental magmatic arc that was emplaced when an eastward-dipping subduction zone was located beneath western Mexico. In the Batopilas region of the northern Sierra Madre Occidental the mid-Tertiary Upper Volcanic sequence is composed predominantly of rhyolitic ignimbrites, but volumetrically minor lava flows as mafic as basaltic andesite are also present. The basaltic andesite to rhyolite series is calc-alkalic and contains ˜1% K2O at 60% SiO2. Trace element abundances of a typical ignimbrite with 73% SiO2 are Sr ˜ 225 ppm, Rb ˜130 ppm, Y ˜32 ppm, Th ˜12 ppm, Zr ˜200 ppm, and Nb ˜15 ppm. The entire series plots as coherent and continuous trends on variation diagrams involving major and trace elements, and the trends are distinct from those of geographicallyassociated rocks of other suites. We interpret these and other geochemical variations to indicate that the rocks are comagmatic. Mineral chemistry, Sr isotopic data, and REE modelling support this interpretation. Least squares calculations show that the major element variations are consistent with formation of the basaltic andesite to rhyolite series by crystal fractionation of observed phenocryst phases in approximate modal proportions. In addition, calculations modelling the behavior of Sr with the incompatible trace element Th favor a fractional crystallization origin over a crustal anatexis origin for the rock series. The fractionating minerals included plagioclase (> 50%), and lesser amounts of Fe-Ti oxides, pyroxenes, and/or hornblende. The voluminous ignimbrites represent no more than 20% of the original mass of a mantle-derived mafic parental magma.

  20. Assessment of major ions and trace elements in groundwater supplied to the Monterrey metropolitan area, Nuevo León, Mexico.

    PubMed

    Mora, Abrahan; Mahlknecht, Jürgen; Rosales-Lagarde, Laura; Hernández-Antonio, Arturo

    2017-08-01

    The Monterrey metropolitan area (MMA) is the third greatest urban area and the second largest economic city of Mexico. More than four million people living in this megacity use groundwater for drinking, industrial and household purposes. Thus, major ion and trace element content were assessed in order to investigate the main hydrochemical properties of groundwater and determine if groundwater of the area poses a threat to the MMA population. Hierarchical cluster analysis using all the groundwater chemical data showed five groups of water. The first two groups were classified as recharge waters (Ca-HCO 3 ) coming from the foothills of mountain belts. The third group was also of Ca-HCO 3 water type flowing through lutites and limestones. Transition zone waters of group four (Ca-HCO 3 -SO 4 ) flow through the valley of Monterrey, whereas discharge waters of group 5 (Ca-SO 4 ) were found toward the north and northeast of the MMA. Principal component analysis performed in groundwater data indicates four principal components (PCs). PC1 included major ions Si, Co, Se, and Zn, suggesting that these are derived by rock weathering. Other trace elements such as As, Mo, Mn, and U are coupled in PC2 because they show redox-sensitive properties. PC3 indicates that Pb and Cu could be the less mobile elements in groundwater. Although groundwater supplied to MMA showed a high-quality, high mineralized waters of group 5 have NO 3 - concentrations higher than the maximum value proposed by international guidelines and SO 4 2- , NO 3 - , and total dissolved solid concentrations higher than the maximum levels allowed by the Mexican normative.

  1. Trace element and Nd, Sr, Pb isotope geochemistry of Kilauea Volcano, Hawai'i, near-vent eruptive products: 1983-2001

    USGS Publications Warehouse

    Thornber, Carl R.; Budahn, James R.; Ridley, W. Ian; Unruh, Daniel M.

    2003-01-01

    This open-file report serves as a repository for geochemical data referred to in U.S. Geological Survey Professional Paper 1676 (Heliker, Swanson, and Takahashi, eds., 2003), which includes multidisciplinary research papers pertaining to the first twenty years of Puu Oo Kupaianaha eruption activity. Details of eruption characteristics and nomenclature are provided in the introductory chapter of that volume (Heliker and Mattox, 2003). Geochemical relations of this data are depicted and interpreted by Thornber (2003), Thornber and others (2003a) and Thornber (2001). This report supplements Thornber and others (2003b) in which whole-rock and glass major-element data on ~1000 near-vent lava samples collected during the 1983 to 2001 eruptive interval of Kilauea Volcano, Hawai'i, are presented. Herein, we present whole-rock trace element compositions of 85 representative samples collected from January 1983 to May 2001; glass trace-element compositions of 39 Pele’s Tear (tephra) samples collected from September 1995 to September 1996, and whole-rock Nd, Sr and Pb isotopic analyses of 10 representative samples collected from September 1983 to September 1993. Thornber and others (2003b) provide a specific record of sample characteristics, location, etc., for each of the samples reported here. Spreadsheets of both reports may be integrated and sorted based upon time of formation or sample numbers. General information pertaining to the selectivity and petrologic significance of this sample suite is presented by Thornber and others (2003b). As justified in that report, this select suite of time-constrained geochemical data is suitable for constructing petrologic models of pre-eruptive magmatic processes associated with prolonged rift zone eruption of Hawaiian shield volcanoes.

  2. [Proposal of new trace elements classification to be used in nutrition, oligotherapy and other therapeutics strategies].

    PubMed

    Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María

    2014-12-17

    1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  3. Trace elements have limited utility for studying migratory connectivity in shorebirds that winter in Argentina

    USGS Publications Warehouse

    Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I.

    2010-01-01

    Trace-element analysis has been suggested as a tool for the study of migratory connectivity because (1) trace-element abundance varies spatially in the environment, (2) trace elements are assimilated into animals' tissues through the diet, and (3) current technology permits the analysis of multiple trace elements in a small tissue sample, allowing the simultaneous exploration of several elements. We explored the potential of trace elements (B, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, As, Sr, Cs, Hg, Tl, Pb, Bi, Th, and U) to clarify the migratory connectivity of shorebirds that breed in North America and winter in southern South America. We collected 66 recently replaced secondary feathers from Red Knots (Calidris canutus) at three sites in Patagonia and 76 from White-rumped Sandpipers (C. fuscicollis) at nine sites across Argentina. There were significant differences in trace-element abundance in shorebird feathers grown at different nonbreeding sites, and annual variability within a site was small compared to variability among sites. Across Argentina, there was no large-scale gradient in trace elements. The lack of such a gradient restricts the application of this technique to questions concerning the origin of shorebirds to a small number of discrete sites. Furthermore, our results including three additional species, the Pectoral Sandpiper (C. melanotos), Wilson's Phalarope (Phalaropus tricolor), and Collared Plover (Charadrius collaris), suggest that trace-element profiles change as feathers age. Temporal instability of trace-element values could undermine their application to the study of migratory connectivity in shorebirds. ?? The Cooper Ornithological Society 2010.

  4. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  5. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  6. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  7. Exploring the Link between Micronutrients and Phytoplankton in the Southern Ocean during the 2007 Austral Summer

    PubMed Central

    Hassler, Christel S.; Sinoir, Marie; Clementson, Lesley A.; Butler, Edward C. V.

    2012-01-01

    Bottle assays and large-scale fertilization experiments have demonstrated that, in the Southern Ocean, iron often controls the biomass and the biodiversity of primary producers. To grow, phytoplankton need numerous other trace metals (micronutrients) required for the activity of key enzymes and other intracellular functions. However, little is known of the potential these other trace elements have to limit the growth of phytoplankton in the Southern Ocean. This study, investigates whether micronutrients other than iron (Zn, Co, Cu, Cd, Ni) need to be considered as parameters for controlling the phytoplankton growth from the Australian Subantarctic to the Polar Frontal Zones during the austral summer 2007. Analysis of nutrient disappearance ratios, suggested differential zones in phytoplankton growth control in the study region with a most intense phytoplankton growth limitation between 49 and 50°S. Comparison of micronutrient disappearance ratios, metal distribution, and biomarker pigments used to identify dominating phytoplankton groups, demonstrated that a complex interaction between Fe, Zn, and Co might exist in the study region. Although iron remains the pivotal micronutrient for phytoplankton growth and community structure, Zn and Co are also important for the nutrition and the growth of most of the dominating phytoplankton groups in the Subantarctic Zone region. Understanding of the parameters controlling phytoplankton is paramount, as it affects the functioning of the Southern Ocean, its marine resources and ultimately the global carbon cycle. PMID:22787456

  8. Hydrothermal Alteration and Seawater Exchange at Surtsey Volcano, Iceland: New results from 1979 Surtsey Drill Core.

    NASA Astrophysics Data System (ADS)

    Rhodes, M.; Bryce, J. G.; Jercinovic, M. J.; Fahnestock, M. F.; Jackson, M. D.

    2017-12-01

    The archetypal volcano Surtsey erupted spectacularly out of the North Atlantic Ocean from November 1963 to June 1967, on the southern submarine extension of the E. Icelandic Rift Zone. Twelve years later, in 1979, the eastern cone (Surtur I) was drilled to a depth of 181 m to document the growth of the volcano and the interaction of basaltic tephra with seawater [1]. The present study is a pilot project for the International Continental Drilling Project on Surtsey, SUSTAIN, starting in August, 2017. The overall intent is to document the nature, extent and rates of hydrothermal and seawater reaction with tephra over the past 50 years. This work builds on the 1979 drilling studies through new electron microprobe and laser ablation (LA- ICPMS) analyses to document varying degrees of palagonitic alteration of volcanic glass and primary phases to form authigenic minerals (smectite, zeolites, Al-tobermorite, anhydrite) in the intervening 12 years since the eruption. Combined with modal data and inferred phase densities, the data documents the mass balance of major and trace elements among the phases and the relationship of these changes to core depth, temperature and porosity. Although hydrothermal alteration is extensive, especially in the hotter submarine intervals from 60 to 120 m, detailed whole-rock major, trace and isotopic data (Sr, Nd, Pb), show that, apart from hydration and oxidation, there is only modest exchange of elements between tephra and seawater, or hydrothermal fluids, in the upper 140 m of the core prior to 1979. Below 140 m, in a cooler zone of coarse, more porous tephra, extensive exchange of elements, involving hydrothermal introduction of sulfur and growth of anhydrite, is associated with the loss of Ca, K, Rb, Sr and addition of MgO and Na and seawater isotopic signatures. It is surely no coincidence that this zone of elemental and isotopic exchange supports active microbial colonies [2]. Our results serve as an important baseline for the 2017 cores and provide insights into microbial colonization of the oceanic crust and the development of environmentally friendly pozzolanic concretes [3]. [1] Jakobsson and Moore (1986), Geol. Soc. Amer. 97, 648-659; [2] Marteinsson et al. (2015), Biogeosciences 12, 1191-1203; [3] Jackson et al. (2017), Am. Min. 102, 1435-1450.

  9. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    PubMed

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  10. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  11. Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (Swan Lake), northern China.

    PubMed

    Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei

    2017-06-30

    Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  13. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less

  14. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Two-stage fluid flow and element transfers in shear zones during collision burial-exhumation cycle: Insights from the Mont Blanc Crystalline Massif (Western Alps)

    NASA Astrophysics Data System (ADS)

    Rolland, Y.; Rossi, M.

    2016-11-01

    The Mont-Blanc Massif was intensely deformed during the Alpine orogenesis: in a first stage of prograde underthrusting at c. 30 Ma and in a second stage of uplift and exhumation at 22-11 Ma. Mid-crustal shear zones of 1 mm-50 m size, neighbouring episyenites (quartz-dissolved altered granite) and alpine veins, have localised intense fluid flow, which produced substantial changes in mineralogy and whole-rock geochemistry. Four main metamorphic zones are oriented parallel to the strike of the massif: (i) epidote, (ii) chlorite, (iii) actinolite-muscovite ± biotite and (iv) muscovite ± biotite. In addition, phlogopite-bearing shear zones occur in the chlorite zone, and calcite-bearing shear zones are locally found in the muscovite zone. The initial chemical composition of the granitic protolith is relatively constant at massif scale, which allows investigating compositional changes related to shear zone activity, and subsequent volume change and elements mobility. The variations of whole-rock composition and mineral chemistry in shear zones reflect variations in fluid/rock ratios and fluid's chemistry, which have produced specific mineral reactions. Estimated time-integrated fluid fluxes are of the order of 106 m3/m2. The mineral assemblages that crystallised upon these fluid-P-T conditions are responsible for specific major and trace element enrichments. The XFe (Fe/Fe + Mg) pattern of shear zone phyllosilicates and the δ13C pattern of vein calcite both show a bell-type pattern across the massif with high values on the massif rims and low values in the centre of the massif. These low XFe and δ13C values are explained by down temperature up-flow of a Fe-Mg-CO2-rich and silica-depleted fluid during stage 1, while the massif was underthrusting. These produced phlogopite, chlorite and actinolite precipitation and quartz hydrolysis, resulting in strong volume losses. In contrast, during stage 2 (uplift), substantial volume gains occurred on the massif rims due to the precipitation of quartz, epidote and muscovite from a local fluid hosted in the Helvetic cover. These two fluids advocate for the presence of an upper-crustal scaled fluid convection cell, with up-going fluids through the lower crust and likely down-going fluids in the 15 km upper crust.

  16. The Surtsey Magma Series

    PubMed Central

    Ian Schipper, C.; Jakobsson, Sveinn P.; White, James D.L.; Michael Palin, J.; Bush-Marcinowski, Tim

    2015-01-01

    The volcanic island of Surtsey (Vestmannaeyjar, Iceland) is the product of a 3.5-year-long eruption that began in November 1963. Observations of magma-water interaction during pyroclastic episodes made Surtsey the type example of shallow-to-emergent phreatomagmatic eruptions. Here, in part to mark the 50th anniversary of this canonical eruption, we present previously unpublished major-element whole-rock compositions, and new major and trace-element compositions of sideromelane glasses in tephra collected by observers and retrieved from the 1979 drill core. Compositions became progressively more primitive as the eruption progressed, with abrupt changes corresponding to shifts between the eruption’s four edifices. Trace-element ratios indicate that the chemical variation is best explained by mixing of different proportions of depleted ridge-like basalt, with ponded, enriched alkalic basalt similar to that of Iceland’s Eastern Volcanic Zone; however, the systematic offset of Surtsey compositions to lower Nb/Zr than other Vestmannaeyjar lavas indicates that these mixing end members are as-yet poorly contained by compositions in the literature. As the southwestern-most volcano in the Vestmannaeyjar, the geochemistry of the Surtsey Magma Series exemplifies processes occurring within ephemeral magma bodies on the extreme leading edge of a propagating off-axis rift in the vicinity of the Iceland plume. PMID:26112644

  17. Environmental Exposure of Children to Toxic Trace Elements (Hg, Cr, As) in an Urban Area of Yucatan, Mexico: Water, Blood, and Urine Levels.

    PubMed

    Arcega-Cabrera, F; Fargher, L; Quesadas-Rojas, M; Moo-Puc, R; Oceguera-Vargas, I; Noreña-Barroso, E; Yáñez-Estrada, L; Alvarado, J; González, L; Pérez-Herrera, N; Pérez-Medina, S

    2018-05-01

    Merida is the largest urban center in the Mexican State of Yucatan. Here domestic sewage is deposited in poorly built septic tanks and is not adequately treated. Because of contamination from such waste, water from the top 20 m of the aquifer is unsuitable for human consumption. Given this situation and because children are highly vulnerable to environmental pollution, including exposure to toxic trace elements, this study focused on evaluating the exposure of children to arsenic (As), chromium (Cr), and mercury (Hg) in water. It also evaluated the relationship between the levels of these elements in water and their concentrations in urine and blood. Among the 33 children monitored in the study, arsenic surpassed WHO limits for blood in 37% of the cases, which could result from the ingestion of poultry contaminated with organoarsenic compounds. In the case of WHO limits for Mercury, 65% of the water samples analyzed, 28% of urine samples, and 12% of blood samples exceeded them. Mercury exposure was correlated with biological sex, some lifestyle factors, and the zone in Merida in which children live. These data suggest that the levels of some toxic metals in children may be affected by water source, socioeconomic factors, and individual behavior.

  18. Fluid/rock Interaction History of a Faulted Rhyolite-Granite Contact Determined by Sr- Pb-Isotopes, Th/U-Disequilibria and Elemental Distributions (Eastern Rhine Graben Shoulder, SW-Germany)

    NASA Astrophysics Data System (ADS)

    Marbach, T.; Mangini, A.; Kober, B.; Schleicher, A.; Warr, L. N.

    2003-04-01

    Major and trace element analyses allow to obtain information concerning the chemical changes induced by alteration. Differences are partly petrographic because the profile crosses the granite-rhyolite contact, but they are also due to different alteration levels induced by fluid circulation along the fault system which has drained the alteration processes. The granite-rhyolite contact constitutes the primary structure. Only the most incompatible elements (Si, Al, Zr, Hf) retain their original signatures and reflect a mixing between typical granite and rhyolite lithologies across the altered zones (cataclasite). The more mobile elements show a different composition within the altered zones (cataclasite) notably a high leaching of cations. The geochemical tracers also suggest at least one strong hydrothermal event with reducing conditions in the altered zones. The isotopic analyses delivered qualitative and temporal information. The use of several isotopic systems, Rb/Sr-, U/Pb-isotopes and Th/U disequilibria, reveals a complex history of polyphase fluid/rock interaction following the Permian volcanic extrusion, showing notable disturbances during the late Jurassic hydrothermal activities, the Tertiary rifting of the Rhine Graben and more recent Quaternary alteration. The granite zone of the sampling profile has underwent an event which set up a new Rb-Sr isotopic composition and reset the Rb/Sr system which originatly corresponded to the Carboniferous intrusion ages. The Rb-Sr data of the granite samples produce a whole rock isochron of 152 ± 5,7 Ma (2σ error) in good agreement with the well-known late Jurassic hydrothermal event (135--160 Ma). The rocks evolution lines for Pb support a Tertiary hydrothermal event (54 Ma ± 16; 1σ error), potentially connected with the development of the Rhine Graben. The profile samples have undergone uranium and thorium redistribution processes which have occurred within the last ˜10^6 years. The samples of the altered zones record a more complex history of uranium exchange with the aqueous phase. This uranium exchange is proportional to the porosity. The best approximation is reached for an exchange coefficient (λ_E) for uranium ranging from 2,5 E-06 [a-1] in the middle of the altered zones to 2,5 E-05 [a-1] on the sides of the altered zones.

  19. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey.

    PubMed

    Ahmed, A M; Sulaiman, W N

    2001-11-01

    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no significant difference in the amount of fluoride (F) in the different locations. In the soil vadose zone, heavy metals were found to be in their typical normal ranges and within the background concentrations. Soil exchangeable bases were significantly higher in the soil saturated zone compared to the vadose zone, and no significant difference was obtained in the levels of inorganic pollutants. With the exception of Cd, the concentration ranges of all trace elements (Cu, Zn, Cr, Pb, and Ni) of Seri Petaling landfill soils were below the upper limits of baseline concentrations published from different sources.

  20. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  1. INAA Application for Trace Element Determination in Biological Reference Material

    NASA Astrophysics Data System (ADS)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  2. Chemical evolution of a pleistocene rhyolitic center: Sierra La Primavera, Jalisco, México

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    1981-06-01

    The late Pleistocene caldera complex of the Sierra La Primavera, Jalisco, México, contains well-exposed lava flows and domes, ash-flow tuff, air-fall pumice, and caldera-lake sediments. All eruptive units are high-silica rhyolites, but systematic chemical differences correlate with age and eruptive mode. The caldera-producing unit, the 45-km3 Tala Tuff, is zoned from a mildly peralkaline first-erupted portion enriched in Na, Rb, Cs, Cl, F, Zn, Y, Zr, Hf, Ta, Nb, Sb, HREE, Pb, Th, and U to a metaluminous last-erupted part enriched in K, LREE, Sc, and Ti; Al, Ca, Mg, Mn, Fe, and Eu are constant within analytical errors. The earliest post-caldera lava, the south-central dome, is nearly identical to the last-erupted portion of the Tala Tuff, whereas the slightly younger north-central dome is chemically transitional from the south-central dome to later, moremafic, ring domes. This sequence of ash-flow tuff and domes represents the tapping of progressively deeper levels of a zoned magma chamber 95,000 ± 5,000 years ago. Since that time, the lavas that erupted 75,000, 60,000, and 30,000 years ago have become decreasingly peralkaline and progressively enriched only in Si, Rb, Cs, and possibly U. They represent successive eruption of the uppermost magma in the post-95,000-year magma chamber. Eruptive units of La Primavera are either aphyric or contain up to 15% phenocrysts of sodic sanidine ≧quartz >ferrohedenbergite >fayalite>ilmenite±titanomagnetite. Whereas major-element compositions of sanidine, clinopyroxene, and fayalite phenocrysts changed only slightly between eruptive groups, concentrations of many trace elements changed by factors of 5 to 10, resulting in crystal/glass partition coefficients that differ by factors of up to 20 between successively erupted units. The extreme variations in partitioning behavior are attributed to small changes in bulk composition of the melt because major-element compositions of the phenocrysts and temperature, pressure, and oxygen fugacity of the magma all remained essentially constant. Crystal settling and incremental partial melting by themselves appear incapable of producing either the chemical gradients within the Tala Tuff magma chamber or the trends with time in the post-caldera lavas. Transport of trace metals as volatile complexes within the thermal and gravitational gradient in volatilerich but water-undersaturated magma is considered the dominant process responsible for compositional zonation in the Tala Tuff. The evolution of the post-caldera lavas with time is thought to involve the diffusive emigration of trace elements from a relatively dry magma as a decreasing proportion of network modifiers and/or a decreasing concentration of complexing ligands progressively reduced trace-metal-site availability in the silicate melt.

  3. Earth's first stable continents did not form by subduction

    NASA Astrophysics Data System (ADS)

    Johnson, Tim; Brown, Michael; Gardiner, Nicholas; Kirkland, Christopher; Smithies, Hugh

    2017-04-01

    The geodynamic setting in which Earth's first stable cratonic nuclei formed remains controversial. Most exposed Archaean continental crust comprises rocks of the tonalite-trondhjemite-granodiorite (TTGs) series that were produced from partial melting of low magnesium basaltic source rocks and have 'arc-like' trace element signatures that resemble continental crust produced in modern supra-subduction zone settings. The East Pilbara Terrane, Western Australia, is amongst the oldest fragments of preserved continental crust of Earth. Low magnesium basalts of the Paleoarchaean Coucal Formation, at the base of the Pilbara Supergroup, have trace element compositions consistent with the putative source rocks for TTGs. These basalts may be remnants of the ≥35 km-thick pre-3.5 Ga plateau-like basaltic crust that is predicted to have formed if mantle temperatures were much hotter than today. Using phase equilibria modelling of an average uncontaminated Coucal basalt, we confirm their suitability as TTG source rocks. The results suggest that TTGs formed by 20-30% melting along high geothermal gradients (≥700 °C/GPa), which accord with apparent geotherms recorded by >95% of Archaean rocks worldwide. Moreover, the trace element composition of the Coucal basalts demonstrates that they were derived from an earlier generation of mafic/ultramafic rocks, and that the arc-like signature in Archaean TTGs was inherited through an ancestral source lineage. The protracted multistage process required for production and stabilisation of Earth's first continents, coupled with the high geothermal gradients, are incompatible with modern-style subduction and favour a stagnant lid regime in the early Archaean.

  4. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and carlin-style sediment-hosted deposits

    USGS Publications Warehouse

    Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; Singh, B.; Foster, J.

    2009-01-01

    Laser ablation ICP-MS imaging of gold and other trace elements in pyrite from four different sediment- hosted gold-arsenic deposits has revealed two distinct episodes of gold enrichment in each deposit: an early synsedimentary stage where invisible gold is concentrated in arsenian diagenetic pyrite along with other trace elements, in particular, As, Ni, Pb, Zn, Ag, Mo, Te, V, and Se; and a later hydrothermal stage where gold forms as either free gold grains in cracks in overgrowth metamorphic and/or hydrothermal pyrite or as narrow gold- arsenic rims on the outermost parts of the overgrowth hydrothermal pyrite. Compared to the diagenetic pyrites, the hydrothermal pyrites are commonly depleted in Ni, V, Zn, Pb, and Ag with cyclic zones of Co, Ni, and As concentration. The outermost hydrothermal pyrite rims are either As-Au rich, as in moderate- to high- grade deposits such as Carlin and Bendigo, or Co-Ni rich and As-Au poor as in moderate- to low-grade deposits such as Sukhoi Log and Spanish Mountain. The early enrichment of gold in arsenic-bearing syngenetic to diagenetic pyrite, within black shale facies of sedimentary basins, is proposed as a critical requirement for the later development of Carlin-style and orogenic gold deposits in sedimentary environments. The best grade sediment-hosted deposits appear to have the gold climax event, toward the final stages of deformation-related hydrothermal pyrite growth and fluid flow. ?? 2009 Society of Economic Geologists, Inc.

  5. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    USGS Publications Warehouse

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  6. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  7. Contribution of slab melting to magmatism at the active rifts zone in the middle of the Izu-Bonin arc

    NASA Astrophysics Data System (ADS)

    Hirai, Y.; Okamura, S.; Sakamoto, I.; Shinjo, R.; Wada, K.; Yoshida, T.

    2016-12-01

    The active rifts zone lies just behind the Quaternary volcanic front in the middle of the Izu-Bonin arc. Volcanism at the active rifts zone has been active since ca. 2 Ma, and late Quaternary basaltic lavas (< 0.1 Ma) and hydrothermal activity occur along the central axis of the rifts (Taylor, 1992; Ishizuka et al., 2003). In this paper we present new Sr, Nd, and Hf isotope and trace element data for the basalts erupted in the active rifts zone, including the Aogashima, Myojin and Sumisu rifts. Two geochemical groups can be identified within the active rift basalts: High-Zr basalts (HZB) and Low-Zr basalts (LZB). In the case of the Sumisu rift, the HZB exhibits higher in K2O, Na2O, Y, Zr and Ni, and also has higher Ce/Yb and Zr/Y, lower Ba/Th than the LZB. Depletion of Zr-Hf in the N-MORB spidergram characterizes the LZB from the Aogashima, Myojin and Sumisu rifts. The 176Hf/177Hf ratios are slightly lower in the HZB than in the LZB, decoupling of 176Hf/177Hf ratios and 143Nd/144Nd ratios. Estimated primary magma compositions suggest that primary magma segregation for the HZB occurred at depths less than 70 km ( 2 GPa), whereas the LZB more than 70 km (2 3 GPa). ODP Leg126 site 788, 790, and 791 reached the basaltic basement of the Sumisu rift (Gill et al., 1992). The geochemical data and stratigraphic relations of the basement indicate that the HZB is younger than the LZB. Geochemical modelling demonstrates that slab-derived melt mixed with mantle wedge produces the observed isotopic and trace elemental characteristics. The LZB volcanism at the early stage of the back-arc rifting is best explained by a partial melting of subducted slab saturated with trace quantities of zircon under low-temperature conditions in the mantle wedge. On the other hand, the HZB requires a partial melt of subducted slab accompanied by full dissolution of zircon under high-temperature conditions in the mantle wedge, which could have been caused by hot asthenospheric injection during the syn stage of the back-arc rifting. referencesGill et al. (1992) Proc. ODP, Sci. Result, 126, 383-403. Ishizuka et al. (2003) Geol. Soc. Spec. Publ., 219, 187-205. Taylor (1992) Proc. ODP, Sci. Result, 126, 627-651.

  8. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.

    PubMed

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Matsukage, Kyoko N; Ono, Shigeaki

    2012-11-13

    Subduction-zone magmatism is triggered by the addition of H(2)O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry.

  9. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism

    PubMed Central

    Kawamoto, Tatsuhiko; Kanzaki, Masami; Mibe, Kenji; Ono, Shigeaki

    2012-01-01

    Subduction-zone magmatism is triggered by the addition of H2O-rich slab-derived components: aqueous fluid, hydrous partial melts, or supercritical fluids from the subducting slab. Geochemical analyses of island arc basalts suggest two slab-derived signatures of a melt and a fluid. These two liquids unite to a supercritical fluid under pressure and temperature conditions beyond a critical endpoint. We ascertain critical endpoints between aqueous fluids and sediment or high-Mg andesite (HMA) melts located, respectively, at 83-km and 92-km depths by using an in situ observation technique. These depths are within the mantle wedge underlying volcanic fronts, which are formed 90 to 200 km above subducting slabs. These data suggest that sediment-derived supercritical fluids, which are fed to the mantle wedge from the subducting slab, react with mantle peridotite to form HMA supercritical fluids. Such HMA supercritical fluids separate into aqueous fluids and HMA melts at 92 km depth during ascent. The aqueous fluids are fluxed into the asthenospheric mantle to form arc basalts, which are locally associated with HMAs in hot subduction zones. The separated HMA melts retain their composition in limited equilibrium with the surrounding mantle. Alternatively, they equilibrate with the surrounding mantle and change the major element chemistry to basaltic composition. However, trace element signatures of sediment-derived supercritical fluids remain more in the melt-derived magma than in the fluid-induced magma, which inherits only fluid-mobile elements from the sediment-derived supercritical fluids. Separation of slab-derived supercritical fluids into melts and aqueous fluids can elucidate the two slab-derived components observed in subduction zone magma chemistry. PMID:23112158

  10. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    NASA Astrophysics Data System (ADS)

    Duffield, Wendell A.; Ruiz, Joaquin

    1992-04-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ± hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations.

  11. Compositional gradients in large reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes

    USGS Publications Warehouse

    Duffield, W.A.; Ruiz, J.

    1992-01-01

    The Taylor Creek Rhyolite of southwest New Mexico consists of 20 lava domes and flows that were emplaced during a period of a few thousand years or less in late Oligocene time. Including genetically associated pyroclastic deposits, which are about as voluminous as the lava domes and flows, the Taylor Creek Rhyolite represents roughly 100 km3 of magma erupted from vents distributed throughout an area of several hundred square kilometers. Major-element composition is metaluminous to weakly peraluminous high-silica rhyolite and is nearly constant throughout the lava field. The magma reservoir for the Taylor Creek Rhyolite was vertically zoned in trace elements, 87Sr/86Sr, and phenocryst abundance and size. Mean trace-element concentrations, ranges in concentrations, and element-pair correlations are similar to many subalkaline silicic ignimbrites. However, the polarity of the zonation was opposite that in reservoirs for ignimbrites, for most constituents. For example, compared to the Bishop Tuff, only 87Sr/86Sr and Sc increased upward in both reservoirs. Quite likely, a dominant but nonerupted volume of the magma reservoir for the Taylor Creek Rhyolite was zoned like that for the Bishop Tuff, whereas an erupted, few-hundred-meter-thick cap on the magma body was variably contaminated by roof rocks whose contribution to this part of the magma system moderated relatively extreme trace-element concentrations of uncontaminated Taylor Creek Rhyolite but did not change the sense of correlation for most element pairs. The contaminant probably was a Precambrian rock of broadly granitic composition and with very high 87Sr/86Sr. Although examples apparently are not yet reported in the literature, evidence for a similar thin contaminated cap on reservoirs for large-volume silicic ignimbrites may exist in the bottom few meters of ignimbrites or perhaps only in the pumice fallout that normally immediately precedes ignimbrite emplacement. 87Sr/86Sr in sanidine phenocrysts of the Taylor Creek Rhyolite is higher than that of their host whole rocks. Covariation of this isotope ratio with sanidine abundance and size indicates positive correlations for all three features with decreasing distance to the roof of the magma reservoir. The sanidine probably is more radiogenic than host whole rock because growing phenocrysts partly incorporated Sr from the first partial melt of roof rocks, which contained the highly radiogenic Sr of Precambrian biotite ?? hornblende, whereas diffusion was too slow for sanidine to incorporate much of the Sr from subsequently produced less radiogenic partial melt of roof rocks, before eruption quenched the magma system. Disequilibrium between feldspar phenocrysts and host groundmass is fairly common for ignimbrites, and a process of contamination similar to that for the Taylor Creek Rhyolite may help explain some of these situations. ?? 1992 Springer-Verlag.

  12. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping

    NASA Astrophysics Data System (ADS)

    Dubosq, R.; Lawley, C. J. M.; Rogowitz, A.; Schneider, D. A.; Jackson, S.

    2018-06-01

    The metamorphic transition of pyrite to pyrrhotite results in the liberation of lattice-bound and nano-particulate metals initially hosted within early sulphide minerals. This process forms the basis for the metamorphic-driven Au-upgrading model applied to many orogenic Au deposits, however the role of syn-metamorphic pyrite deformation in controlling the retention and release of Au and related pathfinder elements is poorly understood. The lower amphibolite facies metamorphic mineral assemblage (Act-Bt-Pl-Ep-Alm ± Cal ± Qz ± Ilm; 550 °C) of Canada's giant Detour Lake deposit falls within the range of pressure-temperature conditions (450 °C) for crystal plastic deformation of pyrite. We have applied a complementary approach of electron backscatter diffraction (EBSD) mapping and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2D element mapping on pyrite from the Detour Lake deposit. Chemical element maps document an early generation of Au-rich sieve textured pyrite domains and a later stage of syn-metamorphic oscillatory-zoned Au-poor pyrite. Both pyrite types are cut by Au-rich fractures as a consequence of remobilization of Au with trace element enrichment of first-row transition elements, post-transition metals, chalcogens and metalloids during a late brittle deformation stage. However, similar enrichment in trace elements and Au can be observed along low-angle grain boundaries within otherwise Au-poor pyrite, indicating that heterogeneous microstructural misorientation patterns and higher strain domains are also relatively Au-rich. We therefore propose that the close spatial relationship between pyrite and Au at the microscale, features typical of orogenic Au deposits, reflects the entrapment of Au within deformation-induced microstructures in pyrite rather than the release of Au during the metamorphic transition from pyrite to pyrrhotite. Moreover, mass balance calculations at the deposit scale suggest that only a small percentage of Au could have been sourced from pyrite and instead point to the role of substructures in pyrite as depositional traps for Au during syn-metamorphic deformation- and fluid-assisted diffusion Au-upgrading.

  13. The effect of tissue structure and soil chemistry on trace element uptake in fossils

    NASA Astrophysics Data System (ADS)

    Hinz, Emily A.; Kohn, Matthew J.

    2010-06-01

    Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.

  14. A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins.

    PubMed

    Espejo, Winfred; Celis, José E; GonzÃlez-Acuña, Daniel; Banegas, Andiranel; Barra, Ricardo; Chiang, Gustavo

    2018-01-01

    Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

  15. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    PubMed

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Loess as an environmental archive of atmospheric trace element deposition

    NASA Astrophysics Data System (ADS)

    Blazina, T.; Winkel, L. H.

    2013-12-01

    Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.

  17. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  18. Differentiating Metamorphic Events in a Polymetamorphic Terrane using Zr-in-Ttn thermometry and Titanite U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Kenney, M.; Roeske, S.; Mulcahy, S. R.; Cottle, J. M.; Coble, M. A.

    2016-12-01

    In polymetamorphic terranes, it is problematic to link ages from geochronometers to metamorphic fabrics and, therefore, to a specific deformation event(s). It is necessary to analyze a mineral which may preserve multiple age domains. Titanite has been shown to retain multiple age and elemental domains in single grains through high-grade metamorphism. In this study, titanite U-Pb geochronology is used to examine whether ages are thermally reset along a sample transect towards a mylonitic shear zone in NW Argentina. This work also seeks to understand the conditions under which titanite resists resetting. A combination of petrographic and electron microprobe analyses reveal the textures and compositional domains in titanite, garnet, and hornblende. Titanite are elongate, wrapped by the mylonitic fabric, and have patchy elemental zoning. Garnet has distinct cores with prograde zoning and thin rims, which appear to be in equilibrium with the fabric defining minerals. Hornblende has inclusion rich cores and thin overgrowth rims in equilibrium with the fabric defining minerals. In-situ U-Pb and trace element data was collected in titanite from four samples, which all preserve lower-intercept ages between 900Ma and 1.0Ga. We observed no correlation between age and elemental domains; these domains correlate with Al and Nb variations. Zr-in-titanite temperatures preserve upper amphibolite facies conditions, 660ºC-710ºC. Given these results, we conclude that titanite U-Pb ages and temperatures reflect original Grenville metamorphism. 40Ar/39Ar hornblende cooling ages, of 515 Ma, suggested titanite may be reset near the shear zone but overprinting P-T of 560ºC and 0.8 GPa, fluid infiltration, and deformation did not cause significant Pb loss. Overprinting conditions and cooling ages suggest that rims of garnet and hornblende correlate to Paleozoic metamorphism, while textural evidence and titanite ages suggest garnet and hornblende cores grew during the Proterozoic.

  19. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  20. [Contents of ten trace elements in Epimedium acuminatum Franch. and its different processed products].

    PubMed

    Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y

    2001-03-01

    Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.

  1. Surface Ocean Radiocarbon Reservoir Ages From Land-Sea Tephra Correlation Constrains Deglacial Chronology and Ocean Circulation in the Southeast Bering Sea

    NASA Astrophysics Data System (ADS)

    Cook, M. S.; Miller, R.; White-Nockleby, C.; Chapman, A.; Mix, A. C.

    2017-12-01

    Radiocarbon estimates of the past ocean are valuable because unlike passive tracers, radiocarbon has the potential to trace both the distribution and rate of transport of water masses. Most studies using paired radiocarbon measurements on planktonic and benthic foraminifera assume that the surface reservoir age was constant at the preindustrial value, which if incorrect, can strongly bias radiocarbon reconstructions. The subarctic Pacific is ringed by volcanic arcs, and there is great potential to use tephrochronology as a stratigraphic tool in sediments from the last glacial and deglaciation, and assign calendar ages to the marine sediment without relying on calibrated planktonic radiocarbon ages. In this study, we use major and trace element analysis of volcanic glass to match tephras between radiocarbon-dated lake cores from Sanak Island in the eastern Aleutians to marine cores from Umnak Plateau in the southeast Bering Sea. There are numerous thin tephras preserved in laminated sediments from the Bolling-Allerod and early Holocene in marine cores from depths (1000-1500 m) within the modern oxygen minimum zone. We find that trace elements are crucial in distinguishing tephras from individual eruptions. Our preliminary radiocarbon measurements suggest that the benthic-atmosphere radiocarbon differences and marine surface reservoir ages in the Bolling-Allerod are similar to pre-industrial values, supporting previously published radiocarbon reconstructions from the region.

  2. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    PubMed Central

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  3. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  4. Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.

    PubMed

    Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan

    2014-04-01

    The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.

  5. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  6. Variations of trace element concentration of magnetite and ilmenite from the Taihe layered intrusion, Emeishan large igneous province, SW China: Implications for magmatic fractionation and origin of Fe-Ti-V oxide ore deposits

    NASA Astrophysics Data System (ADS)

    She, Yu-Wei; Song, Xie-Yan; Yu, Song-Yue; He, Hai-Long

    2015-12-01

    In situ LA-ICP-MS trace elemental analysis has been applied to magnetite and ilmenite of the Taihe layered intrusion, Emeishan large igneous province, SW China, in order to understand better fractionation processes of magma and origin of Fe-Ti-V oxide ore deposits. The periodic reversals in Mg, Ti, Mn in magnetite and Mg, Sc in ilmenite are found in the Middle Zone of the intrusion and agree with fractionation trends as recorded by olivine (Fo), plagioclase (An) and clinopyroxene (Mg#) compositions. These suggest the Taihe intrusion formed from open magma chamber processes in a magma conduit with multiple replenishments of more primitive magmas. The V and Cr of magnetite are well correlated with V and Cr of clinopyroxene indicating that they became liquidus phases almost simultaneously at an early stage of magma evolution. Ilmenite from the Middle and Upper Zones shows variable Cr, Ni, V, Mg, Nb, Ta and Sc contents indicating that ilmenite at some stratigraphic levels crystallized slightly earlier than magnetite and clinopyroxene. The early crystallization of magnetite and ilmenite is the result of the high FeOt and TiO2 contents in the parental magma. The ilmenite crystallization before magnetite in the Middle and Upper Zones can be attributed to higher TiO2 content of the magma due to the remelting of pre-existing ilmenite in a middle-level magma chamber. Compared to the coeval high-Ti basalts, the relatively low Zr, Hf, Nb and Ta contents in both magnetite and ilmenite throughout the Taihe intrusion indicate that they crystallized from Fe-Ti-(P)-rich silicate magmas. Positive correlations of Ti with Mg, Mn, Sc and Zr of magnetite, and Zr with Sc, Hf and Nb of ilmenite also suggest that magnetite and ilmenite crystallized continuously from the homogeneous silicate magma rather than an immiscible Fe-rich melt. Therefore, frequent replenishments of Fe-Ti-(P)-rich silicate magma and gravitational sorting and settling are crucial for the formation the massive and apatite-rich disseminated ores in the Lower and Middle Zones of the Taihe intrusion.

  7. Methods for detecting the mobility of trace elements during medium-temperature pyrolysis

    USGS Publications Warehouse

    Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola

    1983-01-01

    The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.

  8. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  9. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-01-01

    The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.

  10. Remediation using trace element humate surfactant

    DOEpatents

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  11. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal.

    PubMed

    Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A

    2018-10-15

    The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Nxumalo, V.; Kramers, J.; Mongwaketsi, N.; Przybyłowicz, W. J.

    2017-08-01

    Uranium occurrence and characterisation in the coal samples of the upper coal zones of the Vryheid Formation and mudstones of the Volksrust Formation was investigated using micro-PIXE (Proton-Induced X-ray Emission) and proton backscattering spectrometry (BS) in conjunction with the nuclear microprobe. Two styles of uranium mineralisation in the Springbok Flats Basin were found: syngenetic mineralisation in which uranium occurs organically bound with coal matrix, with no discrete uranium minerals formed, and epigenetic mineralisation in which uranium occurs in veins that are filled with coffinite with botryoidal texture in the mudstones of the Volksrust Formation, overlying the coal zones. Micro-PIXE analysis made it possible to map out trace elements (including uranium) associated with the coals at low levels of detection, which other techniques such as SEM-EDS and ore microscopy failed. This information will help in better understanding of the best extraction methods to be employed to recover uranium from the coals of the Springbok Flats Basin.

  13. Physical, chemical, and mineralogical data from surficial deposits, groundwater levels, and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada

    USGS Publications Warehouse

    Goldstein, Harland L.; Breit, George N.; Yount, James C.; Reynolds, Richard L.; Reheis, Marith C.; Skipp, Gary L.; Fisher, Eric M.; Lamothe, Paul J.

    2011-01-01

    This report presents data and describes the methods used to determine the physical attributes, as well as the chemical and mineralogical composition of surficial deposits; groundwater levels; and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada. The results support studies that examine (1) the interaction between groundwater and the ground surface, and the transport of solutes through the unsaturated zone; (2) the potential for the accumulation of metals and metalloids in surface crusts; (3) emission of dust from metal-rich salt crust; and (4) the effects of metal-rich dusts on human and ecosystem health. The evaporation of shallow (<3 to 4 m) groundwater in saline, arid environments commonly results in the accumulation of salt in the subsurface and (or) the formation of salt crusts at the ground surface. Ground-surface characteristics such as hardness, electrical conductivity, and mineralogy depend on the types and forms of these salt crusts. In the study area, salt crusts range from hard and bedded to soft and loose (Reynolds and others, 2009). Depending on various factors such as the depth and composition of groundwater and sediment characteristics of the unsaturated zone, salt crusts may accumulate relatively high contents of trace elements. Soft, loose salt crusts are highly vulnerable to wind erosion and transport. These vulnerable crusts, which may contain high contents of potentially toxic trace elements, can travel as atmospheric dust and affect human and ecosystem health at local to regional scales.

  14. Zircon trace element and isotopic (Sr, Nd, Hf, Pb) effects of assimilation-fractional crystallization of pegmatite magma: A case study of the Guangshigou biotite pegmatites from the North Qinling Orogen, central China

    NASA Astrophysics Data System (ADS)

    Yuan, Feng; Liu, Jia-Jun; Carranza, Emmanuel John M.; Zhang, Shuai; Zhai, De-Gao; Liu, Gang; Wang, Gong-Wen; Zhang, Hong-Yuan; Sha, Ya-Zhou; Yang, Shang-Song

    2018-03-01

    Evidence for open-system magmatic processes related to wallrock assimilation accompanied by fractional crystallization (AFC) is present in the Guangshigou biotite pegmatites, North Qinling Orogen. The biotite pegmatite-gneiss contacts generally coincide with the greatest enrichment of U and Th. Zircon Usbnd Pb dating constrains the crystallization ages of the biotite pegmatite (rim zone-415 ± 2.6 Ma; internal zone-413.5 ± 2.5 Ma), in line with a pyrite Pbsbnd Pb isochron age (413 ± 22 Ma). Metamict areas in zircon show generally elevated concentrations of trace elements and expulsion of radioactive Pb. Internal zone samples, representing uncontaminated magma, have negative to positive zircon ( 413 Ma) εHf(t) (- 1.53 - + 3.24), low εNd(t) values (- 2.4), and old Hf and Nd model ages (tDM2 = 1.5-1.19 Ga, T2DM = 1.35 Ga, respectively), indicating a dominantly recycled Mesoproterozoic lower crustal material with involvement of some juvenile materials in the source region. The magmatic oxygen fugacity (fO2) and crystallization temperatures ranges from - 24.81 to - 13.34 of log fO2 and 570 °C to 793 °C, respectively. Compared to the internal zone, pegmatite rim samples display a variable and lower εNd(t) values (- 3.9 to - 2.8) and T2DM (1.47-1.37 Ga), but similar Hf isotopic compositions, favouring a three-component isotopic mixing model (recycled Mesoproterozoic lower crust materials, juvenile materials, and host gneiss). Pronounced variations of Ti, Y, U, Th, Hf, and REE concentrations in zircon from grain to grain in individual samples and from area to area within individual grains suggest a fluctuating crystallization environment in hybridized magma from which the rim-hosted zircons crystallized. Variable and high radiogenic Pb ratios of pyrites forming in the hybridized magma were inherited from the matrix. Zircons from both zones exhibit similar Hf isotope patterns, indicating the rim-hosted zircons crystallized during the early stage of hybridization of magma. However, the heterogeneous Nd isotopic composition in individual pegmatites imply an incorporation of wallrock-derived melt with less radiogenic Nd.

  15. Constraints on the bioavailability of trace elements to terrestrial fauna at mining and smelting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.; Schoof, R.; LaTier, A.

    1995-12-31

    At mining and smelting sites, the bioavailability of waste-related trace elements to terrestrial wildlife is limited by mineralogy of the waste material and the geochemistry of the waste-soil mixture. For example, encapsulation of trace elements in inert mineral matrices limits the assimilation of particle-associated trace elements that are ingested by wildlife. The bioavailability of arsenic, cadmium, copper, lead, silver, and zinc at mining and smelting sites in Oklahoma and Montana was evaluated based on analysis of waste material, soil chemistry, and concentrations of trace elements in whole-body samples of key food web species. Concentrations of trace elements were generally elevatedmore » relative to reference area values for selected species of vegetation, insects, spiders, and small mammals. Soil-to-tissue bioconcentration factors derived from field data at these sites were generally low (< 1), with the exception of cadmium in vegetation. For all of the trace elements evaluated, wildlife exposure models indicate that the potential for transfer of contaminants to wildlife species of public concern and high trophic-level predators is limited. Moreover, laboratory feeding experiments conducted with cadmium and lead indicate that the assimilation of waste-related trace elements by mammals is relatively low (24--47 percent for lead in blood and bone; 22--44 percent for cadmium in kidney). The relatively low bioavailability of trace elements at mining and smelting sites should be considered when estimating exposure of ecological receptors and when deriving soil cleanup criteria based on measured or modeled ecological risk.« less

  16. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-09-01

    The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Tracing nuclear elements released by Fukushima Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Tsujimura, M.; Onda, Y.; Abe, Y.; Hada, M.; Pun, I.

    2011-12-01

    Radioactive contamination has been detected in Fukushima and the neighboring regions due to the nuclear accident at Fukushima Daiichi Nuclear Power Plant (NPP) following the earthquake and tsunami occurred on 11th March 2011. The small experimental catchments have been established in Yamakiya district, Kawamata Town, Fukushima Prefecture, located approximately 35 km west from the Fukushima NPP. The tritium (3H) concentration and stable isotopic compositions of deuterium and oxygen-18 have been determined on the water samples of precipitation, soil water at the depths of 10 to 30 cm, groundwater at the depths of 5 m to 50 m, spring water and stream water taken at the watersheds in the recharge and discharge zones from the view point of the groundwater flow system. The tritium concentration of the rain water fell just a few days after the earthquake showed a value of approximately 17 Tritium Unit (T.U.), whereas the average concentration of the tritium in the precipitation was less than 5 T.U. before the Fukushima accident. The spring water in the recharge zone showed a relatively high tritium concentration of approximately 12 T.U., whereas that of the discharge zone showed less than 5 T.U. Thus, the artificial tritium was apparently injected in the groundwater flow system due to the Fukushima NPP accident, whereas that has not reached at the discharge zone yet. The monitoring of the nuclear elements is now on going from the view points of the hydrological cycles and the drinking water security.

  18. Integration of remote sensing, geochemical and field data in the Qena-Safaga shear zone: Implications for structural evolution of the Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Din, Gamal Kamal; Abdelkareem, Mohamed

    2018-05-01

    The Qena-Safaga shear zone (QSSZ) represents a significant structural characteristic in the Eastern Desert of Egypt. Remote Sensing, field and geochemical data were utilized in the present study. The results revealed that the QSSZ dominated by metamorphic complex (MC) that intruded by syn-tectonic granitoids. The low angle thrust fault brings calc-alkaline metavolcanics to overlie MC and its association. Subsequently, the area is dissected by strike-slip faults and the small elongated basins of Hammamat sediments of Precambrian were accumulated. The MC intruded by late-to post-tectonic granites (LPG) and Dokhan Volcanics which comprise felsic varieties forming distinctive columnar joints. Remote sensing analysis and field data revealed that major sub-vertical conspicuous strike-slip faults (SSF) including sinistral NW-SE and dextral ca. E-W shaped the study area. Various shear zones that accompanying the SSF are running NW-SE, NE-SW, E-W, N-S and ENE-WSW. The obtained shear sense presented a multiphase of deformation on each trend. i.e., the predominant NW-SE strike-slip fault trend started with sinistral displacement and is reactivated during later events to be right (dextral) strike slip cutting with dextral displacement the E-W trending faults; while NE-SW movements are cut by both the N-S and NNW - SSE trends. Remote sensing data revealed that the NW-SE direction that dominated the area is associated with hydrothermal alteration processes. This allowed modifying the major and trace elements of the highly deformed rocks that showed depletion in SiO2 and enrichments in Fe2O3, MnO, Al2O3, TiO2, Na2O, K2O, Cu, Zn and Pb contents. The geochemical signatures of major and trace elements revealed two types of granites including I-type calc-alkaline granites (late-to post-tectonic) that formed during an extensional regime. However, syn-tectonic granitoids are related to subduction-related environment.

  19. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  20. The vadose zone as a geoindicator of environmental change and groundwater quality in water-scarce areas

    NASA Astrophysics Data System (ADS)

    Edmunds, W. M.; Baba Goni, I.; Gaye, C. B.; Jin, L.

    2013-12-01

    Inert and reactive tracers in moisture profiles provide considerable potential for the vadose zone to be used as an indicator of rapid environmental change. This indicator is particularly applicable in areas of water stress where long term (decade to century) scale records may be found in deep unsaturated zones in low rainfall areas and provide insights into recent recharge, climate variation and water-rock interactions which generate groundwater quality. Unsaturated zone Cl records obtained by elutriation of moisture are used widely for estimating recharge and water balance studies; isotope profiles (3H, δ2H, δ18O) from total water extraction procedures are used for investigation of residence times and hydrological processes. Apart from water taken using lysimeters, little work has been conducted directly on the geochemistry of pore fluids. This is mainly due to the difficulties of extraction of moisture from unsaturated material with low water contents (typically 2-6 wt%) and since dilution methods can create artifacts. Using immiscible liquid displacement techniques it is now possible to directly investigate the geochemistry of moisture from unsaturated zone materials. Profiles up to 35m from Quaternary sediments from dryland areas of the African Sahel (Nigeria, Senegal) as well as Inner Mongolia, China are used to illustrate the breadth of information obtainable from vadose zone profiles. Using pH, major and trace elements and comparing with isotopic data, a better understanding is gained of timescales of water movement, aquifer recharge, environmental records and climate history as well as water-rock interaction and contaminant behaviour. The usefulness of tritium as residence time indicator has now expired following cessation of atmospheric thermonuclear testing and through radioactive decay. Providing the rainfall Cl, moisture contents and bulk densities of the sediments are known, then Cl accumulation can be substituted to estimate timescales. Profiles from Africa show infiltration records at the decade to century scale and record periods of prolonged drought; these long term records also provide robust records of diffuse recharge and set the limits to regional groundwater renewability. Large increases in NO3/Cl ratio above rainfall are found in most profiles in the Sahel region as well as China and record N- fixation and are interpreted as release by natural leguminous vegetation. Br/Cl may be used also to validate the input Cl source. Major cation profiles record the significant water-rock interaction taking place near-surface; increases in Na/Cl, Mg/Ca and Si (as well as some minor cations) record silicate mineral dissolution and exchange reactions with depth. Trace element concentrations (Fe, Be, Co, Cr and U reflect especially the strongly oxidizing conditions in the vadose zone. The capilliary zone chemistry is distinct and can indicate a discontinuity between recent infiltration and older, regional groundwater

  1. The Chemical Behavior of Fluids Released during Deep Subduction Based on Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Frezzotti, M. L.; Ferrando, S.

    2014-12-01

    We present a review of current research on fluid inclusions in (HP-) UHP metamorphic rocks that, combined with existing experimental research and thermodynamic models, allow us to investigate the chemical and physical properties of fluids released during deep subduction, their solvent and element transport capacity, and the subsequent implications for the element recycling in the mantle wedge. An impressive number of fluid inclusion studies indicate three main populations of fluid inclusions in HP and UHP metamorphic rocks: i) aqueous and/or non-polar gaseous fluid inclusions (FI), ii) multiphase solid inclusions (MSI), and iii) melt inclusions (MI). Chemical data from preserved fluid inclusions in rocks match with and implement "model" fluids by experiments and thermodynamics, revealing a continuity behind the extreme variations of physico-chemical properties of subduction-zone fluids. From fore-arc to sub-arc depths, fluids released by progressive devolatilization reactions from slab lithologies change from relatively diluted chloride-bearing aqueous solutions (± N2), mainly influenced by halide ligands, to (alkali) aluminosilicate-rich aqueous fluids, in which polymerization probably governs the solubility and transport of major (e.g., Si and Al) and trace elements (including C). Fluid inclusion data implement the petrological models explaining deep volatile liberation in subduction zones, and their flux into the mantle wedge.

  2. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  3. Origin and distribution of trace elements in high-elevation precipitation in southern China.

    PubMed

    Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing

    2012-09-01

    During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.

  4. Trends in Trace Element Fractionation Between Foraminiferal Species and the Role of Biomineralization

    NASA Astrophysics Data System (ADS)

    Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.

    2017-12-01

    Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.

  5. Genesis of a zoned granite stock, Seward Peninsula, Alaska

    USGS Publications Warehouse

    Hudson, Travis

    1977-01-01

    A composite epizonal stock of biotite granite has intruded a diverse assemblage of metamorphic rocks in the Serpentine Hot Springs area of north-central Seward Peninsula, Alaska. The metamorphic rocks include amphibolite-facies orthogneiss and paragneiss, greenschist-facies fine-grained siliceous and graphitic metasediments, and a variety of carbonate rocks. Lithologic units within the metamorphic terrane trend generally north-northeast and dip moderately toward the southeast. Thrust faults locally juxtapose lithologic units in the metamorphic assemblage, and normal faults displace both the metamorphic rocks and some parts of the granite stock. The gneisses and graphitic metasediments are believed to be late Precambrian in age, but the carbonate rocks are in part Paleozoic. Dating by the potassium-argon method indicates that the granite stock is Late Cretaceous. The stock has sharp discordant contacts, beyond which is a well-developed thermal aureole with rocks of hornblende hornfels facies. The average mode of the granite is 29 percent plagioclase, 31 percent quartz, 36 percent K-feldspar, and 4 percent biotite. Accessory minerals include apatite, magnetite, sphene, allanite, and zircon. Late-stage or deuteric minerals include muscovite, fluorite, tourmaline, quartz, and albite. The stock is a zoned complex containing rocks with several textural facies that are present in four partly concentric zones. Zone 1 is a discontinuous border unit, containing fine- to coarse-grained biotite granite, that grades inward into zone 2. Zone 2 consists of porphyritic biotite granite with oriented phenocrysts of pinkish-gray microcline in a coarse-grained equigranular groundmass of plagioclase, quartz, and biotite. It is in sharp, concordant to discordant contact with rocks of zone 3. Zone 3 consists of seriate-textured biotite granite that has been intruded by bodies of porphyritic biotite granite containing phenocrysts of plagioclase, K-feldspar, quartz, and biotite in an aplitic groundmass. Flow structures, pegmatite and aplite segregations, and miarolitic cavities are common in the seriate-textured granite. Zone 4, which forms the central part of the complex, consists of fine- to medium-grained biotite granite and locally developed leucogranite. Small miarolitic cavities are common within it. Eight textural facies have been defined within the complex, and mineralogic, petrographic, modal, and chemical variations are broadly systematic within the facies sequence. Study of these variations shows that the gradational facies of zones l and 2 systematically shift toward more mafic compositions inward within the complex. Seriate-textured rocks of zone 3 are similar in composition to those of zone 2, but porphyritic rocks of zone 3 and rocks of zone 4 mark shifts to more felsic compositions. These late-crystallizing felsic rocks are products of an interior residual magma system. This system was enriched in water and certain trace elements including tin, lithium, niobium, lead, and zinc. The complex as a whole has higher concentrations of these elements than many other granites. The nature of this geochemical specialization is particularly well demonstrated by the trace-element composition of biotite. The crystallization history of the pluton was complex. The available data suggest that this history could have included: (1) chilling and metasomatic alteration adjacent to the contact, (2) in-situ crystallization in several marginal facies accompanied by some transfer of residual constituents toward interior parts of the pluton, (3) slight upward displacement of magma that was subjacent to the crystallized walls, accompanied by disequilibrium crystallization and local vapor saturation, (4) upward displacement of part of the residual water-rich interior magma, accompanied by rapid loss of a separated vapor phase, and (5) displacement of the margins of the pluton by normal faults, accompanied by loss of an exsolved vapor phase from th

  6. Platinum group elements in stream sediments of mining zones: The Hex River (Bushveld Igneous Complex, South Africa)

    NASA Astrophysics Data System (ADS)

    Almécija, Clara; Cobelo-García, Antonio; Wepener, Victor; Prego, Ricardo

    2017-05-01

    Assessment of the environmental impact of platinum group elements (PGE) and other trace elements from mining activities is essential to prevent potential environmental risks. This study evaluates the concentrations of PGE in stream sediments of the Hex River, which drains the mining area of the Bushveld Igneous Complex (South Africa), at four sampling points. Major, minor and trace elements (Fe, Ca, Al, Mg, Mn, V, Cr, Zn, Cu, As, Co, Ni, Cd, and Pb) were analyzed by FAAS and ETAAS in suspended particulate matter and different sediment fractions (<63, 63-500 and 500-2000 μm), and Pt, Pd, Rh, and Ir were measured by ICP-MS after removal of interfering elements (cation exchange resin 50W-DOWEX-X8). Procedures were blank-corrected and accuracy checked using reference materials. Nickel, Cr, Pt, Pd, Rh and Ir show concentrations 3-, 13- 18-, 28-, 48- and 44- fold the typical upper continental crust levels, respectively, although lower than concentrations reported for the parent rocks. The highest concentrations were observed closer to the mining area, decreasing with distance and in the <63 μm fraction, probably derived from atmospheric deposition and surface runoff of PGE-rich particles released from mining activities. Thus, mining activities are causing some disturbance of the surface PGE geochemical cycle, increasing the presence of PGE in the fine fraction of river sediments. We propose that indicators such as airborne particulate matter, and soil and river sediment quality, should be added to the protocols for evaluating the sustainability of mining activities.

  7. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-02-21

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.

  8. Partitioning of light lithophile elements during basalt eruptions on Earth and application to Martian shergottites

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie

    2015-02-01

    An enigmatic record of light lithophile element (LLE) zoning in pyroxenes in basaltic shergottite meteorites, whereby LLE concentrations decrease dramatically from the cores to the rims, has been interpreted as being due to partitioning of LLE into a hydrous vapor during magma ascent to the surface on Mars. These trends are used as evidence that Martian basaltic melts are water-rich (McSween et al., 2001). Lithium and boron are light lithophile elements (LLE) that partition into volcanic minerals and into vapor from silicate melts, making them potential tracers of degassing processes during magma ascent to the surface of Earth and of other planets. While LLE degassing behavior is relatively well understood for silica-rich melts, where water and LLE concentrations are relatively high, very little data exists for LLE abundance, heterogeneity and degassing in basaltic melts. The lack of data hampers interpretation of the trends in the shergottite meteorites. Through a geochemical study of LLE, volatile and trace elements in olivine-hosted melt inclusions from Kilauea Volcano, Hawaii, it can be demonstrated that lithium behaves similarly to the light to middle rare Earth elements during melting, magma mixing and fractionation. Considerable heterogeneity in lithium and boron is inherited from mantle-derived primary melts, which is dominant over the fractionation and degassing signal. Lithium and boron are only very weakly volatile in basaltic melt erupted from Kilauea Volcano, with vapor-melt partition coefficients <0.1. Degassing of LLE is further inhibited at high temperatures. Pyroxene and associated melt inclusion LLE concentrations from a range of volcanoes are used to quantify lithium pyroxene-melt partition coefficients, which correlate negatively with melt H2O content, ranging from 0.13 at low water contents to <0.08 at H2O contents >4 wt%. The observed terrestrial LLE partitioning behavior is extrapolated to Martian primitive melts through modeling. The zoning observed in the shergottite pyroxenes is only consistent with degassing of LLE from a Martian melt near its liquidus temperature if the vapor-melt partition coefficient was an order of magnitude larger than observed on Earth. The range in LLE and trace elements observed in shergottite pyroxenes are instead consistent with concurrent mixing and fractionation of heterogeneous melts from the mantle.

  9. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  11. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  13. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  14. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  15. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  16. The effects of trace element content on pyrite oxidation rates

    NASA Astrophysics Data System (ADS)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the variability of trace element content from the pyrite samples. These data were then used to select areas of interest for NanoSIMS analyses, which in turn was used to select areas for TEM and APT. These analyses show that the trace element content of pyrite can be highly variable, which may significantly affect the rate of pyrite oxidation.

  17. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  18. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    PubMed Central

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  19. Trace elements in Mediterranean seagrasses and macroalgae. A review.

    PubMed

    Bonanno, Giuseppe; Orlando-Bonaca, Martina

    2018-03-15

    This review investigates the current state of knowledge on the levels of the main essential and non-essential trace elements in Mediterranean vascular plants and macroalgae. The research focuses also on the so far known effects of high element concentrations on these marine organisms. The possible use of plants and algae as bioindicators of marine pollution is discussed as well. The presence of trace elements is overall well known in all five Mediterranean vascular plants, whereas current studies investigated element concentrations in only c. 5.0% of all native Mediterranean macroalgae. Although seagrasses and macroalgae can generally accumulate and tolerate high concentrations of trace elements, phytotoxic levels are still not clearly identified for both groups of organisms. Moreover, although the high accumulation of trace elements in seagrasses and macroalgae is considered as a significant risk for the associated food webs, the real magnitude of this risk has not been adequately investigated yet. The current research provides enough scientific evidence that seagrasses and macroalgae may act as effective bioindicators, especially the former for trace elements in sediments, and the latter in seawater. The combined use of seagrasses and macroalgae as bioindicators still lacks validated protocols, whose application should be strongly encouraged to biomonitor exhaustively the presence of trace elements in the abiotic and biotic components of coastal ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  1. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    PubMed

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  3. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  4. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  5. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465

  6. Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.

    PubMed

    Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta

    2018-02-24

    Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.

  7. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician

    PubMed Central

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-01-01

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized. PMID:28452962

  8. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients.

    PubMed

    Fessler, Theresa A

    2013-12-01

    Parenteral nutrition (PN) is a life-sustaining therapy for hundreds of thousands of people who have severe impairment of gastrointestinal function. Trace elements are a small but very important part of PN that can be overlooked during busy practice. Serious complications can result from trace element deficiencies and toxicities, and this is especially problematic during times of product shortages. Practical information on parenteral trace element use can be gleaned from case reports, some retrospective studies, and very few randomized controlled trials. A general knowledge of trace element metabolism and excretion, deficiency and toxicity symptoms, products, optimal dosages, and strategies for supplementation, restriction, and monitoring will equip practitioners to provide optimal care for their patients who depend on PN.

  9. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician.

    PubMed

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-04-28

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.

  10. Slab-derived metasomatism in the Carpathian-Pannonian mantle revealed by investigations of mantle xenoliths from the Bakony-Balaton Highland Volcanic Field

    NASA Astrophysics Data System (ADS)

    Créon, Laura; Delpech, Guillaume; Rouchon, Virgile; Guyot, François

    2017-08-01

    A suite of fifteen peridotite xenoliths from the Bakony-Balaton Highland Volcanic Field (BBHVF, Pannonian Basin, Central Europe) that show abundant petrographic evidence of fluid and melt percolation were studied in order to decipher the formation of their melt pockets and veins. The suite mainly consists of "fertile" lherzolites (5.8-19.9 vol.% clinopyroxene) and a few harzburgites (1.9-5.4 vol.% clinopyroxene) from well-known localities (Szentbékkálla, Szigliget) and two previously unreported localities (Füzes-tó and Mindszentkálla). Major and trace element data indicate that most of the peridotites record variable degrees of partial melt extraction, up to > 15% for the harzburgites. Subsequently, the xenoliths experienced at least two stages of metasomatic modification. The first stage was associated with percolation of a volatile-bearing silicate melt and resulted in crystallization of amphibole, enrichment in the most incompatible trace elements (Ba, Th, U, Sr), and development of negative Nb-Ta anomalies in clinopyroxene. The second and last metasomatic event, widespread beneath the BBHVF, is associated with the formation of silicate melt pockets, physically connected to a network of melt veins, with large and abundant CO2 vesicles. The glass in these veins has sub-alkaline trachy-andesitic composition and displays an OIB-like trace element signature. Its composition attests to the migration through a supra-subduction zone mantle wedge of silicic melt highly enriched in volatiles (CO2, H2O, Cl, F), LILE, REE and HFSE and consistent with compositions of natural and experimental examples of slab melting-derived magma. In the present case, however, melt was likely derived from melting of oceanic crust and carbonated sediments under conditions where Nb-rich mineral phases were not stable in the residue. A likely scenario for the origin such melts involves melting after subduction ceased as the slab thermally equilibrated with the asthenosphere. Melt-rock reactions due to ascent of hot, CO2-rich, siliceous melt to near-Moho depths triggered destabilization of amphibole and primary clinopyroxene, spinel, and possibly olivine. The resulting andesitic glass in melt pockets evolved to more mafic compositions due to mantle mineral assimilation but has heterogeneous trace element signatures mostly inherited from preexisting amphibole. The present example of melt-rock reactions between highly volatile-enriched siliceous slab-derived melt and peridotite from the upper part of the lithospheric mantle ultimately produced derivative melt with major element composition akin to calc-alkaline basaltic andesite, with generally low trace elements concentrations but selective pronounced enrichments in LILE's such as Ba, Sr, Pb.

  11. Interactions between CO2, minerals, and toxic ions: Implications for CO2 leakage from deep geological storage (Invited)

    NASA Astrophysics Data System (ADS)

    Renard, F.; Montes-Hernandez, G.

    2013-12-01

    The long-term injection of carbon dioxide into geological underground reservoirs may lead to leakage events that will enhance fluid-rock interactions and question the safety of these repositories. If injection of carbon dioxide into natural reservoirs has been shown to mobilize some species into the pore fluid, including heavy metals and other toxic ions, the detailed interactions remain still debated because two main processes could interact and modify fluid composition: on the one hand dissolution/precipitation reactions may release/incorporate trace elements, and on the other hand adsorption/desorption reactions on existing mineral surfaces may also mobilize or trap these elements. We analyze here, through laboratory experiments, a scenario of a carbon dioxide reservoir that leaks into a fresh water aquifer through a localized leakage zone such as a permeable fault zone localized in the caprock and enhance toxic ions mobilization. Our main goal is to evaluate the potential risks on potable water quality. In a series of experiments, we have injected carbon dioxide into a fresh water aquifer-like medium that contained carbonate and/or iron oxide particles, pure water, and various concentrations of trace elements (copper, arsenic, cadmium, and selenium, in various states of oxidation). This analogue and simplified medium has been chosen because it contains two minerals (calcite, goethite) widespread found in freshwater aquifers. The surface charge of these minerals may vary with pH and therefore control how trace elements are adsorbed or desorbed, depending on fluid composition. Our experiments show that these minerals could successfully prevent the remobilization of adsorbed Cu(II), Cd(II), Se(IV), and As(V) if carbon dioxide is intruded into a drinking water aquifer. Furthermore, a decrease in pH resulting from carbon dioxide intrusion could reactivate the adsorption of Se(IV) and As(V) if goethite and calcite are sufficiently available in the aquifer. Our results also suggest that adsorption of cadmium and copper could be promoted by calcite dissolution. These ions adsorbed on calcite are not remobilized when carbon dioxide is intruded into the system, even if calcite dissolution is intensified. On the other hand, arsenite As(III), significantly adsorbed on goethite, is partially remobilized by carbon dioxide intrusion. These results show that carbon dioxide may, in some case remobilize some toxic ions in the pore fluid, but the pH effect may also enhance adsorption of other toxic ione on calcite and goethite particles.

  12. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey.

    PubMed

    Sanal, Hasan; Güler, Zehra; Park, Young W

    2011-01-01

    The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.

  13. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  14. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  15. Quantitative real-time monitoring of multi-elements in airborne particulates by direct introduction into an inductively coupled plasma mass spectrometer

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshinari; Sato, Hikaru; Hiyoshi, Katsuhiro; Furuta, Naoki

    2012-10-01

    A new calibration system for real-time determination of trace elements in airborne particulates was developed. Airborne particulates were directly introduced into an inductively coupled plasma mass spectrometer, and the concentrations of 15 trace elements were determined by means of an external calibration method. External standard solutions were nebulized by an ultrasonic nebulizer (USN) coupled with a desolvation system, and the resulting aerosol was introduced into the plasma. The efficiency of sample introduction via the USN was calculated by two methods: (1) the introduction of a Cr standard solution via the USN was compared with introduction of a Cr(CO)6 standard gas via a standard gas generator and (2) the aerosol generated by the USN was trapped on filters and then analyzed. The Cr introduction efficiencies obtained by the two methods were the same, and the introduction efficiencies of the other elements were equal to the introduction efficiency of Cr. Our results indicated that our calibration method for introduction efficiency worked well for the 15 elements (Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Mo, Sn, Sb, Ba, Tl and Pb). The real-time data and the filter-collection data agreed well for elements with low-melting oxides (V, Co, As, Mo, Sb, Tl, and Pb). In contrast, the real-time data were smaller than the filter-collection data for elements with high-melting oxides (Ti, Cr, Mn, Ni, Cu, Zn, Sn, and Ba). This result implies that the oxides of these 8 elements were not completely fused, vaporized, atomized, and ionized in the initial radiation zone of the inductively coupled plasma. However, quantitative real-time monitoring can be realized after correction for the element recoveries which can be calculated from the ratio of real-time data/filter-collection data.

  16. Age of the Lava Creek supereruption and magma chamber assembly at Yellowstone based on 40Ar/39Ar and U-Pb dating of sanidine and zircon crystals

    USGS Publications Warehouse

    Matthews, Naomi E.; Vazquez, Jorge A.; Calvert, Andrew T.

    2015-01-01

    The last supereruption from the Yellowstone Plateau formed Yellowstone caldera and ejected the >1000 km3 of rhyolite that composes the Lava Creek Tuff. Tephra from the Lava Creek eruption is a key Quaternary chronostratigraphic marker, in particular for dating the deposition of mid Pleistocene glacial and pluvial deposits in western North America. To resolve the timing of eruption and crystallization history for the Lava Creek magma, we performed (1) 40Ar/39Ar dating of single sanidine crystals to delimit eruption age and (2) ion microprobe U-Pb and trace-element analyses of the crystal faces and interiors of single zircons to date the interval of zircon crystallization and characterize magmatic evolution. Sanidines from the two informal members composing Lava Creek Tuff yield a preferred 40Ar/39Ar isochron date of 631.3 ± 4.3 ka. Crystal faces on zircons from both members yield a weighted mean 206Pb/238U date of 626.5 ± 5.8 ka, and have trace element concentrations that vary with the eruptive stratigraphy. Zircon interiors yield a mean 206Pb/238U date of 659.8 ± 5.5 ka, and reveal reverse and/or oscillatory zoning of trace element concentrations, with many crystals containing high U concentration cores that likely grew from highly evolved melt. The occurrence of distal Lava Creek tephra in stratigraphic sequences marking the Marine Isotope Stage 16–15 transition supports the apparent eruption age of ∼631 ka. The combined results reveal that Lava Creek zircons record episodic heating, renewed crystallization, and an overall up-temperature evolution for Yellowstone's subvolcanic reservoir in the 103−104 year interval before eruption.

  17. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  18. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  19. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race.

    PubMed

    Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija

    2017-05-01

    The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.

  20. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, H.B.; Delanoy, G.A.; Thomas, D.M.

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; andmore » a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.« less

  1. High-silica Rocks from Oceans, Arcs and Ophiolites: What Can They Tell Us About Ophiolite Origins?

    NASA Astrophysics Data System (ADS)

    Perfit, M. R.; Lundstrom, C.; Wanless, V. D.

    2015-12-01

    Although the volumes of high-silica rocks in submarine oceanic and supra-subduction zone environments are not well constrained, their common occurrence, field relations and compositions have led to various hypotheses suggesting that silicic intrusions (plagiogranites) in ophiolites formed by similar processes to high-silica volcanic rocks at mid-ocean ridge (MOR) or island arc environments. Geochemical attributes of andesite-rhyolite suites from MOR (East Pacific Rise, Juan de Fuca Ridge, Galapagos Spreading Center, Pacific-Antarctic Rise) and back-arc basins (Manus Basin, Lau Basin, East Scotia Ridge) show both similarities and differences to plagiogranitic suites (qtz. diorite-tonalite-trondhjemite) from ophiolites (Troodos and Semail). Both suites are commonly attributed to: extreme (>90%) fractional crystallization of basaltic melts; fractional crystallization coupled with assimilation of hydrated oceanic crust (AFC); or partial melting of preexisting crust. Normalized incompatible trace element patterns show either highly elevated, relatively flat patterns with negative Eu and Sr anomalies similar to high silica volcanics or have complimentary patterns with low abundance, more depleted patterns with positive Eu and Sr anomalies. None of the mechanisms, however, provide a consistent explanation for the compositional and isotopic variations that are observed among plagiogranites. In fact, ophiolitic plagiogranites can have at least two petrogenetic signatures - one indicative of a MORB parent and another that has been related to later, off-axis formation associated with supra-subduction zone magmatism. Based on thermal gradient experiments, the systematic changes in Fe and Si stable isotope ratios with differentiation observed in ophiolite and MOR high-silica suites may result from melt-mineral reactions within a temperature gradient near the boundaries of MOR magma lenses. Comparative major element, trace element and isotopic data will be presented from MOR, BAB and ophiolites to address questions of their origins. Although the mechanism(s) by which plagiogranite bodies form and their relationship to andesitic to rhyolitic lavas still remains enigmatic geochemical comparisons between them provide important clues toward understanding their petrotectonic origins.

  2. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    NASA Astrophysics Data System (ADS)

    West, H. B.; Delanoy, G. A.; Thomas, D. M.; Gerlach, D. C.; Chen, B.; Takahashi, P.; Thomas, D. M.

    1992-03-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of the mixing of at least two, and possibly three, source fluids. These source fluids were recognized as a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibriated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80 percent of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs, yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  3. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  4. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  5. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    NASA Astrophysics Data System (ADS)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount of Cu and Mo mineralization having addition of Si and K with removal of Fe, Mg, Ca, and Na. Keywords: Mass balance calculation; Tepeoba porphyry Cu-Mo-Au deposits; Balikesir; Turkey

  6. Formation and evolution of a metasomatized lithospheric root at the motionless Antarctic plate: the case of East Island, Crozet Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles

    2016-04-01

    Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.

  7. Progress of pharmacogenomic research related to minerals and trace elements.

    PubMed

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  8. Stability of hydrophilic vitamins mixtures in the presence of electrolytes and trace elements for parenteral nutrition: a nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza

    2015-03-25

    In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Toxic effects of trace elements on newborns and their birth outcomes.

    PubMed

    Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-15

    Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Geochemistry of serpentinites in subduction zones: A review

    NASA Astrophysics Data System (ADS)

    Deschamps, Fabien; Godard, Marguerite; Guillot, Stéphane; Hattori, Kéiko

    2013-04-01

    Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zones geodynamics. Their presence and effective role in this environment is acknowledged notably by geophysical, geochemical and field observations of (paleo-) subduction zones. In this context, with the increasing amount of studies concerning serpentinites in subduction environments, a huge geochemical database was created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of ~ 900 geochemical analyses of abyssal, mantle wedge and subducted serpentinites. The aim was to better understand the geochemical evolution of these rocks during their subduction history as well as their impact in the global geochemical cycle. When studying serpentinites, it is often a challenge to determine the nature of the protolith and their geological history before serpentinisation. The present-day (increasing) geochemical database for serpentinites indicates little to no mobility of incompatible elements at the scale of the hand-sample in most serpentinized peridotites. Thus, Rare Earth Elements (REE) distribution can be used to identify the initial protolith for abyssal and mantle wedge serpentinites, as well as magmatic processes such as melt/rock interactions taking place before serpentinisation. In the case of subducted serpentinites, the interpretation of trace element data is more difficult due to secondary enrichments independent of the nature of the protolith, notably in (L)REE. We propose that these enrichments reflect complex interactions probably not related to serpentinisation itself, but mostly to fluid/rock or sediment/rock interactions within the subduction channel, as well as intrinsic feature of the mantle protolith which could derive from the continental lithosphere exhumed at the ocean-continent transition. Additionally, during the last ten years, numerous studies have been carried out, notably using in situ approaches, to better constrain the geochemical budget of fluid-mobile elements (FME; e.g. B, Li, Cl, As, Sb, U, Th, Sr) stored in serpentinites and serpentine phases. These elements are good markers of the fluid/rock interactions taking place during serpentinisation. Today, the control of serpentinites on the behaviour of these elements, from their incorporation to their gradually release during subduction, is better understood. Serpentinites must be considered as a component of the FME budget in subduction zones and their role, notably on arc magmas composition, is undoubtedly underestimated presently in the global geochemical cycle.

  11. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  12. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  13. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. A mass-balance model to separate and quantify colloidal and solute redistributions in soil

    USGS Publications Warehouse

    Bern, C.R.; Chadwick, O.A.; Hartshorn, A.S.; Khomo, L.M.; Chorover, J.

    2011-01-01

    Studies of weathering and pedogenesis have long used calculations based upon low solubility index elements to determine mass gains and losses in open systems. One of the questions currently unanswered in these settings is the degree to which mass is transferred in solution (solutes) versus suspension (colloids). Here we show that differential mobility of the low solubility, high field strength (HFS) elements Ti and Zr can trace colloidal redistribution, and we present a model for distinguishing between mass transfer in suspension and solution. The model is tested on a well-differentiated granitic catena located in Kruger National Park, South Africa. Ti and Zr ratios from parent material, soil and colloidal material are substituted into a mixing equation to quantify colloidal movement. The results show zones of both colloid removal and augmentation along the catena. Colloidal losses of 110kgm-2 (-5% relative to parent material) are calculated for one eluviated soil profile. A downslope illuviated profile has gained 169kgm-2 (10%) colloidal material. Elemental losses by mobilization in true solution are ubiquitous across the catena, even in zones of colloidal accumulation, and range from 1418kgm-2 (-46%) for an eluviated profile to 195kgm-2 (-23%) at the bottom of the catena. Quantification of simultaneous mass transfers in solution and suspension provide greater specificity on processes within soils and across hillslopes. Additionally, because colloids include both HFS and other elements, the ability to quantify their redistribution has implications for standard calculations of soil mass balances using such index elements. ?? 2011.

  15. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  16. Geochemistry of organic carbon and trace elements in boreal stratified lakes during different seasons

    NASA Astrophysics Data System (ADS)

    Moreva, O. Y.; Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.

    2008-12-01

    Our knowledge of chemical fluxes in the system rock-soils-rivers-ocean of boreal and glacial landscapes is limited by the least studied part, i.e., the river water transformation between the lake and the river systems. Dissolved organic carbon (DOC), nutrients, major and trace elements are being leached from soil profile to the river but subjected to chemical transformation in the lakes due to phytoplankton and bacterial activity. As a result, many lakes in boreal regions are quite different in chemical composition compared to surrounding rivers and demonstrate important chemical stratification. The main processes responsible for chemical stratification in lakes are considered to be i) diffusion fluxes from the sediment to the bottom water accompanied by sulfate reduction and methanogenesis in the sediments and ii) dissolution/mineralization of precipitating organic matter (mineral fraction, detritus, plankton pellets) in the bottom layer horizons under anoxic conditions. Up to present time, distinguishing between two processes remains difficult. This paper is aimed at filling this gap via detailed geochemical analysis of DOC and trace elements in the water column profiles of three typical stratified lakes of Arkhangelsk region in Kenozersky National Parc (64° N) in winter (glacial) and in summer period. Concentration of most trace elements (Li, B, Al, Ti, V, Cr, Ni, Co, Zn, As, Rb, Sr, Y, Zr, Mo, Sb, Ba, REEs, Th, U) are not subjected to strong variations along the water column, despite the presence of strong or partial redox stratification. Apparently, these elements are not significantly controlled by production/mineralization processes and redox phenomena in the water column, or the influence of these processes is not pronounced under the control by the allochtonous river water input. In particularly, the stability of titanium and aluminum concentration along the depth profile and their independence of iron behavior suggest the important control by dissolved organic matter. Therefore, organo-ferric colloids controlling petrogenic elements speciation in soil and river waters are being replaced by autochthonous organic colloids in the lake system. The same observation is true for some heavy metals such as nickel, copper and zinc, whereas cobalt, as limiting component, is being strongly removed from the photic zone or it is coprecipitating with manganese hydroxide. Results of the present work allow quantitative evaluation of the role of redox processes in the bottom horizons and organic detritus degradation in the creation of chemical stratification of small lakes with high DOC concentration. Further insights on geochemical migration of trace elements in lakes require : i) study of colloidal speciation using in-situ dialysis; ii) monitoring the annual and seasonal dynamics of redox processes and TE concentration variation along the profile; iii) quantitative assessment of bacterial degradation of suspended OM and Mn and Fe redox reactions along the depth profile; iv) setting the sedimentary traps for evaluation of suspended material fluxes, and, v) thorough study of chemical composition of interstitial pore waters.

  17. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  18. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  19. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace elements and other sources of bias and variability in the sampling process. Trace elements have both natural and anthropogenic sources that may affect the sampling process, including the sample-collection and handling materials used in many trace-element monitoring studies. Trace elements also react with these materials within the timescales typical for collection, processing and analysis of runoff samples. To study the characteristics and potential effects of trace elements in highway and urban runoff, investigators typically sample one or more operationally defined matrixes including: whole water, dissolved (filtered water), suspended sediment, bottom sediment, biological tissue, and contaminant sources. The sampling and analysis of each of these sample matrixes can provide specific information about the occurrence and distribution of trace elements in runoff and receiving waters. There are, however, technical concerns specific to each matrix that must be understood and addressed through use of proper collection and processing protocols. Valid protocols are designed to minimize inherent problems and to maximize the accuracy, precision, comparability, and representativeness of data collected. Documentation, including information about monitoring protocols, quality assurance and quality control efforts, and ancillary data also is necessary to establish data quality. This documentation is especially important for evaluation of historical traceelement monitoring data, because trace-element monitoring protocols and analysis methods have been constantly changing over the past 30 years.

  20. How U-Th series radionuclides have come to trace estuarine processes

    NASA Astrophysics Data System (ADS)

    Church, T. M.

    2014-12-01

    Some forty years ago, the essence of estuarine processes was pioneered in terms of property-property (salinity) parameterization and end member mixing experiments. The result revealed how scavenging via "flocculation" of organic material such as humic acids affect primary nutrients and trace elements, many of pollutant interest. Defined in the Delaware are estuarine reaction zones, including one more "geochemical" in upper turbid areas and another more" biochemical" in more productive photic zones of lower areas. Since then, the natural U-Th radionuclide series have been employed to quantify estuarine transport and scavenging processes. Parent U appears negatively non-conserved during summer in estuarine and coastal waters, while that of Ra isotopes positively non-conservative dominated by a ground water end member. For both U and Ra, the biogeochemical influence of marginal salt marshes is significant. Indeed in the marsh atmospheric 210-Pb has become the metric of choice for the chronology of estuarine pollutant records. Using the more particle reactive isotopes in quantifying estuarine mixing processes (e.g. Th or Pb) proves to be fruitful in the Delaware and upper Chesapeake. While Th simply tracks that of particle abundance, both 210-Pb and 210-Po show differential scavenging with residence times of weeks to a month according to lithogenic and biogenic cycling processes, respectively.

  1. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  2. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    USGS Publications Warehouse

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.

  3. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  4. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy.

    PubMed

    Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla

    2009-04-01

    The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.

  5. The effect of pasteurization on trace elements in donor breast milk.

    PubMed

    Mohd-Taufek, N; Cartwright, D; Davies, M; Hewavitharana, A K; Koorts, P; McConachy, H; Shaw, P N; Sumner, R; Whitfield, K

    2016-10-01

    Premature infants often receive pasteurized donor human milk when mothers are unable to provide their own milk. This study aims to establish the effect of the pasteurization process on a range of trace elements in donor milk. Breast milk was collected from 16 mothers donating to the milk bank at the Royal Brisbane and Women's Hospital. Samples were divided into pre- and post-pasteurization aliquots and were Holder pasteurized. Inductively coupled plasma mass spectrometry was used to analyze the trace elements zinc (Zn), copper (Cu), selenium (Se), manganese (Mn), iodine (I), iron (Fe), molybdenum (Mo) and bromine (Br). Differences in trace elements pre- and post-pasteurization were analyzed. No significant differences were found between the trace elements tested pre- and post-pasteurization, except for Fe (P<0.05). The median (interquartile range, 25 to 75%; μg l(-1)) of trace elements for pre- and post- pasteurization aliquots were-Zn: 1639 (888-4508), 1743 (878-4143), Cu: 360 (258-571), 367 (253-531), Se: 12.34 (11.73-17.60), 12.62 (11.94-16.64), Mn: (1.48 (1.01-1.75), 1.49 (1.11-1.75), I (153 (94-189), 158 (93-183), Fe (211 (171-277), 194 (153-253), Mo (1.46 (0.37-2.99), 1.42 (0.29-3.73) and Br (1066 (834-1443), 989 (902-1396). Pasteurization had minimal effect on several trace elements in donor breast milk but high levels of inter-donor variability of trace elements were observed. The observed decrease in the iron content of pasteurized donor milk is, however, unlikely to be clinically relevant.

  6. Chemical analysis and geochemical associations in Devonian black shale core samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.

  7. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    NASA Astrophysics Data System (ADS)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of naturally present trace metals with inorganic ligands such as (bi)carbonate that enter the soil upon infiltration with alkaline produced water.

  8. Study on elemental fingerprint of traditional marine Chinese medicine oysters from Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Zheng, Yongjun; Zheng, Kang; Li, Yantuan

    2012-09-01

    In order to investigate the relationship between the trace elements and the characteristics of the oysters, we analyzed the trace elements present in the germplasm of oysters from different producing areas in the Jiaozhou Bay. The element fingerprints were established to reflect the elemental characteristics of the oysters. Concentration patterns of the elements were deciphered by principle component analysis (PCA) and hierarchical cluster analysis (HCA). The six regions were discriminated with accuracy using HCA and PCA based on the concentration of 16 trace elements. The elements were viewed as characteristic elements of the oysters and the fingerprints of these elements could be used to distinguish the quality of the oysters.

  9. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    USGS Publications Warehouse

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  10. Optical comparison of multizone and single-zone photorefractive keratectomy

    NASA Astrophysics Data System (ADS)

    Gonzalez-Cirre, Xochitl; Manns, Fabrice; Rol, Pascal O.; Parel, Jean-Marie A.

    1997-05-01

    The purpose is to calculate and compare the point-spread function and the central ablation depth (CAD) of a paraxial eye model after photo-refractive keratectomy (PRK), with single and multizone treatments. A modified Le Grand-El Hage paraxial eye model, with a pupil diameter ranging from 2 to 8 mm was used. Ray-tracing was performed for initial myopia ranging from 1 to 10D; after single zone PRK; after double zone PRK; and after tripe zone PRK. The ray-tracing of a parallel incident beam was calculated by using the paraxial matrix method. At equal CAD, the optical image quality is better after single zone treatments. Multizone treatments do not seem to be advantageous optically.

  11. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. I. FIFTEEN TRACE ELEMENTS IN NEW YORK, N.Y. (1971-72)

    EPA Science Inventory

    Previous studies have revealed that hair trace element concentrations can reflect exposure in cases of frank poisoning and deficiency. Correlations have been found also in some populations living in regions where metallurgic processes are conducted. This study reports significant...

  12. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  13. Measurement of Trace Elements During the Development and Immune Response of Heliothis virescens Larvae

    USDA-ARS?s Scientific Manuscript database

    While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...

  14. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  15. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  17. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  18. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  19. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values, whereas high Pb* and 87Sr/86Sr eclogites have mantle-like δ26Mg values, suggesting that the two fluid components have diverse influences on the Mg isotopic systematics of these eclogites. The LILE-rich fluid component, possibly derived from mica-group minerals, contains a considerable amount of isotopically heavy Mg that has shifted the δ26Mg of the eclogites towards higher values. By contrast, the 87Sr/86Sr- and Pb-rich fluid component, most likely released from epidote-group minerals in metasediments, has little Mg so as not to modify the Mg isotopic composition of the eclogites. In addition, the influence of talc-derived fluid might be evident in a very few eclogites that have low Rb/Sr and Ba/Pb but slightly heavier Mg isotopic compositions. These findings represent an important step toward a broad understanding of the Mg isotope geochemistry in subduction zones, and contributing to understanding why island arc basalts have averagely heavier Mg isotopic compositions than the normal mantle.

  20. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  1. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  2. Fault distribution in the Precambrian basement of South Norway

    NASA Astrophysics Data System (ADS)

    Gabrielsen, Roy H.; Nystuen, Johan Petter; Olesen, Odleiv

    2018-03-01

    Mapping of the structural pattern by remote sensing methods (Landsat, SPOT, aerial photography, potential field data) and field study of selected structural elements shows that the cratonic basement of South Norway is strongly affected by a regular lineament pattern that encompasses fault swarms of different orientation, age, style, attitude and frequency. Albeit counting numerous fault and fracture populations, the faults are not evenly distributed and N-S to NNE-SSW/NNW-SSE and NE-SE/ENE-WSW-systems are spatially dominant. N-S to NNW-SSE structures can be traced underneath the Caledonian nappes to the Western Gneiss Region in western and central South Norway, emphasizing their ancient roots. Dyke swarms of different ages are found within most of these zones. Also, the Østfold, Oslo-Trondheim and the Mandal-Molde lineament zones coincide with trends of Sveconorwegian post-collision granites. We conclude that the N-S-trend includes the most ancient structural elements, and that the trend can be traced back to the Proterozoic (Svecofennian and Sveconorwegian) orogenic events. Some of the faults may have been active in Neoproterozoic times as marginal faults of rift basins at the western margin of Baltica. Remnants of such fault activity have survived in the cores of many of the faults belonging to this system. The ancient systems of lineaments were passively overridden by the Caledonian fold-and-thrust system and remained mostly, but note entirely inactive throughout the Sub-Cambrian peneplanation and the Caledonian orogenic collapse in the Silurian-Devonian. The system was reactivated in extension from Carboniferous times, particularly in the Permian with the formation of the Oslo Rift and parts of it remain active to the Present, albeit by decreasing extension and fault activity.

  3. Forward and inverse solutions for three-element Risley prism beam scanners.

    PubMed

    Li, Anhu; Liu, Xingsheng; Sun, Wansong

    2017-04-03

    Scan blind zone and control singularity are two adverse issues for the beam scanning performance in double-prism Risley systems. In this paper, a theoretical model which introduces a third prism is developed. The critical condition for a fully eliminated scan blind zone is determined through a geometric derivation, providing several useful formulae for three-Risley-prism system design. Moreover, inverse solutions for a three-prism system are established, based on the damped least-squares iterative refinement by a forward ray tracing method. It is shown that the efficiency of this iterative calculation of the inverse solutions can be greatly enhanced by a numerical differentiation method. In order to overcome the control singularity problem, the motion law of any one prism in a three-prism system needs to be conditioned, resulting in continuous and steady motion profiles for the other two prisms.

  4. U.S. Geological Survey resource assessment of selected Tertiary coal zones in Wyoming, Montana and North Dakota

    USGS Publications Warehouse

    Nichols, D.J.; Ellis, M.S.

    2003-01-01

    In 1999, 1 Gt (1.1 billion st) of coal was produced in the United States. Of this total, 37% was produced in Wyoming, Montana and North Dakota. Coals of Tertiary age from these states typically have low ash contents. Most of these coals have sulfur contents that are in compliance with Clean Air Act standards and most have low concentrations of the trace elements that are of environmental concern. The U.S. Geological Survey (USGS) National Coal Resource Assessment for these states includes geologic, stratigraphic, palynologic and geochemical studies and resource calculations for major Tertiary coal zones in the Powder River, Williston, Greater Green River, Hanna and Carbon Basins. Calculated resources are 595 Gt (655 billion st). Results of the study are available in a USGS Professional Paper and a USGS Open-File Report, both in CD-ROM format.

  5. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).

  6. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm.

    PubMed

    Zhu, LiuCun; Chen, XiJia; Kong, Xiangyin; Cai, Yu-Dong

    2016-11-01

    Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    PubMed

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems. Environ Toxicol Chem 2017;36:2916-2924. © 2017 SETAC. © 2017 SETAC.

  8. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  9. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on molecular mechanisms involved in such processes as inorganic carbon fixation, organic carbon respiration, or nitrogen transformation, they explain how the cycles of trace elements are critically linked to those of major nutrients such as carbon or nitrogen. But we have relatively little understanding of the binding molecules and the enzymes that mediate the biochemical role of trace metals in the marine environment. In this sense, this chapter is more a "preview" than a review of the field of marine bioinorganic chemistry. To exemplify the concepts and methods of this field, we have chosen to focus on one of its most important topics: the potentially limiting role of trace elements in primary marine production. As a result we center our discussion on particular subsets of organisms, biogeochemical cycles, and trace elements. Our chief actors are marine phytoplankton, particularly eukaryotes, while heterotrophic bacteria make only cameo appearances. The biogeochemical cycles that will serve as our plot are those of the elements involved in phytoplankton growth, the major algal nutrients - carbon, nitrogen, phosphorus, and silicon - leaving aside, e.g., the interesting topic of the marine sulfur cycle. Seven trace metals provide the intrigue: manganese, iron, nickel, cobalt, copper, zinc, and cadmium. But several other trace elements such as selenium, vanadium, molybdenum, and tungsten (and, probably, others not yet identified) will assuredly add further twists in future episodes.We begin this chapter by discussing what we know of the concentrations of trace elements in marine microorganisms and of the relevant mechanisms and kinetics of trace-metal uptake. We then review the biochemical role of trace elements in the marine cycles of carbon, nitrogen, phosphorus, and silicon. Using this information, we examine the evidence, emanating from both laboratory cultures and field measurements, relevant to the mechanisms and the extent of control by trace metals of marine biogeochemical cycles. Before concluding with a wistful glimpse of the future of marine bioinorganic chemistry we discuss briefly some paleoceanographic aspects of this new field: how the chemistry of the planet "Earth" - particularly the concentrations of trace elements in the oceans - has evolved since its origin, chiefly as a result of biological processes and how the evolution of life has, in turn, been affected by the availability of essential trace elements.

  10. Trace element geochemistry of volcanic gases and particles from 1983--1984 eruptive episodes of Kilauea volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.

    1987-12-10

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 daysmore » after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).« less

  11. Carbonatite magmatism in northeast India

    NASA Astrophysics Data System (ADS)

    Kumar, D.; Mamallan, R.; Dwivedy, K. K.

    The Shillong Plateau of northeast India is identified as an alkaline province in view of the development of several carbonatite complexes e.g. the Sung Valley (Jaintia Hills), Jasra (Karbi-Anglong), Samchampi and Barpung (Mikir Hills) and lamprophyre dyke swarms (Swangkre, Garo-Khasi Hills). On the basis of limited KAr data, magmatic activity appears to have taken place over a protracted period, ranging from the Late Jurassic to the Early Cretaceous. The carbonatite complexes of the Shillong Plateau share several common traits: they are emplaced along rift zones, either within Archaean gneisses or Proterozoic metasediments and granites, and exhibit enrichment in the light rare-earth elements, U, Th, Nb, Zr, Ti, K and Na. The enrichment in incompatible trace elements can best be accounted for if the parental magmas were of alkali basaltic type (e.g. mela-nephelinite or carbonate-rich alkali picrite).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertucci, M.; Michelato, P.; Moretti, M.

    X-ray fluorescence probe for detection of foreign material inclusions on the inner surface of superconducting cavities has been developed and tested. The setup detects trace element content such as a few micrograms of impurities responsible for thermal breakdown phenomena limiting the cavity performance. The setup has been customized for the geometry of 1.3 GHz TESLA-type niobium cavities and focuses on the surface of equator area at around 103 mm from the centre axis of the cavities with around 20 mm detection spot. More precise localization of inclusions can be reconstructed by means of angular or lateral displacement of the cavity.more » Preliminary tests confirmed a very low detection limit for elements laying in the high efficiency spectrum zone (from 5 to 10 keV), and a high angular resolution allowing an accurate localization of defects within the equator surface.« less

  13. Copahue volcano and its regional magmatic setting

    USGS Publications Warehouse

    Varekamp, J C; Zareski, J E; Camfield, L M; Todd, Erin

    2016-01-01

    Copahue volcano (Province of Neuquen, Argentina) has produced lavas and strombolian deposits over several 100,000s of years, building a rounded volcano with a 3 km elevation. The products are mainly basaltic andesites, with the 2000–2012 eruptive products the most mafic. The geochemistry of Copahue products is compared with those of the main Andes arc (Llaima, Callaqui, Tolhuaca), the older Caviahue volcano directly east of Copahue, and the back arc volcanics of the Loncopue graben. The Caviahue rocks resemble the main Andes arc suite, whereas the Copahue rocks are characterized by lower Fe and Ti contents and higher incompatible element concentrations. The rocks have negative Nb-Ta anomalies, modest enrichments in radiogenic Sr and Pb isotope ratios and slightly depleted Nd isotope ratios. The combined trace element and isotopic data indicate that Copahue magmas formed in a relatively dry mantle environment, with melting of a subducted sediment residue. The back arc basalts show a wide variation in isotopic composition, have similar water contents as the Copahue magmas and show evidence for a subducted sedimentary component in their source regions. The low 206Pb/204Pb of some backarc lava flows suggests the presence of a second endmember with an EM1 flavor in its source. The overall magma genesis is explained within the context of a subducted slab with sediment that gradually looses water, water-mobile elements, and then switches to sediment melt extracts deeper down in the subduction zone. With the change in element extraction mechanism with depth comes a depletion and fractionation of the subducted complex that is reflected in the isotope and trace element signatures of the products from the main arc to Copahue to the back arc basalts.

  14. Geochemical properties of topsoil around the coal mine and thermoelectric power plant.

    PubMed

    Stafilov, Trajče; Šajn, Robert; Arapčeska, Mila; Kungulovski, Ivan; Alijagić, Jasminka

    2018-03-19

    The results of the systematic study of the spatial distribution of trace metals in surface soil over the Bitola region, Republic of Macedonia, known for its coal mine and thermo-electrical power plant activities are reported. The investigated region (3200 km 2 ) is covered by a sparse sampling grid of 5 × 5 km, but in the urban zone and around the thermoelectric power plant the sampling grid is denser (1 × 1 km). In total, 229 soil samples from 149 locations were collected including top-soil (0-5 cm) and bottom-soil samples (20-30 cm and 0-30 cm). Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was applied for the determinations of 21 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V and Zn). Based on the results of factor analyses, three geogenic associations of elements have been defined: F1 (Fe, Ni, V, Co, Cr, Mn and Li), F2 (Zn, B, Cu, Cd, Na and K) and F3 (Ca, Sr, Mg, Ba and Al). Even typical trace metals such as As, Cd, Cu, Ni, P, Pb and Zn are not isolated into anthropogenic geochemical associations by multivariate statistical methods still show some trends of local anthropogenic enrichment. The distribution maps for each analyzed element is showing the higher content of these elements in soil samples collected around the thermoelectric power plants than their average content for the soil samples collected from the whole Bitola Region. It was found that this enrichment is a result of the pollution by fly ash from coal burning which deposited near the plant having a high content of these elements.

  15. PIXE analysis of ancient Chinese Qing dynasty porcelain

    NASA Astrophysics Data System (ADS)

    Cheng, Huansheng; He, Wenquan; Tang, Jiayong; Yang, Fujia; Wang, Jianhua

    1996-09-01

    The major and minor chemical compositions and trace element content of white glaze made in Qing dynasty at kuan kiln have been determined by PIXE. Experimental results show that trace element contents RbSrZr are useful to distinguish the place of production of ancient porcelain. In the porcelain from different kilns situated in a same province, the trace element contents can be different from each other. Determining and comparing the major and minor compositions and trace elemental concentrations in white glaze by PIXE technique, we can distinguish a precious Qing dynasty porcelain made at kuan kiln from a fake.

  16. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Trace elements in streambed sediment and fish livers, 1995-96

    USGS Publications Warehouse

    Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.

    2000-01-01

    In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.

  17. The effect of acidified sample storage time on the determination of trace element concentration in ice cores by ICP-SFMS

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.

    2012-12-01

    Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.

  18. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem.

    PubMed

    Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-01-01

    Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (C org ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and C org than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.

  19. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.

  20. Trace element levels and cognitive function in rural elderly Chinese.

    PubMed

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W; Ma, Feng; Hall, Kathleen S; Murrell, Jill R; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C

    2008-06-01

    Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Three trace elements-calcium, cadmium, and copper-were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p <.0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p =.0044 and p =.0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population.

  1. Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.

    PubMed

    Guyot, Hugues; Saegerman, Claude; Lebreton, Pascal; Sandersen, Charlotte; Rollin, Frédéric

    2009-01-01

    Selenium (Se), iodine (I), zinc (Zn) and copper (Cu) deficiencies in cattle have been reported in Europe. These deficiencies are often associated with diseases. The aim of the study was to assess trace element status in Belgian cattle herds showing pathologies and to compare them to healthy cattle herds. Eighty-two beef herds with pathologies, 11 healthy beef herds, 65 dairy herds with pathologies and 20 healthy dairy herds were studied during barn period. Blood and/or milk samples were taken in healthy animals. Plasma Zn, Cu, inorganic I (PII) and activity of glutathione peroxidase in erythrocytes (GPX) were assayed. In milk, I concentration was measured. Data about pathologies and nutrition in the herds were collected. According to defined thresholds, it appeared that a large proportion of deficient herds belonged to "sick" group of herds. This conclusion was supported by the mean value of trace elements and by the fact that a majority of individual values of trace elements was below the threshold. Dairy herds had mean values of trace elements higher than beef herds. More concentrates and minerals were used in healthy herds versus "sick" herds. These feed supplements were also used more often in dairy herds, compared to beef herds. Trace elements deficiencies are present in cattle herds in Belgium and are linked to diseases. Nutrition plays a major role in the trace elements status.

  2. Long-term anaerobic digestion of food waste stabilized by trace elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less

  3. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  4. Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds.

    PubMed

    Oyewumi, Oluyinka; Schreiber, Madeline E

    2017-08-01

    Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60-70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Tectonic origin of serpentinites on Syros, Greece: Geochemical signatures of abyssal origin preserved in a HP/LT subduction complex

    NASA Astrophysics Data System (ADS)

    Cooperdock, Emily H. G.; Raia, Natalie H.; Barnes, Jaime D.; Stockli, Daniel F.; Schwarzenbach, Esther M.

    2018-01-01

    This study combines whole rock trace and major element geochemistry, and stable isotope (δD and δ18O) analyses with petrographic observations to deduce the origin and tectonic setting of serpentinization of ultramafic blocks from the exhumed HP/LT Aegean subduction complex on Syros, Greece. Samples are completely serpentinized and are characterized by mineral assemblages that consist of variable amounts of serpentine, talc, chlorite, and magnetite. δD and δ18O values of bulk rock serpentinite powders and chips (δD = - 64 to - 33‰ and δ18O = + 5.2 to + 9.0‰) reflect hydration by seawater at temperatures < 250 °C in an oceanic setting pre-subduction, or by fluids derived from dehydrating altered oceanic crust during subduction. Fluid-mobile elements corroborate the possibility of initial serpentinization by seawater, followed by secondary fluid-rock interactions with a sedimentary source pre- or syn-subduction. Whole rock major element, trace element, and REE analyses record limited melt extraction, exhibit flat REE patterns, and do not show pronounced Eu anomalies. The geochemical signatures preserved in these serpentinites argue against a mantle wedge source, as has been previously speculated for ultramafic rocks on Syros. Rather, the data are consistent with derivation from abyssal peridotites in a hyper-extended margin setting or mid-ocean ridge and fracture zone environment. In either case, the data suggest an extensional and/or oceanic origin associated with the Cretaceous opening of the Pindos Ocean and not a subduction-related derivation from the mantle wedge.

  6. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  7. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Fate of colloids during estuarine mixing in the Arctic

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.; Gordeev, V. V.; Shevchenko, V. P.; Chupakov, A. V.; Vorobieva, T. Y.; Candaudap, F.; Causserand, C.; Lanzanova, A.; Zouiten, C.

    2014-02-01

    The estuarine behavior of organic carbon (OC) and trace elements (TE) was studied for the largest European sub-Arctic river, which is the Severnaya Dvina; this river has a deltaic estuary covered in ice during several hydrological seasons: summer (July 2010, 2012) and winter (March 2009) baseflow, and the November-December 2011 ice-free period. Colloidal forms of OC and TE were assessed for three pore size cutoffs (1, 10, and 50 kDa) using an in situ dialysis procedure. Conventionally dissolved (< 0.22 μm) fractions demonstrated clear conservative behavior for Li, B, Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of freshwater with the White Sea; a significant (up to a factor of 10) concentration increase occurs with increases in salinity. Si and OC also displayed conservative behavior but with a pronounced decrease in concentration seawards. Rather conservative behavior, but with much smaller changes in concentration (variation within ±30%) over a full range of salinities, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and heavy REE. Strong non-conservative behavior with coagulation/removal at low salinities (< 5‰) was exhibited by Fe, Al, Zr, Hf, and light REE. Finally, certain divalent metals exhibited non-conservative behavior with a concentration gain at low (~ 2-5‰, Ba, Mn) or intermediate (~ 10-15‰, Ba, Zn, Pb, Cd) salinities, which is most likely linked to TE desorption from suspended matter or sediment outflux. The most important result of this study is the elucidation of the behavior of the "truly" dissolved low molecular weight LMW< 1 kDa fraction containing Fe, OC, and a number of insoluble elements. The concentration of the LMW fraction either remains constant or increases its relative contribution to the overall dissolved (< 0.22 μm) pool as the salinity increases. Similarly, the relative proportion of colloidal (1 kDa-0.22 μm) pool for the OC and insoluble TE bound to ferric colloids systematically decreased seaward, with the largest decrease occurring at low (< 5‰) salinities. Overall, the observed decrease in the colloidal fraction may be related to the coagulation of organo-ferric colloids at the beginning of the mixing zone and therefore the replacement of the HMW1 kDa-0.22 μm portion by the LMW< 1 kDa fraction. These patterns are highly reproducible across different sampling seasons, suggesting significant enrichment of the mixing zone by the most labile (and potentially bioavailable) fraction of the OC, Fe and insoluble TE. The size fractionation of the colloidal material during estuarine mixing reflects a number of inorganic and biological processes, the relative contribution of which to element speciation varies depending on the hydrological stage and time of year. In particular, LMW< 1 kDa ligand production in the surface horizons of the mixing zone may be linked to heterotrophic mineralization of allochthonous DOM and/or photodestruction. Given the relatively low concentration of particulate versus dissolved load of most trace elements, desorption from the river suspended material was less pronounced than in other rivers in the world. As a result, the majority of dissolved components exhibited either conservative (OC and related elements such as divalent metals) or non-conservative, coagulation-controlled (Fe, Al, and insoluble TE associated with organo-ferric colloids) behavior. The climate warming at high latitudes is likely to intensify the production of LMW< 1 kDa organic ligands and the associated TE; therefore, the delivery of potentially bioavailable trace metal micronutrients from the land to the ocean may increase.

  9. Composition of coarse-grained magnetite from pegmatite dikes related to plutons of quartz monzonite in the Jabal Lababa area, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Overstreet, William C.; Mousa, Hassan; Matzko, John J.

    1985-01-01

    Crystals of magnetite as large as 30 mm long and 7 mm thick are locally present in quartz-rich zones of interior and exterior pegmatite dikes related to plutons of quartz monzonite in the Jabal Lababa area. Niobium, tin, and yttrium are strongly enriched in six specimens of magnetite from interior pegmatite dikes in a small pluton where these elements form geochemical anomalies in nonmagnetic heavy-mineral concentrates from wadi sediment. Less abundant anomalous elements in the magnetite are molybdenum, lead, and zirconium, which also tend to be present in anomalous amounts in the nonmagnetic concentrates from the niobium-bearing pluton. The most anomalous trace element in the magnetite is zinc, which is at least 10 times as abundant as it is in the quartz monzonite plutons or in the nonmagnetic concentrates. The capacity of magnetite to scavenge molybdenum, zinc, niobium, lead, tin, yttrium, and zirconium suggests the possible utility of magnetite as a geochemical sample medium.

  10. Application of Microbeam Techniques to Identifying and Assessing Comagmatic Mixing Between Summit and Rift Eruptions at Kilauea Volcano (Invited)

    NASA Astrophysics Data System (ADS)

    Thornber, C. R.; Rowe, M. C.; Adams, D. T.; Orr, T. R.

    2010-12-01

    Near-continuous eruption of Kilauea Volcano since 1983 has yielded an extensive record of glass, phenocryst and melt-inclusion chemistry from well-quenched lava that can be correlated with geophysical and geological monitoring data. Eruption temperatures are determined using glass thermometry. Microbeam evaluation of phenocryst mineralogy, morphology, texture, zoning and melt inclusions helps to constrain magma storage and transport within the edifice and to track the evolution of shallow magmatic plumbing during this prolonged eruptive era. For most of this eruption up to April 2001, east rift lava was olivine-phyric and olivine-liquid relations indicated equilibrium crystallization during summit-to-rift magma transport. From 2001 to present, most lava erupted from vents near Pu`u O`o has been a relatively low-temperature “hybrid”, characterized by a disequilibrium low-pressure phenocryst assemblage. Olivine (Fo81.5-80.5) coexists with phenocrysts of lower temperature clinopyroxene (±plagioclase, ±Fe-rich olivine). Mixing between hotter and cooler magma is texturally documented by complex pyroxene zoning and resorption and olivine overgrowths on resorbed pyroxene. The co-magmatic mixing is not apparent in bulk lava analyses, since both components are fractionates of parent magmas with indistinguishable trace-element signatures. Post-2001 rift-zone lava indicates perpetual flushing of stored magma by hotter recharge magma rising from the mantle source. Geophysical and gas monitoring data confirm an increase in magma supply to Kilauea Volcano between 2001 and 2008, which we have interpreted as increasing the efficiency of the flushing process. Since March 2008, the petrology of the new summit lava lake and contemporaneously erupted rift zone lava provides new perspective on complexities of magma degassing, crystallization and mixing prior to rift eruption. Bulk lava chemistry, SIMS and LA-ICPMS analyses of matrix glasses and olivine melt-inclusions in both rift zone lava and summit tephra reveal identical trace-element concentrations, thus confirming that both eruption sites share a common magma source. Because Kilauea magma degasses all of its primary sulfur (~1200 to 1500 ppm) at pressures less than 100 bars, shallow summit-to-rift magma mixing and crystallization is quantified by study of relative sulfur concentrations in melt inclusions. For higher temperature magma at the summit, olivine (Fo82.0-83.5) contains melt inclusions with 600-1400 ppm S. A small population of rift zone phenocrysts have similar sulfur contents, while typical rift zone olivine inclusions contain 300-700 ppm S. Complex zoned pyroxene phenocrysts with multiple inclusions have trapped melts of low to high sulfur concentrations ranging from100 to 1000 ppm. Collectively, these microbeam observations provide evidence for dynamic pre-eruptive comingling between hotter, sulfur-rich magma rising beneath the summit with a denser, cooler and degassed pyroxene-bearing magma mush, prior to eruption on the east rift.

  11. The occurrence and distribution of selected trace elements in the upper Rio Grande and tributaries in Colorado and Northern New Mexico

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.

    2001-01-01

    Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.

  12. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  13. Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia

    NASA Astrophysics Data System (ADS)

    Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe

    2008-02-01

    Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.

  14. Long-term anaerobic digestion of food waste stabilized by trace elements.

    PubMed

    Zhang, Lei; Jahng, Deokjin

    2012-08-01

    The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.

  15. Concentrations of mercury and other trace elements in walleye, smallmouth bass, and rainbow trout in Franklin D. Roosevelt Lake and the upper Columbia River, Washington, 1994

    USGS Publications Warehouse

    Munn, M.D.; Cox, S.E.; Dean, C.J.

    1995-01-01

    Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.

  16. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    PubMed

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  17. Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy).

    PubMed

    Frontalini, Fabrizio; Buosi, Carla; Da Pelo, Stefania; Coccioni, Rodolfo; Cherchi, Antonietta; Bucci, Carla

    2009-06-01

    In order to assess the response of benthic foraminifera to trace element pollution, a study of benthic foraminiferal assemblages was carried out into sediment samples collected from the Santa Gilla lagoon (Sardinia, Italy). The lagoon has been contaminated by industrial waste, mainly trace elements, as well as by agricultural and domestic effluent. The analysis of surficial sediment shows enrichment in trace elements, including Cr, Cu, Hg, Ni, Pb and Zn. Biotic and abiotic data, analyzed with multivariate techniques of statistical analysis, reveal a distinct separation of both the highly polluted and less polluted sampling sites. The innermost part of the lagoon, comprising the industrial complex at Macchiareddu, is exposed to a high load of trace elements which are probably enhanced by their accumulation in the finer sediment fraction. This area reveals lower diversity and higher percentages of abnormalities when compared to the outermost part of the lagoon.

  18. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  19. Geochemistry of subduction zone serpentinites: A review

    NASA Astrophysics Data System (ADS)

    Deschamps, Fabien; Godard, Marguerite; Guillot, Stéphane; Hattori, Kéiko

    2013-09-01

    Over the last decades, numerous studies have emphasized the role of serpentinites in the subduction zone geodynamics. Their presence and role in subduction environments are recognized through geophysical, geochemical and field observations of modern and ancient subduction zones and large amounts of geochemical database of serpentinites have been created. Here, we present a review of the geochemistry of serpentinites, based on the compilation of ~ 900 geochemical data of abyssal, mantle wedge and exhumed serpentinites after subduction. The aim was to better understand the geochemical evolution of these rocks during their subduction as well as their impact in the global geochemical cycle. When studying serpentinites, it is essential to determine their protoliths and their geological history before serpentinization. The geochemical data of serpentinites shows little mobility of compatible and rare earth elements (REE) at the scale of hand-specimen during their serpentinization. Thus, REE abundance can be used to identify the protolith for serpentinites, as well as magmatic processes such as melt/rock interactions before serpentinization. In the case of subducted serpentinites, the interpretation of trace element data is difficult due to the enrichments of light REE, independent of the nature of the protolith. We propose that enrichments are probably not related to serpentinization itself, but mostly due to (sedimentary-derived) fluid/rock interactions within the subduction channel after the serpentinization. It is also possible that the enrichment reflects the geochemical signature of the mantle protolith itself which could derive from the less refractory continental lithosphere exhumed at the ocean-continent transition. Additionally, during the last ten years, numerous analyses have been carried out, notably using in situ approaches, to better constrain the behavior of fluid-mobile elements (FME; e.g. B, Li, Cl, As, Sb, U, Th, Sr) incorporated in serpentine phases. The abundance of these elements provides information related to the fluid/rock interactions during serpentinization and the behavior of FME, from their incorporation to their gradual release during subduction. Serpentinites are considered as a reservoir of the FME in subduction zones and their role, notably on arc magma composition, is underestimated presently in the global geochemical cycle.

  20. Environmental geochemical study of Red Mountain--an undisturbed volcanogenic massive sulfide deposit in the Bonnifield District, Alaska range, east-central Alaska: Chapter I in Recent U.S. Geological Survey studies in the Tintina Gold Province, Alaska, United States, and Yukon, Canada--results of a 5-year project

    USGS Publications Warehouse

    Eppinger, Robert G.; Briggs, Paul H.; Dusel-Bacon, Cynthia; Giles, Stuart A.; Gough, Larry P.; Hammarstrom, Jane M.; Hubbard, Bernard E.

    2007-01-01

    Water samples with the lowest pH values, highest specific conductances, and highest major- and trace-element concentrations are from springs and streams within the quartz-sericite-pyrite alteration zone. Aluminum, As, Cd, Co, Cu, Fe, Mn, Ni, Pb, Y, and particularly Zn and the REEs are all found in high concentrations, ranging across four orders of magnitude. Waters collected upstream from the alteration zone have near-neutral pH values, lower specific conductances, lower metal concentrations, and measurable alkalinities. Water samples collected downstream of the alteration zone have pH values and metal concentrations intermediate between these two extremes. Stream sediments are anomalous in Zn, Pb, S, Fe, Cu, As, Co, Sb, and Cd relative to local and regional background abundances. Red Mountain Creek and its tributaries do not support, and probably never have supported, significant megascopic faunal aquatic life.

  1. Provenance of the Walash-Naopurdan back-arc-arc clastic sequences in the Iraqi Zagros Suture Zone

    NASA Astrophysics Data System (ADS)

    Ali, Sarmad A.; Sleabi, Rajaa S.; Talabani, Mohammad J. A.; Jones, Brian G.

    2017-01-01

    Marine clastic rocks occurring in the Walash and Naopurdan Groups in the Hasanbag and Qalander areas, Kurdistan region, Iraqi Zagros Suture Zone, are lithic arenites with high proportions of volcanic rock fragments. Geochemical classification of the Eocene Walash and Oligocene Naopurdan clastic rocks indicates that they were mainly derived from associated sub-alkaline basalt and andesitic basalt in back-arc and island arc tectonic settings. Major and trace element geochemical data reveal that the Naopurdan samples are chemically less mature than the Walash samples and both were subjected to moderate weathering. The seaway in the southern Neotethys Ocean was shallow during both Eocene and Oligocene permitting mixing of sediment from the volcanic arcs with sediment derived from the Arabian continental margin. The Walash and Naopurdan clastic rocks enhance an earlier tectonic model of the Zagros Suture Zone with their deposition occurring during the Eocene Walash calc-alkaline back-arc magmatism and Early Oligocene Naopurdan island arc magmatism in the final stages of intra-oceanic subduction before the Miocene closure and obduction of the Neotethys basin.

  2. Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt

    NASA Astrophysics Data System (ADS)

    Brenan, J. M.; Shaw, H. F.; Ryerson, F. J.; Phinney, D. L.

    1995-10-01

    In order to more fully establish a basis for quantifying the role of amphibole in trace-element fractionation processes, we have measured pargasite/silicate melt partitioning of a variety of trace elements (Rb, Ba, Nb, Ta, Hf, Zr, Ce, Nd, Sm, Yb), including the first published values for U, Th and Pb. Experiments conducted at 1000°C and 1.5 GPa yielded large crystals free of compositional zoning. Partition coefficients were found to be constant at total concentrations ranging from ˜ 1 to > 100 ppm, indicating Henry's Law is oparative over this interval. Comparison of partition coefficients measured in this study with previous determinations yields good agreement for similar compositions at comparable pressure and temperature. The compatibility of U, Th and Pb in amphibole decreases in the order Pb > Th > U. Partial melting or fractional crystallization of amphibole-bearing assemblages will therefore result in the generation of excesses in 238U activity relative to 230Th, similar in magnitude to that produced by clinopyroxene. The compatibility of Pb in amphibole relative to U or Th indicates that melt generation in the presence of residual amphibole will result in the long-term enrichment in Pb relative to U or Th in the residue. This process is therefore incapable of producing the depletion in Pb relative to U or Th inferred from the Pb isotopic composition of MORB and OIB. Comparison of partition coefficients measured in this study with previous values for clinopyroxene allows some distinction to be made between expected trace-element fractionations produced during dry (cpx present) and wet (cpx + amphibole present) melting. Rb, Ba, Nb and Ta are dramatically less compatible in clinopyroxene than in amphibole, whereas Th, U, Hf and Zr have similar compatibilities in both phases. Interelement fractionations, such as DNb/DBa are also different for clinopyroxene and amphibole. Changes in certain ratios, such as Ba/Nb, Ba/Th, and Nb/Th within comagmatic suites may therefore offer a means to discern the loss of amphibole from the melting assemblage. Elastic strain theory is applied to the partitioning data after the approaches of Beattie and Blundy and Wood and is used to predict amphibole/melt partition coefficients at conditions of P, T and composition other than those employed in this study. Given values of DCa, DTi and DK from previous partitioning studies, this approach yields amphibole/melt trace-element partition coefficients that reproduce measured values from the literature to within 40-45%. This degree of reproducibility is considered reasonable given that model parameters are derived from partitioning relations involving iron- and potassium-free amphibole.

  3. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  4. Li isotopes in archean zircons

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Ushikubo, T.; Kita, N.; Cavosie, A. J.; Kozdon, R.; Valley, J. W.

    2009-12-01

    Li is a fluid mobile, moderately incompatible element with a large mass difference between its two stable isotopes. Different processes can fractionate 7Li/6Li (fluid-rock interaction, metamorphic reactions, and Li diffusion), leading to variation by over 50‰ of δ7Li for common crustal material. These large variations make δ7Li a potential tracer of continental weathering and of the fluids affecting magma sources. Here, we report δ7Li and trace elements in Archean igneous zircons from TTG and sanukitoid granitoids from the Superior Province (Canada) in order to characterize Li in Archean zircons from well-described samples. These data are compared to detrital zircons from the Jack Hills (Western Australia) for which parent rock-type is uncertain. This study aims to better understand Li substitution in zircon and to evaluate the utility of δ7Li and [Li] for Archean petrogenesis. Zircons (n=71) were analyzed for δ7Li and trace elements (Li, P, Ca, Ti, V, Fe, Y, REE, U, Th) using an IMS-1280 ion microprobe. Most of the zircons display typical igneous REE patterns and zoning by CL. [Li] averages 13.1 ± 9 for TTG, 25.7 ± 19 for Sanukitoid and 31.0 ± 14 ppm for Jack Hills zircons, which are distinct from mantle-related zircons (<0.1 ppm). Values of δ7Li average 1.0 ± 4.5‰ for TTGs, 6.3 ± 4.4‰ for sanukitoids and -2.6 ± 8.8‰ for Jack Hills samples. Trace elements were analyzed from single spots in order to evaluate coupled substitutions. Atomic ratios (3Li+Y+REE)/P average 2.6, showing that Li and trivalent atoms are not charge-balanced by P, and suggesting that Li does not replace Zr, according to the xenotime substitution. However, (Y+REE)/(Li+P) atomic ratios average 1.0 ± 0.6, supporting the hypothesis that Li is interstitial and partly compensates trivalent cations. Several observations in this study suggest that [Li] is primary in the studied zircons: i) if Li is interstitial, charge-balance and slow diffusion of REE would control Li mobility, ii) core-rim or oscillatory zoning is observed for [Li] in many high T zircons, iii) CL zoning and low Ca+Fe, U+Th and U/Th imply little radiation damage. Values of δ7Li become erratic at [Li] < ~5 ppm and low values are not interpreted. We suggest that small amounts of non-ionic substitution could be significant for small [Li], whereas interstitial substitution dominates at > ~5 ppm. Li content and isotopic compositions of TTG zircons suggest genesis from mantle-like material, as suggested by δ18O(Zrc) (5.5 ± 0.4‰, King et al., 1998). Sanukitoids are commonly thought to be derived from the melting of peridotite metasomatized by seawater-like slab-dehydration fluids, (supported by the high δ7Li(Zrc)), followed by extensive fractional crystallization, explaining the high sanukitoid [Li]. [Li] and δ7Li thus reflect petrogenetic processes. The Jack Hills detrital zircons are consistent with crustal sources including TTG, sanukitoid and sediment-contaminated granitoid magmas.

  5. Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.

    2015-12-01

    Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.

  6. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility.

    PubMed

    Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-10-01

    The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.

  7. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains. Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss. Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade metamorphism that was initiated at about 1035 Ma. This rock was then subjected to repeated episodes of dissolution/reprecipitation for about 150 m.y. during regional cooling of the Hudson Highlands.

  8. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains.Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss.Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade metamorphism that was initiated at about 1035 Ma. This rock was then subjected to repeated episodes of dissolution/reprecipitation for about 150 m.y. during regional cooling of the Hudson Highlands.

  9. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  10. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review

    PubMed Central

    Hussain, Mohsina

    2016-01-01

    Human body requires certain essential elements in small quantities and their absence or excess may result in severe malfunctioning of the body and even death in extreme cases because these essential trace elements directly influence the metabolic and physiologic processes of the organism. Rapid urbanization and economic development have resulted in drastic changes in diets with developing preference towards refined diet and nutritionally deprived junk food. Poor nutrition can lead to reduced immunity, augmented vulnerability to various oral and systemic diseases, impaired physical and mental growth, and reduced efficiency. Diet and nutrition affect oral health in a variety of ways with influence on craniofacial development and growth and maintenance of dental and oral soft tissues. Oral potentially malignant disorders (OPMD) are treated with antioxidants containing essential trace elements like selenium but even increased dietary intake of trace elements like copper could lead to oral submucous fibrosis. The deficiency or excess of other trace elements like iodine, iron, zinc, and so forth has a profound effect on the body and such conditions are often diagnosed through their early oral manifestations. This review appraises the biological functions of significant trace elements and their role in preservation of oral health and progression of various oral diseases. PMID:27433374

  11. Zircon U-Pb ages and Sr-Nd-Hf isotopes of the highly fractionated granite with tetrad REE patterns in the Shamai tungsten deposit in eastern Inner Mongolia, China: Implications for the timing of mineralization and ore genesis

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Bagas, Leon; Hu, Peng; Han, Ning; Chen, Chun-Liang; Liu, Yuan; Kang, Huan

    2016-09-01

    The Shamai tungsten deposit is located in the eastern part of the Central Asian Orogenic Belt (CAOB). Tungsten mineralization is closely related to the emplacement of fine- to medium-grained biotite monzogranite (G1) and porphyritic biotite monzogranite (G2) in the Shamai Granite. NW-trending joints and faults host orebodies in the Shamai Granite and Devonian hornfels. The mineralization is characterized by a basal veinlet zone progressing upwards to a thick vein zone followed by a mixed zone, a veinlet zone, and a thread vein zone at the top. The ore-related alteration typically consists of muscovite, greisen, and hornfels. In order to constrain the timing of the Shamai mineralization and discuss the ore genesis, muscovite Ar-Ar, molybdenite Re-Os, and zircon U-Pb geochronological, geochemical, and Sr-Nd-Hf isotopic studies were completed on the deposit. The U-Pb zircon dating yielded weighted mean ages of 153 ± 1 Ma for G1 and 146 ± 1 Ma for G2. Muscovite from a wolframite-bearing quartz vein yielded an Ar-Ar plateau age of 140 ± 1 Ma, whereas two molybdenite samples yielded identical Re-Os model ages of 137 ± 2 Ma. These two ages are younger than the two monzogranites, suggesting a prolonged magmatic-hydrothermal interaction during tungsten mineralization. Major and trace element geochemistry shows that both G1 and G2 are characterized by high SiO2 and K2O contents, high A/CNK values (1.08-1.40), a spectacular tetrad effect in their REE distribution patterns, and non-CHARAC (charge-and-radius-controlled) trace element behavior. This suggests that both G1 and G2 are highly differentiated peraluminous rocks with strong hydrothermal interaction. The Nd-Hf isotope data for the Shamai Granite (εNd(t) between - 1.9 and + 7.4, ɛHf(t) from 5.2 to 12.8) are largely compatible with the general scenario for much of the Phanerozoic granite emplaced in the CAOB. It is here suggested that the Shamai Granite originated from partial melting of a juvenile lower crust with minor input of upper crustal material caused by the underplating of mafic magma in an extensional setting. It can also be concluded that the prolonged fractional crystallization and magmatic-hydrothermal interactions have contributed to the formation of the Shamai tungsten deposit.

  12. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  13. Phytoaccumulation of trace elements by wetland plants. 2: Water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.L.; Zayed, A.M.; Qian, J.H.

    Wetland plants are being used successfully for the phytoremediation of trace elements in natural and constructed wetlands. This study demonstrates the potential of water hyacinth (Eichhornia crassipes), an aquatic floating plant, for the phytoremediation of six trace elements. The ability of water hyacinth to take up and translocate six trace elements--As(V), Cd(II), Cr(VI), Cu(II), Ni(II), and Se(VI)--was studied under controlled conditions. Water hyacinth accumulated Cd and Cr best, Se and Cu at moderate levels, and was a poor accumulator of As and Ni. The highest levels of Cd found in shoots and roots were 371 and 6103 mg kg[sup [minus]1]more » dry wt., respectively, and those of Cr were 119 and 32951 mg kg[sup [minus]1] dry wt, respectively. Cadmium, Cr, Cu, Ni, and As were more highly accumulated in roots than in shoots. In contrast, Se was accumulated more in shoots than in roots at most external concentrations. Water hyacinth had high trace element bioconcentration factors when supplied with low external concentrations of all six elements, particularly Cd, Cr, and Cu. Therefore, water hyacinth will be very efficient at phytoextracting trace elements from wastewater containing low concentrations of these elements. The authors conclude that water hyacinth is a promising candidate for phytoremediation of wastewater polluted with Cd, Cr, Cu, and Se.« less

  14. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  15. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  16. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  17. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  18. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    NASA Astrophysics Data System (ADS)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  19. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  20. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Vašinová Galiová, Michaela; Čopjaková, Renata; Škoda, Radek; Štěpánková, Kateřina; Vaňková, Michaela; Kuta, Jan; Prokeš, Lubomír; Kynický, Jindřich; Kanický, Viktor

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS.

  1. Co-occurrence profiles of trace elements in potable water systems: a case study.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N

    2014-11-01

    Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.

  2. A simple model for closure temperature of a trace element in cooling bi-mineralic systems

    NASA Astrophysics Data System (ADS)

    Liang, Yan

    2015-09-01

    Closure temperature is defined as the lower temperature limit at which the element of interest effectively ceases diffusive exchange with its surrounding medium during cooling. Here we generalize the classic equation of Dodson (1973) for cooling mono-mineralic systems to cooling bi-mineralic aggregates by considering diffusive exchange of a trace element between the two minerals in a closed system. We present a simple analytical model that includes key parameters affecting the closure temperature of a trace element in cooling bi-mineralic systems: cooling rate, temperature-dependent diffusion coefficients for the trace element in the two minerals, temperature-dependent partition coefficient of the trace element between the two minerals, effective grain sizes of the two minerals, and volume proportions of the minerals in the system. We show that closure temperatures of a trace element in cooling bi-mineralic systems are bounded by the closure temperatures of the trace element in the two mono-mineralic systems and that our generalized model reduces to Dodson's equation when one of the mineral serves as "an effective infinite" reservoir to the other mineral. Application to closure temperatures of REE in orthopyroxene and clinopyroxene bi-mineralic systems highlights the importance of REE diffusion and partitioning in the pyroxenes as well as clinopyroxene modal abundance and grain size in the systems. Closure temperatures for REE in two-pyroxene bearing equigranular rocks are controlled primarily by diffusion in orthopyroxene unless the modal abundance of clinopyroxene is very small. This has important bearings on the interpretation of temperatures derived from the REE-in-two-pyroxene thermometer.

  3. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  5. Decoupling of stream and vegetation solutes during the late stages of weathering: insights from elemental and Mg isotope trends at the Luquillo Critical Zone Observatory, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Chapela Lara, M.; Schuessler, J. A.; Buss, H. L.; McDowell, W. H.

    2017-12-01

    During the evolution of the critical zone, the predominant source of nutrients to the vegetation changes from bedrock weathering to atmospheric inputs and biological recycling. In parallel, the architecture of the critical zone changes with time, promoting a change in water flow regime from near-surface porous flow during early weathering stages to more complex flow regimes modulated by clay-rich regolith during the late stages of weathering. As a consequence of these two concurrent processes, we can expect the predominant sources and pathways of solutes to the streams to also change during critical zone evolution. If this is true, we would observe a decoupling between the solutes used by the vegetation and those that determine the composition of the streams during the late stages of weathering, represented by geomorphically stable tropical settings. To test these hypotheses, we are analyzing the elemental and Mg isotopic composition of regolith and streams at the humid tropical Luquillo Critical Zone Observatory. We aim to trace the relative contributions of the surficial, biologically mediated pathways and the deeper, weathering controlled nutrient pathways. We also investigate the role of lithology on the solute decoupling between the vegetation and the stream, by examining two similar headwater catchments draining two different bedrocks (andesitic volcaniclastic and granitic). Our preliminary elemental and Mg isotope results are consistent with atmospheric inputs in the upper 2 m of regolith in both lithologies and with bedrock weathering at depth. During a short storm event ( 6 h), a headwater stream draining volcaniclastic bedrock showed a large variation in Mg and δ26Mg, correlated with total suspended solids, while another similar headwater granitic stream showed a much narrower variation. A larger stream draining volcaniclastic bedrock showed changes in Mg concentration in response to rain during the same storm event, but did not change in δ26Mg, suggesting the surficial-deep decoupling of solutes we observe in regolith profiles and headwater catchments might be overwhelmed by storage effects at increasing water residence times.

  6. Sequential patterns of essential trace elements composition in Gracilaria verrucosa and its generated products

    NASA Astrophysics Data System (ADS)

    Izzati, Munifatul; Haryanti, Sri; Parman, Sarjana

    2018-05-01

    Gracilaria widely known as a source of essential trace elements. However this red seaweeds also has great potential for being developed into commercial products. This study examined the sequential pattern of essential trace elements composition in fresh Gracilaria verrucosa and a selection of its generated products, nemely extracted agar, Gracilaria salt and Gracilaria residue. The sample was collected from a brackish water pond, located in north part Semarang, Central Java. The collected sample was then dried under the sun, and subsequently processed into aformentioned generated products. The Gracilaria salt was obtain by soaking the sun dried Gracilaria overnight in fresh water overnight. The resulted salt solution was then boiled leaving crystal salt. Extracted agar was obtained with alkali agar extraction method. The rest of remaining material was considered as Gracilaria residue. The entire process was repeated 3 times. The compositin of trace elements was examined using ICP-MS Spectrometry. Collected data was then analyzed by ANOVA single factor. Resulting sequential pattern of its essential trace elements composition was compared. A regular table salt was used as controls. Resuts from this study revealed that Gracilaria verrucosa and its all generated products all have similarly patterned the composition of essential trace elements, where Mn>Zn>Cu>Mo. Additionally this pattern is similar to different subspecies of Gracilaria from different location and and different season. However, Gracilaria salt has distinctly different pattern of sequential essential trace elements composition compared to table salt.

  7. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  8. Trace elements: implications for nursing.

    PubMed

    Hayter, J

    1980-01-01

    Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.

  9. Trace element diffusion and kinetic fractionation in wet rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Holycross, Megan E.; Watson, E. Bruce

    2018-07-01

    Piston-cylinder experiments were run to determine the chemical diffusivities of 21 trace elements (Sc, V, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Th and U) in hydrous rhyolitic melts at 1 GPa pressure and temperatures from 850 to 1250 °C. Diffusion couple glasses were doped with trace elements in low concentrations to characterize the diffusivities of all cations in a single experiment. Laser ablation ICP-MS was used to evaluate the trace element concentration gradients that developed in the silicate glasses. All calculated diffusion coefficients correspond to the temperature dependence D = D0exp(-Ea/RT). Rhyolite liquids contained either ∼4.1 wt% or ∼6.2 wt% dissolved H2O; separate Arrhenius relationships are produced for each melt composition. Trace element diffusivities in the melt with 6.2 wt% H2O are roughly two times higher than those in the less hydrous melt. Calculated trace element diffusion coefficients cover nearly two orders of magnitude at a given temperature. The high field strength elements are the slowest diffusers, followed by the transition metals and heavy rare earth elements. The light rare earth elements have the fastest diffusion rates in hydrous rhyolitic melt. The measured diffusion coefficients range down to values sufficiently low to preclude diffusive homogenization over geochemically realistic time scales in some cases. The substantial differences in the diffusivities of individual cations may result in fractionated trace element signatures in rhyolite melt pockets. A simple model is used to explore the potential for kinetic fractionation of REE during growth of an apatite crystal in a diffusive boundary layer locally saturated in P2O5. The faster-diffusing light REE are more efficiently transported away from the crystal interface than the slower-moving heavy REE. Diffusion effects will enrich the melt boundary layer in slow-moving HREE relative to the faster LREE. The kinetic fractionation of REE in the melt growth medium will result in a precipitated apatite crystal with a disequilibrium trace element composition.

  10. Diamond brecciation and annealing accompanying major metasomatism in eclogite xenoliths from the Sask Craton, Canada

    NASA Astrophysics Data System (ADS)

    Czas, Janina; Stachel, Thomas; Pearson, D. Graham; Stern, Richard A.; Read, George H.

    2018-05-01

    We studied eclogite xenoliths (diamond-free n = 28; diamondiferous n = 22) from the Cretaceous Fort à la Corne Kimberlite Field in Western Canada for their major element, trace element and oxygen isotope compositions to assess their origin and metasomatic history, and possible relationships between metasomatism and diamond formation. All eclogites have major element and oxygen isotope compositions consistent with a derivation from different levels of subducted, seawater altered oceanic crust. While barren xenoliths are more likely to be of gabbroic origin, diamond-bearing samples commonly have signatures consistent with shallow basaltic protoliths. The mineral chemistry in bimineralic diamond-free eclogites spans a wide compositional range, yet it is typically homogenous within individual xenoliths. Temperatures calculated from Mg-Fe exchange between garnet and clinopyroxene range widely for these eclogites, from 740 to 1300 °C, indicating the presence of eclogite through most of the lithospheric mantle. Diamondiferous samples are restricted to high temperatures (1180-1390 °C), consistent with derivation from the zone of diamond stability. Compositionally, diamond-bearing eclogites span a broad range similar to their barren counterparts, but there is also heterogeneity in mineral chemistry on the intra-sample level and in particular garnets are characterised by strong internal chemical gradients. This intra-sample heterogeneity is interpreted as the result of intense melt metasomatism, which occurred in temporal proximity to host kimberlite magmatism, strongly affected major, trace and even oxygen isotope values and resulted in diamond brecciation and annealing.

  11. Prenatal metal exposure in the Middle East: imprint of war in deciduous teeth of children.

    PubMed

    Savabieasfahani, M; Ali, S Sadik; Bacho, R; Savabi, O; Alsabbak, M

    2016-09-01

    In war zones, the explosion of bombs, bullets, and other ammunition releases multiple neurotoxicants into the environment. The Middle East is currently the site of heavy environmental disruption by massive bombardments. A very large number of US military bases, which release highly toxic environmental contaminants, have also been erected since 2003. Current knowledge supports the hypothesis that war-created pollution is a major cause of rising birth defects and cancers in Iraq. We created elemental bio-imaging of trace elements in deciduous teeth of children with birth defects from Iraq. Healthy and naturally shed teeth from Lebanon and Iran were also analyzed for trace elements. Lead (Pb) was highest in teeth from children with birth defects who donated their teeth from Basra, Iraq (mean 0.73-16.74 (208)Pb/(43)Ca ppm, n = 3). Pb in healthy Lebanese and Iranian teeth were 0.038-0.382 (208)Pb/(43)Ca ppm (n = 4) and 0.041-0.31 (208)Pb/(43)Ca ppm (n = 2), respectively. Our hypothesis that increased war activity coincides with increased metal levels in deciduous teeth is confirmed by this research. Lead levels were similar in Lebanese and Iranian deciduous teeth. Deciduous teeth from Iraqi children with birth defects had remarkably higher levels of Pb. Two Iraqi teeth had four times more Pb, and one tooth had as much as 50 times more Pb than samples from Lebanon and Iran.

  12. Trace element transport in western Siberian rivers across a permafrost gradient

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Manasypov, Rinat M.; Loiko, Sergey V.; Krickov, Ivan A.; Kopysov, Sergey G.; Kolesnichenko, Larisa G.; Vorobyev, Sergey N.; Kirpotin, Sergey N.

    2016-03-01

    Towards a better understanding of trace element (TE) transport in permafrost-affected Earth surface environments, we sampled ˜ 60 large and small rivers (< 100 to ≤ 150 000 km2 watershed area) of the Western Siberian Lowland (WSL) during spring flood and summer and winter baseflow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ˜ 40 major and TEs in the dissolved (< 0.45 µm) fraction allowed establishing main environmental factors controlling the transport of metals and TEs in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentrations was evidenced. Two groups of elements were distinguished: (1) elements that show the same trend throughout the year and (2) elements that show seasonal differences. The first group included elements decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding. The elements of the second group exhibited variable behavior in the course of the year. A northward increase during spring period was mostly pronounced for Fe, Al, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A springtime northward decrease was observed for Ni, Cu, Zr and Rb. The increase in element concentration northward was observed for Ti, Ga, Zr and Th only in winter, whereas Fe, Al, rare earth elements (REEs), Pb, Zr, and Hf increased northward in both spring and winter, which could be linked to leaching from peat and transport in the form of Fe-rich colloids. A southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). Finally, B, Li, Cr, V, Mn, Zn, Cd, and Cs did not show any distinct trend from S to N. The order of landscape component impact on TE concentration in rivers was lakes > bogs > forest. The lakes decreased export of Mn and Co in summer and Ni, Cu, and Rb in spring, presumably due to biotic processes. The lakes enriched the rivers in insoluble lithogenic elements in summer and winter, likely due to TE mobilization from unfrozen mineral sediments. The rank of environmental factors on TE concentration in western Siberian rivers was latitude (three permafrost zones) > season > watershed size. The effect of the latitude was minimal in spring for most TEs but highly visible for Sr, Mo, Sb and U. The main factors controlling the shift of river feeding from surface and subsurface flow to deep underground flow in the permafrost-bearing zone were the depth of the active (unfrozen) seasonal layer and its position in organic or mineral horizons of the soil profile. In the permafrost-free zone, the relative role of carbonate mineral-bearing base rock feeding versus bog water feeding determined the pattern of TE concentration and fluxes in rivers of various sizes as a function of season. Comparison of obtained TE fluxes in WSL rivers with those of other subarctic rivers demonstrated reasonable agreement for most TEs; the lithology of base rocks was the major factor controlling the magnitude of TE fluxes. Climate change in western Siberia and permafrost boundary migration will essentially affect the elements controlled by underground water feeding (DIC, alkaline earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids. Plant litter-originated divalent metals present as organic complexes may be retained via adsorption on mineral horizon. However, due to various counterbalanced processes controlling element source and sinks in plant-peat-mineral soil-river systems, the overall impact of the permafrost thaw on TE export from the land to the ocean may be smaller than that foreseen with merely active layer thickening and permafrost boundary shift.

  13. Trace organic chemical attenuation during managed aquifer recharge: Insights from a variably saturated 2D tank experiment

    NASA Astrophysics Data System (ADS)

    Regnery, Julia; Lee, Jonghyun; Drumheller, Zachary W.; Drewes, Jörg E.; Illangasekare, Tissa H.; Kitanidis, Peter K.; McCray, John E.; Smits, Kathleen M.

    2017-05-01

    Meaningful model-based predictions of water quality and quantity are imperative for the designed footprint of managed aquifer recharge installations. A two-dimensional (2D) synthetic MAR system equipped with automated sensors (temperature, water pressure, conductivity, soil moisture, oxidation-reduction potential) and embedded water sampling ports was used to test and model fundamental subsurface processes during surface spreading managed aquifer recharge operations under controlled flow and redox conditions at the meso-scale. The fate and transport of contaminants in the variably saturated synthetic aquifer were simulated using the finite element analysis model, FEFLOW. In general, the model concurred with travel times derived from contaminant breakthrough curves at individual sensor locations throughout the 2D tank. However, discrepancies between measured and simulated trace organic chemical concentrations (i.e., carbamazepine, sulfamethoxazole, tris (2-chloroethyl) phosphate, trimethoprim) were observed. While the FEFLOW simulation of breakthrough curves captured overall shapes of trace organic chemical concentrations well, the model struggled with matching individual data points, although compound-specific attenuation parameters were used. Interestingly, despite steady-state operation, oxidation-reduction potential measurements indicated temporal disturbances in hydraulic properties in the saturated zone of the 2D tank that affected water quality.

  14. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  15. Trace Element Levels and Cognitive Function in Rural Elderly Chinese

    PubMed Central

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W.; Ma, Feng; Hall, Kathleen S.; Murrell, Jill R.; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C.

    2009-01-01

    Background Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. Methods The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Results Three trace elements—calcium, cadmium, and copper—were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p < .0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p = .0044 and p = .0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Conclusions Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population. PMID:18559640

  16. Transport of trace metals in runoff from soil and pond ash feedlot surfaces

    USGS Publications Warehouse

    Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.

    2011-01-01

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.

  17. Origin and evolution of the Ilmeny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-element compositions, and Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.; Belousova, E. A.; Sharygin, V. V.; Belyatsky, B. V.; Bayanova, T. B.

    2013-02-01

    The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.

  18. Lunar and Planetary Science XXXV: Meteorites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Meteorites" included the following reports:Description of a New Stony Meteorite Find from Bulloch County, Georgia; Meteorite Ablation Derived from Cosmic Ray Track Data Dhofar 732: A Mg-rich Orthopyroxenitic Achondrite Halogens, Carbon and Sulfur in the Tagish Lake Meteorite: Implications for Classification and Terrestrial Alteration; Electromagnetic Scrape of Meteorites and Probably Columbia Tiles; Pre-Atmospheric Sizes and Orbits of Several Chondrites; Research of Shock-Thermal History of the Enstatite Chondrites by Track, Thermoluminescence and Neutron-Activation (NAA) Methods; Radiation and Shock-thermal History of the Kaidun CR2 Chondrite Glass Inclusions; On the Problem of Search for Super-Heavy Element Traces in the Meteorites: Probability of Their Discovery by Three-Prong Tracks due to Nuclear Spontaneous Fission Trace Element Abundances in Separated Phases of Pesyanoe, Enstatite Achondrite; Evaluation of Cooling Rate Calculated by Diffusional Modification of Chemical Zoning: Different Initial Profiles for Diffusion Calculation; Mineralogical Features and REE Distribution in Ortho- and Clinopyroxenes of the HaH 317 Enstatite Chondrite Dhofar 311, 730 and 731: New Lunar Meteorites from Oman; The Deuterium Content of Individual Murchison Amino Acids; Clues to the Formation of PV1, an Enigmatic Carbon-rich Chondritic Clast from the Plainview H-Chondrite Regolith Breccia ;Numerical Simulations of the Production of Extinct Radionuclides and ProtoCAIs by Magnetic Flaring.

  19. Effects of an Extreme Flood on Trace Elements in River Water-From Urban Stream to Major River Basin.

    PubMed

    Barber, Larry B; Paschke, Suzanne S; Battaglin, William A; Douville, Chris; Fitzgerald, Kevin C; Keefe, Steffanie H; Roth, David A; Vajda, Alan M

    2017-09-19

    Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.

  20. Effects of an extreme flood on trace elements in river water—From urban stream to major river basin

    USGS Publications Warehouse

    Barber, Larry B.; Paschke, Suzanne; Battaglin, William A.; Douville, Chris; Fitzgerald, Kevin C.; Keefe, Steffanie H.; Roth, David A.; Vajda, Alan M.

    2017-01-01

    Major floods adversely affect water quality through surface runoff, groundwater discharge, and damage to municipal water infrastructure. Despite their importance, it can be difficult to assess the effects of floods on streamwater chemistry because of challenges collecting samples and the absence of baseline data. This study documents water quality during the September 2013 extreme flood in the South Platte River, Colorado, USA. Weekly time-series water samples were collected from 3 urban source waters (municipal tap water, streamwater, and wastewater treatment facility effluent) under normal-flow and flood conditions. In addition, water samples were collected during the flood at 5 locations along the South Platte River and from 7 tributaries along the Colorado Front Range. Samples were analyzed for 54 major and trace elements. Specific chemical tracers, representing different natural and anthropogenic sources and geochemical behaviors, were used to compare streamwater composition before and during the flood. The results differentiate hydrological processes that affected water quality: (1) in the upper watershed, runoff diluted most dissolved constituents, (2) in the urban corridor and lower watershed, runoff mobilized soluble constituents accumulated on the landscape and contributed to stream loading, and (3) flood-induced groundwater discharge mobilized soluble constituents stored in the vadose zone.

  1. Evolving geometrical heterogeneities of fault trace data

    NASA Astrophysics Data System (ADS)

    Wechsler, Neta; Ben-Zion, Yehuda; Christofferson, Shari

    2010-08-01

    We perform a systematic comparative analysis of geometrical fault zone heterogeneities using derived measures from digitized fault maps that are not very sensitive to mapping resolution. We employ the digital GIS map of California faults (version 2.0) and analyse the surface traces of active strike-slip fault zones with evidence of Quaternary and historic movements. Each fault zone is broken into segments that are defined as a continuous length of fault bounded by changes of angle larger than 1°. Measurements of the orientations and lengths of fault zone segments are used to calculate the mean direction and misalignment of each fault zone from the local plate motion direction, and to define several quantities that represent the fault zone disorder. These include circular standard deviation and circular standard error of segments, orientation of long and short segments with respect to the mean direction, and normal separation distances of fault segments. We examine the correlations between various calculated parameters of fault zone disorder and the following three potential controlling variables: cumulative slip, slip rate and fault zone misalignment from the plate motion direction. The analysis indicates that the circular standard deviation and circular standard error of segments decrease overall with increasing cumulative slip and increasing slip rate of the fault zones. The results imply that the circular standard deviation and error, quantifying the range or dispersion in the data, provide effective measures of the fault zone disorder, and that the cumulative slip and slip rate (or more generally slip rate normalized by healing rate) represent the fault zone maturity. The fault zone misalignment from plate motion direction does not seem to play a major role in controlling the fault trace heterogeneities. The frequency-size statistics of fault segment lengths can be fitted well by an exponential function over the entire range of observations.

  2. Occurrence and distribution of trace elements in snow, streams, and streambed sediments, Cape Krusenstern National Monument, Alaska, 2002-2003

    USGS Publications Warehouse

    Brabets, Timothy P.

    2004-01-01

    Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When normalized to 1 percent organic carbon, the concentrations of these trace elements are not expected to be toxic to aquatic life when compared to criteria established by the Canadian government and other recent research.

  3. [Analysis of primary elemental speciation distribution in mungbean during enzymatic hydrolization].

    PubMed

    Li, Ji-Hua; Huang, Mao-Fang; Zhu, De-Ming; Zheng, Wei-Wan; Zhong, Ye-Jun

    2009-03-01

    In the present paper, trace elements contents of cuprum, zincum, manganese and ferrum in mungbean and their primary speciation distribution during enzymatic hydrolization were investigated with ICP-AES OPTIMA 5300DV plasma emission spectroscopy. The trace elements were separated into two forms, i.e. dissolvable form and particulate form, by cellulose membrane with 0.45 microm of pore diameter. All the samples were digested by strong acid (perchloric acid and nitric acid with 1 : 4 ratio ). The parameters of primary speciations of the four elements were calculated and discussed. The results showed: (1) Contents of cuprum, zincum, manganese and ferrum in mungbean were 12.77, 31.26, 18.14 and 69.38 microg x g(-1) (of dry matter), respectively. Different treatment resulted in different elemental formulation in product, indicating that more attention should be paid to the trace elements pattern when producing mungbean beverage with different processes. (2) Extraction rates of cuprum, zincum, manganese and ferrum in extract were 68.84%, 51.84%, 63.97% and 30.40% with enzymatic treatments and 36.22%, 17.58%, 7.85% and 22.99% with boil treatment, respectively. Both boil and enzymatic treatments led to poor elemental extraction rates, which proved that it was necessary to take deep enzymatic hydrolysis treatment in mungbean beverage process as the trace element utilization rate was concerned. (3) Amylase, protease and cellulose showed different extraction effectiveness of the four trace elements. Generally, protease exhibited highest efficiency for the four elements extraction. All of the four trace elements were mostly in dissolvable form in all hydrolysates and soup. (4) Relative standard deviations and recovery yields are within 0.12%-0.90% (n = 11) and 98.6%-101.4%, respectively. The analysis method in this paper proved to be accurate.

  4. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  5. The earliest low and high δ18O caldera-forming eruptions of the Yellowstone plume: Implications for the 30-40 Ma Oregon calderas and speculations on plume-triggered delaminations

    NASA Astrophysics Data System (ADS)

    Seligman, Angela; Bindeman, Ilya; McClaughry, Jason; Stern, Richard; Fisher, Chris

    2014-11-01

    We present new isotopic and trace element data for four eruptive centers in Oregon: Wildcat Mountain (40 Ma), Crooked River (32-28 Ma), Tower Mountain (32 Ma), and Mohawk River (32 Ma). The first three calderas are located too far east to be sourced through renewed subduction of the Farallon slab following accretion of the Yellowstone-produced Siletzia terrane at ~50 Ma. Basalts of the three eastern eruptive centers yield high Nb/Yb and Th/Yb ratios, indicating an enriched sublithospheric mantle source, while Mohawk River yields trace element and isotopic (δ18O and ɛHf) values that correlate with its location above a subduction zone. The voluminous rhyolitic tuffs and lavas of Crooked River (41 x 27 km) have δ18Ozircon values that include seven low δ18Ozircon units (1.8-4.5 ‰), one high δ18Ozircon unit (7.4-8.8 ‰), and two units with heterogeneous zircons (2.0-9.0 ‰), similar to younger Yellowstone-Snake River Plain rhyolites. In order to produce these low δ18O values, a large heat source, widespread hydrothermal circulation, and repeated remelting are all required. In contrast, Wildcat Mountain and Tower Mountain rocks yield high δ18Ozircon values (6.4-7.9 ‰) and normal to low ɛHfi values (5.2-12.6), indicating crustal melting of high-δ18O supracrustal rocks. We propose that these calderas were produced by the first appearance of the Yellowstone plume east of the Cascadia subduction zone, which is supported by plate reconstructions that put the Yellowstone plume under Crooked River at 32-28 Ma. Given the eastern location of these calderas along the suture of the accreted Siletzia terrane and North America, we suggest that the Yellowstone hotspot is directly responsible for magmatism at Crooked River, and for plume-assisted delamination of portions of the edge of the Blue Mountains that produced the Tower Mountain magmas, while the older Wildcat Mountain magmas are related to suture zone instabilities that were created following accretion of the Siletzia terrane.

  6. Lithospheric and Asthenospheric Contributions to Post-Collisional Volcanism in the Lesser Caucasus Mts (Armenia)

    NASA Astrophysics Data System (ADS)

    Sugden, P.; Savov, I. P.; Wilson, M.; Meliksetian, K.; Navasardyan, G.

    2017-12-01

    Continental collision zones remain the most enigmatic tectonic setting for volcanic activity on earth. The Lesser Caucasus Mts are host to widespread and unique intraplate volcanism, associated with the active Arabia-Eurasia continental collision. Volcanic products range from alkali basalts to rhyolites (including extensive ignimbrites), and occur as basaltic lava flow fields, large composite and shield volcanoes, and regions of distributed (mostly monogenetic) volcanism. Geomorphology, archaeology, and historical accounts suggest volcanic activity has extended in to the Holocene-historical period. The high quality of the exposures and the diversity of unaltered rock types makes Armenia an ideal natural laboratory for studying the sources of magmatism in an active continental collision zone. For the first time, we will present the mineral chemistry (ol, px, amph), whole rock major and trace element, and Sr-Nd isotope compositions of volcanic rocks from southernmost Armenia- namely the Gegham, Vardenis and Syunik volcanic highlands. We compare our dataset with the composition of post-collisional volcanic rocks elsewhere in the Arabia-Eurasia collision zone. Samples from S. Armenia are more mafic, more alkaline and more K2O rich. All volcanic rocks show negative HFSE anomalies and LILE and LREE enrichments reminiscent of continental volcanic arc settings. However, volcanic rocks in Southern Armenia are further enriched in some of the most incompatible trace elements, most notably LREE, Sr and P, and have higher La/Yb, Th/Yb, Ta/Yb, and more variable Th/Nb. Volcanic rocks from Eastern Anatolia and N. Armenia have Sr-Nd isotope compositions similar to those of the Mesozoic volcanic arc (87Sr/86Sr 0.7034-0.7045; 143Nd/144Nd 0.5128-0.5129), whereas samples from S. Armenia deviate towards more enriched compositions resembling a typical EM-I type reservoir (87Sr/86Sr 0.7041- 0.7047; 143Nd/144Nd 0.5127-0.5128). We argue that these distinctive geochemical characteristics result from the addition of an enriched lithospheric component to a ubiquitous subduction-modified baseline asthenospheric mantle. This EM-I like component may be characteristic for not only intraplate hotspot volcanoes but also to collisional and arc settings.

  7. Geochemistry and petrogenesis of serpentinite from the Ingalls ophiolite complex, central Cascades, Washington

    NASA Astrophysics Data System (ADS)

    MacDonald, J. H., Jr.; Milliken, S. H.; Zalud, K. M.

    2017-12-01

    The Jurassic Ingalls ophiolite complex is located in the central Cascades, Washington State. This ophiolite predominantly consists of three variably serpentinized mantle units. Serpentinite occurs as massive replacing peridotite, or as highly sheared fault zones cutting other rocks. Mylonitic serpentinite forms a large-scale mélange in the middle of the ophiolite, and is interpreted as a fracture zone. Whole-rock and mineral geochemistry of the massive serpentinite was done to understand the metasomatic process and identify the possible protoliths of these rocks. Whole-rock major and trace elements of the massive serpentinite are similar to modern peridotites. The majority of samples analyzed are strongly serpentinized, while a few were moderately to weakly altered. Ca, Mg, and Al suggest these rocks formed from serpentinized harzburgite and dunite with minor lherzolite. All samples have positive Eu/Eu*. Serpentinites plot in fields defined by modern abyssal and forearc peridotites. Trace elements suggests the protoliths underwent variable amounts of mantel depletion (5-20%). Serpentine and relic igneous minerals were analyzed by EPMA at the Florida Center for Analytical Electron Microscopy. The serpentine dose not chemically display brucite mixing, has minor substitution of Fe, Ni, and Cr for Mg, and minor Al substitution for Si. Bastites have higher Ni than replaced olivine. Mineral chemistry, high LOI, and X-ray diffraction suggest lizardite is the primary serpentine polymorph, with minor chrysotile also occurring. Relic Al-chromite and Cr-spinel commonly have Cr-magnetite rims. These relic cores have little SiO2 and Fe3+, suggesting the spinels are well preserved. Most spinels plot in overlap fields defined by abyssal and arc peridotite, while two samples plot entirely in arc fields. Relic olivine have Fo90 to Fo92 and plot along the mantle array. Relic pyroxene are primarily enstatite, with lesser high-Ca varieties. Relic minerals plot near fields defined by harzburgite, dunite, and lherzolite from unaltered Ingalls peridotite. The massive serpentinite likely formed by low T (< 300°C), and possibly low pressure, hydrothermal alteration of harzburgite, dunite and lherzolite. The protoliths were variably depleted mantle residues from a possible supra-subduction zone setting.

  8. A modern vs. Permian black shale - the hydrography, primary productivity, and water-column chemistry of deposition

    USGS Publications Warehouse

    Piper, D.Z.; Perkins, R.B.

    2004-01-01

    The sediment currently accumulating in the Cariaco Basin, on the continental shelf of Venezuela, has an elevated organic-carbon content of approximately 5%; is accumulating under O2-depleted bottom-water conditions (SO42- reduction); is composed dominantly of foraminiferal calcite, diatomaceous silica, clay, and silt; and is dark greenish gray in color. Upon lithification, it will become a black shale. Recent studies have established the hydrography of the basin and the level of primary productivity and bottom-water redox conditions. These properties are used to model accumulation rates of Cd, Cr, Cu, Mo, Ni, V, and Zn on the seafloor. The model rates agree closely with measured rates for the uppermost surface sediment.The model is applied to the Meade Peak Phosphatic Shale Member of the Phosphoria Formation, a phosphate deposit of Permian age in the northwest United States. It too has all of the requisite properties of a black shale. Although the deposit is a world-class phosphorite, it is composed mostly of phosphatic mudstone and siltstone, chert, limestone, and dolomite. It has organic-carbon concentrations of up to 15%, is strongly enriched in several trace elements above a terrigenous contribution and is black. The trace-element accumulation defines a mean primary productivity in the photic zone of the Phosphoria Basin as moderate, at 500 g m-2 year-1 organic carbon, comparable to primary productivity in the Cariaco Basin. The source of nutrient-enriched water that was imported into the Phosphoria Basin, upwelled into the photic zone, and supported primary productivity was an O2 minimum zone of the open ocean. The depth range over which the water was imported would have been between approximately 100 and 600 m. The mean residence time of bottom water in the basin was approximately 4 years vs. 100 years in the Cariaco Basin. The bottom water was O2 depleted, but it was denitrifying, or NO3- reducing, rather than SO42- reducing. Published by Elsevier B.V.

  9. Petrogenetic and geodynamic origin of the Neoarchean Doré Lake Complex, Abitibi subprovince, Superior Province, Canada

    NASA Astrophysics Data System (ADS)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan

    2018-04-01

    The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial ɛNd (+2.6 to +5.0) and δ18O (+6.1 to +7.9‰) values for the Doré Lake Complex and gabbros of the Obatogamau Formation (ɛNd = +2.8 to +4.0; δ18O = +7.3 to 8.0‰) are consistent with depleted mantle sources. All rock types in the Doré Lake Complex and the Roy Group share the trace element characteristics of modern arc magmas, suggesting a suprasubduction zone setting for these two lithological associations. On the basis of regional geology and geochemical data, we suggest that the Doré Lake Complex and the Obatogamau Formation represent a dismembered fragment of a suture zone, like many Phanerozoic ophiolites, resulting from closure of a back-arc basin between 2703 and 2690 Ma.

  10. A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Aird, Hannah M.; Ferguson, Katherine M.; Lehrer, Malia L.; Boudreau, Alan E.

    2017-03-01

    The sulfide assemblages of the Stillwater Complex away from the well-studied ore zones are composed mainly of variable proportions of pyrrhotite, chalcopyrite, pentlandite, and ±pyrite. Excluding vein assemblages and those affected by greenschist and lower temperature alteration, the majority can be classified into two broad assemblages, defined here as pristine (multiphase, often globular in shape) or volatile-bearing (multiphase, high-temperature, volatile-rich minerals such as biotite, hornblende, or an unmixed calcite-dolomite assemblage). The volatile-bearing assemblages are mainly found within and below the J-M reef, where native copper and sphalerite are also locally present. Pristine sulfides are found throughout the stratigraphy. Both groups can be affected by apparent S loss in the form of pyrite being converted to magnetite and chalcopyrite to a Cu-Fe-oxide (delafossite), with little to no silicate alteration. An upward trend from pentlandite-rich to pyrrhotite-rich to pyrite-rich assemblages is observed in the footwall rocks in upper GN-I, and the same trend repeats from just below the reef and continues into the overlying N-II and GN-II. Modeling suggests that the sulfide Ni in the Peridotite Zone is largely controlled by silicate Ni. When taken together, observations are most readily explained by the remobilization of selected elements by a high-temperature fluid with the apparent loss of S > Cu > Ni. This could concentrate ore metals by vapor refining, eventually producing a platinum group element-enriched sulfide ore zone, such as the J-M reef.

  11. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  12. The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.

    PubMed

    Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-10-01

    To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.

  13. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  14. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Buret, Yannick; von Quadt, Albrecht; Heinrich, Christoph; Selby, David; Wälle, Markus; Peytcheva, Irena

    2016-09-01

    The formation of world class porphyry copper deposits reflect magmatic processes that take place in a deeper and much larger underlying magmatic system, which provides the source of porphyry magmas, as well as metal and sulphur-charged mineralising fluids. Reading the geochemical record of this large magmatic source region, as well as constraining the time-scales for creating a much smaller porphyry copper deposit, are critical in order to fully understand and quantify the processes that lead to metal concentration within these valuable mineral deposits. This study focuses on the Bajo de la Alumbrera porphyry copper deposit in Northwest Argentina. The deposit is centred on a dacitic porphyry intrusive stock that was mineralised by several pulses of porphyry magma emplacement and hydrothermal fluid injections. To constrain the duration of ore formation, we dated zircons from four porphyry intrusions, including pre-, syn- and post-mineralisation porphyries based on intersection relations between successive intrusion and vein generations, using high precision CA-ID-TIMS. Based on the youngest assemblages of zircon grains, which overlap within analytical error, all four intrusions were emplaced within 29 ka, which places an upper limit on the total duration of hydrothermal mineralisation. Re/Os dating of hydrothermal molybdenite fully overlaps with this high-precision age bracket. However, all four porphyries contain zircon antecrysts which record protracted zircon crystallisation during the ∼200 ka preceding the emplacement of the porphyries. Zircon trace element variations, Ti-in-zircon temperatures, and Hf isotopic compositions indicate that the four porphyry magmas record a common geochemical and thermal history, and that the four intrusions were derived from the same upper-crustal magma chamber. Trace element zoning within single zircon crystals confirms a fractional crystallisation trend dominated by titanite and apatite crystallisation. However, zircon cathodoluminescence imaging reveals the presence of intermediate low luminescent (dark) growth zones in many crystals from all intrusions, characterised by anomalously high Th, U and REE concentrations and transient excursions in trace element ratios. A return to the same fractionation trend after this excursion excludes external compositional forcing such as magma mixing. Instead we interpret the ;dark-zones; to record zircon crystallisation during a transient event of rapid growth that resulted from mafic magma injection into the base of the magma chamber, releasing a CO2-rich vapour phase into the dacitic crystal mush. We propose that this vapour phase then migrated upwards to the apical part of the magma chamber from where it was expelled, together with successive batches of magma, to form the porphyry copper deposit within a short time-span of less than a few 10,000 years. The short duration of host rock emplacement, hydrothermal alteration and mineralisation presented in this study provides critical constraints on fluid storage in magma chambers and the genesis of large porphyry copper deposits.

  15. Mantle End-Members: The Trace Element Perspective

    NASA Astrophysics Data System (ADS)

    Willbold, M.; Stracke, A.; Hofmann, A. W.

    2004-12-01

    On the basis of their isotopic composition, ocean island basalts (OIB) have been classified into three to four end-members; HIMU with the most radiogenic Pb isotope ratios of OIB and Enriched Mantle 1 and 2 (EM1, EM2) with less radiogenic but variable Pb isotope and highly radiogenic Sr isotope signatures. It has also been argued that each of these isotopic families has common trace element characteristics that distinguish them from one another and so substantiated this classification. Here, we present new high-precision trace element data for samples from St. Helena, Tristan da Cunha and Gough in the Atlantic Ocean. The overall data-set is augmented by OIB data from the GEOROC database and includes data from all major isotopic families (HIMU: St. Helena, Mangaia, Tubuai, and Rururtu; EM1: Tristan da Cunha, Gough, Pitcairn; and EM2: Samoa, Marquesas, and Society). For each locality we use only islands defining the most extreme isotopic compositions. The entire data-set has been screened to exclude altered and highly differentiated samples. HIMU basalts have a very uniform trace element composition. Compared to HIMU-type basalts, EM-type basalts are enriched in Rb, Ba, and K, and depleted in U, Nb, and Ta, relative to La. Different EM-type OIBs from the same isotopic family (EM1 or EM2), have distinct trace element characteristics that can ultimately only be caused by different source compositions. For example, Ba/Th ratios in samples from both Tristan da Cunha (EM1) and Samoa (EM2) are similarly high (ca. 110) whereas Ba/Th ratios in samples from Pitcairn (EM1) and Society (EM2) samples are consistently lower (ca. 70). Thus on the basis of their trace element composition, EM-type OIB cannot be classified into EM1 and EM2 type basalts, nor can any other grouping be identified. The remarkably uniform isotopic and trace element composition of HIMU-type basalts suggests derivation from a single common source reservoir, most likely subduction-modified oceanic crust. Although there are some trace element characteristics common to all EM-type basalts, which distinguish them from HIMU-type basalts (e.g. uniformly high Th/U ratios of 4.7 ± 0.3, and enrichment in Cs-U), each suite of EM-type basalts has unique trace element signatures that distinguish them from any other suite of EM-type basalts. This is especially obvious when comparing the trace element composition of EM basalts from one isotopic family, for example EM1-type basalts from Tristan, Gough and Pitcairn. Consequently, the trace element systematics of EM-type basalts suggest that there are many different EM-type sources, whereas the isotopic composition of EM-type basalts suggest derivation from two broadly similar sources, i.e. EM1 and EM2. The large variability in subducting sediments with respect to both parent-daughter (e.g. Rb/Sr, Sm/Nd, U/Pb, Th/Pb,...) and other trace element ratios makes it unlikely that there are reproducible mixtures of sediments leading to two different isotopic evolution paths (EM1 and EM2) while preserving a range of incompatible element contents for each isotopic family, as would be required to reconcile the isotopic and trace element characteristics of EM-type basalts. Although this does not a priori argue against sediments as possible source components for OIB, it does argue against two distinct groups of sediments as EM1 and EM2 sources. Further characterization of sources with the same general origin (e.g. a certain type of crust or lithosphere) or identification of processes leading to reservoirs with similar parent-daughter ratio characteristics but different incompatible trace element contents could resolve the apparent conundrum.

  16. REE Incorporation into Calcite Individual Crystals as One Time Spike Addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabitov, Rinat; Sadekov, Aleksey; Migdisov, Artas

    Experiments on the incorporation of trace elements into calcite were performed, and rare earth elements (REE) were used to mark the growth zones of individual crystals. Experiments were conducted at different pH (7.7 to 8.8) and temperatures (2 °C to 24.6 °C) in NH 4Cl + CaCl 2 solutions, where REE were rapidly consumed by growing calcite. LA-ICP-MS line-scans yielded the distribution of (REE/Ca) calcite within individual crystals in a manner consistent with the addition of REE into fluid. A sharp decrease of (REE/Ca) calcite toward the crystal edge suggests the fast depletion of (REE/Ca) fluid due to strong REEmore » consumption by growing calcite. An attempt was made to estimate the lower limit of the partition coefficients between calcite and fluid using selected REE/Ca data within individual calcite crystals and the amount of REE added into fluid.« less

  17. Geologic Field Notes, Geochemical Analyses, and Field Photographs of Outcrops and Rock Samples from the Big Delta B-1 Quadrangle, East-Central Alaska

    USGS Publications Warehouse

    Day, Warren C.; O'Neill, J. Michael

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alaska Department of Natural Resources Division of Mining, Land, and Water, has released a geologic map of the Big Delta B-1 quadrangle of east-central Alaska (Day and others, 2007). This companion report presents the major element oxide and trace element geochemical analyses, including those for gold, silver, and base metals, for representative rock units and for grab samples from quartz veins and mineralized zones within the quadrangle. Also included are field station locations, field notes, structural data, and field photographs based primarily on observations by W.C. Day with additions by J.M. O'Neill and B.M. Gamble, all of the U.S. Geological Survey. The data are provided in both Microsoft Excel spread sheet format and as a Microsoft Access database.

  18. Chemical composition of HAL, an isotopically-unusual Allende inclusion

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G. J.

    1982-09-01

    Samples of hibonite, black rim, and portions of friable rim from an unusual Allende inclusion, named HAL, were analyzed by INAA and RNAA for 37 major, minor, and trace elements. An unusually low amount of Ce was found in HAL, although it otherwise was highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os, and Ir relative to other refractory elements. It is concluded that the distribution of REE between hibonite and rims was established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. Possible locations for the chemical and mass dependent isotopic fractionation are considered to be in ejecta from the low temperature helium-burning zone of a supernova and in the locally oxidizing environment generated by evaporation of interstellar grains of near-chondritic chemical composition.

  19. Chemical composition of HAL, an isotopically-unusual Allende inclusion

    NASA Technical Reports Server (NTRS)

    Davis, A. M.; Tanaka, T.; Grossman, L.; Lee, T.; Wasserburg, G. J.

    1982-01-01

    Samples of hibonite, black rim, and portions of friable rim from an unusual Allende inclusion, named HAL, were analyzed by INAA and RNAA for 37 major, minor, and trace elements. An unusually low amount of Ce was found in HAL, although it otherwise was highly enriched in REE compared to C1 chondrites. HAL is also depleted in Sr, Ba, U, V, Ru, Os, and Ir relative to other refractory elements. It is concluded that the distribution of REE between hibonite and rims was established when hibonite and other refractory minerals were removed at slightly different temperatures from a hot, oxidizing gas in which they previously coexisted as separate grains. Possible locations for the chemical and mass dependent isotopic fractionation are considered to be in ejecta from the low temperature helium-burning zone of a supernova and in the locally oxidizing environment generated by evaporation of interstellar grains of near-chondritic chemical composition.

  20. REE Incorporation into Calcite Individual Crystals as One Time Spike Addition

    DOE PAGES

    Gabitov, Rinat; Sadekov, Aleksey; Migdisov, Artas

    2017-10-26

    Experiments on the incorporation of trace elements into calcite were performed, and rare earth elements (REE) were used to mark the growth zones of individual crystals. Experiments were conducted at different pH (7.7 to 8.8) and temperatures (2 °C to 24.6 °C) in NH 4Cl + CaCl 2 solutions, where REE were rapidly consumed by growing calcite. LA-ICP-MS line-scans yielded the distribution of (REE/Ca) calcite within individual crystals in a manner consistent with the addition of REE into fluid. A sharp decrease of (REE/Ca) calcite toward the crystal edge suggests the fast depletion of (REE/Ca) fluid due to strong REEmore » consumption by growing calcite. An attempt was made to estimate the lower limit of the partition coefficients between calcite and fluid using selected REE/Ca data within individual calcite crystals and the amount of REE added into fluid.« less

Top