Sample records for trace elements cd

  1. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  2. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    PubMed

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  3. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Phytoaccumulation of trace elements by wetland plants. 2: Water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.L.; Zayed, A.M.; Qian, J.H.

    Wetland plants are being used successfully for the phytoremediation of trace elements in natural and constructed wetlands. This study demonstrates the potential of water hyacinth (Eichhornia crassipes), an aquatic floating plant, for the phytoremediation of six trace elements. The ability of water hyacinth to take up and translocate six trace elements--As(V), Cd(II), Cr(VI), Cu(II), Ni(II), and Se(VI)--was studied under controlled conditions. Water hyacinth accumulated Cd and Cr best, Se and Cu at moderate levels, and was a poor accumulator of As and Ni. The highest levels of Cd found in shoots and roots were 371 and 6103 mg kg[sup [minus]1]more » dry wt., respectively, and those of Cr were 119 and 32951 mg kg[sup [minus]1] dry wt, respectively. Cadmium, Cr, Cu, Ni, and As were more highly accumulated in roots than in shoots. In contrast, Se was accumulated more in shoots than in roots at most external concentrations. Water hyacinth had high trace element bioconcentration factors when supplied with low external concentrations of all six elements, particularly Cd, Cr, and Cu. Therefore, water hyacinth will be very efficient at phytoextracting trace elements from wastewater containing low concentrations of these elements. The authors conclude that water hyacinth is a promising candidate for phytoremediation of wastewater polluted with Cd, Cr, Cu, and Se.« less

  5. Essential trace elements and antioxidant status in relation to severity of HIV in Nigerian patients.

    PubMed

    Olaniyi, J A; Arinola, O G

    2007-01-01

    This study was designed to determine the plasma levels of some antioxidants and trace elements in three severity groups of HIV patients compared with non-HIV-infected controls. The plasma levels of antioxidants (total antioxidant, albumin, bilirubin and uric acid) and trace elements (Mg, Fe, Zn, Mn, Cu, Cr, Cd and Se) were estimated spectrophotometrically in controls and patients with CD4 counts of <200; 200-499 and > or =500 cells/microl. Uric acid and Zn were significantly higher, while vitamin E and all the trace elements (except Zn) were significantly lower in HIV-infected patients compared to healthy controls. The highest level of uric acid was observed in those with CD4 counts of <200 cells/microl. All the trace elements (except Zn) were higher in HIV subjects with a CD4 count of 200-499 cells/microl compared to >500 cells/microl. Only uric acid and Zn showed significant correlation with CD4 count. Based on the results of this study, we recommend routine assessment and appropriate supplementation of antioxidants/trace elements in HIV subjects. This supplementation is hoped to strengthen the immune system and reduce the adverse consequences of HIV- related oxidative stress. Copyright 2007 S. Karger AG, Basel.

  6. Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.

    PubMed

    Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan

    2014-04-01

    The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.

  7. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  8. Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China.

    PubMed

    Zheng, Liu-Gen; Liu, Gui-Jian; Kang, Yu; Yang, Ren-Kang

    2010-07-01

    The Chaohu is one of the largest five freshwater lakes in China. It provides freshwater for agriculture, life, and part of industry. The quality of water becomes worst and worst due to the toxic matter. In this study, we collected the samples from the sedimentary mud in the lake. The distribution of some potential hazardous trace elements (Cu, Ni, Cr, As, Pb, Cd, and Hg) in the sediments of western Chaohu Lake, has been determined and studied, and the enrichment factors, the index of geoaccumulation, and potential ecological risk were analyzed and calculated. The results show that: the levels of selected potential hazardous trace element vary from different sampling sites and significant anthropogenic impact of Pb and Cd occur in sediments. The contamination rank of Pb and Cd are moderate, and Pb has a light potential ecological risk, but Cd is heavy. The total potential ecological risk of the selected hazardous trace elements in this study in Chaohu Lake is moderate. Cluster and correlation analysis indicate that the selected potential hazardous trace element pollutant has different source and co-contamination also occur in sediments.

  9. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  10. Serum concentrations of trace elements in patients with Crohn's disease receiving enteral nutrition.

    PubMed

    Johtatsu, Tomoko; Andoh, Akira; Kurihara, Mika; Iwakawa, Hiromi; Tsujikawa, Tomoyuki; Kashiwagi, Atsunori; Fujiyama, Yoshihide; Sasaki, Masaya

    2007-11-01

    We investigated the trace element status in Crohn's disease (CD) patients receiving enteral nutrition, and evaluated the effects of trace element-rich supplementation. Thirty-one patients with CD were enrolled in this study. All patients were placed on an enteral nutrition regimen with Elental(R) (Ajinomoto pharmaceutical. Ltd., Tokyo, Japan). Serum selenium, zinc and copper concentrations were determined by atomic absorption spectroscopy. Serum selenoprotein P levels were determined by an ELISA system. Average serum levels of albumin, selenium, zinc and copper were 4.1 +/- 0.4 g/dl, 11.2 +/- 2.8 microg/dl, 71.0 +/- 14.8 microg/dl, and 112.0 +/- 25.6 microg/dl, respectively. In 9 patients of 31 CD patients, serum albumin levels were lower than the lower limit of the normal range. Serum selenium, zinc and copper levels were lower than lower limits in 12 patients, 9 patients and 1 patient, respectively. Serum selenium levels significantly correlated with both serum selenoprotein P levels and glutathione peroxidase activity. Supplementation of selenium (100 microg/day) and zinc (10 mg/day) for 2 months significantly improved the trace element status in CD patients. In conclusion, serum selenium and zinc levels are lower in many CD patients on long-term enteral nutrition. In these patients, supplementation of selenium and zinc was effective in improving the trace element status.

  11. Trace elements in loggerhead turtles (Caretta caretta) stranded in mainland Portugal: Bioaccumulation and tissue distribution.

    PubMed

    Nicolau, Lídia; Monteiro, Sílvia S; Pereira, Andreia T; Marçalo, Ana; Ferreira, Marisa; Torres, Jordi; Vingada, José; Eira, Catarina

    2017-07-01

    Pollution is among the most significant threats that endanger sea turtles worldwide. Waters off the Portuguese mainland are acknowledged as important feeding grounds for juvenile loggerheads. However, there is no data on trace element concentrations in marine turtles occurring in these waters. We present the first assessment of trace element concentrations in loggerhead turtles (Caretta caretta) occurring off the coast of mainland Portugal. Also, we compare our results with those from other areas and discuss parameters that may affect element concentrations. Trace element concentrations (As, Cd, Cu, Pb, Mn, Hg, Ni, Se, Zn) were determined in kidney, liver and muscle samples from 38 loggerheads stranded between 2011 and 2013. As was the only element with higher concentrations in muscle (14.78 μg g -1 ww) than in liver or kidney. Considering non-essential elements, Cd presented the highest concentrations in kidney (34.67 μg g -1 ) and liver (5.03 μg g -1 ). Only a weak positive link was found between renal Cd and turtle size. Inter-elemental correlations were observed in both liver and kidney tissues. Hepatic Hg values (0.30 ± 0.03 μg g -1 ) were higher than values reported in loggerheads in the Canary Islands but lower than in Mediterranean loggerheads. Cd concentrations in the present study were only exceeded by values found in turtles from the Pacific. Although many endogenous and exogenous parameters related with complex life cycle changes and wide geographic range may influence trace element accumulation, the concentrations of Cd are probably related to the importance of crustaceans in loggerhead diet in the Portuguese coast. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  13. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  14. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  15. Trace-elements, methylmercury and metallothionein levels in Magellanic penguin (Spheniscus magellanicus) found stranded on the Southern Brazilian coast.

    PubMed

    Kehrig, Helena A; Hauser-Davis, Rachel A; Seixas, Tércia G; Fillmann, Gilberto

    2015-07-15

    Magellanic penguins have been reported as good biomonitors for several types of pollutants, including trace-elements. In this context, selenium (Se), total mercury, methylmercury, inorganic mercury (Hg(inorg)), cadmium (Cd) and lead (Pb), as well as metallothionein (MT) levels, were evaluated in the feathers, liver and kidney of juvenile Magellanic penguins found stranded along the coast of Southern Brazil. The highest concentrations of all trace-elements and methylmercury were found in internal organs. Concentrations of Cd and Se in feathers were extremely low in comparison with their concentrations in soft tissues. The results showed that both Se and MT are involved in the detoxification of trace-elements (Cd, Pb and Hg(inorg)) since statistically significant relationships were found in liver. Conversely, hepatic Se was shown to be the only detoxifying agent for methylmercury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Trace element concentrations in feathers and blood of Northern goshawk (Accipiter gentilis) nestlings from Norway and Spain.

    PubMed

    Dolan, Kevin J; Ciesielski, Tomasz M; Lierhagen, Syverin; Eulaers, Igor; Nygård, Torgeir; Johnsen, Trond V; Gómez-Ramírez, Pilar; García-Fernández, Antonio J; Bustnes, Jan O; Ortiz-Santaliestra, Manuel E; Jaspers, Veerle L B

    2017-10-01

    Information on trace element pollution in the terrestrial environment and its biota is limited compared to the marine environment. In the present study, we collected body feathers and blood of 37 Northern goshawk (Accipiter gentilis) nestlings from Tromsø (northern Norway), Trondheim (central Norway), and Murcia (southeastern Spain) to study regional exposure, hypothesizing the potential health risks of metals and other trace elements. Blood and body feathers were analyzed by a high resolution inductively coupled plasma mass spectrometer (HR-ICP-MS) for aluminum (Al), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), selenium (Se), cadmium (Cd), mercury (Hg) and lead (Pb). The influence of regional differences, urbanization and agricultural land usage in proximity to the nesting Northern goshawks was investigated using particular spatial analysis techniques. Most trace elements were detected below literature blood toxicity thresholds, except for elevated concentrations (mean ± SD µgml -1 ww) found for Zn (5.4 ± 1.5), Cd (0.00023 ± 0.0002), and Hg (0.021 ± 0.01). Corresponding mean concentrations in feathers (mean ± SD µgg -1 dw) were 82.0 ± 12.4, 0.0018 ± 0.002, and 0.26 ± 0.2 for Zn, Cd and Hg respectively. Multiple linear regressions indicated region was a significant factor influencing Al, Zn, Se and Hg feather concentrations. Blood Cd and Hg concentrations were significantly influenced by agricultural land cover. Urbanization did not have a significant impact on trace element concentrations in either blood or feathers. Overall metal and trace element levels do not indicate a high risk for toxic effects in the nestlings. Levels of Cd in Tromsø and Hg in Trondheim were however above sub-lethal toxic threshold levels. For holistic risk assessment purposes it is important that the concentrations found in the nestlings of this study indicate that terrestrial raptors are exposed to various trace elements. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  18. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  19. Conversion of the trace elements Zn, Cd, and Pb in the combustion of near-Moscow coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.V. Samuilov; L.N. Lebedeva; L.S. Pokrovskaya

    A model for the conversion of trace elements in the combustion of near-Moscow coals based on a complex approach combining the capabilities of geochemistry, chemical thermodynamics, phase analysis, and chemical kinetics is proposed. The conversion of the trace elements Zn, Cd, and Pb as the constituents of near-Moscow coal in the flow of coal combustion products along the line of the P-59 boiler at the Ryazanskaya Thermal Power Plant was calculated. Experimental data were used in the development of the model and in calculations.

  20. Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan.

    PubMed

    Anan, Y; Kunito, T; Watanabe, I; Sakai, H; Tanabe, S

    2001-12-01

    Concentrations of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Zr, Mo, Ag, Cd, Sb, Ba, Hg, Tl, and Pb) were determined in the liver, kidney, and muscle of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Okinawa, Japan. Accumulation features of trace elements in the three tissues were similar between green and hawksbill turtles. No gender differences in trace element accumulation in liver and kidney were found for most of the elements. Significant growth-dependent variations were found in concentrations of some elements in tissues of green and hawksbill turtles. Significant negative correlations (p < 0.05) were found between standard carapace length (SCL) and the concentrations of Cu, Zn, and Se in the kidney and V in muscle of green turtles and Mn in the liver, Rb and Ag in kidney, and Hg in muscle of hawksbill turtles. Concentrations of Sr, Mo, Ag, Sb, and Tl in the liver, Sb in kidney, and Sb and Ba in muscle of green turtles and Se and Hg in the liver and Co, Se, and Hg in kidney of hawksbill turtles increased with an increase in SCL (p < 0.05). Green and hawksbill turtles accumulated extremely high concentrations of Cu in the liver and Cd in kidney, whereas the levels of Hg in liver were low in comparison with those of other higher-trophic-level marine animals. High accumulation of Ag in the liver of green turtles was also observed. To evaluate the trophic transfer of trace elements, concentrations of trace elements were determined in stomach contents of green and hawksbill turtles. A remarkably high trophic transfer coefficient was found for Ag and Cd in green turtles and for Cd and Hg in hawksbill turtles.

  1. Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination.

    PubMed

    Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N

    2016-07-01

    The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula).

    PubMed

    Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric

    2016-10-01

    In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Connecting pigment composition and dissolved trace elements to phytoplankton population in the southern Benguela Upwelling zone (St. Helena Bay)

    NASA Astrophysics Data System (ADS)

    Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.

    2017-12-01

    Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.

  5. Concentrations of trace elements in tissues of red fox (Vulpes vulpes) and stone marten (Martes foina) from suburban and rural areas in Croatia.

    PubMed

    Bilandžić, Nina; Dežđek, Danko; Sedak, Marija; Dokić, Maja; Solomun, Božica; Varenina, Ivana; Knežević, Zorka; Slavica, Alen

    2010-11-01

    Trace elements concentrations (As, Cd, Cu, Pb and Hg) were determined in the liver, kidney and muscle of 28 red fox (Vulpes vulpes) and 16 stone marten (Martes foina) from suburban and rural habitats from Croatia. Rural and suburban habitats affected Cd and Hg levels in the muscle, liver and kidney of red fox. Significant differences in metal concentrations in the muscle, liver and kidney were detected among species. Suburban stone marten accumulated the highest levels of trace elements (mg/kg w.w.): in muscle 0.019 for Hg; in liver 0.161 for Cd, 36.1 for Cu and 0.349 for Pb; in kidney 1.34 for Cd and 0.318 for Pb. Values observed were higher than those found in suburban red fox and therefore, may represent an important bioindicator for the accumulation of toxic metals in urbanized habitats.

  6. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  7. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  8. Origin discrimination of defatted pork via trace elements profiling, stable isotope ratios analysis, and multivariate statistical techniques.

    PubMed

    Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su

    2018-09-01

    This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Adsorption of trace elements from poultry litter by montmorillonite clay.

    PubMed

    Subramanian, Bhaskaran; Gupta, Gian

    2006-01-16

    Poultry litter (PL) is used as fertilizer on agricultural lands because of its high nutrient content. However, the litter also contains trace elements such as As, Cd, Cu, Pb, and Zn. On land application of PL, these trace elements may be absorbed by crops, leach into groundwater, or enter the aquatic system as run-off. The objective of this research was to study the effect of the addition of montmorillonite clay-mineral (CM) in reducing the release of trace elements from PL. Cd, Cu, and Zn showed significant decreases of 29, 34, and 22%, respectively, in PL aqueous leachate (compared with the control-PL without CM) on mixing with 0.05 g CM but no change in As, Co, and Cr concentrations was observed. Lead showed a significant increase in PL aqueous leachate on mixing with 0.2 g CM but Pb concentration was two orders of magnitude less than in CM aqueous leachate alone. On washing, the settled precipitate (PL+CM) in the centrifuge tubes with water (desorption study) most of the adsorbed metals (Cd 85%, Cu 61%, and Zn 100%) were released. The results of this study show that the addition of CM resulted in significant adsorption of Cd and Cu from PL.

  10. Chemometric evaluation of concentrations of trace elements in intervertebral disc tissue in patient with degenerative disc disease.

    PubMed

    Kubaszewski, Łukasz; Zioła-Frankowska, Anetta; Gasik, Zuzanna; Frankowski, Marcin; Dąbrowski, Mikołaj; Molisak, Bartłomiej; Kaczmarczyk, Jacek; Gasik, Robert

    2017-12-23

    The work is designed to uncover the pattern of mutual relation among trace elements and epidemiological data in the degenerated intervertebral disk tissue in humans. Hitherto the reason of the degenerative process is not fully understood. Trace elements are the basic components of the biological compound related both its metabolism as well as environmental exposure. The relation pattern among elements occurs gives new perspective in solving the cause of the disease. We have analysed trace elements content in the 30 intervertebral disc from 22 patients with degenerative disc disease. The concentrations of Al, Cu, Cd, Mo, Ni and Pb were determined with Atomic Absorption Spectrometry. To analyse the multidimentional relation between trace element concentration and epidemiological data the chemometric analysis was applied. The similarity have been shown in occurrence of following pairs: Cd-Mo as well as Mg-Zn. The second pair was correlated with Pb concentration. Pb levels are observed to be competitive to Cu concentration. Cd concentration was related to Zn and Mg deficiency. No single but rather cluster of epidemiological data show observable influence on the TE tissue variance. Zn and Cu was related to the male sex. Operation with orthopedic implants were related to combined Al, Mo and Zn concentration. This is the first chemometric analysis of trace elements in disk tissue. It shows multidimentional relations that are missed by the classical statistic. The analysis shows significant relation. The nature of the relations is the basis for further metabolic and environmental research.

  11. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  12. Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.

    PubMed

    Liu, Hongbo; Yang, Jian; Gan, Juli

    2010-11-01

    Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.

  13. Bioaccumulation of trace element concentrations in common dolphins (Delphinus delphis) from Portugal.

    PubMed

    Monteiro, Sílvia S; Pereira, Andreia T; Costa, Élia; Torres, Jordi; Oliveira, Isabel; Bastos-Santos, Jorge; Araújo, Helder; Ferreira, Marisa; Vingada, José; Eira, Catarina

    2016-12-15

    The common dolphin (Delphinus delphis) is one of the most abundant species in Atlantic Iberia, representing a potentially important tool to assess the bioaccumulation of trace elements in the Iberian marine ecosystem. Nine elements (As, Cd, Cu, Hg, Mn, Ni, Pb, Se and Zn) were evaluated in 36 dolphins stranded in continental Portugal. Dolphins had increasing Hg concentrations (16.72μg·g -1 ww, liver) compared with previous studies in Atlantic Iberia, whereas Cd concentrations (2.26μg·g -1 ww, kidney) fell within reported ranges. The concentrations of some trace elements (including Cd and Hg) presented positive relationships with dolphin length, presence of parasites and gross pathologies. Common dolphins may help biomonitoring more offshore Atlantic Iberian areas in future studies, which would otherwise be difficult to assess. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Subcellular distribution of trace elements in the liver of sea turtles.

    PubMed

    Anan, Yasumi; Kunito, Takashi; Sakai, Haruya; Tanabe, Shinsuke

    2002-01-01

    Subcellular distribution of Cu, Zn, Se, Rb, Mo, Ag, Cd and Pb was determined in the liver of green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) from Yaeyama Islands, Japan. Also, hepatic cytosol from sea turtles was applied on a Sephadex G-75 column and elution profiles of trace elements were examined. Copper, Zn, Se, Rb, Ag and Cd were largely present in cytosol in the liver of both species, indicating that cytosol was the significant site for the accumulation of these elements in sea turtles. In contrast, Mo and Pb were accumulated specifically in nuclear and mitochondrial fraction and microsomal fraction, respectively. Gel filtration analysis showed that Cu, Zn, Ag and Cd were bound to metallothionein (MT) in the cytosol of sea turtles. To our knowledge, this is the first report on the association of trace elements with MT in sea turtles.

  15. Trace elements in sediments, blue spotted tilapia Oreochromis leucostictus (Trewavas, 1933) and its parasite Contracaecum multipapillatum from Lake Naivasha, Kenya, including a comprehensive health risk analysis.

    PubMed

    Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz

    2014-06-01

    This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.

  16. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  17. Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (Swan Lake), northern China.

    PubMed

    Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei

    2017-06-30

    Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  19. Does intake of trace elements through urban gardening in Copenhagen pose a risk to human health?

    PubMed

    Warming, Marlies; Hansen, Mette G; Holm, Peter E; Magid, Jakob; Hansen, Thomas H; Trapp, Stefan

    2015-07-01

    This study investigates the potential health risk from urban gardening. The concentrations of the trace elements arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn) in five common garden crops from three garden sites in Copenhagen were measured. Concentrations (mg/kg dw) of As were 0.002-0.21, Cd 0.03-0.25, Cr < 0.09-0.38, Cu 1.8-8.7, Ni < 0.23-0.62, Pb 0.05-1.56, and Zn 10-86. Generally, elemental concentrations in the crops do not reflect soil concentrations, nor exceed legal standards for Cd and Pb in food. Hazard quotients (HQs) were calculated from soil ingestion, vegetable consumption, measured trace element concentrations and tolerable intake levels. The HQs for As, Cd, Cr, Cu, Ni, and Zn do not indicate a health risk through urban gardening in Copenhagen. Exposure to Pb contaminated sites may lead to unacceptable risk not caused by vegetable consumption but by unintentional soil ingestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Assessment of health risk related to the ingestion of trace metals through fish consumption in Todos os Santos Bay.

    PubMed

    de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, Willian Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso

    2017-05-01

    This study was carried out to evaluate the concentration of trace elements (As, Cd, Cu, Pb, and Zn) in the muscle of carnivorous fish species from three different areas of Todos os Santos Bay (BTS), Bahia State, Brazil. Trace elements were analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES), and consumption rates advisory for minimizing chronic systemic effects in children and adults were estimated. As concentrations in fish samples from Jiribatuba were higher than legal limits set by FAO, and Cd concentrations in fish from Iguape Bay were high in comparison with FAO and EC. This study provides information about the fish consumption limits, considering the elements concentrations observed in the analyses, in particular As and Cd, necessary for minimizing potential health risks.

  1. The Co-Induced Effects of Molybdenum and Cadmium on the Trace Elements and the mRNA Expression Levels of CP and MT in Duck Testicles.

    PubMed

    Xia, Bing; Chen, Hua; Hu, Guoliang; Wang, Liqi; Cao, Huabin; Zhang, Caiying

    2016-02-01

    To investigate the chronic toxicity of molybdenum (Mo) and cadmium (Cd) on the trace elements and the mRNA expression levels of ceruloplasmin (CP) and metallothionein (MT) in duck testicles, 120 healthy 11-day-old male ducks were randomly divided into six groups with 20 ducks in each group. Ducks were treated with the diet containing different dosages of Mo or Cd. The source of Mo and Cd was hexaammonium molybdate ([(NH4)6Mo7O24·4H2O]) and cadmium sulfate (3CdSO4·8H2O), respectively, in this study. After being treated for 60 and 120 days, ten male birds in each group were randomly selected and euthanized and then testicles were aseptically collected for determining the mRNA expression levels of MT and CP, antioxidant indexes, and contents of trace elements in the testicle. In addition, testicle tissues at 120 days were subjected to histopathological analysis with the optical microscope. The results showed that co-exposure to Mo and Cd resulted in an increase in malondialdehyde (MDA) level while decrease in xanthine oxidase (XOD) and catalase (CAT) activities. The mRNA expression level of MT gene was upregulated while CP was decreased in combination groups. Contents of Mo, copper (Cu), iron (Fe), and zinc (Zn) decreased in combined groups while Cd increased in Cd and combined groups at 120 days. Furthermore, severe congestion, low sperm count, and malformation were observed in low dietary of Mo combined with Cd group and high dietary of Mo combined with Cd group. Our results suggested that Mo and Cd might aggravate testicular degeneration synergistically through altering the mRNA expression levels of MT and CP, increasing lipid peroxidation through inhibiting related enzyme activities and disturbing homeostasis of trace elements in testicles. Interaction of Mo and Cd may have a synergistic effect on the testicular toxicity.

  2. Comparison of trace element concentrations in livers of diseased, emaciated and non-diseased southern sea otters from the California coast

    USGS Publications Warehouse

    Kannan, K.; Agusa, T.; Perrotta, E.; Thomas, N.J.; Tanabe, S.

    2006-01-01

    Infectious diseases have been implicated as a cause of high rates of adult mortality in southern sea otters. Exposure to environmental contaminants can compromise the immuno-competence of animals, predisposing them to infectious diseases. In addition to organic pollutants, certain trace elements can modulate the immune system in marine mammals. Nevertheless, reports of occurrence of trace elements, including toxic heavy metals, in sea otters are not available. In this study, concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of southern sea otters found dead along the central California coast (n = 80) from 1992 to 2002. Hepatic concentrations of trace elements were compared among sea otters that died from infectious diseases (n = 27), those that died from non-infectious causes (n = 26), and otters that died in emaciated condition with no evidence of another cause of death (n = 27). Concentrations of essential elements in sea otters varied within an order of magnitude, whereas concentrations of non-essential elements varied by two to five orders of magnitude. Hepatic concentrations of Cu and Cd were 10- to 100-fold higher in the sea otters in this study than concentrations reported for any other marine mammal species. Concentrations of Mn, Co, Zn, and Cd were elevated in the diseased and emaciated sea otters relative to the non-diseased sea otters. Elevated concentrations of essential elements such as Mn, Zn, and Co in the diseased/emaciated sea otters suggest that induction of synthesis of metallothionein and superoxide dismutase (SOD) enzyme is occurring in these animals, as a means of protecting the cells from oxidative stress-related injuries. Trace element profiles in diseased and emaciated sea otters suggest that oxidative stress mediates the perturbation of essential-element concentrations. Elevated concentrations of toxic metals such as Cd, in addition to several other organic pollutants, may contribute to oxidative stress-meditated effects in sea otters.

  3. Interactions between accumulation of trace elements and major nutrients in Salix caprea after inoculation with rhizosphere microorganisms

    PubMed Central

    De Maria, Susanna; Rivelli, Anna Rita; Kuffner, Melanie; Sessitsch, Angela; Wenzel, Walter W.; Gorfer, Markus; Strauss, Joseph; Puschenreiter, Markus

    2015-01-01

    Although the beneficial effects on growth and trace element accumulation in Salix inoculated with microbes are well known, little information is available on the interactions among trace elements and major nutrients. The main purpose of this study was to assess the effect of inoculation with rhizobacteria Agromyces sp. AR33, Streptomyces sp. AR17, and the combination of each of them with the fungus Cadophora finlandica PRF15 on biomass production and the accumulation of selected trace elements and major nutrients (Cd, Zn, Fe, Ca, K and Mg) in Salix caprea grown on a moderately polluted soil. Dry matter production was significantly enhanced only upon inoculation with Agromyces AR33. Microbial treatments differently affected the accumulation of Zn and Cd in plants. Both the inoculation with Streptomyces AR17 and the co-inoculation of C. finlandica with Agromyces AR33 were most efficient in enhancing the accumulation of Zn and Cd in leaves. These two treatments showed also a higher translocation factor from roots to the leaves for both Cd and Zn. Concentrations of major nutrients in shoots were generally increased in the treatments with the fungus compared to those without, except for K in plants inoculated with bacterial strain Streptomyces AR17. Co-inoculation of C. finlandica plus Agromyces AR33 resulted in a better accumulation of both Zn and Cd and Ca, K and Mg in shoots. This study suggests that the phytoextraction of Zn and Cd can be improved by inoculation with selected microbial strains. PMID:21612812

  4. Long-term feeding ecology and habitat use in harbour porpoises Phocoena phocoena from Scandinavian waters inferred from trace elements and stable isotopes.

    PubMed

    Fontaine, Michaël C; Tolley, Krystal A; Siebert, Ursula; Gobert, Sylvie; Lepoint, Gilles; Bouquegneau, Jean-Marie; Das, Krishna

    2007-01-17

    We investigated the feeding ecology and habitat use of 32 harbour porpoises by-caught in 4 localities along the Scandinavian coast from the North Sea to the Barents Sea using time-integrative markers: stable isotopes (delta13C, delta15N) and trace elements (Zn, Cu, Fe, Se, total Hg and Cd), in relation to habitat characteristics (bathymetry) and geographic position (latitude). Among the trace elements analysed, only Cd, with an oceanic specific food origin, was found to be useful as an ecological tracer. All other trace elements studied were not useful, most likely because of physiological regulation and/or few specific sources in the food web. The delta13C, delta15N signatures and Cd levels were highly correlated with each other, as well as with local bathymetry and geographic position (latitude). Variation in the isotopic ratios indicated a shift in harbour porpoise's feeding habits from pelagic prey species in deep northern waters to more coastal and/or demersal prey in the relatively shallow North Sea and Skagerrak waters. This result is consistent with stomach content analyses found in the literature. This shift was associated with a northward Cd-enrichment which provides further support to the Cd 'anomaly' previously reported in polar waters and suggests that porpoises in deep northern waters include Cd-contaminated prey in their diet, such as oceanic cephalopods. As stable isotopes and Cd provide information in the medium and the long term respectively, the spatial variation found, shows that harbour porpoises experience different ecological regimes during the year along the Scandinavian coasts, adapting their feeding habits to local oceanographic conditions, without performing extensive migration.

  5. Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil.

    PubMed

    de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto

    2015-05-15

    Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  7. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  8. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits.

    PubMed

    Madejón, P; Ciadamidaro, L; Marañón, T; Murillo, J M

    2013-01-01

    Phytostabilization aims to immobilize soil contaminants using higher plants. The accumulation of trace elements in Populus alba leaves was monitored for 12 years after a mine spill. Concentrations of As and Pb significantly decreased, while concentrations of Cd and Zn did not significantly over time. Soil concentrations extracted by CaCl2 were measured by ICP-OES and results of As and Pb were below the detection limit. Long-term biomonitoring of soil contamination using poplar leaves was proven to be better suited for the study of trace elements. Plants suitable for phytostabilization must also be able to survive and reproduce in contaminated soils. Concentrations of trace elements were also measured in P. alba fruiting catkins to determine the effect on its reproduction potential. Cadmium and Zn were found to accumulate in fruiting catkins, with the transfer coefficient for Cd significantly greater than Zn. It is possible for trace elements to translocate to seed, which presents a concern for seed germination, establishment and colonization. We conclude that white poplar is a suitable tree for long-term monitoring of soil contaminated with Cd and Zn, and for phytostabilization in riparian habitats, although some caution should be taken with the possible effects on the food web. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  9. Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia.

    PubMed

    Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V

    2016-09-01

    Age-related differences in the trace element content of hair have been reported. However, some discrepancies in the data exist. The primary objective of this study was to estimate the change in hair trace elements content in relation to age. Six hundred and eighteen women and 438 men aged from 10-59 years took part in the current cross-sectional study. Hair Cr, Mn, Ni, Si, Al, As, Be, Cd and Pb tended to decrease with age in the female sample, whereas hair Cu, Fe, I, Se, Li and Sn were characterised by an age-associated increase. Hair levels of Cr, Cu, I, Mn, Ni, Si and Al in men decreased with age, whereas hair Co, Fe, Se, Cd, Li and Pb content tended to increase. Hair mercury increased in association with age in men and in women, whereas hair vanadium was characterised by a significant decrease in both sexes. The difference in hair trace element content between men and women decreased with age. These data suggest that age-related differences in trace element status may have a direct implication in the ageing process.

  10. Accumulation of cadmium, zinc, and copper by Helianthus annuus L.: impact on plant growth and uptake of nutritional elements.

    PubMed

    Rivelli, Anna Rita; De Maria, Susanna; Puschenreiter, Markus; Gherbin, Piergiorgio

    2012-04-01

    We investigated the effects on physiological response, trace elements and nutrients accumulation of sunflower plants grown in soil contaminated with: 5 mg kg(-1) of Cd; 5 and 300 mg kg(-1) of Cd and Zn, respectively; 5, 300, and 400 mg kg(-1) of Cd, Zn, and Cu, respectively. Contaminants applied did not produce large effects on growth, except in Cd-Zn-Cu treatment in which leaf area and total dry matter were reduced, by 15%. The contamination with Cd alone did not affect neither growth nor physiological parameters, despite considerable amounts of Cd accumulated in roots and older leaves, with a high bioconcentration factor from soil to plant. By adding Zn and then Cu to Cd in soil, significant were the toxic effects on chlorophyll content and water relations due to greater accumulation of trace elements in tissues, with imbalances in nutrients uptake. Highly significant was the interaction between shoot elements concentration (Cd, Zn, Cu, Fe, Mg, K, Ca) and treatments. Heavy metals concentrations in roots always exceeded those in stem and leaves, with a lower translocation from roots to shoots, suggesting a strategy of sunflower to compartmentalise the potentially toxic elements in physiologically less active parts in order to preserve younger tissues.

  11. Assimilation and regeneration of trace elements by marine copepods

    USGS Publications Warehouse

    Wang, W.-X.; Reinfelder, J.R.; Lee, B.-G.; Fisher, N.S.

    1996-01-01

    Assimilation efficiencies (AE) of five trace elements (Am, Cd, Co, Se, and Zn) and carbon by neritic copepods (Acartia tonsa and Temora longicornis) feeding at different food concentrations and on different food types (diatoms, green algae, flagellates, dinoflagellates, and Fe oxides) were measured with radiotracer techniques. Food concentration had little influence on AEs of C, Cd, Co, and Se within a range of 16-800 ?? C liter-1. AEs of Am and Zn were highest at low food concentrations (16-56 ??g C liter-1) but remained relatively constant when food levels exceeded 160 ??g C liter-1. Different algal diets had no major influence on AEs, which generally were in the order Cd > Se > Zn > Co > Am. Metals (Cd, Co, and Zn) were assimilated from Fe oxides with 50% less efficiency than from algal cells. Element regeneration into the dissolved phase was a significant route for the release of ingested elements by copepods and increased with increased food concentration. Element regeneration rates for Cd, Se, and Zn were comparable to the regeneration rates of major nutrients such as P (30-70% daily). Retention half-times of elements in decomposing fecal pellets ranged from 10 d (Am). The efficient assimilation and regeneration of Cd, Se, and Zn can significantly lengthen the residence time of these elements in ocean surface waters.

  12. Enrichment and Bioavailability of Trace Elements in Soil in Vicinity of Railways in Japan.

    PubMed

    Wang, Zhen; Watanabe, Izumi; Ozaki, Hirozaku; Zhang, Jianqiang

    2018-01-01

    This study focuses on the concentrations, distribution, pollution levels, and bioavailability of 12 trace elements in soils along 6 different railways in Japan. Three diesel powered railways and three electricity powered railways were chosen as target. Surface soils (< 3 cm) were collected in vicinity of railways for analysis. Digestion and extraction were performed before concentration and bioavailability analysis. Enrichment factor was applied to investigate contamination levels of selected elements. The mean concentrations of Cr, Co, Ni, Cu, Zn, Sn, and Pb in soil samples were higher than soil background value in Japan. Concentrations of trace elements in soils along different railway had different characteristics. Horizontal distribution of Cu, Zn, Cd, Sn, and Pb in soil samples showed obviously downtrend with distance along railways with high frequency. Concentrations of V, Mn, Fe, and Co were higher in soils along railways which pass through city center. According to principal component analysis and cluster analysis, concentrations of Cu, Zn, Sn, and Pb could be considered as the indicators of soil contamination level along electricity powered trains, whereas indicators along diesel powered trains were not clear. Enrichment factor analysis proved that operation of freight trains had impact on pollution level of Cr, Ni, and Cd. Bioavailability of Mn, Co, Zn, and Cd in soil along electricity-powered railways were higher, and bioavailability of Pb in railways located in countryside was lower. Thus, enrichment and bioavailability of trace elements can be indicators of railway-originated trace elements pollution in soil.

  13. Associations between trace elements and clinical health parameters in the North Pacific loggerhead sea turtle (Caretta caretta) from Baja California Sur, Mexico.

    PubMed

    Ley-Quiñónez, César Paúl; Rossi-Lafferriere, Natalia Alejandra; Espinoza-Carreon, Teresa Leticia; Hart, Catherine Edwina; Peckham, Sherwood Hoyt; Aguirre, Alfredo Alonso; Zavala-Norzagaray, Alan Alfredo

    2017-04-01

    This study investigated selected trace elements toxicity in sea turtles Caretta caretta population from Baja California Sur (BCS), Mexico, by analyzing associations among Zn, Se, Cu, As, Cd, Ni, Mn, Pb, and Hg with various biochemical parameters (packed cell volume, leukocytes, and selected blood parameters), and whether their concentrations could have an impact on the health status of sea turtles. Blood samples from 22 loggerhead (C. caretta) sea turtles from BCS, Mexico, were collected for trace elements on biochemistry parameter analyses. Significant associations among trace element levels and the biochemistry parameters were found: Cd vs ALP (R 2  = 0.874, p ˂ 0.001), As vs ALP (R 2  = 0.656, p ˂ 0.001), Mn vs ALP (R 2  = 0.834, p ˂ 0.001), and Ni vs LDH (R 2  = 0.587, p ˂ 0.001). This study is the first report of the biochemical parameters of the North Pacific loggerhead sea turtle (C. caretta) from Baja California Sur, Mexico, and it is the first to observe several associations with toxic and essential trace elements. Our study reinforces the usefulness of blood for the monitoring of the levels of contaminating elements and the results suggest that, based on the associations with health clinical parameters, high levels of Cd and As could be representing a risk to the North Pacific loggerhead population health.

  14. Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho

    USGS Publications Warehouse

    Piper, D.Z.

    2001-01-01

    Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE, above both terrigenous and biogenic contributions, define bottom-water redox conditions as having been oxygen depleted, that is, denitrifying but not sulfate reducing.

  15. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  16. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China.

    PubMed

    Dong, Zhiwen; Kang, Shichang; Qin, Xiang; Li, Xiaofei; Qin, Dahe; Ren, Jiawen

    2015-10-01

    Trace element pollution resulting from anthropogenic emissions is evident throughout most of the atmosphere and has the potential to create environmental and health risks. In this study we investigated trace element deposition in the snowpacks at two different locations in the northern Tibetan Plateau, including the Laohugou (LHG) and the Tanggula (TGL) glacier basins, and its related atmospheric pollution information in these glacier areas, mainly focusing on 18 trace elements (Li, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Nb, Mo, Cd, Sb, Cs, Ba, Tl, and Pb). The results clearly demonstrate that pronounced increases of both concentrations and crustal enrichment factors (EFs) are observed in the snowpack at the TGL glacier basin compared to that of the LHG glacier basin, with the highest EFs for Sb and Zn in the TGL basin, whereas with the highest EFs for Sb and Cd in the LHG basin. Compared with other studies in the Tibetan Plateau and surrounding regions, trace element concentration showed gradually decreasing trend from Himalayan regions (southern Tibetan Plateau) to the TGL basin (central Tibetan Plateau), and to the LHG basin (northern Tibetan Plateau), which probably implied the significant influence of atmospheric trace element transport from south Asia to the central Tibetan Plateau. Moreover, EF calculations at two sites showed that most of the heavy metals (e.g., Cu, Zn, Mo, Cd, Sb, and Pb) were from anthropogenic sources and some other elements (e.g., Li, Rb, and Ba) were mainly originated from crustal sources. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm and CALIOP/CALIPSO transect showed significant influence of atmospheric pollutant transport from south Asia to the Tibetan Plateau, which probably caused the increased concentrations and EFs of trace element deposition in the snowpack on the TGL glacier basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies

    NASA Astrophysics Data System (ADS)

    Reuer, Matthew K.; Boyle, Edward A.; Cole, Julia E.

    2003-05-01

    The Cariaco Basin is an important archive of past climate variability given its response to inter- and extratropical climate forcing and the accumulation of annually laminated sediments within an anoxic water column. This study presents high-resolution surface coral trace element records ( Montastrea annularis and Siderastrea siderea) from Isla Tortuga, Venezuela, located within the upwelling center of this region. A two-fold reduction in Cd/Ca ratios (3.5-1.7 nmol/mol) is observed from 1946 to 1952 with no concurrent shift in Ba/Ca ratios. This reduction agrees with the hydrographic distribution of dissolved cadmium and barium and their expected response to upwelling. Significant anthropogenic variability is also observed from Pb/Ca analysis, observing three lead maxima since 1920. Kinetic control of trace element ratios is inferred from an interspecies comparison of Cd/Ca and Ba/Ca ratios (consistent with the Sr/Ca kinetic artifact), but these artifacts are smaller than the environmental signal and do not explain the Cd/Ca transition. The trace element records agree with historical climate data and differ from sedimentary faunal abundance records, suggesting a linear response to North Atlantic extratropical forcing cannot account for the observed historical variability in this region.

  18. Trace elements distributions at Datoko-Shega artisanal mining site, northern Ghana.

    PubMed

    Arhin, Emmanuel; Boansi, Apea Ohene; Zango, M S

    2016-02-01

    Environmental geochemistry classifies elements into essential, non-essential and toxic elements in relationship to human health. To assess the environmental impact of mining at Datoko-Shega area, the distributions and concentrations of trace elements in stream sediments and soil samples were carried out. X-ray fluorescence analytical technique was used to measure the major and trace element concentrations in sediments and modified fire assay absorption spectrometry in soils. The results showed general depletion of major elements except titanium oxide (TiO2) compared to the average crustal concentrations. The retention of TiO2 at the near surface environment probably was due to the intense tropical weathering accompanied by the removal of fine sediments and soil fractions during the harmattan season by the dry north-east trade winds and sheet wash deposits formed after flash floods. The results also showed extreme contamination of selenium (Se), cadmium (Cd) and mercury (Hg), plus strong contaminations of arsenic (As) and chromium (Cr) in addition to moderate contamination of lead (Pb) in the trace element samples relative to crustal averages in the upper continental crust. However Hg, Pb and Cd concentrations tend to be high around the artisanal workings. It was recognised from the analysis of the results that the artisanal mining activity harnessed and introduces some potentially toxic elements such as Hg, Cd and Pb mostly in the artisan mine sites. But the interpretation of the trace element data thus invalidates the elevation of As concentrations to be from the mine operations. It consequently noticed As values in the mine-impacted areas to be similar or sometimes lower than As values in areas outside the mine sites from the stream sediment results.

  19. Trace element mobility and transfer to vegetation within the Ethiopian Rift Valley lake areas.

    PubMed

    Kassaye, Yetneberk A; Skipperud, Lindis; Meland, Sondre; Dadebo, Elias; Einset, John; Salbu, Brit

    2012-10-26

    To evaluate critical trace element loads in native vegetation and calculate soil-to-plant transfer factors (TFs), 11 trace elements (Cr, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb and Mn) have been determined in leaves of 9 taxonomically verified naturally growing terrestrial plant species as well as in soil samples collected around 3 Ethiopian Rift Valley lakes (Koka, Ziway and Awassa). The Cr concentration in leaves of all the plant species was higher than the "normal" range, with the highest level (8.4 mg per kg dw) being observed in Acacia tortilis from the Lake Koka area. Caper species (Capparis fascicularis) and Ethiopian dogstooth grass (Cynodon aethiopicus) from Koka also contained exceptionally high levels of Cd (1 mg per kg dw) and Mo (32.8 mg per kg dw), respectively. Pb, As and Cu concentrations were low in the plant leaves from all sites. The low Cu level in important fodder plant species (Cynodon aethiopicus, Acacia tortilis and Opuntia ficus-indicus) implies potential deficiency in grazing and browsing animals. Compared to the Canadian environmental quality guideline and maximum allowable concentration in agricultural soils, the total soil trace element concentrations at the studied sites are safe for agricultural crop production. Enrichment factor was high for Zn in soils around Lakes Ziway and Awassa, resulting in moderate to high transfer of Zn to the studied plants. A six step sequential extraction procedure on the soils revealed a relatively high mobility of Cd, Se and Mn. Strong association of most trace elements with the redox sensitive fraction and mineral lattice was also confirmed by partial redundancy analysis. TF (mg per kg dw plants/mg per kg dw soil) values based on the total (TF(total)) and mobile fractions (TF(mobile)) of soil trace element concentrations varied widely among elements and plant species, with the averaged TF(total) and TF(mobile) values ranging from 0.01-2 and 1-60, respectively. Considering the mobile fraction in soils should be available to plants, TF(mobile) values could reflect trace elements transfer to plants in the most realistic way. However, the present study indicates that TF(total) values also reflect the transfer of elements such as Mn, Cd and Se to plants more realistically than TF(mobile) values did.

  20. Water-soluble ions and trace elements in surface snow and their potential source regions across northeastern China

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Pu, Wei; Zhang, Xueying; Ren, Yong; Huang, Jianping

    2015-08-01

    We collected 92 snow samples from 13 sites across northeastern China from January 7 to February 15, 2014. The surface snow samples were analyzed for the major water-soluble ions (SO42-, NO3-, F-, Cl-, Na+, K+, Ca2+, Mg2+, and NH4+) and trace element (Al, As, Mn, V, Cd, Cu, Pb, Zn, Fe, Cr, and Ni). The results indicated that the higher concentrations of NO3- and SO42- and the trace elements Zn, Pb, Cd, Ni, and Cu were likely attributable to enhanced local industrial emissions in East Asia especially in China. In addition, snow samples characterized by higher enrichment factors of trace elements (Cu, Cd, As, Zn, Pb) were indicative of an anthropogenic source. Emissions from fossil fuel combustion and biomass burning were likely important contributors to the chemical elements in seasonal snow with long-range transport. On the other hand, the large attribution of K+ appeared in the higher latitude demonstrated that biomass burning was a dominated factor of the chemical species in seasonal snow in the higher latitude of China than that in the lower latitude. Finally, an interannual comparison with the 2010 China snow survey also confirmed the source attributions of chemical speciation in seasonal snow in these regions.

  1. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    PubMed

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  3. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  4. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal.

    PubMed

    Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A

    2018-10-15

    The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The bark of the branches of holm oak (Quercus ilex L.) for a retrospective study of trace elements in the atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drava, Giuliana, E-mail: drava@difar.unige.it; Bri

    Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10–15 years with annual resolution. In the present study, the concentrations ofmore » As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the “a posteriori” reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. - Highlights: • Branch bark allows the historical reconstruction of atmospheric trace elements. • This approach is simple, reliable, widely applicable and “a posteriori”. • Downward time trends were found for Cd, Pb and Zn; upward trend for V.« less

  6. An analysis of human exposure to trace elements from deliberate soil ingestion and associated health risks.

    PubMed

    Ngole-Jeme, Veronica M; Ekosse, Georges-Ive E; Songca, Sandile P

    2018-01-01

    Fifty-seven samples of soils commonly ingested in South Africa, Swaziland, Democratic Republic of Congo (DRC), and Togo were analyzed for the concentrations of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) and their bioaccessibility in the human gastrointestinal tract. Bioaccessibility values were used to calculate daily intake, and hazard quotient of each trace element, and chronic hazard index (CHI) of each sample. Carcinogenic risk associated with As and Ni exposure were also calculated. Mean pseudo-total concentrations of trace elements in all samples were 7.2, 83.3, 77.1, 15.4, 28.6, 24.9, 56.1, 2.8, and 26.5 mg/kg for As, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb, respectively. Percent bioaccessibility of Pb (13-49%) and Zn (38-56%) were highest among trace elements studied. Average daily intake values were lower than their respective reference doses for ell elements except for Pb in selected samples. Samples from DRC presented the highest health risks associated with trace element exposure with most of the samples having CHI values between 0.5 and 1.0. Some samples had higher than unacceptable values of carcinogenic risk associated with As and Ni exposure. Results indicate low trace element exposure risk from ingesting most of the soil samples.

  7. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  8. Body distribution of trace elements in black-tailed gulls from Rishiri Island, Japan: age-dependent accumulation and transfer to feathers and eggs.

    PubMed

    Agusa, Tetsuro; Matsumoto, Taro; Ikemoto, Tokutaka; Anan, Yasumi; Kubota, Reiji; Yasunaga, Genta; Kunito, Takashi; Tanabe, Shinsuke; Ogi, Haruo; Shibata, Yasuyuki

    2005-09-01

    Body distribution and maternal transfer of 18 trace elements (V, Cr, Mn, Co, Cu, Zn, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Hg, Tl, and Pb) to eggs were examined in black-tailed gulls (Larus crassirostris), which were culled in Rishiri Island, Hokkaido Prefecture, Japan. Manganese, Cu, Rb, Mo, and Cd showed the highest levels in liver and kidney, Ag, Sb, and Hg in feather, and V, Sr, and Pb in bone. Maternal transfer rates of trace elements ranged from 0.8% (Cd) to as much as 65% (Tl) of maternal body burden. Large amounts of Sr, Ba, and Tl were transferred to the eggs, though maternal transfer rates of V, Cd, Hg, and Pb were substantially low. It also was observed that Rb, Sr, Cd, Cs, and Ba hardly were excreted into feathers. Concentrations of Co in liver, Ba in liver and kidney, and Mo in liver increased significantly with age, whereas Se in bone and kidney, Hg in kidney, and Cr in feather decreased with age in the known-aged black-tailed gulls (2-20 years old). It also was suggested that feathers might be useful to estimate contamination status of trace elements in birds, especially for Hg on a population basis, although the utility is limited on an individual basis for the black-tailed gulls. To our knowledge, this is the first report on the maternal transfer rate of multielements and also on the usefulness of feathers to estimate contamination status of Hg in birds on a population basis.

  9. Concentrations of trace elements in marine fish and its risk assessment in Malaysia.

    PubMed

    Agusa, Tetsuro; Kunito, Takashi; Yasunaga, Genta; Iwata, Hisato; Subramanian, Annamalai; Ismail, Ahmad; Tanabe, Shinsuke

    2005-01-01

    Concentrations of trace elements (V, Cr, Mn, Co, Cu, Zn, Ga, Se, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) were determined in muscle and liver of 12 species of marine fish collected from coastal areas in Malaysia. Levels of V, Cr, Mn, Co, Cu, Zn, Ga, Sr, Mo, Ag, Cd, Sn, Ba and Pb in liver were higher than those in muscle, whereas Rb and Cs concentrations showed the opposite trend. Positive correlations between concentrations in liver and muscle were observed for all the trace elements except Cu and Sn. Copper, Zn, Se, Ag, Cd, Cs and Hg concentrations in bigeye scads from the east coast of the Peninsular Malaysia were higher than those from the west, whereas V showed the opposite trend. The high concentration of V in the west coast might indicate oil contamination in the Strait of Malacca. To evaluate the health risk to Malaysian population through consumption of fish, intake rates of trace elements were estimated on the basis of the concentrations of trace elements in muscle of fish and daily fish consumption. Some specimens of the marine fish had Hg levels higher than the guideline value by US Environmental Protection Agency (EPA), indicating that consumption of these fish at the present rate may be hazardous to Malaysian people. To our knowledge, this is the first study on multielemental accumulation in marine fish from the Malaysian coast.

  10. Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L.

    NASA Astrophysics Data System (ADS)

    Schneider, Thorsten; Haag-Kerwer, Angela; Maetz, Mischa; Niecke, Manfred; Povh, Bogdan; Rausch, Thomas; Schüßler, Arthur

    1999-10-01

    Brassica juncea L. is a high biomass producing crop plant, being able to accumulate Cd and other heavy metals in their roots and shoots. It is a good candidate for efficient phytoextraction of heavy metals - such as Cd - from polluted soils. PIXE and STIM analyses were applied to investigate Cd-uptake in roots and the resulting effects on the elemental distribution of Cd stressed plants. The axial distribution of trace elements as a function of distance from the root tip as well as the radial distribution within cross-sections were analysed. The results are compared with the elemental distribution in control plants.

  11. Effect of combustion temperature on the emission of trace elements under O2/CO2 atmosphere during coal combustion

    NASA Astrophysics Data System (ADS)

    Qu, Chengrui; Zhang, Mo; Mann, Michael. D.

    2018-03-01

    The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.

  12. Relationships between hepatic trace element concentrations, reproductive status, and body condition of female greater scaup

    USGS Publications Warehouse

    Badzinski, Shannon S.; Flint, Paul L.; Gorman, Kristen B.; Petrie, Scott A.

    2009-01-01

    We collected female greater scaup (Aythya marila) on the Yukon–Kuskokwim Delta, Alaska during two breeding seasons to determine if concentrations of 18 trace elements in livers and eggs were elevated and if hepatic concentrations correlated with body condition or affected reproductive status. Fifty-six percent, 5%, and 42% of females, respectively, had elevated hepatic cadmium (Cd: >3 μg g−1 dry weight [dw]), mercury (Hg: >3 μg g−1 dw), and selenium (Se: >10 μg g−1 dw). Somatic protein and lipid reserves were not correlated with hepatic Cd or Hg, but there was a weak negative correlation between protein and Se. Hepatic Cd, Hg, and Se were similar in females that had and had not initiated egg production. In a sample of six eggs, 33% and 100%, respectively, contained Se and Hg, but concentrations were below embryotoxicity thresholds. We conclude that trace element concentrations documented likely were not adversely impacting this study population.

  13. Environmental background values of trace elements in sediments from the Jiaozhou Bay catchment, Qingdao, China.

    PubMed

    Xu, Fangjian; Liu, Zhaoqing; Yuan, Shengqiang; Zhang, Xilin; Sun, Zhilei; Xu, Feng; Jiang, Zuzhou; Li, Anchun; Yin, Xuebo

    2017-08-15

    Selected trace elements (As, Cr, Zn, Cu, Cd, Co, Pb and Ni) in 76 surface sediment samples collected from the rivers and the intertidal zone of Jiaozhou Bay (JZB) were evaluated to assess their environmental background values in the JZB catchment. Overall, the sediment quality in the area meets the China Marine Sediment Quality criteria. The background values (ranges) of the elements As, Cr, Zn, Cu, Cd, Co, Pb and Ni were, respectively, 8.28 (4.10-12.46), 67.96 (38.40-97.52), 56.80 (16.42-196.51), 19.13 (5.71-64.06), 0.10 (0.02-0.42), 6.51 (2.08-20.40), 17.97 (12.26-55.84) and 20.69 (10.43-30.95)mg/kg. The background values of most of the trace elements were lower than those in Chinese soil, the upper continental crust, global shales and global preindustrial sediments. The results may assist in defining future coastal and river management measures specifically targeted at monitoring trace element contamination in the JZB catchment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukasinovic-Pesic, V.; Rajakovic, L.J.

    2009-07-01

    The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less

  15. Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Paytan, Adina; Chase, Zanna; Measures, Christopher; Beck, Aaron J.; SañUdo-Wilhelmy, Sergio A.; Post, Anton F.

    2008-03-01

    We present the first comprehensive investigation of the concentrations, fluxes and sources of aerosol trace elements over the Gulf of Aqaba. We found that the mean atmospheric concentrations of crustally derived elements such as Al, Fe and Mn (1081, 683, and 16.7 ng m-3) are about 2-3 times higher than those reported for the neighboring Mediterranean area. This is indicative of the dominance of the mineral dust component in aerosols over the Gulf. Anthropogenic impact was lower in comparison to the more heavily populated areas of the Mediterranean. During the majority of time (69%) the air masses over the Gulf originated from Europe or Mediterranean Sea areas delivering anthropogenic components such as Cu, Cd, Ni, Zn, and P. Airflows derived from North Africa in contrast contained the highest concentrations of Al, Fe, and Sr but generally lower Cu, Cd, Ni, Zn, and P. Relatively high Pb, Ni, and V were found in the local and Arabian airflows suggesting a greater influence of local emission of fuel burning. We used the data and the measured trace metal seawater concentrations to calculate residence times of dissolved trace elements in the upper 50 m surface water of the Gulf (with respect to atmospheric input) and found that the residence times for most elements are in the range of 5-37 years while Cd and V residence times are longer.

  16. Source Identification and Apportionment of Trace Elements in Soils in the Yangtze River Delta, China.

    PubMed

    Shao, Shuai; Hu, Bifeng; Fu, Zhiyi; Wang, Jiayu; Lou, Ge; Zhou, Yue; Jin, Bin; Li, Yan; Shi, Zhou

    2018-06-12

    Trace elements pollution has attracted a lot of attention worldwide. However, it is difficult to identify and apportion the sources of multiple element pollutants over large areas because of the considerable spatial complexity and variability in the distribution of trace elements in soil. In this study, we collected total of 2051 topsoil (0⁻20 cm) samples, and analyzed the general pollution status of soils from the Yangtze River Delta, Southeast China. We applied principal component analysis (PCA), a finite mixture distribution model (FMDM), and geostatistical tools to identify and quantitatively apportion the sources of seven kinds of trace elements (chromium (Cr), cadmium (Cd), mercury (Hg), copper (Cu), zinc (Zn), nickel (Ni), and arsenic (As)) in soil. The PCA results indicated that the trace elements in soil in the study area were mainly from natural, multi-pollutant and industrial sources. The FMDM also fitted three sub log-normal distributions. The results from the two models were quite similar: Cr, As, and Ni were mainly from natural sources caused by parent material weathering; Cd, Cu, and Zu were mainly from mixed sources, with a considerable portion from anthropogenic activities such as traffic pollutants, domestic garbage, and agricultural inputs, and Hg was mainly from industrial wastes and pollutants.

  17. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  18. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples

    NASA Astrophysics Data System (ADS)

    Voica, C.; Dehelean, A.; Kovacs, M. H.

    2012-02-01

    Food is the primary source of essential elements for humans and it is an important source of exposure to toxic elements. In this context, levels of essential and toxic elements must be determined routinely in consumed food products. The content of trace elements (As, Pb, Cu, Cd, Zn, Sn, Hg) in different types of food samples (e.g. rice, bread, sugar, cheese, milk, butter, wheat, coffee, chocolate, biscuits pasta, etc.) was determined, using inductively coupled plasma mass spectrometry (ICP-MS). Trace element contents in some foods were higher than maximum permissible levels of toxic metals in human food (Cd in bread, Zn in cheese, Cu in coffee, Hg in carrots and peppers).

  19. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland.

    PubMed

    Routti, Heli; Letcher, Robert J; Born, Erik W; Branigan, Marsha; Dietz, Rune; Evans, Thomas J; Fisk, Aaron T; Peacock, Elizabeth; Sonne, Christian

    2011-08-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg(2+)-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements.

  20. Spatial and temporal trends of selected trace elements in liver tissue from polar bears (Ursus maritimus) from Alaska, Canada and Greenland

    USGS Publications Warehouse

    Routti, H.; Letcher, R.J.; Born, E.W.; Branigan, M.; Dietz, R.; Evans, T.J.; Fisk, A.T.; Peacock, E.; Sonne, C.

    2011-01-01

    Spatial trends and comparative changes in time of selected trace elements were studied in liver tissue from polar bears from ten different subpopulation locations in Alaska, Canadian Arctic and East Greenland. For nine of the trace elements (As, Cd, Cu, Hg, Mn, Pb, Rb, Se and Zn) spatial trends were investigated in 136 specimens sampled during 2005-2008 from bears from these ten subpopulations. Concentrations of Hg, Se and As were highest in the (northern and southern) Beaufort Sea area and lowest in (western and southern) Hudson Bay area and Chukchi/Bering Sea. In contrast, concentrations of Cd showed an increasing trend from east to west. Minor or no spatial trends were observed for Cu, Mn, Rb and Zn. Spatial trends were in agreement with previous studies, possibly explained by natural phenomena. To assess temporal changes of Cd, Hg, Se and Zn concentrations during the last decades, we compared our results to previously published data. These time comparisons suggested recent Hg increase in East Greenland polar bears. This may be related to Hg emissions and/or climate-induced changes in Hg cycles or changes in the polar bear food web related to global warming. Also, Hg:Se molar ratio has increased in East Greenland polar bears, which suggests there may be an increased risk for Hg 2+-mediated toxicity. Since the underlying reasons for spatial trends or changes in time of trace elements in the Arctic are still largely unknown, future studies should focus on the role of changing climate and trace metal emissions on geographical and temporal trends of trace elements. ?? 2011 The Royal Society of Chemistry.

  1. Interaction between carcinogenic and anti-carcinogenic trace elements in the scalp hair samples of different types of Pakistani female cancer patients.

    PubMed

    Wadhwa, Sham Kumar; Kazi, Tasneem Gul; Afridi, Hassan Imran; Talpur, Farah Naz; Naeemullah

    2015-01-15

    It was investigated that carcinogenic processes are linked with the imbalances of essential trace and toxic elements in body fluid and tissues of human. In this study, the relationship between carcinogenic elements, arsenic (As), cadmium (Cd), and nickel (Ni), and anti-carcinogenic elements, selenium (Se) and zinc (Zn), in the scalp hair of different female cancer patients (breast, cervix, mouth and ovarian) was studied. The scalp hair samples were collected from cancer patients and referent female subjects of the same age group and socioeconomic status. The scalp hair samples were oxidized by 65% nitric acid and 30% hydrogen peroxide by microwave oven and analyzed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair (BCR 397). The mean concentrations of As, Cd, and Ni were found to be significantly higher in the scalp hair samples of cancerous patients as compared to referents, while reverse results were obtained in the case of Zn and Se (p<0.01). The study revealed that low level of trace elements (Se, Zn) and high level of heavy elements (As, Cd, and Ni) were associated with increased risk of cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Concentrations of trace elements and PCDD/Fs around a municipal solid waste incinerator in Girona (Catalonia, Spain). Human health risks for the population living in the neighborhood.

    PubMed

    Rovira, Joaquim; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2018-07-15

    Previously to the modernization of the municipal solid waste incinerator (MSWI) of Campdorà (Girona, Catalonia, Spain) two sampling campaigns (2015 and 2016) were conducted. In each campaign, 8 soil and 4 air samples (PM 10 and total particle phase and gas phase) were collected. The levels of As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Tl and V, and PCDD/Fs were analysed at different distances and wind directions around the MSWI. Environmental levels of trace elements and PCDD/Fs were used to assess exposure and health risks (carcinogenic and non-carcinogenic) for the population living around the facility. In soils, no significant differences were observed for trace elements and PCDD/Fs between both campaigns. In air, significant higher levels of As, Cd, Co, Mn, Ni, Pb, Tl and V were detected in 2016. Regarding soil levels, only Cd (distances) and As, Cu, Mn, and Ni (wind directions) showed significant differences. No differences were noted in the concentrations of trace elements and PCDD/Fs in air levels with respect to distances and directions to the MSWI. No differences were registered in air levels (elements and PCDD/Fs) between points influenced by MSWI emissions and background point. However some differences in congener profile were noted regarding from where back-trajectories come from (HYSPLIT model results), pointing some influence of Barcelona metropolitan area. The concentrations of trace elements and PCDD/Fs were similar -or even lower- than those reported around other MSWIs in Catalonia and various countries. Non-carcinogenic risks were below the safety limit (HQ<1). In turn, carcinogenic risks due to exposure to trace elements and PCDD/Fs were in acceptable ranges, according to national and international standard regulations. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Bioaccumulation of trace elements in Ruditapes philippinarum from China: public health risk assessment implications.

    PubMed

    Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan

    2013-04-02

    The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1-38.0, 49.5-168.3, 42.0-68.0, 4.19-8.71, 4.76-14.32, 0.41-1.11, 0.94-4.74, 0.32-2.59, 0.03-0.23 and 0.46-11.95 mg·kg(-1) dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption.

  4. The impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester.

    PubMed

    Skalny, Anatoly V; Tinkov, Alexey A; Voronina, Irina; Terekhina, Olga; Skalnaya, Margarita G; Bohan, Tatiana G; Agarkova, Lyubov A; Kovas, Yulia

    2018-01-01

    Trace elements play a significant role in the regulation of human reproduction, while advanced age may have a significant impact on trace element metabolism. The objective of the present study was to assess the impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester. A total of 124 pregnant women aged 20–29 (n = 72) and 30–39 (n = 52) were ex- amined. Scalp hair trace element content was assessed using inductively coupled plasma mass spectrometry at NexION 300D (Perkin Elmer, USA) after microwave digestion. The results showed that the elder pregnant women had 36% (p = 0.009), 14% (p = 0.045), and 45% (p = 0.044) lower hair Zn, V, and Cd content, and 16% (p = 0.044) higher hair B levels – in comparison to the respective younger group values. Multiple regression analysis demonstrated that the age of the women had a significant influence on hair V and Zn levels. B content was also significantly influenced by age at first intercourse, smoking status, and specific dietary habits. None of the lifestyle factors were associated with hair Cd content in pregnant women. Hair V levels were also affected by following a special diet. Interestingly, alcohol intake did not have a significant impact on hair trace element content. These data indicate that lifestyle factors have a significant influence on age-related changes in hair trace elements during pregnancy that may impact the outcome of pregnancy.

  5. Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA.

    PubMed

    Ali, Sazan; Chaspoul, Florence; Anderson, Loundou; Bergé-Lefranc, David; Achard, Vincent; Perrin, Jeanne; Gallice, Philippe; Guichaoua, Marie

    2017-02-01

    Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.

  6. Atmospheric wet deposition of trace elements to a suburban environment, Reston, Virginia, USA

    USGS Publications Warehouse

    Conko, Kathryn M.; Rice, Karen C.; Kennedy, Margaret M.

    2004-01-01

    Wet deposition from a suburban area in Reston, Virginia was collected during 1998 and analyzed to assess the anion and trace-element concentrations and depositions. Suburban Reston, approximately 26 km west of Washington, DC, is densely populated and heavily developed. Wet deposition was collected bi-weekly in an automated collector using trace-element clean sampling and analytical techniques. The annual volume-weighted concentrations of As, Cd, and Pb were similar to those previously reported for a remote site on Catoctin Mt., Maryland (70 km northwest), which indicated a regional signal for these elements. The concentrations and depositions of Cu and Zn at the suburban site were nearly double those at remote sites because of the influence of local vehicular traffic. The 1998 average annual wet deposition (μg m−2 yr−1) was calculated for Al (52,000), As (94), Cd (54), Cr (160), Cu (700), Fe (23,000), Mn (2000), Ni (240), Pb (440), V (430), and Zn (4100). The average annual wet deposition (meq m−2 yr−1) was calculated for H+ (74), Cl− (8.5), NO3− (33), and SO42− (70). Analysis of digested total trace-element concentrations in a subset of samples showed that the refractory elements in suburban precipitation comprised a larger portion of the total deposition of trace elements than in remote areas.

  7. The Asian clam Corbicula fluminea as a biomonitor of trace element contamination: Accounting for different sources of variation using an hierarchical linear model

    USGS Publications Warehouse

    Shoults-Wilson, W. A.; Peterson, J.T.; Unrine, J.M.; Rickard, J.; Black, M.C.

    2009-01-01

    In the present study, specimens of the invasive clam, Corbicula fluminea, were collected above and below possible sources of potentially toxic trace elements (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the Altamaha River system (Georgia, USA). Bioaccumulation of these elements was quantified, along with environmental (water and sediment) concentrations. Hierarchical linear models were used to account for variability in tissue concentrations related to environmental (site water chemistry and sediment characteristics) and individual (growth metrics) variables while identifying the strongest relations between these variables and trace element accumulation. The present study found significantly elevated concentrations of Cd, Cu, and Hg downstream of the outfall of kaolin-processing facilities, Zn downstream of a tire cording facility, and Cr downstream of both a nuclear power plant and a paper pulp mill. Models of the present study indicated that variation in trace element accumulation was linked to distance upstream from the estuary, dissolved oxygen, percentage of silt and clay in the sediment, elemental concentrations in sediment, shell length, and bivalve condition index. By explicitly modeling environmental variability, the Hierarchical linear modeling procedure allowed the identification of sites showing increased accumulation of trace elements that may have been caused by human activity. Hierarchical linear modeling is a useful tool for accounting for environmental and individual sources of variation in bioaccumulation studies. ?? 2009 SETAC.

  8. Assimilation efficiencies and turnover rates of trace elements in marine bivalves: A comparison of oysters, clams and mussels

    USGS Publications Warehouse

    Reinfelder, J.R.; Wang, W.-X.; Luoma, S. N.; Fisher, N.S.

    1997-01-01

    Assimilation efficiencies (AEs) and physiological turnover-rate constants (k) of six trace elements (Ag, Am, Cd, Co, Se, Zn) in four marine bivalves (Crassostrea virginica Gmelin,Macoma balthica Linnaeus, Mercenaria mercenaria Linnaeus, and Mytilus edulis Linnaeus) were measured in radiotracer-depuration experiments. Egestion rates of unassimilated elements were highest during the first 24 h of depuration and declined thereafter. Significant egestion of unassimilated Co, however, continued for up to 5 d in Macoma balthica,Mercenaria mercenaria and Mytilus edulis. With the exception of the extremely low values for110 mAg, 109Cd, and 65Zn in C. virginica, physiological turnover-rate constants (k) showed no general pattern of variation among elements, bivalve species or food types, and were relatively invariant. Values from  ≤0.001 to 0.1 d−1 were observed, but excluding those for Co, most values were  ≤0.04 d−1. In all four species, the AEs of Ag, Am, and Co were generally lower than those of Cd, Se, and Zn. The AEs of Ag, Cd, Se, and Zn in these bivalves are directly related to the proportion of each element in the cytoplasmic fraction of ingested phytoplankton, indicating that >80% of elements in a prey alga's cytoplasm was assimilated. C. virginica, Macoma balthica, and Mercenaria mercenaria assimilated ∼36% of the Ag and Cd associated with the non-cytoplasmic (membrane/organelle) fraction of ingested cells in addition to the cytoplasmic fraction. The ratio of AE:k, which is proportional to the consumer–prey trace-element bioaccumulation factor (concentration in consumer:concentration in prey) was generally greater for Cd, Se, and Zn than for Ag, Am, and Co. This ratio was lowest in Mytilus edulis, suggesting that this bivalve, the most widely employed organism in global biomonitoring, is relatively inefficient at accumulating important elements such as Ag, Cd, and Zn from ingested phytoplankton.

  9. What do the trace metal contents of urine and toenail samples from Qatar׳s farm workers bioindicate?

    PubMed

    Kuiper, Nora; Rowell, Candace; Nriagu, Jerome; Shomar, Basem

    2014-05-01

    Qatar׳s farm workers provide a unique population for exposure study: they are young, healthy males. This study combined trace element profiles in urine and toenail with survey information from 239 farm workers to assess the extent to which the biomarkers provide complementary exposure information. Urinary Mo levels (average=114 µg/L) were elevated; average urinary values (µg/L) for all other elements were: V (1.02), Cr (0.55), Mn (2.15), Fe (34.1), Co (0.47), Ni (2.95), Cu (15.0), As (47.8), Se (25.7), Cd (1.09), Ba (22.5), Pb (2.50) and U (0.15). Average toenail concentrations (mg/kg) were: Mn (2.48), Cu (4.43), As (0.26), Se (0.58), Mo (0.07), Cd (0.03), Ba (1.00), Pb (0.51) and U (0.02). No significant association was found between corresponding elements in urine and toenails. Elemental profiles suggest groundwater (with the exception of Mo) and soil-dust-crop exposure pathways cannot account for elemental variations. The main factors moderating trace element contents are related to depuration processes involving participants׳ trace element body burden prior to work in Qatar, and interactions of trace element metabolic cycles which over-ride the exposure footprint. Toenail and urine need to be carefully validated before reliable use as biomarkers of exposure in general populations for most elements in the study. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Trace Element Accumulation and Tissue Distribution in the Purpleback Flying Squid Sthenoteuthis oualaniensis from the Central and Southern South China Sea.

    PubMed

    Wu, Yan Yan; Shen, Yu; Huang, Hui; Yang, Xian Qing; Zhao, Yong Qiang; Cen, Jian Wei; Qi, Bo

    2017-01-01

    Sthenoteuthis oualaniensis is a species of cephalopod that is becoming economically important in the South China Sea. As, Cd, Cr, Cu, Hg, Pb, and Zn concentrations were determined in the mantle, arms, and digestive gland of S. oualaniensis from 31 oceanographic survey stations in the central and southern South China Sea. Intraspecific and interspecific comparisons with previous studies were made. Mean concentrations of trace elements analyzed in arms and mantle were in the following orders: Zn > Cu > Cd > Cr > As > Hg. In digestive gland, the concentrations of Cd and Cu exceed that of Zn. All the Pb concentrations were under the detected limit.

  11. Transmission of atmospherically derived trace elements through an undeveloped, forested Maryland watershed

    USGS Publications Warehouse

    Scudlark, J.R.; Rice, Karen C.; Conko, Kathryn M.; Bricker, Owen P.; Church, T.M.

    2005-01-01

    The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases.To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.

  12. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility.

    PubMed

    Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-10-01

    The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.

  13. Trace-element interactions in Rook Corvus frugilegus eggshells along an urbanisation gradient.

    PubMed

    Orłowski, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2014-11-01

    Concentrations of seven trace elements [arsenic (As), chromium (Cr), nickel (Ni), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd)] in the eggshells of Rooks Corvus frugilegus, a focal bird species of Eurasian agricultural environments, are increased above background levels and exceed levels of toxicological concern. The concentrations of Cr, Ni, Pb, Cu, and Zn are greater in eggshells from urban rookeries (large cities) compared with rural areas (small towns and villages) suggesting an urbanisation gradient effect among eggs laid by females. In the present study, the investigators assessed whether the pattern of relationships among the seven trace elements in eggshells change along an urbanisation/pollution gradient. Surprisingly, we found that eggshells with the greatest contaminant burden, i.e., from urban rookeries, showed far fewer significant relationships (n = 4) than eggshells from villages (n = 10), small towns (n = 6), or rural areas (n = 8). In most cases, the relationships were positive. As was an exception: Its concentration was negatively correlated with Ni and Cd levels in eggshells from small town rookeries (where As levels were the highest), whereas eggshells from villages (with a lower As level) showed positive relationships between As and Cd. Our findings suggest that at low to intermediate levels, interactions between the trace elements in Rook eggshells are of a synergistic character and appear to operate as parallel coaccumulation. A habitat-specific excess of some elements (primarily Cr, Ni, Cu, As) suggests their more competitively selective sequestration.

  14. Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    PubMed Central

    van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.

    2010-01-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062

  15. Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.

    PubMed

    Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W

    2010-10-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.

  16. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  17. Associations between toxic and essential trace elements in maternal blood and fetal congenital heart defects.

    PubMed

    Ou, Yanqiu; Bloom, Michael S; Nie, Zhiqiang; Han, Fengzhen; Mai, Jinzhuang; Chen, Jimei; Lin, Shao; Liu, Xiaoqing; Zhuang, Jian

    2017-09-01

    Prenatal exposure to toxic trace elements, including heavy metals, is an important public health concern. Few studies have assessed if individual and multiple trace elements simultaneously affect cardiac development. The current study evaluated the association between maternal blood lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and selenium (Se) levels and congenital heart defects (CHDs) in offspring. This hospital-based case-control study included 112 case and 107 control infants. Maternal peripheral blood draw was made during gestational weeks 17-40 and used to determine trace element levels by inductively coupled plasma mass spectrometry. Multivariable logistic regression was used to assess associations and interactions between individual and multiple trace elements and fetal CHDs, adjusted for maternal age, parity, education, newborn gender, migrant, folic acid or multivitamin intake, cigarette smoking, maternal prepregnancy body mass index, and time of sample collection. Control participants had medians of 2.61μg/dL Pb, 1.76μg/L Cd, 3.57μg/L Cr, 896.56μg/L Cu, 4.17μg/L Hg, and 186.47μg/L Se in blood. In a model including all measured trace elements and adjusted for confounders, high levels of maternal Pb (OR=12.09, 95% CI: 2.81, 51.97) and Se (OR=0.25, 95% CI: 0.08, 0.77) were harmful and protective predictors of CHDs, respectively, with positive and negative interactions suggested for Cd with Pb and Se with Pb, respectively. Similar associations were detected for subgroups of CHDs, including conotruncal defects, septal defects, and right ventricle outflow tract obstruction. Our results suggest that even under the current standard for protecting human health (10μg/dL), Pb exposure poses an important health threat. These data can be used for developing interventions and identifying high-risk pregnancies. Copyright © 2017. Published by Elsevier Ltd.

  18. Spatial and temporal variability of trace element concentrations in an urban subtropical watershed, Honolulu, Hawaii

    USGS Publications Warehouse

    Heinen, De Carlo E.; Anthony, S.S.

    2002-01-01

    Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input. ?? 2002 Elsevier Science Ltd. All rights reserved.

  19. Concentrations and health risk assessment of trace elements in animal-derived food in southern China.

    PubMed

    Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou

    2016-02-01

    This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Trace Elements in Water, Sediments and the Elongate Tigerfish Hydrocynus forskahlii (Cuvier 1819) from Lake Turkana, Kenya Including a Comprehensive Health Risk Analysis.

    PubMed

    Otachi, Elick O; Plessl, Christof; Körner, Wilfried; Avenant-Oldewage, Annemariè; Jirsa, Franz

    2015-09-01

    This study presents the distribution of 17 major and trace elements in surface water, sediments and fish tissues from Lake Turkana, Kenya. Eight sediment and ten water samples from the west bank of the lake, as well as 34 specimens of the elongate tigerfish Hydrocynus forskahlii caught in that region were examined. It is the first report for Li, Rb, Sr, Mo from the lake and the first report on most of the trace elements for this fish species. The concentrations of elements in the water and sediments showed no sign of pollution. In fish muscle, Li, Zn and Cd showed relatively high abundances, with mean concentrations of 206, 427 and 0.56 mg/kg dw, respectively. The calculated target hazard quotient values for Li, Zn, Sr and Cd were 138.7, 1.9, 4.1 and 0.76, respectively; therefore the consumption of these fish poses a health risk to humans in the area.

  1. Distribution of toxic trace elements in soil/sediment in post-Katrina New Orleans and the Louisiana Delta

    USGS Publications Warehouse

    Su, T.; Shu, S.; Shi, Honglan; Wang, Jingyuan; Adams, Craig; Witt, Emitt C.

    2008-01-01

    This study provided a comprehensive assessment of seven toxic trace elements (As, Pb, V, Cr, Cd, Cu, and Hg) in the soil/sediment of Katrina affected greater New Orleans region 1 month after the recession of flood water. Results indicated significant contamination of As and V and non-significant contamination of Cd, Cr, Cu, Hg and Pb at most sampling sites. Compared to the reported EPA Region 6 soil background inorganic levels, except As, the concentrations of other six elements had greatly increased throughout the studied area; St. Bernard Parish and Plaquemines Parish showed greater contamination than other regions. Comparison between pre- and post-Katrina data in similar areas, and data for surface, shallow, and deep samples indicated that the trace element distribution in post-Katrina New Orleans was not obviously attributed to the flooding. This study suggests that more detailed study of As and V contamination at identified locations is needed. ?? 2008 Elsevier Ltd.

  2. Analysis of Hair Trace Elements in Children with Autism Spectrum Disorders and Communication Disorders.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Tinkov, Alexey A

    2017-06-01

    The primary objective of the present study is analysis of hair trace elements content in children with communication disorder (CD) and autism spectrum disorder (ASD). A total of 99 children from control, CD, and ASD groups (n = 33) were examined. All children were additionally divided into two subgroups according to age. Hair levels of trace elements were assessed using inductively coupled plasma mass spectrometry. The difference was considered significant at p < 0.01. The obtained data demonstrate that children with CD are characterized by significantly increased hair lithium (Li) (96 %; p = 0.008), selenium (Se) (66 %; p < 0.001), arsenic (As) (96 %; p = 0.005), beryllium (Be) (150 %; p < 0.001), and cadmium (Cd) (72 %; p = 0.007) content, being higher than the respective control values. In the ASD group, hair copper (Cu), iodine (I), and Be levels tended to be lower than the control values. In turn, the scalp hair content of Se significantly exceeded the control values (33 %; p = 0.004), whereas the level of iron (Fe) and aluminum (Al) tended to increase. After gradation for age, the most prominent differences in children with CD were detected in the elder group (5-8 years), whereas in the case of ASD-in the younger group (3-4 years old). Taking into account the role of hair as excretory mechanism for certain elements including the toxic ones, it can be proposed that children suffering from ASD are characterized by more profound alteration of metal handling and excretion in comparison to CD.

  3. Sensitivity of trace element pyritization to pyrite oxidation processes

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Díaz, Rut; Mendoza, Ursula; Capilla, Ramses; Böttcher, Michael; Luiza Albuquerque, Ana; Machado, Wilson

    2014-05-01

    Total trace elements concentration variability in marine sediments has been widely used as a proxy for redox conditions and marine paleoprodutivity. However, partial extraction procedures reduce influences of detrital sedimentary fractions, and information on trace element geochemical partitioning can contribute to provide comprehensive evidences on elemental sensitivity to particular processes. The potential effect of sedimentary pyrite re-oxidative cycling on the degree of trace metal pyritization (DTMP) has not been previously evaluated. This study investigates this effect in 4 sediment cores from the continental shelf under the influence of a tropical upwelling system (Cabo Frio, Brazil). The relation of DTMP with stable isotope signals (δ34SCRS) of chromium reducible sulfur, which becomes lighter in response to intense pyrite re-oxidative cycling in the study area, suggests high (As, Cd and Mn), low (Cu and Zn) or negligible (Cr and Ni) re-oxidation influences. The oldest, pyrite-richer sediments provide an apparent threshold for intense pyrite re-oxidation, after which most trace elements (As, Cd, Zn and Mn) presented more accentuated pyritization. A middle shelf core presented negative correlations of reactive (HCl-soluble) Mn, Cu and Ni with pyrite iron, suggesting Mn oxide (and associated metals) depletion in reaction with pyrite. Results provided evidences for coupled influences from both aerobic and anaerobic oxidative processes on trace elements incorporation into pyrite. Pyrite δ34S signatures under the oxic bottom water from the study area were similar to those from euxinic sedimentary environments, suggesting that pyrite re-oxidative cycling can affect trace element susceptibility to be incorporated and preserved into pyrite in a wide range of sedimentary conditions. The evaluation of trace elements sensitivity to these processes can contribute to improve the use of multiple DTMP data (e.g., as paleoredox proxies). Considering that S re-oxidative cycling is ubiquitous in many sedimentary conditions, such coupled use of DTMP and δ34SCRS proxies can be possibly applied to a large variety of sedimentary environments.

  4. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  5. Investigation of the Influence of Selected Soil and Plant Properties from Sakarya, Turkey, on the Bioavailability of Trace Elements by Applying an In Vitro Digestion Model.

    PubMed

    Altundag, Huseyin; Albayrak, Sinem; Dundar, Mustafa S; Tuzen, Mustafa; Soylak, Mustafa

    2015-11-01

    The main aim of this study was an investigation of the influence of selected soil and plant properties on the bioaccessibility of trace elements and hence their potential impacts on human health in urban environments. Two artificial digestion models were used to determine trace element levels passing from soil and plants to man for bioavailability study. Soil and plant samples were collected from various regions of the province of Sakarya, Turkey. Digestive process is started by addition of soil and plant samples to an artificial digestion model based on human physiology. Bioavailability % values are obtained from the ratio of the amount of element passing to human digestion to element content of soil and plants. According to bioavailability % results, element levels passing from soil samples to human digestion were B = Cr = Cu = Fe = Pb = Li < Al < Ni < Co < Ba < Mn < Sr < Cd < Na < Zn < Tl, while element levels passing from plant samples to human digestion were Cu = Fe = Ni = Pb = Tl = Na = Li < Co < Al < Sr < Ba < Mn < Cd < Cr < Zn < B. It was checked whether the results obtained reached harmful levels to human health by examining the literature.

  6. Bioaccumulation of Trace Elements in Ruditapes philippinarum from China: Public Health Risk Assessment Implications

    PubMed Central

    Yang, Feng; Zhao, Liqiang; Yan, Xiwu; Wang, Yuan

    2013-01-01

    The Manila clam Ruditapes philippinarum is one of the most important commercial bivalve species consumed in China. Evaluated metal burden in bivalve molluscs can pose potential risks to public health as a result of their frequent consumption. In this study, concentrations of 10 trace elements (Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As) were determined in samples of the bivalve Ruditapes philippinarum, collected from nine mariculture zones along the coast of China between November and December in 2010, in order to evaluate the status of elemental metal pollution in these areas. Also, a public health risk assessment was untaken to assess the potential risks associated with the consumption of clams. The ranges of concentrations found for Cu, Zn, Mn, Se, Ni, Cd, Cr, Pb, Hg and As in R. philippinarum were 12.1–38.0, 49.5–168.3, 42.0–68.0, 4.19–8.71, 4.76–14.32, 0.41–1.11, 0.94–4.74, 0.32–2.59, 0.03–0.23 and 0.46–11.95 mg·kg−1 dry weight, respectively. Clear spatial variations were found for Cu, Zn, Cr, Pb, Hg and As, whereas Mn, Se, Ni, and Cd did not show significant spatial variation. Hotspots of trace element contamination in R. philippinarum can be found along the coast of China, from the north to the south, especially in the Bohai and Yellow Seas. Based on a 58.1 kg individual consuming 29 g of bivalve molluscs per day, the values of the estimated daily intake (EDI) of trace elements analyzed were significantly lower than the values of the accepted daily intake (ADI) established by Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JFAO/WHO) and the guidelines of the reference does (RfD) established by the United States Environmental Protection Agency (USEPA). Additionally, the risk of trace elements to humans through R. philippinarum consumption was also assessed. The calculated hazard quotients (HQ) of all trace elements were less than 1. Consequently, there was no obvious public risk from the intake of these trace elements through R. philippinarum consumption. PMID:23549229

  7. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species.

    PubMed

    He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong

    2010-03-24

    In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.

  8. Trace elements in winter snow of the Dolomites (Italy): a statistical study of natural and anthropogenic contributions.

    PubMed

    Gabrielli, P; Cozzi, G; Torcini, S; Cescon, P; Barbante, C

    2008-08-01

    Knowledge of the occurrence of trace elements deposited in fresh alpine snow is very limited. Although current sources of major ionic inorganic species have been well established, this is not the case for many trace elements. This manuscript attempts to reconstruct the origin of Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and Zn in winter surface snow, extensively collected in the Dolomites region (Eastern Alps, Italy). Sampling of surface snow was conducted weekly during the winter 1998 at 21 sites at altitudes ranging from approximately 1000 to approximately 3000 m. This led to a remarkable dataset of trace element concentrations in surface snow from low latitudes. Here we show a preliminary statistical investigation conducted on the 366 samples collected. It was found that V, Sb, Zn, Cd, Mo and Pb have a predominantly anthropogenic origin, linked to the road traffic in the alpine valleys and the nearby heavily industrialised area of the Po Valley. In addition, the occasionally strong Fe and Cr input may reflect the mechanical abrasion of ferrous components of the vehicles. However, much of the Fe along with Mn, U and Ti originates primarily from the geological background of the Dolomites. A marine contribution was found to be negligible for all the trace elements. The origin of other trace elements is less clear: Ag can be possibly attributed to a predominantly anthropogenic origin while Cr, Co, Cu and Ba are usually from crustal rocks but different than the Dolomites.

  9. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  10. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    NASA Astrophysics Data System (ADS)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the analyzed trace elements in groundwater do not pose any significant threat to the population living in this area.

  11. Trace element concentrations in livers of polar bears from two populations in Northern and Western Alaska.

    PubMed

    Kannan, Kurunthachalam; Agusa, Tetsuro; Evans, Thomas J; Tanabe, Shinsuke

    2007-10-01

    Concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of polar bears (Ursus maritimus) collected from Northern and Western Alaska from 1993 to 2002 to examine differences in the profiles of trace metals between the Beaufort Sea (Northern Alaska) and the Chukchi Sea (Western Alaska) subpopulations in Alaska. Among the trace elements analyzed, concentrations of Cu (50-290 microg/g, dry wt) in polar bear livers were in the higher range of values that have been reported for marine mammals. Concentrations of Hg in polar bears varied widely, from 3.5 to 99 microg/g dry wt, and the mean concentrations in polar bears were comparable to concentrations reported previously for several other species of marine mammals. Mean concentrations of Pb and Cd were 0.67 and 1.0 microg/g dry wt, respectively; these concentrations were lower than levels reported elsewhere for polar bears from Greenland and Canada. Age- and gender-related variations in the concentrations of trace elements in our polar bears were minimal. Concentrations of Hg decreased slowly in samples collected during 1993-2002, whereas Cd and Pb concentrations were found to be stable or slowly increasing, in the livers of Alaskan polar bears. Concentrations of Ag, Bi, Ba, Cu, and Sn were significantly higher in the Chukchi Sea subpopulation than in the Beaufort Sea subpopulation. Concentrations of Hg were significantly higher in the Beaufort Sea subpopulation than in the Chukchi Sea subpopulation. Differences in the profiles and concentrations of Hg, Ag, Bi, Ba, Cu, and Sn suggest that the sources of exposure to these trace elements between Western and Northern Alaskan polar bears are different, in agreement with findings reported earlier for several organic contaminants.

  12. Trace Elements in Dominant Species of the Fenghe River, China: Their Relations to Environmental Factors.

    PubMed

    Yang, Yang; Zhou, Zhengchao; Bai, Yanying; Jiao, Wentao; Chen, Weiping

    2016-07-01

    The distribution of trace elements (TEs) in water, sediment, riparian soil and dominant plants was investigated in the Fenghe River, Northwestern China. The Fenghe River ecosystem was polluted with Cd, Cr, Hg and Pb. There was a high pollution risk in the midstream and downstream regions and the risk level for Cd was much higher than that of the other elements. The average values of bioconcentration coefficient for Cd and Zn were 2.21 and 1.75, respectively, indicating a large accumulation of Cd and Zn in the studied species. With broad ecological amplitudes, L. Levl. et Vant. Trin., and L. had the greatest TE concentrations in aboveground and belowground biomass of the studied species and were potential biomonitors or phytoremediators for the study area. Multivariate techniques including cluster analysis, correlation analysis, principal component analysis, and canonical correspondence analysis were used to analyze the relations between TE concentrations in plants and various environmental factors. The soil element concentration is the main factor determining the accumulation of TEs in plants. The co-release behavior of common pollutants and TEs drove the accumulation of Hg, Cd, and As in the studied plants. Significant enrichment of some elements in the Fenghe River has led to a decline in the biodiversity of plants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Ecological geochemical assessment and source identification of trace elements in atmospheric deposition of an emerging industrial area: Beibu Gulf economic zone.

    PubMed

    Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Hu, Baoqing; Hou, Qingye; Yu, Tao; Li, Jie

    2016-12-15

    Industrialization and urbanization have led to a deterioration in air quality and provoked some serious environmental concerns. Fifty-four samples of atmospheric deposition were collected from an emerging industrial area and analyzed to determine the concentrations of 11 trace elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Se, S and Zn). Multivariate geostatistical analyses were conducted to determine the spatial distribution, possible sources and enrichment degrees of trace elements in atmospheric deposition. Results indicate that As, Fe and Mo mainly originated from soil, their natural parent materials, while the remaining trace elements were strongly influenced by anthropogenic or natural activities, such as coal combustion in coal-fired power plants (Pb, Se and S), manganese ore (Mn, Cd and Hg) and metal smelting (Cu and Zn). The results of ecological geochemical assessment indicate that Cd, Pb and Zn are the elements of priority concern, followed by Mn and Cu, and other heavy metals, which represent little threat to local environment. It was determine that the resuspension of soil particles impacted the behavior of heavy metals by 55.3%; the impact of the coal-fired power plants was 18.9%; and the contribution of the local manganese industry was 9.6%. The comparison of consequences from various statistical methods (principal component analysis (PCA), cluster analysis (CA), enrichment factor (EF) and absolute principle component score (APCS)-multiple linear regression (MLR)) confirmed the credibility of this research. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Trace elements in muscle of three fish species from Todos os Santos Bay, Bahia State, Brazil.

    PubMed

    de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, William Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso

    2017-03-01

    In this study, an analysis was performed on the concentrations of the trace elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in muscle of two carnivorous and one planktivorous fish species collected at Todos os Santos Bay (BTS). The accumulation order of the trace elements in Lutjanus analis was Al >Zn >Fe >Cr >Ba >Ni. In Cetengraulis edentulus, the order was Al >Fe >Zn >Cr >Ni >Mn >As. In the species Diapterus rhombeus, the order was Al >Fe >Zn >Cr >Ni >Mn >Cd. To determine the risk related to the consumption of fish, toxicity guidelines were used as standard references. It was observed that the species C. edentulus contained concentrations of As exceeding WHO limits, but these concentrations were acceptable according to the Agência Nacional de Vigilância Sanitária (ANVISA) guidelines. Cd levels were found only in D. rhombeus and in low concentrations according to the determinations of WHO and ANVISA. Pb levels were not detected in any of the three fish species. The analyzed elements did not differ statistically according to the species and feeding habits. The results point to possible risks of human contamination by As related to the consumption of the fish species C. edentulus from the BTS.

  15. Toxic trace elements at gastrointestinal level.

    PubMed

    Vázquez, M; Calatayud, M; Jadán Piedra, C; Chiocchetti, G M; Vélez, D; Devesa, V

    2015-12-01

    Many trace elements are considered essential [iron (Fe), zinc (Zn), copper (Cu)], whereas others may be harmful [lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As)], depending on their concentration and chemical form. In most cases, the diet is the main pathway by which they enter our organism. The presence of toxic trace elements in food has been known for a long time, and many of the food matrices that carry them have been identified. This has led to the appearance of legislation and recommendations concerning consumption. Given that the main route of exposure is oral, passage through the gastrointestinal tract plays a fundamental role in their entry into the organism, where they exert their toxic effect. Although the digestive system can be considered to be of crucial importance in their toxicity, in most cases we do not know the events that occur during the passage of these elements through the gastrointestinal tract and of ascertaining whether they may have some kind of toxic effect on it. The aim of this review is to summarize available information on this subject, concentrating on the toxic trace elements that are of greatest interest for organizations concerned with food safety and health: Pb, Cd, Hg and As. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.

    PubMed

    Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos

    2018-04-01

    Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Trace element levels in mollusks from clean and polluted coastal marine sites in the Mediterranean, Red and North Seas

    NASA Astrophysics Data System (ADS)

    Herut, Barak; Kress, Nurit; Shefer, Edna; Hornung, Hava

    1999-12-01

    The trace element contamination levels in mollusks were evaluated for different marine coastal sites in the Mediterranean (Israeli coast), Red (Israeli coast) and North (German coast) Seas. Three bivalve species (Mactra corallina, Donax sp, and Mytilus edulis) and two gastropod species (Patella sp.and Cellana rota) were sampled at polluted and relatively clean sites, and their soft tissue analyzed for Hg, Cd, Zn, Cu, Mn and Fe concentrations. Representative samples were screened for organic contaminants [(DDE), polychlorinated biphenyls PCBs and polycyclic aromatic hydrocarbons (PAHs)] which exhibited very low concentrations at all sites. In the Red Sea, the gastropod C. rota showed low levels of Hg (below detection limit) and similar Cd concentrations at all the examined sites, while other trace elements (Cu, Zn, Mn, Fe) were slightly enriched at the northern beach stations. Along the Mediterranean coast of Israel, Hg and Zn were enriched in two bivalves (M. corallina and Donax sp.) from Haifa Bay, both species undergoing a long-term decrease in Hg based on previous studies. Significant Cd and Zn enrichment was detected in Patella sp. from the Kishon River estuary at the southern part of Haifa Bay. In general, Patella sp. and Donax sp. specimens from Haifa Bay exhibited higher levels of Cd compared to other sites along the Israeli Mediterranean coast, attributed to the enrichment of Cd in suspended particulate matter. Along the German coast (North Sea) M. edulis exhibited higher concentrations of Hg and Cd at the Elbe and Eider estuaries, but with levels below those found in polluted sites elsewhere.

  18. Characteristics and impacts of trace elements in atmospheric deposition at a high-elevation site, southern China.

    PubMed

    Nie, Xiaoling; Wang, Yan; Li, Yaxin; Sun, Lei; Li, Tao; Yang, Minmin; Yang, Xueqiao; Wang, Wenxing

    2017-10-01

    To investigate the regional background trace element (TE) level in atmospheric deposition (dry and wet), TEs (Fe, Al, V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, and Pb) in 52 rainwater samples and 73 total suspended particles (TSP) samples collected in Mt. Lushan, Southern China, were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The results showed that TEs in wet and dry deposition of the target area were significantly elevated compared within and outside China and the volume weight mean pH of rainwater was 4.43. The relative contributions of wet and dry depositions of TEs vary significantly among elements. The wet deposition fluxes of V, As, Cr, Se, Zn, and Cd exceeded considerably their dry deposition fluxes while dry deposition dominated the removal of pollution elements such as Mo, Cu, Ni, Mn, and Al. The summed dry deposition flux was four times higher than the summed wet deposition flux. Prediction results based on a simple accumulation model found that the content of seven toxic elements (Cr, Ni, Cu, Zn, As, Cd, and Pb) in soils could increase rapidly due to the impact of annual atmospheric deposition, and the increasing amounts of them reached 0.063, 0.012, 0.026, 0.459, 0.076, 0.004, and 0.145 mg kg -1 , respectively. In addition, the annual increasing rates ranged from 0.05% (Cr and Ni) to 2.08% (Cd). It was also predicted that atmospheric deposition induced the accumulation of Cr and Cd in surface soils. Cd was the critical element with the greatest potential ecological risk among all the elements in atmospheric deposition.

  19. Tolerance to cadmium in plants: the special case of hyperaccumulators.

    PubMed

    Verbruggen, Nathalie; Juraniec, Michal; Baliardini, Cecilia; Meyer, Claire-Lise

    2013-08-01

    On sols highly polluted by trace metallic elements the majority of plant species are excluders, limiting the entry and the root to shoot translocation of trace metals. However a rare class of plants called hyperaccumulators possess remarkable adaptation because those plants combine extremely high tolerance degrees and foliar accumulation of trace elements. Hyperaccumulators have recently gained considerable interest, because of their potential use in phytoremediation, phytomining and biofortification. On a more fundamental point of view hyperaccumulators of trace metals are case studies to understand metal homeostasis and detoxification mechanisms. Hyperaccumulation of trace metals usually depends on the enhancement of at least four processes, which are the absorption from the soil, the loading in the xylem in the roots and the unloading from the xylem in the leaves and the detoxification in the shoot. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. To date, only nine species have been recognized as Cd hyperaccumulators that is to say able to tolerate and accumulate more than 0.01 % Cd in shoot dry biomass. Among these species, four belong to the Brassicaceae family with Arabidopsis halleri and Noccaea caerulescens being considered as models. An update of our knowledge on the evolution of hyperaccumulators will be presented here.

  20. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  1. Concentrations and bioaccessibilities of trace elements in barbecue charcoals.

    PubMed

    Sharp, Annabel; Turner, Andrew

    2013-11-15

    Total and bioaccessible concentrations of trace elements (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn) have been measured in charcoals from 15 barbecue products available from UK retailers. Total concentrations (available to boiling aqua regia) were greater in briquetted products (with mean concentrations ranging from 0.16 μg g(-1) for Cd to 3240 μg g(-1) for Al) than in lumpwoods (0.007 μg g(-1) for Cd to 28 μg g(-1) for Fe), presumably because of the use of additives and secondary constituents (e.g. coal) in the former. On ashing, and with the exception of Hg, elemental concentrations increased by factors ranging from about 1.5 to 50, an effect attributed to the combustion of organic components and offset to varying extents by the different volatilities of the elements. Concentrations in the ashed products that were bioaccessible, or available to a physiologically based extraction test (PBET) that simulates, successively, the chemical conditions in the human stomach and intestine, exhibited considerable variation among the elements studied. Overall, however, bioaccessible concentrations relative to corresponding total concentrations were greatest for As, Cu and Ni (attaining 100% in either or both simulated PBET phases in some cases) and lowest for Pb (generally <1% in both phases). A comparison of bioaccessible concentrations in ashed charcoals with estimates of daily dietary intake suggest that Al and As are the trace elements of greatest concern to human health from barbecuing. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Longitudinal survey of lead, cadmium, and copper in seagrass Syringodium filiforme from a former bombing range (Vieques, Puerto Rico).

    PubMed

    Díaz, Elba; Pérez, Dustin; Delgado Acevedo, Johanna; Massol-Deyá, Arturo

    2018-01-01

    Trace element composition in plant biomass could be used as an indicator of environmental stress, management practices and restoration success. A longitudinal study was conducted to compare Pb, Cd, and Cu content in seagrass Syringodium filiforme collected at a former bombing range in Puerto Rico with those of a Biosphere Reserve under similar geoclimatic conditions. Trace elements were measured by atomic absorption after dry-ashing of samples and extraction with acid. In general, levels of Pb, Cd, and Cu varied during 2001, 2003, 2005-2006, and 2013-2016. Results showed that bioaccumulated concentration of these trace elements were consistently higher, but not significant, at the bombing range site. As expected in polluted areas, greater variability in Pb and Cd content were observed in the military impacted site with levels up to 14 and 17 times higher than seagrass from the reference site, respectively. Although a decrease in Pb was observed after cessation of all military activities in 2003, the concentration in plant biomass was still above levels of ecological concern, indicating that natural attenuation is insufficient for cleanup of the site.

  3. Essential and toxic elements in infant foods from Spain, UK, China and USA.

    PubMed

    Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A

    2012-09-01

    Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.

  4. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.

    PubMed

    Yang, Zhenzhou; Chen, Yan; Sun, Yongqi; Liu, Lili; Zhang, Zuotai; Ge, Xinlei

    2016-07-01

    In the present study, the trace elements partitioning behavior during cement manufacture process were systemically investigated as well as their distribution behaviors in the soil surrounding a cement plant using hazardous waste as raw materials. In addition to the experimental analysis, the thermodynamic equilibrium calculations were simultaneously conducted. The results demonstrate that in the industrial-scale cement manufacture process, the trace elements can be classified into three groups according to their releasing behaviors. Hg is recognized as a highly volatile element, which almost totally partitions into the vapor phase. Co, Cu, Mn, V, and Cr are considered to be non-volatile elements, which are largely incorporated into the clinker. Meanwhile, Cd, Ba, As, Ni, Pb, and Zn can be classified into semi-volatile elements, as they are trapped into clinker to various degrees. Furthermore, the trace elements emitted into the flue gas can be adsorbed onto the fine particles, transport and deposit in the soil, and it is clarified here that the soil around the cement plant is moderately polluted by Cd, slightly polluted by As, Cr, Ba, Zn, yet rarely influenced by Co, Mn, Ni, Cu, Hg, and V elements. It was also estimated that the addition of wastes can efficiently reduce the consumption of raw materials and energy. The deciphered results can thus provide important insights for estimating the environmental impacts of the cement plant on its surroundings by utilizing wastes as raw materials.

  5. Geochemical study of stream waters affected by mining activities in the SE Spain

    NASA Astrophysics Data System (ADS)

    Garcia-Lorenzo, Maria Luz; Perez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Bech, Jaime

    2015-04-01

    Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. According to transport process, three types of pollution could be established: a) Primary contamination, formed by residues placed close to the contamination sources; b) Secondary contamination, produced as a result of transport out of its production areas; c) Tertiary contamination. The aim of this work was to study trace element in water samples affected by mining activities and to apply the MINTEQ model for calculating aqueous geochemical equilibria. The studied area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. As a result, a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues are present. For this study, 36 surficial water samples were collected after a rain episode in 4 different areas. In these samples, the trace element content was determined by by flame atomic absorption spectrometry (Fe and Zn), electrothermal atomization atomic absorption spectrometry (Pb and Cd), atomic fluorescence spectrometry (As) and ICP-MS for Al. MINTEQA2 is a geochemical equilibrium speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting and was applied to collected waters. Zone A: A5 is strongly influenced by tailing dumps and showed high trace element content. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH. The MINTEQ model application suggested that Zn and Cd could precipitate as carbonate (hidrocincite, smithsonite and otavite). A9 also showed acid pH and high trace element content; is influenced by tailing dumps and also by waters from gully watercourses, transporting materials from Sierra Minera. The MINTEQ simulation showed that Pb and Ca could precipitate as sulphates (anglesite and gypsum). Waters affected by secondary contamination have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The MINTEQ model results showed that in A10 and A14, Al could precipitate as diaspore but also carbonates could be formed, particularly dolomite. These model in A12 sample showed that soluble Zn could precipitate as carbonate and Al as oxyhydroxide, similarly than in A13. A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. The speciation model showed that in A2, Cd and Zn could precipitate as carbonates while Al as oxihydroxide. In A6, the model suggested that soluble Pb could precipitate as carbonate (hidrocerusite and cerusite) or as hydroxide; Al as diaspore, Ca as calcite and Fe as hematite. Zone B: All waters are strongly affected by mining activities and showed acid pH, high trace element content and high content of soluble sulphates. The MINTEQ results showed that in B8, Fe could precipitate as hydroxychloride and in B12 could form alunite. In B9, B10, B13 y B14, the model estimates the precipitation of anglesite, gypsum and Fe hydroxichloride (B9 and B10), diaspore in B13 and B14, and gypsum and Fe hydroxychloride in B13. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As, Zn and Cd. In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. In all samples, except C2, the MINTEQ model showed that a lot of efflorescences could be formed, mainly sulphates. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. MINTEQ model results showed that elements could precipitate as jarosite but also anglesite in D8 and gypsum in D9, D11 and D12. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements. The MINTEQ model suggested that Al could precipitate as diaspore, gibbsite and alunite. The applied model is an appropriate tool for the analysis of waters affected by mining activities. The obtained simulations confirm natural attenuation processes.

  6. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  7. Trace elements in farmed fish (Cyprinus carpio, Ctenopharyngodon idella and Oncorhynchus mykiss) from Beijing: implication from feed.

    PubMed

    Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei

    2016-06-01

    Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.

  8. Spatial Distribution and Fuzzy Health Risk Assessment of Trace Elements in Surface Water from Honghu Lake.

    PubMed

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi

    2017-09-04

    Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10 -5 to 10 -4 ). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10-S13, S15, and S18 were of relatively low credibility (50-60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent.

  9. Spatial Distribution and Fuzzy Health Risk Assessment of Trace Elements in Surface Water from Honghu Lake

    PubMed Central

    Qiu, Zhenzhen; Zhang, Jingdong; Liu, Chaoyang; Cai, Ying; Xiao, Minsi

    2017-01-01

    Previous studies revealed that Honghu Lake was polluted by trace elements due to anthropogenic activities. This study investigated the spatial distribution of trace elements in Honghu Lake, and identified the major pollutants and control areas based on the fuzzy health risk assessment at screening level. The mean total content of trace elements in surface water decreased in the order of Zn (18.04 μg/L) > Pb (3.42 μg/L) > Cu (3.09 μg/L) > Cr (1.63 μg/L) > As (0.99 μg/L) > Cd (0.14 μg/L), within limits of Drinking Water Guidelines. The results of fuzzy health risk assessment indicated that there was no obvious non-carcinogenic risk to human health, while carcinogenic risk was observed in descending order of As > Cr > Cd > Pb. As was regarded to have the highest carcinogenic risk among selected trace elements because it generally accounted for 64% of integrated carcinogenic risk. Potential carcinogenic risk of trace elements in each sampling site was approximately at medium risk level (10−5 to 10−4). The areas in the south (S4, S13, and S16) and northeast (S8, S18, and S19) of Honghu Lake were regarded as the risk priority control areas. However, the corresponding maximum memberships of integrated carcinogenic risk in S1, S3, S10–S13, S15, and S18 were of relatively low credibility (50–60%), and may mislead the decision-makers in identifying the risk priority areas. Results of fuzzy assessment presented the subordinate grade and corresponding reliability of risk, and provided more full-scale results for decision-makers, which made up for the deficiency of certainty assessment to a certain extent. PMID:28869576

  10. Macro- and microelement distribution in organs of Glyceria maxima and biomonitoring applications.

    PubMed

    Klink, Agnieszka; Stankiewicz, Andrzej; Wisłocka, Magdalena; Polechońska, Ludmiła

    2014-07-01

    The content of nutrients (N, P, K, Ca and Mg) and of trace metals (Fe, Cu, Mn, Zn, Pb, Cd, Co and Ni) in water, bottom sediments and various organs of Glyceria maxima from 19 study sites selected in the Jeziorka River was determined. In general, the concentrations of nutrients recorded in the plant material decreased in the following order: leaf>root>rhizome>stem, while the concentrations of the trace elements showed the following accumulation scheme: root>rhizome>leaf>stem. The bioaccumulation and transfer factors for nutrients were significantly higher than for trace metals. G. maxima from agricultural fields was characterised by the highest P and K concentrations in leaves, and plants from forested land contained high Zn and Ni amounts. However, the manna grass from small localities showed high accumulation of Ca, Mg and Mn. Positive significant correlations between Fe, Cu, Zn, Cd, Co and Ni concentrations in water or sediments and their concentrations in plant indicate that G. maxima may be employed as a biomonitor of trace element contamination. Moreover, a high degree of similarity was noted between self-organizing feature map (SOFM)-grouped sites of comparable quantities of elements in the water and sediments and sites where G. maxima had a corresponding content of the same elements in its leaves. Therefore, SOFM could be recommended in analysing ecological conditions of the environment from the perspective of nutrients and trace element content in different plant species and their surroundings.

  11. The bark of the branches of holm oak (Quercus ilex L.) for a retrospective study of trace elements in the atmosphere.

    PubMed

    Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2017-04-01

    Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10-15 years with annual resolution. In the present study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the "a posteriori" reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Trace elements in soil and biota in confined disposal facilities for dredged material

    USGS Publications Warehouse

    Beyer, W.N.; Miller, G.; Simmers, J.W.

    1990-01-01

    We studied the relation of trace element concentrations in soil to those in house mice (Mus musculus), common reed (Phragmites australis) and ladybugs (Coccinella septempunctata) at five disposal facilities for dredged material. The sites had a wide range of soil trace element concentrations, acid soils and a depauperate fauna. They were very poor wildlife habitat because they were dominated by the common reed. Bioassay earthworms exposed to surface soils from three of the five sites died, whereas those exposed to four of five soils collected a meter deep survived, presumably because the deeper, unoxidized soil, was not as acid. Concentrations of Ni and Cr in the biota from each of the sites did not seem to be related to the concentrations of the same elements in soil. Although Pb, Zn and Cu concentrations in biota were correlated with those in soil, the range of concentrations in the biota was quite small compared to that in soil. The concentrations of Pb detected in mice were about as high as the concentrations previously reported in control mice from other studies. Mice from the most contaminated site (530 ppm Pb in soil) contained only slightly more Pb (8 ppm dry wt) than did mice (2-6 ppm dry wt) from sites containing much less Pb (22-92 ppm in soil). Despite the acid soil conditions, very little Cd was incorporated into food chains. Rather, Cd was leaching from the surface soil. We concluded that even the relatively high concentrations of trace elements in the acid dredged material studied did not cause high, concentrations of trace elements in the biota.

  13. [Distribution Characteristics, Sources and Pollution Assessment of Trace Elements in Surficial Sediments of the Coastal Wetlands, Northeastern Hainan Island].

    PubMed

    Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng

    2016-04-15

    Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably occur in 22% areas of all the sampling stations.

  14. Element-specific behaviour and sediment properties modulate transfer and bioaccumulation of trace elements in a highly-contaminated area (Augusta Bay, Central Mediterranean Sea).

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Di Leonardo, Rossella; Vizzini, Salvatrice

    2017-11-01

    High sediment contamination in the coastal area of Priolo Bay, adjacent to the highly-polluted Augusta Harbour, poses serious risks for the benthic communities inhabiting the area. Nevertheless, the transfer of trace elements and consequent bioaccumulation in the biota is an overlooked issue. This study aimed to assess the transfer and bioaccumulation patterns of As, Cd, Ni and Hg to the dominant macroalgae and benthic invertebrates of Priolo Bay. Results revealed different patterns among trace elements (TEs), not driven by sediment contamination but rather by element-specific behaviour coupled with sediment physicochemical properties. Specifically, As accumulated in macroalgae but not in invertebrates, indicating bioavailability of dissolved As only, and a lack of effective trophic transfer. Ni was confined to surface sediment and transfer to biota was not highlighted. Cd and Hg showed the highest concentrations in invertebrates and bioaccumulated especially in filter feeders and carnivores, revealing the importance of suspended particulate and diet as transfer pathways. Total organic carbon (TOC), fine-grained sediments and redox potential were the most important sediment features in shaping the sediment contamination spatial patterns as well as those of TE transfer and bioaccumulation. In particular, As and Cd transfer to macroalgae, and especially Hg bioaccumulation in benthic invertebrates was controlled by sediment properties, resulting in limited transfer and accumulation in the most contaminated stations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of spatial resolution of soil data on predictions of eggshell trace element levels in the Rook Corvus frugilegus.

    PubMed

    Orłowski, Grzegorz; Siebielec, Grzegorz; Kasprzykowski, Zbigniew; Dobicki, Wojciech; Pokorny, Przemysław; Wuczyński, Andrzej; Polechoński, Ryszard; Mazgajski, Tomasz D

    2016-12-01

    Although a considerable research effort has gone into studying the dietary pathways of metals to the bodies of laying female birds and their eggs in recent years, no detailed investigations have yet been carried out relating the properties of the biogeochemical environment at large spatial scales to eggshell trace element levels in typical soil-invertebrate feeding birds under natural conditions. We used data from a large-scale nationwide monitoring survey of soil quality in Poland (3724 sampling points from the 43 792 available) to predict levels of five trace elements (copper [Cu], cadmium [Cd], nickel [Ni], zinc [Zn] and lead [Pb]) in Rook Corvus frugilegus eggshells from 42 breeding colonies. Our major aim was to test whether differences exist in the explanatory power of soil data (acidity, content of elements and organic matter, and particle size) used as a correlate of concentrations of eggshell trace elements among four different distances (5, 10, 15 and 20 km) around rookeries. Over all four distances around the rookeries only the concentrations of Cu and Cd in eggshells were positively correlated with those in soil, while eggshell Pb was correlated with the soil Pb level at the two longest distances (15 and 20 km) around the rookeries. The physical properties of soil (primarily the increase in pH) adversely affected eggshell Cd and Pb concentrations. The patterns and factors governing metal bioaccumulation in soil invertebrates and eggshells appear to be coincident, which strongly suggests a general similarity in the biochemical pathways of elements at different levels of the food web. The increasing acidification of arable soil as a result of excessive fertilisation and over-nitrification can enhance the bioavailability of toxic elements to laying females and their eggs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Assessment of essential and nonessential dietary exposure to trace elements from homegrown foodstuffs in a polluted area in Makedonska Kamenica and the Kočani region (FYRM).

    PubMed

    Vrhovnik, Petra; Dolenec, Matej; Serafimovski, Todor; Tasev, Goran; Arrebola, Juan P

    2016-07-15

    The main purpose of the present study is to assess human dietary exposure to essential and non-essential trace elements via consumption of selected homegrown foodstuffs. Twelve essential and non-essential trace elements (Cd, Co, Cu, Cr, Hg, Mo, Ni, Pb, Sb, Se, Zn and As) were detected in various homegrown foodstuffs. Detailed questionnaires were also applied among a sample of the local population to collect information on sociodemographic characteristics. The results of the present study clearly indicate that the majority of the trace elements are at highly elevated levels in the studied foodstuffs, in comparison to international recommendations. The maximum measured levels of ETE and NETE are as follows [μgkg(-1)]: Cd 873, Co 1370, Cu 21700, Cr 59633, Hg 26, Mo 6460, Ni14.5, Pb 11100, Sb 181, Se 0.30, Zn 102 and As 693. Additionally, age, body mass index and gender were significantly associated with levels of dietary exposure. Further research is warranted on the potential health implication of this exposure. The study merges the accumulation of ETE and NETE in home-grown foodstuffs and reflects considerably high health risks for inhabitants. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Trace elements in streambed sediments of small subtropical streams on O'ahu, Hawai'i: Results from the USGS NAWQA program

    USGS Publications Warehouse

    De Carlo, E. H.; Tomlinson, M.S.; Anthony, S.S.

    2005-01-01

    Data are presented for trace element concentrations determined in the <63 ??m fraction of streambed sediment samples collected at 24 sites on the island of O'ahu, Hawai'i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors. Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai'i, as well as in the context of the abundance of fine-grained sediment in the streambed of O'ahu streams. Statistical methods including cluster analysis, Kruskal-Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream. The findings of this study are generally similar to but differ slightly from previous work on sediments and suspended particulate matter in streams, from two urban watersheds of O'ahu, Hawai'i. Inter-element associations in the latter were often stronger and indicated a mixture of anthropogenic, agricultural and basaltic sources of trace elements. Some elements fell into different statistical categories in the two studies, owing in part to differences in study design and the hydrogeological constraints on the respective study areas.

  18. Comparison of essential and toxic elements in esophagus, lung, mouth and urinary bladder male cancer patients with related to controls.

    PubMed

    Kazi, Tasneem Gul; Wadhwa, Sham Kumar; Afridi, Hassan Imran; Talpur, Farah Naz; Tuzen, Mustafa; Baig, Jameel Ahmed

    2015-05-01

    There is a compelling evidence in support of negative associations between essential trace and toxic elements in different types of cancer. The aim of the present study was to investigate the relationship between carcinogenic (As, Cd, Ni) and anti-carcinogenic (Se, Zn) trace elements in scalp hair samples of different male cancerous patients (esophagus, lung, mouth, and urinary bladder). For comparative purposes, the scalp hair samples of healthy males of the same age group (ranged 35-65 years) as controls were analyzed. Both controls and patients have the same socioeconomic status, localities, dietary habits, and smoking locally made cigarette. The scalp hair samples were oxidized by 65% nitric acid: 30% hydrogen peroxide (2:1) ratio in microwave oven followed by atomic absorption spectrometry. The validity and accuracy of the methodology were checked using certified reference material of human hair BCR 397. The mean concentrations of As, Cd, and Ni were found to be significantly higher in scalp hair samples of patients having different cancers as compared to the controls, while reverse results were obtained in the case of Se and Zn levels (p < 0.01). The study revealed that the carcinogenic processes are significantly affecting the trace elements burden and mutual interaction of essential trace and toxic elements in the cancerous patients.

  19. Gull-derived trace elements trigger small-scale contamination in a remote Mediterranean nature reserve.

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2013-09-15

    The role of a yellow-legged gull (Larus michahellis) small colony in conveying trace elements (As, Cd, Cr, Cu, Ni, Pb, THg, V, Zn) was assessed in a Mediterranean nature reserve (Marinello ponds) at various spatial and temporal scales. Trace element concentrations in guano were high and seasonally variable. In contrast, contamination in the ponds was not influenced by season but showed strong spatial variability among ponds, according to the different guano input. Biogenic enrichment factor B confirmed the role of gulls in the release of trace elements through guano subsidies. In addition, comparing trace element pond concentrations to the US NOAA's SQGs, As, Cu and Ni showed contamination levels associated with possible negative biological effects. Thus, this study reflects the need to take seabirds into account as key factors influencing ecological processes and contamination levels even in remote areas, especially around the Mediterranean, where these birds are abundant but overlooked. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    USGS Publications Warehouse

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  1. Origin and distribution of trace elements in high-elevation precipitation in southern China.

    PubMed

    Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing

    2012-09-01

    During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.

  2. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  3. Natural and anthropic effects on hydrochemistry and major and trace elements in the water mass of a Spanish Pyrenean glacial lake set.

    PubMed

    Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago

    2017-07-01

    This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.

  4. Trace and minor elements in sphalerite from metamorphosed sulphide deposits

    NASA Astrophysics Data System (ADS)

    Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.

    2014-12-01

    Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.

  5. [Age and gender characteristics of the content of macro- and trace elements in the organisms of the children from the European North].

    PubMed

    Soroko, S I; Maksimova, I A; Protasova, O V

    2014-01-01

    By means of the nuclear-emission spectral analysis with inductively connected argon plasma were studied the contents of 28 macro- and trace elements (Al, Ag, Li, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Mg, Mn, Na, Ni, Mo, P, Zn, Se, Tl, Pb, Sr, S, Si) in the hair of children and teenagers living in the European North of the Russian Federation (Arkhangelsk region). There were revealed both: decrease and increase of some elements' contents. Also were revealed the dynamics of mentioned elements contents in the hair of the same children in different years. Significant individual variability of the macro and trace elements' status of children-northerners and some gender dependence were revealed.

  6. Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas.

    PubMed

    Lee, Khanghyun; Hur, Soon Do; Hou, Shugui; Hong, Sungmin; Qin, Xiang; Ren, Jiawen; Liu, Yapping; Rosman, Kevin J R; Barbante, Carlo; Boutron, Claude F

    2008-10-01

    A series of 42 snow samples covering over a one-year period from the fall of 2004 to the summer of 2005 were collected from a 2.1-m snow pit at a high-altitude site on the northeastern slope of Mt. Everest. These samples were analyzed for Al, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Cd, Sb, Pb, and Bi in order to characterize the relative contributions from anthropogenic and natural sources to the fallout of these elements in central Himalayas. Our data were also considered in the context of monsoon versus non-monsoon seasons. The mean concentrations of the majority of the elements were determined to be at the pg g(-1) level with a strong variation in concentration with snow depth. While the mean concentrations of most of the elements were significantly higher during the non-monsoon season than during the monsoon season, considerable variability in the trace element inputs to the snow was observed during both periods. Cu, Zn, As, Cd, Sb, and Bi displayed high crustal enrichment factors (EFc) in most samples, while Cr, Ni, Rb, and Pb show high EFc values in some of the samples. Our data indicate that anthropogenic inputs are potentially important for these elements in the remote high-altitude atmosphere in the central Himalayas. The relationship between the EFc of each element and the Al concentration indicates that a dominant input of anthropogenic trace elements occurs during both the monsoon and non-monsoon seasons, when crustal contribution is relatively minor. Finally, a comparison of the trace element fallout fluxes calculated in our samples with those recently obtained at Mont Blanc, Greenland, and Antarctica provides direct evidence for a geographical gradient of the atmospheric pollution with trace elements on a global scale.

  7. Trace elements in unconventional animals: A 40-year experience.

    PubMed

    Carpenè, Emilio; Andreani, Giulia; Isani, Gloria

    2017-09-01

    The role of trace elements in animal health has attracted increasing interest in recent years. The essentiality and toxicity of these elements have been extensively investigated in humans, laboratory animal models and partially in domestic animals, whereas little is known about trace element metabolism in most living organisms. Forty years ago our research started on Cd metabolism in molluscs, thereafter expanding to Zn, Cu, and Fe metabolism in many unconventional animal species of veterinary interest. This review summarizes the main results obtained over this long period of time: some of the findings are original and have not been published to date. They are discussed in more detail and compared with data obtained in conventional animals, including man. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  9. Trace elements and heavy metals in the Grand Bay National Estuarine Reserve in the northern Gulf of Mexico

    PubMed Central

    McComb, Jacqueline Q.; Han, Fengxiang X.; Rogers, Christian; Thomas, Catherine; Arslan, Zikri; Ardeshir, Adeli; Tchounwou, Paul B.

    2015-01-01

    The objectives of this study are to investigate distribution of trace elements and heavy metals in the salt marsh and wetland soil and biogeochemical processes in the Grand Bay National Estuarine Research Reserve of the northern Gulf of Mexico. The results show that Hg, Cd and to some extent, As and Pb have been significantly accumulated in soils. The strongest correlations were found between concentrations of Ni and total organic matter contents. The correlations decreased in the order: Ni > Cr > Sr > Co > Zn, Cd > Cu > Cs. Strong correlations were also observed between total P and concentrations of Ni, Co, Cr, Sr, Zn, Cu, and Cd. This may be related to the P spilling accident in 2005 in the Bangs Lake site. Lead isotopic ratios in soils matched well those of North American coals, indicating the contribution of Pb through atmospheric fallout from coal power plants. PMID:26238403

  10. The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.

    PubMed

    Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-10-01

    To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.

  11. Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: sustainability and risks.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Paula; Burgos, Pilar; Cabrera, Francisco; Lepp, Nicholas W; Madejón, Engracia

    2011-10-01

    We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4-6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet.

    PubMed

    Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  14. Elemental composition of four farmed fish produced in Portugal.

    PubMed

    Lourenço, Helena M; Afonso, Cláudia; Anacleto, Patrícia; Martins, Maria F; Nunes, Maria L; Lino, Ana R

    2012-11-01

    Farmed gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax), rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima) produced in Portugal were analysed in order to characterize their elemental composition. Atomic absorption (flame and cold vapour) and molecular absorption spectrometry techniques were used to determine all the studied elements. Similar patterns of macro, trace and ultra trace elements were observed for all fish species. The main elements were potassium (K), sodium (Na), phosphorus (P), magnesium (Mg) and calcium (Ca), followed by zinc (Zn), iron (Fe), copper (Cu), chromium (Cr), manganese (Mn) and nickel (Ni). Cadmium (Cd), mercury (Hg) and lead (Pb) concentrations, obtained in this study, allow concluding that these species do not present a hazard for human consumption. In addition, they contain almost all essential elements at concentrations sufficient to suit the dietary reference intake. Nevertheless, P. maxima nutritious trace element content is relatively low compared with the other three species.

  15. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  16. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  17. A Comparative Study on Macro- and Microelement Bioaccumulation Properties of Leaves and Bark of Quercus petraea and Pinus sylvestris.

    PubMed

    Klink, Agnieszka; Polechońska, Ludmiła; Dambiec, Małgorzata; Białas, Kamila

    2018-01-01

    Trees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied. Results showed that for both species leaves contained more macroelements (Ca, K, Mg), whereas the bark was richer in most trace metals (Cd, Cr, Cu, Fe, and Pb). However, trees studied differed with respect to element content. Oak bark and leaves were more effective in accumulating macro- and trace elements (bark Cd, Co, Cr, Cu, K, Mg, Mn, Na, Ni, Pb and leaves Ca, Cr, Cu, Fe, K, Mg, Na, Ni) than Scots pine tissues. Nevertheless, foliar metal accumulation index of these species was similar, suggesting that their overall ability to accumulate trace metals was similar.

  18. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  19. Changes in sediment-associated trace element concentrations in the Seine river basin (1994-2001)

    USGS Publications Warehouse

    Meybeck, Michel; Horowitz, A.J.; Grosbois, C.; Gueguen, Y.; ,

    2003-01-01

    In the 1980's, based on the concentrations of particulate-associated Hg, Cd, Pb, Cu and Zn relative to very low natural background levels, the Seine River Basin was one of the most impacted in the world. Over the past 20 years, there has been a general decline in these elevated concentrations that parallels declines in Paris sewage sludge trace element levels. Within the basin, marked differences in spatial and temporal geochemical patterns have been observed: (1) between major tributaries, (2) between trace elements, and (3) with stream order and population density, all of which illustrate the complexity of the geochemical processes ongoing in the basin.

  20. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh).

    PubMed

    Borrell, Asunción; Tornero, Victoria; Bhattacharjee, Dola; Aguilar, Alex

    2016-03-01

    The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ(15)N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Use of neutralized industrial residue to stabilize trace elements (Cu, Cd, Zn, As, Mo, and Cr) in marine dredged sediment from South-East of France.

    PubMed

    Taneez, Mehwish; Marmier, Nicolas; Hurel, Charlotte

    2016-05-01

    Management of marine dredged sediments polluted with trace elements is prime issue in the French Mediterranean coast. The polluted sediments possess ecological threats to surrounding environment on land disposal. Therefore, stabilization of contaminants in multi-contaminated marine dredged sediment is a promising technique. Present study aimed to assess the effect of gypsum neutralized bauxaline(®) (bauxite residue) to decrease the availability of pollutants and inherent toxicity of marine dredged sediment. Bauxaline(®), (alumia industry waste) contains high content of iron oxide but its high alkalinity makes it not suitable for the stabilization of all trace elements from multi-contaminated dredged sediments. In this study, neutralized bauxaline(®) was prepared by mixing bauxaline(®) with 5% of plaster. Experiments were carried out for 3 months to study the effect of 5% and 20% amendment rate on the availability of Cu, Cd, Zn, As, Mo, and Cr. Trace elements concentration, pH, EC and dissolved organic carbon were measured in all leachates. Toxicity of leachates was assessed against marine rotifers Brachionus plicatilis. The Results showed that both treatments have immobilization capacity against different pollutants. Significant stabilization of contaminants (Cu, Cd, Zn) was achieved with 20% application rate whereas As, Mo, and Cr were slightly stabilized. Toxicity results revealed that leachates collected from treated sediment were less toxic than the control sediment. These results suggest that application of neutralized bauxaline(®) to dredged sediment is an effective approach to manage large quantities of dredged sediments as well as bauxite residue itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Thermally metamorphosed carbonaceous chondrites from data for thermally mobile trace elements

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Sheng; Lipschutz, Michael E.

    1998-11-01

    We report RNAA data for U, Co, Au, Sb, Ga, Rb, Cs, Se, Ag, Te, Zn, In, Bi, Tl and Cd (ordered by increasing ease of vaporization and loss from Murchison CM2 chondrite during open-system heating) in 9 Antarctic C2 and C3 chondrites. These meteorites exhibit properties (obtained by reflectance spectroscopy, oxygen isotope mass spectrometry and/or mineralogy-petrology) suggesting thermal metamorphism in their parent bodies. Five of these (Asuka 881655, Yamato (Y) 793495, Y-790992, PCA 91008 and Y-86789, paired with Y-86720) exhibit significant depletion of the most thermally-mobile 1-5 trace elements consistent with open-system loss during extended parent body heating under conditions duplicated by week-long heating of Murchison C2 chondrite heated at 500-700 deg C in a low pressure (initially 10-5 atm) H atmosphere. From earlier data, three other C3 chondrites - Allan Hills (ALH) 81003, ALH 85003 and Lewis Cliffs 85332 - show significant Cd depletion. Nine additional C2 and C3 chondrites show no evidence of mobile trace element depletion - including Y-793321, which by all other criteria was mildly metamorphosed thermally. Either metamorphism of these nine occurred under closed conditions and/or alteration took place under such mild conditions that even Cd could not be lost. The RNAA data suggest that 10 of the 46 Antarctic carbonaceous chondrites (including 4 of 37 from Victoria Land and 6 of 9 from Queen Maud Land) exhibit open-system loss of at least some thermally mobile trace elements by heating in their parent bodies while none of the 25 non-Antarctic falls experienced this. These results are consistent with the idea that the Antarctic sampling of near-Earth material differs from that being sampled today.

  3. Health risk assessment of trace elements via dietary intake of 'non-piscine protein source' foodstuffs (meat, milk and egg) in Bangladesh.

    PubMed

    Shaheen, Nazma; Ahmed, Md Kawser; Islam, Md Saiful; Habibullah-Al-Mamun, Md; Tukun, Avonti Basak; Islam, Saiful; M A Rahim, Abu Torab

    2016-04-01

    Concentrations of six trace elements [chromium (Cr), nickel (Ni), copper (Cu), cadmium (Cd), lead (Pb) and arsenic (As)] were assessed in 'non-piscine protein source' foodstuffs (meat, milk and eggs) to evaluate contamination level and human health risks in Bangladesh. The range of Cr, Ni, Cu, Cd, Pb and As in the investigated foodstuffs was 1.24-2.17, 1.29-2.56, 0.92-2.31, 0.12-0.44, 0.15-0.48 and 0.14-0.57 mg kg fresh weight(-1), respectively. The estimated mean levels of most of the elements were higher than the maximum allowable concentration (MAC) for dietary foods. The estimated daily intakes (EDIs) of Cr and Cd were higher than the maximum tolerable daily intake (MTDI) for children, indicating that they are more susceptible to toxic elements through food consumption. The target hazard quotients (THQs) and target carcinogenic risk (TCR) of As (THQ > 1 and TCR > 10(-4)) for both the adults and children suggest that the consumers of non-piscine foodstuffs (especially cow milk and chicken meat) are exposed chronically to metal pollution with carcinogenic and non-carcinogenic health consequences.

  4. [Determination and correlation analysis of trace elements in Boletus tomentipes].

    PubMed

    Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao

    2011-07-01

    The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.

  5. Accumulation of As, Cd and selected trace elements in tubers of Scirpus aritimus L. from Doñana marshes (South Spain)

    USGS Publications Warehouse

    Madejon, P.; Murillo, J.M.; Maranon, T.; Espinar, J.L.; Cabrera, F.

    2006-01-01

    The collapse of a pyrite-mining, tailing dam on 1998 contaminated an area of 4286 ha along the Agrio and Guadiamar river valleys in southern Spain. Over 2700 ha of the Doñana marshes, an important wintering area for wetland European birds, were contaminated. This study reports analyses of the tubers of Scirpus maritimus (an important food for greylag geese, Anser anser) collected in 2000 in the “Entremuros” (spill-affected area) and in nearby unaffected Doñana marshes (control areas). In the spill-affected area mean tuber tissue concentrations of Cd (0.25 mg kg−1) and Zn (61 mg kg−1) were greater than in those tubers from the control area (0.02 mg kg−1 for Cd, and 22 mg kg−1 for Zn); values of Cd and Zn in “Entremuros” (samples collected two years after the mine spill) were much smaller than those reported only a few months after the accident. Trace elements (As, Fe, Mn and Tl, and to a lesser extent Cd and Pb) showed a preferential accumulation in the outer skin of tubers. Surprisingly, concentrations of As and Fe were greater in tubers from some marsh sites not affected by the mine-spill than in tubers from the “Entremuros”. We suggest that relic river channels within the Doñana marshes may be contaminated by trace elements from historic mining activities. An exhaustive study of macrophytes and other plant species in this area is recommended to identify potential risks to wildlife.

  6. Trace element abundances in single presolar silicon carbide grains by synchrotron X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav

    2004-12-01

    Synchrotron x-ray fluorescence (SXRF) was applied to the study of presolar grains for the first time in this study. 41 single SiC grains of the KJF size fraction (mass-weighted median size of 1.86 μm) from the Murchison (CM2) Meteorite were analyzed. The absolute abundances of the following elements were determined (not every element in every grain): S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Nb, Mo, Ru, Os, Ir and Pt (underlined elements were detected here for the first time in single grains). There is good agreement between the heavier trace element abundances in the grains and s-process nucleosynthesis calculations. It suggests that smaller 13C pocket sizes are needed in the parent stars, a free parameter in the stellar models, than is deduced from isotopic analyses of s-, and s-mainly, elements, such as Zr and Mo. In addition, the data confirms the radiogenic nature of the Nb in the grains, due to the in situ decay of 93Zr (t 1/2 = 1.5 × 106 year). The data suggest that the trace elements condensed into the host SiC grains by a combination of condensation in solid solution and incorporation of subgrains. It seems that many of the trace elements reside mainly in subgrains of two solid solution: (1)a TiC based solid solution, and (2)a Mo-Ru carbide based solid solution. The presence of subgrains of an Fe-Ni alloy solid solution is suggested as well. Subgrains of all 3 solid solutions were observed previously in presolar graphite grains.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.

  7. Evidence for contrasting accumulation pattern of cadmium in relation to other elements in Senilia senilis and Tagelus adansoni from the Bijagós archipelago, Guinea-Bissau.

    PubMed

    Catry, Teresa; Figueira, Paula; Carvalho, Lina; Monteiro, Rui; Coelho, Pedro; Lourenço, Pedro Miguel; Catry, Paulo; Tchantchalam, Quintino; Catry, Inês; Botelho, Maria J; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos

    2017-11-01

    Shellfish harvesting in intertidal areas is a widespread and economically important activity in many countries across West Africa. However, in some areas, there is virtually no information concerning the levels of contaminants (and other elements related to nutritional aspects) in the harvested species. We collected sediments and several individuals of the West African bloody cockle Senilia senilis and of the razor clam Tagelus adansoni during the dry season of 2015 nearby three islands in the Bijagós archipelago, Guinea-Bissau. Aluminium, Ca, Fe, Mg, As, Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn were determined in sediments and whole soft tissues of the two bivalves. Sediments showed uniformly low trace element concentrations, pointing to an ecosystem with low levels of trace element contamination. T. adansoni presented higher concentrations of most elements than S. senilis, with the exception of Cd that showed up to 40 times higher values in S. senilis than in T. adansoni from the same sites. Furthermore, Cd concentrations (25±8.7 mg kg -1 , dw) in S. senilis are clearly above the maximum level established for human consumption. Future studies should clarify whether biological factors are the major responsible for this unusual situation.

  8. Trace elements in free-range hen eggs in the Campania region (Italy) analyzed by inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Esposito, Mauro; Cavallo, Stefania; Chiaravalle, Eugenio; Miedico, Oto; Pellicanò, Roberta; Rosato, Guido; Sarnelli, Paolo; Baldi, Loredana

    2016-06-01

    Eggs from hens raised on rural or domestic farms are a good indicator of environmental contamination, as the hens are in close contact with the ground and the air and can therefore accumulate heavy metals and other toxic contaminants from the environment as well as from the diet. In this paper, we report the results of the determination of 19 trace elements (As, Be, Cd, Co, Cr, Cu, Hg, Mo, Mn, Ni, Pb, Sb, Se, Sn, Sr, Tl, U, V, Zn) in 39 hen egg samples collected from domestic poultry farms in the territory dubbed the "Land of fires" in the Campania region (Italy). This area is characterized by environmental problems caused by the illegal dumping of industrial or domestic waste in fields or by roadsides. In some cases, these wastes have been burned, thereby spreading persistent contaminants into the atmosphere. The content of trace elements in whole egg samples was determined by mass spectrometer after a microwave-assisted digestion procedure. Because European legislation does not indicate maximum values of these elements in this foodstuff, the results were compared with the content of trace elements reported in literature for eggs, in particular home-produced eggs, in various countries. In some cases (Cd, Cu, Ni, Mn), the content determined in this study was in line with those reported elsewhere, in other cases (Pb, Cr), lower values were found.

  9. Trace elements in feathers and eggshells of brown booby Sula leucogaster in the Marine National Park of Currais Islands, Brazil.

    PubMed

    Dolci, Natiely Natalyane; Sá, Fabian; da Costa Machado, Eunice; Krul, Ricardo; Rodrigues Neto, Renato

    2017-09-10

    Levels of trace elements were investigated in feathers of 51 adults and 47 eggshells of brown boobies Sula leucogaster from one bird colony in the Marine National Park of Currais Islands, Brazil, between December 2013 and October 2014. Average concentrations (μg g -1 , dry weight) in feathers and eggshells, respectively, were Al 50.62-9.58, As 0.35-2.37, Cd 0.05-0.03, Co 0.38-2.1, Cu 15.12-0.99, Fe 47.47-22.92, Mg 815.71-1116.92, Ni 0.29-11.85, and Zn 94.16-1.98. In both arrays, the average concentration of Mg was the highest among all the elements analyzed, while the lowest was recorded for Cd. As and Ni presented levels at which biological impacts might occur. Zn concentrations were higher than those considered normal in other organs. Levels of Al, Fe, Cu, Zn, and Cd were higher in feathers, whereas higher contents of Mg, Co, Ni, and As occurred in eggshells. The comparison between the elements in eggshells collected at different seasons showed no significant difference (p > 0.05) due, probably, to the lack of temporal variation on foraging behavior and/or on bioavailability of trace elements. Metals and arsenic in feathers and eggshells were mostly not correlated. Future studies on Paraná coast should focus on the speciation of the elements, especially As, Ni, and Zn, which proved to be a possible problem for the environment and biota. It is necessary to investigate both matrices, shell and internal contents of the eggs, in order to verify if the differences previously reported in other studies also occur in eggs of brown boobies in the Marine National Park of Currais Islands.

  10. Comparison of the Trace Elements and Active Components of Lonicera japonica flos and Lonicera flos Using ICP-MS and HPLC-PDA.

    PubMed

    Zhao, Yueran; Dou, Deqiang; Guo, Yueqiu; Qi, Yue; Li, Jun; Jia, Dong

    2018-06-01

    Thirteen trace elements and active constituents of 40 batches of Lonicera japonica flos and Lonicera flos were comparatively studied using inductively coupled plasma mass-spectrometry (ICP-MS) and high-performance liquid chromatography-photodiode array (HPLC-PDA). The trace elements were 24 Mg, 52 Cr, 55 Mn, 57 Fe, 60 Ni, 63 Cu, 66 Zn, 75 As, 82 Se, 98 Mo, 114 Cd, 202 Hg, and 208 Pb, and the active compounds were chlorogenic acid, 3,5-O-dicaffeoylquinc acid, 4,5-O-dicaffeoylquinc acid, luteolin-7-O-glucoside, and 4-O-caffeoylquinic acid. The data of 18 variables were statistically processed using principal component analysis (PCA) and discriminate analysis (DA) to classify L. japonica flos and L. flos. The validated method was developed to divide the 40 samples into two groups based on the PCA in terms of 18 variables. Furthermore, the species of Lonicera was better discriminated by using DA with 12 variables. These results suggest that the method and statistical analysis of the contents of trace elements and chemical components can classify the L. japonica flos and L. flos using 12 variables, such as 3,5-O-dicaffeoylquincacid, luteolin-7-O-glucoside, Cd, Mn, Hg, Pb, Ni, 4-O-caffeoyl-quinic acid, 4,5-O-dicaffeoylquinc acid, Fe, Mg, and Cr.

  11. The use of a halophytic plant species and organic amendments for the remediation of a trace elements-contaminated soil under semi-arid conditions.

    PubMed

    Clemente, Rafael; Walker, David J; Pardo, Tania; Martínez-Fernández, Domingo; Bernal, M Pilar

    2012-07-15

    The halophytic shrub Atriplex halimus L. was used in a field phytoremediation experiment in a semi-arid area highly contaminated by trace elements (As, Cd, Cu, Mn, Pb and Zn) within the Sierra Minera of La Unión-Cartagena (SE Spain). The effects of compost and pig slurry on soil conditions and plant growth were determined. The amendments (particularly compost) only slightly affected trace element concentrations in soil pore water or their availability to the plants, increased soil nutrient and organic matter levels and favoured the development of a sustainable soil microbial biomass (effects that were enhanced by the presence of A. halimus) as well as, especially for slurry, increasing A. halimus biomass and ground cover. With regard to the minimisation of trace elements concentrations in the above-ground plant parts, the effectiveness of both amendments was greatest 12-16 months after their incorporation. The findings demonstrate the potential of A. halimus, particularly in combination with an organic amendment, for the challenging task of the phytostabilisation of contaminated soils in (semi-)arid areas and suggest the need for an ecotoxicological evaluation of the remediated soils. However, the ability of A. halimus to accumulate Zn and Cd in the shoot may limit its use to moderately-contaminated sites. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  13. Factors to consider for trace element deposition biomonitoring surveys with lichen transplants

    USGS Publications Warehouse

    Ayrault, S.; Clochiatti, R.; Carrot, F.; Daudin, L.; Bennett, J.P.

    2007-01-01

    A trace element deposition biomonitoring experiment with transplants of the fruticose lichen Evernia prunastri was developed, aimed at monitoring the effects of different exposure parameters (exposure orientation and direct rain) and to the elements Ti, V, Cr, Co, Cu, Zn, Rb, Cd, Sb and Pb. Accumulations were observed for most of the elements, confirming the ability of Evernia transplants for atmospheric metal deposition monitoring. The accumulation trends were mainly affected by the exposure orientation and slightly less so by the protection from rain. The zonation of the trace elements inside the thallus was also studied. It was concluded that trace element concentrations were not homogeneous in Evernia, thus imposing some cautions on the sampling approach. A nuclear microprobe analysis of an E. prunastri transplanted thallus in thin cross-sections concluded that the trace elements were mainly concentrated on the cortex of the thallus, except Zn, Ca and K which were also present in the internal layers. The size of the particles deposited or entrapped on the cortex surface averaged 7????m. A list of key parameters to ensure the comparability of surveys aiming at observing temporal or spatial deposition variation is presented. ?? 2006 Elsevier B.V. All rights reserved.

  14. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-01-01

    The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.

  15. Determination of minor and trace elements in aromatic spices by micro-wave assisted digestion and inductively coupled plasma-mass spectrometry.

    PubMed

    Khan, Naeem; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Habte, Girum; Hong, Joon Ho; Hwang, In Min; Kim, Kyong Su

    2014-09-01

    This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  17. Application of multivariate analysis to investigate the trace element contamination in top soil of coal mining district in Jorong, South Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Pujiwati, Arie; Nakamura, K.; Watanabe, N.; Komai, T.

    2018-02-01

    Multivariate analysis is applied to investigate geochemistry of several trace elements in top soils and their relation with the contamination source as the influence of coal mines in Jorong, South Kalimantan. Total concentration of Cd, V, Co, Ni, Cr, Zn, As, Pb, Sb, Cu and Ba was determined in 20 soil samples by the bulk analysis. Pearson correlation is applied to specify the linear correlation among the elements. Principal Component Analysis (PCA) and Cluster Analysis (CA) were applied to observe the classification of trace elements and contamination sources. The results suggest that contamination loading is contributed by Cr, Cu, Ni, Zn, As, and Pb. The elemental loading mostly affects the non-coal mining area, for instances the area near settlement and agricultural land use. Moreover, the contamination source is classified into the areas that are influenced by the coal mining activity, the agricultural types, and the river mixing zone. Multivariate analysis could elucidate the elemental loading and the contamination sources of trace elements in the vicinity of coal mine area.

  18. Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy.

    PubMed

    Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro

    2012-08-01

    Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.

  19. The geochemistry of environmentally important trace elements in UK coals, with special reference to the Parkgate coal in the Yorkshire-Nottinghamshire Coalfield, UK

    USGS Publications Warehouse

    Spears, D.A.; Tewalt, S.J.

    2009-01-01

    The Parkgate coal of Langsettian age in the Yorkshire-Nottinghamshire coalfield is typical of many coals in the UK in that it has a high sulphur (S) content. Detailed information on the distribution of the forms of S, both laterally and vertically through the seam, was known from previous investigations. In the present work, 38 interval samples from five measured sections of the coal were comprehensively analysed for major, minor and trace elements and the significance of the relationships established using both raw and centered log transformed data. The major elements are used to quantify the variations in the inorganic and organic coal components and determine the trace element associations. Pyrite contains nearly all of the Hg, As, Se, Tl and Pb and is also the major source of the Mo, Ni, Cd and Sb. The clays contain the following elements in decreasing order of association: Rb, Cs, Li, Ga, U, Cr, V, Sc, Y, Bi, Cu, Nb, Sn, Te and Th. Nearly all of the Rb is present in the clay fraction, whereas for elements such as V, Cu and U, a significant amount is thought to be present in the organic matter, based on the K vs trace element regression equations. Only Ge, and possibly Be, would appear to have a dominant organic source. The trace element concentrations are calculated for pyrite, the clay fraction and organic matter. For pyrite it is noted that concentrations agree with published data from the Yorkshire-Nottinghamshire coalfield and also that Tl concentrations (median of 0.33 ppm) in the pyrite are greater than either Hg or Cd. Unlike these elements, Tl has attracted less attention and possibly more information is needed on its anthropogenic distribution and impacts on man and the environment. A seawater source is thought to be responsible for the high concentrations of S, Cl and the non-detrital trace elements in the Parkgate coal. Indicative of the seawater control is the Th/U ratio, which expresses the detrital to non-detrital element contributions. Using other elements, similar ratios can be calculated, which in combination offer greater interpretative value. ?? 2009 Elsevier B.V.

  20. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.

  1. Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India).

    PubMed

    Mondal, Priyanka; Reichelt-Brushett, Amanda J; Jonathan, M P; Sujitha, S B; Sarkar, Santosh Kumar

    2018-02-01

    The present work investigated the spatial distribution and ecological risk assessment of total and mild acid-leachable trace elements in surface sediments (top 0-10 cm; grain size ≤ 63 μm) along the Hooghly (Ganges) River Estuary and Sundarban Mangrove Wetland, India. The trace elements, analyzed by ICPMS, showed wide range of variations with the following descending order (mean values expressed in milligrams per kilogram): Fe (25,050 ± 4918) > Al (16,992 ± 4172) > Mn (517 ± 102) > Zn (53 ± 18) > Cu (33 ± 11) > Cr (29 ± 7) > Ni (27 ± 6) > Pb (14 ± 3) > As (5 ± 1) > Se (0.37 ± 0.10) > Cd (0.17 ± 0.13) > Ag (0.16 ± 0.19) > Hg (0.05 ± 0.10). In the acid-leachable fraction, Cd (92%) is dominated followed by Pb (81%), Mn (77%), Cu (70%), and Se (58%) indicating their high mobility, imposing negative impact on the adjacent benthos. The sediment pollution indices (both enrichment factor and contamination factor) suggested severe pollution by Ag at the sampling site Sajnekhali, a wildlife sanctuary in Sundarban. The mean probable effect level quotient indicated that surface sediments in the vicinity of the studied region have 21% probability of toxicity to biota. The result of multivariate analyses affirms lithogenic sources (e.g., weathering parent rocks, dry deposition) for As, Pb, Cr, Cu, and Ni, whereas Cd and Hg originated from anthropogenic activities (such as urban and industrial activities). Both human-induced stresses and natural processes controlled trace element accumulation and distribution in the estuarine system, and remedial measures are required to mitigate the potential impacts of these hazardous trace elements.

  2. Horizontal and vertical variability of soil properties in a trace element contaminated area

    NASA Astrophysics Data System (ADS)

    Burgos, Pilar; Madejón, Engracia; Pérez-de-Mora, Alfredo; Cabrera, Francisco

    2008-02-01

    The spatial distribution of some soil chemical properties and trace element contents of a plot affected by the Aznalcóllar mine spill were investigated using statistical and geostatistical methods to assess the extent of soil contamination. Total and EDTA-extractable soil trace element concentrations and total S content showed great variability and high coefficients of variation in the three examined depths. Soil in the plot was found to be significantly contaminated by As, Cd, Cu, Pb and Zn within a wide range of pH. Total trace element concentrations at all depths (0-60 cm) were much higher than background values of non-affected soil, indicating that despite the clean-up operations, the concentration of trace elements in the experimental plot was still high. The spatial distribution of the different variables was estimated by kriging to design contour maps. These maps allowed the identification of specific zones with high metal concentrations and low pH values corresponding to spots of residual sludge. Moreover, kriged maps showed distinct spatial distribution and hence different behaviour for the elements considered. This information may be applied to optimise remediation strategies in highly and moderately contaminated areas.

  3. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Constantineau, Simon; Munro, Lara; Labrecque, Michel

    2017-06-03

    The phytoextraction of the trace elements (TEs) As, Cd, Cu, Ni, Pb, and Zn by willow cultivars (Fish Creek, SV1 and SX67) was measured during a 3-year field trial in a mildly contaminated soil. Biomass ranged from 2.8 to 4.4 Mg/ha/year at 30,000 plants/ha. Shoots (62%) were the main component followed by leaves (23%) and roots (15%). Biomass was positively linked to soluble soil dissolved organic carbon, K, and Mg, while TEs, not Cd and Zn, had a negative effect. The TE concentration ranking was: Zn > Cu > Cd > Ni, Pb > As, and distribution patterns were: (i) minima in shoots (As, Ni), (ii) maxima in leaves (Cd, Zn), or (iii) maxima in roots (Cu, Pb). Correlations between soil and plant TE were significant for the six TEs in roots. The amounts extracted were at a maximum for Zn, whereas Fish Creek and SV1 extracted more TE than SX67. More than 60% (91-94% for Cd and Zn) of the total TE was in the aboveground parts. Uptake increased with time because of higher biomass. Fertilization, the selection of cultivars, and the use of complementary plants are required to improve productivity and Cd and Zn uptake.

  4. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  5. Assessing element-specific patterns of bioaccumulation across New England lakes

    PubMed Central

    Ward, Darren M.; Mayes, Brandon; Sturup, Stefan; Folt, Carol L.; Chen, Celia Y.

    2012-01-01

    Little is known about differences among trace elements in patterns of bioaccumulation in freshwater food webs. Our goal was to identify patterns in bioaccumulation of different elements that are large and consistent enough to discern despite variation across lakes. We measured methylmercury (MeHg) and trace element (As, Cd, Hg, Pb, and Zn) concentrations in food web components of seven New England lakes on 3–5 dates per lake, and contrasted patterns of bioaccumulation across lakes, metals and seasons. In each lake, trace element concentrations were compared across trophic levels, including three size fractions of zooplankton, planktivorous fish, and piscivorous fish. The trophic position of each food web component was estimated from N isotope analysis. Trace element concentrations varied widely among taxa, lakes and sampling dates. Yet, we identified four consistent patterns of bioaccumulation that were consistent across lakes: (1) MeHg concentration increased (i.e., was biomagnified) and Pb concentration decreased (i.e., was biodiminished) with increased trophic position. (2) Zinc concentration (as with MeHg) was higher in fish than in zooplankton, but overall variation in Zn concentration (unlike MeHg) was low. (3) Arsenic and Cd concentrations (as with Pb) were lower in fish than in zooplankton, but (unlike Pb) were not significantly correlated with trophic position within zooplankton or fish groups. (4) Average summer concentrations of As, Pb, Hg, and MeHg in zooplankton significantly predicted their concentrations in either planktivorous or piscivorous fish. Our secondary goal was to review sampling approaches in forty-five published studies to determine the extent to which current sampling programs facilitate cross-lake and cross-study comparisons of bioaccumulation. We found that studies include different components of the food web and sample too infrequently to enable strong cross-lake and cross-study comparisons. We discuss sampling strategies that would improve our capacity to identify consistent patterns of bioaccumulation and drivers of elevated trace element concentrations under naturally high levels of variability. PMID:22356871

  6. Trace and Essential Elements Analysis in Cymbopogon citratus (DC.) Stapf Samples by Graphite Furnace-Atomic Absorption Spectroscopy and Its Health Concern

    PubMed Central

    Anal, Jasha Momo H.

    2014-01-01

    Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430

  7. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-11-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.

  8. Temperature and composition dependencies of trace element partitioning - Olivine/melt and low-Ca pyroxene/melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Mckay, G. A.; Taylor, L. A.

    1988-01-01

    This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.

  9. Accumulation of Trace Metals in Anadara granosa and Anadara inaequivalvis from Pattani Bay and the Setiu Wetlands.

    PubMed

    Pradit, Siriporn; Shazili, Noor Azhar Mohamed; Towatana, Prawit; Saengmanee, Wuttipong

    2016-04-01

    This study was undertaken to assess the levels of trace metals (As, Cd, Cu, Pb, and Zn) in two common species of cockles (Anadara granosa and Anadara inaequivalvis) from two coastal areas in Thailand (Pattani Bay) and Malaysia (the Setiu Wetlands). A total of 350 cockles were collected in February and September 2014. Trace metals were determined by Inductively Coupled Plasma Mass Spectrometry. We observed that cockles in both areas had a higher accumulation of metals in September. Notably, the biota-sediment accumulation (BSAF) of Cd was highest in both areas. A strong positive correlation of Cd with the length of the cockles at Pattani Bay (r(2) = 0.597) and the Setiu Wetlands (r(2) = 0.675) was noted. It was suggested that As could be a limiting element (BSAF < 1) of cockles obtained from Pattani Bay. In comparison with the permissible limits set by the Thailand Ministry of Public Health and the Malaysia Food Regulations, mean values of As, Cd, Cu, Pb, and Zn were within acceptable limits, but the maximum values of Cd and Pb exceeded the limits for both areas. Regular monitoring of trace metals in cockles from both areas is suggested for more definitive contamination determination.

  10. A study of trace element contamination using multivariate statistical techniques and health risk assessment in groundwater of Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India.

    PubMed

    Kumar, Manoj; Ramanathan, A L; Tripathi, Ritu; Farswan, Sandhya; Kumar, Devendra; Bhattacharya, Prosun

    2017-01-01

    This study is an investigation on spatio-chemical, contamination sources (using multivariate statistics), and health risk assessment arising from the consumption of groundwater contaminated with trace and toxic elements in the Chhaprola Industrial Area, Gautam Buddha Nagar, Uttar Pradesh, India. In this study 33 tubewell water samples were analyzed for 28 elements using ICP-OES. Concentration of some trace and toxic elements such as Al, As, B, Cd, Cr, Mn, Pb and U exceeded their corresponding WHO (2011) guidelines and BIS (2012) standards while the other analyzed elements remain below than those values. Background γ and β radiation levels were observed and found to be within their acceptable limits. Multivariate statistics PCA (explains 82.07 cumulative percent for total 6 of factors) and CA indicated (mixed origin) that natural and anthropogenic activities like industrial effluent and agricultural runoff are responsible for the degrading of groundwater quality in the research area. In this study area, an adult consumes 3.0 L (median value) of water therefore consuming 39, 1.94, 1461, 0.14, 11.1, 292.6, 13.6, 23.5 μg of Al, As, B, Cd, Cr, Mn, Pb and U from drinking water per day respectively. The hazard quotient (HQ) value exceeded the safe limit of 1 which for As, B, Al, Cr, Mn, Cd, Pb and U at few locations while hazard index (HI) > 5 was observed in about 30% of the samples which indicated potential health risk from these tubewells for the local population if the groundwater is consumed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics.

    PubMed

    Taylor, Vivien F; Longerich, Henry P; Greenough, John D

    2003-02-12

    Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.

  12. Trace element degassing patterns and volcanic fluxes to the atmosphere during the 2014 Holuhraun eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Gauthier, Pierre-Jean; Sigmarsson, Olgeir; Moune, Séverine; Haddadi, Baptiste; Gouhier, Mathieu

    2015-04-01

    Trace elements are well known to be volatile at magma temperature and enriched in volcanic gases from active volcanoes worldwide. However, little is known so far regarding their volatility at Icelandic volcanoes, mostly because high temperature volcanic gases are often inaccessible. The 2014 Holuhraun eruption that began on August 29 is characterized by both high extrusion rates of lava and intensive degassing which gives rise to a volcanic plume made of volcanic gases, aerosols and fine solid particles. A unique opportunity to sample the diluted plume at the eruption site was given to us on October 2. Volcanic aerosols were collected on washed PTFE membranes by pumping through the diluted plume for 30 minutes to 1 hour. Reactive gases were simultaneously trapped on impregnated filters, yielding a SO2/HCl molar ratio at the eruption site of 29-46 and SO2 concentrations in the diluted plume up to 200 mg/m3 (Haddadi et al., EGU 2015). PTFE filters were leached in 5 ml of a diluted HNO3-HF mixture for one week at 90°C. Solutions were subsequently analyzed by ICP-MS using a synthetic reference solution at 10 ppb for external calibration. Both siderophile (Mo, W, Re) and calchophile trace metals (Cu, Zn, As, Se, Cd, In, Sn, Sb, Te, Tl, Pb, Bi) were found to be significantly enriched in the diluted volcanic plume of Holuhraun compared to the background atmosphere in Iceland. Measured concentrations range from less than 0.1 ng/m3 for W up to 400 ng/m3 of Cd. Enrichment factors (EF) relative to Mg, considered as a strictly lithophile element with extremely low volatility, were computed for all analyzed trace metals. The least volatile elements (W, Cu, Zn, Mo, Ag) have EFs in the range 50-300 while the most volatile elements (Cd, Bi, Re, Se, Te) have EFs as high as 10E6. The overall degassing pattern observed at Holuhraun is consistent with those previously reported for other mantle plume related volcanoes like Kilauea (Mather et al., Geochim. Cosmochim. Acta, 2012) and Erta Ale (Zelenski et al., Chem. Geol., 2013). In contrast, it significantly departs from observations at subduction-related volcanoes where Cl-rich gases enhance the volatility of trace metals. Degassing of trace elements at Holuhraun thus appears to be characteristic of hot spot magmatism where gases exhibit high S/Cl ratios. The volcanic output from the ongoing eruption was estimated by scaling metal-to-SO2 concentration ratios to the flux of SO2 (~1200 kg/s, Gouhier et al., EGU 2015). Daily emissions are in the range 50 g/d (W) - 200 kg/d (Cd), suggesting that the Holuhraun eruption is a major source of pollution to the local environment and atmosphere over Iceland. For instance, from the beginning of the eruptive crisis to the end of 2014, more than 25 tons of highly toxic Cd have been released to the atmosphere. Future work should be devoted to study both the plume dispersion and the long-range transport of metallic aerosols in order to check how this can affect populated areas.

  13. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC).

    PubMed

    Tuakuila, J; Lison, D; Lantin, A-C; Mbuyi, F; Deumer, G; Haufroid, V; Hoet, P

    2012-11-01

    The particularly high rate of urbanization in Kinshasa (Democratic Republic of Congo) is associated with environmental degradation. Outdoor and indoor air pollution, as well as water pollution and waste accumulation, are issues of major concern. However, little documented information exists on the nature and extent of this pollution. A biomonitoring study was conducted to document exposure to trace elements in a representative sample of the population in Kinshasa. Fifteen trace elements were measured by ICP-MS, CV-AAS, or HG-AFS in spot urine samples from 220 individuals (50.5% women) aged 6-70 years living in the urban area and from 50 additional subjects from the rural area of Kinshasa. Data were compiled as geometric means and selected percentiles, expressed without (μg/L) or with creatinine adjustment (μg/g cr). Overall, living in urban Kinshasa was associated with elevated levels of several parameters in urine as compared to the population living in the rural area (Asi, Ba, Cd, Cr, and V) as well as compared to an urban population of the southeast of Congo (Al, As, Cd, Cr, Cu, Pb, Mn, Ni, Se, V, and Zn). Elevated levels were also found by comparison with the reference values in databases involving American, Canadian, French, or German populations. This study provides the first biomonitoring database in the population of Kinshasa, revealing elevated levels for most urinary TE as compared to other databases. Toxicologically relevant elements such as Al, As, Cd, Pb, and Hg reach levels of public health concern.

  14. Biological variables and health status affecting inorganic element concentrations in harbour porpoises (Phocoena phocoena) from Portugal (western Iberian Peninsula).

    PubMed

    Ferreira, Marisa; Monteiro, Silvia S; Torres, Jordi; Oliveira, Isabel; Sequeira, Marina; López, Alfredo; Vingada, José; Eira, Catarina

    2016-03-01

    The coastal preferences of harbour porpoise (Phocoena phocoena) intensify their exposure to human activities. The harbour porpoise Iberian population is presently very small and information about the threats it endures is vital for the conservation efforts that are being implemented to avoid local extinction. The present study explored the possible relation between the accumulation of trace elements by porpoises and their sex, body length, nutritional state, presence of parasites and gross pathologies. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and selenium (Se) were evaluated in 42 porpoises stranded in Portugal between 2005 and 2013. Considering European waters, porpoises stranded in Portugal present the highest Hg concentrations and the lowest Cd concentrations, which may reflect dietary preferences and the geographic availability of these pollutants. While no effect of sex on trace element concentrations was detected, there was a positive relationship between porpoise body length and the concentration of Cd, Hg and Pb. Animals in worse nutritional condition showed higher levels of Zn. Harbour porpoises with high parasite burdens showed lower levels of Zn and As in all analysed tissues and also lower levels of renal Ni, while those showing gross pathologies presented higher Zn and Hg levels. This is the first data on the relationship between trace elements and health-related variables in porpoises from southern European Atlantic waters, providing valuable baseline information about the contamination status of this vulnerable population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Trace element geochemistry and mineralogy of coal from Samaleswari open cast coal block (S-OCB), Eastern India

    NASA Astrophysics Data System (ADS)

    Saha, Debasree; Chatterjee, Debashis; Chakravarty, Sanchita; Mazumder, Madhurina

    2018-04-01

    Coal samples of Samaleswari open cast coal block (S-OCB) are high ash (Aad, mean value 35.43%) and low sulphur content (St, on dry basis, mean value 0.91% < 1%) in quality. The stratigraphic variation of volatile matter and fixed carbon (dry ash-free) reflect a progress of coal metamorphism with depth that accordance to the coal rank variation from lignite to high volatile bituminous in the studied borehole. The younger coal seams have greater detrital minerals (quartz, illite, rutile) influence whereas older coal seams have greater authigenic mineral (kaolinite, dolomite, siderite, apatite) contribution that are possibly due to subsidence and sediment transportation. In S-OCB coal trace elements affinities in-between mineral and organic fraction are identified with statistical hierarchical cluster analysis. The work is further supported by the use of chemical fractionation experiment that reveals the multi mode of occurrence of several environmentally concern and interested trace elements (Sb, As, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Zn). Among the analysed trace elements Co, Mn and Zn have major silicate association along with significant carbonate/oxide/monosulfide association. Whereas As, Cd, Cu, Pb and Ni have dominant pyritic association with notable silicate and carbonate/oxide/monosulfide association. The rest three elements (Sb, Be, Cr) have principally organic association with minor silicate and carbonate/oxide/monosulfide association. The stratigraphic variation of organo-mineral matrix content and detrital-authigenic mineral ratio are primarily related to coal rank. Geochemical character of coal also reflects a light towards proper utilisation of S-OCB coal from technical and environmental view point.

  16. Sources and distribution of trace elements in Estonian peat

    NASA Astrophysics Data System (ADS)

    Orru, Hans; Orru, Mall

    2006-10-01

    This paper presents the results of the distribution of trace elements in Estonian mires. Sixty four mires, representative of the different landscape units, were analyzed for the content of 16 trace elements (Cr, Mn, Ni, Cu, Zn, and Pb using AAS; Cd by GF-AAS; Hg by the cold vapour method; and V, Co, As, Sr, Mo, Th, and U by XRF) as well as other peat characteristics (peat type, degree of humification, pH and ash content). The results of the research show that concentrations of trace elements in peat are generally low: V 3.8 ± 0.6, Cr 3.1 ± 0.2, Mn 35.1 ± 2.7, Co 0.50 ± 0.05, Ni 3.7 ± 0.2, Cu 4.4 ± 0.3, Zn 10.0 ± 0.7, As 2.4 ± 0.3, Sr 21.9 ± 0.9, Mo 1.2 ± 0.2, Cd 0.12 ± 0.01, Hg 0.05 ± 0.01, Pb 3.3 ± 0.2, Th 0.47 ± 0.05, U 1.3 ± 0.2 μg g - 1 and S 0.25 ± 0.02%. Statistical analyses on these large database showed that Co has the highest positive correlations with many elements and ash content. As, Ni, Mo, ash content and pH are also significantly correlated. The lowest abundance of most trace elements was recorded in mires fed only by precipitation (ombrotrophic), and the highest in mires fed by groundwater and springs (minerotrophic), which are situated in the flood plains of river valleys. Concentrations usually differ between the superficial, middle and bottom peat layers, but the significance decreases depending on the type of mire in the following order: transitional mires - raised bogs - fens. Differences among mire types are highest for the superficial but not significant for the basal peat layers. The use of peat with high concentrations of trace elements in agriculture, horticulture, as fuel, for water purification etc., may pose a risk for humans: via the food chain, through inhalation, drinking water etc.

  17. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.

  18. Source contribution to the bulk atmospheric deposition of minor and trace elements in a Northern Spanish coastal urban area

    NASA Astrophysics Data System (ADS)

    Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel

    2014-08-01

    The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.

  19. Relationships among multiple trace elements in coastal Casuarina equisetifolia ecosystems on Hainan Island, South China.

    PubMed

    Liu, Qiang; Bi, Hua; Hung, Lan; Peng, Shaolin; Sheng, Chengde

    2006-01-01

    Forty-six trace elements in coastal Casuarina equisetifolia plant-soil systems at nine sampling sites on Hainan Island were analyzed using ICP-MS. The relationships among the trace elements of the same group or the same periodicity of the Periodic Table in the plants and soils were complex and no consistent patterns were found. More combinations of elements occurred with high positive correlation coefficients within the same periodicity than within the same group of the Periodic Table, and there were more high positive correlations in soils than in plants. However, there were many element combinations in Block d (transition elements) with high positive correlation coefficients in plants. Markedly high positive correlation coefficients between individual rare earth elements and Y and among Zr, Nb, Cd existed in both plants and soils. The dendrograms obtained by cluster analysis show that rare earth elements had very similar occurrence and distribution in both soils and plants. Thus, they behaved as a coherent group of elements both geochemically and biogeochemically. The transition elements were more coherent in plants than in soils.

  20. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China.

    PubMed

    Qie, Guanghao; Wang, Yan; Wu, Chen; Mao, Huiting; Zhang, Ping; Li, Tao; Li, Yaxin; Talbot, Robert; Hou, Chenxiao; Yue, Taixing

    2018-06-01

    The concentrations of particulate mercury (PHg) and other trace elements in PM 2.5 and PM 10 in the atmosphere were measured at the summit of Mount Tai during the time period of 15 June - 11 August 2015. The average PHg concentrations were 83.33 ± 119.1 pg/m 3 for PM 2.5 and 174.92 ± 210.5 pg/m 3 for PM 10 . Average concentrations for other trace elements, including Al, Ca, Fe, K, Mg, Na, Pb, As, Se, Cu, Cd, Cr, V, Mo, Co, Ag, Ba, Mn, Zn and Ni ranged from 0.06 ng/m 3 (Ag) to 354.33 ng/m 3 (Ca) in PM 2.5 and 0.11 ng/m 3 (Co) to 592.66 ng/m 3 (Ca) in PM 10 . The average concentrations of PHg were higher than those at other domestic mountain sites and cities in other counties, lower than those at domestic city sites. Other trace elements showed concentrations lower than those at the domestic mountain sites. Due possibly to increased control of emissions and the proportion of new energy, the PHg and trace element concentrations decreased, but the PHg showed concentrations higher than those at the Mountain sites, this showed that the reasons was not only severely affected by anthropogenic emissions, but also associated with other sources. The concentration changed trend of the main trace elements indicated that PHg, trace elements and particle matters present positive correlation and fine particulate matter has a greater surface area which was conductive to adsorption of Hg and trace elements to particles. On June 19, June 27 and July 6, according to the peak of mercury and trace elements, we can predict the potential sources of these three days. The results of principal component analysis (PCA) suggested that, crustal dust, coal combustion, and vehicle emissions were the main emission sources of PHg and other trace elements in Mount Tai. The 24-h backward trajectories and potential source contribution function (PSCF) analysis revealed that air masses arriving at Mount Tai were mainly affected by Shandong province. Mount Tai was subjected to five main airflow trajectories. Clusters 1, 2, 3, and 5 represented four pathways for local and regional sources and cluster 4 originated long-distance transportation. Central Shandong was the main source regions of PHg, Pb, Se, As, Cu and Cd. Southeastern and northwestern Shandong province and northern Jiangsu province were the most polluted source regions of Mn, Zn, and Ni. The crustal elements Fe and Ca had similar distributions of potential source regions, suggested by the highest PSCF values in southeastern Shandong and northern Jiangsu. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Rdge

    USGS Publications Warehouse

    Houghton, J.L.; Shanks, Wayne C.; Seyfried, W.E.

    2004-01-01

    The Bent Hill massive sulfide deposit and ODP Mound deposit in Middle Valley at the northernmost end of the Juan de Fuca Ridge are two of the largest modern seafloor hydrothermal deposits yet explored. Trace metal concentrations of sulfide minerals, determined by laser-ablation ICP-MS, were used in conjunction with mineral paragenetic studies and thermodynamic calculations to deduce the history of fluid-mineral reactions during sulfide deposition. Detailed analyses of the distribution of metals in sulfides indicate significant shifts in the physical and chemical conditions responsible for the trace element variability observed in these sulfide deposits. Trace elements (Mn, Co, Ni, As, Se, Ag, Cd, Sb, Pb, and Bi) analyzed in a representative suite of 10 thin sections from these deposits suggest differences in conditions and processes of hydrothermal alteration resulting in mass transfer of metals from the center of the deposits to the margins. Enrichments of some trace metals (Pb, Sb, Cd, Ag) in sphalerite at the margins of the deposits are best explained by dissolution/reprecipitation processes consistent with secondary remineralization. Results of reaction-path models clarify mechanisms of mass transfer during remineralization of sulfide deposits due to mixing of hydrothermal fluids with seawater. Model results are consistent with patterns of observed mineral paragenesis and help to identify conditions (pH, redox, temperature) that may be responsible for variations in trace metal concentrations in primary and secondary minerals. Differences in trace metal distributions throughout a single deposit and between nearby deposits at Middle Valley can be linked to the history of metal mobilization within this active hydrothermal system that may have broad implications for sulfide ore formation in other sedimented and unsedimented ridge systems. ?? 2004 Elsevier Ltd.

  2. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  4. Vertical distribution of major, minor and trace elements in sediments from mud volcanoes of the Gulf of Cadiz: evidence of Cd, As and Ba fronts in upper layers

    NASA Astrophysics Data System (ADS)

    Carvalho, Lina; Monteiro, Rui; Figueira, Paula; Mieiro, Cláudia; Almeida, Joana; Pereira, Eduarda; Magalhães, Vítor; Pinheiro, Luís; Vale, Carlos

    2018-01-01

    Mud volcanoes are feature of the coastal margins where anaerobic oxidation of methane triggers geochemical signals. Elemental composition, percentage of fine particles and loss on ignition were determined in sediment layers of eleven gravity cores retrieved from four mud volcanoes (Sagres, Bonjardim, Soloviev and Porto) and three undefined structures located on the deep Portuguese margin of the Gulf of Cadiz. Calcium was positively correlated to Sr and inversely to Al as well as to most of the trace elements. Vertical profiles of Ba, Cd and As concentrations, and their ratios to Al, in Porto and Soloviev showed pronounced enhancements in the top 50-cm depth. Sub-surface enhancements were less pronounced in other mud volcanoes and were absent in sediments from the structures. These profiles were interpreted as diagenetic enrichments related to the anaerobic oxidation of methane originated from upward methane-rich fluxes. The observed barium fronts were most likely caused by the presence of barite which precipitated at the sulphate-methane transition zone. Cd and As enrichments have probably resulted from successive dissolution/precipitation of sulphides in response to vertical shifts of redox boundaries.

  5. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka.

    PubMed

    Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana

    2017-01-01

    An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. The effects of dissecting tools on the trace element concentrations of fish and mussel tissues.

    PubMed

    Heit, M; Klusek, C S

    1982-06-01

    A comparison of the effects of dissecting tools composed of various materials on the trace element content of the muscle of the marine bluefish, Pomatomus saltatrix, and the soft tissues of freshwater mussels, Eliptio complanatus and Lampsilus radiata, is presented. The fish were dissected with blades made of stainless steel, Lexan plastic, titanium, and Teflon-coated stainless steel. The mussels were dissected with stainless and Teflon tools only. Elements measured included As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Sn, Te, V, and Zn. Significant concentration differences (P = 0.01) were not found for any element in fish or mussel samples dissected by the different tools.

  7. Spatial characterization, risk assessment, and statistical source identification of the dissolved trace elements in the Ganjiang River-feeding tributary of the Poyang Lake, China.

    PubMed

    Zhang, Hua; Jiang, Yinghui; Wang, Min; Wang, Peng; Shi, Guangxun; Ding, Mingjun

    2017-01-01

    Surface water samples were collected from 20 sampling sites throughout the Ganjiang River during pre-monsoon, monsoon, and post-monsoon seasons, and the concentrations of dissolved trace elements were determined by inductively coupled plasma-mass spectrometry (ICP-MS) for the spatial and seasonal variations, risk assessment, source identification, and categorization for risk area. The result demonstrated that concentrations of the elements exhibited significant seasonality. The high total element concentrations were detected at sites close to the intensive mining and urban activities. The concentrations of the elements were under the permissible limits as prescribed by related standards with a few exceptions. The most of heavy metal pollution index (HPI) values were lower than the critical index limit, indicating the basically clean water used as habitat for aquatic life. As was identified as the priority pollutant of non-carcinogenic and carcinogenic concerns, and the inhabitants ingesting the surface water at particular site might be subjected to the integrated health risks for exposure to the mixed trace elements. Multivariate statistical analyses confirmed that Zn, As, Cd, and Tl were derived from mining and urban activities; V, Cd, and Pb exhibited mixed origin; and Co, Ni, and Cu mainly resulted from natural processes. Three categorized risk areas corresponded to high, moderate, and low risks, respectively. As a whole, the upstream of the Ganjiang River was identified as the high-risk area relatively.

  8. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range.

    PubMed

    Juárez, Andrea; Arribére, María A; Arcagni, Marina; Williams, Natalia; Rizzo, Andrea; Ribeiro Guevara, Sergio

    2016-09-01

    Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.

  9. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  10. Trace-elements in sheep grazing near a lead-zinc smelting complex at Port Pirie, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koh, T.S.; Judson, G.J.

    1986-07-01

    In South Australia, several studies have shown that heavy metal pollution of soils and plants occurs in the vicinity of a lead/zinc smelter at Port Pirie. Data on soil analysis indicates that at least 3400 km/sup 2/ of land near these smelters has been contaminated by the fallout of Pb, Zn and Cd. It is possible that contamination of soil and pasture by heavy metals may adversely affect the health of livestock grazing near the smelters. In sheep, Pb toxicity causes anorexia, abdominal pain and diarrhea while Zn or Cd supplementation reduces the Cu status. This study was undertaken tomore » investigate the effects of heavy metals on the trace-element status of sheep grazing at selected distances from the Port Pirie smelters.« less

  11. Determination of the Extent of Trace Metals Pollution in Soils, Sediments and Human Hair at e-Waste Recycling Site in Ghana.

    PubMed

    Tokumaru, Takashi; Ozaki, Hirokazu; Onwona-Agyeman, Siaw; Ofosu-Anim, John; Watanabe, Izumi

    2017-10-01

    The concentrations of trace elements (Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Mo, Cd, In, Sn, Sb, Cs, Ba, Tl, Pb, and Bi) in soils, sediment, human hair, and foodstuff collected around the electronic waste (e-waste) recycling sites in Accra, Ghana were detected using inductively coupled plasma-mass spectrometry (ICP-MS). High levels of Cu, Zn, Mo, Cd, In, Sn, Sb, and Pb were observed in soils collected from the e-waste recycling sites. Four sequential extraction procedures were used to evaluate the mobility and bioavailability of metals (Cu, Zn, Cd, Sb, and Pb). Especially, the results showed that Cd and Zn in soils were mostly recovered in exchangeable fraction (respectively 58.9 and 62.8%). Sediment collected from around the site had enrichment of Zn, Sn, Sb, Mo, In, Pb, and Bi. The concentrations of Cu, Mo, Cd, Sb, and Pb in human hair were significantly higher than those collected from the control site (p < 0.01). Additionally, hierarchical cluster analysis reviewed that these elements were derived from e-waste activities. The results of Pb isotopic ratios in the samples indicate that Pb in human hair possibly originated from contaminated soils, fish, and foodstuff.

  12. Chemical studies of H chondrites. I - Mobile trace elements and gas retention ages

    NASA Technical Reports Server (NTRS)

    Lingner, David W.; Huston, Ted J.; Hutson, Melinda; Lipschutz, Michael E.

    1987-01-01

    Trends for 16 trace elements (Ag, As, Au, Bi, Cd, Co, Cs, Ga, In, K, Rb, Sb, Se, Te, Tl, and Zn), chosen to span a broad geochemical and thermal response range, in 44 H4-6 chondrites, differ widely from those in L4-6 chondrites. In particular, H chondrites classified as heavily shocked petrologically do not necessarily exhibit Ar-40 loss and vice versa. The clear-cut causal relationship between siderophile and mobile element loss with increasing late shock seen in L chondrites is not generally evident in the H group. H chondrite parent material experienced an early high temperature genetic episode that mobilized a substantial proportion of these trace elements so that later thermal episodes resulted in more subtle, collateral fractionations. Mildly shocked L chondrites escaped this early high temperature event, indicating that the two most numerous meteorite groups differ fundamentally in genetic history.

  13. Determination of water-soluble elements in PM2.5, PM10, and PM2.5-10 collected in the surroundings of power plants

    NASA Astrophysics Data System (ADS)

    Zajusz-Zubek, Elwira; Mainka, Anna; Kaczmarek, Konrad

    2018-01-01

    The analysis reported in this study was performed to characterize the concentrations and water-soluble content of trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) in PM2.5, PM10 and PM2.5-10 samples collected in the surroundings of power plants in southern Poland. The solubility of trace elements bound to PM2.5 and PM10 was higher than for PM2.5-10, and in most cases, significant differences were revealed in the relative percentage concentrations of the water-soluble fractions. The occurrence of Cd, Cr, Mn, Ni, Pb and Se in first PCA (Principal Component Analysis) factor (PC1) - indicate coal combustion processes as the potential source of these elements. Other factors indicate two further anthropogenic sources: the resuspension of road dust due to vehicular activities and waste burning in domestic sources - factor (PC2), and, soil dust sources affected by fugitive dust from the mining processes and unpaved roads, as well as transportation and deposition of coal -factor (PC3).

  14. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Distribution of trace metals in surface seawater and zooplankton of the Bay of Bengal, off Rushikulya estuary, East Coast of India.

    PubMed

    Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C

    2016-10-15

    Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bioaccumulation of potentially toxic trace elements in benthic organisms of Admiralty Bay (King George Island, Antarctica).

    PubMed

    Majer, Alessandra Pereira; Petti, Mônica Angélica Varella; Corbisier, Thais Navajas; Ribeiro, Andreza Portella; Theophilo, Carolina Yume Sawamura; Ferreira, Paulo Alves de Lima; Figueira, Rubens Cesar Lopes

    2014-02-15

    Data about the concentration, accumulation and transfer of potentially toxic elements in Antarctic marine food webs are essential for understanding the impacts of these elements, and for monitoring the pollution contribution of scientific stations, mainly in Admiralty Bay due to the 2012 fire in the Brazilian scientific station. Accordingly, the concentration of As, Cd, Cu, Ni, Pb and Zn was measured in eight benthic species collected in the 2005/2006 austral summer and the relationship between concentration and trophic position (indicated by δ(15)N values) was tested. A wide variation in metal content was observed depending on the species and the element. In the studied trophic positions, it was observed bioaccumulation for As, Cd and Pb, which are toxic elements with no biological function. In addition, Cd showed a positive relationship between concentration and trophic level suggesting the possible biomagnification of this element. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    PubMed

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  18. Trace element concentrations in the top predator jumbo squid (Dosidicus gigas) from the Gulf of California.

    PubMed

    Raimundo, Joana; Vale, Carlos; Rosa, Rui

    2014-04-01

    Jumbo (or Humboldt) squid, Dosidicus gigas, is a large jet-propelled top oceanic predator off the Eastern Pacific. The present study reports, for the first time, concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd and Pb in gills, mantle and digestive gland of this powerful pelagic squid in the Gulf of California. Zinc and Cu were the most abundant elements. All elements, with the exception of As, were largely stored in digestive gland; particularly Cd that reached concentrations between 57 and 509 µg g(-1). Significant relationships between tissues were found for Co (digestive gland-gills), As (gills-mantle) and Cd (digestive gland-mantle). Proportionality of Cd concentrations between mantle and digestive gland suggested that detoxification capacity by digestive gland was insufficient to avoid the transfer of this element to mantle and other tissues. Nonetheless, Cd concentrations in the mantle were always below the regulatory limit and, therefore lack of constraints for human consumption. On the basis of the fishery landings, one may estimate that up to 1t of Cd can be annually removed by jumbo squid fisheries. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment.

    PubMed

    Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan

    2016-04-01

    Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.

  20. Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS.

    PubMed

    Fu, Liang; Xie, Hualin; Shi, Shuyun

    2018-06-01

    The concentrations of trace elements (Cr, Ni, As, Cd, Hg, and Pb) in Zanthoxylum bungeanum Maxim. essential oil (ZBMEO) were determined by inductively coupled plasma tandem mass spectrometry. The ZBMEO sample was directly analyzed after simple dilution with n-hexane. Aiming for a relatively high vapor pressure of n-hexane and its resultant loading on plasma, we used a narrow injector torch and optimized plasma radio frequency power and carrier gas flow to ensure stable operation of the plasma. An optional gas flow of 20% O 2 in Ar was added to the carrier gas to prevent the incomplete combustion of highly concentrated organic carbon in plasma and the deposition of carbon on the sampling and skimmer cone orifices. In tandem mass spectrometry mode, O 2 was added to the collision/reaction cell to eliminate the interferences. The limits of detection for Cr, Ni, As, Cd, Hg, and Pb were 2.26, 1.64, 2.02, 1.35, 1.76, and 0.97 ng L -1 , respectively. After determination of 23 ZBMEO samples from different regions in China, we found that the average concentration ranges of trace elements in the 23 ZBMEO samples were 0.72-6.02 ng g -1 , 0.09-2.87 ng g -1 , 0.21-5.84 ng g -1 , 0.16-2.15 ng g -1 , 0.13-0.92 ng g -1 , and 0.17-0.73 ng g -1 for Cr, Ni, As, Cd, Hg, and Pb, respectively. The trace elements in ZBMEO differed significantly when different extraction technologies were used. The study revealed that the contents of the toxic elements As, Cd, Hg, and Pb were extremely low, and hence they are unlikely to pose a health risk following ZBMEO ingestion. Graphical abstract The working mechanism of sample analysis by ICP-MS/MS.

  1. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China.

    PubMed

    Wang, Jie; Liu, Guijian; Liu, Houqi; Lam, Paul K S

    2017-04-01

    A total of 211 water samples were collected from 53 key sampling points from 5-10th July 2013 at four different depths (0m, 2m, 4m, 8m) and at different sites in the Huaihe River, Anhui, China. These points monitored for 18 parameters (water temperature, pH, TN, TP, TOC, Cu, Pb, Zn, Ni, Co, Cr, Cd, Mn, B, Fe, Al, Mg, and Ba). The spatial variability, contamination sources and health risk of trace elements as well as the river water quality were investigated. Our results were compared with national (CSEPA) and international (WHO, USEPA) drinking water guidelines, revealing that Zn, Cd and Pb were the dominant pollutants in the water body. Application of different multivariate statistical approaches, including correlation matrix and factor/principal component analysis (FA/PCA), to assess the origins of the elements in the Huaihe River, identified three source types that accounted for 79.31% of the total variance. Anthropogenic activities were considered to contribute much of the Zn, Cd, Pb, Ni, Co, and Mn via industrial waste, coal combustion, and vehicle exhaust; Ba, B, Cr and Cu were controlled by mixed anthropogenic and natural sources, and Mg, Fe and Al had natural origins from weathered rocks and crustal materials. Cluster analysis (CA) was used to classify the 53 sample points into three groups of water pollution, high pollution, moderate pollution, and low pollution, reflecting influences from tributaries, power plants and vehicle exhaust, and agricultural activities, respectively. The results of the water quality index (WQI) indicate that water in the Huaihe River is heavily polluted by trace elements, so approximately 96% of the water in the Huaihe River is unsuitable for drinking. A health risk assessment using the hazard quotient and index (HQ/HI) recommended by the USEPA suggests that Co, Cd and Pb in the river could cause non-carcinogenic harm to human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Atmospheric trace elements and Pb isotopes at an offshore site, Ieodo Ocean Research Station, in the East China Sea from June to October 2015

    NASA Astrophysics Data System (ADS)

    Lee, S.; Han, C.; Shin, D.; Hur, S. D.; Jun, S. J.; Kim, Y. T.; Hong, S.

    2016-12-01

    East Asia, especially China, has become a major anthropogenic source region of trace elements due to the rapid industrialization and urbanization in the past decades. Numerous studies reported that anthropogenic pollutants from East Asia are transported by westerly winds during winter to spring across the Pacific to North America and beyond. Here we report elemental concentrations and Pb isotope ratios in airborne particles from Ieodo Ocean Research Station (IORS) located in the middle of the East China Sea (32.07o N, 125.10o E). A total of 30 aerosol samples (PM2.5-10) were collected between 18 June and 30 October 2015 and analyzed for trace elements (Zn, As, Mo, Cd, Sb, Ba, Tl, and Pb) and Pb isotopes using ICP-SFMS and TIMS, respectively. The mean concentrations of trace elements ranged from 0.06 ng m-3 for Tl to 10.1 ng m-3 for Zn. These values are much lower (up to several orders) than those at unban sites in East Asia, confirming a low level of air pollution at IORS due to the remoteness of the site from major sources of anthropogenic pollutants. On the other hand, the mean crustal enrichment factors, calculated using Ba as a conservative crustal element, are much higher than unity (84 for Tl, 100 for Mo, 140 for Pb, 166 for Zn, 262 for As, 526 for Cd, and 570 for Sb, respectively), indicating that these elements are of anthropogenic origin. Combining the Pb isotope ratios and the HYSPLIT model 5-day backward trajectory analysis, we have identified episodic long-range transport of air pollutants from diverse source regions of China, Korea, Japan and Taiwan to the site in summer (June to August). By comparison, an increasing long-range transport of pollution from China was observed in autumn (September and October). Finally, our study shows that IORS is an ideal background site for monitoring levels of concentrations and source origins of atmospheric trace elements in East Asia.

  3. Metal intoxication in humans assessed by atomic and nuclear physics techniques

    NASA Astrophysics Data System (ADS)

    Chettle, David R.

    1995-08-01

    Toxic trace elements such as lead (Pb) and Cadmium (Cd) can be measured non-invasively in humans by radiation physics techniques, particularly x-ray fluorescence and neutron activation. An analysis is usually made of the content of a particular organ, representing the principal storage site of the element in question. For example, Pb is measured in bone, whereas Cd is measured in liver and kidney. Measuring stored quantities of these elements has contributed to assessment of health effects of chronic occupational and environmental exposure. In addition knowledge of the elemental metabolism has been significantly extended. Results of in vivo studies have also contributed to assessment and regulation of workplace exposure. Analogous methods are in use or under development for in vivo assay of mercury, aluminum, gold, platinum, and manganese. The principles of these measurements will be outlined and illustrative applications for Pb and Cd will be discussed.

  4. Identification of organically associated trace elements in wood and coal by inductively coupled plasma mass spectrometry.

    PubMed

    Richaud, R; Lazaro, M J; Lachas, H; Miller, B B; Herod, A A; Dugwell, D R; Kandiyoti, R

    2000-01-01

    1-Methyl-2-pyrrolidinone (NMP) was used to extract samples of wood (forest residue) and coal; the extracts were analysed by inductively coupled plasma mass spectrometry (ICP-MS) using two different sample preparation methods, in order to identify trace elements associated with the organic part of the samples. A sample of fly ash was similarly extracted and analysed in order to assess the behaviour of the mineral matter contained within the wood and coal samples. 32% of the biomass was extracted at the higher temperature and 12% at room temperature while only 12% of the coal was extracted at the higher temperature and 3% at room temperature. Less than 2% of the ash dissolved at the higher temperature. Size exclusion chromatograms of the extracts indicated the presence of significant amounts of large molecular mass materials (>1000 mu) in the biomass and coal extracts but not in the ash extract. Trace element analyses were carried out using ICP-MS on the acid digests prepared by 'wet ashing' and microwave extraction. Sixteen elements (As, Ba, Be, Cd, Co, Cr, Cu, Ga, Mn, Mo, Ni, Pb, Sb, Se, V and Zn) were quantified, in the samples before extraction, in the extracts and in the residues. Concentrations of trace elements in the original biomass sample were lower than in the coal sample while the concentrations in the ash sample were the highest. The major trace elements in the NMP extracts were Ba, Cu, Mn and Zn from the forest residue; Ba, Cu, Mn, Pb and Zn from the coal; Cu and Zn from the ash. These elements are believed to be associated with the organic extracts from the forest residue and coal, and also from the ash. Be and Sb were not quantified in the extracts because they were present at too low concentrations; up to 40% of Mn was extracted from the biomass sample at 202 degrees C, while Se was totally extracted from the ash sample. For the forest residue, approximately 7% (at room temperature) and 45% (at 202 degrees C) of the total trace elements studied were in the extract; for the coal, approximately 8% (at room temperature) and 23% (at 202 degrees C) were in the extract. For the ash, only 1.4% of the trace elements were extracted at 202 degrees C, comprising 25% of Cd but less than 1% of Pb. Copyright 2000 John Wiley & Sons, Ltd.

  5. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils.

    PubMed

    Wang, Zhongwen; Shan, Xiao-Quan; Zhang, Shuzhen

    2002-03-01

    Rhizosphere is a microbiosphere and has quite different chemical, physical and biological properties from bulk soils. A greenhouse experiment was performed to compare the difference of fractionation and bioavailability of trace elements Cr, Ni, Zn, Cu, Pb and Cd between rhizosphere soil and bulk soil. In the meantime, the influence of air-drying on the fractionation and bioavailability was also investigated by using wet soil sample as a control. Soils in a homemade rhizobox were divided into four zones: rhizosphere, near rhizosphere, near bulk soil and bulk soil zones, which was designated as S1, S2, S3 and S4. Elemental speciations were fractionated to water soluble, exchangeable and carbonate bound (B1), Fe-Mn oxide bound (B2), and organic and sulfide bound (B3) by a sequential extraction procedure. Speciation differences were observed for elements Cr, Ni, Zn, Cu, Pb and Cd between the rhizosphere and bulk soils, and between the air-dried and wet soils as well. The concentrations of all six heavy metals in fraction B1 followed the order of S2 > S3 > S1 > S4 and for B2, the order was S2 > S3 S4 > S1. For B3, the order was S1 > S3 S4 > S2, while for Cd the order was S2 > S3 approximately/= S4 > S1. The air-drying increased elemental concentration in fractions B1 and B2 by 20-50% and decreased in fraction B3 by about 20-100%. Correlation analysis also indicated that the bioavailability correlation coefficient of fraction B1 in rhizosphere wet soil to plants was better than that between either air-dried or nonrhizosphere soils. Therefore, application of rhizosphere wet soils should be recommended in the future study on the speciation analysis of trace elements in soils and bioavailability.

  6. [Determination of trace elements in waste beer yeasts by ICP-MS with microwave digestion].

    PubMed

    Cheng, Xian-zhong; Jin, Can; Zhang, Kai-cheng

    2008-10-01

    The waste beer yeast has rich nutritional compositions and is widely used in food, medical and forage industries. The security of the yeast plays an important role in everyone's daily life. But the yeast contanining microamount of lead, cadmium, chromium, arsenic and other harmful metals is endangering human health. A new method was developed for the direct determination of eight elements, namely copper, lead, zinc, iron, manganese, cadmium, chromium and arsenic in waste beer yeast by inductively coupled plasma-mass spectrometry (ICP-MS) with microwave digestion. The parameters of plasma system, mass system, vacuum system and spectrometer system were optimized. The spectral interferences were eliminated by selecting alternation analytical isotopes of 65Cu, 208Pb, 66Zn, 57Fe, 55Mn, 114Cd, 52Cr and 5As, and the internal standards of Rh was selected to compensate the drift of analytical signals. The samples were digested with concentrated nitric acid-hydrogen peroxide (2:1) mixed solution more rapidly and more effectively. The effects of the type of mixed acid , the volume of digesting solution, heating time, and heating power were investigated in detail. In the closed system, the complete digestion was performed using 4 mL HNO3 and 2mL H2O2 for 2.0 min at 0.5 MPa, 3 min at 1.0 MPa and 5 min at 1.5 MPa. The detection limits of these eight elements were 0.013-0.122 microg x L(-1). The relative standard deviation (RSD) was 0.94%-3.26% (n=9), and the addition standard recovery was 98.4%-102.6% for all elements. The proposed method has been applied to the determination of trace elements of Cu, Pb, Zn, Fe, Mn, Cd, Cr and As in waste beer yeast samples with satisfactory results. The determination results indicated that the content of trace elements of Cu, Pb, Cd and As in waste beer yeast samples are significantly low.

  7. Toxic and trace elements in tobacco and tobacco smoke.

    PubMed Central

    Chiba, M.; Masironi, R.

    1992-01-01

    While the harmful health effects of carbon monoxide, nicotine, tar, irritants and other noxious gases that are present in tobacco smoke are well known, those due to heavy metals and other toxic mineral elements in tobacco smoke are not sufficiently emphasized. Tobacco smoking influences the concentrations of several elements in some organs. This review summarizes the known effects of some trace elements and other biochemically important elements (Al, As, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Po-210, Se, and Zn) which are linked with smoking. Cigarette smoking may be a substantial source of intake of these hazardous elements not only to the smoker but also, through passive smoking, to nonsmokers. The adverse health effects of these toxic elements on the fetus through maternal smoking, and on infants through parental smoking, are of special concern. PMID:1600587

  8. Assessment of some potential harmful trace elements (PHTEs) in the borehole water of Greater Giyani, Limpopo Province, South Africa: possible implications for human health.

    PubMed

    Munyangane, Portia; Mouri, Hassina; Kramers, Jan

    2017-10-01

    The present investigation was conducted in order to evaluate the occurrence and distribution patterns of some potentially harmful trace elements in the borehole water of the Greater Giyani area, Limpopo, South Africa, and their possible implications on human health. Twenty-nine borehole water samples were collected in the dry season (July/August 2012) and another 27 samples from the same localities in the wet season (March 2013) from the study area. The samples were analysed for trace elements arsenic (As), cadmium (Cd), chromium (Cr), selenium (Se), and lead (Pb) using the inductively coupled plasma mass spectrometry technique. The average concentrations of As, Cd, Cr, Se, and Pb were 11.3, 0.3, 33.1, 7.1, and 6.0 µg/L in the dry season and 11.0, 0.3, 28.3, 4.2, and 6.6 µg/L in the wet season, respectively. There was evidence of seasonal fluctuations in concentrations of all analysed elements except for As, though Cd and Pb displayed low concentrations (<0.2 and <6.0 µg/L, respectively) in almost all sampled boreholes. Se and Cr concentrations slightly exceed the South African National Standard permissible limits for safe drinking water in few boreholes. A total of four boreholes exceeded the water quality guideline for As with two of these boreholes containing five times more As than the prescribed limit. The spatial distribution patterns of elevated As closely correlate with the underlying geology. The findings of this investigation have important implications for human health of the communities drinking from the affected boreholes.

  9. Trace element geochemistry of Manilkara zapota (L.) P. Royen, fruit from winder, Balochistan, Pakistan in perspective of medical geology.

    PubMed

    Hamza, Salma; Naseem, Shahid; Bashir, Erum; Rizwani, Ghazala H; Hina, Bushra

    2013-07-01

    An integrated study of rocks, soils and fruits of Manilkara zapota (L.) (Sapotaceae) of Winder area have been carried out to elaborate trace elements relationship between them. The igneous rocks of the study area have elevated amount of certain trace elements, upon weathering these elements are concentrated in the soil of the area. The trace elements concentration in the soil were found in the range of 0.8-197 for Fe, 1.23-140 for Mn, 0.03-16.7 for Zn, 0.07-9.8 for Cr, 0.05-2.0 for Co, 0.52-13.3 for Ni, 0.03-8.8 for Cu, 0.08-10.55 for Pb and 0.13-1.8μg/g for Cd. The distribution pattern of elements in the rocks and soils reflected genetic affiliation. Promising elements of edible part of the fruit were Fe (14.17), Mn (1.49), Cr (2.96), Ni (1.13), Co (0.92), Cu (1.70) and Zn (1.02μg/g). The concentration of these elements in the fruits is above the optimum level of recommended dietary intake, probably due to this, disorder in the human health is suspected in the inhabitants of the area.

  10. Trace Elements in the Marine Sediments of the La Paz Lagoon, Baja California Peninsula, Mexico: Pollution Status in 2013.

    PubMed

    Pérez-Tribouillier, Habacuc; Shumilin, Evgueni; Rodríguez-Figueroa, Griselda Margarita

    2015-07-01

    To determine the actual concentrations of trace elements in surface sediments from the La Paz Lagoon, as well as their associations and possible origins, 91 sediment samples were analyzed for more than 50 elements using a combination of ICP-MS and ICP-AES. The results of a principal component analysis are used to distinguish four associative groups within the elements. Natural enrichment of As, Cd and U occurs due to the supply of weathered phosphorites from the El Cien formation located to the north-west of the lagoon. Sediment quality indices for potentially toxic trace elements do not show any probable impact on the biota of the lagoon. Only the concentrations of As in 30 % of the stations and Cu in 20 % of them exceed related effect range low levels. The highest concentration of Pb (36.8 mg kg(-1)) was measured in the sediments near the City of La Paz.

  11. Is trace element concentration correlated to parasite abundance? A case study in a population of the green frog Pelophylax synkl. hispanicus from the Neto River (Calabria, southern Italy).

    PubMed

    De Donato, Carlo; Barca, Donatella; Milazzo, Concetta; Santoro, Raffaella; Giglio, Gianni; Tripepi, Sandro; Sperone, Emilio

    2017-06-01

    Bioaccumulation of 13 trace elements in the livers of 38 Pelophylax sinkl. hispanicus (Ranidae) and its helminth communities were studied and compared among three sites, each with a different degree of pollution along River Neto (south Italy) during September, 2014. Trace element concentrations in water and liver were measured using inductively coupled plasma mass spectrometry. For most elements, the highest concentration was recorded in the frogs inhabiting the third site, the one with the highest degree of pollution. The trend of trace element concentration in the liver can be represented as follows: Cu > Zn > Mn > Se > Cr. Concentrations of some elements in water and liver samples were significantly different among the three sites and this is evidenced by the bioaccumulation in the frogs. Four species of helminths, all belonging to Nematoda, were found: Rhabdias sp., Oswaldocruzia filiformis (Goeze, 1782), Cosmocerca ornata (Dujarden, 1845), Seuratascaris numidica (Seurat, 1917). The parasite survey presents an important difference of prevalence and average number of helminths in frogs between the three sites. Correlating parasitological and ecotoxicological data showed a strong positive correlation between prevalence and number of parasites with some trace elements such as Mn, Co, Ni, As, Se, and Cd.

  12. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China.

    PubMed

    Turdi, Muyessar; Yang, Linsheng

    2016-09-23

    Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element-induced health risk (including for DW adults) was higher than acceptable (10(-6)) and lower than priority risk levels (10(-4)) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10(-4), higher than acceptable and priority risk levels (10(-4)).

  13. Storm-induced transfer of particulate trace metals to the deep-sea in the Gulf of Lion (NW Mediterranean Sea).

    PubMed

    Dumas, C; Aubert, D; Durrieu de Madron, X; Ludwig, W; Heussner, S; Delsaut, N; Menniti, C; Sotin, C; Buscail, R

    2014-10-01

    In order to calculate budgets of particulate matter and sediment-bound contaminants leaving the continental shelf of the Gulf of Lion (GoL), settling particles were collected in March 2011 during a major storm, using sediment traps. The collecting devices were deployed in the Cap de Creus submarine canyon, which represents the main export route. Particulate matter samples were analyzed to obtain mass fluxes and contents in organic carbon, Al, Cr, Co, Ni, Cu, Zn, Cd, Pb and La, Nd and Sm. The natural or anthropogenic origin of trace metals was assessed using enrichment factors (EFs). Results are that Zn, Cu and Pb appeared to be of anthropogenic origin, whereas Ni, Co and Cr appeared to be strictly natural. The anthropogenic contribution of all elements (except Cd) was refined by acid-leaching (HCl 1 N) techniques, confirming that Zn, Cu and Pb are the elements that are the most enriched. However, although those elements are highly labile (59-77%), they do not reflect severe enrichment (EFs <4). Most particles originate from the Rhone River. This has been confirmed by two different tracing procedures using rare earth elements ratios and concentrations of acid-leaching residual trace metals. Our results hence indicate that even in this western extremity of the GoL, storm events mainly export Rhone-derived particles via the Cap de Creus submarine canyons to the deep-sea environments. This export of material is significant as it represents about a third of the annual PTM input from the Rhone River.

  14. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale.

    PubMed

    Boonpeng, Chaiwat; Polyiam, Wetchasart; Sriviboon, Chutima; Sangiamdee, Duangkamon; Watthana, Santi; Nimis, Pier Luigi; Boonpragob, Kansri

    2017-05-01

    Several trace elements discharged by the petrochemical industry are toxic to humans and the ecosystem. In this study, we assessed airborne trace elements in the vicinity of the Map Ta Phut petrochemical industrial complex in Thailand by transplanting the lichen Parmotrema tinctorum to eight industrial, two rural, and one clean air sites between October 2013 and June 2014. After 242 days, the concentrations of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Ti, V, and Zn in lichens at most industrial sites were higher than those at the rural and the control sites; in particular, As, Cu, Mo, Sb, V, and Zn were significantly higher than at the control site (p < 0.05). Contamination factors (CFs) indicated that Cd, Cu, Mo, and Sb, which have severe health impacts, heavily contaminated at most industrial sites. Principal component analysis (PCA) showed that most elements were associated with industry, with lesser contributions from traffic and agriculture. Based on the pollution load indexes (PLIs), two industrial sites were highly polluted, five were moderately polluted, and one had a low pollution level, whereas the pollution load at the rural sites was comparable to background levels. This study reinforces the utility of lichens as cost-effective biomonitors of airborne elements, suitable for use in developing countries, where adequate numbers of air monitoring instruments are unavailable due to financial, technical, and policy constraints.

  15. The excessive enrichment of trace elements in migratory and breeding red-crowned cranes (Grus japonensis) in China.

    PubMed

    Jinming, Luo; Yongjie, Wang; Zhongyan, Gao; Wenfeng, Wang

    2017-07-01

    The excessive enrichment of trace elements, such as Pb and Cd, from food may contribute to the decline of migratory red-crowned cranes (Grus japonensis) in China. To test this prediction, we determined the concentrations of Pb and Cd, as well as further macro and trace elements (Ca, Mg, Cu, Zn) in the target species and their prey (sediment, reed root, mollusk, arthropods, and common fish species) in both the wintering (Yancheng wetland) and breeding sites (Zhalong wetland) of cranes in China. The maximum concentrations of Pb (130 mg kg -1 dry weight (dw)) and Cd (10.60 mg kg -1 dw) in the sediments of breeding site and the maximum concentration of Cd (4.50 mg kg -1 dw) in the sediments of wintering site exceeded the probable effect level values (91.30 mg kg -1 for Pb and 3.53 mg kg -1 for Cd), suggesting the potential exposure risk of the examined species. Indeed, Pb and Cd contents of essential foods, i.e., aquatic animals, sampled in two sites were above the limit of allowable concentration recommended by the Joint Food and Agriculture Organization of the United Nations/World Health Organization food standards program. Approximately 80, 31.4, and 60.3 mg kg -1 dw of Pb were detected in the eggshells, liver, and kidney, respectively, of the target species, and the values are above the levels of concern (1.7 mg kg -1 for eggshell and 30 mg kg -1 for liver and kidney) in common birds. Nevertheless, the increased Pb and Cd levels in the prey and bodies of the red-crowned cranes did not induce the levels of Ca and Mg depletion. Average contents of the macronutrients, Ca (1.38 g kg -1 dw) and Mg (1.32 g kg -1 dw), in the liver of the examined species exceeded the background concentrations (0.2-0.4 g kg -1 for Ca and 0.4-0.8 g kg -1 for Mg) in the liver of birds. Consumption of Ca-rich foods, e.g., grits and exoskeleton species, may aid in compensating the possible loss caused by the increased Pb and Cd concentrations in the bodies of the cranes.

  16. Remediation to Reduce Ecological Risk from Trace Element Contamination: A Decision Case Study

    ERIC Educational Resources Information Center

    Pierzynski, Gary M.; Vaillant, Grace C.

    2006-01-01

    The cumulative result of almost 100 years of mining, milling, and smelting has left areas of Jasper County, Missouri, contaminated with high levels of the trace metals Pb, Cd, and Zn. The site was listed on the National Priorities List in 1990 and is now known as the Jasper County or Oronogo-Duenweg Mining Belt Superfund Site. The U.S.…

  17. Heavy metals and essential elements in Italian cereals.

    PubMed

    Brizio, P; Benedetto, A; Squadrone, S; Curcio, A; Pellegrino, M; Ferrero, M; Abete, M C

    2016-12-01

    Crops intended for human nutrition and food production containing different essential trace elements, such as copper and zinc, could be contaminated by toxic metals like cadmium and lead. The interrelationship between micronutrients and contaminant trace elements in different cereals was investigated in North-western Italy, where both agricultural and industrial activities are present. Elemental concentrations in sampled cereals were assessed by inductively coupled plasma mass spectrometry (ICP-MS). Rice, oats and barley reached the highest median levels for Al, Cd and Pb content, while corn samples were less contaminated by toxic metals. Regarding essential elements highest median values of Cu and Zn were both found in barley, while Ni median content was higher in oats. Rice had the lowest median levels of essential elements. The correlation study between toxic and essential elements seemed to demonstrate fixed trends in analysed samples, corroborating the importance of a different diet to limit potential adverse effects caused by toxic elements.

  18. The impact of atmospheric dust deposition and trace elements levels on the villages surrounding the former mining areas in a semi-arid environment (SE Spain)

    NASA Astrophysics Data System (ADS)

    Sánchez Bisquert, David; Matías Peñas Castejón, José; García Fernández, Gregorio

    2017-03-01

    It is understood that particulate matter in the atmosphere from metallic mining waste has adverse health effects on populations living nearby. Atmospheric deposition is a process connecting the mining wasteswith nearby ecosystems. Unfortunately, very limited information is available about atmospheric deposition surrounding rural metallic mining areas. This article will focus on the deposition from mining areas, combined with its impact on nearby rural built areas and populations. Particle samples were collected between June 2011 and March 2013. They were collected according to Spanish legislation in ten specialised dust collectors. They were located near populations close to a former Mediterranean mining area, plus a control, to assess the impact of mining waste on these villages. This article and its results have been made through an analysis of atmospheric deposition of these trace elements (Mn, Zn, As, Cd and Pb). It also includes an analysis of total dust flux. Within this analysis it has considered the spatial variations of atmospheric deposition flux in these locations. The average annual level of total bulk deposition registered was 42.0 g m-2 per year. This was higher than most of the areas affected by a Mediterranean climate or in semi-arid conditions around the world. Regarding the overall analysis of trace elements, the annual bulk deposition fluxes of total Zn far exceeded the values of other areas. While Mn, Cd and Pb showed similar or lower values, and in part much lower than those described in other Mediterranean mining areas. This study confirmed some spatial variability of dust and trace elements, contained within the atmospheric deposition. From both an environmental and a public health perspective, environmental managers must take into account the cumulative effect of the deposition of trace elements on the soil and air quality around and within the villages surrounding metallic mining areas.

  19. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    NASA Astrophysics Data System (ADS)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  20. Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino).

    PubMed

    Nookabkaew, Sumontha; Rangkadilok, Nuchanart; Prachoom, Norratouch; Satayavivad, Jutamaad

    2016-04-27

    Thailand is predominantly an agriculture-based country. Organic farming is enlisted as an important national agenda to promote food safety and international export. The present study aimed to determine the concentrations of trace elements in commercial organic fertilizers (fermented and nonfermented) composed of pig and cattle manures available in Thailand. Pig and cattle manures as well as animal feeds were also collected from either animal farms or markets. The results were compared to the literature data from other countries. Fermented fertilizer composed of pig manure contained higher concentrations of nitrogen (N) and phosphorus (P) than fertilizer composed of cattle manure. High concentrations of copper (Cu) and zinc (Zn) were also found in fertilizers and manures. Some organic fertilizers had high concentrations of arsenic (As), cadmium (Cd), and lead (Pb). The range of As concentration in these fertilizers was 0.50-24.4 mg/kg, whereas the ranges of Cd and Pb were 0.10-11.4 and 1.13-126 mg/kg, respectively. Moreover, pig manure contained As and Cd (15.7 and 4.59 mg/kg, respectively), higher than their levels in cattle manure (1.95 and 0.16 mg/kg, respectively). The use of pig manure as soil supplement also resulted in high Cd contamination in herbal tea (Gynostemma pentaphyllum Makino; GP). The Cd concentration in GP plants positively correlated with the Cd concentration in the soil. Therefore, the application of some organic fertilizers or animal manures to agricultural soil could increase some potentially toxic elements in soil, which may be absorbed by plants and, thus, increase the risk of contamination in agricultural products.

  1. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  2. Active Moss Biomonitoring of Atmospheric Trace Element Deposition in Belgrade Urban Area using ENAA and AAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anicic, M.; Tasic, M.; Tomasevic, M.

    2007-11-26

    Active biomonitoring of air quality in Belgrade, Serbia, was performed using the moss Sphagnum girgensohnii. Moss bags were exposed in parallel with and without irrigation respectively for four consecutive 3-month periods at three urban sites. Twenty-nine elements were determined in the exposed moss samples by ENAA and three (Cu, Cd, and Pb) by AAS. The relative accumulation factor (RAF) was greater than 1 for the majority of elements. Elements such as Cl, K, Rb and Cs, however, leached from the moss tissue during the exposure time. For all exposure periods, higher uptake in the irrigated moss bags was evident formore » Al, Cr, Fe, Cu, Zn, Sr, Pb, and Cd.« less

  3. Minor and trace-elements in apiary products from a historical mining district (Les Malines, France).

    PubMed

    Losfeld, Guillaume; Saunier, Jean-Baptiste; Grison, Claude

    2014-03-01

    The trace-elements (TE) contents of honey, royal-jelly and beeswax from a historical Zn-Pb mining district have been investigated to assess potential contamination. In spite of high levels of heavy metal (As, Cd, Tl, Pb) in wastes left after mining stopped, apiary products appear to be relatively free of TE contamination. For honey, the following average levels (±standard error) were observed: Zn 571±440μgkg(-1), Pb 26±20μgkg(-1), Tl 13±10μgkg(-1), Cd 7±6μgkg(-1) and As 3±4μg.kg(-1). These results bring additional data to the potential impact of brownfields left after mining on apiary products. They also bring new data to assess potential risks linked with honey consumption and discuss legal TE contents in honey and other food products from apiaries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Comparison of trace element concentrations in tissue of common carp and implications for monitoring

    USGS Publications Warehouse

    Goldstein, R.M.; DeWeese, L.R.

    1999-01-01

    Common carp (Cyprinus carpio) collected from four sites in the Red River of the North in 1994 were analyzed for arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), selenium (So), and zinc (Zn). Concentrations differed among liver, muscle, and whole body. Generally, trace element concentrations were the greatest in livers while concentrations in whole bodies were greater than those in muscle for Cd, Cu, Ni, Pb, and Zn, and concentrations in muscle were similar to whole body for As and Se. Concentrations of Cr were lower in liver than either muscle or whole body. Correlations between liver and whole body concentrations were stronger than those between liver and muscle concentrations, but the strongest correlations were between muscle and whole body concentrations. Examination of tissue concentrations by collection sites suggested that, for a general survey, the whole body may be the most effective matrix to analyze.

  5. Contributions of trace elements to the sea by small uncontaminated rivers: Effects of a water reservoir and a wastewater treatment plant.

    PubMed

    Álvarez-Vázquez, Miguel Ángel; Prego, Ricardo; Caetano, Miguel; De Uña-Álvarez, Elena; Doval, Maryló; Calvo, Susana; Vale, Carlos

    2017-07-01

    Trace element contributions from small rivers to estuaries is an issue barely addressed in the literature. In this work, freshwater flowing into the Ria of Cedeira (NW Iberian Peninsula) was studied during a hydrological year through the input from three rivers, one considered uncontaminated (the Das-Mestas River), a second affected by urban treated wastewater discharges (the Condomiñas River), and the third containing a water reservoir for urban supply (the Forcadas River). With the objective of assessing the possible influence of human pressure, the annual yields for selected trace elements (Al, Fe, As, Cd, Co, Cr, Cu, Mn, Mo, Ni and Pb) were estimated and compared by normalizing by basin surface. Both dissolved and particulate transported elements were considered. After the data treatment and analysis it can be highlighted that: (i) the Das Mestas River is suitable to be included between the short European pristine baseline of small rivers, at least regarding the transported trace elements; (ii) natural enrichments were identified associated to the lithology of the basin in the Das-Mestas River (i.e. As) and in the Condomiñas River (i.e. Co, Cr and Ni); this fact highlights the importance of considering the local background for a proper assessment; (iii) the impoundment in the Forcadas River is related with a general decrease, even depletion, of the particulate and dissolved transported trace elements, except Mn; (iv) the discharge of sewage to the Condomiñas River is increasing the inputs to the ria of some trace elements in the particulate phase (i.e. Al, Cu and Pb). Both observed human-induced changes can be regarded as typical disturbances of trace element contributions from small rivers to estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Year-round record of dissolved and particulate metals in surface snow at Dome Concordia (East Antarctica).

    PubMed

    Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto

    2015-11-01

    From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. In situ phytoremediation of arsenic- and metal-polluted pyrite waste with field crops: effects of soil management.

    PubMed

    Vamerali, Teofilo; Bandiera, Marianna; Mosca, Giuliano

    2011-05-01

    Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3m depth), the former yielding higher contamination (∼30%) in top soil. Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33mgm(-2) of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation. It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA

    NASA Astrophysics Data System (ADS)

    Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.

    2014-12-01

    Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").

  9. Marine molluscs in environmental monitoring. III. Trace metals and organic pollutants in animal tissue and sediments

    NASA Astrophysics Data System (ADS)

    Feldstein, Tamar; Kashman, Yoel; Abelson, Avigdor; Fishelson, Lev; Mokady, Ofer; Bresler, Vladimir; Erel, Yigal

    2003-10-01

    Concentrations of trace elements and organic pollutants were determined in marine sediments and molluscs from the Mediterranean and Red Sea coasts of Israel. Two bivalve species (Donax trunculus, Pteria aegyptia), two gastropod species (Patella caerulea, Cellana rota) and sediments were sampled at polluted and relatively clean, reference, sites. Along the Mediterranean coast of Israel, sediments and molluscs from Haifa Bay stations were enriched with both organic and trace element contaminants. In the Red Sea, differences between the polluted and reference sites were less pronounced. Bio-concentration factors indicate a significant concentration of Zn, As, Cd, Sn and Pb in animal tissue relative to the concentrations of these elements in the sediments. In contrast, Ce, La and U were not concentrated in molluscs. The trace element results indicate a saturation of the detoxification mechanisms in molluscs from polluted sites. The concentrations of organic pollutants at the same sites are at the lower range of values recorded in other studies. However, synergistic effects between these compounds and between them and metals can lead to acute toxicity.

  10. Monitoring trace elements in Antarctic penguin chicks from South Shetland Islands, Antarctica.

    PubMed

    Jerez, Silvia; Motas, Miguel; Benzal, Jesús; Diaz, Julia; Barbosa, Andrés

    2013-04-15

    The concentration of human activities in the near-shore ecosystems from the northern Antarctic Peninsula area can cause an increasing bioavailability of pollutants for the vulnerable Antarctic biota. Penguin chicks can reflect this potential impact in the rookeries during the breeding season. They also can reflect biomagnification phenomena since they are on the top of the Antarctic food chain. The concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were measured by ICP-MS in samples of liver, kidney, muscle, bone, feather and stomach content of gentoo, chinstrap and Adélie penguin chicks (n=15 individuals) collected opportunistically in the Islands of King George and Deception (South Shetland Islands, Antarctica). The detected levels of some trace elements were not as low as it could be expected in the isolated Antarctic region. Penguin chicks can be useful indicators of trace elements abundance in the study areas. Carcasses of Antarctic penguin chicks were used to evaluate the bioavailability of trace elements in the Islands of King George and Deception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mineralogical study of stream waters and efflorescent salts in Sierra Minera, SE Spain

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Garcia-Lorenzo, Maria luz; Martinez-Sanchez, Maria Jose; Hernandez, Carmen; Hernandez-Cordoba, Manuel

    2015-04-01

    Trace elements contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by water run-off in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. The studied area, Sierra Minera, is close to the mining region of La Unión (Murcia, SE Spain). This area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. Studied area showed a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues. As a consequence of the long period of mining activity, large volumes of wastes were generated during the mineral concentration and smelting processes. Historically, these wastes were dumped into watercourses, filling riverbeds and contaminating their surroundings. 40 sediment samples were collected from the area affected by mining exploitations, and at increasing distances from the contamination sources in 4 zones In addition, 36 surficial water samples were collected after a rain episode The Zn and Fe content was determined by flame atomic absorption spectrometry (FAAS). The Pb and Cd content was determined by electrothermal atomization atomic absorption spectrometry (ETAAS). The As content was measured by atomic fluorescence spectrometry using an automated continuous flow hydride generation spectrometer and Al content was determined by ICP-MS. Mineralogical composition of the samples was made by X Ray Diffraction (XRD) analysis using Cu-Kα radiation with a PW3040 Philips Diffractometer. Zone A: Water sample collected in A5 is strongly influenced by a tailing dump, and showed high trace element contents. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH.The DRX results of evaporate water showed that halite, hexahydrite and gypsum are present: halite corroborates the sea influence and gypsum and hexahydrite the importance of soluble sulphates. A9 water showed acid pH and high trace elements content; is influenced by the tailing dump and also by waters from El Beal gully watercourse, transporting materials from Sierra Minera Waters affected by secondary contamination are influenced by mining wastes, the sea water and also are affected by agricultural activities (nitrate content). These waters have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The DRX analysis in the evaporate if A14 showed that halite and gypsum are present: halite confirms the seawater influence and gypsum the relationship between calcium and sulphates A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. Zone B: All waters are strongly affected by mining activities and showed: acid pH, high trace element content and high content of soluble sulphates. The evaporate of B8 and B12 showed the presence of soluble sulphates: gypsum, halite, bianchite, paracoquimbite, halotrichite and siderotil in B8; gypsum, bianchite, paracoquimbite and coquimbite in B12; gypsum, hexahydrite, carnalite, bianchite, copiapite and sideroti in B10 and polihalite, gypsum, bianchite, coquimbite and paracoquimbite in B14. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps and sampling points are located close to them. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As (remains soluble) and Zn and Cd (high mobility). In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. However, the As remains soluble. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. Some differences were found from the high and the low part: samples located in the lower part (D2-D7) showed higher As content while Zn is higher in the high part (D8-D13) The DRX analysis in evaporates suggest that in D4 copiapite, coquimbite, gypsum, bianchite and ferrohexahydrite are formed and in D11 gypsum, bianchite, halotrichite and siderotil. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements.

  12. Red sea corals as biomonitors of trace metal pollution.

    PubMed

    Hanna, R G; Muir, G L

    1990-05-01

    Red Sea corals have been found to be biomonitors of trace metal pollution. A comparative study was undertaken on three species from a polluted area near a desalination plant at Jeddah (Saudi Arabia) and from an unpolluted area. The results show that corals take-up trace elements from their aquatic environment and thereby act to record changes in the composition of that environment. Variations in the composition of skeletons and soft tissues of corals have been correlated with changes in sea water composition. Three coral species, Porites lutea, Goniastrea retiformis and Pocillopora verrucosa have been analysed for Hg, Cu, Zn, Pb, Mn, Fe, Ni, Cd, V, Al, Cr, Mg, B, Ca, and Sr in both skeletal and soft tissues. Results show that corals in the polluted areas have significantly higher concentrations of trace elements compared to that of corals from unpolluted areas.

  13. Trace element concentrations in surface estuarine and marine sediments along the Mississippi Gulf Coast following Hurricane Katrina.

    PubMed

    Warren, Crystal; Duzgoren-Aydin, Nurdan S; Weston, James; Willett, Kristine L

    2012-01-01

    Hurricanes are relatively frequent ecological disturbances that may cause potentially long-term impacts to the coastal environment. Hurricane Katrina hit the Mississippi Gulf Coast in August 2005, and caused a storm surge with the potential to change the trace element content of coastal surface sediments. In this study, surface estuarine and marine sediments were collected monthly following the storm from ten sites along the Mississippi Gulf Coast (Mobile Bay, Grand Bay Bayous Heron and Cumbest, Pascagoula, Ocean Springs, Biloxi Gulf, Back Biloxi Bay, Gulfport Gulf, Gulfport Courthouse Rd, and Gulfport Marina). Concentrations of V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb were measured by inductively coupled plasma-mass spectrometry to evaluate their temporal and spatial variations in the year following Hurricane Katrina. Sediments were characterized by pH, particle size distribution and total carbon and nitrogen content. Trace element contents of the sediments were determined in both <2 mm and <63 μm grain size fractions. Results revealed no significant temporal and spatial variability in trace element concentrations, in either size fraction. Potential ecological risk of the sediments was assessed by using NOAA SQuiRTs' guideline values; most concentrations remained below probable adverse effects guidelines to marine organisms suggesting that trace elements redistributed by Hurricane Katrina would not cause an adverse impact on resident organisms. Instead, the concentrations of trace elements were site-dependent, with specific contaminants relating to the use of the area prior to Hurricane Katrina.

  14. Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    de Oliveira Souza, Sidnei; da Costa, Silvânio Silvério Lopes; Santos, Dayane Melo; dos Santos Pinto, Jéssica; Garcia, Carlos Alexandre Borges; Alves, José do Patrocínio Hora; Araujo, Rennan Geovanny Oliveira

    2014-06-01

    An analytical method for simultaneous determination of macronutrients (Ca, Mg, Na and P), micronutrients (Cu, Fe, Mn and Zn) and trace elements (Al, As, Cd, Pb and V) in mineral fertilizers was optimized. Two-level full factorial design was applied to evaluate the optimal proportions of reagents used in the sample digestion on hot plate. A Doehlert design for two variables was used to evaluate the operating conditions of the inductively coupled plasma optical emission spectrometer in order to accomplish the simultaneous determination of the analyte concentrations. The limits of quantification (LOQs) ranged from 2.0 mg kg- 1 for Mn to 77.3 mg kg- 1 for P. The accuracy and precision of the proposed method were evaluated by analysis of standard reference materials (SRMs) of Western phosphate rock (NIST 694), Florida phosphate rock (NIST 120C) and Trace elements in multi-nutrient fertilizer (NIST 695), considered to be adequate for simultaneous determination. Twenty-one samples of mineral fertilizers collected in Sergipe State, Brazil, were analyzed. For all samples, the As, Ca, Cd and Pb concentrations were below the LOQ values of the analytical method. For As, Cd and Pb the obtained LOQ values were below the maximum limit allowed by the Brazilian Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento - MAPA). The optimized method presented good accuracy and was effectively applied to quantitative simultaneous determination of the analytes in mineral fertilizers by inductively coupled plasma optical emission spectrometry (ICP OES).

  15. Spatial distribution of dust-bound trace elements in Pakistan and their implications for human exposure.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Kanwal, Ayesha; Bhowmik, Avit Kumar; Sohail, Mohammad; Ullah, Rizwan; Ali, Syeda Maria; Alamdar, Ambreen; Ali, Nadeem; Fasola, Mauro; Shen, Heqing

    2016-06-01

    This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Determination of mineral, trace element, and pesticide levels in honey samples originating from different regions of Malaysia compared to manuka honey.

    PubMed

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.

  17. Determination of Mineral, Trace Element, and Pesticide Levels in Honey Samples Originating from Different Regions of Malaysia Compared to Manuka Honey

    PubMed Central

    Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua

    2014-01-01

    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869

  18. Major factors influencing the elemental composition of surface estuarine sediments: the case of 15 estuaries in Portugal.

    PubMed

    Mil-Homens, M; Vale, C; Raimundo, J; Pereira, P; Brito, P; Caetano, M

    2014-07-15

    Upper sediments (0-5 cm) were sampled in 94 sites of water bodies of the fifteen Portuguese estuaries characterized by distinct settings of climate, topography and lithology, and marked by diverse anthropogenic pressures. Confined areas recognized as highly anthropogenic impacted, as well as areas dominated by erosion or frequently dredged were not sampled. Grain size, organic carbon (Corg), Al and trace elements (As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were determined. Normalisation of trace element concentrations to Al and Corg, correlations between elements and Principal Component Analysis (PCA) allowed identifying elemental associations and the relevance of grain-size, lithology and anthropogenic inputs on sediment chemical composition. Whereas grain-size is the dominant effect for the majority of the studied estuaries, the southern estuaries Mira, Arade and Guadiana are dominated by specific lithologies of their river basins, and anthropogenic effects are identified in Ave, Leça, Tagus and Sado. This study emphasizes how baseline values of trace elements in sediments may vary within and among estuarine systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Baseline study on essential and trace elements in polished rice from South Korea.

    PubMed

    Jung, Myung Chae; Yun, Seong-Taek; Lee, Jin-Soo; Lee, Jong-Un

    2005-09-01

    In 2000, 63 (polished) white rice samples were collected in eight administrative areas all over South Korea and analyzed for 16 elements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Potassium had the highest content, next to Mg, Ca, Si, Zn, Na, Al and Fe. Most of the samples contained worldwide average concentrations of essential and trace elements in rice grains reported by various researches. For inter-area differences in those elements in the rice, the statistical analysis showed no significant differences (p > 0.05) among the eight administrative areas, suggesting that inter-area differences were not substantial in most cases. Thus, the present data can be used as national background levels of elements in rice produced in South Korea. Using the published data on daily consumption of rice in South Korea, it was possible to estimate the daily intake of As, Cd, Cu, Pb and Zn via rice. The results showed that a regular consumption of rice produced in Korea plays an important role in accumulation of essential and trace elements in Korean, especially for farm-households consuming relatively large amounts of rice.

  20. Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city, China.

    PubMed

    Lin, Chunye; He, Mengchang; Liu, Xitao; Guo, Wei; Liu, Shaoqing

    2013-05-01

    The objectives of this study were to assess the enrichment, contamination, and ecological risk posed by toxic trace elements in the sediments of the Xi River in the industrialized city of Shenyang, China. Surface sediment and sediment core were collected; analyzed for toxic trace elements; and assessed with an index of geoaccumulation (Igeo), enrichment factor (EF) value, potential ecological risk factor (Er), ecological risk index (RI), and probable effect concentration quotient (PECQ). Elemental concentrations (milligram per kilogram) were 8.5-637.9 for As, 6.5-103.9 for Cd, 12.2-21.9 for Co, 90.6-516.0 for Cr, 258.1-1,791.5 for Cu, 2.6-19.0 for Hg, 70.5-174.5 for Ni, 126.9-1,405.8 for Pb, 3.7-260.0 for Sb, 38.4-100.4 for V, and 503-4,929 for Zn. The Igeo, EF, Er, and PECQ indices showed that the contamination of Cd and Hg was more serious than that of As, Cr, Cu, Ni, Pb, Sb, and Zn, whereas the presence of Co and V might be primarily from natural sources. The Igeo index for Cr and Ni might underestimate the degree of contamination, potentially as a result of high concentrations of these elements in the shale. The RI index was higher than 600, indicating a notably high ecological risk of sediment for the river. The average PECQ for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn ranged from 1.4 to 4.1 for surface sediment and from 5.2 to 9.6 in the sediment cores, indicating a high potential for an adverse biological effect. It was concluded that the sediment in the Xi River was severely contaminated and should be remediated as a hazardous material.

  1. Regional trends in the fractional solubility of Fe and other metals from North Atlantic aerosols (GEOTRACES cruises GA01 and GA03) following a two-stage leach

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Landing, William M.; Ussher, Simon J.; Planquette, Helene; Sarthou, Geraldine

    2018-04-01

    The fractional solubility of aerosol-derived trace elements deposited to the ocean surface is a key parameter of many marine biogeochemical models. Despite this, it is currently poorly constrained, in part due to the complex interplay between the various processes that govern the solubilisation of aerosol trace elements. In this study, we used a sequential two-stage leach to investigate the regional variability in fractional solubility of a suite of aerosol trace elements (Al, Ti, Fe, Mn, Co, Ni, Cu, Zn, Cd, and Pb) from samples collected during three GEOTRACES cruises to the North Atlantic Ocean (GA01, GA03-2010, and GA03-2011). We present aerosol trace element solubility data from two sequential leaches that provide a solubility window, covering a conservative lower limit to an upper limit, the maximum potentially soluble fraction, and discuss why this upper limit of solubility could be used as a proxy for the bioavailable fraction in some regions. Regardless of the leaching solution used in this study (mild versus strong leach), the most heavily loaded samples generally had the lowest solubility. However, there were exceptions. Manganese fractional solubility was relatively uniform across the full range of atmospheric loading (32 ± 13 and 49 ± 13 % for ultra high-purity water and 25 % acetic acid leaches, respectively). This is consistent with other marine aerosol studies. Zinc and Cd fractional solubility also appeared to be independent of atmospheric loading. Although the average fractional solubilities of Zn and Cd (37 ± 28 and 55 ± 30 % for Zn and 39 ± 23 and 58 ± 26 % for Cd, for ultra high-purity water and 25 % acetic acid leaches, respectively) were similar to Mn, the range was greater, with several samples being 100 % soluble after the second leach. Finally, as the objective of this study was to investigate the regional variability in TE solubility, the samples were grouped according to air mass back trajectories (AMBTs). However, we conclude that AMBTs are not sufficiently discriminating to identify the aerosol sources or the potential effects of atmospheric processing on the physicochemical composition and solubility of the aerosols.

  2. Potentially toxic trace element contamination, sources, and pollution assessment in farmlands, Bijie City, southwestern China.

    PubMed

    Yuan, Zhimin; Yao, Jun; Wang, Fei; Guo, Zunwei; Dong, Zeqin; Chen, Feng; Hu, Yu; Sunahara, Geoffrey

    2017-01-01

    Artisanal zinc smelting activities, which had been widely applied in Bijie City, Guizhou Province, southwestern of China, can pollute surrounding farmlands. In the present study, 177 farmland topsoil samples of Bijie City were collected and 11 potentially toxic trace elements (PTEs), namely Pb, Zn, Cu, Ni, Co, Mn, Cr, V, Hg, As, and Cd were tested to characterize the concentrations, sources, and ecological risks. Mean concentrations of these PTEs in soils were (mg/kg) as follows: Pb (127), Zn (379), Cu (93.1), Ni (54.6), Co (26.2), Mn (1095), Cr (133), V (206), Hg (0.15), As (16.2), and Cd (3.08). Pb, Zn, and Cd had coefficients of variation greater than 100% and showed a high uneven distribution and spatial variability in the study area. Correlation coefficient analysis and principal component analysis (PCA) were used to quantify potential pollution sources. Results showed that Cu, Ni, Co, Mn, and V came from natural sources, whereas Pb, Zn, Hg, As, and Cd came from anthropogenic pollution sources. Geoaccumulation index and potential ecological risk indices were employed to study the pollution degree of PTEs, which revealed that Pb and Cd shared the greatest contamination and would pose serious ecological risks to the surrounding environment. The results of this study could help the local government managers to establish pollution control strategies and to secure food safety.

  3. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields.

    PubMed

    Kim, Sung Chul; Hong, Young Kyu; Oh, Se Jin; Oh, Seung Min; Lee, Sang Phil; Kim, Do Hyung; Yang, Jae E

    2017-04-01

    Remediation of potentially toxic trace elements (PTEs) in paddy fields is fundamental for crop safety. In situ application of chemical amendments has been widely adapted because of its cost-effectiveness and environmental safety. The main purpose of this research was to (1) evaluate the reduction in dissolved concentrations of cadmium (Cd) and arsenic (As) with the application of chemical amendments and (2) monitor microbial activity in the soil to determine the remediation efficiency. Three different chemical amendments, lime stone, steel slag, and acid mine drainage sludge, were applied to paddy fields, and rice (Oryza sativa L. Milyang 23) was cultivated. The application of chemical amendments immobilized both Cd and As in soil. Between the two PTEs, As reduction was significant (p < 0.05) with the addition of chemical amendments, whereas no significant reduction was observed for Cd than that for the control. Among six soil-related variables, PTE concentration showed a negative correlation with soil pH (r = -0.70 for As and r = -0.54 for Cd) and soil respiration (SR) (r = -0.88 for As and r = -0.45 for Cd). This result indicated that immobilization of PTEs in soil is dependent on soil pH and reduces PTE toxicity. Overall, the application of chemical amendments could be utilized for decreasing PTE (As and Cd) bioavailability and increasing microbial activity in the soil.

  4. Anthropogenic and geogenic Cd, Hg, Pb and Se sources of contamination in a brackish aquifer below agricultural fields

    NASA Astrophysics Data System (ADS)

    Mastrocicco, Micòl; Colombani, Nicolò; Di Giuseppe, Dario; Faccini, Barbara; Ferretti, Giacomo; Coltorti, Massimo

    2015-04-01

    Groundwater quality is often threatened by industrial, agricultural and land use practices (anthropogenic input). In deltaic areas is however difficult to distinguish between geogenic and anthropogenic inorganic contaminants pollution, since these phenomena can influence each other and often display a seasonal cycling. The effect of geogenic groundwater ionic strength (>10 g/l) on the mobility of trace elements like Cd, Hg, Pb and Se was studied in combination with the anthropogenic sources of these elements (fertilizers) in a shallow aquifer. The site is located in the Po river plain (Northern Italy) in an agricultural field belonging to a reclaimed deltaic environment, near Codigoro town. It is 6 ha wide and is drained by a subsurface drainage system made of PVC tile drains with a slope of 3‰, which provides gravity drainage towards two ditches that in turn discharge in a main channel. The whole area has been intensively cultivated with cereal rotation since 1960, mainly using synthetic urea as nitrogen fertilizer at an average rate of 180 kg-N/ha/y and pig slurry at an average rate of 60 kg-N/ha/y. The sediments were analyzed for major and trace elements via XRF, while major ions in groundwater were analyzed via IC and trace elements via ICP-MS. Three monitoring wells, with an inner diameter of 2 cm and screened down to 4 m below ground level, were set up in the field and sampled every four month from 2012 to 2014. The use of intensive depth profiles with resolution of 0.5 m in three different locations, gave insights into groundwater and sediment matrix interactions. To characterize the anthropogenic inputs synthetic urea and pig slurry were analyzed for trace elements via ICP-MS. The synthetic urea is a weak source of Cd and Hg (~1 ppb), while Se and Pb are found below detection limits. The pig slurry is a much stronger source of Se (~19 ppb) and Pb (~23 ppb) and a weak source of Cd (~3 ppb) and Hg (~2 ppb). Although, the mass loading rate pig slurry is three times lower than the synthetic urea on yearly basis. In general Cd, Hg, Pb and Se concentrations were found lower in sandy sediments, since usually these elements concentrate in the clay fraction. Hg, Pb and Se groundwater concentrations generally increased with the ionic strength of the solution witnessing a geogenic origin, while Cd groundwater concentrations were not clearly related to saline groundwater. Most probably, the latter was released both by fertilizers and by sediments during shifts between oxic and reducing conditions. In addition, the elevated soil organic carbon induced reducing conditions throughout the saturated aquifer profile (usually below the tile drains), which further promoted Hg, Pb and Se dissolution. The combined use of high-resolution sediment profiles, seasonal groundwater sampling and end-member analyses seems to be a promising procedure to distinguish between anthropogenic inorganic contaminants input and geogenic contribution in reclaimed deltaic environments.

  5. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads.

    PubMed

    Yan, Geng; Mao, Lingchen; Liu, Shuoxun; Mao, Yu; Ye, Hua; Huang, Tianshu; Li, Feipeng; Chen, Ling

    2018-08-01

    The road traffic has become one of the main sources of urban pollution and could directly affect roadside soils. To understand the level of contamination and potential sources of trace metals in roadside soils of Shanghai, 10 trace metals (Sb, Cr, Co, Ni, Cu, Cd, Pb, Hg, Mn and Zn) from two urban/rural roads (Hutai Road and Wunign-Caoan Road) were analyzed in this study. Antimony, Ni, Cu, Cd, Pb, Hg and Zn concentrations were higher than that of soil background values of Shanghai, whereas accumulation of Cr, Co and Mn were minimal. Significantly higher Sb, Cd, Pb contents were found in samples from urban areas than those from suburban area, suggesting the impact from urbanization. The concentrations of Sb and Cd in older road (Hutai) were higher than that in younger road (Wunign-Caoan). Multivariate statistical analysis revealed that Sb, Cu, Cd, Pb and Zn were mainly controlled by traffic activities (e.g. brake wear, tire wear, automobile exhaust) with high contamination levels found near traffic-intensive areas; Cr, Co, Ni and Mn derived primarily from soil parent materials; Hg was related to industrial activities. Besides, the enrichment of Sb, Cd, Cu, Pb and Zn showed a decreasing trend with distance to the road edges. According to the enrichment factors (EF s ), 78.5% of Sb, Cu, Cd, Pb and Zn were in moderate or significant pollution, indicating considerable traffic contribution. In particular, recently introduced in automotive technology, accumulation of Sb has been recognized in 42.9% samples of both roads. The accumulation of these traffic-derived metals causes potential negative impact to human health and ecological environment and should be concerned, especially the emerging trace elements like Sb. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Trace element reference values in tissues from inhabitants of the European Community. III. The control of preanalytical factors in the biomonitoring of trace elements in biological fluids.

    PubMed

    Minoia, C; Pietra, R; Sabbioni, E; Ronchi, A; Gatti, A; Cavalleri, A; Manzo, L

    1992-06-09

    In the context of a programme concerning the determination of trace elements in body fluids and tissues to establish trace element reference values, research has been undertaken on the control of preanalytical factors in order to develop sufficiently accurate and precise guidelines to be applied in routine work by using techniques such as graphite furnace atomic absorption spectroscopy (GFAAS). Aspects investigated are related to the risk of contamination during blood collection and the use of anticoagulants; the risk of losses during storage and freeze-drying as well as the possible risk of contamination arising from trace elements in airborne particulates of the laboratory environment. For the analysis of Al, Ba, Cd, Co, Cr, Mn, Mo, Ni, Sb, W, V and Zn in blood, Teflon cannula is the method of choice. The anticoagulants do not introduce disturbing contaminations of Rb, Se, Zn, while contaminations were observed for Co, Cr, Mn. Radiotracers in 'metabolized form' (radiolabelled rat or rabbit tissues from animals administered with radioisotopes) show that samples stored for 1 month at -20 degrees C have no significant trace metal losses. Strict ambient air quality standard has to be respected (continuous monitoring) due to the possibility of element contaminations inside the laboratory. The use of matrix modifiers could represent a toxicological risk to the operators. Critical factors should be considered ('metal sheets') for each element in each matrix. For instance 27 factors for Cr in serum have been suggested.

  7. Determination of trace elements in automotive fuels by filter furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Anselmi, Anna; Tittarelli, Paolo; Katskov, Dmitri A.

    2002-03-01

    The determination of Cd, Cr, Cu, Pb and Ni was performed in gasoline and diesel fuel samples by electrothermal atomic absorption spectrometry using the Transverse Heated Filter Atomizer (THFA). Thermal conditions were experimentally defined for the investigated elements. The elements were analyzed without addition of chemical modifiers, using organometallic standards for the calibration. Forty-microliter samples were injected into the THFA. Gasoline samples were analyzed directly, while diesel fuel samples were diluted 1:4 with n-heptane. The following characteristic masses were obtained: 0.8 pg Cd, 6.4 pg Cr, 12 pg Cu, 17 pg Pb and 27 pg Ni. The limits of determination for gasoline samples were 0.13 μg/kg Cd, 0.4 μg/kg Cr, 0.9 μg/kg Cu, 1.5 μg/kg Pb and 2.5 μg/kg Ni. The corresponding limit of determination for diesel fuel samples was approximately four times higher for all elements. The element recovery was performed using the addition of organometallic compounds to gasoline and diesel fuel samples and was between 85 and 105% for all elements investigated.

  8. Airborne mineral components and trace metals in Paris region: spatial and temporal variability.

    PubMed

    Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N

    2015-10-01

    A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.

  9. Patterns of trace element bioaccumulation in jellyfish Rhizostoma pulmo (Cnidaria, Scyphozoa) in a Mediterranean coastal lagoon from SE Spain.

    PubMed

    Muñoz-Vera, Ana; Peñas Castejón, Jose Matías; García, Gregorio

    2016-09-15

    The effects of an abandoned mining area, exploited for centuries in the mining district of Cartagena-La Union, result in a continuous supply of heavy metals into the Mar Menor coastal lagoon after rain episodes. As a consequence, concentration of trace elements in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, this study assessed the ability of Rhizostoma pulmo to bioaccumulate trace elements. A total of 57 individuals were sampled at eight different sampling stations during the summer of 2012. Although the concentrations of different analyzed elements (Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sn, and Pb) were moderate, bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content, because of their potential environmental and health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Atmospheric pollution in an urban environment by tree bark biomonitoring--part I: trace element analysis.

    PubMed

    Guéguen, Florence; Stille, Peter; Lahd Geagea, Majdi; Boutin, René

    2012-03-01

    Tree bark has been shown to be a useful biomonitor of past air quality because it accumulates atmospheric particulate matter (PM) in its outermost structure. Trace element concentrations of tree bark of more than 73 trees allow to elucidate the impact of past atmospheric pollution on the urban environment of the cities of Strasbourg and Kehl in the Rhine Valley. Compared to the upper continental crust (UCC) tree barks are strongly enriched in Mn, Ni, Cu, Zn, Cd and Pb. To assess the degree of pollution of the different sites in the cities, a geoaccumulation index I(geo) was applied. Global pollution by V, Ni, Cr, Sb, Sn and Pb was observed in barks sampled close to traffic axes. Cr, Mo, Cd pollution principally occurred in the industrial area. A total geoaccumulation index I(GEO-tot) was defined; it is based on the total of the investigated elements and allows to evaluate the global pollution of the studied environment by assembling the I(geo) indices on a pollution map. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Assessing trace metal pollution through high spatial resolution of surface sediments along the Tunis Gulf coast (southwestern Mediterranean).

    PubMed

    Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi

    2016-03-01

    Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.

  12. Determination of elements in ayurvedic medicinal plants by AAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teerthe, Santoshkumar S.; Kerur, B. R., E-mail: kerurbrk@yahoo.com

    India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations ofmore » Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health.« less

  13. Determination and maternal transfer of heavy metals (Cd, Cu, Zn, Pb and Hg) in the Hawksbill sea turtle (Eretmochelys imbricata) from a nesting colony of Qeshm Island, Iran.

    PubMed

    Ehsanpour, Maryam; Afkhami, Majid; Khoshnood, Reza; Reich, Kimberly J

    2014-06-01

    This study was conducted to determine trace metal concentrations (Cd, Cu, Zn, Pb and Hg) in blood and three egg fractions from Eretmochelys imbricata nesting on Qeshm Island in Iran. The results showed detectable levels of all analytes in all fractions. Pb and Hg were detectable in the blood and eggs, reflecting a maternal transfer. With the exception of Cu and Pb, analyzed elements in eggs were concentrated in yolk. Only Zn in blood had a significant correlation with the body size and weight (p < 0.01). It appears that Hawksbill sea turtles can regulate Zn concentrations through homeostatic processes to balance metabolic requirements. The relatively low concentrations of metals in blood support the knowledge that E. imbricata feed mainly on the low trophic levels. All essential and non-essential elements were detectable in blood and in eggs of the hawksbill, reflecting a maternal transfer. Consequently, movement patterns, home ranges of foraging grounds, and availability of food could explain variations in trace element concentrations among female turtles.

  14. Imaging trace element distributions in single organelles and subcellular features

    NASA Astrophysics Data System (ADS)

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek

    2016-02-01

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.

  15. Active moss biomonitoring of trace elements with Sphagnum girgensohnii moss bags in relation to atmospheric bulk deposition in Belgrade, Serbia.

    PubMed

    Anicić, M; Tasić, M; Frontasyeva, M V; Tomasević, M; Rajsić, S; Mijić, Z; Popović, A

    2009-02-01

    Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites.

  16. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-03-01

    The paper provides physicians and clinical chemists with statistical data (concentration ranges, geometric mean values, selected percentiles, etc.) about 30 urinary trace elements in order to determine whether people have trace element deficiencies or have been exposed to higher elemental concentrations. Morning urine samples of 72 children and 87 adults from two geographical areas of Germany were collected and the elements Li, Be, V, Cr, Mn, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Pt, Au, Pb, Tl, Bi and U were determined by inductively coupled plasma mass spectrometry (ICP-MS) with a new octopole based collision/reaction cell. The urine samples were analysed directly after a simple 1/5 (V/V) dilution with deionised water and nitric acid. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews. The described concentration data down to the ng/l range are very useful for the formulation of reference values. For some elements either new data are described (e.g., for V, Ga, In, Bi, Rh, Mn) or differences to earlier studies were found (e.g., for Be, As). For other elements (e.g., Sb, Se, Mo, Ba, Cu, Zn, Li) our results are in good correlation with previous studies and also complemented with urinary trace element concentrations for children.

  17. Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): patterns of variation across landscapes.

    PubMed

    Moskovchenko, D V; Kurchatova, A N; Fefilov, N N; Yurtaev, A A

    2017-05-01

    The concentrations of several trace elements and iron were determined in 26 soil samples from Belyi Island in the Kara Sea (West Siberian sector of Russian Arctic). The major types of soils predominating in the soil cover were sampled. The concentrations of trace elements (mg kg -1 ) varied within the following ranges: 119-561 for Mn, 9.5-126 for Zn, 0.082-2.5 for Cd, <0.5-19.2 for Cu, <0.5-132 for Pb, 0.011-0.081 for Hg, <0.5-10.3 for Co, and 7.6-108 for Cr; the concentration of Fe varied from 3943 to 37,899 mg kg -1 . The impact of particular soil properties (pH, carbon and nitrogen contents, particle-size distribution) on metal concentrations was analyzed by the methods of correlation, cluster, and factor analyses. The correlation analysis showed that metal concentrations are negatively correlated with the sand content and positively correlated with the contents of silt and clay fractions. The cluster analysis allowed separation of the soils into three clusters. Cluster I included the soils with the high organic matter content formed under conditions of poor drainage; cluster II, the low-humus sandy soils of the divides and slopes; and cluster III, saline soils of coastal marshes. It was concluded that the geomorphic position largely controls the soil properties. The obtained data were compared with data on metal concentrations in other regions of the Russian Arctic. In general, the concentrations of trace elements in the studied soils were within the ranges typical of the background Arctic territories. However, some soils of Belyi Island contained elevated concentrations of Pb and Cd.

  18. Comparison of temporal trends in ambient and compliance trace element and PCB data in pool 2 of the Mississippi River, USA, 1985-1995

    USGS Publications Warehouse

    Anderson, J.; Perry, J.

    1999-01-01

    The Intergovernmental Task Force on Monitoring has suggested studies on ambient (in-stream) and compliance (wastewater) data to determine if monitoring can be reduced locally or nationally. The similarity in temporal trends between retrospective ambient and compliance water-quality data collected from Pool 2 of the Mississippi River, USA, was determined for 1985–1995. Constituents studied included the following trace elements: arsenic (As), cadmium (Cd), chromium (Cr), hexavalent chromium (Cr61), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), zinc (Zn), and polychlorinated biphenyls (PCBs). Water-column, bed-sediment, and fish-tissue (fillets) data collected by five government agencies comprised the ambient data set; effluent data from five registered facilities comprised the compliance data set. The nonparametric MannKendall trend test indicated that 33% of temporal trends in all data were statistically significant (P , 0.05). Possible reasons for this were low sample sizes, and a high percentage of samples below the analytical detection limit. Trends in compliance data were more distinct; most trace elements decreased significantly, probably due to improvements in wastewater treatment. Seven trace elements (Cr, Cd, Cu, Pb, Hg, Ni, and Zn) had statistically significant decreases in wastewater and portions of either or both ambient water and bed sediment. No trends were found in fish tissue. Inconsistency in trends between ambient and compliance data were often found for individual constituents, making overall similarity between the data sets difficult to determine. Logistical differences in monitoring programs, such as varying field and laboratory methods among agencies, made it difficult to assess ambient temporal trends.

  19. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    USGS Publications Warehouse

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.

  20. Trace elements in the Fontinalis antipyretica from rivers receiving sewage of lignite and glass sand mining industry.

    PubMed

    Kosior, Grzegorz; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Brudzińska-Kosior, Anna; Bena, Waldemar; Kempers, Alexander J

    2015-07-01

    Intensive lignite and glass sand mining and industrial processing release waste which may contain elements hazardous to the aquatic ecosystem and constitute a potential risk to human health. Therefore, their levels must be carefully controlled. As a result, we examined the effects of sewage on the aquatic Fontinalis antipyretica moss in the Nysa Łużycka (lignite industry) and the Kwisa Rivers (glass sand industry). The Nysa Łużycka and the Kwisa Rivers appeared to be heavily polluted with As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn, which were reflected in the extremely high concentration of these elements in F. antipyretica along the studied watercourses. In the Nysa Łużycka, trace element composition in the moss species is affected by lignite industry with accumulation in its tissues of the highest concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, while samples from the Kwisa sites influenced by glass sand industry revealed the highest concentrations of As, V and Fe. The principal component and classification analysis classifies the concentration of elements in the aquatic F. antipyretica moss, thus enabling the differentiation of sources of water pollution in areas affected by mining industry.

  1. The occurrence of trace elements in bed sediment collected from areas of varying land use and potential effects on stream macroinvertebrates in the conterminous western United States, Alaska, and Hawaii, 1992-2000

    USGS Publications Warehouse

    Paul, Angela P.; Paretti, Nicholas V.; MacCoy, Dorene E.; Brasher, Anne M.D.

    2012-01-01

    As part of the National Water-Quality Assessment Program of the U.S. Geological Survey, this study examines the occurrence of nine trace elements in bed sediment of varying mineralogy and land use and assesses the possible effects of these trace elements on aquatic-macroinvertebrate community structure. Samples of bed sediment and macroinvertebrates were collected from 154 streams at sites representative of undeveloped, agricultural, urban, mined, or mixed land-use areas and 12 intermediate-scale ecoregions within the conterminous western United States, Alaska, and Hawaii from 1992 to 2000. The nine trace elements evaluated during this study—arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), and zinc (Zn)—were selected on the basis of potential ecologic significance and availability of sediment-quality guidelines. At most sites, the occurrence of these trace elements in bed sediment was at concentrations consistent with natural geochemical abundance, and the lowest concentrations were in bed-sediment samples collected from streams in undeveloped and agricultural areas. With the exception of Zn at sampling sites influenced by historic mining-related activities, median concentrations of all nine trace elements in bed sediment collected from sites representative of the five general land-use areas were below concentrations predicted to be harmful to aquatic macroinvertebrates. The highest concentrations of As, Cd, Pb, and Zn were in bed sediment collected from mined areas. Median concentrations of Cu and Ni in bed sediment were similarly enriched in areas of mining, urban, and mixed land use. Concentrations of Cr and Ni appear to originate largely from geologic sources, especially in the western coastal states (California, Oregon, and Washington), Alaska, and Hawaii. In these areas, naturally high concentrations of Cr and Ni can exceed concentrations that may adversely affect aquatic macroinvertebrates. Generally, Hg concentrations were below the sediment-quality guideline for this trace element but appeared elevated in urbanized areas and at sites contaminated by historic mining practices. Lastly, although there was no distinctive pattern in Se concentrations with land use, median bed-sediment concentrations were slightly elevated in urbanized areas.Macroinvertebrate community structure was influenced by topographic, geologic, climatic, and in-stream characteristics. To account for inherent distribution patterns resulting from these influences, samples of macroinvertebrates were stratified by ecoregion to assess the influence of trace elements on community structure. Cumulative toxic units (CTUs) were used to evaluate gradients in trace-element concentrations in mixture. Correlation analyses among the trace elements under different land-use conditions indicate that trace-element mixtures vary among bed sediment and can have a marked influence on CTU composition. Macroinvertebrate response to bed-sediment trace-element exposure was evident only at the most highly contaminated sites, notably at sites classified as contaminated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as a result of historic mining activities. Results of this study agree with the findings of other studies evaluating trace-element exposure to in-stream macroinvertebrate community structure in that generally lower richness metrics and taxa dominance occur in streams where high trace-element enrichment occurs; however, not all streams in all areas have the same characterizing taxa. In the mountain and xeric ecosystems, the mayfly, Baetis sp.; the Diptera, Simulium sp.; caddisflies in the family Hydropsychiidae; midges in the family Orthocladiinae; and the worms belonging to Turbellaria and Naididae all demonstrated resilience to trace-element exposure and, in some cases, possible changes in physical habitat within stream ecosystems. The taxa characteristics within the Ozark Highland ecoregion were different than other ecoregions as evidenced by generally more diverse mayfly populations. In addition, Baetis sp. was common and dominated many of the mayfly populations found in the Rocky Mountain streams within the Mountain Southern Rockies and Mountain Northern Rockies ecoregions; however, within the Ozark Highland ecoregion, Tricorythodes sp. appeared to be more common than Baetis sp.

  2. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Kuroiwa, Takayoshi; Chiba, Koichi

    2011-01-01

    A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 µm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.

  3. Air quality in urban parking garages (PM10, major and trace elements, PAHs): Instrumental measurements vs. active moss biomonitoring

    NASA Astrophysics Data System (ADS)

    Vuković, Gordana; Aničić Urošević, Mira; Razumenić, Ivana; Kuzmanoski, Maja; Pergal, Miodrag; Škrivanj, Sandra; Popović, Aleksandar

    2014-03-01

    This study was performed in four parking garages in downtown of Belgrade with the aim to provide multi-pollutant assessment. Concentrations of 16 US EPA priority PAHs and Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn were determined in PM10 samples. The carcinogenic health risk of employees' occupational exposure to heavy metals (Cd, Cr, Ni and Pb) and PAHs (B[a]A, Cry, B[b]F, B[k]F, B[a]P and DB[ah]A) was estimated. A possibility of using Sphagnum girgensohnii moss bags for monitoring of trace element air pollution in semi-enclosed spaces was evaluated as well. The results showed that concentrations of PM10, Cd, Ni and B[a]P exceeded the EU Directive target values. Concentration of Zn, Ba and Cu were two orders of magnitude higher than those measured at different urban sites in European cities. Cumulative cancer risk obtained for heavy metals and PAHs was 4.51 × 10-5 and 3.75 × 10-5 in M and PP, respectively; upper limit of the acceptable US EPA range is 10-4. In the moss, higher post-exposure than pre-exposure (background) element concentrations was observed. In comparison with instrumental monitoring data, similar order of abundances of the most elements in PM10 and moss samples was found. However, using of the S. girgensohnii moss bag technique in indoor environments needs further justification.

  4. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil.

    PubMed

    Ondrasek, Gabrijel; Gabrijel, Ondrasek; Romic, Davor; Davor, Romic; Rengel, Zed; Zed, Rengel; Romic, Marija; Marija, Romic; Zovko, Monika; Monika, Zovko

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd(2+) pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg(-1)) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd(2+) increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit peel and pulp.

  5. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).

  6. Effects of bamboo biochar on soybean root nodulation in multi-elements contaminated soils.

    PubMed

    Wang, Chunyan; Alidoust, Darioush; Yang, Xueling; Isoda, Akihiro

    2018-04-15

    Improvements in plant physiological performance by means of biochar application in soils contaminated by multi-elements are determinants of agroecosystem functioning. This study analyzed the effects of bamboo-derived biochar on root nodulation and plant growth in a moderately acidic Andosol (pH = 5.56) contaminated with multi-elements during a 70-day investigation of soybean growth. Bamboo biochar that had been pyrolyzed at a temperature below 500°C was applied to soils at three different and moderately high rates (5%, 10%, and 15%, w/w). Biochar amendment beyond 5% stimulated root nodulation as well as soybean growth. The nodule weight per root system was significantly enhanced by 186% and 243% over the control at the 10% and 15% addition rates, respectively. The primary explanation for these stimulatory effects was attributed to an increase in the K and Mo supplies for plant uptake that was induced by the biochar application, whereas the increased availability of P contributed to a lesser extent. Leaf CO 2 assimilation rate was slightly enhanced at the highest application rate, but this enhancement was not associated with an increase in biomass. The incorporation of biochar into the soil reduced extractable-NH 4 NO 3 Cd, Cu, Mn, Ni, and Zn, but not Pb, regardless of the application dose. This change was accompanied by a significant (P < 0.05) suppression of the uptake od trace elements in soybean shoots at the optimum application rate (10%); the degree of reduction followed this order: Pb>Mn>Cd>Zn>Cu>Ni. The increase in soil pH and the diffusion/adsorption of trace elements onto the biochar may have contributed to the lowering of the concentration of trace elements in the soil as well as in soybean shoots. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow.

    PubMed

    Grotti, M; Soggia, F; Ardini, F; Magi, E

    2011-09-01

    In order to provide a new insight into the Antarctic snow chemistry, partitioning of major and trace elements between dissolved and particulate (i.e. insoluble particles, >0.45 μm) phases have been investigated in a number of coastal and inland snow samples, along with their total and acid-dissolvable (0.5% nitric acid) concentrations. Alkaline and alkaline-earth elements (Na, K, Ca, Mg, Sr) were mainly present in the dissolved phase, while Fe and Al were predominantly associated with the particulate matter, without any significant difference between inland and coastal samples. On the other hand, partitioning of trace elements depended on the sampling site position, showing a general decrease of the particulate fraction by moving from the coast to the plateau. Cd, Cu, Pb and Zn were for the most part in the dissolved phase, while Cr was mainly associated with the particulate fraction. Co, Mn and V were equally distributed between dissolved and particulate phases in the samples collected from the plateau and preferentially associated with the particulate in the coastal samples. The correlation between the elements and the inter-sample variability of their concentration significantly decreased for the plateau samples compared to the coastal ones, according to a change in the relative contribution of the metal sources and in good agreement with the estimated marine and crustal enrichment factors. In addition, samples from the plateau were characterised by higher enrichment factors of anthropogenic elements (Cd, Cr, Cu, Pb and Zn), compared to the coastal area. Finally, it was observed that the acid-dissolvable metal concentrations were generally lower than the total concentration values, showing that the acid treatment can dissolve only a given fraction of the metal associated with the particulate (<20% for iron and aluminium).

  8. Elemental contaminants in the livers and ingesta of four subpopulations of the American coot (Fulica americana): An herbivorous winter migrant in San Francisco Bay

    USGS Publications Warehouse

    Hui, C.A.

    1998-01-01

    Water birds with diets high in animal foods in the San Francisco Bay area are exposed to trace elements that are potentially health impairing. Water birds with herbivorous diets have been less thoroughly examined. The concentrations of trace elements in the livers and the esophageal contents of an herbivorous water bird, the American coot (Fulica americana) were measured to compare levels of contaminant exposure among different locations in the Bay system and with other water birds. A total of 39 coots were collected from four sites: Napa River and Mare Island Strait in the north, Berkeley in the middle, and Coyote Creek in the south. Livers of Berkeley samples differed significantly from those of Napa River and Mare Island Strait by their greater concentrations of As and B and lower concentrations of Cu, but they seemed to be within normal ranges for birds. Otherwise the concentrations of trace elements in the livers did not differ among sites. Ingesta samples from Berkeley differed from the other sites because they tended to be higher in Al, V, and Zn. In contrast to waterfowl, livers from the herbivorous coots in San Francisco Bay showed little exposure to Cd, Hg, Pb, or Se. Coot ingesta showed few samples with measurable levels of Cd, Hg, or Se and had low levels of Pb. The herbivorous diet of coots may shield them from exposure to such elements. However, high levels of V were present in coot livers and ingesta from all four sites, suggesting adaptation to this toxic element. Copyright (C) 1998 Elsevier Science Ltd.

  9. Contaminations, Sources, and Health Risks of Trace Metal(loid)s in Street Dust of a Small City Impacted by Artisanal Zn Smelting Activities

    PubMed Central

    Wu, Tingting; Bi, Xiangyang; Sun, Guangyi; Feng, Xinbin; Shang, Lihai; Zhang, Hua; He, Tianrong; Chen, Ji

    2017-01-01

    To investigate the impact of artisanal zinc smelting activities (AZSA) on the distribution and enrichment of trace metal(loid)s in street dust of a small city in Guizhou province, SW China, street dust samples were collected and analyzed for 10 trace metal(loid)s (Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg). Meanwhile, the health risks of local resident exposed to street dust were assessed. The result showed that the average concentrations of 10 elements were Zn (1039 mg kg−1), Pb (423 mg kg−1), Cr (119 mg kg−1), Cu (99 mg kg−1), As (55 mg kg−1), Ni (39 mg kg−1), Co (18 mg kg−1), Sb (7.6 mg kg−1), Cd (2.6 mg kg−1), and Hg (0.22 mg kg−1). Except Ni, Co, and Cr, other elements in street dust were obviously elevated compared to the provincial soil background. Pb, Zn, Cd, Sb, and Cu were at heavy to moderate contamination status, especially Pb and Zn, with maximums of 1723 and 708 mg kg−1, respectively; As and Hg were slightly contaminated; while Cr, Ni, and Co were at un-contaminated levels. Multivariate statistical analysis revealed AZSA contributed to the increase of Pb, Zn, Cd, Sb, As, and Hg, while, natural sources introduced Ni, Co, Cr, and Cu. The health risk assessment disclosed that children had higher non-carcinogenic risk than those found in adults, and As has hazardous index (HI) higher than 1 both for children and adults, while Pb and Cr only had HIs higher than 1 for children, other elements were relatively safe. For carcinogenic risks, the major concern was As, then a lesser concern for Cr. The study showed that although the scale of AZSA was small, the contamination of heavy metal(loid)s in street dust and associated health risks were severe. PMID:28841170

  10. Trace elements and radon in groundwater across the United States, 1992-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.

    2011-01-01

    Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,

  11. Forms of trace arsenic, cesium, cadmium, and lead transported into river water for the irrigation of Japanese paddy rice fields

    NASA Astrophysics Data System (ADS)

    Nakaya, Shinji; Chi, Hai; Muroda, Kengo; Masuda, Harue

    2018-06-01

    In this study, we focus on the behavior of geogenic, toxic trace elements, particularly As, Cs, Cd, and Pb, during their transportation in two rivers for irrigation commonly used in monsoon Asia; one river originates from an active volcano, Mt. Asama, and the other originates from a currently inactive volcano, Yatsugatake Mountains in Nagano, Japan. These rivers were investigated to understand the role of river water as a pollutant of rice and other aquatic plants (via irrigation) and aquatic animals. The results indicated that the behavior of toxic trace elements in river water are likely controlled by their interactions with particulate Fe, Al, and Ti compounds. The majority of Pb and Cd is transported as particulate matter with Fe, Al, and Ti, while the majority of As is transported in the dissolved form, predominantly as arsenate, with low abundance of particulate matter. Cs is transported either as the dissolved form or as particulate matter in both rivers. The investigated elements are transported in the rivers as particulate and dissolved forms, and the ratio of these forms is controlled by the pH and presence of particulate Fe, Al, and Ti phases in the river water. With respect to Cs in both rivers, the parameter governing the concentration and transportation of Cs, in the bimodal form (i.e., particulate and dissolved forms), through the river possibly shifts from sorption to pH by particulate Fe-Al-Ti, according to the abrupt increase in the concentration of Cs in the river. The chemical attraction of particulate Fe-Al-Ti for Cs is weaker than that for Pb and Cd, indicating that the lower electronegativity of Cs weakens the chemical attraction on a colloid for the competitive sorption with the other trace elements. The different relationships between As and Fe in the river and in the irrigation water and soil water, as well as those in paddy rice, suggested that As in paddy rice is not directly derived from As in the irrigation water from the river under flooding.

  12. Chemical characteristics and origin of H chondrite regolith breccias

    NASA Technical Reports Server (NTRS)

    Lipschutz, M. E.; Biswas, S.; Mcsween, H. Y., Jr.

    1983-01-01

    Petrologic data and contents of Ag, Bi, Cd, Co, Cs, Ga, In, Rb, Se, Te, Tl and Zn-trace elements spanning the volatility/mobility range-in light and dark portions of H chondrite regolith breccias and L chondrite fragmental breccias are reported. The chemical/petrologic characteristics of H chondrite regolith breccias differ from those of nonbrecciated chondrites or fragmental breccias. Petrologic characteristics and at least some trace element contents of H chondrite regolith breccias reflect primary processes; contents of the most volatile/mobile elements may reflect either primary or secondary processing, possibly within layered H chondrite parent object(s). Chemical/petrologic differences existed in different regions of the parent(s). Regoligh formation and gardening and meteoroid compaction were not so severe as to alter compositions markedly.

  13. The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant.

    PubMed

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K S

    2014-08-28

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system.

  14. The Environmental Geochemistry of Trace Elements and Naturally Radionuclides in a Coal Gangue Brick-Making Plant

    PubMed Central

    Zhou, Chuncai; Liu, Guijian; Cheng, Siwei; Fang, Ting; Lam, Paul K. S.

    2014-01-01

    An investigation focused on the transformation and distribution behaviors of trace elements and natural radionuclides around a coal gangue brick plant was conducted. Simultaneous sampling of coal gangue, brick, fly ash and flue gas were implemented. Soil, soybean and earthworm samples around the brick plant were also collected for comprehensive ecological assessment. During the firing process, trace elements were released and redistributed in the brick, fly ash and the flue gas. Elements can be divided into two groups according to their releasing characteristics, high volatile elements (release ratio higher than 30%) are represented by Cd, Cu, Hg, Pb, Se and Sn, which emitted mainly in flue gas that would travel and deposit at the northeast and southwest direction around the brick plant. Cadmium, Ni and Pb are bio-accumulated in the soybean grown on the study area, which indicates potential health impacts in case of human consumption. The high activity of natural radionuclides in the atmosphere around the plant as well as in the made-up bricks will increase the health risk of respiratory system. PMID:25164252

  15. Distribution of trace elements in the aquatic ecosystem of the Thigithe river and the fish Labeo victorianus in Tanzania and possible risks for human consumption.

    PubMed

    Mataba, Gordian Rocky; Verhaert, Vera; Blust, Ronny; Bervoets, Lieven

    2016-03-15

    The aim of the present study was to assess the distribution of trace elements in the aquatic ecosystem of the Thigithe river. Samples of surface water, sediment and fish were collected up- and downstream of the North Mara Gold Mine (Tanzania) and following trace elements were analysed: As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Trace element concentrations in surface water were below or near the detection limit. Regarding the sediments, relative high concentrations of arsenic at all sites and high levels of mercury at a site downstream of the mine where artisanal mining is performed were observed. Trace element concentrations in Ningu fish tissues (Labeo victorianus) were comparable to slightly higher than levels in fishes from unpolluted environments. For none of the measured human health risk by consumption of fish from the Thigithe river is expected when the Tanzanian average amount of 17 g/day is consumed. However, for Hg and As the advised maximum daily consumption of Ningu fish was lower than 100g. As a result fishermen and people living along the shores of the river consuming more fish than the average Tanzanian fish consumption set by the FAO (2005) are possibly at risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  17. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2014-10-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  18. In Situ Determination of Trace Elements in Fish Otoliths by Laser Ablation Double Focusing Sector Field Inductively Coupled Plasma Mass Spectrometry Using a Solution Standard Addition Calibration Method

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jones, C. M.

    2002-05-01

    Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.

  19. Assimilation and retention of selenium and other trace elements from crustacean food by juvenile striped bass (Morone saxatilis)

    USGS Publications Warehouse

    Baines, Stephen B.; Fisher, Nicholas S.; Stewart, Robin

    2002-01-01

     Estimates of the assimilation and retention of trace elements from food by fish are useful for linking toxicity with the biogeochemical cycling of these elements through aquatic food webs. Here we use pulse-chase radiotracer techniques to estimate the assimilation and retention of Se and four trace metals, Ag, Am, Zn, and Cd, by 43- and 88-d-old juvenile striped bass, Morone saxatilis, from crustacean food. Brine shrimp nauplii, Artemia franciscana, or adult copepods,Acartia tonsa, were fed radiolabeled diatoms and then fed to juvenile striped bass. Assimilation efficiencies (AEs ± SD) for 43-d-old fish were 18 ± 2%, 6 ± 1%, 23 ± 4%, 33 ± 3%, and 23 ± 2% for Ag, Am, Cd, Se, and Zn, respectively. For 88-d-old fish, the AEs were 28 ± 1%, 42 ± 5%, and 40 ± 5% for Cd, Se, and Zn, respectively. The higher AEs in the older fish may result from longer gut passage times for larger fish. The 44-d-old fish excreted 5 ± 0.8%, 4 ± 2.0%, 7 ± 0.3%, 9 ± 0.4%, and 1.3 ± 0.9% of the Ag, Am, Cd, Se, and Zn, respectively, they ingested from food per day, whereas the 88-d-old fish excreted 3 ± 1.0%, 8 ± 0.5%, and 3 ± 0.5% of the assimilated Cd, Se, and Zn per day, respectively. Predictions of steady state Se concentrations in juvenile striped bass tissues made using a biokinetic model and the measured AE and efflux rates ranged from 1.8 to 3.0 mg Se g-1dry wt for muscle tissue and 6.8 to 11.6 mg Se g-1 dry wt for gut tissue. These predictions agreed well with average values of 2.1 and 13 mg Se g-1 dry wt measured independently in North San Francisco Bay, where elevated Se concentrations are of concern. The model results imply that the planktonic food web, including juvenile striped bass, does not transfer Se as efficiently to top consumers as does the benthic food web.

  20. Retention of elements absorbed by juvenile fish (Menidia menidia, Menidia Beryllina) from zooplankton prey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinfelder, J.R.; Fisher, N.S.

    1994-12-01

    Radiolabeled copepods (Acartia spp.) were fed to juvenile silversides (Menidia menidia and Menidia beryllina) to study element absorption in the fish. Copepods were reared from nauplii in the presence of different radiotracers ({sup 14}C,{sup 109}Cd,{sup 57}Co,{sup 32}P,{sup 35}S,{sup 75}Se, o;r {sup 65}Zn) and were analyzed for relative concentrations of these elements in their tissue fractions. Copepod exoskeletons contained nearly all of the trace metals (>97%), 60% of the Se, and less than half of the C,P, and S accumulated by the copepods. Within the nonexoskeleton tissues of the copepods, nonpolar (CHCl{sub 3} extractable) material contained 34 and 24% of themore » total C and P, but only 8 and 2% of the total S and Se. Absorption efficiencies of trace metals in juvenile silversides (2.7% for Cd, 2.1% for Co, 6.2% for Zn) were an order of magnitude lower than those for nonmetals (29% for Se, 50% for S and C, 60% for P). The absorption efficiencies in the juvenile silversides of all seven elements studied were directly related to the percent of each element in the nonexoskeleton fractions of the copepod prey, indicating that the fish absorbed the soft tissues of the copepods and egested the chitinous exoskeleton and its associated elements. 32 refs., 1 fig., 2 tabs.« less

  1. A review on the elemental contents of Pakistani medicinal plants: Implications for folk medicines.

    PubMed

    Aziz, Muhammad Abdul; Adnan, Muhammad; Begum, Shaheen; Azizullah, Azizullah; Nazir, Ruqia; Iram, Shazia

    2016-07-21

    Substantially, plants produce chemicals such as primary and secondary metabolites, which have significant applications in modern therapy. Indigenous people mostly rely on traditional medicines derived from medicinal plants. These plants have the capacity to absorb a variety of toxic elements. The ingestion of such plants for medicinal purpose can have imperative side effects. Hence, with regard to the toxicological consideration of medicinal plants, an effort has been made to review the elemental contents of ethno medicinally important plants of Pakistan and to highlight the existing gaps in knowledge of the safety and efficacy of traditional herbal medications. Literature related to the elemental contents of ethno medicinal plants was acquired by utilizing electronic databases. We reviewed only macro-elemental and trace elemental contents of 69 medicinal plant taxa, which are traditionally used in Pakistan for the treatment of sundry ailments, including anemia, jaundice, cancer, piles, diarrhea, dysentery, headache, diabetes, asthma, blood purification, sedative and ulcer. A majority of plants showed elemental contents above the permissible levels as recommended by the World health organization (WHO). As an example, the concentrations of Cadmium (Cd) and Lead (Pb) were reportedly found higher than the WHO permissible levels in 43 and 42 medicinal plants, respectively. More specifically, the concentrations of Pb (54ppm: Silybum marianum) and Cd (5.25ppm: Artemisia herba-alba) were found highest in the Asteraceae family. The reported medicinal plants contain a higher amount of trace and toxic elements. Intake of these plants as traditional medicines may trigger the accumulation of trace and toxic elements in human bodies, which can cause different types of diseases. Thus, a clear understanding about the nature of toxic substances and factors affecting their concentrations in traditional medicines are essential prerequisites for efficacious herbal therapeutics with lesser or no side effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    PubMed

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  3. Detergentless ultrasound-assisted extraction of trace elements from edible oils using lipase as an extractant.

    PubMed

    Kara, Derya; Fisher, Andrew; Hill, Steve

    2015-11-01

    A new method for the extraction and preconcentration of trace elements (Al, Ba, Cd, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn) from edible oils by producing detergentless micro-emulsions via an ultrasound-assisted extraction using a water phase containing Lipase at pH 3 as an extractant was developed. The trace elements in the water phase post-extraction were determined against matrix matched standards using ICP-MS. In the first step of the work, the parameters that affect extraction, such as pH, the volume of 1% lipase in the water phase and the ultrasonic and centrifugation times were optimized. Under the optimal conditions, the detection limits (µg kg(-1)) were 0.46, 0.03, 0.007, 0.028, 0.67, 0.038, 0.022, 0.14, 0.17, 0.05 and 0.07 for Al, Ba, Cd, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn respectively for edible oils (3 Sb/m). A certified reference material (EnviroMAT HU-1 Used oil) was analysed to check the accuracy of the developed method. Results obtained were in agreement with certified values with a t-test showing that no significant differences at the 95% confidence levels were found. The proposed method was applied to different edible oils such as sunflower oil, rapeseed oil, olive oil and salmon oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Hepatic and renal trace element concentrations in American alligators (Alligator mississippiensis) following chronic dietary exposure to coal fly ash contaminated prey.

    PubMed

    Tuberville, Tracey D; Scott, David E; Metts, Brian S; Finger, John W; Hamilton, Matthew T

    2016-07-01

    Little is known about the propensity of crocodilians to bioaccumulate trace elements as a result of chronic dietary exposure. We exposed 36 juvenile alligators (Alligator mississippiensis) to one of four dietary treatments that varied in the relative frequency of meals containing prey from coal combustion waste (CCW)-contaminated habitats vs. prey from uncontaminated sites, and evaluated tissue residues and growth rates after 12 mo and 25 mo of exposure. Hepatic and renal concentrations of arsenic (As), cadmium (Cd) and selenium (Se) varied significantly among dietary treatment groups in a dose-dependent manner and were higher in kidneys than in livers. Exposure period did not affect Se or As levels but Cd levels were significantly higher after 25 mo than 12 mo of exposure. Kidney As and Se levels were negatively correlated with body size but neither growth rates nor body condition varied significantly among dietary treatment groups. Our study is among the first to experimentally examine bioaccumulation of trace element contaminants in crocodilians as a result of chronic dietary exposure. A combination of field surveys and laboratory experiments will be required to understand the effects of different exposure scenarios on tissue residues, and ultimately link these concentrations with effects on individual health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Soil trace element changes during a phytoremediation trial with willows in southern Québec, Canada.

    PubMed

    Courchesne, François; Turmel, Marie-Claude; Cloutier-Hurteau, Benoît; Tremblay, Gilbert; Munro, Lara; Masse, Jacynthe; Labrecque, Michel

    2017-07-03

    This study determined the changes in trace elements (TE) (As, Cd, Cu, Ni, Pb, Zn) chemistry in the soils of a willow ("Fish Creek" - Salix purpurea, SV1 - Salix x dasyclados and SX67 - Salix miyabeana) plantation growing under a cold climate during a three-year trial. The soil HNO 3 -extractable and H 2 O-soluble TE concentrations and pools significantly decreased under most cultivars (Fish, SX67). Yet, TE changes showed inconsistent patterns and localized soil TE increases (Ni, Pb) were measured. Temporal changes in soil TE were also detected in control plots and sometimes exceeded changes in planted plots. Discrepancies existed between the amount of soil TE change and the amount of TE uptake by willows, except for Cd and Zn. Phytoremediation with willows could reduce soil Cd and Zn within a decadal timeframe indicating that they can be remediated by willows in moderately contaminated soils. However, the time needed to reduce soil As, Cu, Ni and Pb was too long to be efficient. We submit that soil leaching contributed to the TE decrease in controls and the TE discrepancies, and that the plantation could have secondary effects such as the accelerated leaching of soil TE.

  6. Trace elements in blood of sea turtles Lepidochelys olivacea in the Gulf of California, Mexico.

    PubMed

    Zavala-Norzagaray, A A; Ley-Quiñónez, C P; Espinosa-Carreón, T L; Canizalez-Román, A; Hart, C E; Aguirre, A A

    2014-11-01

    This study determined the concentrations of heavy metals in blood collected from Pacific Ridley sea turtles (Lepidochelys olivacea) inhabiting the coast of Guasave, Mexico, in the Gulf of California. The highest reported metal concentration in blood was Zn, followed by Se. Of nonessential toxic metals, As was reported in higher percentage compared to Cd. The concentrations of metals detected were present as follows: Zn > Se > Mn > As > Ni > Cd > Cu. Cd concentration in blood is higher in our population in comparison with other populations of L. olivacea, and even higher in other species of sea turtles. Our study reinforces the usefulness of blood for the monitoring of the levels of contaminating elements, and is easily accessible and nonlethal for sea turtles.

  7. Trace elements in two odontocete species (Kogia breviceps and Globicephala macrorhynchus) stranded in New Caledonia (South Pacific).

    PubMed

    Bustamante, P; Garrigue, C; Breau, L; Caurant, F; Dabin, W; Greaves, J; Dodemont, R

    2003-01-01

    Liver, muscle and blubber tissues of two short-finned pilot whales (Globicephala macrorhynchus) and two pygmy sperm whales(Kogia breviceps) stranded on the coast of New Caledonia have been analysed for 12 trace elements (Al, Cd, Co, Cr, Cu. Fe, organic and total Hg, Mn, Ni, Se, V, and Zn). Liver was shown to be the most important accumulating organ for Cd, Cu, Fe, Hg, Se, and Zn in both species, G. macrorhynchus having the highest Cd, Hg, Se and Zn levels. In this species, concentrations of total Hg are particularly elevated, reaching up to 1452 microg g(-1) dry wt. Only a very low percentage of the total Hg was organic. In both species,the levels of Hg are directly related to Se in liver. Thus, a molar ratio of Hg:Se close to 1.0 was found for all specimens, except for the youngest K. breviceps. Our results suggest that G. macrorhynchus have a physiology promoting the accumulation of high levels of naturally occurring toxic elements. Furthermore, concentrations of Ni, Cr and Co are close to or below the detection limit in the liver and muscles of all specimens. This suggests that mining activity in New Caledonia, which typically elevates the levels of these contaminants in the marine environment, does not seem to be a significant source of contamination for these pelagic marine mammals.

  8. The phytoremediation potential of native plants on New Zealand dairy farms.

    PubMed

    Hahner, Jason L; Robinson, Brett H; Hong-Tao, Zhong; Dickinson, Nicholas M

    2014-01-01

    Ecological restoration of marginal land and riparian zones in agricultural landscapes in New Zealand enhances the provision of above-ground ecosystem services. We investigated whether native endemic plant assemblages have remediation potential, through modifying soil nutrient and trace element mobility. Analysis of native plant foliage in situ indicated that selective uptake of a range of commonly deficient trace elements including Zn, B, Cu, Mn and Co could provide a browse crop to avoid deficiencies of these elements in livestock, although some native plants may enhance the risk of Mo and Cd toxicity. Native plant rhizospheres were found to modify soil physico-chemistry and are likely to influence lateral and vertical fluxes of chemical elements in drainage waters. Native plants on marginal land in agricultural landscapes could add value to dairy production systems whilst helping to resolve topical environmental issues.

  9. Quality assessment of trace Cd and Pb contaminants in Thai herbal medicines using ultrasound-assisted digestion prior to flame atomic absorption spectrometry.

    PubMed

    Siriangkhawut, Watsaka; Sittichan, Patcharee; Ponhong, Kraingkrai; Chantiratikul, Piyanete

    2017-10-01

    A simple, efficient, and reliable ultrasound-assisted digestion (UAD) procedure was used for sample preparation prior to quantitative determination of trace Cd and Pb contaminants in herbal medicines using flame atomic absorption spectrometry. The parameters influencing UAD such as the solvent system, sample mass, presonication time, sonication time, and digestion temperature were evaluated. The efficiency of the proposed UAD procedure was evaluated by comparing with conventional acid digestion (CAD) procedure. Under the optimum conditions, linear calibration graphs in a range of 2-250 μg/L for Cd, and 50-1000 μg/L for Pb were obtained with detection limits of 0.56 μg/L and 10.7 μg/L for Cd and Pb, respectively. The limit of quantification for Cd and Pb were 1.87 μg/L and 40.3 μg/L, respectively. The repeatability for analysis of 10 μg/L for Cd and 100 μg/L for Pb was 2.3% and 2.6%, respectively. The accuracy of the proposed method was evaluated by rice flour certified reference materials. The proposed method was successfully applied for analysis of trace Cd and Pb in samples of various types of medicinal plant and traditional medicine consumed in Thailand. Most herbal medicine samples were not contaminated with Cd or Pb. The contaminant levels for both metals were still lower than the maximum permissible levels of elements in medicinal plant materials and finished herbal products sets by the Ministry of Public Health of Thailand. The exception was the high level of Cd contamination found in two samples of processed medicinal plants. Copyright © 2017. Published by Elsevier B.V.

  10. Trace elements concentration and distributions in coal and coal mining wastes and their environmental and health impacts in Shaanxi, China.

    PubMed

    Hussain, Rahib; Luo, Kunli; Chao, Zhao; Xiaofeng, Zhao

    2018-05-07

    This study probe the probable impacts of coal mining pollution and its impacts on human's health and environment. A total of 144 samples including coal and coal wastes, soil, plants, foods, and water were collected from the Hancheng county and countryside of Shaanxi, China. All the samples were analyzed for trace elements using ICP-MS, OES, and AFS. Results showed that the concentration of Se, As, Cr, Cu, Pb, Cd, Co, Ni, Mo, U, Th (mgKg -1 ), Fe, Mn, Al, Ti (%) etc., in coal and coal wastes were 7.5, 12.1, 275, 55, 54.2, 0.8, 14.8, 94.5, 8.9, 4.9, 17.2, 3.5, 0.02, 19, 0.7, respectively. While in soil 0.6, 12, 194, 27.5, 7.4, 0.6, 11.3, 83.4, 0.7, 1.7, 9.9, 3.1, 0.04, 10.5, and 0.4 for the above elements, respectively. In Hancheng foods, the average concentration of Se-0.09, As-0.15, Cr-1.8, Cu-3.2, Pb-0.4, Cd-0.02, Co-0.09, Ni-0.4, Mo-0.64, U-0.01, Th-0.03, Fe-129, Mn-15.6, Al-234, and Ti-5.2 in mgKg -1 , respectively, which are comparably higher than the countryside. The elemental concentration in groundwater of both areas was below the WHO-2004 standard. In Hancheng, the average daily intake (mgKg -1 bw/d) of Se 0.004-0.0038, As 0.004-0.13, Cr 0.055-0.06, Cd 0.001-0.004, Ni 0.018-13.91, Pb 0.05-0.001 adult-children, respectively. The toxic trace elements such as Cr, Cu, Mn, Pb, Ti, Cd, Co, Th, Fe, Al, and Mo caused non-carcinogenic risk with high morbidity in children than adults. By assessing environmental risks, coal and coal wastes caused high risk, food and plants faced moderate to high risk, while mountain and agriculture soil are prone to low to considerable risk. The pollution in Hancheng County is extreme as compared to the countryside. The study concluded that the contamination is geogenic in both the areas but coal mining enhance the metals contamination and has extensive impacts on the living community and environment of Hancheng areas.

  11. TRACE ELEMENTS AND BENEFICIAL USE OF ORGANIC RESOURCES

    EPA Science Inventory

    This paper summarizes information on risk assessment for metals (Cd, Pb, As, Zn, Cu, Hg) in compost products used in agriculture or horticulture, and progress in research to develop and demonstrate the use of Tailor-Made Composts to remediate metal phytotoxic soils. Research has ...

  12. Microwave assisted extraction for trace element analysis of plant materials by ICP-AES.

    PubMed

    Borkowska-Burnecka, J

    2000-11-01

    Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.

  13. Isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS) for the certification of lead and cadmium in environmental standard reference materials.

    PubMed

    Murphy, K E; Beary, E S; Rearick, M S; Vocke, R D

    2000-10-01

    Lead (Pb) and cadmium (Cd) have been determined in six new environmental standard reference materials (SRMs) using isotope dilution inductively coupled plasma mass spectrometry (ID ICP-MS). The SRMs are the following: SRM 1944, New York-New Jersey Waterway Sediment, SRMs 2583 and 2584, Trace Elements in Indoor Dust, Nominal 90 mg/kg and 10,000 mg/kg Lead, respectively, SRMs 2586 and 2587, Trace Elements in Soil Containing Lead from Paint, Nominal 500 mg/kg and 3,000 mg/kg Lead, respectively, and SRM 2782, Industrial Sludge. The capabilities of ID ICP-MS for the certification of Pb and Cd in these materials are assessed. Sample preparation and ratio measurement uncertainties have been evaluated. Reproducibility and accuracy of the established procedures are demonstrated by determination of gravimetrically prepared primary standard solutions and by comparison with isotope dilution thermal ionization mass spectrometry (ID TIMS). Material heterogeneity was readily demonstrated to be the dominant source of uncertainty in the certified values.

  14. Detection of selected trace elements in yogurt components.

    PubMed

    Capcarova, Marcela; Harangozo, Lubos; Toth, Tomas; Schwarczova, Loretta; Bobkova, Alica; Stawarz, Robert; Guidi, Alessandra; Massanyi, Peter

    2017-12-02

    The objective of this study was to determine the concentrations of Cu, Cd, Pb, Mn, Cr, Co, Ni, Zn, and Hg in the white and fruit parts of commercially available yogurts (n = 30) from Nitra markets (Slovak Republic). The results were correlated to determine their relationships. Three yogurt fruit flavors were chosen and tested, strawberry (n = 10), blueberry (n = 10), and cherry (n = 10). The elements were analyzed using atomic absorption spectrophotometry. Higher concentrations of toxic elements, such as Cd and Pb, were found in the fruit parts of the yogurt, and in some cases, the tolerable limit was exceeded. The white part of the yogurt was not contaminated by toxic elements. White yogurt is a good source of nutrients for humans, but the fruit part in yogurt requires detailed monitoring and improvements in the processing techniques.

  15. Toxic and essential elements in Lebanese cheese.

    PubMed

    Bou Khozam, Rola; Pohl, Pawel; Al Ayoubi, Baydaa; Jaber, Farouk; Lobinski, Ryszard

    2012-01-01

    Concentrations of 20 minor, trace and ultratrace elements relevant to human health (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, V) were determined in four different varieties of the most consumed cheese in Lebanon (Halloumi, Double Crème, Baladi, Labneh) sampled at five different provinces (Grand Beirut, South of Lebanon, North of Lebanon, Mount of Lebanon and Beka'a) during the wet and dry seasons. The analyses were carried out by double focussing sector field inductively coupled plasma-mass spectrometry (ICP-MS) in order to avoid errors due to polyatomic interferences. Levels of toxic elements (As, Cd, Pb) were generally below the WHO permissible levels in dairy products. Concentrations of most elements were considerably affected by the type of cheese, the geographical site and the season of sampling.

  16. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    NASA Astrophysics Data System (ADS)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  17. Trace and minor element variations and sulfur isotopes in crystalline and colloform ZnS: Incorporation mechanisms and implications for their genesis

    USGS Publications Warehouse

    Pfaff, Katharina; Koenig, Alan; Wenzel, Thomas; Ridley, Ian; Hildebrandt, Ludwig H.; Leach, David L.; Markl, Gregor

    2011-01-01

    Various models have been proposed to explain the formation mechanism of colloform sphalerite, but the origin is still under debate. In order to decipher influences on trace element incorporation and sulfur isotope composition, crystalline and colloform sphalerite from the carbonate-hosted Mississippi-Valley Type (MVT) deposit near Wiesloch, SW Germany, were investigated and compared to sphalerite samples from 52 hydrothermal vein-type deposits in the Schwarzwald ore district, SW Germany to study the influence of different host rocks, formation mechanisms and fluid origin on trace element incorporation. Trace and minor element incorporation in sphalerite shows some correlation to their host rock and/or origin of fluid, gangue, paragenetic minerals and precipitation mechanisms (e.g., diagenetic processes, fluid cooling or fluid mixing). Furthermore, crystalline sphalerite is generally enriched in elements like Cd, Cu, Sb and Ag compared to colloform sphalerite that mainly incorporates elements like As, Pb and Tl. In addition, sulfur isotopes are characterized by positive values for crystalline and strongly negative values for colloform sphalerite. The combination of trace element contents, typical minerals associated with colloform sphalerite from Wiesloch, sulfur isotopes and thermodynamic considerations helped to evaluate the involvement of sulfate-reducing bacteria in water-filled karst cavities. Sulfate-reducing bacteria cause a sulfide-rich environment that leads in case of a metal-rich fluid supply to a sudden oversaturation of the fluid with respect to galena, sphalerite and pyrite. This, however, exactly coincides with the observed crystallization sequence of samples involving colloform sphalerite from the Wiesloch MVT deposit.

  18. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2015-10-01

    Impact of waste fuels (virgin/waste wood, mixed biofuel (peat, bark, wood chips) industrial, household, mixed waste fuel) and incineration technologies on partitioning and leaching behavior of trace elements has been investigated. Study included 4 grate fired and 9 fluidized boilers. Results showed that mixed waste incineration mostly caused increased transfer of trace elements to fly ash; particularly Pb/Zn. Waste wood incineration showed higher transfer of Cr, As and Zn to fly ash as compared to virgin wood. The possible reasons could be high input of trace element in waste fuel/change in volatilization behavior due to addition of certain waste fractions. The concentration of Cd and Zn increased in fly ash with incineration temperature. Total concentration in ashes decreased in order of Zn>Cu>Pb>Cr>Sb>As>Mo. The concentration levels of trace elements were mostly higher in fluidized boilers fly ashes as compared to grate boilers (especially for biofuel incineration). It might be attributed to high combustion efficiency due to pre-treatment of waste in fluidized boilers. Leaching results indicated that water soluble forms of elements in ashes were low with few exceptions. Concentration levels in ash and ash matrix properties (association of elements on ash particles) are crucial parameters affecting leaching. Leached amounts of Pb, Zn and Cr in >50% of fly ashes exceeded regulatory limit for disposal. 87% of chlorine in fly ashes washed out with water at the liquid to solid ratio 10 indicating excessive presence of alkali metal chlorides/alkaline earths. Copyright © 2015. Published by Elsevier B.V.

  19. Trace elements in native and improved paddy rice from different climatic regions of Sri Lanka: implications for public health.

    PubMed

    Diyabalanage, Saranga; Navarathna, Thamara; Abeysundara, Hemalika T K; Rajapakse, Sanath; Chandrajith, Rohana

    2016-01-01

    Samples of 226 new improved and 21 indigenous rice ( Oryza sativa L.) varieties were collected from the rice fields in three climatic zones of Sri Lanka and concentrations of 18 trace elements (Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Pb and Bi) were measured giving particular emphasis on Se, Cd and As using ICP-MS. The two way multivariate analysis of variance (MANOVA) method was employed to identify the differences in composition among rice from different climatic zones. The mean values obtained for both white and red rice were Se (36; 25 µg/kg), As (42; 45 µg/kg) and Cd (70; 123 µg/kg) on dry weight basis. However mean content of Se, As and Cd of native rice varieties were 69, 74 and 33 µg/kg, respectively. Statistical interpretations showed that in the majority of cases, there was a significant difference in Cd content among climatic zones whereas Se and Pb show differences between white and red rice varieties. Arsenic did not indicate any significant difference either between rice types or among climatic regions. Notably Se and As contents in indigenous rice were higher than that of improved rice types. To assess the safety of dietary of intake, daily intake of Se, Cd and As by rice were calculated. Non-gender specific Estimated Daily Intake (EDI) of Se, Cd and As consuming improved rice are 9.31, 24.1 and 12.2 µg day -1 , respectively. Since over 50 % of daily meals of people contain rice or rice based products, Se intake is expected to be deficient among the Sri Lankan population.

  20. A simplified soil extraction sequence to monitor the main and trace element speciation in soil after compost and mineral fertilizer additions upon the composition of wheat grains

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Erhart, Eva

    2016-04-01

    High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate-soluble Fe together with P and S was independent from oxalate-soluble Al-Mn-Si. In the crops, all element levels were within a non-contaminated and non-deficient range, therefore correlations with concentrations as well as loads in the wheat grains where largely not pronounced. Maximum correlations between plant and soil data were obtained with Li and Be. The load data (concentration times yield, given in g/ha) were much more intercorrelated than the concentrations. Regarding the same element, correlation coefficients between loads and respective concentrations were larger than 0,800 for Al, Ba, Cd, Co, Cr, Li, Mo, Na, Ni, Se, and Sr, which means the transfer remained independent from the load. In case of Ca, Mg, P, S, Zn, however, correlation coefficients between loads and concentrations were < 0,500, thus the transfer was not constant because of obvious metabolic influences. The proposed method of soil characterization was applied at a field trial here for the first time, and offers new possibilities of intercorrelations between plant uptake and geochemical soil fractions.

  1. Determination of toxic and essential trace elements in serum of healthy and hypothyroid respondents by ICP-MS: A chemometric approach for discrimination of hypothyroidism.

    PubMed

    Stojsavljević, Aleksandar; Trifković, Jelena; Rasić-Milutinović, Zorica; Jovanović, Dragana; Bogdanović, Gradimir; Mutić, Jelena; Manojlović, Dragan

    2018-07-01

    Inductively coupled plasma-mass spectrometry ((ICP-MS)) was used to determine three toxic (Ni, As, Cd) and six essential trace elements (Cr, Mn, Co, Cu, Zn, Se) in blood serum of patients with hypothyroidism (Hy group) and healthy people (control group), in order to set the experimental conditions for accurate determination of a unique profile of these elements in hypothyroidism. Method validation was performed with standard reference material of the serum by varying the sample treatment with both standard and collision mode for analysis of elements isotopes. Quadratic curvilinear functions with good performances of models and the lowest detection limits were obtained for 52 Cr, 66 Zn, 75 As, 112 Cd in collision mode, and 55 Mn, 59 Co, 60 Ni, 65 Cu, 78 Se in standard mode. Treatment of serum samples with aqueous solution containing nitric acid, Triton X-100 and n-butanol gave the best results. Chemometric tools were applied for discrimination of patients with hypothyroidism. All nine elements discriminated Hy group of samples with almost the same discriminating power as indicated by their higher values for this group of patients. Statistically significant correlation (p < 0.01) was observed for several elements. Results indicated clear differences in element profile between Hy and control group and it could be used as a unique profile of hypothyroid state. Copyright © 2018 Elsevier GmbH. All rights reserved.

  2. Trace element bias in the use of CO2 vents as analogues for low pH environments: Implications for contamination levels in acidified oceans

    NASA Astrophysics Data System (ADS)

    Vizzini, S.; Di Leonardo, R.; Costa, V.; Tramati, C. D.; Luzzu, F.; Mazzola, A.

    2013-12-01

    Research into the effects of ocean acidification on marine ecosystems has increasingly focused on natural CO2 vents, although their intrinsic environmental complexity means observations from these areas may not relate exclusively to pH gradients. In order to assess trace element levels and distribution in the Levante Bay (Vulcano Island, NE Sicily, Italy) and its suitability for studying biological effects of pH decline, Ba, Fe and trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn) in sediment were analysed from 7 transects. Where present, Cymodocea nodosa leaves and epiphytes were also analysed. At the spatial scale of the bay, trace element concentrations in sediments and biota showed wide variability, possibly related to both input from fluid emissions and seawater physico-chemical variables (i.e. pH and Eh), which may considerably affect the solubility and bioavailability of potentially harmful trace elements. According to two pollution indices (MSPI: Marine Sediment Pollution Index and SQG-Q: Sediment Quality Guideline Quotient), the bay can be considered to be affected by low contamination with moderate potential for adverse biological effects, especially in the area between about 150 and 350 m from the primary vent, where localized detrimental effects on biota may occur. Generally, biological samples showed concentrations that were comparable with the lower values of seagrass ranges. The overall results of this study support the complex spatial dynamics of trace elements in the CO2 vent studied, which are constrained by both direct input from the vent and/or biogeochemical processes affecting element precipitation at the sediment-seawater interface. Consequently, great caution should be used when relating biological changes along pH gradients to the unifactorial effect of pH only, as interactions with concurrent, multiple stressors, including trace element enrichments, may occur. This finding has implications for the use of CO2 vents as analogues in ocean acidification research. They should be considered more appropriately as analogues for low pH environments with non-negligible trace element contamination which, in a scenario of continuous increase in anthropogenic pollution, may be very common.

  3. Trace metal concentrations of surface snow from Ingrid Christensen Coast, East Antarctica--spatial variability and possible anthropogenic contributions.

    PubMed

    Thamban, Meloth; Thakur, Roseline C

    2013-04-01

    To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.

  4. Chemical studies of differentiated meteorites. I - Labile trace elements in Antarctic and non-Antarctic eucrites

    NASA Technical Reports Server (NTRS)

    Paul, Rick L.; Lipschutz, Michael E.

    1990-01-01

    Element contents of Ag, Au, Bi, Cd, Co, Cs, Ga, In, Rb, Sb, Se, Te, Tl, U, and Zn were analyzed, using RNAA, in 25 Antarctic and nine non-Antarctic eucrites to determine whether these two populations differ significantly in thermal history and derive from the same or different eucrite parent body. Data for these 15 elements indicate that basaltic Antarctic and non-Antarctic eucrite populations reflect the same genetic processes and, hence, come from the same parent asteroid.

  5. Optics Research: 1975:2

    DTIC Science & Technology

    1975-12-31

    9. The detectors were numbered as shown. Detector 2 of the HgCdTe array was turned off due to noise considerations. The array traces show an...The probe beam diagnostics were composed of a large area Au:Ge detector to measure the total probe beam transmission, and a five-element HgCdTe array...laser. ...^-J-..:..^il iitiiinnii" --- "-’ ^Ul.ü^^j .. r ■:, >iUj<&k focal spot size. Other shots show larger signals on the outside detectors

  6. Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (Boletus edulis) mushroom that emerged at 11 spatially distant sites.

    PubMed

    Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan

    2011-01-01

    This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.

  7. Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain.

    PubMed

    Enamorado, Santiago; Abril, José M; Delgado, Antonio; Más, José L; Polvillo, Oliva; Quintero, José M

    2014-02-15

    Phosphogypsum (PG) has been usually applied as Ca-amendment to reclaim sodic soils such as those in the marshland area of Lebrija (SW Spain). This work aimed at the effects of PG amendments on the uptake of trace-elements by tomato and its implications for food safety. A completely randomized experiment was performed using a representative soil from Lebrija in a greenhouse involving six replicates and four PG treatments equivalent to 0, 20, 60, and 200 Mg ha(-1). Soil-to-plant transfer factors (TFs) were determined for Be, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Ag, Cd, Sb, Cs, Ba, Tl, Pb, Th and U. The highest TF in shoots was observed for Cd (4.0; 1.5 in fruits), its concentration being increased with increasing PG doses due to its content in this metal (2.1 mg Cd kg(-1)PG). Phosphogypsum applying decreased the concentrations of Mn, Co and Cu in shoots; and of B, Cu, Sb, Cs, Ba, Tl and Th in fruits, however enhanced the accumulation of Se in fruits. Although Cd concentrations in tomato were below the maximum allowed levels in control pots (0 Mg PG ha(-1)), PG amendments above 60 Mg ha(-1) exceeded such limits. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Geochemical properties of topsoil around the coal mine and thermoelectric power plant.

    PubMed

    Stafilov, Trajče; Šajn, Robert; Arapčeska, Mila; Kungulovski, Ivan; Alijagić, Jasminka

    2018-03-19

    The results of the systematic study of the spatial distribution of trace metals in surface soil over the Bitola region, Republic of Macedonia, known for its coal mine and thermo-electrical power plant activities are reported. The investigated region (3200 km 2 ) is covered by a sparse sampling grid of 5 × 5 km, but in the urban zone and around the thermoelectric power plant the sampling grid is denser (1 × 1 km). In total, 229 soil samples from 149 locations were collected including top-soil (0-5 cm) and bottom-soil samples (20-30 cm and 0-30 cm). Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was applied for the determinations of 21 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V and Zn). Based on the results of factor analyses, three geogenic associations of elements have been defined: F1 (Fe, Ni, V, Co, Cr, Mn and Li), F2 (Zn, B, Cu, Cd, Na and K) and F3 (Ca, Sr, Mg, Ba and Al). Even typical trace metals such as As, Cd, Cu, Ni, P, Pb and Zn are not isolated into anthropogenic geochemical associations by multivariate statistical methods still show some trends of local anthropogenic enrichment. The distribution maps for each analyzed element is showing the higher content of these elements in soil samples collected around the thermoelectric power plants than their average content for the soil samples collected from the whole Bitola Region. It was found that this enrichment is a result of the pollution by fly ash from coal burning which deposited near the plant having a high content of these elements.

  9. Wet deposition of trace elements and radon daughter systematics in the South and equatorial Atlantic atmosphere

    NASA Astrophysics Data System (ADS)

    Kim, Guebuem; Church, Thomas M.

    2002-09-01

    Atmospheric samples were collected aboard ship in the South and equatorial Atlantic (35°S-10°N) between 19 May and 20 June 1996. We measured 222Rn in air, 210Pb in aerosol, and trace elements (Fe, Mn, Zn, Pb, Cu, Cd, Ni, and Cr), 210Pb, and 210Po in precipitation samples. The large variation of 222Rn in air suggests a significant change in the incursion of continental air with time and latitude in the remote Atlantic. In the equatorial and subtropical Atlantic (20°S-10°N), 222Rn activity was lower but 210Pb/222Rn ratios were higher than those at higher latitudes. The higher 210Pb/222Rn ratios in the equatorial Atlantic appear to be due to prevailing trade easterly winds which transport a supported source of 210Pb in Saharan dust from the African Sahel. The enrichment of noncrustal trace elements in precipitation samples from the remote equatorial Atlantic was small on account of the remoteness from the continental emission regions and as a result of dilution with Saharan dust. The wet depositional fluxes of major crustal elements (Fe and Mn) were two- to three-fold higher, while those of Cd and Zn were two- to ten-fold lower, in the South and equatorial Atlantic relative to the western North Atlantic (Bermuda) or North Atlantic coast (Lewes, Delaware). Thus, dominant wet precipitation of Saharan dust in the Intertropical Convergence Zone (ITCZ) areas of the equatorial Atlantic appears to be a large potential source of micronutrients (i.e., Fe) to surface seawater.

  10. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    PubMed

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Intertidal geothermal hot springs as a source of trace elements to the coastal zone: A case study from Bahía Concepción, Gulf of California.

    PubMed

    Leal-Acosta, María Luisa; Shumilin, Evgueni; Mirlean, Nicolai; Baturina, Elena Lounejeva; Sánchez-Rodríguez, Ignacio; Delgadillo-Hinojosa, Francisco; Borges-Souza, José

    2018-03-01

    We investigated the influence of the intertidal geothermal hot spring (GHS) on the biogeochemistry of trace elements in Santispac Bight, Bahía Concepción (Gulf of California). The geothermal fluids were enriched in As and Hg mainly in ionic form. The suspended particulate matter of the GHS had elevated enrichment factor (EF) >1 of As, Bi, Cd, Co, Cu, Mn, Mo, Sb, Sn, Sr, Ti, U and Zn. The sediment core from GHS1 had high concentration of As, Hg, C org , S, V, Mo, and U and the extremely high EF of these elements at 8cm of the core. The maximum bioaccumulation of As and Hg was in seaweeds Sargassum sinicola collected near the GHS2. The results confirm the input of trace elements to the coastal zone in Bahía Concepción from geothermal fluids and the evident modification of the chemical composition of the adjacent marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Accumulation of trace elements used in semiconductor industry in Formosan squirrel, as a bio-indicator of their exposure, living in Taiwan.

    PubMed

    Suzuki, Yoshinari; Watanabe, Izumi; Oshida, Tatsuo; Chen, Yen-Jean; Lin, Liang-Kong; Wang, Yu-Huang; Yang, Kouh-Cheng; Kuno, Katsuji

    2007-07-01

    Concentrations of 17 trace elements were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) in Formosan squirrels (Callosciurus erythraeus) of Taiwan and Japan to document trace element pollution in Taiwan. High concentrations of elements used to produce semiconductors - Ga, As, Cd, In and Tl - were found in animals captured in Miaoli County, which is the nearest site to Hsinchu City, a chief city of Taiwan's semiconductor industry. Significant correlations between Ga, As, In and Tl were found in the kidney, liver, lung and muscle tissues of Taiwanese squirrels. Hierarchical cluster analysis indicated that Ga, As, In and Tl were of the same clade, indicating that Ga, As, In and Tl were discharged from an identical origin. Molar ratios of Ga/As concentration in lungs of animals captured in Miaoli resembled those of animals after intratracheal administration of particulate gallium arsenide (GaAs). This result might indicate that the higher concentrations of Ga and As in the specimens in Miaoli resulted from atmospheric exposure to GaAs.

  13. Trace element fluxes in sediments of an environmentally impacted river from a coastal zone of Brazil.

    PubMed

    da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S

    2015-10-01

    Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.

  14. Phytoplankton community indicators of changes associated with dredging in the Tagus estuary (Portugal).

    PubMed

    Cabrita, Maria Teresa

    2014-08-01

    This work reports changes in suspended particulate matter, turbidity, dissolved Cr, Ni, Cu, Cd, Hg and Pb concentrations, and phytoplankton biomass and composition during a 5-month period dredging operation, in a trace element contaminated area of the Tagus estuary (Portugal). Phytoplankton biomass, diatom:other groups ratio, benthic:pelagic diatom ratio, Margalef's, Simpson's diversity, Shannon-Wiever's, and Warwick and Clarke's taxonomic diversity and distinctness indices, and individual taxa were investigated as indicators of dredging induced changes. Significant rise in sediment resuspension and trace element mobilisation caused by dredging influenced the community structure but not the overall biomass. Benthic diatom displacement into the water column maintained species diversity, and therefore, none of the indices highlighted community changes. Contrastingly, diatom:other groups ratio and benthic:pelagic diatom ratio were reliable indicators for the assessment of dredging induced changes. A shift in composition towards species less susceptible to trace elements was observed, disclosing some individual taxa as potential indicators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.

    PubMed

    Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto

    2012-09-01

    A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. Copyright © 2012 John Wiley & Sons, Ltd.

  16. [Study on trace elements of lake sediments by ICP-AES and XRF core scanning].

    PubMed

    Cheng, Ai-Ying; Yu, Jun-Qing; Gao, Chun-Liang; Zhang, Li-Sha; He, Xian-Hu

    2013-07-01

    It is the first time to study sediment of Toson lake in Qaidam Basin. Trace elements including Cd, Cr, Cu, Zn and Pb in lake sediment were measured by ICP-AES method, studied and optimized from different resolution methods respectively, and finally determined a optimum pretreatment system for sediment of Toson lake, namely, HCl-HNO3-HF-HClO4-H2O2 system in the proportions of 5 : 5 : 5 : 1 : 1 was determined. At the same time, the data measured by XRF core scanning were compared, the use of moisture content correction method was analyzed, and the influence of the moisture content on the scanning method was discussed. The results showed that, compared to the background value, the contents of Cd and Zn were a little higher, the content of Cr, Cu and Pb was within the background value limits. XRF core scanning was controlled by sediment elements as well as water content in sediment to some extent. The results by the two methods showed a significant positive correlation, with the correlation coefficient up to 0.673-0.925, and they have a great comparability.

  17. Schnellverfahren zur flammenlosen AAS-Bestimmung von Spurenelementen in geologischen Proben

    NASA Astrophysics Data System (ADS)

    Schrön, W.; Bombach, G.; Beuge, P.

    This paper reports experience with direct quantitative trace element determinations in powdered geological samples by nameless atomic absorption spectroscopy. Two methods were explored. The first one is based on the production of a sample aerosol by laser radiation in a specifically designed sample chamber and the subsequent transport of the aerosol into a graphite tube, which has been preheated to a stable temperature. This technique is suited for a large range of concentration and is relatively free from matrix interferences. The technique was tested for the elements Ag, As, Bi, Cd, Co, Mn, Ni, Pb, Sb, Se, Sr and Tl. The described sample chamber can be also used in combination with other spcctroscopic techniques. The second method explored permits the quantitative determination of trace elements at very low concentrations. Essentially an accurately weighed amount of sample is placed on a graphite rod and introduced into a graphite furnace by inserting the rod through the sample injection port. Atomization takes place also under stable temperature conditions. Using this technique detection limits were found to be 10 -11 g for Ag, 2 × 10 -11 g for Cd and 10 -10 g for Sb in silicate materials.

  18. Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry.

    PubMed

    Feist, Barbara; Mikula, Barbara

    2014-03-15

    A method of separation and preconcentration of cadmium, cobalt, copper, nickel, lead, and zinc at trace level using activated carbon is proposed. Activated carbon with the adsorbed trace metals was mineralised using a high-pressure microwave mineraliser. The heavy metals were determined after preconcentration by inductively coupled plasma optical emission spectrometry (ICP-OES). The influence of several parameters, such as pH, sorbent mass, shaking time was examined. Moreover, effects of inorganic matrix on recovery of the determined elements were studied. The experiment shows that foreign ions did not influence recovery of the determined elements. The detection limits (DL) of Cd, Co, Cu, Ni, Pb, and Zn were 0.17, 0.19, 1.60, 2.60, 0.92 and 1.50 μg L(-)(1), respectively. The recovery of the method for the determined elements was better than 95% with relative standard deviation from 1.3% to 3.7%. The preconcentration factor was 80. The proposed method was applied for determination of Cd, Co, Cu, Ni, Pb, and Zn in fruits materials. Accuracy of the proposed method was verified using certified reference material (NCS ZC85006 Tomato). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Concentrations of polycyclic aromatic hydrocarbons and trace elements in Arctic soils: A case-study in Svalbard.

    PubMed

    Marquès, Montse; Sierra, Jordi; Drotikova, Tatiana; Mari, Montse; Nadal, Martí; Domingo, José L

    2017-11-01

    A combined assessment on the levels and distribution profiles of polycyclic aromatic hydrocarbons (PAHs) and trace elements in soils from Pyramiden (Central Spitsbergen, Svalbard Archipelago) is here reported. As previously stated, long-range atmospheric transport, coal deposits and previous mining extractions, as well as the stack emissions of two operative power plants at this settlement are considered as potential sources of pollution. Eight top-layer soil samples were collected and analysed for the 16 US EPA priority PAHs and for 15 trace elements (As, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sn, Tl, V and Zn) during late summer of 2014. The highest levels of PAHs and trace elements were found in sampling sites located near two power plants, and at downwind from these sites. The current PAH concentrations were even higher than typical threshold values. The determination of the pyrogenic molecular diagnostic ratios (MDRs) in most samples revealed that fossil fuel burning might be heavily contributing to the PAHs levels. Two different indices, the Pollution Load Index (PLI) and the Geoaccumulation Index (Igeo), were determined for assessing soil samples with respect to trace elements pollution. Samples collected close to the power plants were found to be slightly and moderately polluted with zinc (Zn) and mercury (Hg), respectively. The Spearman correlation showed significant correlations between the concentrations of 16 PAHs and some trace elements (Pb, V, Hg, Cu, Zn, Sn, Be) with the organic matter content, indicating that soil properties play a key role for pollutant retention in the Arctic soils. Furthermore, the correlations between ∑16 PAHs and some trace elements (e.g., Hg, Pb, Zn and Cu) suggest that the main source of contamination is probably pyrogenic, although the biogenic and petrogenic origin of PAHs should not be disregarded according to the local geology. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Imaging trace element distributions in single organelles and subcellular features

    DOE PAGES

    Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; ...

    2016-02-25

    The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro-and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (whichmore » some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. In conclusion, it could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.« less

  1. Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data

    NASA Astrophysics Data System (ADS)

    Araújo, Daniel Ferreira; Peres, Lucas G. M.; Yepez, Santiago; Mulholland, Daniel S.; Machado, Wilson; Tonhá, Myller; Garnier, Jérémie

    2017-10-01

    The Sepetiba Bay, Southeastern Brazil, has undergone intense environmental changes due to anthropogenic influence. This work aims to: (i) evaluate the changes in the drainage landscape use over the last decades, (ii) identify new and past punctual and diffuse anthropogenic sources and assess risks of man-induced disturbances of the coastal zones of Sepetiba. A multivariate statistics approach on the sediment's elemental geochemical dataset discriminated three groups: the electroplating waste-affected elements (As, Cd, Pb, Cu and Zn), terrigenous elements (Si, K, Ti, Al and Fe), and biogenic and carbonate-derived elements (Ca, Mg, Mn, P, Ni, and Cr). Sediment core profiles of trace elements evidence records of former environmental impacts from old metallurgical wastes. Analysis of two Landsat images from 30 years ago and 2015 reveals a decrease in the mangrove area of nearly 26%. The ongoing suppression of mangroves could enhance the release of trace elements into the Sepetiba Bay, increasing the risks to human and biota health.

  2. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  3. A factor influence study of trace element bioaccumulation in moss bags.

    PubMed

    Cesa, M; Campisi, B; Bizzotto, A; Ferraro, C; Fumagalli, F; Nimis, P L

    2008-10-01

    Moss bags of Rhynchostegium riparioides were exposed to different water concentrations of 11 trace elements under laboratory conditions, according to a saturated fractional factorial design (67 treated combinations), with the aim of measuring (1) element uptake and (2) the main effects and first-order interactions of influent factors. Bioaccumulation was directly proportional to water concentration, but the uptake ratio (ranging from 10(2) to 10(5)) also depended on the concentration of other metals. The highest uptake ratios were observed for Al, Cu, Cr, Hg, and Pb. The multiple regression model showed that interactions among elements exist and induce both antagonism (Fe is the most frequent competitor) and synergism (Cr exerts a great influence on Pb and Zn uptake). Interactions might be relatively strong (as for As, Cr, and Pb) or weak (Cd and Hg). This evidence should be taken into consideration in biomonitoring surveys of industrial sites, where effluents release more than one contaminant.

  4. Reference Values of 14 Serum Trace Elements for Pregnant Chinese Women: A Cross-Sectional Study in the China Nutrition and Health Survey 2010-2012.

    PubMed

    Liu, Xiaobing; Zhang, Yu; Piao, Jianhua; Mao, Deqian; Li, Yajie; Li, Weidong; Yang, Lichen; Yang, Xiaoguang

    2017-03-21

    The development of reference values of trace elements is recognized as a fundamental prerequisite for the assessment of trace element nutritional status and health risks. In this study, a total of 1400 pregnant women aged 27.0 ± 4.5 years were randomly selected from the China Nutrition and Health Survey 2010-2012 (CNHS 2010-2012). The concentrations of 14 serum trace elements were determined by high-resolution inductively coupled plasma mass spectrometry. Reference values were calculated covering the central 95% reference intervals (P2.5-P97.5) after excluding outliers by Dixon's test. The overall reference values of serum trace elements were 131.5 (55.8-265.0 μg/dL for iron (Fe), 195.5 (107.0-362.4) μg/dL for copper (Cu), 74.0 (51.8-111.3) μg/dL for zinc (Zn), 22.3 (14.0-62.0) μg/dL for rubidium (Rb), 72.2 (39.9-111.6) μg/L for selenium (Se), 45.9 (23.8-104.3) μg/L for strontium (Sr), 1.8 (1.2-3.6) μg/L for molybdenum (Mo), 2.4 (1.2-8.4) μg/L for manganese (Mn), 1.9 (0.6-9.0) ng/L for lead (Pb), 1.1 (0.3-5.6) ng/L for arsenic (As), 835.6 (219.8-4287.7) ng/L for chromium (Cr), 337.9 (57.0-1130.0) ng/L for cobalt (Co), 193.2 (23.6-2323.1) ng/L for vanadium (V), and 133.7 (72.1-595.1) ng/L for cadmium (Cd). Furthermore, some significant differences in serum trace element reference values were observed between different groupings of age intervals, residences, anthropometric status, and duration of pregnancy. We found that serum Fe, Zn, and Se concentrations significantly decreased, whereas serum Cu, Sr, and Co concentrations elevated progressively compared with reference values of 14 serum trace elements in pregnant Chinese women. The reference values of serum trace elements established could play a key role in the following nutritional status and health risk assessment.

  5. Essential and toxic elements in honeys from a region of central Italy.

    PubMed

    Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L

    2015-01-01

    Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.

  6. The Release of Trace Elements in the Process of Coal Coking

    PubMed Central

    Konieczyński, Jan; Zajusz-Zubek, Elwira; Jabłońska, Magdalena

    2012-01-01

    In order to assess the penetration of individual trace elements into the air through their release in the coal coking process, it is necessary to determine the loss of these elements by comparing their contents in the charge coal and in coke obtained. The present research covered four coke oven batteries differing in age, technology, and technical equipment. By using mercury analyzer MA-2 and the method of ICP MS As, Be, Cd, Co, Hg, Mn, Ni, Se, Sr, Tl, V, and Zn were determined in samples of charge coal and yielded coke. Basing on the analyses results, the release coefficients of selected elements were determined. Their values ranged from 0.5 to 94%. High volatility of cadmium, mercury, and thallium was confirmed. The tests have shown that although the results refer to the selected case studies, it may be concluded that the air purity is affected by controlled emission occurring when coke oven batteries are fired by crude coke oven gas. Fugitive emission of the trace elements investigated, occurring due to coke oven leaks and openings, is small and, is not a real threat to the environment except mercury. PMID:22666104

  7. Trace elements in fish from the Arabian Gulf and the Shatt al-Arab river, Iraq

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abaychi, J.; Al-Saad, H.T.

    1988-02-01

    In the Arabian Gulf region, recently, vast industrial, agricultural, economic and social developments have taken place, in addition to an increase in population. This may enhance the magnitude of environmental pollution year by year. No detailed study has been undertaken to assess the concentrations of trace elements in commercial species of fish from the Arabian Gulf and the Shatt al-Arab River, despite the fact that fish are considered an essential part of the diet in the region. Therefore, an investigation was carried out on the concentration of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in themore » following fish species from the Arabian Gulf: Tylosurus strongylurus, Eleutheoronema tetradactum, Pomadasys arel, Platycephalus indicus, Ilisha elongata, Thryssa hamiltonii, Arius thalassinus, Acanthophagrus luteus, Johnieops sina, Liza dussumeiri, Hilsa ilisha, Nematolosa nasus and Otoliths argenteus, and on species from the Shatt al-Arab River: Mesopotamichthys sharpeyi, Barbus xanthopterus, Barbus scheich, Aspius vorax, Cyprinus carpio, and Barbus grypus. Trace element levels in sediment samples from the area were also determined since sediments can accumulate different elements and may reflect the extent of pollution by these elements.« less

  8. Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Andonovska, Katerina Bačeva

    2017-02-23

    Distributions of a total of 21 elements were monitored in significantly lead-zinc polluted area using moss species (Hypnum cupressiforme and Camptothecium lutescens) used interchangeably, covering a denser sampling network. Interspecies comparison was conducted using Box-Cox transformed values, due to their skewed distribution. The median concentrations of trace elements in the both mosses examined decreased in the following order: Fe>Mn>Zn>Pb>Cu>Ni∼Cr∼As>Co>Cd>Hg. For almost all analyzed elements, H. cupressiforme revealed higher bio-accumulative abilities. For arsenic contents was obtained ER-value in favor of C. lutescens. The ER for the element contents according to the distance from the pollution source in selected areas was significantly enriched for the anthropogenic introduced elements As, Cd, Cu, Pb and Zn. After Box-Cox transformation of the content values, T B was significantly different for As (4.82), Cd (3.84), Cu (2.95), Pb (4.38), and Zn (4.23). Multivariate factor analysis singled out four elemental associations: F1 (Al-Co-Cr-Fe-Li-Ni-V), F2 (Cd-Pb-Zn), F3 (Ca-Mg-Na-P) and F4 (Cu) with a total variance of 89%. Spatial distribution visualized the hazardously higher contents of "hot spots" of Cd > 1.30 mg/kg, Cu > 22 mg/kg, Pb > 130 mg/kg and Zn > 160 mg/kg. Therefore, main approach in moss biomonitoring should be based on data management of the element distribution by reducing the effect of extreme values (considering Box-Cox data transformation); the interspecies variation in sampling media does not deviate in relation to H. cupressiforme vs. C. lutescens.

  9. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants.

    PubMed

    Zajusz-Zubek, Elwira; Radko, Tomasz; Mainka, Anna

    2017-08-01

    Samples of PM1 were collected in the surroundings of coking plants located in southern Poland. Chemical fractionation provided information on the contents of trace elements As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se in all mobile (F1-F3) and not mobile (F4) fractions of PM1 in the vicinity of large sources of emissions related to energochemical processing of coal during the summer. The determined enrichment factors indicate the influence of anthropogenic sources on the concentration of the examined elements contained in PM1 in the areas subjected to investigation. The analysis of health risk for the assumed scenario of inhabitant exposure to the toxic effect of elements, based on the values of the hazard index, revealed that the absorption of the examined elements contained in the most mobile fractions of particulate matter via inhalation by children and adults can be considered potentially harmless to the health of people inhabiting the surroundings of coking plants during the summer (HI < 1). It has been estimated that due to the inhalation exposure to carcinogenic elements, i.e., As, Cd, Co, Cr, Ni and Pb, contained in the most mobile fractions (F1 + F2) of PM1, approximately four adults and one child out of one million people living in the vicinity of the coking plants may develop cancer.

  10. Concentrations of trace elements in Pacific and Atlantic salmon

    NASA Astrophysics Data System (ADS)

    Khristoforova, N. K.; Tsygankov, V. Yu.; Boyarova, M. D.; Lukyanova, O. N.

    2015-09-01

    Concentrations of Hg, As, Cd, Pb, Zn, and Cu were analyzed in the two most abundant species of Pacific salmon, chum and pink salmon, caught in the Kuril Islands at the end of July, 2013. The concentrations of toxic elements (Hg, As, Pb, Cd) in males and females of these species are below the maximum permissible concentrations for seafood. It was found that farmed filleted Atlantic salmon are dominated by Zn and Cu, while muscles of wild salmon are dominated by Pb. Observed differences are obviously related to peculiar environmental geochemical conditions: anthropogenic impact for Atlantic salmon grown in coastal waters and the influence of the natural factors volcanism and upwelling for wild salmon from the Kuril waters.

  11. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruthi, Y. A., E-mail: ymjournal2014@gmail.com; Das, N. Lakshmana, E-mail: nldas9@gmail.com; Ramprasad, S., E-mail: ramprasadsurakala@gmail.com

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders.more » This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk.« less

  12. Chemical speciation of trace metals in the industrial sludge of Dhaka City, Bangladesh.

    PubMed

    Islam, Md Saiful; Al-Mamun, Md Habibullah; Feng, Ye; Tokumura, Masahiro; Masunaga, Shigeki

    2017-07-01

    The objective of this study was to assess total concentration and chemical fractionation of trace metals in the industrial wastewater and sludge collected from seven different types of industries in Dhaka City, Bangladesh. The sludge from industries is either dumped on landfills or reused as secondary resources in order to preserve natural resources. Metals were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The ranges of Cr, Ni, Cu, As, Cd, and Pb in the sludges were 1.4-9,470, 4.8-994, 12.8-444, 2.2-224, 1.9-46.0 and 1.3-87.0 mg/kg, respectively. As a whole, the average concentrations of trace metals in samples were in the decreasing order of Cr > Ni > Cu > As > Pb > Cd. The results of the Community Bureau of Reference (BCR) sequential extraction showed that the studied metals were predominantly associated with the residual fraction followed by the oxidizable fraction. The study revealed that the mobile fractions of trace metals are poorly predictable from the total content, and bioavailability of all fractions of elements tends to decrease.

  13. Trace Elements Contamination and Human Health Risk Assessment in Drinking Water from the Agricultural and Pastoral Areas of Bay County, Xinjiang, China

    PubMed Central

    Turdi, Muyessar; Yang, Linsheng

    2016-01-01

    Tap water samples were collected from 180 families in four agricultural (KYR: Keyir, KRW: Kariwak, YTR: Yatur, DW: Dawanqi) and two pastoral areas (B: Bulong and Y: Yangchang) in Bay County, Xinjiang, China, and levels of seven trace elements (Cd, Cr, As Ni, Pb, Zn, Se) were analyzed using inductively-coupled plasma mass spectrometry (ICP-MS) to assess potential health risks. Remarkable spatial variations of contamination were observed. Overall, the health risk was more severe for carcinogenic versus non-carcinogenic pollutants due to heavy metal. The risk index was greater for children overall (Cr > As > Cd and Zn > Se for carcinogenic and non-carcinogenic elements, respectively). The total risk index was greater in agricultural areas (DW > KYR > YTR > KRW > B > Y). Total risk indices were greater where well water was the source versus fountain water; for the latter, the total health risk index was greater versus glacier water. Main health risk factors were Cr and As in DW, KYR, YTR, KRW, and B, and Zn, Cr, and As in the Y region. Overall, total trace element–induced health risk (including for DW adults) was higher than acceptable (10−6) and lower than priority risk levels (10−4) (KYR, YTR, KRW, Y, and B). For DW children, total health risk reached 1.08 × 10−4, higher than acceptable and priority risk levels (10−4). PMID:27669274

  14. Trace element distribution in the snow cover from an urban area in central Poland.

    PubMed

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2015-05-01

    This work presents the first results from winter field campaigns focusing on trace metals and metalloid chemistry in the snow cover from an urbanized region in central Poland. Samples were collected between January and March 2013 and trace element concentrations were determined using GF-AAS. A large inter-seasonal variability depending on anthropogenic emission, depositional processes, and meteorological conditions was observed. The highest concentration (in μg L(-1)) was reported for Pb (34.90), followed by Ni (31.37), Zn (31.00), Cu (13.71), Cr (2.36), As (1.58), and Cd (0.25). In addition, several major anthropogenic sources were identified based on principal component analysis (PCA), among which the most significant was the activity of industry and coal combustion for residential heating. It was stated that elevated concentrations of some trace metals in snow samples were associated with frequent occurrence of south and southeast advection of highly polluted air masses toward the sampling site, suggesting a large impact of regional urban/industrial pollution plumes.

  15. Mobility of selected trace elements in Mediterranean red soil amended with phosphogypsum: experimental study.

    PubMed

    Kassir, Lina Nafeh; Darwish, Talal; Shaban, Amin; Ouaini, Naim

    2012-07-01

    Soil amendment by phosphogypsum (PG) application becomes of increasing importance in agriculture. This may lead, however, to soil, plant, and groundwater contamination with trace elements (TEs) inherently present in PG. Monitoring of selected TEs (Pb, Zn, Cu, and Cd) distribution and mobility in a Mediterranean red soil profile has been performed in soil parcels applied with PG over a 16-month period. Concentrations were measured in soil and plant samples collected from various depth intervals at different points in time. TEs sequential extraction was performed on soil and PG samples. Results showed soil profile enrichment peaked 5 months after PG application for Cd, and 12 months for Pb, Zn, and Cu. Rainwater, pH, total organic carbon, and cationic exchange capacity were the main controlling factors in TEs accumulation in soils. Cd was transferred to a soil depth of about 20 cm. Zn exhibited mobility towards deeper layers. Pb and Cu were accumulated in around 20-55-cm-deep layers. PG increased the solubility of the studied TEs; PG-applied soils contained TEs bound to exchangeable and acid-soluble fractions in higher percentages than reference soil. Pb, Zn, and Cu were sorbed into mineral soil phases, while Cd was mainly found in the exchangeable (bio-available) form. The order of TEs decreasing mobility was Zn > Cd > Pb > Cu. Roots and leaves of existed plants, Cichorium intybus L., accumulated high concentrations of Cd (1-2.4 mg/kg), exceeding recommended tolerable levels, and thus signifying potential health threats through contaminated crops. It was therefore recommended that PG should be applied in carefully established, monitored, and controlled quantities to agricultural soils.

  16. Mid-twentieth century increases in anthropogenic Pb, Cd and Cu in central Asia set in hemispheric perspective using Tien Shan ice core

    NASA Astrophysics Data System (ADS)

    Grigholm, B.; Mayewski, P. A.; Aizen, V.; Kreutz, K.; Wake, C. P.; Aizen, E.; Kang, S.; Maasch, K. A.; Handley, M. J.; Sneed, S. B.

    2016-04-01

    High-resolution major and trace element (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Li, Mn, Na, Pb, S, Ti, and V) ice core records from Inilchek glacier (5120 m above sea level) on the northwestern margin of the Tibetan Plateau provide the first multi-decadal ice core record spanning the period 1908-1995 AD in central Tien Shan. The trace element records reveal pronounced temporal baseline trends and concentration maxima characteristic of post-1950 anthropogenic emissions. Examination of Pb, Cd and Cu concentrations, along with non-crustal calculation estimates (i.e. excess (ex) and enrichment factor (EF)), reveal that discernable anthropogenic inputs began during the 1950s and rapidly increased to the late-1970s and early 1980s, by factors up to of 5, 6 and 3, respectively, relative to a 1910-1950 means. Pb, Cd and Cu concentrations between the 1950s-1980s are reflective of large-scale Soviet industrial and agricultural development, including the growth of production and/or consumption of the non-ferrous metals, coal and phosphate fertilizers. NOAA HYSPLIT back-trajectory frequency analysis suggests pollutant sources originating primarily from southern Kazakhstan (e.g. Shymkent and Balkhash) and the Fergana Valley (located in Kazakhstan, Uzbekistan and Kyrgyzstan). Inilchek ice core Pb, Cd and Cu reveals declines during the 1980s concurrent with Soviet economic declines, however, due to the rapid industrial and agricultural growth of western China, Pb, Cd and Cu trends increase during the 1990s reflecting a transition from primarily central Asian sources to emission sources from western China (e.g. Xinjiang Province).

  17. Potential contaminants at a dredged spoil placement site, Charles City County, Virginia, as revealed by sequential extraction

    PubMed Central

    Tang, Jianwu; Whittecar, G Richard; Johannesson, Karen H; Daniels, W Lee

    2004-01-01

    Backfills of dredged sediments onto a former sand and gravel mine site in Charles City County, VA may have the potential to contaminate local groundwater. To evaluate the mobility of trace elements and to identify the potential contaminants from the dredged sediments, a sequential extraction scheme was used to partition trace elements associated with the sediments from the local aquifer and the dredged sediments into five fractions: exchangeable, acidic, reducible, oxidizable, and residual phases. Sequential extractions indicate that, for most of the trace elements examined, the residual phases account for the largest proportion of the total concentrations, and their total extractable fractions are mainly from reducible and oxidizable phases. Only Cd, Pb, and Zn have an appreciable extractable proportion from the acidic phase in the filled dredged sediments. Our groundwater monitoring data suggest that the dredged sediments are mainly subject to a decrease in pH and a series of oxidation reactions, when exposed to the atmosphere. Because the trace elements released by carbonate dissolution and the oxidation (e.g., organic matter degradation, iron sulfide and, ammonia oxidation) are subsequently immobilized by sorption to iron, manganese, and aluminum oxides, no potential contaminants to local groundwater are expected by addition of the dredged sediments to this site.

  18. Trace elements in cocoa solids and chocolate: an ICPMS study.

    PubMed

    Yanus, Rinat Levi; Sela, Hagit; Borojovich, Eitan J C; Zakon, Yevgeni; Saphier, Magal; Nikolski, Andrey; Gutflais, Efi; Lorber, Avraham; Karpas, Zeev

    2014-02-01

    The concentrations of eight trace elements: lead (Pb), cadmium (Cd), chromium (Cr), manganese (Mn), cobalt (Co), arsenic (As), bismuth (Bi) and molybdenum (Mo), in chocolate, cocoa beans and products were studied by ICPMS. The study examined chocolate samples from different brands and countries with different concentrations of cocoa solids from each brand. The samples were digested and filtered to remove lipids and indium was used as an internal standard to correct matrix effects. A linear correlation was found between the level of several trace elements in chocolate and the cocoa solids content. Significant levels of Bi and As were found in the cocoa bean shells but not in the cocoa bean and chocolate. This may be attributed to environmental contamination. The presence of other elements was attributed to the manufacturing processes of cocoa and chocolate products. Children, who are big consumers of chocolates, may be at risk of exceeding the daily limit of lead; whereas one 10 g cube of dark chocolate may contain as much as 20% of the daily lead oral limit. Moreover chocolate may not be the only source of lead in their nutrition. For adults there is almost no risk of exceeding daily limits for trace metals ingestion because their digestive absorption of metals is very poor. © 2013 Published by Elsevier B.V.

  19. Benthic foraminifera and trace element distribution: a case-study from the heavily polluted lagoon of Venice (Italy).

    PubMed

    Coccioni, Rodolfo; Frontalini, Fabrizio; Marsili, Andrea; Mana, Davide

    2009-01-01

    Living benthic foraminiferal assemblages were studied in surface samples collected from the lagoon of Venice (Italy) in order to investigate the relationship between these sensitive microorganisms and trace element pollution. Geochemical analysis of sediments shows that the lagoon is affected by trace element pollution (Cd, Cu, Ni, Pb, Zn and Hg) with the highest concentrations in its inner part, which corresponds to the Porto Marghera industrial area. The biocenosis are largely dominated by Ammonia tepida, Haynesina germanica and Cribroelphidium oceanensis and, subordinately, by Aubignyna perlucida, Ammonia parkinsoniana and Bolivina striatula. Biotic and abiotic factors were statistically analyzed with multivariate technique of cluster analysis and principal component analysis. The statistical analysis reveals a strong relationship between trace elements (in particular Mn, Pb and Hg) and the occurrence of abnormalities in foraminiferal tests. Remarkably, greater proportions of abnormal specimens are usually found at stations located close to the heaviest polluted industrial zone of Porto Marghera. This paper shows that benthic foraminifera can be used as useful and relatively speedy and inexpensive bio-indicators in monitoring the health quality of the lagoon of Venice. It also provides a basis for future investigations aimed at unraveling the benthic foraminiferal response to human-induced pollution in marine and transitional marine environments.

  20. Trace elements determination in seawater by ICP-MS with on-line pre-concentration on a Chelex-100 column using a ‘standard’ instrument setup.

    PubMed Central

    Søndergaard, Jens; Asmund, Gert; Larsen, Martin M.

    2015-01-01

    Trace element determination in seawater is analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. A common way to address the challenge is to pre-concentrate the trace elements on a chelating resin, then rinse the matrix elements from the resin and subsequently elute and detect the trace elements using inductively coupled plasma mass spectrometry (ICP-MS). This technique typically involves time-consuming pre-treatment of the samples for ‘off-line’ analyses or complicated sample introduction systems involving several pumps and valves for ‘on-line’ analyses. As an alternative, the following method offers a simple method for ‘on-line’ analyses of seawater by ICP-MS. As opposed to previous methods, excess seawater was pumped through the nebulizer of the ICP-MS during the pre-concentration step but the gas flow was adjusted so that the seawater was pumped out as waste without being sprayed into the instrument. Advantages of the method include: • Simple and convenient analyses of seawater requiring no changes to the ‘standard’ sample introduction system except from a resin-filled micro-column connected to the sample tube. The ‘standard’ sample introduction system refers to that used for routine digest-solution analyses of biota and sediment by ICP-MS using only one peristaltic pump; and • Accurate determination of the elements V, Mn, Co, Ni, Cu, Zn, Cd and Pb in a range of different seawater matrices verified by participation in 6 successive rounds of the international laboratory intercalibration program QUASIMEME. PMID:26258050

  1. Assessment of Trace Element Concentrations in Birds of Prey in Korea.

    PubMed

    Kim, Jungsoo; Oh, Jong-Min

    2016-07-01

    This study presents liver concentrations of trace elements of cinereous vultures (Aegypius monachus), common buzzards (Buteo buteo), common kestrels (Falco tinnunculus), and Eurasian eagle owls (Bubo bubo) collected in Korea from 2007 to 2008. Iron (Fe), manganese (Mn), copper (Cu), lead (Pb), and cadmium (Cd) concentrations in common kestrel juveniles were greater than in other juveniles of birds of prey. Adult cinereous vultures had greater Fe, Pb, and Cd concentrations than in those of other species, but common kestrels had greater Mn and Cu concentrations than in those of other birds of prey. Zinc concentrations in Eurasian eagle owl juveniles and adults were greater than in juveniles and adults of other species, respectively. In common kestrels, Fe, Cu, Pb, and Cd concentrations were significantly greater in adults than in juveniles. In Eurasian eagle owls, only Pb concentrations were greater in adults than in juveniles. Essential elements, such as Fe, Zn, Mn, and Cu concentrations, were within the range of other birds of prey studies. Seventeen individual birds of prey (30 %) were at a level considered Pb exposed (6-30 µg/g dw). This is a greater proportion than reported earlier in herons, egrets, and other birds from Korea. Elevated Pb concentration might be attributed to ingestion of Pb shot and bullet fragments for cinereous vultures and common buzzards, and urbanization for common kestrels. Cadmium concentrations in birds of prey were within the background concentrations (<3 µg/g dw) for wild birds.

  2. Dietary Intakes of Minerals, Essential and Toxic Trace Elements for Adults from Eragrostis tef L.: A Nutritional Assessment.

    PubMed

    Koubová, Eva; Sumczynski, Daniela; Šenkárová, Lenka; Orsavová, Jana; Fišera, Miroslav

    2018-04-12

    This study analysed the contents of thirty-six mineral and trace elements in teff ( Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6-50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements.

  3. Dietary Intakes of Minerals, Essential and Toxic Trace Elements for Adults from Eragrostis tef L.: A Nutritional Assessment

    PubMed Central

    Koubová, Eva; Šenkárová, Lenka

    2018-01-01

    This study analysed the contents of thirty-six mineral and trace elements in teff (Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6–50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements. PMID:29649158

  4. Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden

    NASA Astrophysics Data System (ADS)

    Kelley, Katherine A.; Kingsley, Richard; Schilling, Jean-Guy

    2013-01-01

    The global mid-ocean ridge system is peppered with localities where mantle plumes impinge on oceanic spreading centers. Here, we present new, high resolution and high precision data for 40 trace elements in 573 samples of variably plume-influenced mid-ocean ridge basalts from the Mid-Atlantic ridge, the Easter Microplate and Salas y Gomez seamounts, the Galápagos spreading center, and the Gulf of Aden, in addition to previously unpublished major element and isotopic data for these regions. Included in the data set are the unconventional trace elements Mo, Cd, Sn, Sb, W, and Tl, which are not commonly reported by most geochemical studies. We show variations in the ratios Mo/Ce, Cd/Dy, Sn/Sm, Sb/Ce, W/U, and Rb/Tl, which are expected not to fractionate significantly during melting or crystallization, as a function of proximity to plume-related features on these ridges. The Cd/Dy and Sn/Sm ratios show little variation with plume proximity, although higher Cd/Dy may signal increases in the role of garnet in the mantle source beneath some plumes. Globally, the Rb/Tl ratio closely approximates the La/SmN ratio, and thus provides a sensitive tracer of enriched mantle domains. The W/U ratio is not elevated at plume centers, but we find significant enrichments in W/U, and to a lesser extent the Mo/Ce and Sb/Ce ratios, at mid-ocean ridges proximal to plumes. Such enrichments may provide evidence of far-field entrainment of lower mantle material that has interacted with the core by deeply-rooted, upwelling mantle plumes.

  5. The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice.

    PubMed

    Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav

    2006-01-01

    Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. Copyright 2006 John Wiley & Sons, Ltd.

  6. The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994-2000)

    USGS Publications Warehouse

    Grosbois, C.; Meybeck, Michel; Horowitz, A.; Ficht, A.

    2006-01-01

    Fresh floodplain deposits (FD), from 11 key stations, covering the Seine mainstem and its major tributaries (Yonne, Marne and Oise Rivers), were sampled from 1994 to 2000. Background levels for Cd, Cu, Hg, Pb, and Zn were established using prehistoric FD and actual bed sediments collected in small forested sub-basins in the most upstream part of the basin. Throughout the Seine River Basin, FD contain elevated concentrations of Cd, Cu, Hg, Pb and Zn compared to local background values (by factors > twofold). In the Seine River Basin, trace element concentrations display substantial downstream increases as a result of increasing population densities, particularly from Greater Paris (10 million inhabitants), and reach their maxima at the river mouth (Poses). These elevated levels make the Seine one of the most heavily impacted rivers in the world. On the other hand, floodplain-associated trace element levels have declined over the past 7 years. This mirrors results from contemporaneous suspended sediment surveys at the river mouth for the 1984-1999 period. Most of these temporal declines appear to reflect reductions in industrial and domestic solid wastes discharged from the main Parisian sewage plant (Seine Aval). ?? 2005 Elsevier B.V. All rights reserved.

  7. The Regional Geochemistry of Soils and Willow in a Metamorphic Bedrock Terrain, Seward Peninsula, Alaska, 2005, and Its Possible Relation to Moose

    USGS Publications Warehouse

    Gough, L.P.; Lamothe, P.J.; Sanzolone, R.F.; Drew, L.J.; Maier, J.A.K.

    2009-01-01

    In 2005 willow leaves (all variants of Salix pulchra) and A-, B-, and C-horizon soils were sampled at 10 sites along a transect near the Quarry prospect and 11 sites along a transect near the Big Hurrah mine for the purpose of defining the spatial variability of elements and the regional geochemistry of willow and soil over Paleozoic metamorphic rocks potentially high in cadmium (Cd). Willow, a favorite browse of moose (Alces alces), has been shown by various investigators to bioaccumulate Cd. Moose in this region show clinical signs of tooth wear and breakage and are declining in population for unknown reasons. A trace element imbalance in their diet has been proposed as a possible cause for these observations. Cadmium, in high enough concentrations, is one dietary trace element that potentially could produce such symptoms. We report both the summary statistics for elements in willow and soils and the results of an unbalanced, one-way, hierarchical analysis of variance (ANOVA) (general linear model, GLM), which was constructed to measure the geochemical variability in willow (and soil) at various distance scales across the Paleozoic geologic unit high in bioavailable Cd. All of the geochemical data are presented in the Appendices. The two locations are separated by approximately 80 kilometers (km); sites within a location are approximately 0.5 kilometers apart. Duplicate soil samples collected within a site were separated by 0.05 km or slightly less. Results of the GLM are element specific and range from having very little regional variability to having most of their variance at the top (greater than 80 km) level. For willow, a significant proportion of the total variance occurred at the 'between locations' level for ash yield, barium (Ba), Cd, calcium (Ca), cobalt (Co), nickel (Ni), and zinc (Zn). For soils, concentrations of elements in all three soil horizons were similar in that most of the variability in the geochemical data occurred at the 'between locations' and the 'among sites at a location' GLM levels. Most of the variation in concentrations of Cd in soils occurred among sites (separated by 0.5 km) at both locations across all soil horizons and not between the two locations. Cd distribution across the landscape may be due to variation in soil mineralogy, especially the amount of graphite in soil, which has been associated with Cd. Although samples were collected on the same geologic unit, the geochemistry of soils was demonstrated to be uniform with depth but highly variable between locations separated by 80 km. This exploratory study establishes the presence of elevated levels of Cd in willow growing over Paleozoic bedrock in the Seward Peninsula. Further work is needed to definitively link these high Cd levels in willow browse to the health of moose.

  8. Atmospheric deposition of trace elements at urban and forest sites in central Poland - Insight into seasonal variability and sources

    NASA Astrophysics Data System (ADS)

    Siudek, Patrycja; Frankowski, Marcin

    2017-12-01

    This paper includes the results of chemical composition of bulk deposition samples collected simultaneously at urban (Poznań city) and forest (Jeziory) sites in central Poland, between April 2013 and October 2014. Rainwater samples were analyzed for trace elements (As, Zn, Ni, Pb, Cu, Cr, Cd) and physicochemical parameters. Overall, three metals, i.e. Zn, Pb and Cu were the most abundant anthropogenic constituents of rainwater samples from both locations. In Poznań city, the rainwater concentrations of trace elements did not differ significantly between spring and summer. However, they were elevated and more variable during the cold season (fall and winter), suggesting strong contribution from local high-temperature processes related to coal combustion (commercial and residential sector). In contrast to the urban site, relatively low variability in concentrations was found for Cu, Ni, Zn at the forest site, where direct impact of emission from vehicle traffic and coal-fired combustion (power plants) was much lower. The bulk deposition fluxes of Ni, As, Pb and Zn at this site exhibited a clear trend, with higher values during the cold season (fall and winter) than in spring and summer. At the urban site, the sums of total bulk deposition fluxes of Zn, Cu, Pb, Ni, As, Cr, Cd were as follows: 8460.4, 4209.2, 2247.4, 1882.1, 606.6, 281.6 and 31.4 μg m- 2. In addition, during the winter season, a significantly higher deposition fluxes of Cu and Zn were observed for rain (on average 103.8 and 129.4 μg m- 2, respectively) as compared to snow (19.7 μg Cu m- 2 and 54.1 μg Zn m- 2). This suggests that different deposition pattern of trace elements for rain, mixed and snow was probably the effect of several factors: precipitation type, changes in emission and favorable meteorological situation during rain events.

  9. Determination of low concentrations of iron, arsenic, selenium, cadmium, and other trace elements in natural samples using an octopole collision/reaction cell equipped quadrupole-inductively coupled plasma mass spectrometer.

    PubMed

    Dial, Angela R; Misra, Sambuddha; Landing, William M

    2015-04-30

    Accurate determination of trace metals has many applications in environmental and life sciences, such as constraining the cycling of essential micronutrients in biological production and employing trace metals as tracers for anthropogenic pollution. Analysis of elements such as Fe, As, Se, and Cd is challenged by the formation of polyatomic mass spectrometric interferences, which are overcome in this study. We utilized an Octopole Collision/Reaction Cell (CRC)-equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer for the rapid analysis of small volume samples (~250 μL) in a variety of matrices containing HNO3 and/or HCl. Efficient elimination of polyatomic interferences was demonstrated by the use of the CRC in Reaction Mode (RM; H2 gas) and in Collision-Reaction Mode (CRM; H2 and He gas), in addition to hot plasma (RF power 1500 W) and cool plasma (600 W) conditions. It was found that cool plasma conditions with RM achieved the greatest signal sensitivity while maintaining low detection limits (i.e. (56) Fe in 0.44 M HNO3 has a sensitivity of 160,000 counts per second (cps)-per-1 µg L(-1) and a limit of detection (LoD) of 0.86 ng L(-1) ). The average external precision was ≤ ~10% for minor (≤10 µg L(-1) ) elements measured in a 1:100 dilution of NIST 1643e and for iron in rainwater samples under all instrumental operating conditions. An improved method has been demonstrated for the rapid multi-element analysis of trace metals that are challenged by polyatomic mass spectrometric interferences, with a focus on (56) Fe, (75) As, (78) Se and (111) Cd. This method can contribute to aqueous environmental geochemistry and chemical oceanography, as well as other fields such as forensic chemistry, agriculture, food chemistry, and pharmaceutical sciences. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Report of the CCQM-K124: trace elements and chromium speciation in drinking water—part A: trace elements in drinking water, part B: chromium speciation in drinking water

    NASA Astrophysics Data System (ADS)

    Kuroiwa, T.; Fung, W. H.; Zhu, Y.; Inagaki, K.; Sin, D. W. M.; Chu, H. S.; Saxby, D.; Merrick, J.; White, I.; Araujo, T.; Almeida, M. D.; Rodrigues, J.; Yang, L.; Pihillagawa, I. G.; Mester, Z.; Riquelme, S. S.; Pérez, L.; Barriga, R.; Núñez, C.; Chao, J.; Wang, J.; Wang, Q.; Shi, N.; Lu, H.; Song, P.; Nüykki, T.; Aho, T. Sara; Labarraque, G.; Oster, C.; Rienitz, O.; Jührling, R.; Pape, C.; Lampi, E.; Kakoulides, E.; Ketrin, R.; Mardika, E.; Komalasari, I.; Okumu, T. O.; Kang'iri, J. N.; Yim, Y. H.; Heo, S. W.; Lee, K. S.; Suh, J. K.; Lim, Y.; Manzano, J. V. L.; Uribe, C.; Carrasco, E.; Tayag, E. D.; Dablio, A. R. C.; Encarnacion, E. K. P.; Damian, R. L.; Konopelko, L.; Krylov, A.; Vadim, S.; Shin, R.; Peng, S. L.; Juan, W.; Chang, X.; Dewi, F.; Horvat, M.; Zuliani, T.; Taebunpakul, S.; Yafa, C.; Kaewkhomdee, N.; Thiengmanee, U.; Klich, H.; Can, S. Z.; Ari, B.; Cankur, O.; Goenaga Infante, H.; Ferreira, E.; Pérez, R.; E Long, S.; Kassim, B. L.; E Murphy, K.; Molloy, J. L.; Butler, T. A.

    2017-01-01

    CCQM-K124 was organized by the Inorganic Analysis Working Group (IAWG) of CCQM to assess and document the capabilities of the national metrology institutes (NMIs) or the designated institutes (DIs) to measure the mass fractions of trace elements (As, B, Cd, Ca, Cr, Hg and Mo) and hexavalent chromium (Cr(VI)) in drinking water. The National Metrology Institute of Japan (NMIJ) and the Government Laboratory, Hong Kong SAR (GLHK) acted as the coordinating laboratories. This comparison is divided into two parts. Part A was organized by the NMIJ and the trace elements were the analytes, and Part B was organised by the GLHK and Cr(VI) was the analyte. In Part A, results were submitted by 14 NMIs and nine DIs. The participants used different measurement methods, though most of them used direct measurement using inductively coupled plasma-optical emission spectrometry (ICP-OES), inductively coupled plasma-mass spectrometry (ICP-MS), and isotope dilution technique with ICP-MS. The results of As, B, Cd, Ca and Cr show good agreement with the exception of some outliers. Concerning Hg, instability was observed when the sample was stored in the light. And some participants observed instability of Mo. Therefore, it was agreed to abandon the Hg and Mo analysis as this sample was not satisfactory for KC. In Part B, results were submitted by six NMIs and one DI. The methods applied were direct measurement using 1,5-diphenylcarbazide (DPC) derivatisation UV-visible spectrophotometry, standard addition using ion chromatography-UV-visible spectrophotometry or HPLC—inductively coupled plasma-mass spectrometry (ICP-MS) and isotope dilution technique with ion chromatography—ICP-MS. The results of all participants show good agreement. Accounting for relative expanded uncertainty, comparability of measurement results for each of As, B, Cd, Ca, Cr and Cr(VI) was successfully demonstrated by the participating NMIs or DIs. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  11. Trace Element Composition of Phytoplankton Along the US GEOTRACES Pacific Zonal Transect: Comparing Single-Cell SXRF Quotas, Chemical Leaching, and Bulk Particle Digestion

    NASA Astrophysics Data System (ADS)

    Ohnemus, D.; Rauschenberg, S.; Twining, B. S.

    2014-12-01

    The elemental stoichiometries of phytoplankton are critical ecological and chemical parameters due to biological participation in, if not control over, the marine cycles of many GEOTRACES trace elements and isotopes (TEI). Elemental stoichiometries in euphotic zone protists can be used as end-members in biogeochemical models for bioactive elements (e.g. Fe, Si) and can provide insight into relationships found in the deep ocean and sediments (e.g. Cd:P, Zn:Si) due to broad and organism-specific geochemical links. Though sub-euphotic zone (e.g. hydrothermal, margin-sourced lateral) inputs and processes are also interesting aspects of these cycles, biological incorporation of TEIs in the euphotic zone is, fundamentally, where "the rubber meets the road." Using the 2013 Pacific GEOTRACES super stations and Peruvian coastal transect as ecological waypoints, we present and compare results from three methods for studying trace elemental composition of phytoplankton: single-cell synchrotron x-ray fluorescence (SXRF); weak chemical leaching (acetic acid/hydroxylamine); and total chemical digestion (HNO3/HCl/HF). This combination of techniques allows examination of taxon-specific trends in biotic stoichiometry across the Eastern Pacific and also provides traditional bulk chemical metrics for both biotic and bulk shallow particulate composition.

  12. Comparison of major and trace element concentrations in 16 varieties of Cuban mango stem bark (Mangifera indica L.).

    PubMed

    Sellés, Alberto J Núñez; Rodríguez, Maria D Durruthy; Balseiro, Eduardo Rodríguez; Gonzalez, Luis Nieto; Nicolais, Valeria; Rastrelli, Luca

    2007-03-21

    An aqueous decoction of mango (Mangifera indica L.) stem bark (MSB) has been developed in Cuba on an industrial scale to be used as a nutritional supplement, cosmetic, and phytomedicine, with antioxidant, anti-inflammatory, analgesic, and immunomodulatory properties. The concentration of major and trace elements was determined for 16 varieties of MSB belonging to two cultivars and grown in Cuba in the same soil (red ferralytic). Plants were classified into two groups, according to the tree age (12 and 26 year olds) and were analyzed for As, Ca, Cd, Cu, Fe, Hg, K, Mg, Pb, Se, and Zn content by means of ICP-AES technique. Experimental data were processed by ANOVA and principal component analysis in terms of elements, variety, and plant age, to choose the most adequate varieties for industrial purposes.

  13. Critical elements in sediment-hosted deposits (clastic-dominated Zn-Pb-Ag, Mississippi Valley-type Zn-Pb, sedimentary rock-hosted Stratiform Cu, and carbonate-hosted Polymetallic Deposits): A review: Chapter 12

    USGS Publications Warehouse

    Marsh, Erin; Hitzman, Murray W.; Leach, David L.

    2016-01-01

    Some sediment-hosted base metal deposits, specifically the clastic-dominated (CD) Zn-Pb deposits, carbonate-hosted Mississippi Valley-type (MVT) deposits, sedimentary-rock hosted stratiform copper deposits, and carbonate-hosted polymetallic (“Kipushi type”) deposits, are or have been important sources of critical elements including Co, Ga, Ge, and Re. The generally poor data concerning trace element concentrations in these types of sediment-hosted ores suggest that there may be economically important concentrations of critical elements yet to be recognized.

  14. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils.

    PubMed

    Rueda-Holgado, F; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2016-02-01

    Fractionation of elemental contents in atmospheric samples is useful to evaluate pollution levels for risk assessment and pollution sources assignment. We present here the main results of long-term characterization of atmospheric deposition by using a recently developed atmospheric elemental fractionation sampler (AEFS) for major and trace elements monitoring around an important industrial complex located in Puchuncaví region (Chile). Atmospheric deposition samples were collected during two sampling campaigns (2010 and 2011) at four sampling locations: La Greda (LG), Los Maitenes (LM), Puchuncaví (PU) and Valle Alegre (VA). Sample digestion and ICP-MS gave elements deposition values (Al, As, Ba, Cd, Co, Cu, Fe, K, Mn, Pb, Sb, Ti, V and Zn) in the insoluble fraction of the total atmospheric deposition. Results showed that LG location, the closest location to the industrial complex, was the more polluted sampling site having the highest values for the analyzed elements. PU and LM were the next more polluted and, finally, the lowest elements concentrations were registered at VA. The application of Principal Component Analysis and Cluster Analysis identified industrial, traffic and mineral-crustal factors. We found critical loads exceedances for Pb at all sampling locations in the area affected by the industrial emissions, more significant in LG close to the industrial complex, with a trend to decrease in 2011, whereas no exceedances due to atmospheric deposition were detected for Cd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Determination of free amino acids and 18 elements in freeze-dried strawberry and blueberry fruit using an Amino Acid Analyzer and ICP-MS with micro-wave digestion.

    PubMed

    Zhang, Hua; Wang, Zhen-Yu; Yang, Xin; Zhao, Hai-Tian; Zhang, Ying-Chun; Dong, Ai-Jun; Jing, Jing; Wang, Jing

    2014-03-15

    The objective of this study was to investigate the level of 18 trace elements of two freeze-dried samples from the Blueberry (Vaccinium corymbosum) and the Strawberry (Fragaria × Ananassa). The total free amino acid composition in the blueberry and strawberry was determined by an Amino Acid Analyzer. Eleven free amino acids were found in both berries. The trace elements in each dried fruit sample were determined by ICP-MS with microwave digestion. The linearity range of the standard curves was 0-1250.0 μg L(-1) (Mg, P, K, Ca),while in all cases, except for B, Na, Al, Cr, Mn, Fe, Ni, Cu, Zn, Se, Cd, Pb, Ge and As, which was 125.0 μg mL(-1), all related coefficients were above 0.9999; recovery was in the range of 79.0-106.8%. Minor concentrations of nutritional elements were found in each freeze-dried berry. In sum, the toxic trace element analysis found the content of toxic trace elements in each freeze-dried berry sample was safe for human consumption and that the overall quality of the blueberry surpassed that of the strawberry. The results certify that the two freeze-dried berries have potential for human consumption in value-added products and have a certain theoretical and practical significance. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Coal fly ash basins as an attractive nuisance to birds: parental provisioning exposes nestlings to harmful trace elements.

    PubMed

    Bryan, A L; Hopkins, W A; Parikh, J H; Jackson, B P; Unrine, J M

    2012-02-01

    Birds attracted to nest around coal ash settling basins may expose their young to contaminants by provisioning them with contaminated food. Diet and tissues of Common Grackle (Quiscalus quiscala) nestlings were analyzed for trace elements to determine if nestlings were accumulating elements via dietary exposure and if feather growth limits elemental accumulation in other tissues. Arsenic, cadmium, and selenium concentrations in ash basin diets were 5× higher than reference diets. Arsenic, cadmium, and selenium concentrations were elevated in feather, liver, and carcass, but only liver Se concentrations approached levels of concern. Approximately 15% of the total body burden of Se, As, and Cd was sequestered in feathers of older (>5 days) nestlings, whereas only 1% of the total body burden of Sr was sequestered in feathers. Feather concentrations of only three elements (As, Se, and Sr) were correlated with liver concentrations, indicating their value as non-lethal indicators of exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Trace metal fluxes to ferromanganese nodules from the western Baltic Sea as a record for long-term environmental changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlawatsch, S.; Garbe-Schonberg, C.D.; Lechtenberg, F.

    Trace element profiles in ferromanganese nodules from the western Baltic Sea were analyzed with laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) and synchrotron-based micro-X-ray radiation techniques (fluorescence: mSXRF, and diffraction: mXRD) at high spatial resolution in growth direction. Of the trace elements studied (Zn, Cu, Cd, Ni, Co, Mo, Ba), Zn showed the most significant enrichment, with values in the outermost surface layers of up to six-fold higher than those found in older core parts. The high-resolution Zn profiles provide the necessary temporal resolution for a dating method analogous to dendrochronology. Profiles in various samples collected during two decadesmore » were matched and the overlapping sections used for estimation of the accretion rates. Assuming a continuous accretion of these relatively fast growing nodules (on average 20 mm a-1) over the last century, the Zn enrichment was thus assessed to have commenced around 1860/70 in nodules from the Kiel Bight and in 1880/90 from Mecklenburg Bight, reflecting the enhanced heavy metal emissions with rising industrialization in Europe. Apart from the obvious success with Zn, only As and Co show significant but only 1.5-fold enrichments in the most recent growth layers of the nodules. Other anthropogenic trace metals like Cu and Cd are not at all enriched, which, together with the distinct early-diagenetic Fe/Mn banding, weakens the potential of the nodules for retrospective monitoring.« less

  18. Environmental impact assessment of radionuclides and trace elements at the Kurday U mining site, Kazakhstan.

    PubMed

    Salbu, B; Burkitbaev, M; Strømman, G; Shishkov, I; Kayukov, P; Uralbekov, B; Rosseland, B O

    2013-09-01

    The Kurday uranium mining site in Kazakhstan operated from 1954 to 1965 as part of the USSR nuclear weapon programme. To assess the environmental impact of radionuclides and trace elements associated with the Kurday mining site, field expeditions were performed in 2006. In addition to in situ gamma and (220)Rn dose rate measurements, sampling included at site fractionation of water as well as sampling of water, fish, sediment, soils and vegetation. The concentrations of U and associated trace metals were enriched in the Pit Lake and in the artesian water (U exceeding the WHO guideline value for drinking water), and decreased downstream from the mining area. Uranium, As, Mo and Ni were predominantly present as mobile low molecular mass species in waters, while a significant proportion of Cr, Mn and Fe were associated with colloids and particles. Due to oxidation of divalent iron in the artesian ground water upon contact with air, Fe served as scavenger for other elements, and peak concentrations of U-, Ra-isotopes, As and Mn were seen. Most radionuclides and trace elements were contained in minerals in soils and sediments, and good correlations were obtained between U and As, Cd, Mo and (226)Ra. Based on sequential extractions, a significant fraction of U, Pb and Cd could be considered mobile. Radioactive particles carrying significant amount of trace metals may represent a hazard during strong wind events. The transfer of radionuclides and metals from soils or sediments to water was in general low. The Kd levels varied with the element in question, ranging from 0.5 to 3 × 10(2) L/kg d.w. for (238)U being relatively mobile, 10(3) for (226)Ra, As, Cd, Ni, to 10(4) L/kg d.w. for Cu, Cr and Pb being rather inert The transfer of radionuclides and metals from soils to vegetation (TF) was low, while higher if the transfer to vegetation, especially underwater mosses, occurred via water (e.g., BCF 37 L/kg w.w. for (238)U and 3 × 10(3) L/kg w.w. for (226)Ra). The transfer of Cd, Pb and As from water to fish liver (BCF) was rather high, showing BCFs in the range of 10(2)-10(3) L/kg w.w., and may, if eaten, represent a health risk. Furthermore, the high Hg level in fish filet reaching 0.3 mg/kg w.w. muscle and the tendency of biomagnification call for dietary restrictions. Total gamma and Rn dose rate to man amounted to about 6 mSv/y, while the highest calculated dose rate for non-human species based on the ERICA Assessment Tool were obtained in aquatic plants, with calculated mean doses of 700 μGy/hr, mostly due to the U exposure. Overall, it is concluded that measures such as restricted access to the Pit Lake as well as dietary restrictions with respect to drinking water and intake of fish should be taken to reduce the environmental risk to man and biota. Copyright © 2012. Published by Elsevier Ltd.

  19. Trace metal enrichment and organic matter sources in the surface sediments of Arabian Sea along southwest India (Kerala coast).

    PubMed

    Sreekanth, Athira; Mrudulrag, S K; Cheriyan, Eldhose; Sujatha, C H

    2015-12-30

    The geochemical distribution and enrichment of trace metals (Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn) were determined in the surface sediments of Arabian Sea, along southwest India, Kerala coast. The results of geochemical indices indicated that surficial sediments of five transects are uncontaminated with respect to Mn, Zn and Cu, uncontaminated to moderately contaminated with Co and Ni, and moderately to strongly contaminated with Pb. The deposition of trace elements exhibited three different patterns i) Cd and Zn enhanced with settling biodetritus from the upwelled waters, ii) Pb, Co and Ni show higher enrichment, evidenced by the association through adsorption of iron-manganese nodules onto clay minerals and iii) Cu enrichment observed close to major urban sectors, initiated by the precipitation as Cu sulfides. Correlation, principal component analysis (PCA) and cluster analysis (CA) were used to confirm the origin information of metals and the nature of organic matter composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The effect of acidified sample storage time on the determination of trace element concentration in ice cores by ICP-SFMS

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.

    2012-12-01

    Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.

  1. Phytoextraction of toxic trace elements by Sorghum bicolor inoculated with Streptomyces pactum (Act12) in contaminated soils.

    PubMed

    Ali, Amjad; Guo, Di; Mahar, Amanullah; Wang, Ping; Ma, Fang; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2017-05-01

    The increasing industrial, mining and agricultural activities have intensified the release of potential toxic trace elements (PTEs), which are of great concern to human health and environment. The alarming increase in PTEs concentration, stress the need for biotechnological remediation approaches. In order to assist phytoextraction of PTEs, different combinations of Streptomyces pactum (Act12) with biochar were applied to mining and industrial polluted soils of Shaanxi and Hunan Provinces of China, respectively. Act12 affected soil physico-chemical properties in both soils. Bioavailable Zn and Pb increased due to microbial activities, while Cd decreased by adsorption on biochar surface. Phytoextraction of Zn and Pb occurred in TG and CZ soil, while Cd uptake decreased in iron rich CZ soil by conflicting effect of siderophores. Cd in sorghum shoot was below detection level, but uptake increased in the roots due to minimum available fraction in TG soil. Biochar reduced the shoot and root uptake of Cd. Sorghum shoot, root dry weight and chlorophyll significantly increased after Act12 and biochar application. β-glucosidase, alkaline phosphatase and urease activities were significantly enhanced by Act12. Antioxidant enzymatic activities (POD, PAL and PPO) and lipid peroxidation (MDA) were decreased after the application of Act12 and biochar by reduced PTEs stress. Act12 and biochar can be used for different crops to enumerate the transfer rate of PTEs into the food chain. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Trace element geochemistry and surface water chemistry of the Bon Air coal, Franklin County, Cumberland Plateau, southeast Tennessee

    USGS Publications Warehouse

    Shaver, S.A.; Hower, J.C.; Eble, C.F.; McLamb, E.D.; Kuers, K.

    2006-01-01

    Mean contents of trace elements and ash in channel, bench-column, and dump samples of the abandoned Bon Air coal (Lower Pennsylvanian) in Franklin County, Tennessee are similar to Appalachian COALQUAL mean values, but are slightly lower for As, Fe, Hg, Mn, Na, Th, and U, and slightly higher for ash, Be, Cd, Co, Cr, REEs, Sr, and V, at the 95% confidence level. Compared to channel samples, dump sample means are slightly lower in chalcophile elements (As, Cu, Fe, Ni, Pb, S, Sb, and V) and slightly higher in clay or heavy-mineral elements (Al, K, Mn, REEs, Th, Ti, U, and Y), but at the 95% confidence level, only As and Fe are different. Consistent abundances of clay or heavy-mineral elements in low-Br, high-S, high-ash benches that are relatively enriched in quartz and mire-to-levee species like Paralycopodites suggest trace elements are largely fluvial in origin. Factor analysis loadings and correlation coefficients between elements suggest that clays host most Al, Cr, K, Ti, and Th, significant Mn and V, and some Sc, U, Ba, and Ni. Heavy accessory minerals likely house most REEs and Y, lesser Sc, U, and Th, and minor Cr, Ni, and Ti. Pyrite appears to host As, some V and Ni, and perhaps some Cu, but Cu probably exists largely as chalcopyrite. Data suggest that organic debris houses most Be and some Ni and U, and that Pb and Sb occur as Pb-Sb sulfosalt(s) within organic matrix. Most Hg, and some Mn and Y, appear to be hosted by calcite, suggesting potential Hg remobilization from original pyrite, and Hg sorption by calcite, which may be important processes in abandoned coals. Most Co, Zn, Mo, and Cd, significant V and Ni, and some Mn probably occur in non-pyritic sulfides; Ba, Sr, and P are largely in crandallite-group phosphates. Selenium does not show organic or "clausthalite" affinities, but Se occurrence is otherwise unclear. Barium, Mn, Ni, Sc, U, and V, with strongly divided statistical affinities, likely occur subequally in multiple modes. For study area surface waters, highest levels of most trace elements occur in mine-adit or mine-dump drainage. Effluent flow rates strongly affect both acidity and trace element levels. Adit drainages where flow is only a trickle have the most acidic waters (pH 3.78-4.80) and highest trace element levels (up to two orders of magnitude higher than in non-mine site waters). Nonetheless, nearly all surface waters have low absolute concentrations of trace elements of environmental concern, and all waters sampled meet U.S. EPA primary drinking water standards and aquatic life criteria for all elements analyzed. Secondary drinking water standards are also met for all parameters except Al, pH, Fe, and Mn, but even in extreme cases (mine waters with pH as low as 3.78 and up to 1243 ppb Al, 6280 ppb Fe, and 721 ppb Mn, and non-mine dam-outflow waters with up to 18,400 ppb Fe and 1540 ppb Mn) downslope attenuation is apparently rapid, as down-drainage plateau-base streams show background levels for all these parameters. ?? 2005 Elsevier B.V. All rights reserved.

  3. Trace metals in Bermuda rainwater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jickells, T.D.; Knap, A.H.; Church, T.M.

    1984-02-20

    The concentration of Cd, Cu, Fe, Mn, Ni, Pb, and Zn have been measured in Bermuda rainwater. Factor analysis indicates that Fe, Mn, and Pb have similar to acidic components derived from North America. The other metals all behave simiarly but differently to the acides. Sea salt, even after allowances for fractionation, apparently contributes minor amounts of Cu, Pb, and Zn and uncertain amounts of Fe, Mn, and Cd to Atlantic Ocean precipitation. Wash out ratios, calculated from this data along with earlier measurements of atmospheric trace metal concentration on Bermuda, are of the same order as those reported frommore » other remote ocean areas. The wet depositional fluxes of Cu, Ni, Pb, and Zn to the western Atlantic Ocean are significant compared to measured oceanic flux rates. However, the wet depositional fluxes of Fe and Mn to this area are relatively small, suggesting additional inputs, while an excess wet depositional flux of Cd suggests large-scale atmospheric recycling of this element.« less

  4. Distribution of Trace Metals in a Tanzanian Andosol: A Combined Bulk and Leach Study

    NASA Astrophysics Data System (ADS)

    Little, M. G.

    2005-12-01

    Here is presented data from a sequential extraction scheme based on the Bureau Commun de Reference (BCR) applied to an andosol from Mt. Meru in northern Tanzania. This is a study into the origins, fractionation, and fate of 'potentially toxic elements' (PTE) and other trace elements. The elemental composition of four extracts, water soluble (WAT), carbonate and exchangeable (CARB), reducible oxides (OX), and organic (ORG), and the bulk soil were determined via ICP-MS and corrected for loss on ignition. We calculated the net elemental mass change using Zr and Hf as immobile elements. This calculated mass change was compared to the sum of all four leaches. Co, Mg, Ni, Zn, Cd, Tl are the only elements that show a positive correlation between the calculated net change based on Zr/Hf and the sum of all four leaches. Of these elements, Zn shows its greatest bulk enrichment at the surface and declines with depth. Conversely, Tl is enriched throughout the soil column, but increases in concentration in both the bulk and CARB fraction with depth. The other elements, Co, Ni, and Cd, are most enriched in the 80-120cm depth range where P and Fe are at their highest concentrations. These observations suggest that additional Co, Mg, Ni, Zn, Cd, and Tl were incorporated into the soil after initial weathering of the bedrock protolith; however, these elements redistributed themselves non-uniformly throughout the soil column. Sc and the REE's show increases in the CARB fraction with depth and Sc, Co, and the REE's show a clear increase in the OX fractions with depth. As much as 25% of the REE's and Co below 120 cm is in the OX leach. Additionally, Sr/Ca ratios in the CARB leach suggest that the source material for the carbonate soil fraction is the bedrock above 140cm and a different, high Sr/Ca source below 140 cm. Therefore, it is likely that exogenous material was added throughout the soil column, but from different sources above and below 120-140 cm depth.

  5. Distribution and relationships of trace metals in the isopod Saduria entomon and adjacent bottom sediments in the southern Baltic.

    PubMed

    Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan

    2009-10-01

    The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.

  6. Seasonal study of concentration of heavy metals in waters from lower São Francisco River basin, Brazil.

    PubMed

    Souza, A M; Salviano, A M; Melo, J F B; Felix, W P; Belém, C S; Ramos, P N

    2016-01-01

    In this study we determined the concentration of metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the water lower São Francisco River basin, to evaluate the influence of urbanization and industrialization on environmental changes in the water resource. All samples were analyzed using the IUPAC adapted method and processed in an atomic absorption spectrophotometer. The sampling stations located near the industrial areas were influenced by industrialization because they presented higher concentrations of Cd, Cr, Ni and Cu. The other sampled locations showed changes with regard the trace elements probably originating in the soil, like Fe, Zn and Pb. There was a gradual increase in the concentrations of metals, in general, in the period of highest rainfall of the hydrographic network. Overall, except for Zn and Mn, the trace elements exceeded the maximum allowed value established by national legislation (CONAMA). Lower São Francisco River basin has suffered interference from urbanization and industrialization, so awareness programs should be developed so as to control and lessen future problems.

  7. Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system

    NASA Astrophysics Data System (ADS)

    Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.

    2012-12-01

    Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic fractions of suspended sediments. Copper is distributed in all but the carbonate fraction of suspended sediments. Vanadium was bound primarily to the oxide and residual fractions with Si, which is probably found as opal-α. In contrast, biofilm sediments had the highest concentrations of Fe, Si, Cd, Al, Zn, Ag, and Ni. Trace metals were sequestered mainly in the organic fraction in decreasing concentrations of: Cu

  8. Trace elements release from volcanic ash to seawater. Natural concentrations in Central Mediterranean sea

    NASA Astrophysics Data System (ADS)

    Randazzo, L. A.; Censi, P.; Saiano, F.; Zuddas, P.; Aricò, P.; Mazzola, S.

    2009-04-01

    Distributions and concentrations of many minor and trace elements in epicontinental basins, as Mediterranean Sea, are mainly driven to atmospheric fallout from surroundings. This mechanism supplies an estimated yearly flux of about 1000 kg km-2 of terrigenous matter of different nature on the whole Mediterranean basin. Dissolution of these materials and processes occurring at solid-liquid interface along the water column drive the distributions of many trace elements as V, Cr, Mn, Co, Cu, and Pb with contents ranging from pmol l-1 (Co, Cd, Pb) to nmol l-1 scale in Mediterranean seawater, with some local differences in the basin. The unwinding of an oceanographic cruise in the coastal waters of Ionian Sea during the Etna's eruptive activity in summer 2001 led to the almost unique chance to test the effects of large delivery of volcanic ash to a coastal sea water system through the analyses of distribution of selected trace elements along several seawater columns. The collection of these waters and their analyses about V, Cr, Mn, Co, Cu, and Pb contents evidenced trace element concentrations were always higher (about 1 order of magnitude at least) than those measured concentrations in the recent past in Mediterranean seawater, apart from Pb. Progressive increase of concentrations of some elements with depth, sometimes changing in a "conservative" behaviour without any clear reason and the observed higher concentrations required an investigation about interaction processes occurring at solid-liquid interface between volcanic ash and seawater along water columns. This investigation involving kinetic evaluation of trace element leaching to seawater, was carried out during a 6 months time period under laboratory conditions. X-ray investigations, SEM-EDS observations and analyses on freshly-erupted volcanic ash evidenced formation of alteration clay minerals onto glass fraction surfaces. Chemical analyses carried out on coexisting liquid phase demonstrated that trace element leaching occurs through a first quick followed by a slow second step that attaints to an apparent equilibrium after 6 months. Amplitude of kinetic rate constant measured for SiO2 release during the first step and behaviour of Ti/Si and Cr/Si rations in primary volcanic minerals, glass fraction and leaching solutions during the first 1 month stage of the experimental interaction allowed to demonstrate that trace element release mainly occurs from glassy materials and Ti-rich magnetite.

  9. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France).

    PubMed

    Foti, Ludovic; Dubs, Florence; Gignoux, Jacques; Lata, Jean-Christophe; Lerch, Thomas Z; Mathieu, Jérôme; Nold, François; Nunan, Naoise; Raynaud, Xavier; Abbadie, Luc; Barot, Sébastien

    2017-11-15

    The concentration, degree of contamination and pollution of 7 trace elements (TEs) along an urban pressure gradient were measured in 180 lawn and wood soils of the Paris region (France). Iron (Fe), a major element, was used as reference element. Copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) were of anthropogenic origin, while arsenic (As), chromium (Cr) and nickel (Ni) were of natural origin. Road traffic was identified as the main source of anthropogenic TEs. In addition, the industrial activity of the Paris region, especially cement plants, was identified as secondary source of Cd. Soil characteristics (such as texture, organic carbon (OC) and total nitrogen (tot N) contents) tell the story of the soil origins and legacies along the urban pressure gradient and often can explain TE concentrations. The history of the land-use types was identified as a factor that allowed understanding the contamination and pollution by TEs. Urban wood soils were found to be more contaminated and polluted than urban lawns, probably because woods are much older than lawns and because of the legacy of the historical management of soils in the Paris region (Haussmann period). Lawn soils are similar to the fertile agricultural soils and relatively recently (mostly from the 1950s onwards) imported from the surrounding of Paris, so that they may be less influenced by urban conditions in terms of TE concentrations. Urban wood soils are heavily polluted by Cd, posing a high risk to the biological communities. The concentration of anthropogenic TEs increased from the rural to the urban areas, and the concentrations of most anthropogenic TEs in urban areas were equivalent to or above the regulatory reference values, raising the question of longer-term monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA.

    PubMed

    Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke

    2014-08-01

    Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Effect of royal jelly on serum trace elements in rats undergoing head and neck irradiation.

    PubMed

    Cihan, Yasemin Benderli; Cihan, Celaleddin; Mutlu, Hasan; Unal, Dilek

    2013-01-01

    This study aims to investigate the effects of radiation on serum trace elements and the changes in these elements as induced by royal jelly in rats undergoing head and neck irradiation. Thirty-two Sprague-Dawley male rats at the age of eight weeks with a mean weight of 275±35 g were included in the study. Subjects were divided into four groups with eight rats in each group: group 1: controls (C), group 2: radiation-only (RT), group 3: radiation plus royal jelly 50 mg/kg (RT+RJ50) and group 4: royal jelly 50 mg/kg-only (RJ50). Radiotherapy was applied to the head and neck area by single fraction at a dose of 22 Gy. The royal jelly was given once daily for seven days. The subjects were sacrificed on the seventh day of the study. Trace elements in blood samples were measured using ICP/MS method. When the trace element levels among the groups were compared using ANOVA test, a statistically significant difference was found in Al, As, Ca, Cd, Cr, K, Mg, Pb, Se, and Sn levels (p<0.05). No significant difference was found in the levels of Ag, Ba, Co, Cs, Cu, Fe, Ga, Hg, Mn, Na, Ni, Rb, Sr, Ti, U, V, and Zn (p>0.05). It was observed that oxidative stress was reduced in the radiation plus royal jelly group, compared to the radiation-only group. Our study results suggest that head and neck irradiation increases oxidative stress, leading to some changes in the trace element levels, while royal jelly exhibits a protective effect against the oxidative stress induced by radiation.

  12. Detailed history of atmospheric trace elements from the Quelccaya ice core (Southern Peru) during the last 1200 years

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Thompson, L. G.

    2013-12-01

    The recent increase in trace element concentrations, for example Cr, Cu, Zn, Ag, Pb, Bi, and U, in polar snow and ice has provided compelling evidence of a hemispheric change in atmospheric composition since the nineteenth century. This change has been concomitant with the expansion of the Industrial Revolution and points towards an anthropogenic source of trace elements in the atmosphere. There are very few low latitude trace element ice core records and these are believed to be sensitive to perturbations of regional significance. To date, these records have not been used to document a preindustrial anthropogenic impact on atmospheric composition at low latitudes. Ice cores retrieved from the tropical Andes are particularly interesting because they have the potential to reveal detailed information about the evolution and environmental consequences of mineral exploitation related to the Pre Inca Civilizations, the Inca Empire (1438-1533 AD) and the subsequent Spanish invasion and dominance (1532-1833 AD). The chemical record preserved in the ice of the Quelccaya ice cap (southern Peruvian Andes) offers the exceptional opportunity to geochemically constrain the composition of the tropical atmosphere at high resolution over the last ~1200 years. Quantification of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was performed by ICP-SFMS over 105 m of the Quelccaya North Dome core (5600 m asl, 128.57 m) by analyzing 2450 samples. This provides the first atmospheric trace element record in South America spanning continuously and at high resolution for the time period between 1990 and 790 AD. Ag, As, Bi, Cd, Cr, Co, Cu, Mn, Mo, Sb, Sn, Pb and Zn show increases in concentration and crustal enrichment factor starting at different times between 1450 and 1550 AD, in concomitance with the expansions of the Inca Empire and, subsequently, the Spanish Empire well before the inception of the Industrial Revolution. This indicates that there have been additional anthropogenic sources that have impacted the South American atmosphere during the past ~550 years. Furthermore, As, Bi and Pb record shows, the two most significant increases have occurred in the 20th century, one beginning in ~1905 AD and peaking in the 1920s and the second beginning in ~1955 AD and peaking in the 1970s. Comparison with other trace element records from Greenland and Antarctica reveals concomitant peaks of different amplitude in Pb concentration and crustal enrichment factor, possibly pointing to an unexpected larger than regional scale significance for the Quelccaya ice core record during the last century. In conclusion, the Quelccaya ice core indicates that societal and industrial development influenced the atmospheric composition in South America, from different large scale sources, during the last ~550 years. This is the first time that a low latitude ice core record has been used to reconstruct pre-industrial anthropogenic forcing on the atmosphere.

  13. Trace element distribution in the water and sediments of certain storage lakes from the Jijia catchment, (Romania)

    NASA Astrophysics Data System (ADS)

    Dughila, A.; Iancu, O. G.; Romanescu, G. T.

    2012-04-01

    The present study aims at investigating the concentrations and distribution levels of a series of trace elements in water and sediment samples collected from six storage lakes located in the Jijia catchment - NE of Romania. The lakes are multi-purpose water reservoirs, three of them being mainly used as a source of municipal drinking water, or for fishing, irrigation for the farms in the area, protection against floods and the regulation of river flows. By contrast, agricultural wastes, fertilizers, raw sewage effluents and road runoff constitute the predominant anthropogenic sources, which supply the lakes in question with Cd, Cu, Pb and Zn. The present study was conducted on a series of 63 sediment samples and 18 water samples, collected from the same locations, in order to establish the distribution levels of certain trace elements from the water through sediments. Sediment cores were collected from two sections across each lake by means of a motor boat, using a system that consists of a graduated sampling tube (0.9 m in length and 72.5 mm in diameter) made of Plexiglas (Eijkelkamp sample tube guide). Prior to the analyses, the samples were air-dried, ground and homogenized using an agate mortar, oven-dried at 50 °C for 6 days and then sieved through 63 µm sieves. The sediment and water samples were subjected to a digestion technique with concentrated nitric acid using a microwave oven (Berghof type), and analyzed for the following elements: Pb, Zn, Cu, Cd, Cr and Ni. The total concentration of the elements was measured through atomic absorption spectrometry (AAS) with an RSD of < 10 % from solutions. The vertical distribution of most elements in the cores examined could be characterized as relatively uniform, with higher concentrations for those collected from the lakes which are more influenced by anthropogenic factors, compared to those situated in forested areas. The lake-water quality characteristics were below the recommended drinking water standards imposed by the current legislation (MMGA Ord. No. 161/16.02.2006 - Normative regarding the classification of surface waters in order to establish the ecological status of water bodies, which combines European and Romanian provisions), with the exception of copper (with very high concentrations in all the water samples), lead and cadmium. Keywords: AAS, Jijia catchment (Romania), lake water, sediment core, trace elements

  14. Multielemental analysis of 18 essential and toxic elements in amniotic fluid samples by ICP-MS: Full procedure validation and estimation of measurement uncertainty.

    PubMed

    Markiewicz, B; Sajnóg, A; Lorenc, W; Hanć, A; Komorowicz, I; Suliburska, J; Kocyłowski, R; Barałkiewicz, D

    2017-11-01

    Amniotic fluid is the substantial factor in the development of an embryo and fetus due to the fact that water and solutes contained in it penetrate the fetal membranes in an hydrostatic and osmotic way as well as being swallowed by the fetus. Elemental composition of amniotic fluid influences the growth and health of the fetus, therefore, an analysis of amniotic fluid is important because the results would indicate abnormal levels of minerals or toxic elements. Inductively coupled plasma mass spectroscopy (ICP-MS) is often used for determination of trace and ultra-trace level elements in a wide range of matrices including biological samples because of its unique analytical capabilities. In the case of trace and ultra-trace level analysis detailed characteristics of analytical procedure as well as properties of the analytical result are particularly important. The purpose of this study was to develop a new analytical procedure for multielemental analysis of 18 elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Mg, Mn, Ni, Pb, Sb, Se, Sr, U, V and Zn) in amniotic fluid samples using ICP-MS. Dynamic reaction cell (DRC) with two reaction gases, ammonia and oxygen, was involved in the experiment to eliminate spectral interferences. Detailed validation was conducted using 3 certified reference mterials (CRMs) and real amniotic fluid samples collected from patients. Repeatability for all analyzed analytes was found to range from 0.70% to 8.0% and for intermediate precision results varied from 1.3% to 15%. Trueness expressed as recovery ranged from 80% to 125%. Traceability was assured through the analyses of CRMs. Uncertainty of the results was also evaluated using single-laboratory validation approach. The obtained expanded uncertainty (U) results for CRMs, expressed as a percentage of the concentration of an analyte, were found to be between 8.3% for V and 45% for Cd. Standard uncertainty of the precision was found to have a greater influence on the combined standard uncertainty than on trueness factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Trace element partitioning behavior of coal gangue-fired CFB plant: experimental and equilibrium calculation.

    PubMed

    Zhang, Yingyi; Nakano, Jinichiro; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-10-01

    Energy recovery is a promising method for coal gangue utilization, during which the prevention of secondary pollution, especially toxic metal emission, is a significant issue in the development of coal gangue utilization. In the present study, investigation into trace element partitioning behavior from a coal gangue-fired power plant in Shanxi province, China, has been conducted. Besides the experimental analysis, thermodynamic equilibrium calculation was also conducted to help the further understanding on the effect of different parameters. Results showed that Hg, As, Be, and Cd were highly volatile elements in the combustion of coal gangue, which were notably enriched in fly ash and may be emitted into the environment via the gas phase. Cr and Mn were mostly non-volatile and were enriched in the bottom ash. Pb, Co, Zn, Cu, and Ni were semi-volatile elements and were enriched in the fly ash to varying degrees. Equilibrium calculations show that the air/fuel ratio and the presence of Cl highly affect the element volatility. The presence of mineral phases, such as aluminosilicates, depresses the volatility of elements by chemical immobilization and competition in Cl. The coal gangue, fly ash, and bottom ash all passed the toxicity characteristic leaching procedure (TCLP), and their alkalinity buffers the acidity of the solution and contributes to the low solubility of the trace elements.

  16. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  17. Dietary intake of trace elements by the population of Catalonia (Spain): results from a total diet study.

    PubMed

    Perelló, Gemma; Vicente, Emilio; Castell, Victòria; Llobet, Juan M; Nadal, Martí; Domingo, José L

    2015-01-01

    This study aimed to analyse the concentrations of Al, Ba, Bi, Cu, Cr, Ge, Mn, Mo, Ni, Sb, Se, Sr and Zn in food samples collected in 2008 in Catalonia (Spain). The dietary intake of these 13 trace elements was subsequently estimated by different age-gender groups of the population: children, adolescents, adults and seniors. In general terms, fish and shellfish, cereals, and pulses were the food groups showing the highest levels for most elements. Higher dietary intakes were associated with male groups (adolescents, adults and seniors). However, none exceeded the tolerable levels. When exposure was estimated based on body weight, children were the group with the highest dietary intake. Notwithstanding, only the weekly intake of Al by children exceeded the recommendations of the European Food Safety Authority (EFSA). It is a consequence of the higher intake of cereals in relation to their respective body weights. In addition to the periodical food surveillance of toxic metals (As, Cd, Hg and Pb), it is also important to determine the levels of other trace elements in order to ensure that the dietary exposure by the Catalan population is under control.

  18. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants.

    PubMed

    Zajusz-Zubek, Elwira; Kaczmarek, Konrad; Mainka, Anna

    2015-10-16

    This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  19. Effects of mineral amendments on trace elements leaching from pre-treated marine sediment after simulated rainfall events.

    PubMed

    Hurel, C; Taneez, M; Volpi Ghirardini, A; Libralato, G

    2017-01-01

    Bauxite extraction by-products (red mud) were used to evaluate their potential ability to stabilize trace elements from dredged and aerated/humidified marine sediment. The investigated by-products were: bauxaline ® (BX) that is a press-filtered red mud; bauxsol™(BS) that is a press-filtered red mud previously washed with excess of seawater, and gypsum neutralized bauxaline ® (GBX). These materials were separately mixed to dredged composted sediment sample considering 5% and 20% sediment: stabilizer ratios. For pilot experiments, rainfall events were regularly simulated for 3 months. Concentrations of As, Mo, Cd, Cr, Zn, Cu, and Ni were analyzed in collected leachates as well as toxicity. Results showed that Cd, Mo, Zn, and Cu were efficiently stabilized in the solid matrix when 20% of BX, BS, and GBX was applied. Consequently, toxicity of leachates was lower than for the untreated sediment, meaning that contaminants mobility was reduced. A 5% GBX was also efficient for Mo, Zn and Cu stabilization. In all scenarios, As stabilization was not improved. Compared to all other monitored elements, Mo mobility seemed to depend upon temperature-humidity conditions during pilot experiments suggesting the need of further investigations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparison of dry, wet and microwave digestion methods for the multi element determination in some dried fruit samples by ICP-OES.

    PubMed

    Altundag, Huseyin; Tuzen, Mustafa

    2011-11-01

    The aim of this study was used to investigate the level of trace metals (Ba, Pb, Cd, Mn, Cr, Co, Ni, Cu, Mn, Zn, Sr and Fe) in some dried fruits (Prunus domestica L., Ficus carica L., Morus alba L., Vitis vinifera L., Prunus armeniaca L., and Malus domestica) samples from Turkey. Trace elements were determined by ICP-OES after dry, wet and microwave digestion methods in dried fruit samples. Validation of the proposed method was carried out by using a NIST-SRM 1515-Apple Leaves certified reference material. Element concentrations in dried fruit samples were 0.33-1.77 (Ba), 0.12-0.54 (Cd), 0.25-1.03 (Co), 0.45-2.30 (Cr), 0.43-2.74 (Cu), 0.56-4.87 (Mn), 0.61-2.54 (Ni), 0.40-2.14 (Pb), 2.16-6.54 (Zn), 0.83-12.02 (Al), 11.82-40.80 (Fe) and 0.16-6.34 (Sr) μg/g. The analytical parameters show that the microwave oven digestion procedure provided best results as compared to the wet and dry digestion procedures. The results were compared with the literature values. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants--temporal trends and spatial variation characteristics.

    PubMed

    Tian, Hezhong; Liu, Kaiyun; Zhou, Junrui; Lu, Long; Hao, Jiming; Qiu, Peipei; Gao, Jiajia; Zhu, Chuanyong; Wang, Kun; Hua, Shenbing

    2014-03-18

    Coal-fired power plants are the important sources of anthropogenic atmospheric releases of various hazardous trace elements (HTE) because a large quantity of emissions can cause wide dispersion and possible long-distance transportation. To obtain the temporal trends and spatial variation characteristics of various HTE discharged from coal-fired power plants of China, a multiple-year comprehensive emission inventory of HTE including Hg, As, Se, Pb, Cd, Cr, Ni, and Sb has been established for the period 2000-2010. Thanks to the cobenefit removal effects of conventional particulate matter/sulfur dioxide/nitrogen oxides (PM/SO2/NOx) control devices, emissions of these 8 toxic elements have shown a gradual decline since the peak in 2006. The total emissions of Hg, As, Se, Pb, Cd, Cr, Ni, and Sb are substantial and are estimated at about 118.54, 335.45, 459.4, 705.45, 13.34, 505.03, 446.42, and 82.33 tons (t), respectively, in 2010. Shandong, Jiangsu, Shanxi, and Hebei always rank among the top ten provinces with the highest emissions. Further, future emissions for 2015 and 2020 are projected with scenario analysis. Advanced technologies and integrated management strategies to control HTE are in great need.

  2. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations at depth for Bi, Cd, Cu, Hg, In, Pb, Sb, Sn, Te, and Zn. Radioisotope dating indicates that the elevated metal and trace element concentrations are associated with sediments deposited before 1963. Arsenic concentration was greater in cattail roots compared with surrounding sediment at Tavasci Marsh. Concentrations of As, Ni, and Se from yellow bullhead catfish (Ameiurus natalis) in Tavasci Marsh exceeded the 75th percentile of several other regional studies. Mercury concentration in dragonfly larvae and fish from Tavasci Marsh were similar to or greater than in Tavasci Marsh sediment. Future work includes a biologic risk assessment utilizing the data collected in this study to provide the monument management with additional information for their restoration plan.

  3. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    PubMed

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Evaluation of elemental enrichments in surface sediments off southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung; Kandasamy, Selvaraj

    2008-05-01

    Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.

  5. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.

    PubMed

    Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang

    2015-07-07

    In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications.

  6. Transplantation of epiphytic bioaccumulators (Tillandsia capillaris) for high spatial resolution biomonitoring of trace elements and point sources deconvolution in a complex mining/smelting urban context

    NASA Astrophysics Data System (ADS)

    Goix, Sylvaine; Resongles, Eléonore; Point, David; Oliva, Priscia; Duprey, Jean Louis; de la Galvez, Erika; Ugarte, Lincy; Huayta, Carlos; Prunier, Jonathan; Zouiten, Cyril; Gardon, Jacques

    2013-12-01

    Monitoring atmospheric trace elements (TE) levels and tracing their source origin is essential for exposure assessment and human health studies. Epiphytic Tillandsia capillaris plants were used as bioaccumulator of TE in a complex polymetallic mining/smelting urban context (Oruro, Bolivia). Specimens collected from a pristine reference site were transplanted at a high spatial resolution (˜1 sample/km2) throughout the urban area. About twenty-seven elements were measured after a 4-month exposure, also providing new information values for reference material BCR482. Statistical power analysis for this biomonitoring mapping approach against classical aerosols surveys performed on the same site showed the better aptitude of T. Capillaris to detect geographical trend, and to deconvolute multiple contamination sources using geostatistical principal component analysis. Transplanted specimens in the vicinity of the mining and smelting areas were characterized by extreme TE accumulation (Sn > Ag > Sb > Pb > Cd > As > W > Cu > Zn). Three contamination sources were identified: mining (Ag, Pb, Sb), smelting (As, Sn) and road traffic (Zn) emissions, confirming results of previous aerosol survey.

  7. Potential of MuS1 Transgenic Tobacco for Phytoremediation of the Urban Soils Contaminated with Cadmium

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Kim, Y. N.; Kim, S. H.

    2010-05-01

    Urban soils are prone to contamination by trace elements such as Cd, Cu, Pb and Zn. Phytoremediation is one of the attractive remediation methods for soils contaminated with trace elements due to its non-destructive and environmentally-friendly characteristic. Scientists have tried to find hyper-accumulator plants in nature or to develop transgenic plant through genetic engineering. This study was carried out to identify a potential of MuS1 transgenic tobacco for phytoremediation of the urban soils contaminated with Cd. MuS1 is known as a multiple stress related gene with several lines. The previous study using RT-PCR showed that the expression of MuS1 gene in tobacco plant induced tolerance to Cd stress. For this study, MuS1 transgenic tobacco and wild-type tobacco (control) were cultivated in a hydroponic system treated with Cd (0, 50, 100 and 200μM Cd) for 3 weeks. At harvest, both tobacco and nutrient solution were collected and were analyzed for Cd. Effect of Cd treatment on morphological change of the tobacco leaves was also observed by variable-pressure scanning electron microscopy (VP-SEM). The tolerance of MuS1 transgenic tobacco to Cd stress was better than that of wild-type tobacco at all Cd levels. Especially, wild-type tobacco showed chlorosis and withering with 200μM Cd treatment, whereas MuS1 transgenic tobacco gradually recovered from Cd damage. Wild-type tobacco accumulated more Cd (4.65mg per plant) than MuS1 transgenic tobacco (2.37mg per plant) with 200μM Cd treatment. Cd translocation rate from root to leaves was 81.8 % for wild-type tobacco compared to 37.1 % for MuS1 transgenic tobacco. Result of VP-SEM showed that the number of trichome in the leaves for wild-type tobacco increased in comparison with that for untreated samples after 3 weeks, while that for MuS1 transgenic tobacco was not changed by Cd treatment. Results showed that the mechanism of the recovery of the MuS1 tobacco plant was not by high level of Cd uptake and accumulation in the plant but by revealing resistance to Cd through inducing less Cd uptake and/or more Cd immobilization around roots, resulting in less translocation to shoot. In conclusion, this study showed a potential to use MuS1 transgenic tobacco for phytoremediation of the urban soils contaminated with Cd.

  8. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil

    NASA Astrophysics Data System (ADS)

    Karlsson, Torbjörn; Elgh-Dalgren, Kristin; Björn, Erik; Skyllberg, Ulf

    2007-02-01

    Cadmium (Cd) is a toxic trace element and due to human activities soils and waters are contaminated by Cd both on a local and global scale. It is widely accepted that chemical interactions with functional groups of natural organic matter (NOM) is vital for the bioavailability and mobility of trace elements. In this study the binding strength of cadmium (Cd) to soil organic matter (SOM) was determined in an organic (49% organic C) soil as a function of reaction time, pH and Cd concentration. In experiments conducted at native Cd concentrations in soil (0.23 μg g -1 dry soil), halides (Cl, Br) were used as competing ligands to functional groups in SOM. The concentration of Cd in the aqueous phase was determined by isotope-dilution (ID) inductively-coupled-plasma-mass-spectrometry (ICP-MS), and the activity of Cd 2+ was calculated from the well-established Cd-halide constants. At higher Cd loading (500-54,000 μg g -1), the Cd 2+ activity was directly determined by an ion-selective electrode (ISE). On the basis of results from extended X-ray absorption fine structure (EXAFS) spectroscopy, a model with one thiolate group (RS -) was used to describe the complexation (Cd 2+ + RS - ⇆ CdSR +; log KCdSR) at native Cd concentrations. The concentration of thiols (RSH; 0.047 mol kg -1 C) was independently determined by X-ray absorption near-edge structure (XANES) spectroscopy. Log KCdSR values of 11.2-11.6 (p Ka for RSH = 9.96), determined in the pH range 3.1-4.6, compare favorably with stability constants for the association between Cd and well-defined thiolates like glutathione. In the concentration range 500-54,000 μg Cd g -1, a model consisting of one thiolate and one carboxylate (RCOO -) gave the best fit to data, indicating an increasing role for RCOOH groups as RSH groups become saturated. The determined log KCdOOCR of 3.2 (Cd 2+ + RCOO - ⇆ CdOOCR +; log KCdOOCR; p Ka for RCOOH = 4.5) is in accordance with stability constants determined for the association between Cd and well-defined carboxylates. Given a concentration of reduced sulfur groups of 0.2% or higher in NOM, we conclude that the complexation to organic RSH groups may control the speciation of Cd in soils, and most likely also in surface waters, with a total concentration less than 5 mg Cd g -1 organic C.

  9. Diet and habitat use influence Hg and Cd transfer to fish and consequent biomagnification in a highly contaminated area: Augusta Bay (Mediterranean Sea).

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-11-01

    Total mercury (T-Hg) and cadmium (Cd) were measured in twenty species of fish to study their bioaccumulation patterns and trophodynamics in the Augusta Bay food web. Adult and juvenile fish were caught in 2012 in Priolo Bay, south of the Augusta harbour (Central Mediterranean Sea), which is known for the high trace element and polycyclic aromatic hydrocarbon contamination level. T-Hg concentration was found to significantly increase along δ 15 N and from pelagic to benthic sedentary fish, revealing a marked influence of trophic position and habitat use (sensu Harmelin 1987) on T-Hg accumulation within ichthyofauna. Cd showed the opposite pattern, in line with the higher trace element (TE) excretion rates of high trophic level fish and the lower level of Cd environmental contamination. Trophic pathways were first characterised in the Priolo Bay food web using carbon and nitrogen stable isotopes (δ 13 C, δ 15 N) and a single main trophic pathway characterised the Priolo Bay food web. Biomagnification was then assessed, including basal sources (surface sediment, macroalgae), zooplankton, benthic invertebrates and fish. T-Hg and Cd were found to biomagnify and biodilute respectively based on the significant linear regressions between log[T-Hg] and log[Cd] vs. δ 15 N of sources and consumers and the trophic magnification factors (TMFs) of 1.22 and 0.83 respectively. Interestingly, different Cd behaviour was found considering only the benthic pathway which leads to the predatory gastropod Hexaplex trunculus. The positive slope and the higher TMF indicated active biomagnification in this benthic food web due to the high bioaccumulation efficiency of this benthic predator. Our findings provide new evidences about the role of Priolo sediments as a sources of pollutants for the food web, representing a threat to fish and, by domino effect, to humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Evaluation of Trace Elements in Potatoes (Solanum tuberosum) from a Suburban Area of Naples, Italy: The "Triangle of Death".

    PubMed

    Roma, Antonella De; Abete, Maria Cesarina; Brizio, Paola; Picazio, Giuseppe; Caiazzo, Marcello; D'auria, Jacopo Luigi; Esposito, Mauro

    2017-07-01

    Human exposure to contaminated food is a general health concern worldwide; it is necessary to evaluate food safety with respect to contaminants present in the edible parts of major food crops. This study evaluated the concentrations of 17 trace elements (As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn) from 51 potato plantations in the Campania region, inside the area known as the "Triangle of Death," with inductively coupled plasma mass spectrometry analysis. Results confirm that the potatoes collected from the suburban area of Naples contained concentrations of trace elements below the safe limits prescribed by the Food and Agriculture Organization of the United Nations and the World Health Organization. The concentrations of elements were similar to those reported for potatoes grown in other countries. Monitoring the content of toxic and potentially toxic elements is one of the most important aspects of food quality assurance. The environmental persistence of metals may result in the accumulation of significant levels of these contaminants in plants. They are absorbed to different extents, depending on their source, soil and climatic factors, plant genotype, and agrotechnical conditions, thereby entering the food chain and representing a risk to human health.

  11. Trace elements records from vermetids aragonite as millennial paleo-oceanographic archives in the South-East Mediterranean

    NASA Astrophysics Data System (ADS)

    Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo

    2017-04-01

    The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative dominance of different climate systems and anthropogenic processes on the East Mediterranean environment.

  12. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China

    NASA Astrophysics Data System (ADS)

    Gregory, Daniel D.; Lyons, Timothy W.; Large, Ross R.; Jiang, Ganqing; Stepanov, Aleksandr S.; Diamond, Charles W.; Figueroa, Maria C.; Olin, Paul

    2017-11-01

    The trace element content of pyrite is a recently developed proxy for metal abundance in paleo-oceans. Previous studies have shown that the results broadly match those of whole rock studies through geologic time. However, no detailed study has evaluated the more traditional proxies for ocean chemistry for comparison to pyrite trace element data from the same samples. In this study we compare pyrite trace element data from 14 samples from the Wuhe section of the Ediacaran-age Doushantuo Formation, south China, measured by laser ablation inductively coupled plasma mass spectrometry with new and existing whole rock trace element concentrations; total organic carbon; Fe mineral speciation; S isotope ratios; and pyrite textural relationships. This approach allows for comparison of data for individual trace elements within the broader environmental context defined by the other chemical parameters. The results for discrete pyrite analyses show that several chalcophile and siderophile elements (Ag, Sb, Se, Pb, Cd, Te, Bi, Mo, Ni, and Au) vary among the samples with patterns that mirror those of the independent whole rock data. A comparison with existing databases for sedimentary and hydrothermal pyrite allows us to discriminate between signatures of changing ocean conditions and those of known hydrothermal sources. In the case of the Wuhe samples, the observed patterns for trace element variation point to primary marine controls rather than higher temperature processes. Specifically, our new data are consistent with previous arguments for pulses of redox sensitive trace elements interpreted to be due to marine oxygenation against a backdrop of mostly O2-poor conditions in the Ediacaran ocean-with important implications for the availability of bioessential elements. The agreement between the pyrite and whole rock data supports the use of trace element content of pyrite as a tracer of ocean chemistry in ways that complement existing approaches, while also opening additional windows of opportunity. For example, unlike the potential vulnerability of whole rock data to secondary alteration, the pyrite record may survive greenschist facies metamorphism. Furthermore, early-formed pyrite can be identified through textural relationships as a proxy of primary marine chemistry even in the presence of hydrothermal overprints on whole rock chemistry via secondary fluids. Finally, pyrite analyses may allow for the possibility of more quantitative interpretations of the ancient ocean once the elemental partitioning between the mineral and host fluids are better constrained. Collectively, these advances can greatly increase the number of basins that may be investigated for early ocean chemistry, especially those of Precambrian age.

  13. Trace element analysis of human urine collected after administration of Gd-based MRI contrast agents: characterizing spectral interferences using inorganic mass spectrometry

    PubMed Central

    Steuerwald, Amy J.; Parsons, Patrick J.; Arnason, John G.; Chen, Zhen; Peterson, C. Matthew; Louis, Germaine M. Buck

    2013-01-01

    Analysis of human urine is commonly used in biomonitoring studies to assess exposure to essential (e.g., Cu, Zn, Se) and non-essential (Pb, Cd, Pt) trace elements. These data are also used in epidemiological studies to evaluate potential associations between trace element exposure and various health outcomes within a population. Today most trace element analyses are typically performed using quadrupole-based inductively coupled plasma mass spectrometry (Q-ICP-MS). However, there is always the potential for spectral interferences with Q-ICP-MS instrumentation, especially when analyzing human specimens that may contain medications and other exogenous substances. Moreover, such xenobiotics may be unknown to the investigators. In a recent study focusing on environmental exposures and endometriosis: Endometriosis: Natural History, Diagnosis, and Outcomes (ENDO Study), urine specimens (n=619) were collected from participating women upon enrollment into the study or prior to surgery or pelvic magnetic resonance imaging (MRI), and analyzed for 21 trace elements by Q-ICP-MS. Here we report on some anomalous results observed for Se and Pt with elevated concentrations up to several orders of magnitude greater than what might be expected based on established reference intervals. Further investigations using Sector Field (SF-) ICP-MS instrumentation led to identification of doubly charged and polyatomic gadolinium (Gd) species traced to a Gd-based contrast agent that was administered to some subjects just prior to urine collection. Specifically, interferences from Gd2+ and several minor polyatomics were identified as interferences on all of the major isotopes of Se including 74Se, 76Se, 77Se, 78Se, 80Se, and 82Se. While trace amounts of Pt were present in the urine, a number of Gd-containing polyatomic species were also evident as major interferences on all isotopes of Pt (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt), including Gd-chlorides, Gd-argides, and Gd-oxides. These observations underscore the importance of considering potential isobaric interferences when interpreting unusual trace element results for clinical specimens. PMID:27397951

  14. Mapping of Ionomic Traits in Mimulus guttatus Reveals Mo and Cd QTLs That Colocalize with MOT1 Homologues

    PubMed Central

    Lowry, David B.; Sheng, Calvin C.; Zhu, Zhirui; Juenger, Thomas E.; Lahner, Brett; Salt, David E.; Willis, John H.

    2012-01-01

    Natural variation in the regulation of the accumulation of mineral nutrients and trace elements in plant tissues is crucial to plant metabolism, development, and survival across different habitats. Studies of the genetic basis of natural variation in nutrient metabolism have been facilitated by the development of ionomics. Ionomics is a functional genomic approach for the identification of the genes and gene networks that regulate the elemental composition, or ionome, of an organism. In this study, we evaluated the genetic basis of divergence in elemental composition between an inland annual and a coastal perennial accession of Mimulus guttatus using a recombinant inbred line (RIL) mapping population. Out of 20 elements evaluated, Mo and Cd were the most divergent in accumulation between the two accessions and were highly genetically correlated in the RILs across two replicated experiments. We discovered two major quantitative trait loci (QTL) for Mo accumulation, the largest of which consistently colocalized with a QTL for Cd accumulation. Interestingly, both Mo QTLs also colocalized with the two M. guttatus homologues of MOT1, the only known plant transporter to be involved in natural variation in molybdate uptake. PMID:22292026

  15. Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements

    USGS Publications Warehouse

    Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.

    2009-01-01

    During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.

  16. Emission spectrographic determination of volatile trace elements in geologic materials by a carrier distillation technique

    USGS Publications Warehouse

    Barton, H.N.

    1986-01-01

    Trace levels of chalcophile elements that form volatile sulfide minerals are determined in stream sediments and in the nonmagnetic fraction of a heavy-mineral concentrate of stream sediments by a carrier distillation emission spectrographic method. Photographically recorded spectra of samples are visually compared with those of synthetic standards for the two sample types. Rock and soil samples may also be analyzed by comparison with the stream-sediment standards. A gallium oxide spectrochemical carrier/buffer enhances the early emission of the volatile elements. Detection limits in parts per million attained are: Sb 5, As 20, Bi 0.1, Cd 1, Cu 1, Pb 2, Ag 0.1, Zn 2, and Sn 0.1. A comparison with other methods of analysis, total-burn emission and atomic absorption spectroscopy, shows good correlation for standard reference for materials and samples from a variety of geologic terranes. ?? 1986.

  17. Reference Values of 14 Serum Trace Elements for Pregnant Chinese Women: A Cross-Sectional Study in the China Nutrition and Health Survey 2010–2012

    PubMed Central

    Liu, Xiaobing; Zhang, Yu; Piao, Jianhua; Mao, Deqian; Li, Yajie; Li, Weidong; Yang, Lichen; Yang, Xiaoguang

    2017-01-01

    The development of reference values of trace elements is recognized as a fundamental prerequisite for the assessment of trace element nutritional status and health risks. In this study, a total of 1400 pregnant women aged 27.0 ± 4.5 years were randomly selected from the China Nutrition and Health Survey 2010–2012 (CNHS 2010–2012). The concentrations of 14 serum trace elements were determined by high-resolution inductively coupled plasma mass spectrometry. Reference values were calculated covering the central 95% reference intervals (P2.5–P97.5) after excluding outliers by Dixon’s test. The overall reference values of serum trace elements were 131.5 (55.8-265.0 μg/dL for iron (Fe), 195.5 (107.0–362.4) μg/dL for copper (Cu), 74.0 (51.8–111.3) μg/dL for zinc (Zn), 22.3 (14.0–62.0) μg/dL for rubidium (Rb), 72.2 (39.9–111.6) μg/L for selenium (Se), 45.9 (23.8-104.3) μg/L for strontium (Sr), 1.8 (1.2–3.6) μg/L for molybdenum (Mo), 2.4 (1.2–8.4) μg/L for manganese (Mn), 1.9 (0.6–9.0) ng/L for lead (Pb), 1.1 (0.3-5.6) ng/L for arsenic (As), 835.6 (219.8–4287.7) ng/L for chromium (Cr), 337.9 (57.0–1130.0) ng/L for cobalt (Co), 193.2 (23.6–2323.1) ng/L for vanadium (V), and 133.7 (72.1–595.1) ng/L for cadmium (Cd). Furthermore, some significant differences in serum trace element reference values were observed between different groupings of age intervals, residences, anthropometric status, and duration of pregnancy. We found that serum Fe, Zn, and Se concentrations significantly decreased, whereas serum Cu, Sr, and Co concentrations elevated progressively compared with reference values of 14 serum trace elements in pregnant Chinese women. The reference values of serum trace elements established could play a key role in the following nutritional status and health risk assessment. PMID:28335545

  18. Responses of Noccaea caerulescens and Lupinus albus in trace elements-contaminated soils.

    PubMed

    Martínez-Alcalá, Isabel; Hernández, Luis E; Esteban, Elvira; Walker, David J; Bernal, M Pilar

    2013-05-01

    Plants exposed to trace elements can suffer from oxidative stress, which is characterised by the accumulation of reactive oxygen species, alteration in the cellular antioxidant defence system and ultimately lipid peroxidation. We assessed the most-appropriate stress indexes to describe the response of two plant species, with different strategies for coping with trace elements (TEs), to particular contaminants. Noccaea caerulescens, a hyperaccumulator, and Lupinus albus, an excluder, were grown in three soils of differing pH: an acidic soil, a neutral soil (both contaminated mainly by Cu, Zn and As) and a control soil. Then, plant stress indicators were measured. As expected, N. caerulescens accumulated higher levels of Zn and Cd in shoots than L. albus, this effect being stronger in the acid soil, reflecting greater TE solubility in this soil. However, the shoot concentrations of Mn were higher in L. albus than in N. caerulescens, while the As concentration was similar in the two species. In L. albus, the phenolic content and lipid peroxidation were related with the Cu concentration, whereas the Zn and Cd concentrations in N. caerulescens were more closely related to glutathione content and lipid peroxidation. Interestingly, phytochelatins were only found in L. albus grown in polluted soils. Hence, the two species differed with respect to the TEs which provoked stress and the biochemical indicators of the stress, there being a close relationship between the accumulation of TEs and their associated stress indicators in the different plant organs. Crown Copyright © 2013. Published by Elsevier Masson SAS. All rights reserved.

  19. Fractionation of rare earth and other trace elements in crabs, Ucides cordatus, from a subtropical mangrove affected by fertilizer industry.

    PubMed

    Bosco-Santos, Alice; Luiz-Silva, Wanilson; Silva-Filho, Emmanoel Vieira da; Souza, Monique Dias Corrêa de; Dantas, Elton Luiz; Navarro, Margareth Sugano

    2017-04-01

    Fractionation of rare earth elements (REE) and other trace metal concentrations (Th, U, Cd, Cr, Cu, Ni, Pb, and Zn) between mangrove sediments and claw muscles and shells of male crabs (Ucides cordatus) from a subtropical estuary highly impacted by fertilizer industry activities was investigated. This is the first record of REE distribution in these organisms, and the results showed higher accumulations of these metals, U and Th in shells, probably related to the replacement of Ca during molting. Contents of Cd, Cr and Ni were similar in both tissues, but Cu, Zn and Pb were mostly accumulated in the claw muscle with concentrations above those considered safe for human consumption according to the Brazilian legislation. REE fractionation was different in the analyzed tissues being softer in the shells. The results provided evidences that the water absorbed during molting controls the chemistry of REE in shells. In contrast, the chemistry of REE in the claw muscle, in which was observed preferential absorption of light REE, is controlled by diet. REE fractionation obtained for the claw muscles was closely correlated to the observed in the contaminated substrate and in materials related to the production of phosphate fertilizers (contamination source), which supports their transference to this Ucides cordatus tissue without fractionation by the ingestion of sediments. Our results showed the potential use of crab tissues for monitoring REE and trace element sources in mangrove areas, with claw muscle exhibiting the contaminant source fingerprint. Copyright © 2016. Published by Elsevier B.V.

  20. Effect of mining and related activities on the sediment trace element geochemistry of Lake Coeur D'Alene, Idaho, USA. Part I: Surface sediments

    USGS Publications Warehouse

    Horowitz, Arthur J.; Elrick, Kent A.; Cook, Robert B.

    1993-01-01

    During the summer of 1989 surface sediment samples were collected in Lake Coeur d'Alene, the Coeur d'Alene River and the St Joe River, Idaho, at a density of approximately one sample per square kilometre. Additional samples were collected from the banks of the South Fork of the Coeur d'Alene and the Coeur d'Alene Rivers in 1991. All the samples were collected to determine trace element concentrations, partitioning and distribution patterns, and to relate them to mining, mining related and discharge operations that have occurred in the Coeur d'Alene district since the 1880s, some of which are ongoing.Most of the surface sediments in Lake Coeur d'Alene north of Conkling Point and Carey Bay are substantially enriched in Ag, As, Cu, Cd, Hg, Pb, Sb and Zn relative to unaffected sediments in the southern portion of the lake near the St Joe River. All the trace element enriched sediments are extremely fine grained (mean grain sizes « 63 μm). Most of the enriched trace elements, based on both the chemical analyses of separated heavy and light mineral fractions and a two step sequential extraction procedure, are associated with an operationally defined Fe oxide phase; much smaller percentages are associated either with operationally defined organics/sulphides or refractory phases.The presence, concentration and distribution of the Fe oxides and heavy minerals indicates that a substantial portion of the enriched trace elements are probably coming from the Coeur d'Alene River, which is serving as a point source. Within the lake, this relatively simple point source pattern is complicated by a combination of (1) the formation of trace element rich authigenic Fe oxides that appear to have reprecipitated from material solubilized from anoxic bed sediments and (2) physical remobilization by currents and wind driven waves. The processes that have caused the trace element enrichment in the surface sediments of Lake Coeur d'Alene are likely to continue for the foreseeable future.

  1. Tissue partition and risk assessments of trace elements in Indo-Pacific Finless Porpoises (Neophocaena phocaenoides) from the Pearl River Estuary coast, China.

    PubMed

    Zhang, Xiyang; Lin, Wenzhi; Yu, Ri-Qing; Sun, Xian; Ding, Yulong; Chen, Hailiang; Chen, Xi; Wu, Yuping

    2017-10-01

    Throughout the last few decades, an increased number of stranded marine mammals, particularly the Indo-Pacific Finless Porpoises (Neophocaena phocaenoides), were observed in the Pearl River Estuary (PRE). As long-lived, apex predators vulnerable to bioaccumulation of contaminants, the tissue residue levels and health risk of trace elements (TEs) in N. phocaenoides from the PRE have been little studied. Eleven typical TEs distributed in skin, liver and kidney tissues were investigated from 25 specimens stranded along the PRE from 2007 to 2015 in the present study. It revealed that most TEs were highly accumulated in internal organs (liver and kidney), except for Zn with high residue levels in external skin. Compared with the TEs in prey items, the residue levels of Hg, Se, Zn, Cu, Cd and Cr in N. phocaenoides increased 4-618 times, indicating a potentially significant biomagnification. Sex-related differences of TE accumulation were not obvious, except for renal Mn, in which the females showed lower mean concentrations than males. Significantly positive correlations between body length and TE levels were found for Hg, Se and Cd. Results of the calculated risk quotients (RQ) suggested that the risks to N. phocaenoides from consumption of prey items were generally low, but further attentions should be paid to Cd, Cr, Cu, Hg and As due to the elevated RQ values. The concentrations of Hg, Cd and Se in the epidermis were positively correlated with the levels found in internal organs. Our investigation provides evidence to support the use of skin as one biomonitoring approach on Hg, Cd and Se contamination of internal tissues in this species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. NH4NO3 extractable trace element contents of soil samples prepared for proficiency testing--a stability study.

    PubMed

    Traub, H; Scharf, H

    2001-06-01

    In view of its intended use as a sample for proficiency testing or as a reference material the stability of the extractable trace element contents of a soil from an irrigation field was tested using the extraction with 1 mol/L ammonium nitrate solution according to DIN 19730. Therefore, changes of the extractability of sterilized and non sterilized soil samples stored at different temperatures were evaluated over a period of 18 months. Sets of bottles were kept at -20 degrees C, +4 degrees C, about +20 degrees C and +40 degrees C, respectively. The NH4NO3 extractable contents of Cd, Cr, Cu, Ni, Pb and Zn were determined immediately after bottling and then after 3, 6, 12 and 18 months with ICP-AES or ETAAS. Appropriate storage conditions are of utmost importance to prevent deterioration of soil samples prepared for the determination of NH4NO3 extractable trace element contents. Temperatures above +20 degrees C must be avoided. The observed changes in the extractability of the metals (especially for Cr and Cu) most likely could be related to thermal degradation of the organic matter of the soil. There is no need to sterilize dry soil samples, because microbiological activity in soils with a low moisture content appears to be negligible with regard to trace element mobilization.

  3. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    NASA Astrophysics Data System (ADS)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  4. Extraordinary trace-element accumulations in roadside cedars near Centerville, Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, J.J.; Shacklette, H.T.; Erdman, J.A.

    1971-01-01

    Unusually high concentrations of lead, copper, zinc, and cadmium were found in samples of cedar (Juniperus virginiana L.) collected on the roadside of State Highway 21-72 about 4 miles northeast of Centerville, Mo. For 15 samples, geometric mean concentrations for these elements in cedar ash were, in parts per million: Pb, 5,800; Cu, 190; An, 940; and Cd, 12. The high concentrations are thought to reflect vehicular transport of lead-bearing ores from mine to smelter, rather than mineralized rock at depth.

  5. Direct Electrothermal Atomic Absorption Determination of Trace Elements in Body Fluids (Review)

    NASA Astrophysics Data System (ADS)

    Zacharia, A. N.; Arabadji, M. V.; Chebotarev, A. N.

    2017-03-01

    This review is focused on the state and development of tendencies of electrothermal atomic absorption spectroscopy over the last 25 years (from 1990 to 2016) in the direct determination of Cu, Zn, Pb, Cd, Mn, Se, As, Cr, Co, Ni, Al, and Hg in body fluids such as blood, urine, saliva, and breast milk.

  6. Characterizing the Solid-Solution Coefficient and Plant Uptake Factor of As, Cd and Pb in California Croplands

    USDA-ARS?s Scientific Manuscript database

    In risk assessment models, the solid-solution partition coefficient (Kd), and plant uptake factor (PUF), are often employed to model the fate and transport of trace elements in soils. The trustworthiness of risk assessments depends on the reliability of the parameters used. In this study, we exami...

  7. Investigation of major and trace element distribution in the extraction-transesterification process of fatty acid methyl esters from microalgae Chlorella sp.

    PubMed

    Soares, Bruno M; Vieira, Augusto A; Lemões, Juliana S; Santos, Clarissa M M; Mesko, Márcia F; Primel, Ednei G; Montes D'Oca, Marcelo G; Duarte, Fábio A

    2012-04-01

    This work reports, for the first time, the determination of major and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sn, Sr, Ti, Tl, U, V, and Zn) in the fractions of the synthesis of fatty acid methyl esters (FAMEs). These include fresh microalgae, residual biomass, lipid fraction, crude FAMEs, insoluble fraction and purified FAMEs from microalgae Chlorella sp. A microwave-assisted digestion procedure in closed vessels was applied for sample digestion and subsequent element determination by inductively coupled plasma-based techniques. The proposed method was suitable for the multielement determination in FAMEs and its fractions obtained from microalgae. The element concentration was compared with results found in the literature and a careful discussion about the use of residual biomass for different applications was performed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Comparing early twentieth century and present-day atmospheric pollution in SW France: A story of lichens.

    PubMed

    Agnan, Y; Séjalon-Delmas, N; Probst, A

    2013-01-01

    Lichens have long been known to be good indicators of air quality and atmospheric deposition. Xanthoria parietina was selected to investigate past (sourced from a herbarium) and present-day trace metal pollution in four sites from South-West France (close to Albi). Enrichment factors, relationships between elements and hierarchical classification indicated that the atmosphere was mainly impacted by coal combustion (as shown by As, Pb or Cd contamination) during the early twentieth century, whereas more recently, another mixture of pollutants (e.g. Sb, Sn, Pb and Cu) from local factories and car traffic has emerged. The Rare Earth Elements (REE) and other lithogenic elements indicated a higher dust content in the atmosphere in the early twentieth century and a specific lithological local signature. In addition to long-range atmospheric transport, local urban emissions had a strong impact on trace element contamination registered in lichens, particularly for contemporary data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks.

    PubMed

    Falandysz, Jerzy; Borovička, Jan

    2013-01-01

    This article reviews and updates data on macro and trace elements and radionuclides in edible wild-grown and cultivated mushrooms. A huge biodiversity of mushrooms and spread of certain species over different continents makes the study on their multi-element constituents highly challenging. A few edible mushrooms are widely cultivated and efforts are on to employ them (largely Agaricus spp., Pleurotus spp., and Lentinula edodes) in the production of selenium-enriched food (mushrooms) or nutraceuticals (by using mycelia) and less on species used by traditional medicine, e.g., Ganoderma lucidum. There are also attempts to enrich mushrooms with other elements than Se and a good example is enrichment with lithium. Since minerals of nutritional value are common constituents of mushrooms collected from natural habitats, the problem is however their co-occurrence with some hazardous elements including Cd, Pb, Hg, Ag, As, and radionuclides. Discussed is also the problem of erroneous data on mineral compounds determined in mushrooms.

  10. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns

    USGS Publications Warehouse

    Silva, L.F.O.; Oliveira, M.L.S.; Boit, K.M.; Finkelman, R.B.

    2009-01-01

    The current paper presents the concentration, distribution, and modes of occurrence of trace elements of 13 coals from south Brazil. The samples were collected in the state of Santa Catarina. Chemical analyses and the high ash yields indicate that all studied coals are rich in mineral matter, with SiO2 and Al2O3 dominating as determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Quartz is the main mineral species and is associated with minor levels of feldspars, kaolinite, hematite, and iron-rich carbonates. The contents of trace elements, including As, Pb, Cd, Ni, Cr, Mn, Be, V, U, Zn, Li, Cu, Tl, and Ni, in coals were determined. A comparison of ranges and means of elemental concentrations in Santa Catarina, Brazil, and world coals shows that the ranges of most elements in Santa Catarina coal are very close to the usual worldwide concentration ranges in coal. ?? Springer Science+Business Media B.V. 2008.

  11. Optimisation of flame parameters for simultaneous multi-element atomic absorption spectrometric determination of trace elements in rocks

    USGS Publications Warehouse

    Kane, J.S.

    1988-01-01

    A study is described that identifies the optimum operating conditions for the accurate determination of Co, Cu, Mn, Ni, Pb, Zn, Ag, Bi and Cd using simultaneous multi-element atomic absorption spectrometry. Accuracy was measured in terms of the percentage recoveries of the analytes based on certified values in nine standard reference materials. In addition to identifying optimum operating conditions for accurate analysis, conditions resulting in serious matrix interferences and the magnitude of the interferences were determined. The listed elements can be measured with acceptable accuracy in a lean to stoicheiometric flame at measurement heights ???5-10 mm above the burner.

  12. Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2010-04-15

    A data matrix (4032 observations), obtained during a 2-year monitoring period (2005-2006) from 42 sites in the upper Han River is subjected to various multivariate statistical techniques including cluster analysis, principal component analysis (PCA), factor analysis (FA), correlation analysis and analysis of variance to determine the spatial characterization of dissolved trace elements and heavy metals. Our results indicate that waters in the upper Han River are primarily polluted by Al, As, Cd, Pb, Sb and Se, and the potential pollutants include Ba, Cr, Hg, Mn and Ni. Spatial distribution of trace metals indicates the polluted sections mainly concentrate in the Danjiang, Danjiangkou Reservoir catchment and Hanzhong Plain, and the most contaminated river is in the Hanzhong Plain. Q-model clustering depends on geographical location of sampling sites and groups the 42 sampling sites into four clusters, i.e., Danjiang, Danjiangkou Reservoir region (lower catchment), upper catchment and one river in headwaters pertaining to water quality. The headwaters, Danjiang and lower catchment, and upper catchment correspond to very high polluted, moderate polluted and relatively low polluted regions, respectively. Additionally, PCA/FA and correlation analysis demonstrates that Al, Cd, Mn, Ni, Fe, Si and Sr are controlled by natural sources, whereas the other metals appear to be primarily controlled by anthropogenic origins though geogenic source contributing to them. 2009 Elsevier B.V. All rights reserved.

  13. Removal of ash, sulfur, and trace elements of environmental concern from eight selected Illinois coals

    USGS Publications Warehouse

    Demir, I.

    1998-01-01

    Release analysis (RA) and float-sink (F-S) data were generated to assess the beneficiation potential of washed coals from selected Illinois coal preparation plants through the use of advanced physical cleaning at -60 mesh size. Generally, the F-S process removed greater amounts of ash, sulfur, and trace elements of environmental concern from the coals than the RA process, indicating that the cleanability of Illinois coals by advanced methods can be estimated best by F-S testing. At an 80%-combustibles recovery, the ash yield in the clean F-S products decreased by 47-75%, relative to the parent coals. Average decreases for the elements As(67%), Cd(78%), Hg(73%), Mn(71%), and P(66%) exceeded the average decrease for ash yield (55%). Average decreases for other elements were: Co(31%), Cr(27%), F(39%), Ni(25%), Pb(50%), S(28%), Sb(20%), Se(39), Th(32%), and U(8%). Only Be was enriched (up to 120%) in the clean products relative to the parent coals. These results suggested that the concentration of elements with relatively high atmospheric mobilities (As, Cd, F, Hg, Pb, and Se) during coal combustion can be reduced substantially in Illinois coals through the use of advanced physical cleaning. Advanced physical cleaning can be effective also for the removal of inorganic S. Environmental risks from the emission of other elements with enrichment or relatively low cleanabilities could be small because these elements generally have very low concentrations in Illinois coals or are largely retained in solid residues during coal combustion. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.

  14. Determination of trace elements in dairy milk collected from the environment of coal-fired power plant.

    PubMed

    Ramamurthy, N; Thillaivelavan, K

    2005-01-01

    In the present study the environmental effects on herbivores mammals in and around Coal-fired power plant were studied by collecting the various milk samples of Cow and Buffalo in clean polyethylene bottles. Milk samples collected at five different locations along the banks of the Paravanaru river in and around Neyveli area. These samples were prepared for trace metal determination. The concentration of trace metals (Cu, Zn, Ni, Cd, Cr, Mn, Co and Hg) were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Cold Vapour Atomic Absorption Spectrometry (CVAAS). It is observed that the samples contain greater amounts of trace metals than that in the unexposed areas. Obviously the milk samples are contaminated with these metals due to fly ash released in such environment.

  15. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  16. Trace metals and macroelements in mussels from Chinese coastal waters: National spatial patterns and normalization.

    PubMed

    Lu, Guang-Yuan; Wang, Wen-Xiong

    2018-06-01

    Metal contamination is one of the most ubiquitous and complex problems in the Chinese coastal environment. To explore the large-scale spatial patterns of bioavailable metals, we sampled three major mussels, including 784 blue mussels (Mytilus edulis Linnaeus, 1758) of 14 sites, 224 hard-shelled mussels (Mytilus unguiculatus Valenciennes, 1858) of 4 sites, and 392 green mussels (Perna viridis (Linnaeus, 1758)) of 7 sites, ranging from temperate to tropical coastlines of China, during August and September 2015. The concentrations of macroelements (Na, K, Ca, Mg, and P) and toxic trace metals (Ag, Cd, Cr, Cu, Ni, Pb, Ti, and Zn) in the mussel's whole soft tissues were determined. Among the four Chinese coastal basins, Cd, Ti and Cr in the mussel tissues were the highest at Bohai Sea (BS) and Yellow Sea (YS), and Cu, Ni, Pb and Ag in the mussel tissues were the highest at East China Sea (ECS) and South China Sea (SCS). Zinc concentrations in mussels from YS were significantly higher than those from the other regions. Given the variability of environmental conditions such as salinity and nutrients, we further normalized the measured tissue metal concentrations with tissue Na and P levels. After Na normalization as the salinity proxy, the variability of Cd, Cu, Zn, Ag, and Ni was reduced. Trace elements accumulation in the mussel tissues was significantly related to both macroelements (Na or P) and body dry weight. The present study demonstrated that nonlinear optimization of different elements was necessary in assessing metal bioaccumulation patterns in marine mussels at a large spatial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Trace metals solubility in rainwater: evaluation of rainwater quality at a watershed area, Istanbul.

    PubMed

    Başak, Bertan; Alagha, Omar

    2010-08-01

    In this study, 79 bulk precipitation samples were collected at two sampling sites near Büyükçekmece Lake, one of the important drinking water sources of Istanbul, for the period of October 2001 to July 2002. The study comprised the determination of trace and toxic metals concentrations in rain water. The concentrations of the metals in this study were found to be higher than those reported by other researchers around the world. The solubility of toxic metals was found in the order of Cd>Cu>V>Zn>Ni>Pb>Cr. Solubility of metals under acidic conditions (pH<5.5) was approximately five times higher than those under neutral conditions with Cd as the most soluble metal (50% soluble). Statistical evaluations including seasonal variations, crustal enrichment factors, and correlation matrix were discussed to identify the possible sources of these pollutants. The study revealed that anthropogenic elements were highly enriched especially for Cd>Cu>Pb which were found to be highly enriched. Significant portion of Cu and Pb could be increased by the effect of local sources like cement industry in the area; however, the rest of the investigated trace metals could be brought to the sampling site by long-range transport to the Büyükçekmece Lake watershed area.

  18. Seasonal investigation of trace element contents in commercially valuable fish species from the Black sea, Turkey.

    PubMed

    Mendil, Durali; Demirci, Zafer; Tuzen, Mustafa; Soylak, Mustafa

    2010-03-01

    Fish species (Sarda sarda, Mulus barbatus ponticus, Trachurus trachurus and Merlangius merlangus) were collected from the Black sea, Turkey between 2008 and 2009 (spring, summer, autumn and winter). The samples were analyzed using flame and graphite furnace atomic absorption spectrometry after microwave digestion. The maximum metal concentrations were found to be as 25.5-41.4 microg/g (Fe), 17.8-25.7 microg/g (Zn), 0.28-0.64 microg/g (Pb), 0.64-0.99 microg/g (Cr), 1.3-3.6 microg/g (Mn), 1.4-1.9 microg/g (Cu), 0.18-0.35 microg/g (Cd) and 0.25-0.42 microg/g (Co) for fish species. The concentration of trace metals in samples is depended on fish species. Some species is accumulated trace metals at high ratio. Trace element levels in analyzed fish species were acceptable to human consumption at nutritional and toxic levels. The levels of lead and cadmium in fish samples were higher than the recommended legal limits. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  19. Trace element reference values in tissues from inhabitants of the EU. XII. Development of BioReVa program for statistical treatment.

    PubMed

    Iversen, B S; Sabbioni, E; Fortaner, S; Pietra, R; Nicolotti, A

    2003-01-20

    Statistical data treatment is a key point in the assessment of trace element reference values being the conclusive stage of a comprehensive and organized evaluation process of metal concentration in human body fluids. The EURO TERVIHT project (Trace Elements Reference Values in Human Tissues) was started for evaluating, checking and suggesting harmonized procedures for the establishment of trace element reference intervals in body fluids and tissues. Unfortunately, different statistical approaches are being used in this research field making data comparison difficult and in some cases impossible. Although international organizations such as International Federation of Clinical Chemistry (IFCC) or International Union of Pure and Applied Chemistry (IUPAC) have issued recommended guidelines for reference values assessment, including the statistical data treatment, a unique format and a standardized data layout is still missing. The aim of the present study is to present a software (BioReVa) running under Microsoft Windows platform suitable for calculating the reference intervals of trace elements in body matrices. The main scope for creating an ease-of-use application was to control the data distribution, to establish the reference intervals according to the accepted recommendation, on the base of the simple statistic, to get a standard presentation of experimental data and to have an application to which further need could be integrated in future. BioReVa calculates the IFCC reference intervals as well as the coverage intervals recommended by IUPAC as a supplement to the IFCC intervals. Examples of reference values and reference intervals calculated with BioReVa software concern Pb and Se in blood; Cd, In and Cr in urine, Hg and Mo in hair of different general European populations. University of Michigan

  20. Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam)

    NASA Astrophysics Data System (ADS)

    Koukina, S. E.; Lobus, N. V.; Peresypkin, V. I.; Dara, O. M.; Smurov, A. V.

    2017-11-01

    Major (Si, Al, Fe, Ti, Mg, Ca, Na, K, S, P), minor (Mn) and trace (Li, V, Cr, Co, Ni, Cu, Zn, As, Sr, Zr, Mo, Cd, Ag, Sn, Sb, Cs, Ba, Hg, Pb, Bi and U) elements, their chemical forms and the mineral composition, organic matter (TOC) and carbonates (TIC) in surface sediments from the Cai River estuary and Nha Trang Bay were first determined along the salinity gradient. The abundance and ratio of major and trace elements in surface sediments are discussed in relation to the mineralogy, grain size, depositional conditions, reference background and SQG values. Most trace-element contents are at natural levels and are derived from the composition of rocks and soils in the watershed. A severe enrichment of Ag is most likely derived from metal-rich detrital heavy minerals such as Ag-sulfosalts. Along the salinity gradient, several zones of metal enrichment occur in surface sediments because of the geochemical fractionation of the riverine material. The parts of actually and potentially bioavailable forms (isolated by four single chemical reagent extractions) are most elevated for Mn and Pb (up to 36% and 32% of total content, respectively). The possible anthropogenic input of Pb in the region requires further study. Overall, the most bioavailable parts of trace elements are associated with easily soluble amorphous Fe and Mn oxyhydroxides. The sediments are primarily enriched with bioavailable metal forms in the riverine part of the estuary. Natural (such as turbidities) and human-generated (such as urban and industrial activities) pressures are shown to influence the abundance and speciation of potential contaminants and therefore change their bioavailability in this estuarine system.

  1. Baseline element concentrations in soils and plants, Wattenmeer National Park, North and East Frisian Islands, Federal Republic of Germany

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.; van den Boom, G.

    1992-01-01

    Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.

  2. Ordinary chondrites - Multivariate statistical analysis of trace element contents

    NASA Technical Reports Server (NTRS)

    Lipschutz, Michael E.; Samuels, Stephen M.

    1991-01-01

    The contents of mobile trace elements (Co, Au, Sb, Ga, Se, Rb, Cs, Te, Bi, Ag, In, Tl, Zn, and Cd) in Antarctic and non-Antarctic populations of H4-6 and L4-6 chondrites, were compared using standard multivariate discriminant functions borrowed from linear discriminant analysis and logistic regression. A nonstandard randomization-simulation method was developed, making it possible to carry out probability assignments on a distribution-free basis. Compositional differences were found both between the Antarctic and non-Antarctic H4-6 chondrite populations and between two L4-6 chondrite populations. It is shown that, for various types of meteorites (in particular, for the H4-6 chondrites), the Antarctic/non-Antarctic compositional difference is due to preterrestrial differences in the genesis of their parent materials.

  3. Development and certification of the new SRM 695 trace elements in multi-nutrient fertilizer

    USGS Publications Warehouse

    MacKey, E.A.; Cronise, M.P.; Fales, C.N.; Greenberg, R.R.; Leigh, S.D.; Long, S.E.; Marlow, A.F.; Murphy, K.E.; Oflaz, R.; Sieber, J.R.; Rearick, M.S.; Wood, L.J.; Yu, L.L.; Wilson, S.A.; Briggs, P.H.; Brown, Z.A.; Budahn, J.; Kane, P.F.; Hall, W.L.

    2007-01-01

    During the past seven years, several states within the US have enacted regulations that limit the amounts of selected non-nutritive elements in fertilizers. Internationally, several countries, including Japan, China, and Australia, and the European Union also limit the amount of selected elements in fertilizers. The elements of interest include As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Se, and Zn. Fertilizer manufacturers and state regulatory authorities, faced with meeting and verifying these limits, need to develop analytical methods for determination of the elements of concern and to validate results obtained using these methods. Until now, there were no certified reference materials available with certified mass fraction values for all elements of interest in a blended, multi-nutrient fertilizer matrix. A new standard reference material (SRM) 695 trace elements in multi-nutrient fertilizer, has been developed to help meet these needs. SRM 695 has recently been issued with certified mass fraction values for seventeen elements, reference values for an additional five elements, and information values for two elements. The certificate of analysis includes an addendum listing percentage recovery for eight of these elements, determined using an acid-extraction inductively-coupled plasma optical-emission spectrometry (ICP-OES) method recently developed and tested by members of the Association of American Plant Food Control Officials. ?? Springer-Verlag 2007.

  4. Trace elements in shells of common gastropods in the near vicinity of a natural CO2 vent: no evidence of pH-dependent contamination

    NASA Astrophysics Data System (ADS)

    McClintock, J. B.; Amsler, C. D.; Amsler, M. O.; Duquette, A.; Angus, R. A.; Hall-Spencer, J. M.; Milazzo, M.

    2014-04-01

    There is concern that the use of natural volcanic CO2 vents as analogs for studies of the impacts of ocean acidification on marine organisms are biased due to physiochemical influences other than seawater pH alone. One issue that has been raised is whether potentially harmful trace elements in sediments that are rendered more soluble and labile in low pH environments are made more bioavailable, and sequestered in the local flora and fauna at harmful levels. In order to evaluate this hypothesis, we analyzed the concentrations of trace elements in shells (an established proxy for tissues) of four species of gastropods (two limpets, a topshell and a whelk) collected from three sites in Levante Bay, Vulcano Island. Each sampling site increased in distance from the primary CO2 vent and thus represented low, moderate, and ambient seawater pH conditions. Concentrations of As, Cd, Co, Cr, Hg, Mo, Ni, Pb, and V measured in shells using ICP-OES were below detection thresholds for all four gastropod species at all three sites. However, there were measurable concentrations of Sr, Mn, and U in the shells of the limpets Patella caerulea, P. rustica, and the snail Osilinus turbinatus, and similarly, Sr, Mn, U, and also Zn in the shells of the whelk Hexaplex trunculus. Levels of these elements were within the ranges measured in gastropod shells in non-polluted environments, and with the exception of U in the shells of P. caerulea, where the concentration was significantly lower at the collecting site closest to the vent (low pH site), there were no site-specific spatial differences in concentrations for any of the trace elements in shells. Thus trace element enhancement in sediments in low-pH environments was not reflected in greater bioaccumulations of potentially harmful elements in the shells of common gastropods.

  5. 210Po Activity and concentrations of selected trace elements (As, Cd, Cu, Hg, Pb, Zn) in the muscle tissue of tunas Thunnus albacares and Katsuwonus pelamis from the Eastern Pacific Ocean.

    PubMed

    Ruelas-Inzunza, Jorge; Soto-Jiménez, Martín Federico; Ruiz-Fernández, Ana Carolina; Bojórquez-Leyva, Humberto; Pérez-Bernal, Hascibe; Páez-Osuna, Federico

    2012-12-01

    Daily mineral intake (DMI) of Cu and Zn, percentage weekly intake (PWI) of As, Cd, Hg, Pb, and doses of (210)Po were estimated by using their elemental concentration in muscle of two tuna species and the average tuna consumption in Mexico. Skipjack tuna Katsuwonus pelamis had significantly (p < 0.05) higher levels of As (1.38 μg g(-1) dw) and Cu (1.85 μg g(-1) dw) than yellowfin tuna Thunnus albacares, whereas Pb concentrations (0.18 μg g(-1) dw) were significantly (p < 0.05) higher in T. albacares. The sequence of elemental concentrations in both species was Zn > Cu > As > Hg > Pb > Cd. In T. albacares, concentrations of Cd and Pb in muscle tissue were positively correlated (p < 0.05) with weight of specimens, while Cu was negatively correlated. DMI values were below 10 %. PWI figures (<2 %) are not potentially harmful to human health. (210)Po concentration in T. albacares and K. pelamis accounts for 13.5 to 89.7 % of the median individual annual dose (7.1 μSv) from consumption of marine fish and shellfish for the world population.

  6. An Evaluation of Partial Digestion Protocols for the Extraction and Measurement of Trace Metals of Environmental Concern in Marine and Estuarine Sediments

    NASA Astrophysics Data System (ADS)

    Winters, S. J.; Krahforst, C.; Sherman, L.; Kehm, K.

    2013-12-01

    As part of a broad study of the fate and transport of trace metals in estuarine sediments (Krahforst et al., 2013), the efficacy of commonly-used partial digestion protocols, including ISO 11466 (treatment with aqua regia), EPA 3050B (nitric acid followed by H2O2) and a modified rock digestion method ('RD' method- H2O2 followed by nitric), were evaluated for two NIST SRM materials, marine sediment 2702 and estuarine sediment 1646a. Unlike so-called total sediment digestions, the methods studied in this work do not employ hydrofluoric acid and are thought to leave silicates substantially or wholly intact. These methods can in principle compliment studies based on total digestions by providing information about trace metals in phases that are potentially more labile in the marine environment. Samples were digested in ~150 mg aliquots. Application of ISO 11466 and EPA 3050B followed published protocols except that digestions were carried out in trace-metal clean 15 mL capped Teflon vessels in an Al block digester and, at the end of the procedure, the supernatant was decanted from undigested material following repeated centrifugation in 2% nitric acid. Digested solutions were analyzed for Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Ag, Cd, Sn and Pb content by ICPMS. All elements were analyzed in collision reaction cell mode to minimize isobaric interferences, except Cd and Ag, which were analyzed in standard mode. Instrument performance was monitored in-run by analyzing the SRM 1643e and several quality-check standards. Two repeated digestions of SRM 2702 and SRM 1646a using EPA 3050B produced identical yields, within the standard deviation of repeated analyses (0 - 5%), for all analyzed elements except Cu, which varied by 30% for SRM 2702. The same was true for ISO 11466, although the standard deviation of repeated analyses for this digestion series tended to be larger (< ~15%). The RD method, which consists of pre-treatment with H2O2 followed by repeated treatments with nitric acid, produced the highest average yields for all elements, ranging from 50% of the Al in SRM 2702 up to ~100% for Cd and Pb. The higher recoveries for the RD method may indicate that pre-treatment with H2O2 more effectively removes organics compared with the conventional methods. Yields for ISO 11466 digestions typically range from 5 - 15% higher than EPA 3050B for all studied elements. Comparisons between the two sediments demonstrated that the acid-extractable fraction differs for several elements. For example results from all three digestion methods confirm a ~40% difference in yield for Mn between SRM 2702 and SRM 1646a. Overall, the results indicate that yields for trace element analyses of marine and estuarine sediments resulting from partial digestion are sensitive to the digestion technique, and in particular the methods employed for removal of organic phases. This work was supported by NSF Grant EAR-0922733 and a Maryland Sea Grant Program Development Award.

  7. A Compilation of Metals and Trace Elements Extracted from Materials Relevant to Pharmaceutical Applications such as Packaging Systems and Devices.

    PubMed

    Jenke, Dennis; Rivera, Christine; Mortensen, Tammy; Amin, Parul; Chacko, Molly; Tran, Thang; Chum, James

    2013-01-01

    Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions and the levels of 32 metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The extracting solvents included aqueous mixtures at low and high pH and an organic solvent mixture (40/60 ethanol water). The sealed vessel extractions were performed by placing an appropriate portion of the test articles and an appropriate volume of extracting solution in inert extraction vessels and exposing the extraction units (and associated extraction blanks) to defined conditions of temperature and duration. The levels of extracted target elements were measured by inductively coupled plasma atomic emission spectroscopy. The overall reporting threshold for most of the targeted elements was 0.05 μg/mL, which corresponds to 0.5 μg/g for the most commonly utilized extraction stoichiometry (1 g of material per 10 mL of extracting solvent). The targeted elements could be classified into four major groups depending on the frequency with which they were present in the over 250 extractions reported in this study. Thirteen elements (Ag, As, Be, Cd, Co, Ge, Li, Mo, Ni, Sn, Ti, V, and Zr) were not extracted in reportable quantities from any of the test articles under any of the extraction conditions. Eight additional elements (Bi, Cr, Cu, Mn, Pb, Sb, Se, and Sr) were rarely extracted from the test articles at reportable levels, and three other elements (Ba, Fe, and P) were infrequently extracted from the test articles at reportable levels. The remaining eight elements (Al, B, Ca, Mg, Na, S, Si, and Zn) were more frequently present in the extracts in reportable quantities. These general trends in accumulation behavior were compared to compiled lists of elements of concern as impurities in pharmaceutical products. Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions, and the levels of thirty-two metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The targeted elements could be classified into four major groups depending on the frequency with which they were present in the extractions reported in this study: those elements that were not extracted in reportable quantities from any of the test articles under any of the extraction conditions, those elements that were rarely extracted from the test articles at reportable levels, those elements that were infrequently extracted from the test articles at reportable levels, and those elements that were more frequently present in the extracts in reportable quantities.

  8. Ecological risk assessment of heavy metals from the surficial sediments of a shallow coastal lagoon, Egypt.

    PubMed

    Abdallah, Maha Ahmed Mohamed

    2011-07-01

    Sediment quality of Lake Maryout (one of the four Nile Delta shallow brackish water lakes on the south-eastern coast of the Mediterranean Sea) is of concern as this lake is used for land reclamation and aquaculture and is an important fishing source. The magnitude and ecological relevance of metal pollution in Lake Maryout Main Basin was investigated by applying different sediment quality assessment approaches. The aim of this study was to estimate ecological risk of trace elements (Cd, Ni, Pb, Cr, Cu and Zn) in the surficial sediments (<63 jtm fraction) of Lake Maryout. Heavily contaminated sediments were evaluated by the Sediment Quality Guideline (SQG) of the US Environmental Protection Agency. The degree of contamination (Cd) was estimated as very high for each site. Two sets of SQGs effect range-low/effect range-median values and threshold effect concentration (TEC) and probable effect concentration (PEC) values were used in this study. Sediments from each site were judged toxic when more of the PEC values exceeded EPA guidelines. Based on the geoaccumulation index (Ieo) of target trace elements, the Main Basin of Lake Maryout has to be considered as extremely polluted with Cd (Igeo > or =5), strongly polluted with Zn (2 < or = Igeo < or =3), moderately polluted with Cu (1 < or = Igeo < or = 2), unpolluted to moderately polluted with Cr and Pb (0 < or = Igeo < or = 1 for each) and unpolluted with Ni (Igeo < or = 0). Lake Maryout sediments had heavy accumulations of Cd, which apparently come from drains that include industrial and raw domestic wastes. Therefore, a sequential extraction technique was applied to assess the five fractions (exchangeable, metals bound to carbonate, acid-reducible, oxidizable-organic and residual) of Cd in surface sediments. The Cd concentration in most sampling stations was dominated by the non-resistant fraction (anthropogenic). The result showed that those stations located in the vicinity of municipal and mixed waste drains posed a high potential risk to fauna and flora of Maryout Lake.

  9. A review of Human Biomonitoring studies of trace elements in Pakistan.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib

    2016-11-01

    Human biomonitoring (HBM) measures the concentration levels of substances or their metabolites in human body fluids and tissues. HBM of dose and biochemical effect monitoring is an effective way of measuring human exposure to chemical substances. Many countries have conducted HBM studies to develop a data base for many chemicals including trace metals of health concern for their risk assessment and risk management. However, in Pakistan, HBM program on large scale for general population does not exist at present or in the past has been reported. Various individual HBM studies have been reported on the assessment of trace elements (usually heavy metals) from Pakistan; most of them are epidemiological cross sectional surveys. In this current review we tried to develop a data base of HBM studies of trace elements namely arsenic, cadmium, copper, chromium, iron, lead, manganese, nickel, and zinc in biological fluids (blood, urine) and tissues (hair, nails) in general population of Pakistan. Studies from all available sources have been explored, discussed and presented in the form of tables and figures. The results of these studies were critically compared with large scale HBM programs of other countries, (US & European communities etc). It was observed from the present study that the most of the toxic metals in biological fluids/tissues in general population of Pakistan, have higher background values comparatively. For example the mean values of toxic metals like As, Cd, Cr, Ni, and Pb in blood of general population were found as 2.08 μg/L, 4.24 μg/L, 60.5 μg/L, 1.95 μg/L, 198 μg/L respectively. Similarly, the urine mean values of 67.6 μg/L, 3.2 μg/L, 16.4 μg/L, 6.2 μg/L and 86.5 μg/L were observed for As, Cd, Cr, Ni, and Pb respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Intercropping with white lupin (Lupinus albus L.); a promising tool for phytoremediation and phytomining research

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balazs; Moschner, Christin; Heilmeier, Hermann

    2015-04-01

    In recent studies root-soil interactions of white lupine (Lupinus albus L.) have drawn special attention to researchers due to its particularly high potential to increase bioavailability of phosphorous (P) and trace nutrients in soils. In mixed cultures, white lupine has the ability to mobilize P and trace nutrients in soil in excess of its own need and make this excess available for other intercropped companion species. While improved acquisition of P and improved yield parameters have mostly been documented in cereal-lupine intercrops, compared to sole crops, only a few recent studies have evidenced similar effects for trace elements e.g. Fe, Zn and Mn. In this preliminary study we tried to obtain more information about the mobilization of trace elements due to intercropping under field conditions. We hypothesize, that processes that lead to a better acquisition of trace nutrients might also affect other trace elements what could be useful for phytoremediation and phytomining research. Here we report the results of a semi-field experiment were we investigated the effects of an intercropping of white lupine with oat (Avena sativa L.) on the concentrations of trace metals in shoots of oat. We investigated the effects on 12 trace elements, including 4 elements with relevance for plant nutrition (P, Fe, Mn, Zn) and 8 trace elements, belonging to the group of metalloids, lanthanides and actinides with high relevance in phytoremediation (Cd, Pb Th, U) and phytomining research (Sc, La, Nd, Ge). The experiment was carried out on a semi-field lysimer at the off-site soil recycling and remediation center in Hirschfeld (Saxony, Germany). To test the intercropping-dependent mobilization of trace metals in soil and enhanced uptake of elements by oat, white lupine and oat were cultivated on 20 plots (4 m² each) in monocultures and mixed cultures and two different white lupin /oat-ratios (11% and 33%, respectively) applying various treatments. The geometrical arrangement of plots was randomized and every treatment was fivefold replicated. Soil solution was collected weekly with plastic suction cups. Concentrations of trace metals in shoots of oat and soil solution were measured with ICP-MS. As a result, we found that both, concentrations of trace elements in oat plants, as well as the mobility of P and trace metals in soil solution was increased by an intercropping with white lupine. Mixed culture of oat with 11% white lupin significantly increased the concentrations of the trace nutrients Fe, Mn and Zn, as well as the concentrations of the trace metals Pb, La, Nd, Sc, Th and U in tissues of oat. Surprisingly, mixed cultures with 33 % white lupin did not significantly affect trace metal concentrations in oat, what might be the consequence of an increasing competition of roots of white lupin and oat for nutrients and trace metals. In conclusion we found that mixed cultures of white lupin with cereals might be a powerful tool for enhanced phytoremediation and phytomining. However, processes involved in the physiochemical mechanism of element uptake as affected by the oat/white lupin co-cultivation remain unknown and further studies on this topic are planned. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  11. Comparison of four USEPA digestion methods for trace metal analysis using certified and Florida soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, M.; Ma, L.Q.

    1998-11-01

    It is critical to compare existing sample digestion methods for evaluating soil contamination and remediation. USEPA Methods 3050, 3051, 3051a, and 3052 were used to digest standard reference materials and representative Florida surface soils. Fifteen trace metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and Za), and six macro elements (Al, Ca, Fe, K, Mg, and P) were analyzed. Precise analysis was achieved for all elements except for Cd, Mo, Se, and Sb in NIST SRMs 2704 and 2709 by USEPA Methods 3050 and 3051, and for all elements except for As, Mo,more » Sb, and Se in NIST SRM 2711 by USEPA Method 3052. No significant differences were observed for the three NIST SRMs between the microwave-assisted USEPA Methods 3051 and 3051A and the conventional USEPA Method 3050 Methods 3051 and 3051a and the conventional USEPA Method 3050 except for Hg, Sb, and Se. USEPA Method 3051a provided comparable values for NIST SRMs certified using USEPA Method 3050. However, for method correlation coefficients and elemental recoveries in 40 Florida surface soils, USEPA Method 3051a was an overall better alternative for Method 3050 than was Method 3051. Among the four digestion methods, the microwave-assisted USEPA Method 3052 achieved satisfactory recoveries for all elements except As and Mg using NIST SRM 2711. This total-total digestion method provided greater recoveries for 12 elements Ag, Be, Cr, Fe, K, Mn, Mo, Ni, Pb, Sb, Se, and Zn, but lower recoveries for Mg in Florida soils than did the total-recoverable digestion methods.« less

  12. Associations between toxic metals in follicular fluid and in vitro fertilization (IVF) outcomes.

    PubMed

    Bloom, Michael S; Kim, Keewan; Kruger, Pamela C; Parsons, Patrick J; Arnason, John G; Steuerwald, Amy J; Fujimoto, Victor Y

    2012-12-01

    We previously reported associations between trace concentrations of Hg, Cd and Pb in blood and urine and reproductive outcomes for women undergoing in-vitro fertilization (IVF). Here we assess measurements in single follicular fluid (FF) specimens from 46 women as a presumably more relevant marker of dose for reproductive toxicity. FF specimens were analyzed for Hg, Cd and Pb using sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). Variability sources were assessed by nested ANOVA. Multivariable regression was used to evaluate associations for square root transformed metals with IVF outcomes, adjusting for confounders. An inverse association is detected for FF Pb and fertilization (relative risk (RR) = 0.68, P = 0.026), although positive for Cd (RR = 9.05, P = 0.025). While no other statistically significant associations are detected, odds ratios (OR) are increased for embryo cleavage with Hg (OR = 3.83, P = 0.264) and Cd (OR = 3.18, P = 0.644), and for embryo fragmentation with Cd (OR = 4.08, P = 0.586) and Pb (OR = 2.22, P = 0.220). Positive estimates are observed for Cd with biochemical (RR = 19.02, P = 0.286) and clinical pregnancies (RR = 38.80, P = 0.212), yet with very low precision. We have identified associations between trace amounts of Pb and Cd in FF from a single follicle, and oocyte fertilization. Yet, the likelihood of biological variation in trace element concentrations within and between follicles, coupled with levels that are near the limits of detection suggest that future work should examine multiple follicles using a 'one follicle-one oocyte/embryo' approach. A larger study is merited to assess more definitively the role that these environmental factors could play with respect to egg quality in IVF programs.

  13. Assessment of trace metals contamination in the coastal sediments of the Egyptian Mediterranean coast

    NASA Astrophysics Data System (ADS)

    El Baz, Sherif M.; Khalil, Mohamed M.

    2018-07-01

    Trace metals contamination has been recently increased in the Egyptian Mediterranean coast owing to the nearby anthropological activities. This investigation aimed to detect the concentrations of six different trace metals (Fe, Mn, Cu, Cd, Pb and Zn) in surface sediments from the central part of the Egyptian Mediterranean coast, and to assess their state of contamination from different indices and risk factor calculations. Mean concentrations of Cu, Pb and Zn were lower and the mean concentration of Cd was higher compared to the background values. The assessment of pollution was mainly based on the contamination indices. Based on the contamination factor, Pb was the most enriched element followed by Cd, Mn, Zn and Cu. Most of the sites show low contamination with respect to Pb, Mn, Cd, Fe, Zn and Cu. The pollution load index also suggests that all the coastal sediments are unpolluted. According to the geoaccumulation index, the sediments were classified into unpolluted with Mn, Cd, Fe and Pb, and unpolluted to moderately polluted with Pb. Risk evaluation revealed that Cd had the greatest ecological risk, followed by Pb, Cu, Mn, while Zn had the lowest risk. With the aid of statistical methods, the origin of metals is classified into two clusters (A and B). Group A consists of Fe, Mn and Cu, whereas group B contains Zn, Pb and Cd. In the first cluster Fe and Mn are joined to each other at a positive and significant similarity (0.68). Fe is recognized as an indicator of lithogenous origin, therefore, its higher similarity with Mn may be indicative of the similar origin for Manganese. In the second cluster Pb and Zn are joined to each other at a positive and significant similarity (0.80). Pb is recognized as an indicator of anthropogenic origin, therefore, its higher similarity with Zn may be indicative of the similar origin for Zinc.

  14. Effects of cadmium on two biocontrol insects and their host weeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quimby, P.C. Jr.; Frick, K.E.; Wauchope, R.D.

    1979-06-01

    Cd added to the nutrient solution at 1 mg.L/sup -1/ significantly reduced growth of alligatorweed and purple nutsedge. Both plant species increased about threefold in Cd content when exposed to the added Cd over the 3 to 4 week periods. A significant difference existed between the two insect species in their response to Cd; the alligatorweed flea beetle was very sensitive to Cd levels in the alligatorweed and the nutsedge moth was virtually unaffected by the levels in the purple nutsedge and diet. These results implied that the alligatorweed/alligatorweed flea beetle system might serve as a sensitive bioassay for heavymore » metal pollution in sewage effluent, particularly since alligatorweed has been considered as a potential biological filter for effluent. Other trace elements may be involved in the biogeography of plants and insects and would merit investigation.« less

  15. Possible lin between elevated accumulation of trace elements and canine distemper virus infection in the Caspian seals (Phoca caspica) stranded in 2000 and 2001

    NASA Astrophysics Data System (ADS)

    Shinsuke, T.; Takashi, K.; Yasumi, A.; Tokutaka, I.; Reiji, K.

    2003-05-01

    In the Caspian Sea, a die-off of thousands of Caspian seals (Phoca caspica) occurred in 1997 and 2000. While a direct cause for these deaths seems to be canine distemper virus (CDV) infection, immunosuppression due to environmental pollutants is considered as one of the possible explanations for the development of the disease. The purpose of this work is to examine whether exposure to trace metals could be one of the factors involved in the mass mortality of Caspian seals. Concentrations of 13 trace elements weredetermined in liver, kidney and muscle of Caspian seals found stranded along the coasts of the Caspian Sea in 2000 and 2001. Concentrations of toxic elemen ts (Ag, Cd, Hg, Tl and Pb) in the Caspian seals collected in 2000 and 2001 were comparable to or lower than those in healthy Caspian seals collected in 1993 and 1998 and in seals from other regions, suggesting that these elements would not be the causative agent for the death of Caspian seals. In contrast, Zn and Fe concentrations in the stranded Caspian seals were apparently higher than those in seals from other locations. These results suggest the disturbance in homeostatic control and nutritional statu s of essential elements in the stranded Caspian seals.

  16. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-01-01

    The trace elements Ag, As, Au, B, Ba, Be, Bi, Cd, Ce, Co, Cs, Cu, Ga, Hf, Hg, In, La, Mn, Mo, Ni, Pb, Pd, Rb, Rh, Ru, Sb, Se, Sn, Sr, Te, Th, Tl, U, V, W, Y and Zr were determined in 130 human blood samples from occupationally non-exposed volunteers living in the greater area of Bremen in northern Germany. The blood samples were collected in lithium heparin monovettes developed for trace metal determination and were analysed by inductively coupled plasma mass spectrometry (ICP-MS) with an octopole-based collision/reaction cell. For sample introduction into the ICP, the blood samples were diluted 1/10 (V/V) with a 0.1% Triton-X-100 and 0.5% (V/V) ammonia solution. The method validation of our developed routine method is described for all 37 elements and results about internal and external quality assurance are discussed. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews, including smoking habits, seafood consumption and the type of dental alloys in the teeth. Mean values, geometric mean values, ranges and selected percentiles of all elemental concentrations in human blood are presented, which helps toxicologists and clinical chemists planning research about exposition to metals and health effects caused by exposition to metals.

  17. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France.

    PubMed

    Gandois, L; Nicolas, M; VanderHeijden, G; Probst, A

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (>95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. The Trace Element Composition of Plankton and Dust in the Qatari EEZ

    NASA Astrophysics Data System (ADS)

    Turner, J.; Murray, J. W.; Yigiterhan, O.; Al-Ansari, I. S.; Al-Ansi, M.; Abdel-Moati, M.; Paul, B.; Nelson, A.

    2015-12-01

    We present data on elemental concentrations of plankton net tow samples from the Exclusive Economic Zone (EEZ) of Qatar in the Arabian Gulf as part of a broader study of biogenic and lithogenic influences on particulate trace metal concentrations in the surface ocean. There are relatively few analyses of planktonic trace metals and their associated role in the biogeochemical system. We had the opportunity to investigate the composition of plankton in a region heavily affected by dust, a significant factor for phytoplankton growth. Our samples were collected from 2012 to 2015 using trace metal clean net tows with mesh sizes of 50 and 200 microns for measurements of phytoplankton and zooplankton, respectively. Samples were totally digested and analyzed by inductively coupled plasma-mass spectroscopy (ICP-MS). The biogenic portion was determined by subtracting the lithogenic portion from the total concentration. The lithogenic fraction was defined as the concentration of aluminum in the sample multiplied by a [Me]/Al ratio. Using average Qatari dust for these ratios generated a significant amount of overcorrection, so ratios were established using average upper continental crust (UCC). This method still caused some overcorrection for the lithogenic portion resulting in negative excess values for barium, molybdenum, and lead. These same elements showed the least consistency between measurements. For the other elements, a relative stoichiometry for plankton was determined as Fe > Cu ≈ Zn > As ≈ Cr ≈ Mn ≈ Ni ≈ V > Cd ≈ Co. We also found a significant near shore enrichment for 9 out of 13 elements analyzed, indicative of a possible influence of coastal processes.

  19. Correlation of trace element concentrations between epidermis and internal organ tissues in Indo-Pacific humpback dolphins (Sousa chinensis).

    PubMed

    Sun, Xian; Yu, Ri-Qing; Zhang, Mei; Zhang, Xiyang; Chen, Xi; Xiao, Yousheng; Ding, Yulong; Wu, Yuping

    2017-12-15

    Trace element accumulation in the epidermis of cetaceans has been less studied. This study explored the feasibility of using epidermis as a surrogate tissue to evaluate internal contaminant burdens in Indo-Pacific humpback dolphin (Sousa chinensis). Eleven trace elements were analyzed in the epidermis, muscle and liver tissues from 46 individuals of dolphins stranded along the Pearl River Estuary (PRE) coast between 2007 and 2013. Trace elemental concentrations varied among the three tissues, generally with the highest concentrations found in liver tissues and lowest in the epidermis (except Zn, As, and Pb). Zn concentration in the epidermis was the highest among all tissues, indicating that Zn could be an important element for the epidermis physiology. High concentrations of Hg and Cr in liver were likely due to an excessive intake by dolphins which consumed high Hg and Cr contaminated fishes in the PRE. Hg concentrations in epidermis and muscle tissues were significantly higher in the females than in males. Concentrations of V and Pb in liver, Se and Cd in both muscle and liver, and As and Hg in all tissue samples showed significantly positive relationships with body length. Hepatic Cu concentrations were significantly negatively correlated with the body length. Hg and As concentrations in epidermis showed significantly positive correlations with those in liver tissues. Thus this study proposed that epidermis could be used as a non-invasive monitoring tissue to evaluate Hg and As bioaccumulation in internal tissues of Indo-Pacific humpback dolphins populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Key sources and distribution patterns of particulate material in the South Atlantic: data from the UK GEOTRACES A10 cruise

    NASA Astrophysics Data System (ADS)

    Milne, A.; Palmer, M.; Lohan, M. C.

    2016-02-01

    Particles play a fundamental role in the biogeochemical cycling of both major- and micro-nutrients in marine systems, including trace elements and isotopes. However, knowledge of particulate distributions, and their potential to regulate dissolved elemental concentrations, remains limited and poorly understood. The paradox is, that the oceanic inventory of trace metals is dominated by particulate inputs (e.g. aerosol deposition, shelf sediment resuspension). Moreover the labile fraction of particulate trace elements could be an important regulator of dissolved concentrations. Here we present particulate data from the UK GEOTRACES South Atlantic transect (GA10) from South Africa to Uruguay. Data from a range of elements (e.g. Fe, Al, Mn) revealed a greater input of particulate metals from the Argentine shelf (up to 290 nM of pFe) in comparison to the South African shelf (< 40 nM of pFe). Overall, higher concentrations of all metals were observed in the bottom waters of the Argentine basin and penetrated deeper up the water column (up to 1300 m), a result of intense benthic storms. The imprint of leakage from the Agulhas Current, identified through temperature and salinity, was observed in the upper water column profile of numerous particulate data (e.g. Pb, Ni, Cd). Measured elemental gradients, combined with measurements from a vertical mixing-profiler, will allow estimates of particulate fluxes to be calculated.

  1. Modeling of experimental data on trace elements and organic compounds content in industrial waste dumps.

    PubMed

    Smoliński, Adam; Drobek, Leszek; Dombek, Václav; Bąk, Andrzej

    2016-11-01

    The main objective of the study presented was to investigate the differences between 20 mine waste dumps located in the Silesian Region of Poland and Czech Republic, in terms of trace elements and polycyclic aromatic hydrocarbons contents. The Principal Component Analysis and Hierarchical Clustering Analysis were applied in exploration of the studied data. Since the data set was affected by outlying objects, the employment of a relevant analysis strategy was necessary. The final PCA model was constructed with the use of the Expectation-Maximization iterative approach preceded by a correct identification of outliers. The analysis of the experimental data indicated that three mine waste dumps located in Poland were characterized by the highest concentrations of dibenzo(g,h,i)anthracene and benzo(g,h,i)perylene, and six objects located in Czech Republic and three objects in Poland were distinguished by high concentrations of chrysene and indeno (1.2.3-cd) pyrene. Three of studied mine waste dumps, one located in Czech Republic and two in Poland, were characterized by low concentrations of Cr, Ni, V, naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthen, benzo(a)anthracene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene, benzo(a)pyrene, dibenzo(g,h,i)anthracene, benzo(g,h,i)perylene and indeno (1.2.3-cd) pyrene in comparison with the remaining ones. The analysis contributes to the assessment and prognosis of ecological and health risks related to the emission of trace elements and organic compounds (PAHs) from the waste dumps examined. No previous research of similar scope and aims has been reported for the area concerned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An ecophysiological study of plants growing on the fly ash deposits from the "Nikola Tesla-A" thermal power station in Serbia.

    PubMed

    Pavlović, Pavle; Mitrović, Miroslava; Djurdjević, Lola

    2004-05-01

    This ecophysiological research on the ash deposits from the "Nikola Tesla-A" thermal power station in Serbia covered 10 plant species (Tamarix gallica, Populus alba, Spiraea van-hauttei, Ambrosia artemisifolia, Amorpha fruticosa, Eupatorium cannabinum, Crepis setosa, Epilobium collinum, Verbascum phlomoides, and Cirsium arvense). This paper presents the results of a water regime analysis, photosynthetic efficiency and trace elements (B, Cu, Mn, Zn, Pb, and Cd) content in vegetative plant parts. Water regime parameters indicate an overall stability in plant-water relations. During the period of summer drought, photosynthetic efficiency (Fv/Fm) was low, ranging from 0.429 to 0.620 for all the species that were analyzed. An analysis of the tissue trace elements content showed a lower trace metal concentration in the plants than in the ash, indicating that heavy metals undergo major concentration during the combustion process and some are not readily taken up by plants. The Zn and Pb concentrations in all of the examined species were normal whereas Cu and Mn concentrations were in the deficiency range. Boron concentrations in plant tissues were high, with some species even showing levels of more than 100 microg/g (Populus sp., Ambrosia sp., Amorpha sp., and Cirsium sp.). The presence of Cd was not detected. In general, it can be concluded from the results of this research that biological recultivation should take into account the existing ecological, vegetation, and floristic potential of an immediate environment that is abundant in life forms and ecological types of plant species that can overgrow the ash deposit relatively quickly. Selected species should be adapted to toxic B concentrations with moderate demands in terms of mineral elements (Cu and Mn).

  3. Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures

    NASA Astrophysics Data System (ADS)

    Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent

    Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.

  4. Risk assessment of bioaccessible trace elements in smoke haze aerosols versus urban aerosols using simulated lung fluids

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Betha, Raghu; Tan, Li Yun; Balasubramanian, Rajasekhar

    2016-01-01

    Smoke-haze episodes, caused by uncontrolled peat and forest fires, occur almost every year in the South-East Asian region with increased concentrations of PM2.5 (airborne particulate matter (PM) with diameter ≤ 2.5 μm). Particulate-bound trace elements (TrElems), especially carcinogenic and toxic elements, were measured during smoke haze as well as non-haze periods in 2014 as they are considered to be indicators of potential health effects. The bioaccessibilities of 13 TrElems were investigated using two types of simulated lung fluids (SLFs), Gamble's solution and artificial lysosomal fluid (ALF), instead of the commonly used leaching agent (water). The dissolution kinetics was also examined for these TrElems. Many TrElems showed higher solubility in SLFs, and were more soluble in ALF compared to the Gamble's solution. Cu, Mn and Cd were observed to be the most soluble trace elements in ALF, while in Gamble's solution the most soluble trace elements were Cu, Mn and Zn. The dissolution rates were highly variable among the elements. Health risk assessment was conducted based on the measured concentrations of TrElems and their corresponding toxicities for three possible scenarios involving interactions between carcinogenic and toxic TrElems and SLFs, using the United States Environmental Protection Agency (USEPA) human health risk assessment model. The cumulative cancer risks exceeded the acceptable level (1 in a million i.e. 1 × 10-6). However, the estimation of health quotient (HQ) indicated no significant chronic toxic health effects. The risk assessment results revealed that the assessment of bioaccessibility of particulate-bound TrElems using water as the leaching agent may underestimate the health risk.

  5. Co-inoculation of Lolium perenne with Funneliformis mosseae and the dark septate endophyte Cadophora sp. in a trace element-polluted soil.

    PubMed

    Berthelot, Charlotte; Blaudez, Damien; Beguiristain, Thierry; Chalot, Michel; Leyval, Corinne

    2018-04-01

    The presence of dark septate endophytes (DSEs) or arbuscular mycorrhizal fungi (AMF) in plant roots and their effects on plant fitness have been extensively described. However, little is known about their interactions when they are simultaneously colonizing a plant root, especially in trace element (TE)-polluted soils. We therefore investigated the effects of Cadophora sp. and Funneliformis mosseae on ryegrass (Lolium perenne) growth and element uptake in a Cd/Zn/Pb-polluted soil. The experiment included four treatments, i.e., inoculation with Cadophora sp., inoculation with F. mosseae, co-inoculation with Cadophora sp. and F. mosseae, and no inoculation. Ryegrass biomass and shoot Na, P, K, and Mg concentrations significantly increased following AMF inoculation as compared to non-inoculated controls. Similarly, DSE inoculation increased shoot Na concentration, whereas dual inoculation significantly decreased shoot Cd concentration. Moreover, oxidative stress determined by ryegrass leaf malondialdehyde concentration was alleviated both in the AMF and dual inoculation treatments. We used quantitative PCR and microscope observations to quantify colonization rates. They demonstrated that DSEs had no effect on AMF colonization, while AMF colonization slightly decreased DSE frequency. We also monitored fluorescein diacetate (FDA) hydrolysis and alkaline phosphatase (AP) activity in the rhizosphere soils. FDA hydrolysis remained unchanged in the three inoculated treatments, but AMF colonization increased AP activity and P mobility in the soil whereas DSE colonization did not alter AP activity. In this experiment, we unveiled the interactions between two ecologically important fungal groups likely to occur in roots which involved a decrease of oxidative stress and Cd accumulation in shoots. These results open promising perspectives on the fungal-based phytomanagement of TE-contaminated sites by the production of uncontaminated and marketable plant biomass.

  6. Harvest locations of goose barnacles can be successfully discriminated using trace elemental signatures

    NASA Astrophysics Data System (ADS)

    Albuquerque, Rui; Queiroga, Henrique; Swearer, Stephen E.; Calado, Ricardo; Leandro, Sérgio M.

    2016-06-01

    European Union regulations state that consumers must be rightfully informed about the provenance of fishery products to prevent fraudulent practices. However, mislabeling of the geographical origin is a common practice. It is therefore paramount to develop forensic methods that allow all players involved in the supply chain to accurately trace the origin of seafood. In this study, trace elemental signatures (TES) of the goose barnacle Pollicipes pollicipes, collected from ten sites along the Portuguese coast, were employed to discriminate individual’s origin. Barium (Ba), boron (B), cadmium (Cd), chromium (Cr), lithium (Li), magnesium (Mg), manganese (Mn), phosphorous (P), lead (Pb), strontium (Sr) and zinc (Zn) - were quantified using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Significant differences were recorded among locations for all elements. A regularized discriminant analysis (RDA) revealed that 83% of all individuals were correctly assigned. This study shows TES can be a reliable tool to confirm the geographic origin of goose barnacles at fine spatial resolution. Although additional studies are required to ascertain the reliability of TES on cooked specimens and the temporal stability of the signature, the approach holds great promise for the management of goose barnacles fisheries, enforcement of conservation policies and assurance in accurate labeling.

  7. Tracing cadmium, zinc and lead sources in bivalves from the coasts of western Canada and the USA using isotopes

    NASA Astrophysics Data System (ADS)

    Shiel, Alyssa E.; Weis, Dominique; Orians, Kristin J.

    2012-01-01

    Environmental monitoring and remediation require techniques to identify the source and fate of metals emissions. The measurement of heavy metal isotopic signatures, made possible by the advent of the MC-ICP-MS, is a powerful new geochemical tool, which may be used to trace the source of these metals in the environment. In a multi-tracer study, Cd, Zn and Pb isotopic compositions (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are used to distinguish between natural and anthropogenic sources of these metals in bivalves collected from western Canada (British Columbia), Hawaii, and the USA East Coast. Variability in the δ 114/110Cd values of bivalves (-1.20‰ to -0.09‰) is attributed to differences in the relative contributions of Cd from natural and anthropogenic sources between sites. Cadmium isotopic compositions (δ 114/110Cd = -0.69‰ to -0.09‰) identify high Cd levels in B.C. oysters as primarily natural (i.e., upwelling of Cd rich intermediate waters in the North Pacific), with some variability attributed to anthropogenic sources (e.g., mining and smelting). Variability in the δ 66/64Zn values exhibited by the B.C. bivalves is relatively small (0.28-0.36‰). Despite the low Pb levels found in B.C. oysters, Pb isotopes are used to identify emissions from industrial processes and the consumption of unleaded gasoline and diesel fuel as significant metal sources. Although the Cd concentrations of the USA East Coast bivalves are primarily lower than those of B.C. oysters, their relatively light Cd isotopic compositions (δ 114/110Cd = -1.20‰ to -0.54‰) indicate the significance of anthropogenic Cd sources and are attributed to the high prevalence of industry on this coast. The δ 114/110Cd values of USA East Coast bivalves include the lightest ever reported, with the exception of values reported for extraterrestrial materials. In addition, the Pb isotopic compositions of bivalves from the USA East Coast indicate Pb emissions from the combustion of coal are an important source of Pb, consistent with the high consumption of coal for power production on this coast. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb "fingerprinting" techniques.

  8. Phytoextraction of trace elements by water hyacinth in contaminated area of gold mine tailing.

    PubMed

    Romanova, Tamara E; Shuvaeva, Olga V; Belchenko, Ludmila A

    2016-01-01

    The ability of water hyacinth (Eichhornia crassipes) to uptake Ag, Ba, Cd, Mo, and Pb from waters in gold mine tailing area was studied. All experiments were carried out in the field conditions without using of model system. Bioconcentration (BCF) and translocation factors (TF) as well as elements accumulation by plant in different points of tailings-impacted area were evaluated. It has been shown that water hyacinth demonstrates high ability to accumulate Mo, Pb, and Ba with BCF values 24,360 ± 3600, 18,800 ± 2800 and 10,040 ± 1400, respectively and is efficient in translocation of Mo and Cd. The general trend of the plant accumulation ability in relation to the studied elements corresponds to their concentration in the medium. As the distance from tailings increases, concentration of Ag, Ba and Pb in plant decreases more clearly than that of Cd, while the amount of Mo accumulated by plant doesn't drop significantly in accordance with its concentration in water. Under the conditions of the confluence of river Ur and drainage stream Ba and Ag can be considered as potential candidates for phytomining.

  9. Determination of Trace Available Heavy Metals in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Phase Transformation Method.

    PubMed

    Yi, Rongxing; Yang, Xinyan; Zhou, Ran; Li, Jiaming; Yu, Huiwu; Hao, Zhongqi; Guo, Lianbo; Li, Xiangyou; Lu, Yongfeng; Zeng, Xiaoyan

    2018-05-18

    To detect available heavy metals in soil using laser-induced breakdown spectroscopy (LIBS) and improve its poor detection sensitivity, a simple and low cost sample pretreatment method named solid-liquid-solid transformation was proposed. By this method, available heavy metals were extracted from soil through ultrasonic vibration and centrifuging and then deposited on a glass slide. Utilization of this solid-liquid-solid transformation method, available Cd and Pb elements in soil were detected successfully. The results show that the regression coefficients of calibration curves for soil analyses reach to more than 0.98. The limits of detection could reach to 0.067 and 0.94 ppm for available Cd and Pb elements in soil under optimized conditions, respectively, which are much better than those obtained by conventional LIBS.

  10. Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress.

    PubMed

    Lopareva-Pohu, Alena; Verdin, Anthony; Garçon, Guillaume; Lounès-Hadj Sahraoui, Anissa; Pourrut, Bertrand; Debiane, Djouher; Waterlot, Christophe; Laruelle, Frédéric; Bidar, Géraldine; Douay, Francis; Shirali, Pirouz

    2011-06-01

    Due to anthropogenic activities, large extends of soils are highly contaminated by Metal Trace Element (MTE). Aided phytostabilisation aims to establish a vegetation cover in order to promote in situ immobilisation of trace elements by combining the use of metal-tolerant plants and inexpensive mineral or organic soil amendments. Eight years after Coal Fly Ash (CFA) soil amendment, MTE bioavailability and uptake by two plants, Lolium perenne and Trifolium repens, were evaluated, as some biological markers reflecting physiological stress. Results showed that the two plant species under study were suitable to reduce the mobility and the availability of these elements. Moreover, the plant growth was better on CFA amended MTE-contaminated soils, and the plant sensitivity to MTE-induced physiological stress, as studied through photosynthetic pigment contents and oxidative damage was lower or similar. In conclusion, these results supported the usefulness of aided phytostabilisation of MTE-highly contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Toxic trace elements in solid airborne particles and ecological risk assessment in the vicinity of local boiler house plants

    NASA Astrophysics Data System (ADS)

    Talovskaya, Anna V.; Osipova, Nina A.; Yazikov, Egor G.; Shakhova, Tatyana S.

    2017-11-01

    The article deals with assessment of anthropogenic pollution in vicinity of local boilers using the data on microelement composition of solid airborne particles deposited in snow. The anthropogenic feature of elevated accumulation levels of solid airborne particles deposited in snow in the vicinity of coal-fired boiler house is revealed in elevated concentrations (3-25 higher than background) of Cd, Sb, Mo, Pb, Sr, Ba, Ni, Mo, Zn and Co. In the vicinity oil-fired boiler house the specific elements as parts of solid airborne particles deposited in snow are V, Ni and Sb, as their content exceeds the background from 3 to 8 times. It is determined that the maximum shares in non-carcinogenic human health risk from chronic inhalation of trace elements to the human body in the vicinity of coal-fired boiler house belong to Al, Mn, Cu, Ba, Co, Pb, whereas in the vicinity of oil-fired boiler house - Al, Mn, Cu, Ni, V.

  12. Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark

    NASA Astrophysics Data System (ADS)

    Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo

    2016-11-01

    The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by ICP-OES in samples of bark of the holm oak (Quercus ilex L.) collected from trees in different urban environments (residential and mixed residential/industrial). The use of tree bark as a bioindicator makes it easy to create maps that can provide detailed data on the levels and on the spatial distribution of each trace element. For most of the elements considered (As, Co, Fe, Mn, Ni, V and Zn), the concentrations in the industrial sites are about twice (from 1.9 to 2.8 times higher) of those in the residential area. Arsenic, Fe and Zn show the highest concentrations near a steel plant (operational until 2005), but for the other elements it is not possible to identify any localized source, as evident from the maps. In areas where urban pollution is summed up by the impact of industrial activities, the population is exposed to significantly higher amounts of some metals than people living in residential areas.

  13. Trace elements in organisms of different trophic groups in the White Sea

    NASA Astrophysics Data System (ADS)

    Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.

    2015-09-01

    Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.

  14. Tracing environmental aetiological factors of chronic kidney diseases in the dry zone of Sri Lanka-A hydrogeochemical and isotope approach.

    PubMed

    Wickramarathna, Sudeera; Balasooriya, Shyamalie; Diyabalanage, Saranga; Chandrajith, Rohana

    2017-12-01

    Chronic kidney disease of unknown aetiologies (CKDu) is increasingly recognized in tropical regions and is now considered a global health problem. A detailed hydrogeochemical investigation has been performed in three CKDu hotspots in Sri Lanka to assess the geo-environmental aetiological factors influencing this disease. A total of 71 ground- and 26 surface water samples were collected from Girandurukotte, Wilgamuwa and Nikawewa regions and analysed for major constituents and trace elements. The affected regions are dominated by Ca-Mg-HCO 3 facies groundwater that is mainly controlled by silicate weathering. Higher levels of fluoride associated with higher hardness is the main feature of groundwater from CKDu regions compared to non-CKDu regions. Results showed that 65% of the wells in the affected regions exceeded the fluoride concentration of 0.5mg/L. Environmental isotopes of groundwater in the CKDu regions are represented by the regression line of δ 2 H=5.42δ 18 O-3.59 (r 2 =0.916) with a clear isotopic differentiation between local precipitation and groundwater. None of the trace elements exceeded the recommended scales and in most cases levels are negligible in both surface and groundwater in study areas. Therefore, the involvement of trace elements such as Cd, As and Pb can be ignored as causative factors for CKDu. This study highlights the synergistic influence of fluoride and hardness that could enhance the disease, and thereby refute earlier theories that attribute trace elements as causative factors for CKDu. Higher hardness in drinking water also restricts sufficient water uptake, particularly by farmers and which affects the physiological, biochemical and nutritional requirements. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Determination of trace elements of Egyptian cane sugar (Naga Hammady factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analyses.

    PubMed

    Awadallah, R M; Sherif, M K; Mohamed, A E; Grass, F

    1984-01-01

    INAA, AAS and ICP-AES techniques are applied to the determination of trace amounts of Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in the stalks of sugar cane plant after extracting juice, raw juice principal (mixed) juice, juice withdrawn from the successive stages of sugar industry, sirup, deposits from evaporators, molasse, A-? and B-sugar and in the soil samples (collected from the field supplying the factories by cane plants) taken from the immediate vicinity of the plant roots at surface, 30 and 60 cm depth. The results obtained are in a good agreement of the safety baselines of using juice as beverage, molasse derivatives (honey, sweets, ...) as diet for common people in the developed countries and in industry (methanol, ethanol, acetone & acetic acid, ...) and sugar sweeting for many purposes (in beverages, desserts, ...). Differences of trace elements concentrations in soil samples may be reasoned to geochemical and biogeochemical fractionation while those in juice may be due to the changes in the environmental conditions, chemical composition and botanic structures. Variations in trace element contents in the products formed during the successive stages of sugar industry may be a result of evaporation, filtration processes, chemical treatments or corrosion of vessels, containers or engines. Trace elements are very important where they are responsible for enzymatic and biochemical reactions, matabolism, health and diseases.

  16. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece.

    PubMed

    Petaloti, Christina; Triantafyllou, Athanasios; Kouimtzis, Themistoklis; Samara, Constantini

    2006-12-01

    Total suspended particle (TSP) concentrations were determined in the Eordea basin (western Macedonia, Greece), an area with intensive lignite burning for power generation. The study was conducted over a one-year period (November 2000-November 2001) at 10 sites located at variable distances from the power plants. Ambient TSP samples were analyzed for 27 major, minor and trace elements. Annual means of TSP concentrations ranged between 47+/-33 microg m(-3) and 110+/-50 microg m(-3) at 9 out of the 10 sites. Only the site closest to the power stations and the lignite conveyor belts exhibited annual TSP levels (210+/-97 microg m(-3)) exceeding the European standard (150 microg m(-3), 80/779/EEC). Concentrations of TSP and almost all elemental components exhibited significant spatial variations; however, the elemental profiles of TSP were quite similar among all sites suggesting that they are affected by similar source types. At all sites, statistical analysis indicated insignificant (P<0.05) seasonal variation for TSP concentrations. Some elements (Cl, As, Pb, Br, Se, S, Cd) exhibited significantly higher concentrations at certain sites during the cold period suggesting more intense emissions from traffic, domestic heating and other combustion sources. On the contrary, concentrations significantly higher in the warm period were found at other sites mainly for crustal elements (Ti, Mn, K, P, Cr, etc.) suggesting stronger influence from soil resuspension and/or fly ash in the warm months. The most enriched elements against local soil or road dust were S, Cl, Cu, As, Se, Br, Cd and Pb, whereas negligible enrichment was found for Ti, Mn, Mg, Al, Si, P, Cr. At most sites, highest concentrations of TSP and elemental components were associated with low- to moderate-speed winds favoring accumulation of emissions from local sources. Influences from the power generation were likely at those sites located closest to the power plants and mining activities.

  17. Monitoring of trace metals and pharmaceuticals as anthropogenic and socio-economic indicators of urban and industrial impact on surface waters

    NASA Astrophysics Data System (ADS)

    Vystavna, Yuliya

    2014-05-01

    The research focuses on the monitoring of trace metals and pharmaceuticals as potential anthropogenic indicators of industrial and urban influences on surface water in poorly gauged transboundary Ukraine/Russia region. This study includes analysis of tracers use for the indication of water pollution events, including controlled and emerging discharges, and discussion of the detection method of these chemicals. The following criteria were proposed for the evaluation of indicators: specificity (physical chemical properties), variability (spatial and temporal) and practicality (capacity of the sampling and analytical techniques). The combination of grab and passive water sampling (i.e. DGT and POCIS) procedure was applied for the determination of dissolved and labile trace metals (Ag, Cd, Cr, Cu, Ni, Pb and Zn) and pharmaceuticals (carbamazepine, diazepam, paracetamol, caffeine, diclofenac and ketoprofen). Samples were analysed using ICP - MS (trace metals) and LC-MS/MS ESI +/- (pharmaceuticals). Our results demonstrate the distinctive spatial and temporal patterns of trace elements distribution along an urban watercourse. Accordingly, two general groups of trace metals have been discriminated: 'stable' (Cd and Cr) and 'time-varying' (Cu, Zn, Ni and Pb). The relationship Cd >> Cu > Ag > Cr ≥ Zn was proposed as an anthropogenic signature of the industrial and urban activities pressuring the environment from point sources (municipal wastewaters) and the group Pb - Ni was discussed as a relevant fingerprint of the economic activity (industry and transport) mainly from non-point sources (run-off, atmospheric depositions, etc.). Pharmaceuticals with contrasting hydro-chemical properties of molecules (water solubility, bioaccumulation, persistence during wastewater treatment processes) were discriminated on conservative, labile and with combined properties in order to provide information on wastewater treatment plant efficiency, punctual events (e.g. accidents on sewage works, run-off) and uncontrolled discharges. Applying mass balance modeling, medicaments were described as relevant socio-economic indicators, which can give a picture of main social aspects of the region.

  18. Composition of water and suspended sediment in streams of urbanized subtropical watersheds in Hawaii

    USGS Publications Warehouse

    De Carlo, E. H.; Beltran, V.L.; Tomlinson, M.S.

    2004-01-01

    Urbanization on the small subtropical island of Oahu, Hawaii provides an opportunity to examine how anthropogenic activity affects the composition of material transferred from land to ocean by streams. This paper investigates the variability in concentrations of trace elements (Pb, Zn, Cu, Ba, Co, As, Ni, V and Cr) in streams of watersheds on Oahu, Hawaii. The focus is on water and suspended particulate matter collected from the Ala Wai Canal watershed in Honolulu and also the Kaneohe Stream watershed. As predicted, suspended particulate matter controls most trace element transport. Elements such as Pb, Zn, Cu, Ba and Co exhibit increased concentrations within urbanized portions of the watersheds. Particulate concentrations of these elements vary temporally during storms owing to input of road runoff containing elevated concentrations of elements associated with vehicular traffic and other anthropogenic activities. Enrichments of As in samples from predominantly conservation areas are interpreted as reflecting agricultural use of fertilizers at the boundaries of urban and conservation lands. Particulate Ni, V and Cr exhibit distributions during storm events that suggest a mineralogical control. Principal component analysis of particulate trace element concentrations establishes eigenvalues that account for nearly 80% of the total variance and separates trace elements into 3 factors. Factor 1 includes Pb, Zn, Cu, Ba and Co, interpreted to represent metals with an urban anthropogenic enrichment. Factor 2 includes Ni, V and Cr, elements whose concentrations do not appear to derive from anthropogenic activity and is interpreted to reflect mineralogical control. Another, albeit less significant, anthropogenic factor includes As, Cd and U and is thought to represent agricultural inputs. Samples collected during a storm derived from an offshore low-pressure system suggest that downstream transport of upper watershed material during tradewind-derived rains results in a 2-3-fold dilution of the particulate concentrations of Pb, Zn and Cu in the Ala Wai canal watershed. ?? 2004 Elsevier Ltd. All rights reserved.

  19. [Bioaccumulation of cadmium and zinc in tomato (Lycopersicon esculentum L.)].

    PubMed

    Sbartai, Hana; Djebar, Med Reda; Sbartai, Ibtissem; Berrabbah, Houria

    2012-09-01

    This work aims at evaluating the accumulation of cadmium (Cd) and zinc (Zn) (trace elements) in the organs of young tomato plants (Lycopersicon esculentum L. var. Rio Grande) and their effects on the rate of chlorophyll and enzyme activities involved in the antioxidant system: catalase (CAT), glutathion-S-transferase (GST) and peroxysase ascorbate (APX). Plants previously grown on a basic nutrient solution were undergoing treatment for 7 days, either by increasing concentrations of CdCl(2) or ZnSO(4) (0, 50, 100, 250, 500 μM) or by the combined concentrations of Cd and Zn (100/50, 100/100, 100/250, 100/500 μM). The results concerning the determination of metals in the various compartments of tomato plants as a function of increasing concentrations of Cd or Zn, suggest a greater accumulation of Cd and Zn in the roots compared to leaves. The combined treatment (Cd/Zn) interferes with the absorption of the two elements according to their concentrations in the culture medium. The presence of Zn at low concentrations (50 μM of Zn/100 μM Cd) has little influence on the accumulation of Cd in the roots and leaves, while the absorption of these two elements in the leaves increases and decreases in roots when their concentrations are equivalent (100/100 μM) compared to treatment alone. When the concentration of Zn is higher than that of Cd (500 μM of Zn/100 μM Cd) absorption of the latter is inhibited in the roots while increasing their translocation to the leaves. Meanwhile, the dosage of chlorophylls shows that they tend to decrease in a dose-dependent for both treatments (Cd or Cd/Zn), however, treatment with low concentrations of Zn (50 and 100 μM) stimulates chlorophyll synthesis. However, treatment with different concentrations of Cd seems to induce the activity of the enzymes studied (CAT, APX, GST). It is the same for treatment with different concentrations of Zn and this particularly for the highest concentrations. Finally, the combined treatment (Zn/Cd) also appears to cause enzyme inductions: CAT, APX and GST. Copyright © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  20. Energy recycling by co-combustion of coal and recovered paint solids from automobile paint operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achariya Suriyawong; Rogan Magee; Ken Peebles

    2009-05-15

    This paper presents the results of an experimental study of particulate emission and the fate of 13 trace elements (arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), cobalt (Co), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), mercury (Hg), vanadium (V), and zinc (Zn)) during combustion tests of recovered paint solids (RPS) and coal. The emissions from combustions of coal or RPS alone were compared with those of co-combustion of RPS with subbituminous coal. The distribution/partitioning of these toxic elements between a coarse-mode ash (particle diameter (d{sub p}) > 0.5 {mu}m), a submicrometer-mode ash (d{sub p} < 0.5more » {mu}m), and flue gases was also evaluated. Submicrometer particles generated by combustion of RPS alone were lower in concentration and smaller in size than that from combustion of coal. However, co-combustion of RPS and coal increased the formation of submicrometer-sized particles because of the higher reducing environment in the vicinity of burning particles and the higher volatile chlorine species. Hg was completely volatilized in all cases; however, the fraction in the oxidized state increased with co-combustion. Most trace elements, except Zn, were retained in ash during combustion of RPS alone. Mo was mostly retained in all samples. The behavior of elements, except Mn and Mo, varied depending on the fuel samples. As, Ba, Cr, Co, Cu, and Pb were vaporized to a greater extent from cocombustion of RPS and coal than from combustion of either fuel. Evidence of the enrichment of certain toxic elements in submicrometer particles has also been observed for As, Cd, Cr, Cu, and Ni during co-combustion. 27 refs., 6 figs., 5 tabs.« less

  1. Atmospheric inorganic trace contaminants in Finland, especially in the Gulf of Finland area

    NASA Astrophysics Data System (ADS)

    Jalkanen, Liisa Maria

    Atmospheric aerosol samples were collected at Utö and Virolahti in the Gulf of Finland area and Ähtäri in Central Finland using a filter pack. The samples were analysed by instrumental neutron activation analysis (INAA) and inductively coupled plasma mass-spectrometry (ICP-MS) for 34 elements including halogens and heavy metals. A very simple and quantitative acid digestion method was developed for the dissolution of the aerosol samples for ICP-MS analysis. Analysis of the elemental data is given using trajectories, principal component analysis and long-range transport modelling. The average total (fine + coarse) atmospheric concentrations range at Utö from 0.083 ng m -3 for Cd to 730 ng m-3 for Na. The sea areas (Utö, Virolahti, Hailuoto) have most of the heavy metal air pollution in Finland, as witnessed by the aerosol concentration and wet deposition data. There is a clear decreasing gradient in the deposition of As, Cd, Cr, Pb, and V from South to North in Finland. In general, the trace element concentrations and deposition are lower in Finland than in Central Europe. The effect of large particulate emission sources in Estonia can be seen in the elemental concentrations of atmospheric particles and in the deposition around the eastern Gulf of Finland region. There has been a remarkable decrease in heavy metal emissions in Finland during the 1990s. However, due to long-range transport, the decrease in deposition as witnessed by analysis of these concentrations in precipitation and moss is much less than would be expected.

  2. An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration.

    PubMed

    O'Sullivan, Jeanette E; Watson, Roslyn J; Butler, Edward C V

    2013-10-15

    An automated procedure including both in-line preconcentration and multi-element determination by an inductively coupled plasma mass spectrometer (ICP-MS) has been developed for the determination of Cd, Co, Cu, Ni, Pb and Zn in open-ocean samples. The method relies on flow injection of the sample through a minicolumn of chelating (iminodiacetate) sorbent to preconcentrate the trace metals, while simultaneously eliminating the major cations and anions of seawater. The effectiveness of this step is tested and reliability in results are secured with a rigorous process of quality assurance comprising 36 calibration and reference samples in a run for analysis of 24 oceanic seawaters in a 6-h program. The in-line configuration and procedures presented minimise analyst operations and exposure to contamination. Seawater samples are used for calibration providing a true matrix match. The continuous automated pH measurement registers that chelation occurs within a selected narrow pH range and monitors the consistency of the entire analytical sequence. The eluent (0.8M HNO3) is sufficiently strong to elute the six metals in 39 s at a flow rate of 2.0 mL/min, while being compatible for prolonged use with the mass spectrometer. Throughput is one sample of 7 mL every 6 min. Detection limits were Co 3.2 pM, Ni 23 pM, Cu 46 pM, Zn 71 pM, Cd 2.7 pM and Pb 1.5 pM with coefficients of variation ranging from 3.4% to 8.6% (n=14) and linearity of calibration established beyond the observed concentration range of each trace metal in ocean waters. Recoveries were Co 96.7%, Ni 102%, Cu 102%, Zn 98.1%, Cd 92.2% and Pb 97.6%. The method has been used to analyse ~800 samples from three voyages in the Southern Ocean and Tasman Sea. It has the potential to be extended to other trace elements in ocean waters. © 2013 Elsevier B.V. All rights reserved.

  3. Development, validation and application of an ICP-MS/MS method to quantify minerals and (ultra-)trace elements in human serum.

    PubMed

    Meyer, Sören; Markova, Mariya; Pohl, Gabriele; Marschall, Talke A; Pivovarova, Olga; Pfeiffer, Andreas F H; Schwerdtle, Tanja

    2018-09-01

    Multi-element determination in human samples is very challenging. Especially in human intervention studies sample volumes are often limited to a few microliters and due to the high number of samples a high-throughput is indispensable. Here, we present a state-of-the-art ICP-MS/MS-based method for the analysis of essential (trace) elements, namely Mg, Ca, Fe, Cu, Zn, Mo, Se and I, as well as food-relevant toxic elements such as As and Cd. The developed method was validated regarding linearity of the calibration curves, method LODs and LOQs, selectivity and trueness as well as precision. The established reliable method was applied to quantify the element serum concentrations of participants of a human intervention study (LeguAN). The participants received isocaloric diets, either rich in plant protein or in animal protein. While the serum concentrations of Mg and Mo increased in participants receiving the plant protein-based diet (above all legumes), the Se concentration in serum decreased. In contrast, the animal protein-based diet, rich in meat and dairy products, resulted in an increased Se concentration in serum. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Toxic trace element assessment for soils/sediments deposited during Hurricanes Katrina and Rita from southern Louisiana, USA: a sequential extraction analysis.

    PubMed

    Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig

    2010-07-01

    Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.

  5. Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions.

    PubMed

    Pan, Yuepeng; Tian, Shili; Li, Xingru; Sun, Ying; Li, Yi; Wentworth, Gregory R; Wang, Yuesi

    2015-12-15

    Public concerns over airborne trace elements (TEs) in metropolitan areas are increasing, but long-term and multi-site observations of size-resolved aerosol TEs in China are still lacking. Here, we identify highly elevated levels of atmospheric TEs in megacities and industrial sites in a Beijing-Tianjin-Hebei urban agglomeration relative to background areas, with the annual mean values of As, Pb, Ni, Cd and Mn exceeding the acceptable limits of the World Health Organization. Despite the spatial variability in concentrations, the size distribution pattern of each trace element was quite similar across the region. Crustal elements of Al and Fe were mainly found in coarse particles (2.1-9 μm), whereas the main fraction of toxic metals, such as Cu, Zn, As, Se, Cd and Pb, was found in submicron particles (<1.1 μm). These toxic metals were enriched by over 100-fold relative to the Earth's crust. The size distributions of Na, Mg, K, Ca, V, Cr, Mn, Ni, Mo and Ba were bimodal, with two peaks at 0.43-0.65 μm and 4.7-5.8 μm. The combination of the size distribution information, principal component analysis and air mass back trajectory model offered a robust technique for distinguishing the main sources for airborne TEs, e.g., soil dust, fossil fuel combustion and industrial emissions, at different sites. In addition, higher elemental concentrations coincided with westerly flow, indicating that polluted soil and fugitive dust were major sources of TEs on the regional scale. However, the contribution of coal burning, iron industry/oil combustion and non-ferrous smelters to atmospheric metal pollution in Northern China should be given more attention. Considering that the concentrations of heavy metals associated with fine particles in the target region were significantly higher than those in other Asian sites, the implementations of strict environmental standards in China are required to reduce the amounts of these hazardous pollutants released into the atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Composition of the earth's upper mantle. II - Volatile trace elements in ultramafic xenoliths

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Wandless, G. A.; Petrie, R. K.; Irving, A. J.

    1980-01-01

    Radiochemical neutron activation analysis was used to determine the nine volatile elements Ag, Bi, Cd, In, Sb, Se, Te, Tl, and Zn in 19 ultramafic rocks, consisting mainly of spinel and garnet lherzolites. A sheared garnet lherzolite, PHN 1611, may approximate undepleted mantle material and tends to have a higher volatile element content than the depleted mantle material represented by spinel lherzolites. Comparisons of continental basalts with PHN 1611 and of oceanic ridge basalts with spinel lherzolites show similar basalt: source material partition factors for eight of the nine volatile elements, Sb being the exception. The strong depletion of Te and Se in the mantle, relative to lithophile elements of similar volatility, suggests that 97% of the earth's S, Se and Te may be in the outer core.

  7. Re-evaluation and extension of the scope of elements in US Geological Survey Standard Reference Water Samples

    USGS Publications Warehouse

    Peart, D.B.; Antweiler, Ronald C.; Taylor, Howard E.; Roth, D.A.; Brinton, T.I.

    1998-01-01

    More than 100 US Geological Survey (USGS) Standard Reference Water Samples (SRWSs) were analyzed for numerous trace constituents, including Al, As, B, Ba, Be, Bi, Br, Cd, Cr, Co, Cu, I, Fe, Pb, Li, Mn, Mo, Ni, Rb, Sb, Se, Sr, Te, Tl, U, V, Zn and major elements (Ca, Mg, Na, SiO2, SO4, Cl) by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. In addition, 15 USGS SRWSs and National Institute of Standards and Technology (NIST) standard reference material (SRM) 1641b were analyzed for mercury using cold vapor atomic fluorescence spectrometry. Also USGS SRWS Hg-7 was analyzed using isotope dilution-inductively coupled plasma mass spectrometry. The results were compared with the reported certified values of the following standard reference materials: NIST SRM 1643a, 1643b, 1643c and 1643d and National Research Council of Canada Riverine Water Reference Materials for Trace Metals SLRS-1, SLRS-2 and SLRS-3. New concentration values for trace and major elements in the SRWSs, traceable to the certified standards, are reported. Additional concentration values are reported for elements that were neither previously published for the SRWSs nor traceable to the certified reference materials. Robust statistical procedures were used that were insensitive to outliers. These data can be used for quality assurance/quality control purposes in analytical laboratories.

  8. Polycyclic aromatic hydrocarbons and trace elements bounded to airborne PM10 in the harbor of Volos, Greece: Implications for the impact of harbor activities

    NASA Astrophysics Data System (ADS)

    Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.

    2017-10-01

    Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.

  9. The use of olive-mill waste compost to promote the plant vegetation cover in a trace-element-contaminated soil.

    PubMed

    Pardo, Tania; Martínez-Fernández, Domingo; Clemente, Rafael; Walker, David J; Bernal, M Pilar

    2014-01-01

    The applicability of a mature compost as a soil amendment to promote the growth of native species for the phytorestoration of a mine-affected soil from a semi-arid area (SE Spain), contaminated with trace elements (As, Cd, Cu, Mn, Pb and Zn), was evaluated in a 2-year field experiment. The effects of an inorganic fertiliser were also determined for comparison. Bituminaria bituminosa was the selected native plant since it is a leguminous species adapted to the particular local pedoclimatic conditions. Compost addition increased total organic-C concentrations in soil with respect to the control and fertiliser treatments, maintained elevated available P concentrations throughout the duration of the experiment and stimulated soil microbial biomass, while trace elements extractability in the soil was rather low due to the calcareous nature of the soil and almost unaltered in the different treatments. Tissue concentrations of P and K in B. bituminosa increased after the addition of compost, associated with growth stimulation. Leaf Cu concentration was also increased by the amendments, although overall the trace elements concentrations can be considered non-toxic. In addition, the spontaneous colonisation of the plots by a total of 29 species of 15 different families at the end of the experiment produced a greater vegetation cover, especially in plots amended with compost. Therefore, the use of compost as a soil amendment appears to be useful for the promotion of a vegetation cover and the phytostabilisation of moderately contaminated soils under semi-arid conditions.

  10. Determination of trace element level in different tissues of the leaping mullet (Liza saliens, Mugilidae) collected from Caspian Sea.

    PubMed

    Ebrahimzadeh, Mohammad Ali; Eslami, Shahram; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad

    2011-12-01

    The concentrations of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in the brain, heart, liver, gill, gonad, spleen, kidney, and red and white muscles of Liza saliens (leaping mullet). Trace element levels in fish samples were analyzed by flame atomic absorption spectrometry. Among the non-essential metals, the levels of Ni and Pb in the tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, the levels of the non-essential metals were much higher than those of manganese in the red and white muscles. Fe distribution pattern in tissues was in order of spleen > liver > heart > gill > brain > kidney > gonad > red muscle > white muscle. Red muscle was not within the safe limits for human consumption because non-essential metal (Ni, Pb) contents were higher than standard limits.

  11. A new organic-rich soil reference material certified for its EDTA- and acetic acid- extractable contents of Cd, Cr, Cu, Ni, Pb and Zn, following collaboratively tested and harmonised procedures.

    PubMed

    Pueyo, M; Rauret, G; Bacon, J R; Gomez, A; Muntau, H; Quevauviller, P; López-Sánchez, J F

    2001-02-01

    There is an increasing requirement for assessment of the bioavailable metal fraction and the mobility of trace elements in soils upon disposal. One of the approaches is the use of leaching procedures, but the results obtained are operationally defined; therefore, their significance is highly dependent on the extraction protocol performed. So, for this type of study, there is a need for reference materials that allow the quality of measurements to be controlled. This paper describes the steps involved in the certification of an organic-rich soil reference material, BCR-700, for the EDTA- and acetic acid-extractable contents of some trace elements, following collaboratively tested and harmonised extraction procedures. Details are given for the preparation of the soil, homogeneity and stability testing, analytical procedures and the statistical selection of data to be included in the certification.

  12. Traffic and catalytic converter - related atmospheric contamination in the metropolitan region of the city of Rio de Janeiro, Brazil.

    PubMed

    da Silva, Lílian Irene Dias; de Souza Sarkis, Jorge Eduardo; Zotin, Fátima Maria Zanon; Carneiro, Manuel Castro; Neto, Arnaldo Alcover; da Silva, Alzira dos Santos Amaral Gomes; Cardoso, Mauri José Baldini; Monteiro, Maria Inês Couto

    2008-03-01

    In this work, 24-h PM10 samples were collected in Rio de Janeiro, Brazil, and analysed for trace elements (Cd, Ce, Cu, La, Mo, Ni, Pb, Pd, Rh, Sb and Sn). The sampling was carried out at five locations (Bonsucesso; Centro, downtown city; Copacabana; Nova Iguaçu and Sumaré) with different traffic densities and anthropogenic activities. An analytical method based on the EPA method for the determination of trace elements in airborne particulate matter (PM), using ultrasonic-assisted extraction and inductively coupled plasma mass spectrometry (ICP-MS) was applied. Our results suggest that vehicular traffic is the most important source of environmental pollution at the studied sites. The presence of Mo, Pd and Rh in the analysed filters reflects an additional source of pollution caused by the erosion and deterioration of automotive catalytic converters.

  13. Trace Element Determination from the Guliya Ice Core to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years

    NASA Astrophysics Data System (ADS)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.

    2014-12-01

    The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.

  14. Seasonal assessment of trace element contamination in intertidal sediments of the meso-macrotidal Hooghly (Ganges) River Estuary with a note on mercury speciation.

    PubMed

    Mondal, Priyanka; de Alcântara Mendes, Rosivaldo; Jonathan, M P; Biswas, Jayanta Kumar; Murugan, Kadarkarai; Sarkar, Santosh Kumar

    2018-02-01

    The spatial and seasonal distribution of trace elements (TEs) (n=16) in surficial sediment were examined along the Hooghly River Estuary (~175km), India. A synchronous elevation of majority of TEs concentration (mgkg -1 ) was encountered during monsoon with the following descending order: Al (67070); Fe (31300); Cd (5.73); Cr (71.17); Cu (29.09); Mn (658.74); Ni (35.89). An overall low and homogeneous concentration of total Hg (T Hg =17.85±4.98ngg -1 ) was recorded in which methyl mercury (MeHg) shared minor fraction (8-31%) of the T Hg . Sediment pollution indices, viz. geo-accumulation index (I geo ) and enrichment factor (EF) for Cd (I geo =1.92-3.67; EF=13.83-31.17) and Ba (I geo =0.79-5.03; EF=5.79-108.94) suggested high contamination from anthropogenic sources. From factor analysis it was inferred that TEs primarily originated from lithogenic sources. This study would provide the latest benchmark of TE pollution along with the first record of MeHg in this fluvial system which recommends reliable monitoring to safeguard geochemical health of this stressed environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    PubMed

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  16. Trace elements bioavailability to winter wheat (Triticum aestivum L.) grown subsequent to high biomass plants in a greenhouse study.

    PubMed

    Neu, Silke; Müller, Ingo; Herzig, Rolf; Dudel, E Gert

    2018-05-12

    Multielement-contaminated agricultural land requires the adaptation of agronomic practices to meet legal requirements for safe biomass production. The incorporation of bioenergy plants with, at least, moderate phytoextraction capacity into crop rotations with cereals can affect trace elements (TE) phytoavailability and, simultaneously, constitute economic revenues for farmers outside the food or forage sector. Hence, in a crop rotation pot study sunflower (Helianthus annuus L.), modified for high biomass and TE accumulation by chemical mutagenesis, was compared to winter oilseed rape (Brassica napus L.) as pre-crop. On two agricultural soils with different TE loads, the crops´ potential for phytoextraction and for impacts on TE uptake by subsequent winter wheat (Triticum aestivum L.) was studied. The results showed that rape tolerated high-level mixed contamination with metals (Cd, Pb and Zn) and As more than sunflower. In both soils, labile metals concentration increased and soil acidity remained high following sunflower. Furthermore, enhanced grain As accumulation in subsequent wheat was observed. By contrast, soil acidity and Cd or Zn accumulation of subsequent wheat decreased following rape. In the short term, moderate phytoextraction was superimposed by nutrient use or rhizosphere effects of pre-crops, which should be carefully monitored when designing crop rotations for contaminated land.

  17. Laser-induced breakdown spectroscopic detection of trace level heavy metal in solutions on a laser-pretreated metallic target.

    PubMed

    Niu, Sheng; Zheng, Lijuan; Khan, Abdul Qayyum; Feng, Guang; Zeng, Heping

    2018-03-01

    A fast and sensitive analysis for trace level heavy metals in aqueous solution was realized by using an improved laser induced breakdown spectroscopy (LIBS) methodology. Solutions containing heavy metal elements, Ni, Cr, and Cd, were concentrated in a laser-pretreated area (25 × 20mm 2 ) of a polished aluminum target surface, wherein pretreated grooves enabled homogeneous distribution of the metallic solutions in the well-defined area, and laser ablation of the aluminum target produced unique plasma excitation of various metallic ions. For 1-mL solutions deposited, we obtained an analytical precision of about 7% relative standard deviation (RSD), and limits of detection (LODs) of 22, 19, and 184μg/L for Ni, Cr, and Cd, respectively. Moreover, the laser-pretreated metallic microstructure allowed more solution deposited with the help of a hot plate, which supported improvement of LODs to sub-μg/L level for Cr and Ni and μg/L level for Cd with about 20-mL solution engaged in the enrichment processes. The applicability of the proposed methodology was validated on certified reference materials and real river water. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Soil fertility status and spatial distribution of selected trace elements in south-western Serbia

    NASA Astrophysics Data System (ADS)

    Mrvic, Vesna; Kostic-Kravljanac, Ljiljana; Cakmak, Dragan; Pivic, Radmila; Saljnikov, Elmira; Nikoloski, Mile; Perovic, Veljko

    2010-05-01

    Soil fertility status and spatial distribution of selected trace elements in south-western Serbia V. Mrvic, Lj. Kostic-Kravljanac, D. Čakmak, R. Pivić, E. Saljnikov, M. Nikoloski, V. Perović Institute of Soil Science, 11000 Belgrade, Serbia (vesnavmrvic@yahoo.com) Main characteristic of surface soil layer (pH in KCl, humus, available P and K), and content of trace elements (Ni, Cr, Cu, Zn, Pb, Cd, As, Hg) were analysed on area of southwestern Serbia, covering total 959 000 ha (one sample represents 1000 ha) . About 30 % of samples have very acid reaction. Main portion of soil samples (86%) is poorly suplied with available phosphorus (<8 mg/100g), and these are located under forests, meadows, pastures and orchards. Supplies of available potasium and humus are well. On the other hand, in small number of soil samples (4%), mostly on fertile alluvial soils, there are high P and K concentration, which are consequence of inadequate usage of mineral fertilizers. Content of trace elements in 70 % of soil samples is bellow maximum allowed concentration (MAC). The most frequente potential pollutants are Cr and Ni, which is assosiated with mafic and ultramafic rocks, which are common in this region (mountains naerby river Ibar - Troglav, Stolovi, Čemerno, Željin, Golija, Kopaonik; near Sjenica- peridotites of mn. Ozren). There are dominace of Eutric Leptosols soil type, with Ni content above 100 mg/kg, and in some samples above 1000 mg/kg. In smaller number of samples arsenic and lead exceed MAC, while other elements exceed MAD very rarelly. There are elevated Pb content in Kopaonik mountain area, and elevated As content besides this region, are in mine zone of Golija and Cemerno. These are mountain soils formed on acid igneous and metamorphic rocks, which are enriched with ores of Pb, Zn and other elements. Eventually negative influences of these elements on plants and other components of ecosystem may be esstimated only after detalied investigation.

  19. Risk indicator for agricultural inputs of trace elements to Canadian soils.

    PubMed

    Sheppard, S C; Grant, C A; Sheppard, M I; de Jong, R; Long, J

    2009-01-01

    Trace elements (TEs) are universally present in environmental media, including soil, but agriculture uses some materials that have increased TE concentrations. Some TEs (e.g., Cu, Se, and Zn) are added to animal feeds to ensure animal health. Similarly, TEs are present in micronutrient fertilizers. In the case of phosphate fertilizers, some TEs (e.g., Cd) may be inadvertently elevated because of the source rock used in the manufacturing. The key question for agriculture is "After decades of use, could these TE additions result in the deterioration of soil quality?" An early warning would allow the development of best management practices to slow or reverse this trend. This paper discusses a model that estimates future TE concentrations for the 2780 land area polygons composing essentially all of the agricultural land in Canada. The development of the model is discussed, as are various metrics to express the risk related to TE accumulation. The elements As, Cd, Cu, Pb, Se, and Zn are considered, with inputs from the atmosphere, fertilizers, manures, and municipal biosolids. In many cases, steady-state concentrations could be toxic, but steady state is far in the future. In 100 yr, the soil concentrations (Century soil concentrations) are estimated to be up to threefold higher than present background, an impact even if not a problematic impact. The geographic distribution reflects agricultural intensity. Contributions from micronutrient fertilizers are perhaps the most uncertain due to the limited data available on their use.

  20. Heavy metal exposure from cooked rice grain ingestion and its potential health risks to humans from total and bioavailable forms analysis.

    PubMed

    Praveena, S M; Omar, N A

    2017-11-15

    Heavy metal in rice studies has attracted a greater concern worldwide. However, there have been limited studies on marketed rice samples although it represents a vital ingestion portion for a real estimation of human health risk. This study was aimed to determine both total and bioaccessible of trace elements and heavy metals (Cd, Cr, Cu, Co, Al, Zn, As, Pb and Fe) in 22 varieties of cooked rice using an inductively coupled plasma-optical emission spectroscopy. Both total and bioaccessible of trace elements and heavy metals were digested using closed-nitric acid digestion and Rijksinstituut voor Volksgezondheid en Milieu (RIVM) in vitro digestion model, respectively. Human health risks via Health Risk Assessment (HRA) were conducted to understand exposure risks involving adults and children representing Malaysian population. Zinc was the highest while As was the lowest contents for total and in their bioavailable forms. Four clusters were identified: (1) Pb, As, Co, Cd and Cr; (2) Cu and Al; (3) Fe and (4) Zn. For HRA, there was no any risks found from single element exposure. While potential carcinogenic health risks present for both adult and children from single As exposure (Life time Cancer Risk, LCR>1×10 -4 ). Total Hazard Quotient values for adult and children were 27.0 and 18.0, respectively while total LCR values for adult and children were 0.0049 and 0.0032, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top