Trace element contaminants in mineral fertilizers used in Iran.
Latifi, Zahra; Jalali, Mohsen
2018-05-25
The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.
NASA Astrophysics Data System (ADS)
Chabot, N. L.
2017-12-01
As planetesimals were heated up in the early Solar System, the formation of Fe-Ni metallic melts was a common occurrence. During planetesimal differentiation, the denser Fe-Ni metallic melts separated from the less dense silicate components, though some meteorites suggest that their parent bodies only experienced partial differentiation. If the Fe-Ni metallic melts did form a central metallic core, the core eventually crystallized to a solid, some of which we sample as iron meteorites. In all of these planetesimal evolution processes, the composition of the Fe-Ni metallic melt influenced the process and the resulting trace element chemical signatures. In particular, the metallic melt's "light element" composition, those elements present in the metallic melt in a significant concentration but with lower atomic masses than Fe, can strongly affect trace element partitioning. Experimental studies have provided critical data to determine the effects of light elements in Fe-Ni metallic melts on trace element partitioning behavior. Here I focus on combining numerous experimental results to identify trace elements that provide unique insight into constraining the light element composition of early Solar System Fe-Ni metallic melts. Experimental studies have been conducted at 1 atm in a variety of Fe-Ni systems to investigate the effects of light elements on trace element partitioning behavior. A frequent experimental examination of the effects of light elements in metallic systems involves producing run products with coexisting solid metal and liquid metal phases. Such solid-metal-liquid-metal experiments have been conducted in the Fe-Ni binary system as well as Fe-Ni systems with S, P, and C. Experiments with O-bearing or Si-bearing Fe-Ni metallic melts do not lend themselves to experiments with coexisting solid metal and liquid metal phases, due to the phase diagrams of these elements, but experiments with two immiscible Fe-Ni metallic melts have provided insight into the qualitative effects of O and Si relative to the well-determined effects of S. Together, these experimental studies provide a robust dataset to identify key elements that are predicted to produce distinct chemical signatures as a function of different Fe-Ni metallic melt compositions during planetesimal evolution processes.
Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic
NASA Astrophysics Data System (ADS)
Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.
2017-12-01
Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.
The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys
NASA Astrophysics Data System (ADS)
Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.
2014-12-01
Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.
Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon
van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.
2010-01-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062
Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.
Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W
2010-10-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.
Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-03-26
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Distribution and speciation of trace elements in iron and manganese oxide cave deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-10-24
Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
Marcus, Matthew A.; Edwards, Katrina J.; Gueguen, Bleuenn; ...
2015-09-05
Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ~3.7Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9 Be/ 10 Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patternsmore » and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9 Be/ 10 Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ 56/54 Fe) in subsamples of 1-3mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0±0.4mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ 56/54 Fe values, when averaged over sample increments representing 0.25-0.75Ma, were homogeneous within uncertainty along the nodule radius, at -0.12±0.07‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ 56/54 Fe value of -0.12‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.« less
NASA Astrophysics Data System (ADS)
Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing
2017-03-01
Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.
Althaf Hussain, Shaik; Kareem, Mohammed Abdul; Rasool, Shaik Nayab; Al Omar, Suliman Yousef; Saleh, Alwasel; Al-Fwuaires, Manal Abdulrahman; Daddam, Jayasimha Rayalu; Devi, Kodidhela Lakshmi
2018-01-01
The trace elements and minerals in Terminalia pallida fruit ethanolic extract (TpFE) were determined by the instrument inductively coupled plasma-mass spectrometry (ICP-MS), and the cardioprotection of TpFE against isoproterenol (ISO)-administered rats was studied. Rats were pretreated with TpFE (100, 300, and 500 mg/kg bw) for 30 days, with concurrent administration of ISO (85 mg/kg bw) for two consecutive days. The levels of trace elements and minerals in TpFE were below the permitted limits of World Health Organization standards. ISO administration significantly increased the heart weight and cardiac marker enzymes in serum, xanthine oxidase, sodium, and calcium in the heart, whereas significantly decreased body weight, reduced glutathione, glutathione-S-transferase, superoxide dismutase, and potassium in the heart. Oral pretreatment of TpFE significantly prevented the ISO-induced alterations. This is the first report that revealed the determination of trace elements and mineral nutrients of TpFE by ICP-MS which plays a principal role in the herbal drug discovery for the treatment of cardiovascular diseases.
Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen
2014-09-01
A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.
INAA Application for Trace Element Determination in Biological Reference Material
NASA Astrophysics Data System (ADS)
Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.
2017-06-01
Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.
Major and trace elements in igneous rocks from Apollo 15.
NASA Technical Reports Server (NTRS)
Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.
1973-01-01
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.
Andrew Fowler
2015-04-01
Analytical results for X-ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill core from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.
Andrew Fowler
2015-05-01
Analytical results for x-ray fluorescence (XRF) and Inductively Couple Plasma Mass Spectrometry (ICP-MS) measurement of major, trace and rare earth elements in drill cuttings from geothermal wells in Reykjanes, Iceland. Total Fe was analyzed as FeO, therefore is not included under the Fe2O3 column.
Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean
NASA Astrophysics Data System (ADS)
Özsoy, Türkan; Örnektekin, Sermin
2009-10-01
Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.
Trace Elements in Ovaries: Measurement and Physiology.
Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J
2016-04-01
Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jacobson, Yitzhak; Yam, Ruth; Shemesh, Aldo
2017-04-01
The Mediterranean Sea is a region under high anthropogenic stress, thus a hotspot for climate change studies. Natural conditions, such as SST, productivity, precipitation and dust fluxes along with human induced activity affect seawater chemistry. We study millennial variability of trace elements in East Mediterranean Sea high-resolution records, in attempt to connect them to environmental factors. The Mediterranean reef builder Vermetid, D. petraeum is a sessile gastropod, secreting its aragonite shells in tidal zones. Cores of Vermetid reefs from the South Eastern Mediterranean (Israel) were previously analyzed by Sisma?Ventura et al. (2014) to reconstruct seawater surface temperature (SST) and δ13C of dissolved inorganic carbon (DIC). In this study we analyzed trace elements of these vermetid cores, and reconstructed millennial records of elements to calcium (el/Ca) molar ratios. Vermetid trace element contents from recent decades are mostly in agreement with known values for marine biogenic aragonites from corals and mollusk. We divide vermetid trace element records into three element groups: 1) Sr and U are related to SST and DIC. These elements correlate with major climatic events of the last millennium, such as the Medieval Warm Period (900-1300 AD) and the Little Ice Age (1450-1850 AD). 2) Pb and Cd are related to anthropogenic pollution and demonstrate industrial sourced trends throughout the anthropocene (since 1750 AD). 3) Terrogenous elements, including Fe, Al, Mn and V. Al in seawater and sediments has been used to trace water masses and land derived sediment source. We observe a major change in average vermetid Al/Fe ratios from 0.5 to 2.5 over the recorded period (n=72). This vermetid Al/Fe change points at a possible shift from Nilotic sediments (0.1-0.5 Al/Fe molar ratio) to Saharan dust ratio (2-4 Al/Fe molar ratio). Mn and V show a similar variability to Fe. Understanding the variability of vermetid TE can help us interpret the relative dominance of different climate systems and anthropogenic processes on the East Mediterranean environment.
Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.
Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan
2014-04-01
The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.
Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke
2014-08-01
Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla
2009-04-01
The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.
The effect of pasteurization on trace elements in donor breast milk.
Mohd-Taufek, N; Cartwright, D; Davies, M; Hewavitharana, A K; Koorts, P; McConachy, H; Shaw, P N; Sumner, R; Whitfield, K
2016-10-01
Premature infants often receive pasteurized donor human milk when mothers are unable to provide their own milk. This study aims to establish the effect of the pasteurization process on a range of trace elements in donor milk. Breast milk was collected from 16 mothers donating to the milk bank at the Royal Brisbane and Women's Hospital. Samples were divided into pre- and post-pasteurization aliquots and were Holder pasteurized. Inductively coupled plasma mass spectrometry was used to analyze the trace elements zinc (Zn), copper (Cu), selenium (Se), manganese (Mn), iodine (I), iron (Fe), molybdenum (Mo) and bromine (Br). Differences in trace elements pre- and post-pasteurization were analyzed. No significant differences were found between the trace elements tested pre- and post-pasteurization, except for Fe (P<0.05). The median (interquartile range, 25 to 75%; μg l(-1)) of trace elements for pre- and post- pasteurization aliquots were-Zn: 1639 (888-4508), 1743 (878-4143), Cu: 360 (258-571), 367 (253-531), Se: 12.34 (11.73-17.60), 12.62 (11.94-16.64), Mn: (1.48 (1.01-1.75), 1.49 (1.11-1.75), I (153 (94-189), 158 (93-183), Fe (211 (171-277), 194 (153-253), Mo (1.46 (0.37-2.99), 1.42 (0.29-3.73) and Br (1066 (834-1443), 989 (902-1396). Pasteurization had minimal effect on several trace elements in donor breast milk but high levels of inter-donor variability of trace elements were observed. The observed decrease in the iron content of pasteurized donor milk is, however, unlikely to be clinically relevant.
Ziegler, Brady A.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.
2015-01-01
Biodegradation of organic matter, including petroleum-based fuels and biofuels, can create undesired secondary water-quality effects. Trace elements, especially arsenic (As), have strong adsorption affinities for Fe(III) (oxyhydr)-oxides and can be released to groundwater during Fe-reducing biodegradation. We investigated the mobilization of naturally occurring As, cobalt (Co), chromium (Cr), and nickel (Ni) from wetland sediments caused by the introduction of benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol mixtures under iron- and nitrate-reducing conditions, using in situ push–pull tests. When BTEX alone was added, results showed simultaneous onset and similar rates of Fe reduction and As mobilization. In the presence of ethanol, the maximum rates of As release and Fe reduction were higher, the time to onset of reaction was decreased, and the rates occurred in multiple stages that reflected additional processes. The concentration of As increased from <1 μg/L to a maximum of 99 μg/L, exceeding the 10 μg/L limit for drinking water. Mobilization of Co, Cr, and Ni was observed in association with ethanol biodegradation but not with BTEX. These results demonstrate the potential for trace-element contamination of drinking water during biodegradation and highlight the importance of monitoring trace elements at natural and enhanced attenuation sites.
Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen
2018-09-01
Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.
Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...
USDA-ARS?s Scientific Manuscript database
While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...
Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S
2015-01-01
Homeostatic imbalance of trace elements such as iron (Fe), copper (Cu), and zinc (Zn) demonstrated adverse effects on brain function among older adults. The present study aimed to investigate the effects of trace elements and the presence of anti-glutamic acid decarboxylase antibodies (GADAs) in human cognitive abilities among healthy older adults. A total of 100 healthy subjects (65 males, 35 females; age range; 64-96 years) were recruited for this study. Based on Loewenstein Occupational Therapy Cognitive Assessment (LOTCA) score, the participants were classified according to cognitive performance into normal (n=45), moderate (n=30), and severe (n=25). Cognitive functioning, leisure-time physical activity (LTPA), serum trace elements - Fe, Cu, Zn, Zn/Cu, and GADAs were assessed using LOTCA battery, pre-validated physical activity (PA) questionnaire, atomic absorption, and immunoassay techniques, respectively. Approximately 45% of the study population (n=45) had normal distribution of cognitive function and 55% of the study population (n=55) had abnormal cognitive function; they were classified into moderate (score 62-92) and severe (score 31-62). There was a significant reduction in the level of Zn and Zn/Cu ratio along with an increase in the level of Fe, Cu, and anti-GADAs in subjects of severe (P=0.01) and moderate (P=0.01) cognitive performance. LOTCA-cognitive scores correlated positively with sex, HbA(1c), Fe, Cu, Zn, and Zn/Cu ratio, and negatively with age, PA, body mass index, and anti-GADAs. Significant inter-correlation was reported between serum trace element concentrations and anti-GADAs which suggest producing a cognitive decline via oxidative and neural damage mechanism. This study found significant associations among trace elements, anti-GADAs, and cognitive function in older adults. The homeostatic balance of trace elements should be recommended among older adults for better cognitive performance.
Scudlark, J.R.; Rice, Karen C.; Conko, Kathryn M.; Bricker, Owen P.; Church, T.M.
2005-01-01
The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases.To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.
NASA Astrophysics Data System (ADS)
Dare, Sarah A. S.; Barnes, Sarah-Jane; Beaudoin, Georges
2012-07-01
Laser ablation ICP-MS analysis has been applied to many accessory minerals in order to understand better the process by which the rock formed and for provenance discrimination. We have determined trace element concentrations of Fe-oxides in massive sulfides that form Ni-Cu-PGE deposits at the base of the Sudbury Igneous Complex in Canada. The samples represent the crystallization products of fractionating sulfide liquids and consist of early-forming Fe-rich monosulfide solution (MSS) cumulates and residual Cu-rich intermediate solid solution (ISS). This study shows that Fe-oxide geochemistry is a sensitive petrogenetic indicator for the degree of fractionation of the sulfide liquid and provides an insight into the partitioning of elements between sulfide and Fe-oxide phases. In addition, it is useful in determining the provenance of detrital Fe-oxide. In a sulfide melt, all lithophile elements (Cr, Ti, V, Al, Mn, Sc, Nb, Ga, Ge, Ta, Hf, W and Zr) are compatible into Fe-oxide. The concentrations of these elements are highest in the early-forming Fe-oxide (titanomagnetite) which crystallized with Fe-rich MSS. Upon the continual crystallization of Fe-oxide from the sulfide liquid, the lithophile elements gradually decrease so that late-forming Fe-oxide (magnetite), which crystallized from the residual Cu-rich liquid, is depleted in these elements. This behavior is in contrast with Fe-oxides that crystallized from a fractionating silicate melt, whereby the concentration of incompatible elements, such as Ti, increases rather than decreases. The behavior of the chalcophile elements in magnetite is largely controlled by the crystallization of the sulfide minerals with only Ni, Co, Zn, Mo, Sn and Pb present above detection limit in magnetite. Nickel, Mo and Co are compatible in Fe-rich MSS and thus the co-crystallizing Fe-oxide is depleted in these elements. In contrast, magnetite that crystallized later from the fractionated liquid with Cu-rich ISS is enriched in Ni, Mo and Co because Fe-rich MSS is absent. The concentrations of Sn and Pb, which are incompatible with Fe-rich MSS, are highest in magnetite that formed from the fractionated Cu-rich liquid. At subsolidus temperatures, ilmenite exsolved from titanomagnetite whereas Al-spinel exsolved from the cores of some magnetite, locally redistributing the trace elements. However, during laser ablation ICP-MS analysis of these Fe-oxides both the magnetite and its exsolution products are ablated so that the analysis represents the original magmatic composition of the Fe-oxide that crystallized from the sulfide melt.
Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...
Origin and distribution of trace elements in high-elevation precipitation in southern China.
Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing
2012-09-01
During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.
Baines, Stephen B.; Chen, Xi; Vogt, Stefan; Fisher, Nicholas S.; Twining, Benjamin S.; Landry, Michael R.
2016-01-01
Mesozooplankton production in high-nutrient low-chlorophyll regions of the ocean may be reduced if the trace element concentrations in their food are insufficient to meet growth and metabolic demands. We used elemental microanalysis (SXRF) of single-celled plankton to determine their trace metal contents during a series of semi-Lagrangian drift studies in an HNLC upwelling region, the Costa Rica Dome (CRD). Cells from the surface mixed layer had lower Fe:S but higher Zn:S and Ni:S than those from the subsurface chlorophyll maximum at 22–30 m. Diatom Fe:S values were typically 3-fold higher than those in flagellated cells. The ratios of Zn:C in flagellates and diatoms were generally similar to each other, and to co-occurring mesozooplankton. Estimated Fe:C ratios in flagellates were lower than those in co-occurring mesozooplankton, sometimes by more than 3-fold. In contrast, Fe:C in diatoms was typically similar to that in zooplankton. RNA:DNA ratios in the CRD were low compared with other regions, and were related to total autotrophic biomass and weakly to the discrepancy between Zn:C in flagellated cells and mesozooplankton tissues. Mesozooplankton may have been affected by the trace element content of their food, even though trace metal limitation of phytoplankton was modest at best. PMID:27275029
Rajan, Jay Prakash; Singh, Kshetrimayum Birla; Kumar, Sanjiv; Mishra, Raj Kumar
2014-09-01
To determine the trace elements content in the selected medicinal plants, namely, Eryngium foetidum L., Mimosa pudica L., Polygonum plebeium, and Prunus cerasoides D. Don traditionally used by the natives of the Mizoram, one of the north eastern states in India as their folklore medicines for curing skin diseases like eczema, leg and fingers infection, swelling and wound. A 3 MeV proton beam of proton induced X-ray emission technique, one of the most powerful techniques for its quick multi elemental trace analysis capability and high sensitivity was used to detect and characterized for trace elements. The studies revealed that six trace elements, namely, Fe, Zn, Cu, Mn, V, and Co detected in mg/L unit were present in varying concentrations in the selected medicinal plants with high and notable concentration of Fe, Zn, Mn and appreciable amount of the Cu, Co and V in all the plants. The results of the present study support the therapeutic usage of these medicinal plants in the traditional practices for curing skin diseases since they are found to contain appreciable amount of the Fe, Zn, Cu, Mn, V and Co. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Bjørklund, Geir; Aaseth, Jan; Skalny, Anatoly V; Suliburska, Joanna; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A
2017-05-01
Iron (Fe) deficiency is considered as the most common nutritional deficiency. Iron deficiency is usually associated with low Fe intake, blood loss, diseases, poor absorption, gastrointestinal parasites, or increased physiological demands as in pregnancy. Nutritional Fe deficiency is usually treated with Fe tablets, sometimes with Fe-containing multimineral tablets. Trace element interactions may have a significant impact on Fe status. Existing data demonstrate a tight interaction between manganese (Mn) and Fe, especially in Fe-deficient state. The influence of Mn on Fe homeostasis may be mediated through its influence on Fe absorption, circulating transporters like transferrin, and regulatory proteins. The existing data demonstrate that the influence of zinc (Zn) on Fe status may be related to their competition for metal transporters. Moreover, Zn may be involved in regulation of hepcidin production. At the same time, human data on the interplay between Fe and Zn especially in terms of Fe-deficiency and supplementation are contradictory, demonstrating both positive and negative influence of Zn on Fe status. Numerous data also demonstrate the possibility of competition between Fe and chromium (Cr) for transferrin binding. At the same time, human data on the interaction between these metals are contradictory. Therefore, while managing hypoferremia and Fe-deficiency anemia, it is recommended to assess the level of other trace elements in parallel with indices of Fe homeostasis. It is supposed that simultaneous correction of trace element status in Fe deficiency may help to decrease possible antagonistic or increase synergistic interactions. Copyright © 2017 Elsevier GmbH. All rights reserved.
Evaluation of Trace Elements and Their Relationship with Growth and Development of Young Children.
Cao, Jia; Gao, Zhenyan; Yan, Jin; Li, Minming; Su, Jia; Xu, Jian; Yan, Chong-Huai
2016-06-01
This study was conducted to assess the levels of trace elements and their relationship with growth and development of children in Shanghai, China, to offer scientific evidence for supplementing trace elements in children. A stratified, clustered, random sampling method was used in the study. Blood samples were taken from 2141 Shanghai children from 0 to 6.0 years old, and the concentrations of zinc (Zn), calcium (Ca), iron (Fe), copper (Cu), and magnesium (Mg) were measured using inductively coupled plasma mass spectrometry (ICP-MS). Nutritional status was determined and Z-scores of anthropometric parameters, such as height for age (HFA), weight for age (WFA), and body mass index (BMI) were calculated, indicated by HAZ, WAZ, and BMIZ, respectively. The overall median blood levels of Zn, Ca, Fe, Cu, and Mg were 8.83, 79.02, 9.49, 1.04, and 15.45 mg/L, respectively. Fe, Cu, and Mg increased with age and Zn, Fe, and Cu differed by sex. HAZ and WAZ were positively correlated with Zn (r (2) = 0.072 and 0.053, respectively; P < 0.05). Trace elements were significantly related to children's growth and development. Dietary supplementation and screening of nutritional states are potential solutions to improve children's growth and development.
NASA Astrophysics Data System (ADS)
Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex
2017-07-01
In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.
Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou
2016-02-01
This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...
2018-04-13
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huan; Qian, Yu; Cochran, J. Kirk
This study uses nanometer-scale synchrotron X-ray nanofluorescence to investigate season differences in concentrations and distributions of major (Ca, K, S and P) and trace elements (As, Cr, Cu, Fe and Zn) in the root system of Spartina alterniflora collected from Jamaica Bay, New York, in April and September 2015. The root samples were cross-sectioned at a thickness of 10 μm. Selected areas in the root epidermis and endodermis were mapped with a sampling resolution of 100 and 200 nm, varying with the mapping areas. The results indicate that trace element concentrations in the epidermis and endodermis vary among the elementsmore » measured, possibly because of their different chemical properties or their ability to act as micronutrients for the plants. Elemental concentrations (As, Ca, Cr, Cu, Fe, K, P, S and Zn) within each individual root sample and between the root samples collected during two different seasons are both significantly different (p < 0.01). Furthermore, this study indicates that the nonessential elements (As and Cr) are significantly correlated (p < 0.01) with Fe, with high concentrations in the root epidermis, while others are not, implying that Fe may be a barrier to nonessential element transport in the root system. Hierarchy cluster analysis shows two distinct groups, one including As, Cr and Fe and the other the rest of the elements measured. Factor analysis also indicates that the processes and mechanisms controlling element transport in the root system can be different between the nutrient and nonessential elements.« less
Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.
2016-01-01
Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.
Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.
2016-01-01
Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270
Trace element contamination in feather and tissue samples from Anna’s hummingbirds
Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.
2017-01-01
Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.
[Determination and correlation analysis of trace elements in Boletus tomentipes].
Li, Tao; Wang, Yuan-zhong; Zhang, Ji; Zhao, Yan-li; Liu, Hong-gao
2011-07-01
The contents of eleven trace elements in Boletus tomentipes were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results showed that the fruiting bodies of B. tomentipes were very rich in Mg and Fe (>100 mg x kg(-1)) and rich in Mn, Zn and Cu (>10 mg x kg(-1)). Cr, Pb, Ni, Cd, and As were relatively minor contents (0.1-10.0 mg x kg(-1)) of this species, while Hg occurred at the smallest content (< 0.1 mg x kg(-1)). Among the determined 11 trace elements, Zn-Cu had significantly positive correlation (r = 0.659, P < 0.05), whereas, Hg-As, Ni-Fe, and Zn-Mg had significantly negative correlation (r = -0.672, -0.610, -0.617, P < 0.05). This paper presented the trace elements properties of B. tomentipes, and is expected to be useful for exploitation and quality evaluation of this species.
Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition
NASA Astrophysics Data System (ADS)
Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty
2004-07-01
Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are derived from leaching of dust particles entrained in rain or fog droplets either in the atmosphere or during wet atmospheric deposition. The high trace metal enrichment factors require that most of the dust was physically removed before or during varnish formation. The remaining aqueous counterpart would be depleted in HFSEs and Th relative to the REEs, Co, Ni and Pb because the former are more insoluble and hence largely retained in the removed dust fraction. The high Ce/La ratios suggest that precipitation of trace metals may have been governed by equilibrium partitioning in an excess of wet atmospheric deposition. If varnishes are indeed derived from wet atmospheric deposition, they may provide a record of the aqueous component of atmospheric dust inputs to various environments.
Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija
2017-05-01
The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.
Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin
2013-01-01
Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944
He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong
2010-03-24
In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.
Gabrielli, P; Cozzi, G; Torcini, S; Cescon, P; Barbante, C
2008-08-01
Knowledge of the occurrence of trace elements deposited in fresh alpine snow is very limited. Although current sources of major ionic inorganic species have been well established, this is not the case for many trace elements. This manuscript attempts to reconstruct the origin of Ag, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mo, Mn, Pb, Sb, Ti, U, V and Zn in winter surface snow, extensively collected in the Dolomites region (Eastern Alps, Italy). Sampling of surface snow was conducted weekly during the winter 1998 at 21 sites at altitudes ranging from approximately 1000 to approximately 3000 m. This led to a remarkable dataset of trace element concentrations in surface snow from low latitudes. Here we show a preliminary statistical investigation conducted on the 366 samples collected. It was found that V, Sb, Zn, Cd, Mo and Pb have a predominantly anthropogenic origin, linked to the road traffic in the alpine valleys and the nearby heavily industrialised area of the Po Valley. In addition, the occasionally strong Fe and Cr input may reflect the mechanical abrasion of ferrous components of the vehicles. However, much of the Fe along with Mn, U and Ti originates primarily from the geological background of the Dolomites. A marine contribution was found to be negligible for all the trace elements. The origin of other trace elements is less clear: Ag can be possibly attributed to a predominantly anthropogenic origin while Cr, Co, Cu and Ba are usually from crustal rocks but different than the Dolomites.
Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).
Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas
2017-01-01
The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.
Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia.
Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V
2016-09-01
Age-related differences in the trace element content of hair have been reported. However, some discrepancies in the data exist. The primary objective of this study was to estimate the change in hair trace elements content in relation to age. Six hundred and eighteen women and 438 men aged from 10-59 years took part in the current cross-sectional study. Hair Cr, Mn, Ni, Si, Al, As, Be, Cd and Pb tended to decrease with age in the female sample, whereas hair Cu, Fe, I, Se, Li and Sn were characterised by an age-associated increase. Hair levels of Cr, Cu, I, Mn, Ni, Si and Al in men decreased with age, whereas hair Co, Fe, Se, Cd, Li and Pb content tended to increase. Hair mercury increased in association with age in men and in women, whereas hair vanadium was characterised by a significant decrease in both sexes. The difference in hair trace element content between men and women decreased with age. These data suggest that age-related differences in trace element status may have a direct implication in the ageing process.
Recycling of trace elements required for humans in CELSS.
Ashida, A
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Recycling of trace elements required for humans in CELSS
NASA Astrophysics Data System (ADS)
Ashida, A.
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Weathering of the New Albany Shale, Kentucky: II. Redistribution of minor and trace elements
Tuttle, M.L.W.; Breit, G.N.; Goldhaber, M.B.
2009-01-01
During weathering, elements enriched in black shale are dispersed in the environment by aqueous and mechanical transport. Here a unique evaluation of the differential release, transport, and fate of Fe and 15 trace elements during progressive weathering of the Devonian New Albany Shale in Kentucky is presented. Results of chemical analyses along a weathering profile (unweathered through progressively weathered shale to soil) describe the chemically distinct pathways of the trace elements and the rate that elements are transferred into the broader, local environment. Trace elements enriched in the unweathered shale are in massive or framboidal pyrite, minor sphalerite, CuS and NiS phases, organic matter and clay minerals. These phases are subject to varying degrees and rates of alteration along the profile. Cadmium, Co, Mn, Ni, and Zn are removed from weathered shale during sulfide-mineral oxidation and transported primarily in aqueous solution. The aqueous fluxes for these trace elements range from 0.1 g/ha/a (Cd) to 44 g/ha/a (Mn). When hydrologic and climatic conditions are favorable, solutions seep to surface exposures, evaporate, and form Fe-sulfate efflorescent salts rich in these elements. Elements that remain dissolved in the low pH (<4) streams and groundwater draining New Albany Shale watersheds become fixed by reactions that increase pH. Neutralization of the weathering solution in local streams results in elements being adsorbed and precipitated onto sediment surfaces, resulting in trace element anomalies. Other elements are strongly adsorbed or structurally bound to solid phases during weathering. Copper and U initially are concentrated in weathering solutions, but become fixed to modern plant litter in soil formed on New Albany Shale. Molybdenum, Pb, Sb, and Se are released from sulfide minerals and organic matter by oxidation and accumulate in Fe-oxyhydroxide clay coatings that concentrate in surface soil during illuviation. Chromium, Ti, and V are strongly correlated with clay abundance and considered to be in the structure of illitic clay. Illite undergoes minimal alteration during weathering and is concentrated during illuvial processes. Arsenic concentration increases across the weathering profile and is associated with the succession of secondary Fe(III) minerals that form with progressive weathering. Detrital fluxes of particle-bound trace elements range from 0.1 g/ha/a (Sb) to 8 g/ha/a (Mo). Although many of the elements are concentrated in the stream sediments, changes in pH and redox conditions along the sediment transport path could facilitate their release for aqueous transport.
Serum trace elements in obese women with or without diabetes
Yerlikaya, F. Hümeyra; Toker, Aysun; Arıbaş, Alpay
2013-01-01
Background & objectives: Relationship of trace elements with obesity and diabetes is complex, alterations in their metabolism can be induced by the diseases and their complications. To study the role of the trace elements in diabetes and obesity, serum trace elements levels (Cr, Se, Fe, Zn, Cu and Mn) were measured in obese women with or without diabetes as well as healthy women. Further, correlation between serum trace elements levels and glucose, insulin, homeostasis model assessment (HOMA-IR), glycated haemoglobin (HbA1c), body mass index (BMI), waist circumferences, waist -to -hip ratio and high-sensitivity C-reactive protein(hsCRP) were also determined in these women. Methods: This study was performed with morbidly obese (BMI >40 kg/m2) women with diabetes (n=41), without diabetes (n=45) and 50 healthly non obese women. Anthropometric measurements were taken and levels of serum Zn, Cr, Fe Cu and Mn were determined. Biochemical parameters included serum glucose, insulin, lipids, haemoglobin, hsCRP and HbA1C. Results: The levels of Zn (P<0.001), Mn (P<0.05), Fe (P<0.05) were significantly lower and the level of Cu (P<0.001) and Cu / Zn ratio (P<0.05) were significantly higher in the diabetic obese women than those of the healthy women. Also, the levels of Zn and Fe were significantly lower and the levels of Cu were significantly higher in the non diabetic obese women than those of the healthy group. Serum Zn levels negatively and serum Cu levels positively correlated with anthropometric values in diabetic and non diabetic obese women. Further, serum Zn, Mn and Cr levels negatively correlated and serum Se levels positively correlated glycaemia control parameters in diabetic obese women. In addition, serum Zn levels negatively correlated with hsCRP in diabetic and nondiabetic obese females. Interpretation & conclusions: Our findings showed significant association between Zn and Fe deficiencies and obesity. Also, obese women with diabetes may be at a greater risk of developing imbalances and deficiencies of trace elements compared with obese women without diabetes. PMID:23563378
The geochemical cycling of trace elements in a biogenic meromictic lake
NASA Astrophysics Data System (ADS)
Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara
1994-10-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).
The geochemical cycling of trace elements in a biogenic meromictic lake
Balistrieri, L.S.; Murray, J.W.; Paul, B.
1994-01-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.
Batiza, Rodey; Futa, K.; Hedge, C.E.
1979-01-01
Isla Tortuga is a small isolated central volcano which is located near an actively spreading trough in the Gulf of California. The basalt lavas from Tortuga which have the highest Mg/Fe and Ni contents have trace element abundances and ratios and 87Sr/86Sr which are similar to those of mid-ocean ridge tholeiite. The major element, rare earth element and Sr abundances of fractionated tholeiite (low Mg/Fe) and tholeiitic andesite of Tortuga are consistent with an origin by closed-system fractional crystallization. This hypothesis is not supported by K, Na, Rb and Ba abundances in the lavas nor by their variable 87Sr/86Sr (0.7024-0.7035). It is proposed that the apparent decoupling of light rare earth elements, other incompatible trace elements and 87Sr/86Sr is due to contamination of some Tortuga magmas while they are fractionated in a high-level crustal magma chamber. The mantle source of least-contaminated, high Mg/Fe basalt lavas of Tortuga is similar, although not identical to the source of normal mid-ocean ridge tholeiite; significant differences exist. The reasons for these differences are not yet known. ?? 1979.
Shi, Honglan; Witt, Emitt C; Shu, Shi; Su, Tingzhi; Wang, Jianmin; Adams, Craig
2010-07-01
Analysis of soil/sediment samples collected in the southern Louisiana, USA, region three weeks after Hurricanes Katrina and Rita passed was performed using sequential extraction procedures to determine the origin, mode of occurrence, biological availability, mobilization, and transport of trace elements in the environment. Five fractions: exchangeable, bound to carbonates, bound to iron (Fe)-manganese (Mn) oxides, bound to organic matter, and residual, were subsequently extracted. The toxic trace elements Pb, As, V, Cr, Cu, and Cd were analyzed in each fraction, together with Fe in 51 soil/sediment samples. Results indicated that Pb and As were at relatively high concentrations in many of the soil/sediment samples. Because the forms in which Pb and As are present tend to be highly mobile under naturally occurring environmental conditions, these two compounds pose an increased health concern.Vanadium and Cr were mostly associated with the crystal line nonmobile residual fraction. A large portion of the Cu was associated with organic matter and residual fraction. Cadmium concentrations were low in all soil/sediment samples analyzed and most of this element tended to be associated with the mobile fractions. An average of 21% of the Fe was found in the Fe-Mn oxide fraction, indicating that a substantial part of the Fe was in an oxidized form. The significance of the overall finding of the present study indicated that the high concentrations and high availabilities of the potentially toxic trace elements As and Pb may impact the environment and human health in southern Louisiana and, in particular, the New Orleans area. Copyright (c) 2010 SETAC.
NASA Technical Reports Server (NTRS)
Colson, R. O.; Mckay, G. A.; Taylor, L. A.
1988-01-01
This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.
Evaluation of trace element status of organic dairy cattle.
Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M
2018-06-01
The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.
Ullah, Zia; Ullah, Muhammad Ikram; Hussain, Shabbir; Kaul, Haiba; Lone, Khalid P
2017-01-01
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease, which mainly involves the joints. RA is prevalent worldwide with increasing prevalence in elderly people. The mechanism of RA pathogenesis is still undefined, and it is interplaying between genetic susceptibility and environmental factors. Although risk factors for RA are not fully established, various studies have focused on the role of trace elements in association with RA. Trace elements act as co-factors for most of the enzymes, and their deficiency is associated with many untoward effects on human health. The homeostatic alterations in the metabolism of trace elements may partly be due to inflammatory response in RA. The objective of the present study was to determine the serum concentrations and correlation of zinc, copper, and iron in RA patients and healthy controls. The study comprised of 61 RA patients and 61 age- and sex-related healthy individuals of Pakistani population. Serum levels of Zn, Cu, and Fe were measured in all the participants by atomic absorption spectrophotometer. Serum Zn and Fe were significantly reduced in the RA patients than those in the healthy controls. Serum Cu concentrations were found elevated in the RA patients. Correlation studies of trace elements determine that there was negative correlation between Zn and Cu in the RA patients and no correlation in the control group. It is very important to explore the deficiency of essential trace metals in biological samples of the RA patients in different populations which may be helpful for diagnosis and supplementary management of rheumatoid arthritis patients.
Identification of deposit types of natural corundum by PIXE
NASA Astrophysics Data System (ADS)
Chulapakorn, T.; Intarasiri, S.; Bootkul, D.; Singkarat, S.
2014-07-01
Natural corundum, one of the most important exports of Thailand, is a rare, durable and valuable gemstone. The value of these precious stones is determined by their visual appearances, including brilliance, color, fire (light dispersion) and luster. Corundum is an allochromatic mineral whose trace element concentration depends on the origin and has influence on price setting. This work attempts to use an alternative method to identify the geological deposits of rubies and sapphires found in the Thai market which came from various countries, e.g., Africa, Cambodia, Myanmar, Sri Lanka, Thailand and USA. Interrelations between most important major trace elements are the main results of this work. Quantitative analysis of trace elements were performed by particle-induced X-ray emission (PIXE) technique, using 2-MeV proton beam generated and accelerated by the 1.7 MV tandem accelerator at Chiang Mai University. The trace elements of interest are Ti, Cr, Fe and Ga. We have found that the relationships between the ratios of trace element concentration can be used to classify the deposit type. Moreover, this method shows a clear separation between two main types of geological deposits, basaltic and metamorphic deposits, which further helps in determining the gemstone origin. For example, the gemstones from Cambodia, Thailand and the USA can be classified as the basaltic deposits with their high concentration in Fe but low in Ti, while the gemstones from Africa, Myanmar and Sri Lanka are metamorphic deposits because they have low Fe but high Ti concentrations. Both deposits required plots of pairs of trace elements and their ratios in population field appearance in order to distinguish their origins. The advantageous of these methods appear to be a new and a sustainable procedure for determining gemstone origins.
PIXE as a complement to ICP-OES trace metal analysis in Sudanese medicinal plants.
Mubark Ebrahim, Ammar; Etayeb, M A; Khalid, H; Noun, Manale; Roumie, M; Michalke, B
2014-08-01
This paper compares trace element concentrations (Ca, K, Sr, Fe, Mn, Zn, Ni, Cu, Co and Cr) in 27 Sudanese medical plants determined in parallel by PIXE and ICP-OES to get information on which technique is preferable at different matrices and element concentrations. PIXE correlates well to ICP-OES for Sr, Mn, Ca, K, Zn and Fe determinations. ICP-OES seems to be the superior technique over PIXE when measuring low concentrated elements (chromium, cobalt, nickel and copper) in the medicinal plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin
2015-01-01
This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
Smith, C.L.; Motooka, J.M.; Willson, W.R.
1984-01-01
Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.
He, Yuyong; Chen, Zhiyu; Liu, Xiaolan; Wang, Chengwei; Lu, Wei
2014-01-01
Cu2+, Zn2+, Fe2+ and I- are often supplemented to the diet of suckling and early weaning piglets, but little information is available regarding the effects of different Cu2+, Zn2+, Fe2+ and I- mixtures on bacteria growth, diversity and fermentation characteristics of fermented liquid diet for piglets. Pyrosequencing was performed to investigate the effect of Cu2+, Zn2+, Fe2+ and I- mixtures on the diversity, growth and fermentation characteristics of bacteria in the liquid diet fermented with Bacillus subtilis and Enterococcus faecalis under air-tight condition. Results showed that the mixtures of Cu2+, Zn2+, Fe2+ and I- at different concentrations promoted Bacillus growth, increased bacterial diversity and lactic acid production and lowered pH to about 5. The importance of Cu2+, Zn2+, Fe2+ and I- is different for Bacillus growth with the order Zn2+> Fe2+>Cu2+> I- in a 21-d fermentation and Cu2+>I->Fe2+>Zn2+ in a 42-d fermentation. Cu2+, Zn2+, Fe2+ and I- is recommended at a level of 150, 60, 150 and 0.6 mg/kg respectively for the production of fermented liquid diet with Bacillus subtilis. The findings improve our understanding of the influence of trace elements on liquid diet fermentation with probiotics and support the proper use of trace elements in the production of fermented liquid diet for piglets.
Shailaja, M; Reddy, Yathapu Srinivasa; Kalakumar, B D P; Brinda, S A; Manohar, Gottimukkula; Kumar, B Dinesh
2014-06-01
The presence of lead (Pb) in milk and its interaction with trace elements is a serious health concern. Present study is aimed at determining Pb and trace element (Fe, Zn and Mg) levels in milk and blood/serum samples of lactating buffaloes (Bubalus bubalis) living in a market-area (Group-A) and a dairy-experimental station (Group-B), Hyderabad, India. In addition, kidney and liver function tests were assessed. Fodder, milk and blood Pb levels were significantly (p < 0.01) higher in Group-B. Elevated Pb levels correlated positively with reduced Fe and Zn levels in both serum and milk. A significant (p < 0.01) positive correlation between blood Pb and milk Pb levels was observed. Kidney and liver function markers were significantly higher in Group-B buffaloes. The results suggest that contaminated fodder might be one of the responsible factors for elevated Pb levels. In addition, lower levels of Fe and Zn might have led to bioaccumulation of Pb in blood and milk.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1992-01-01
Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.
Trace elements in muscle of three fish species from Todos os Santos Bay, Bahia State, Brazil.
de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, William Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso
2017-03-01
In this study, an analysis was performed on the concentrations of the trace elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in muscle of two carnivorous and one planktivorous fish species collected at Todos os Santos Bay (BTS). The accumulation order of the trace elements in Lutjanus analis was Al >Zn >Fe >Cr >Ba >Ni. In Cetengraulis edentulus, the order was Al >Fe >Zn >Cr >Ni >Mn >As. In the species Diapterus rhombeus, the order was Al >Fe >Zn >Cr >Ni >Mn >Cd. To determine the risk related to the consumption of fish, toxicity guidelines were used as standard references. It was observed that the species C. edentulus contained concentrations of As exceeding WHO limits, but these concentrations were acceptable according to the Agência Nacional de Vigilância Sanitária (ANVISA) guidelines. Cd levels were found only in D. rhombeus and in low concentrations according to the determinations of WHO and ANVISA. Pb levels were not detected in any of the three fish species. The analyzed elements did not differ statistically according to the species and feeding habits. The results point to possible risks of human contamination by As related to the consumption of the fish species C. edentulus from the BTS.
Trace elemental correlation study in malignant and normal breast tissue by PIXE technique
NASA Astrophysics Data System (ADS)
Raju, G. J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G. A. V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P. V. B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka
2006-06-01
Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors.
Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique
NASA Astrophysics Data System (ADS)
Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir
2018-03-01
The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.
NASA Astrophysics Data System (ADS)
Gómez-Ulla, Alejandra; Sigmarsson, Olgeir; Guðfinnsson, Guðmundur H.
2017-04-01
Trace element concentrations and ratios in olivine phenocrysts, such as fractionation-corrected Ni x (FeO/MgO) and Fe/Mn, have been shown useful as probes of pyroxenite derived component in mixtures of primary mantle melts (e.g. Sobolev et al., 2007). For instance, higher Ni and lower Mn and Ca contents are expected in partial melts of pyroxenite compared to those of lherzolite. We have measured trace element concentrations in olivine from 1730-1736 AD (Timanfaya) and 1824 AD eruptions in Lanzarote (Canary Islands), which erupted mafic and mantle nodule bearing magmas, ranging in composition from highly silica-undersaturated basanite through alkali basalt to tholeiite. The early basanite exhibit the largest olivine trace element variation covering the range of those from MORB and OIB worldwide, whereas later erupted tholeiite have values typical from pyroxenite derived melts. The Fo value decreased systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with, increasing concentrations of Mn and Ca and higher Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at lower temperature. The basanite from the eruption that took place in 1824 AD has olivine with even higher Fo value and trace element variability similar those of the Timanfaya basanite. The fact that the Lanzarote basanite contain olivine with trace element systematic spanning that of MORB and pyroxenite melt can be explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. Initial reactive porous flow through depleted oceanic lithosphere and equilibration with dunitic restite of percolating pyroxenite melt may have amplified the observed Ni depletion in olivine of the earliest basanite. The fact that olivine compositions and basanite magma were reproduced approximately a century later may reflect episodic carbonatic fluxing in the slowly uprising Canarian mantle plume.
Profile of Some Trace Elements in the Liver of Camels, Sheep, and Goats in the Sudan
Ibrahim, Ibrahim Abdullah; Shamat, Ali Mahmoud; Hussien, Mohammed Osman; El Hussein, Abdel Rahim Mohammed
2013-01-01
One hundred camels (Camelus dromedaries) and fifty sheep and goats being adult, male, and apparently healthy field animals were studied to provide data regarding the normal values of some hepatic trace elements. Liver samples were collected during postmortem examination, digested, and analyzed for Cu, Zn, Fe, Co, and Mn using atomic absorption spectrophotometry. The results showed that the differences in mean liver concentrations of Cu, Zn, Fe, and Co between camels, sheep, and goats were statistically significant (P < 0.05). Hepatic Cu, Fe, and Co concentrations were higher in camels than in sheep and goats. All liver samples were adequate for Fe and Co, whereas only camel liver was adequate for Cu. In camels, hepatic Zn concentration was inadequately lower than that in sheep and goats. No difference in Mn concentration was detected between camels, sheep, and goats. All liver samples were inadequate compared to free-ranging herbivores. In camels, significant correlation (r 2 = −0.207, P value = 0.04) was detected between Zn and Co, whereas in sheep significant correlation (r 2 = −0.444, P value = 0.026) was detected between Zn and Mn. No significant correlation between trace elements was detected in goats. PMID:26464909
Shaver, S.A.; Hower, J.C.; Eble, C.F.; McLamb, E.D.; Kuers, K.
2006-01-01
Mean contents of trace elements and ash in channel, bench-column, and dump samples of the abandoned Bon Air coal (Lower Pennsylvanian) in Franklin County, Tennessee are similar to Appalachian COALQUAL mean values, but are slightly lower for As, Fe, Hg, Mn, Na, Th, and U, and slightly higher for ash, Be, Cd, Co, Cr, REEs, Sr, and V, at the 95% confidence level. Compared to channel samples, dump sample means are slightly lower in chalcophile elements (As, Cu, Fe, Ni, Pb, S, Sb, and V) and slightly higher in clay or heavy-mineral elements (Al, K, Mn, REEs, Th, Ti, U, and Y), but at the 95% confidence level, only As and Fe are different. Consistent abundances of clay or heavy-mineral elements in low-Br, high-S, high-ash benches that are relatively enriched in quartz and mire-to-levee species like Paralycopodites suggest trace elements are largely fluvial in origin. Factor analysis loadings and correlation coefficients between elements suggest that clays host most Al, Cr, K, Ti, and Th, significant Mn and V, and some Sc, U, Ba, and Ni. Heavy accessory minerals likely house most REEs and Y, lesser Sc, U, and Th, and minor Cr, Ni, and Ti. Pyrite appears to host As, some V and Ni, and perhaps some Cu, but Cu probably exists largely as chalcopyrite. Data suggest that organic debris houses most Be and some Ni and U, and that Pb and Sb occur as Pb-Sb sulfosalt(s) within organic matrix. Most Hg, and some Mn and Y, appear to be hosted by calcite, suggesting potential Hg remobilization from original pyrite, and Hg sorption by calcite, which may be important processes in abandoned coals. Most Co, Zn, Mo, and Cd, significant V and Ni, and some Mn probably occur in non-pyritic sulfides; Ba, Sr, and P are largely in crandallite-group phosphates. Selenium does not show organic or "clausthalite" affinities, but Se occurrence is otherwise unclear. Barium, Mn, Ni, Sc, U, and V, with strongly divided statistical affinities, likely occur subequally in multiple modes. For study area surface waters, highest levels of most trace elements occur in mine-adit or mine-dump drainage. Effluent flow rates strongly affect both acidity and trace element levels. Adit drainages where flow is only a trickle have the most acidic waters (pH 3.78-4.80) and highest trace element levels (up to two orders of magnitude higher than in non-mine site waters). Nonetheless, nearly all surface waters have low absolute concentrations of trace elements of environmental concern, and all waters sampled meet U.S. EPA primary drinking water standards and aquatic life criteria for all elements analyzed. Secondary drinking water standards are also met for all parameters except Al, pH, Fe, and Mn, but even in extreme cases (mine waters with pH as low as 3.78 and up to 1243 ppb Al, 6280 ppb Fe, and 721 ppb Mn, and non-mine dam-outflow waters with up to 18,400 ppb Fe and 1540 ppb Mn) downslope attenuation is apparently rapid, as down-drainage plateau-base streams show background levels for all these parameters. ?? 2005 Elsevier B.V. All rights reserved.
Hamza, Salma; Naseem, Shahid; Bashir, Erum; Rizwani, Ghazala H; Hina, Bushra
2013-07-01
An integrated study of rocks, soils and fruits of Manilkara zapota (L.) (Sapotaceae) of Winder area have been carried out to elaborate trace elements relationship between them. The igneous rocks of the study area have elevated amount of certain trace elements, upon weathering these elements are concentrated in the soil of the area. The trace elements concentration in the soil were found in the range of 0.8-197 for Fe, 1.23-140 for Mn, 0.03-16.7 for Zn, 0.07-9.8 for Cr, 0.05-2.0 for Co, 0.52-13.3 for Ni, 0.03-8.8 for Cu, 0.08-10.55 for Pb and 0.13-1.8μg/g for Cd. The distribution pattern of elements in the rocks and soils reflected genetic affiliation. Promising elements of edible part of the fruit were Fe (14.17), Mn (1.49), Cr (2.96), Ni (1.13), Co (0.92), Cu (1.70) and Zn (1.02μg/g). The concentration of these elements in the fruits is above the optimum level of recommended dietary intake, probably due to this, disorder in the human health is suspected in the inhabitants of the area.
Moestedt, J; Nordell, E; Shakeri Yekta, S; Lundgren, J; Martí, M; Sundberg, C; Ejlertsson, J; Svensson, B H; Björn, A
2016-01-01
This study used semi-continuous laboratory scale biogas reactors to simulate the effects of trace-element addition in different combinations, while degrading the organic fraction of municipal solid waste and slaughterhouse waste. The results show that the combined addition of Fe, Co and Ni was superior to the addition of only Fe, Fe and Co or Fe and Ni. However, the addition of only Fe resulted in a more stable process than the combined addition of Fe and Co, perhaps indicating a too efficient acidogenesis and/or homoacetogenesis in relation to a Ni-deprived methanogenic population. The results were observed in terms of higher biogas production (+9%), biogas production rates (+35%) and reduced VFA concentration for combined addition compared to only Fe and Ni. The higher stability was supported by observations of differences in viscosity, intraday VFA- and biogas kinetics as well as by the 16S rRNA gene and 16S rRNA of the methanogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman
2018-02-23
The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.
NASA Astrophysics Data System (ADS)
Woelfl, Stefan; Mages, Margarete; Torres, Patricio
2008-12-01
The aim of this study was to investigate (1) whether intestine endoparasites ( Diphyllobothrium latum) accumulate trace elements related to its body size and (2) whether parasites bioconcentrate more trace elements than their host. Freshwater fish (rainbow trout Oncorhynchus mykiss) were sampled in the deep, oligotrophic and uncontaminated Lake Riñihue in Southern Chile. The element concentration of different organs (intestine, muscle, liver) and of the intestine endoparasites were analyzed using total reflection X-ray fluorescence spectrometry. The results showed that the mass fraction for Mn, Fe, Ni, Cu, and Pb decreased significantly with the body size (dry weight) of the endoparasite. Only Zn did not reveal such a relationship. Small parasites accumulated up to 80 times more Fe, Ni, Mn, Pb, and Cu than large parasites. Compared to the fish organs, small parasites accumulated in maximum 35 to 307 times more Mn, 5 to 255 times more Fe, 98 to 220 times more Ni, 3 to 175 times more Cu, and 0.4 to 12 times more Zn than the fish. Lead was only found in the endoparasite, but not in the fish organs. We conclude that (1) D. latum is a good indicator for trace element accumulation in fishes and that (2) small endoparasites are more sensitive as bioindicators because they showed higher bioconcentrations of trace metals than larger parasites.
Meteoritic trace element toxification and the terminal Mesozoic mass extinction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickson, S.M.; Erickson, D.J. III
1985-01-01
Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less
Trace elements and antioxidant enzymes in Behçet's disease.
Saglam, K; Serce, A F; Yilmaz, M I; Bulucu, F; Aydin, A; Akay, C; Sayal, A
2002-07-01
Free oxygen radicals and insufficiency of antioxidant enzymes have been implicated in the pathogenesis of Behçet's disease (BD). Trace elements function as cofactors to antioxidant enzymes. The antioxidant system and trace elements were investigated in many different studies, including BD, but these subjects have not been investigated as a whole in these patients. The aim of the present study was to investigate the antioxidative system and trace elements in BD to contribute to the knowledge of pathogenesis and treatment of this disease. We examined glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities together with selenium (Se), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels in plasma and erythrocytes of 50 patients with BD and 30 healthy controls. It was found that in patients with BD, erythrocyte GSH-Px and SOD activities and erythrocyte Se, plasma Fe, Mn, and Zn levels were significantly lower than those of controls and that plasma Cu, erythrocyte Zn, and Mn levels were significantly higher in patients with BD. Insufficient antioxidant enzyme activities were observed in patients with BD. The mechanism(s) of this phenomenon is not clear. Therefore, supplementation with trace elements involved in the antioxidative processes may increase scavenger enzyme activities, and consequently, an improvement in clinical symptoms may be expected.
Horowitz, Arthur J.; Elrick, Kent A.; Cook, Robert B.
1993-01-01
During the summer of 1989 surface sediment samples were collected in Lake Coeur d'Alene, the Coeur d'Alene River and the St Joe River, Idaho, at a density of approximately one sample per square kilometre. Additional samples were collected from the banks of the South Fork of the Coeur d'Alene and the Coeur d'Alene Rivers in 1991. All the samples were collected to determine trace element concentrations, partitioning and distribution patterns, and to relate them to mining, mining related and discharge operations that have occurred in the Coeur d'Alene district since the 1880s, some of which are ongoing.Most of the surface sediments in Lake Coeur d'Alene north of Conkling Point and Carey Bay are substantially enriched in Ag, As, Cu, Cd, Hg, Pb, Sb and Zn relative to unaffected sediments in the southern portion of the lake near the St Joe River. All the trace element enriched sediments are extremely fine grained (mean grain sizes « 63 μm). Most of the enriched trace elements, based on both the chemical analyses of separated heavy and light mineral fractions and a two step sequential extraction procedure, are associated with an operationally defined Fe oxide phase; much smaller percentages are associated either with operationally defined organics/sulphides or refractory phases.The presence, concentration and distribution of the Fe oxides and heavy minerals indicates that a substantial portion of the enriched trace elements are probably coming from the Coeur d'Alene River, which is serving as a point source. Within the lake, this relatively simple point source pattern is complicated by a combination of (1) the formation of trace element rich authigenic Fe oxides that appear to have reprecipitated from material solubilized from anoxic bed sediments and (2) physical remobilization by currents and wind driven waves. The processes that have caused the trace element enrichment in the surface sediments of Lake Coeur d'Alene are likely to continue for the foreseeable future.
McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.
2010-01-01
The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.
Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-10-01
The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.
Cycling of oxyanion-forming trace elements in groundwaters from a freshwater deltaic marsh
NASA Astrophysics Data System (ADS)
Telfeyan, Katherine; Breaux, Alexander; Kim, Jihyuk; Kolker, Alexander S.; Cable, Jaye E.; Johannesson, Karen H.
2018-05-01
Pore waters and surface waters were collected from a freshwater system in southeastern Louisiana to investigate the geochemical cycling of oxyanion-forming trace elements (i.e., Mo, W, As, V). A small bayou (Bayou Fortier) receives input from a connecting lake (Lac des Allemands) and groundwater input at the head approximately 5 km directly south of the Mississippi River. Marsh groundwaters exchange with bayou surface water but are otherwise relatively isolated from outside hydrologic forcings, such as tides, storms, and effects from local navigation canals. Rather, redox processes in the marsh groundwaters appear to drive changes in trace element concentrations. Elevated dissolved S(-II) concentrations in marsh groundwaters suggest greater reducing conditions in the late fall and winter as compared to the spring and late summer. The data suggest that reducing conditions in marsh groundwaters initiate the dissolution of Fe(III)/Mn(IV) oxide/hydroxide minerals, which releases adsorbed and/or co-precipitated trace elements into solution. Once in solution, the fate of these elements is determined by complexation with aqueous species and precipitation with iron sulfide minerals. The trace elements remain soluble in the presence of Fe(III)- and SO42-- reducing conditions, suggesting that either kinetic limitations or complexation with aqueous ligands obfuscates the correlation between V and Mo sequestration in sediments with reducing or euxinic conditions.
Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua
2014-01-01
The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.
Moniruzzaman, Mohammed; Chowdhury, Muhammed Alamgir Zaman; Rahman, Mohammad Abdur; Sulaiman, Siti Amrah; Gan, Siew Hua
2014-01-01
The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination. PMID:24982869
Beltrán, María; Sánchez-Astudillo, María; Aparicio, Ramón; García-González, Diego L
2015-02-15
The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana). Copyright © 2014 Elsevier Ltd. All rights reserved.
Total-diet study: dietary intakes of macro elements and trace elements in Italy.
Lombardi-Boccia, Ginevra; Aguzzi, Altero; Cappelloni, Marsilio; Di Lullo, Giuseppe; Lucarini, Massimo
2003-12-01
The present study provides the dietary intakes of macro elements (Ca, Mg, Na, K, P) and trace elements (Fe, Zn, Cu, Se) from the Italian total diet. The contribution of the most representative food groups of the total diet (cereals and cereal products, vegetables, fruit, milk and dairy products, meat and meat products, fish) to the daily intakes of these nutrients was also evaluated. The Italian total diet was formulated following the 'market-basket' approach. Cereals represented the primary sources of Cu (35 %), Fe (30 %) and Mg (27 %). About 89 % of the total daily intake of Fe was derived from plant foods. The vegetables food group was the main source of dietary K (27 %). Most of the Ca (59 %) and P (27 %) was derived from the milk-and-dairy food group. Of the dietary Zn, 41 % was provided by meat, which, together with the fish food group, was the primary source of Se (20 %). The adequacy of the Italian total diet with respect to nutritional elements was assessed by comparing the daily intakes with the average requirement values of the Italian recommended dietary allowances. The present findings indicated that the dietary patterns of the Italian total diet were generally consistent with current Italian dietary recommendations for both macro and trace elements. The major concern was for Ca, for which daily intake was 76 % of the average recommendation for the Italian population. It should not be ruled out that there could be a potential risk of inadequate Fe intake in some segments of the population.
Bu, Hongmei; Wang, Weibo; Song, Xianfang; Zhang, Quanfa
2015-09-01
Dissolved trace elements and physiochemical parameters were analyzed to investigate their physicochemical characteristics and identify their sources at 12 sampling sites of the Jinshui River in the South Qinling Mts., China from October 2006 to November 2008. The two-factor ANOVA indicated significant temporal variations of the dissolved Cu, Fe, Sr, Si, and V (p < 0.001 or p < 0.05). With the exception of Sr (p < 0.001), no significant spatial variations were found. Distributions and concentrations of the dissolved trace elements displayed that dissolved Cu, Fe, Sr, Si, V, and Cr were originated from chemical weathering and leaching from the soil and bedrock. Dissolved Cu, Fe, Sr, As, and Si were also from anthropogenic inputs (farming and domestic effluents). Correlation and regression analysis showed that the chemical and physical processes of dissolved Cu was influenced by water temperature and dissolved oxygen (DO) to some degree. Dissolved Fe and Sr were affected by colloid destabilization or sedimentary inputs. Concentrations of dissolved Si were slightly controlled by biological uptake. Principal component analysis confirmed that Fe, Sr, and V resulted from domestic effluents, agricultural runoff, and confluence, whereas As, Cu, and Si were from agricultural activities, and Cr and Zn through natural processes. The research results provide a reference for ecological restoration and protection of the river environment in the Qinling Mts., China.
NASA Astrophysics Data System (ADS)
Hasan Rhaif Al-Sahlanee, Mayyadah; Maizan Ramli, Ramzun; Abdul Hassan Ali, Miami; Fadhil Tawfiq, Nada; Zahirah Noor Azman, Nurul; Abdul Rahman, Azhar; Shahrim Mustafa, Iskandar; Noor Ashikin Nik Abdul Razak, Nik; Zakiah Yahaya, Nor; Mohammed Al-Marri, Hana; Syuhada Ayob, Nur; Zakaria, Nabela
2017-10-01
Trace elements are essential nutritional components in humans and inconvenient tissue content that have a significant influence on infant size. The aim of this study is to evaluate the effects of concentration of elements (uranium (U), lead (Pb) and iron (Fe)) and absorption of Pb and Fe on maternal and umbilical cord blood samples. The concentration and absorption of Pb and Fe in blood samples were determined by using atomic absorption spectrophotometry device, while the uranium concentration was determined by using CR-39 detector. Fifty women of age 16-44 years are involved in this study. Results show that the maximum and minimum values of both concentration and absorption in the maternal samples were for Pb and Fe, respectively. In addition, for umbilical cord, the maximum values of concentration and absorption were for Fe and the minimum concentration and absorption were for U and Pb, respectively. A significant correlation between maternal and umbilical cord blood samples was found. This indicates that the Pb, U and Fe elements can easily transfer from maternal to the fetal body which impacts the growth of fetus.
THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.
2010-07-16
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less thanmore » 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.« less
The weathering of a sulfide orebody: Speciation and fate of some potential contaminants
Courtin-Nomade, A.; Grosbois, C.; Marcus, M.A.; Fakra, S.C.; Beny, J.-M.; Foster, A.L.
2009-01-01
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogeni- cally modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., ??500 ??g/L Cu, ??3700 ??g/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 ??m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (??XAS), scanning X-ray diffraction ((??SXRD) and scanning X-ray fluorescence (??-SXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially at the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity at this site.
NASA Astrophysics Data System (ADS)
Steinmann, M.; Floch, A. L.; Lucot, E.; Badot, P. M.
2014-12-01
The oxyhydroxides of iron are common soil minerals and known to control the availability of various major and trace elements essential for biogeochemical processes. We present a study from acidic natural forest soils, where reducing redox conditions due to seasonal waterlogging lead to the dissolution of Fe-oxyhydroxides, and to the release of Fe to soil water. In order to study in detail the mechanism of redox cycling of Fe, we used Rare Earth Element (REE) distribution patterns, because an earlier study has shown that they are a suitable tool to identify trace metal sources during soil reduction in wetland soils (Davranche et al., 2011). The REE patterns of soil leachates obtained with the modified 3-step BCR extraction scheme of Rauret et al., (1999) were compared with those of natural soil water. The adsorbed fractions (F1 leach), the reducible fraction of the deepest soil horizon H4 (F2 leach, 50-120 cm), and the oxidizable fractions of horizons H2 to H4 (F3 leachs, 24-120 cm) yielded REE patterns almost identical to soil water (see figure), showing that the REE and trace metal content of soil water was mainly derived from the F1 pool, and from the F2 and F3 pools of the clay mineral-rich deep soil horizons. In contrast, the F2 leach mobilized mainly Fe-oxyhydroxides associated with organic matter of the surface soil and yielded REE patterns significantly different from those of soil water. These results suggest that the trace metal content of soil water in hydromorphic soils is primarily controlled by the clay fraction of the deeper soil horizons and not by organic matter and related Fe-oxyhydroxides of the surface soil. Additional analyses are in progress in order to verify whether the REE and trace metals of the deeper soil horizons were directly derived from clay minerals or from associated Fe-oxyhydroxide coatings. Refs cited: Davranche et al. (2011), Chem. Geol. 284; Rauret et al. (1999), J. Environ. Monit. 1.
Effect of lipid peroxidation, antioxidants, macro minerals and trace elements on eczema.
Amin, Mohammad Nurul; Liza, Kaniz Fatema; Sarwar, Md Shahid; Ahmed, Jamiuddin; Adnan, Md Tareek; Chowdhury, Manjurul Islam; Hossain, Mohammad Zahid; Islam, Mohammad Safiqul
2015-09-01
The exact etiology and pathogenesis of eczema are not yet fully understood, although different factors are considered as pathogenic mechanisms in the development of eczema. Our study was designed to determine extent of serum lipid peroxidation, antioxidants, macro minerals and trace elements in patients with eczema, and thereby, find any pathophysiological correlation. The study was conducted as a case-control study with 65 eczema patients as cases and 65 normal healthy individuals as controls. Lipid peroxidation was assessed by measuring the serum level of malondialdehyde (MDA). Antioxidants- vitamin A and E concentration was determined by RP-HPLC method whereas vitamin C was evaluated for serum ascorbic acid by UV spectrophotometric method. Serum macro minerals (Na, K, Ca) and trace elements (Zn, Fe) were determined by Atomic Absorption Spectroscopy (AAS). This study found significantly higher level of MDA (p < 0.001) and lower level of antioxidants (p < 0.05) in patients in comparison to the control subjects. Analysis of serum macro minerals (Na, K and Ca) and trace elements (Zn, Fe) found that the mean values of Na, K, Ca, Zn and Fe were 2771.60 ± 75.64, 66.33 ± 3.03, 48.41 ± 2.50, 0.30 ± 0.02 and 0.29 ± 0.009 mg/L for the patient group and 3284.81 ± 34.51, 162.18 ± 3.72, 87.66 ± 2.10, 0.75 ± 0.06 and 0.87 ± 0.06 mg/L for the control group, accordingly. There was a significant difference for all the minerals between the patients and controls (p < 0.001). This study suggests a strong association between the pathogenesis of eczema with the elevated level of MDA and depleted level of antioxidants, macro minerals, and trace elements.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-03-01
The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
The role of the seagrass Posidonia oceanica in the cycling of trace elements
NASA Astrophysics Data System (ADS)
Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.
2012-07-01
The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.
Fu, Hongbo; Dong, Fengzhong; Wang, Huadong; Jia, Junwei; Ni, Zhibo
2017-08-01
In this work, calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is used to analyze a certified stainless steel sample. Due to self-absorption of the spectral lines from the major element Fe and the sparse lines of trace elements, it is usually not easy to construct the Boltzmann plots of all species. A standard reference line method is proposed here to solve this difficulty under the assumption of local thermodynamic equilibrium so that the same temperature value for all elements present into the plasma can be considered. Based on the concentration and rich spectral lines of Fe, the Stark broadening of Fe(I) 381.584 nm and Saha-Boltzmann plots of this element are used to calculate the electron density and the plasma temperature, respectively. In order to determine the plasma temperature accurately, which is seriously affected by self-absorption, a pre-selection procedure for eliminating those spectral lines with strong self-absorption is employed. Then, one spectral line of each element is selected to calculate its corresponding concentration. The results from the standard reference lines with and without self-absorption of Fe are compared. This method allows us to measure trace element content and effectively avoid the adverse effects due to self-absorption.
Pinto, Edgar; Almeida, Agostinho A; Aguiar, Ana A R M; Ferreira, Isabel M P L V O
2014-01-01
Changes in macrominerals, trace elements and photosynthetic pigments were monitored at 5 stages of lettuce growth. Plants were grown in three experimental agriculture greenhouse fields (A1, A2 and A3). Soil composition was also monitored to understand its influence on lettuce composition. In general, the content of macrominerals, trace elements, chlorophylls and carotenoids decreased during lettuce growth and consequently, high nutritional value was observed at younger stages. A2 lettuces showed an increase of Fe, Al, Cr, V and Pb due to the different soil physicochemical parameters. Multiple linear regression analysis with stepwise variable selection, indicated that soil characteristics, namely, pH(CaCl2) for Fe and Cr, silt and fine-sand for Al and V, OM for Al and Pb, coarse-sand and CEC for Cr, had a key role determining element bioavailability and plant mineral content. Thus, lettuce nutritional value was strongly dependent of growth stage and soil characteristics. Copyright © 2013 Elsevier Ltd. All rights reserved.
Gao, Yang; Hao, Zhuo; Yang, Tiantian; He, Nianpeng; Tian, Jing; Wen, Xuefa
2016-10-01
In order to better understand air pollution in deve-loping regions, such as China, it is important to investigate the wet deposition behavior of atmospheric trace metals and its sources in the subtropical watershed. This paper studies the seasonal change of trace metal concentrations in precipitation and other potential sources in a typical subtropical watershed (Jiazhuhe watershed) located in the downstream of the Yangtze River of China. The results show that typical crustal elements (Al, Fe) and trace element (Zn) have high seasonal variation patterns and these elements have higher contents in precipitation as compared to other metals in Jiazhuhe watershed. In addition, there is no observed Pb in base flow in this study, and the concentration magnitudes of Al, Ba, Fe, Mn, Sr, and Zn in base flow are significantly higher than that of other metals. During different rainfall events, the dynamic export processes are also different for trace metals. The various trace metals dynamic export processes lead to an inconsistent mass first flush and a significant accumulative variance throughout the rainfall events. It is found that in this region, most of the trace metals in precipitation are from anthropogenic emission and marine aerosols brought by typhoon and monsoon.
Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu
2016-01-01
Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687
Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu
2016-01-01
Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.
Altundag, Huseyin; Albayrak, Sinem; Dundar, Mustafa S; Tuzen, Mustafa; Soylak, Mustafa
2015-11-01
The main aim of this study was an investigation of the influence of selected soil and plant properties on the bioaccessibility of trace elements and hence their potential impacts on human health in urban environments. Two artificial digestion models were used to determine trace element levels passing from soil and plants to man for bioavailability study. Soil and plant samples were collected from various regions of the province of Sakarya, Turkey. Digestive process is started by addition of soil and plant samples to an artificial digestion model based on human physiology. Bioavailability % values are obtained from the ratio of the amount of element passing to human digestion to element content of soil and plants. According to bioavailability % results, element levels passing from soil samples to human digestion were B = Cr = Cu = Fe = Pb = Li < Al < Ni < Co < Ba < Mn < Sr < Cd < Na < Zn < Tl, while element levels passing from plant samples to human digestion were Cu = Fe = Ni = Pb = Tl = Na = Li < Co < Al < Sr < Ba < Mn < Cd < Cr < Zn < B. It was checked whether the results obtained reached harmful levels to human health by examining the literature.
NASA Astrophysics Data System (ADS)
Griesel, S.; Mundry, R.; Kakuschke, A.; Fonfara, S.; Siebert, U.; Prange, A.
2006-11-01
Mineral and essential trace elements are involved in numerous physiological processes in mammals. Often, diseases are associated with an imbalance of the electrolyte homeostasis. In this study, the concentrations of mineral elements (P, S, K, Ca) and essential trace elements (Fe, Cu, Zn, Se, Rb, Sr) in whole blood of harbor seals ( Phoca vitulina) were determined using total-reflection X-ray fluorescence spectrometry (TXRF). Samples from 81 free-ranging harbor seals from the North Sea and two captive seals were collected during 2003-2005. Reference ranges and element correlations for health status determination were derived for P, S, K, Ca, Fe, Cu, and Zn level in whole blood. Grouping the seals by age, gender and sample location the concentration levels of the elements were compared. The blood from two captive seals with signs of diseases and four free-ranging seals showed reduced element levels of P, S, and Ca and differences in element correlation of electrolytes were ascertained. Thus, simultaneous measurements of several elements in only 500 μL volumes of whole blood provide the possibility to obtain information on both, the electrolyte balance and the hydration status of the seals. The method could therefore serve as an additional biomonitoring tool for the health assessment.
Trace elements and radon in groundwater across the United States, 1992-2003
Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.
2011-01-01
Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,
NASA Astrophysics Data System (ADS)
Caggiano, R.; Trippetta, S.; Sabia, S.
2015-02-01
The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.
NASA Astrophysics Data System (ADS)
Caggiano, R.; Trippetta, S.; Sabia, S.
2014-10-01
The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.
NASA Astrophysics Data System (ADS)
Chen, Z.; Jones, C. M.
2002-05-01
Microchemistry of fish otoliths (fish ear bones) is a very useful tool for monitoring aquatic environments and fish migration. However, determination of the elemental composition in fish otolith by ICP-MS has been limited to either analysis of dissolved sample solution or measurement of limited number of trace elements by laser ablation (LA)- ICP-MS due to low sensitivity, lack of available calibration standards, and complexity of polyatomic molecular interference. In this study, a method was developed for in situ determination of trace elements in fish otoliths by laser ablation double focusing sector field ultra high sensitivity Finnigan Element 2 ICP-MS using a solution standard addition calibration method. Due to the lack of matrix-match solid calibration standards, sixteen trace elements (Na, Mg, P, Cr, Mn, Fe, Ni, Cu, Rb, Sr, Y, Cd, La, Ba, Pb and U) were determined using a solution standard calibration with Ca as an internal standard. Flexibility, easy preparation and stable signals are the advantages of using solution calibration standards. In order to resolve polyatomic molecular interferences, medium resolution (M/delta M > 4000) was used for some elements (Na, Mg, P, Cr, Mn, Fe, Ni, and Cu). Both external calibration and standard addition quantification strategies are compared and discussed. Precision, accuracy, and limits of detection are presented.
Matong, Joseph M; Nyaba, Luthando; Nomngongo, Philiswa N
2016-07-01
The main objectives of this study were to determine the concentration of fourteen trace elements and to investigate their distribution as well as a contamination levels in selected agricultural soils. An ultrasonic assisted sequential extraction procedure derived from three-step BCR method was used for fractionation of trace elements. The total concentration of trace elements in soil samples was obtained by total digestion method in soil samples with aqua regia. The results of the extractable fractions revealed that most of the target trace elements can be transferred to the human being through the food chain, thus leading to serious human health. Enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), risk assessment code (RAC) and individual contamination factors (ICF) were used to assess the environmental impacts of trace metals in soil samples. The EF revealed that Cd was enriched by 3.1-7.2 (except in Soil 1). The Igeo results showed that the soils in the study area was moderately contaminated with Fe, and heavily to extremely polluted with Cd. The soil samples from the unplanted field was found to have highest contamination factor for Cd and lowest for Pb. Soil 3 showed a high risk for Tl and Cd with RAC values of greater than or equal to 50%. In addition, Fe, Ni, Cu, V, As, Mo (except Soil 2), Sb and Pb posed low environmental risk. The modified BCR sequential extraction method provided more information about mobility and environmental implication of studied trace elements in the study area. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin
2015-02-01
Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.
The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility
NASA Astrophysics Data System (ADS)
Schuwerack, P.-M. M.; Neal, M.; Neal, C.
2007-01-01
Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.
Emara, Elshaimaa M; Imam, Hisham; Hassan, Mouyed A; Elnaby, Salah H
2013-12-15
Analysis of trace elements in mammalian hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during growth. Using LIBS technique, Na, K, Ca, Mg, Si, Fe, Pb and Zn were detected in a single strand of horse hair. The results obtained through LIBS technique on hair samples were compared with the traditional technique (AAS) on digested acidified solution of the same samples. The effects of the experimental parameters on the emission lines were studied and the local thermodynamic equilibrium (LTE) in produced plasma was investigated. The transient plasma condition was verified at specific time region (1500-2000 ns) in the plasma evolution corresponding to its dynamic expanding characteristic. The relative mass concentrations of Fe and Zn were calculated by setting the concentration of C as the calibration. The information obtained from the trace elements' spectra of horse hair in this study substantiates the potential of hair as a biomarker. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Milne, A.; Palmer, M.; Lohan, M. C.
2016-02-01
Particles play a fundamental role in the biogeochemical cycling of both major- and micro-nutrients in marine systems, including trace elements and isotopes. However, knowledge of particulate distributions, and their potential to regulate dissolved elemental concentrations, remains limited and poorly understood. The paradox is, that the oceanic inventory of trace metals is dominated by particulate inputs (e.g. aerosol deposition, shelf sediment resuspension). Moreover the labile fraction of particulate trace elements could be an important regulator of dissolved concentrations. Here we present particulate data from the UK GEOTRACES South Atlantic transect (GA10) from South Africa to Uruguay. Data from a range of elements (e.g. Fe, Al, Mn) revealed a greater input of particulate metals from the Argentine shelf (up to 290 nM of pFe) in comparison to the South African shelf (< 40 nM of pFe). Overall, higher concentrations of all metals were observed in the bottom waters of the Argentine basin and penetrated deeper up the water column (up to 1300 m), a result of intense benthic storms. The imprint of leakage from the Agulhas Current, identified through temperature and salinity, was observed in the upper water column profile of numerous particulate data (e.g. Pb, Ni, Cd). Measured elemental gradients, combined with measurements from a vertical mixing-profiler, will allow estimates of particulate fluxes to be calculated.
Król, Ewelina; Jeszka-Skowron, Magdalena; Krejpcio, Zbigniew; Flaczyk, Ewa; Wójciak, Rafał W
2016-11-01
Mulberry leaves (Morus alba) have been used in folk medicine to mitigate symptoms of diabetes. The mulberry plant contains phenolic compounds that are able to decrease blood glucose concentration. Since various phenolics have antioxidant and metal binding properties, they can be used to alleviate oxidative stress and chelate trace elements involved in redox reactions. The aim of this study was to evaluate the effects of dietary supplementation with mulberry leaf extracts (acetone-water (AE) and ethanol-water (EE)) on the trace element status (Fe, Zn and Cu) in relation to diabetes management and antioxidant indices in high-fat diet-fed/STZ diabetic rats. The experiment was performed on 38 male Wistar rats with diabetes (induced by high-fat diet (HF) and streptozotocin injection) or the control fed with AIN-93M or high-fat diet. As a result, five experimental groups were used: (1) a healthy control group fed with AIN-93M; (2) an HF control group; (3) a diabetic HF group; (4) a diabetic HF + AE group (6 g/kg diet); (5) a diabetic HF + EE group (6 g/kg diet). The rats were fed with appropriate diets for 4 weeks. The content of trace elements (Fe, Zn and Cu) in the serum and tissues was measured by means of atomic absorption spectrometry (AAS). Biochemical analyses (glucose, TBARS, FRAP) were performed on the blood serum. It was shown that the AE decreased hepatic and renal Fe stores, while the EE increased hepatic Cu levels in diabetic rats and confirmed their ability to regulate the Fe and Cu status in diabetes. The results confirmed a significant hypoglycaemic and antioxidant potential of both mulberry leaf extracts in diabetic rats.
Discrimination of microbiological samples using femtosecond laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Baudelet, Matthieu; Yu, Jin; Bossu, Myriam; Jovelet, Julien; Wolf, Jean-Pierre; Amodeo, Tanguy; Fréjafon, Emeric; Laloi, Patrick
2006-10-01
Using femtosecond laser-induced breakdown spectroscopy, the authors have analyzed five different species of bacterium. Line emissions from six trace mineral elements, Na, Mg, P, K, Ca, and Fe, have been clearly detected. Their intensities correspond to relative concentrations of these elements contained in the analyzed samples. The authors demonstrate that the concentration profile of trace elements allows unambiguous discrimination of different bacteria. Quantitative differentiation has been made by representing bacteria in a six-dimension hyperspace with each of its axis representing a detected trace element. In such hyperspace, representative points of different species of bacterium are gathered in different and distinct volumes.
Trace Mineral Micronutrients and Chronic Periodontitis-a Review.
Gaur, Sumit; Agnihotri, Rupali
2017-04-01
Trace mineral micronutrients are imperative for optimum host response. Populations worldwide are prone to their insufficiency owing to lifestyle changes or poor nutritional intake. Balanced levels of trace minerals like iron (Fe), zinc (Zn), selenium (Se) and copper (Cu) are essential to prevent progression of chronic conditions like periodontitis. Their excess as well as deficiency is detrimental to periodontal health. This is specifically true in relation to Fe. Furthermore, some trace elements, e.g. Se, Zn and Cu are integral components of antioxidant enzymes and prevent reactive oxygen species induced destruction of tissues. Their deficiency can worsen periodontitis associated with systemic conditions like diabetes mellitus. With this background, the present review first focusses on the role of four trace minerals, namely, Fe, Zn, Se and Cu in periodontal health followed by an appraisal of the data from case control studies related to their association with chronic periodontitis.
Long-term anaerobic digestion of food waste stabilized by trace elements.
Zhang, Lei; Jahng, Deokjin
2012-08-01
The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.
Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.
2012-01-01
The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn–O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02–0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.
NASA Astrophysics Data System (ADS)
Shim, Moo-Joon; Swarzenski, Peter W.; Shiller, Alan M.
2012-07-01
The Mississippi River delta outflow region is periodically disturbed by tropical weather systems including major hurricanes, which can terminate seasonal bottom water hypoxia and cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, Hurricanes Katrina and Rita passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we collected water samples in the Mississippi River delta outflow, examining the distributions of trace elements to study the effect of Hurricanes Katrina and Rita. We observed limited stratification on the shelf and bottom waters that were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 μm) from colloidal (0.02-0.45 μm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.
NASA Astrophysics Data System (ADS)
Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua
2017-10-01
Sediment samples obtained from the South Mid-Atlantic Ridge were analyzed for the major and trace elements by inductively coupled plasma atomic emission spectroscopy and inductively coupled plasma mass spectrometry. Results revealed that the contents of elements (e.g., Fe, Mn, Cu, Zn, V, Co) were high in samples 22V-TVG10 and 26V-TVG05 from the sites near the hydrothermal areas, and low in sample 22V-TVG14, which was collected far from the hydrothermal areas. The contents of Ca, Sr and Ba in the samples showed opposite trends. A positive correlation between the concentrations of metallic elements (Cu, Zn, Co, Ni, Pb, V) and Fe in the samples were observed. These results are consistent with chemical evolution of the dispersing hydrothermal plume.
Cai, Xiaolin; Chen, Xiaochen; Yin, Naiyi; Du, Huili; Sun, Guoxin; Wang, Lihong; Xu, Yudong; Chen, Yuqing; Cui, Yanshan
2017-12-13
The influence of the human gut microbiota on the bioaccessibility and bioavailability of trace elements in vegetables has barely been studied. An in vitro digestion model combining the physiologically based extraction test (PBET) and the Simulator of Human Intestinal Microbial Ecosystem (SHIME) was applied. Results showed that the gut microbiota increased the bioaccessibility of iron (Fe) in ten test vegetables by 1.3-1.8 times, but reduced the bioaccessibility of manganese (Mn), copper (Cu), and zinc (Zn) in vegetables in the colon phase by 3.7% to 89.6%, 24.8% to 100.0%, and 59.9% to 100.0%, respectively. Using the Caco-2 cell model to simulate the human absorption process, the bioavailable contents and the bioavailability of the trace elements were further determined. Swamp cabbage was the best source of Fe and Cu; spinach and lettuce provided the highest amounts of bioavailable Mn and Zn, respectively. Referring to the daily reference intakes of trace elements, the obtained data provide a scientific basis for both reasonable ingestion of vegetables in diets and diversification of diets.
NASA Astrophysics Data System (ADS)
Wiche, Oliver; Székely, Balazs; Moschner, Christin; Heilmeier, Hermann
2015-04-01
In recent studies root-soil interactions of white lupine (Lupinus albus L.) have drawn special attention to researchers due to its particularly high potential to increase bioavailability of phosphorous (P) and trace nutrients in soils. In mixed cultures, white lupine has the ability to mobilize P and trace nutrients in soil in excess of its own need and make this excess available for other intercropped companion species. While improved acquisition of P and improved yield parameters have mostly been documented in cereal-lupine intercrops, compared to sole crops, only a few recent studies have evidenced similar effects for trace elements e.g. Fe, Zn and Mn. In this preliminary study we tried to obtain more information about the mobilization of trace elements due to intercropping under field conditions. We hypothesize, that processes that lead to a better acquisition of trace nutrients might also affect other trace elements what could be useful for phytoremediation and phytomining research. Here we report the results of a semi-field experiment were we investigated the effects of an intercropping of white lupine with oat (Avena sativa L.) on the concentrations of trace metals in shoots of oat. We investigated the effects on 12 trace elements, including 4 elements with relevance for plant nutrition (P, Fe, Mn, Zn) and 8 trace elements, belonging to the group of metalloids, lanthanides and actinides with high relevance in phytoremediation (Cd, Pb Th, U) and phytomining research (Sc, La, Nd, Ge). The experiment was carried out on a semi-field lysimer at the off-site soil recycling and remediation center in Hirschfeld (Saxony, Germany). To test the intercropping-dependent mobilization of trace metals in soil and enhanced uptake of elements by oat, white lupine and oat were cultivated on 20 plots (4 m² each) in monocultures and mixed cultures and two different white lupin /oat-ratios (11% and 33%, respectively) applying various treatments. The geometrical arrangement of plots was randomized and every treatment was fivefold replicated. Soil solution was collected weekly with plastic suction cups. Concentrations of trace metals in shoots of oat and soil solution were measured with ICP-MS. As a result, we found that both, concentrations of trace elements in oat plants, as well as the mobility of P and trace metals in soil solution was increased by an intercropping with white lupine. Mixed culture of oat with 11% white lupin significantly increased the concentrations of the trace nutrients Fe, Mn and Zn, as well as the concentrations of the trace metals Pb, La, Nd, Sc, Th and U in tissues of oat. Surprisingly, mixed cultures with 33 % white lupin did not significantly affect trace metal concentrations in oat, what might be the consequence of an increasing competition of roots of white lupin and oat for nutrients and trace metals. In conclusion we found that mixed cultures of white lupin with cereals might be a powerful tool for enhanced phytoremediation and phytomining. However, processes involved in the physiochemical mechanism of element uptake as affected by the oat/white lupin co-cultivation remain unknown and further studies on this topic are planned. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.
NASA Astrophysics Data System (ADS)
Breier, J. A.; Toner, B. M.; Fakra, S. C.; Marcus, M. A.; White, S. N.; Thurnherr, A. M.; German, C. R.
2012-07-01
Deep-sea hydrothermal plume particles are known to sequester seawater trace elements and influence ocean-scale biogeochemical budgets. The relative importance of biotic versus abiotic oxidation-reduction and other particle-forming reaction, however, and the mechanisms of seawater trace element sequestration remain unknown. Suspended particulate material was collected from a non-buoyant hydrothermal plume by in situ filtration at 9°50‧N East Pacific Rise during a 3-day, 24 sample, time-series. Twenty-three samples were digested for total elemental analysis. One representative sample was selected for particle-by-particle geochemical analyses including elemental composition by X-ray fluorescence, speciation of Fe, S, and C by 1s X-ray absorption near edge structure spectroscopy, and X-ray diffraction. Consistent with past studies, positive linear correlations were observed for P, V, As, and Cr with Fe in the bulk chemistry. Arsenic was associated with both Fe oxyhydroxides and sulfides but not uniformly distributed among either mineral type. Particle aggregation was common. Aggregates were composed of minerals embedded in an organic matrix; the minerals ranged from <20 nm to >10 μm in diameter. The speciation of major mineral forming elements (Fe, Mn, S) was complex. Over 20 different minerals were observed, nine of which were either unpredicted by thermodynamic modeling or had no close match in the thermodynamic database. Sulfur-bearing phases consisted of polysulfides (S6, S8), and metal sulfides (Fe, Cu, Zn, Mn). Four dominant species, Fe oxyhydroxide, Fe monosulfide, pyrrhotite, and pyrite, accounted for >80% of the Fe present. Particulate Mn was prevalent in both oxidized and reduced minerals. The organic matrix was: (1) always associated with minerals, (2) composed of biomolecules, and (3) rich in S. Possible sources of this S-rich organic matter include entrained near vent biomass and in situ production by S-oxidizing microorganisms. These results indicate that particle aggregation with organic material is prevalent in dispersing hydrothermal plume fluxes, as well as in sinking particulate matter at this site. Particle aggregation and organic coatings can influence the reactivity, transport, and residence time of hydrothermal particles in the water column. Thus a biogeochemical approach is critical to understanding the net effect of hydrothermal fluxes on ocean and sedimentary trace element budgets.
NASA Astrophysics Data System (ADS)
Corrigan, Catherine M.; Chabot, Nancy L.; McCoy, Timothy J.; McDonough, William F.; Watson, Heather C.; Saslow, Sarah A.; Ash, Richard D.
2009-05-01
To better understand the partitioning behavior of elements during the formation and evolution of iron meteorites, two sets of experiments were conducted at 1 atm in the Fe-Ni-P system. The first set examined the effect of P on solid metal/liquid metal partitioning behavior of 22 elements, while the other set explored the effect of the crystal structures of body-centered cubic (α)- and face-centered cubic (γ)-solid Fe alloys on partitioning behavior. Overall, the effect of P on the partition coefficients for the majority of the elements was minimal. As, Au, Ga, Ge, Ir, Os, Pt, Re, and Sb showed slightly increasing partition coefficients with increasing P-content of the metallic liquid. Co, Cu, Pd, and Sn showed constant partition coefficients. Rh, Ru, W, and Mo showed phosphorophile (P-loving) tendencies. Parameterization models were applied to solid metal/liquid metal results for 12 elements. As, Au, Pt, and Re failed to match previous parameterization models, requiring the determination of separate parameters for the Fe-Ni-S and Fe-Ni-P systems. Experiments with coexisting α and γ Fe alloy solids produced partitioning ratios close to unity, indicating that an α versus γ Fe alloy crystal structure has only a minor influence on the partitioning behaviors of the trace element studied. A simple relationship between an element's natural crystal structure and its α/γ partitioning ratio was not observed. If an iron meteorite crystallizes from a single metallic liquid that contains both S and P, the effect of P on the distribution of elements between the crystallizing solids and the residual liquid will be minor in comparison to the effect of S. This indicates that to a first order, fractional crystallization models of the Fe-Ni-S-P system that do not take into account P are appropriate for interpreting the evolution of iron meteorites if the effects of S are appropriately included in the effort.
NASA Astrophysics Data System (ADS)
Silva, Marina Piacenti da; Silva, Deisy Mara da; Ribeiro-Silva, Alfredo; Poletti, Martin Eduardo
2012-05-01
The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system (μ-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 μm output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 μm in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.
NASA Astrophysics Data System (ADS)
Nakaya, Shinji; Chi, Hai; Muroda, Kengo; Masuda, Harue
2018-06-01
In this study, we focus on the behavior of geogenic, toxic trace elements, particularly As, Cs, Cd, and Pb, during their transportation in two rivers for irrigation commonly used in monsoon Asia; one river originates from an active volcano, Mt. Asama, and the other originates from a currently inactive volcano, Yatsugatake Mountains in Nagano, Japan. These rivers were investigated to understand the role of river water as a pollutant of rice and other aquatic plants (via irrigation) and aquatic animals. The results indicated that the behavior of toxic trace elements in river water are likely controlled by their interactions with particulate Fe, Al, and Ti compounds. The majority of Pb and Cd is transported as particulate matter with Fe, Al, and Ti, while the majority of As is transported in the dissolved form, predominantly as arsenate, with low abundance of particulate matter. Cs is transported either as the dissolved form or as particulate matter in both rivers. The investigated elements are transported in the rivers as particulate and dissolved forms, and the ratio of these forms is controlled by the pH and presence of particulate Fe, Al, and Ti phases in the river water. With respect to Cs in both rivers, the parameter governing the concentration and transportation of Cs, in the bimodal form (i.e., particulate and dissolved forms), through the river possibly shifts from sorption to pH by particulate Fe-Al-Ti, according to the abrupt increase in the concentration of Cs in the river. The chemical attraction of particulate Fe-Al-Ti for Cs is weaker than that for Pb and Cd, indicating that the lower electronegativity of Cs weakens the chemical attraction on a colloid for the competitive sorption with the other trace elements. The different relationships between As and Fe in the river and in the irrigation water and soil water, as well as those in paddy rice, suggested that As in paddy rice is not directly derived from As in the irrigation water from the river under flooding.
NASA Astrophysics Data System (ADS)
Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.
2017-08-01
Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.
Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.
Liu, Hongbo; Yang, Jian; Gan, Juli
2010-11-01
Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.
Thamban, Meloth; Thakur, Roseline C
2013-04-01
To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.
Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric
2016-10-01
In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.
Urban and industrial contribution to trace elements in the atmosphere as measured in holm oak bark
NASA Astrophysics Data System (ADS)
Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo
2016-11-01
The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by ICP-OES in samples of bark of the holm oak (Quercus ilex L.) collected from trees in different urban environments (residential and mixed residential/industrial). The use of tree bark as a bioindicator makes it easy to create maps that can provide detailed data on the levels and on the spatial distribution of each trace element. For most of the elements considered (As, Co, Fe, Mn, Ni, V and Zn), the concentrations in the industrial sites are about twice (from 1.9 to 2.8 times higher) of those in the residential area. Arsenic, Fe and Zn show the highest concentrations near a steel plant (operational until 2005), but for the other elements it is not possible to identify any localized source, as evident from the maps. In areas where urban pollution is summed up by the impact of industrial activities, the population is exposed to significantly higher amounts of some metals than people living in residential areas.
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1990-01-01
Trace element abundance determinations were performed using synchrotron X-ray fluorescence on nine particles collected from the stratosphere and classified as cosmic. Improvements to the Synchrotron Light Source allowed the detection of all elements between Cr and Mo, with the exceptions of Co and As, in our largest particle. The minor and trace element abundance patterns of three Ni-depleted particles were remarkably similar to those of extraterrestrial igneous rocks. Fe/Ni and Fe/Mn ratios suggest that one of these may be of lunar origin. All nine particles exhibited an enrichment in Br, ranging from 1.3 to 38 times the C1 concentration. Br concentrations were uncorrelated with particle size, as would be expected for a surface correlated component acquires from the stratosphere.
Macro- and microelement distribution in organs of Glyceria maxima and biomonitoring applications.
Klink, Agnieszka; Stankiewicz, Andrzej; Wisłocka, Magdalena; Polechońska, Ludmiła
2014-07-01
The content of nutrients (N, P, K, Ca and Mg) and of trace metals (Fe, Cu, Mn, Zn, Pb, Cd, Co and Ni) in water, bottom sediments and various organs of Glyceria maxima from 19 study sites selected in the Jeziorka River was determined. In general, the concentrations of nutrients recorded in the plant material decreased in the following order: leaf>root>rhizome>stem, while the concentrations of the trace elements showed the following accumulation scheme: root>rhizome>leaf>stem. The bioaccumulation and transfer factors for nutrients were significantly higher than for trace metals. G. maxima from agricultural fields was characterised by the highest P and K concentrations in leaves, and plants from forested land contained high Zn and Ni amounts. However, the manna grass from small localities showed high accumulation of Ca, Mg and Mn. Positive significant correlations between Fe, Cu, Zn, Cd, Co and Ni concentrations in water or sediments and their concentrations in plant indicate that G. maxima may be employed as a biomonitor of trace element contamination. Moreover, a high degree of similarity was noted between self-organizing feature map (SOFM)-grouped sites of comparable quantities of elements in the water and sediments and sites where G. maxima had a corresponding content of the same elements in its leaves. Therefore, SOFM could be recommended in analysing ecological conditions of the environment from the perspective of nutrients and trace element content in different plant species and their surroundings.
Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry
Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.
1990-01-01
X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.
Siderophile trace element diffusion in Fe-Ni alloys
NASA Astrophysics Data System (ADS)
Watson, Heather C.; Watson, E. Bruce
2003-09-01
Experiments were performed in a piston cylinder apparatus to characterize the diffusion behavior of the siderophile elements, Mo, Cu, Pd, Au, and Re in solid Fe-Ni alloy (90 wt.% Fe, 10 wt.% Ni). All experiments were conducted at 1 GPa and temperatures ranging from 1175 to 1400 °C. Activation energies of all elements fall between 270 kJ/mol (Cu) and 360 kJ/mol (Mo). Mo, Cu, Pd, and Au all show similar diffusivities at the same conditions, but the diffusivity of Re was consistently close to an order of magnitude lower. Initial experiments on other refractory elements (Os, Pt, and Ir) indicate that their diffusivities are close to or slightly lower than that of Re.
NASA Astrophysics Data System (ADS)
Serpa, R. F. B.; de Jesus, E. F. O.; Anjos, M. J.; do Carmo, M. G. T.; Moreira, S.; Rocha, M. S.; Martinez, A. M. B.; Lopes, R. T.
2006-11-01
The knowledge of the spatial distribution and the local concentration of trace elements in tissues are of great importance since trace elements are involved in a number of metabolic and physiological processes in the human body, and their deficiency and excess may lead to different metabolic disorders. In this way, the main goal of this work is to compare the elemental concentration in different brain structures, namely temporal cortex, entorhinal cortex, visual cortex and hippocampus, from Wistar female rats ( n = 15) with different ages: 2, 8 and 48 weeks. The measurements were performed at the Synchrotron Light Brazilian Laboratory, Campinas, São Paulo, Brazil. In the entorhinal cortex, the following elements decreased with age: Zn, S, Cl, K, Ca and Br. In the temporal cortex, Ca, Fe and Br levels increased with aging and on the other hand, P, S, Cl, K and Rb levels decreased with aging. In the visual cortex almost all the elements decreased with aging: Cl, Ca, Fe, Ni and Zn. In the hippocampus, in turn, most of the elements identified, increased with aging: Al, P, S, K, Fe, Cu, Zn and Rb. The increase of Fe with aging in the hippocampus is an important fact that will be studied, since it is involved in oxidative stress. It is believed that oxidative stress is the one of the main causes responsible for neuronal death in Parkinson's disease.
Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi
2018-05-18
In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1 d -1 in the control compared to 2.36 g L -1 d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R
2014-01-01
Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions of sediment at the sites differed spatially, indicating that the Pb (and other trace elements by association) originated from different natural sources at the two locations.
Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A
1978-12-01
Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.
Fabretti, Jean-François; Sauret, Nathalie; Gal, Jean-François; Maria, Pierre-Charles; Schärer, Urs
2007-09-01
An analytical methodology was developed for the determination of 21 trace elements in suspended particulate matter (PM) using a microwave digestion procedure associated with an inductively coupled plasma mass spectrometry (ICP-MS). The dynamic reaction cell (DRC) of the instrument was carefully optimized to eliminate polyatomic species causing spectral interferences for three specified elements (Cr, Fe, Mn). With this method, the detection limits based on the analysis of seven quartz fibre filters (QFF) considering a one-week sample (250 m3) varied between 0.2 and 650 pg m(-3) for trace elements and between 2.1 and 5.6 ng m(-3) for major elements (Fe, Ti, Zn). The recovery of the analytes was tested with NIST SRM 1648 urban dust within 10% of the certified values only for 3-4 mg of material. The first results were discussed for a field campaign which was carried out simultaneously in the heaviest traffic road tunnel of the centre of Nice and near the landing-taking-off runways in the international airport of Nice Côte d'Azur. The behaviour of some combustion tracers was especially studied.
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
Ying, Qi; Feng, Miao; Song, Danlin; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Kleeman, Michael J; Li, Xinghua
2018-05-15
Contributions to 15 trace elements in airborne particulate matter with aerodynamic diameters <2.5μm (PM 2.5 ) in China from five major source sectors (industrial sources, residential sources, transportation, power generation and windblown dust) were determined using a source-oriented Community Multiscale Air Quality (CMAQ) model. Using emission factors in the composite speciation profiles from US EPA's SPECIATE database for the five sources leads to relatively poor model performance at an urban site in Beijing. Improved predictions of the trace elements are obtained by using adjusted emission factors derived from a robust multilinear regression of the CMAQ predicted primary source contributions and observation at the urban site. Good correlations between predictions and observations are obtained for most elements studied with R>0.5, except for crustal elements Al, Si and Ca, particularly in spring. Predicted annual and seasonal average concentrations of Mn, Fe, Zn and Pb in Nanjing and Chengdu are also consistently improved using the adjusted emission factors. Annual average concentration of Fe is as high as 2.0μgm -3 with large contributions from power generation and transportation. Annual average concentration of Pb reaches 300-500ngm -3 in vast areas, mainly from residential activities, transportation and power generation. The impact of high concentrations of Fe on secondary sulfate formation and Pb on human health should be evaluated carefully in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Xiaobing; Zhang, Yu; Piao, Jianhua; Mao, Deqian; Li, Yajie; Li, Weidong; Yang, Lichen; Yang, Xiaoguang
2017-03-21
The development of reference values of trace elements is recognized as a fundamental prerequisite for the assessment of trace element nutritional status and health risks. In this study, a total of 1400 pregnant women aged 27.0 ± 4.5 years were randomly selected from the China Nutrition and Health Survey 2010-2012 (CNHS 2010-2012). The concentrations of 14 serum trace elements were determined by high-resolution inductively coupled plasma mass spectrometry. Reference values were calculated covering the central 95% reference intervals (P2.5-P97.5) after excluding outliers by Dixon's test. The overall reference values of serum trace elements were 131.5 (55.8-265.0 μg/dL for iron (Fe), 195.5 (107.0-362.4) μg/dL for copper (Cu), 74.0 (51.8-111.3) μg/dL for zinc (Zn), 22.3 (14.0-62.0) μg/dL for rubidium (Rb), 72.2 (39.9-111.6) μg/L for selenium (Se), 45.9 (23.8-104.3) μg/L for strontium (Sr), 1.8 (1.2-3.6) μg/L for molybdenum (Mo), 2.4 (1.2-8.4) μg/L for manganese (Mn), 1.9 (0.6-9.0) ng/L for lead (Pb), 1.1 (0.3-5.6) ng/L for arsenic (As), 835.6 (219.8-4287.7) ng/L for chromium (Cr), 337.9 (57.0-1130.0) ng/L for cobalt (Co), 193.2 (23.6-2323.1) ng/L for vanadium (V), and 133.7 (72.1-595.1) ng/L for cadmium (Cd). Furthermore, some significant differences in serum trace element reference values were observed between different groupings of age intervals, residences, anthropometric status, and duration of pregnancy. We found that serum Fe, Zn, and Se concentrations significantly decreased, whereas serum Cu, Sr, and Co concentrations elevated progressively compared with reference values of 14 serum trace elements in pregnant Chinese women. The reference values of serum trace elements established could play a key role in the following nutritional status and health risk assessment.
Effect of silicon on trace element partitioning in iron-bearing metallic melts
NASA Astrophysics Data System (ADS)
Chabot, Nancy L.; Safko, Trevor M.; McDonough, William F.
2010-08-01
Despite the fact that Si is considered a potentially important metalloid in planetary systems, little is known about the effect of Si in metallic melts on trace element partitioning behavior. Previous studies have established the effects of S, C, and P, nonmetals, through solid metal/liquid metal experiments in the corresponding Fe binary systems, but the Fe-Si system is not appropriate for similar experiments because of the high solubility of Si in solid metal. In this work, we present the results from 0.1MPa experiments with two coexisting immiscible metallic liquids in the Fe-S-Si system. By leveraging the extensive available knowledge about the effect of S on trace element partitioning behavior, we explore the effect of Si. Results for 22 trace elements are presented. Strong Si avoidance behavior is demonstrated by As, Au, Ga, Ge, Sb, Sn, and Zn. Iridium, Os, Pt, Re, Ru, and W exhibit weak Si avoidance tendencies. Silicon appears to have no significant effect on the partitioning behaviors of Ag, Co, Cu, Cr, Ni, Pd, and V, all of which had similar partition coefficients over a wide range of Si liquid concentrations from Si-free to 13 wt%. The only elements in our experiments to show evidence of a potentially weak attraction to Si were Mo and Rh. Applications of the newly determined effects of Si to problems in planetary science indicate that (1) The elements Ni, Co, Mo, and W, which are commonly used in planetary differentiation models, are minimally affected by the presence of Si in the metal, especially in comparison to other effects such as from oxygen fugacity. 2) Reduced enstatite-rich meteorites may record a chemical signature due to Si in the metallic melts during partial melting, and if so, elements identified by this study as having strong Si avoidance may offer unique insight into unraveling the history of these meteorites.
NASA Astrophysics Data System (ADS)
Johnston, Scott G.; Rose, Andrew L.; Burton, Edward D.; Webster-Brown, Jenny
2015-01-01
Large alpine landslides that entrain substantial organic material below the water table and create suspended floodplains may have long-term consequences for the mobilisation of redox sensitive elements, such as Fe, into streamwaters. In turn, the cycling of iron in aquatic systems can influence the fate of nutrients, alter primary productivity, enhance accumulation of trace metals and induce fractionation of rare earth elements (REE). In this study we examine a reach of a pristine oligotrophic alpine stream bracketing a 30 year-old landslide and explore the consequences of landslide-induced Fe mobilisation for aqueous geochemistry and the composition of benthic stream cobble biofilm. Elevated Fe2+ and Mn in landslide zone stream waters reflect inputs of circumneutral groundwater from the landslide debris-zone floodplain. Geochemical characteristics are consistent with reductive dissolution being a primary mechanism of Fe2+ and Mn mobilisation. Stream cobble biofilm in the landslide zone is significantly (P < 0.01) enriched in poorly crystalline Fe(III) (∼10-400 times background) and Mn (∼15-150 times background) (1 M HCl extractable; Fe(III)Ab). While the landslide zone accounts for less than ∼9% of the total stream length, we estimate it is responsible for approximately 60-80% of the stream's benthic biofilm load of poorly crystalline Fe(III) and Mn. Biofilm Fe(III) precipitates are comprised mainly of ferrihydrite, lepidocrocite and an organic-Fe species, while precipitate samples collected proximal to hyporheic seeps contain abundant sheath structures characteristic of the neutrophilic Fe(II)-oxidising bacteria Leptothrix spp. Stream-cobble Fe(III)-rich biofilm is accumulating PO43- (∼3-30 times background) and behaving as a preferential substrate for photosynthetic periphyton, with benthic PO43-, chlorophyll a, organic carbonHCl and total N all significantly positively correlated with Fe(III)Ab and significantly elevated within the landslide zone (P < 0.01). P K-edge XANES indicates P is associated with both ferric and Ca-phosphate minerals, while SEM-EDX elemental mapping of Fe(III) precipitates reveal strong spatial associations between P, Ca and Fe. Cobble Fe(III)-rich biofilm is also sorbing and accumulating multiple trace metals and REE. Within the landslide zone there are significant (P < 0.01) enrichments (up to ∼10-100 times background) for most trace metals examined here and metals display significant positive linear correlations with Fe(III)Ab on a log transformed basis. Stream cobble biofilm also exhibits distinct REE fractionation along the flow path, with light REE (La, Ce, Nd, Pr) preferentially partitioning to the Fe(III) and Mn-rich biofilm within the landslide zone. Accumulation of PO43- and trace metals in this relatively environmentally labile form may have implications for their bioavailability and downstream transport, but further research is required to assess possible ecological consequences. This study demonstrates the potential for large alpine landslides to encourage reach-scale circumneutral Fe mobilisation in adjacent streams, thereby shaping multiple aspects of benthic stream geochemistry for many years after the landslide event itself.
Southern Ocean biological iron cycling in the pre-whaling and present ecosystems
NASA Astrophysics Data System (ADS)
Maldonado, Maria T.; Surma, Szymon; Pakhomov, Evgeny A.
2016-11-01
This study aimed to create the first model of biological iron (Fe) cycling in the Southern Ocean food web. Two biomass mass-balanced Ecopath models were built to represent pre- and post-whaling ecosystem states (1900 and 2008). Functional group biomasses (tonnes wet weight km-2) were converted to biogenic Fe pools (kg Fe km-2) using published Fe content ranges. In both models, biogenic Fe pools and consumption in the pelagic Southern Ocean were highest for plankton and small nektonic groups. The production of plankton biomass, particularly unicellular groups, accounted for the highest annual Fe demand. Microzooplankton contributed most to biological Fe recycling, followed by carnivorous zooplankton and krill. Biological Fe recycling matched previous estimates, and, under most conditions, could entirely meet the Fe demand of bacterioplankton and phytoplankton. Iron recycling by large baleen whales was reduced 10-fold by whaling between 1900 and 2008. However, even under the 1900 scenario, the contribution of whales to biological Fe recycling was negligible compared with that of planktonic consumers. These models are a first step in examining oceanic-scale biological Fe cycling, highlighting gaps in our present knowledge and key questions for future research on the role of marine food webs in the cycling of trace elements in the sea. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
Koubová, Eva; Sumczynski, Daniela; Šenkárová, Lenka; Orsavová, Jana; Fišera, Miroslav
2018-04-12
This study analysed the contents of thirty-six mineral and trace elements in teff ( Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6-50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements.
Koubová, Eva; Šenkárová, Lenka
2018-01-01
This study analysed the contents of thirty-six mineral and trace elements in teff (Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6–50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements. PMID:29649158
Sources and fluxes of atmospheric trace elements to the Gulf of Aqaba, Red Sea
NASA Astrophysics Data System (ADS)
Chen, Ying; Paytan, Adina; Chase, Zanna; Measures, Christopher; Beck, Aaron J.; SañUdo-Wilhelmy, Sergio A.; Post, Anton F.
2008-03-01
We present the first comprehensive investigation of the concentrations, fluxes and sources of aerosol trace elements over the Gulf of Aqaba. We found that the mean atmospheric concentrations of crustally derived elements such as Al, Fe and Mn (1081, 683, and 16.7 ng m-3) are about 2-3 times higher than those reported for the neighboring Mediterranean area. This is indicative of the dominance of the mineral dust component in aerosols over the Gulf. Anthropogenic impact was lower in comparison to the more heavily populated areas of the Mediterranean. During the majority of time (69%) the air masses over the Gulf originated from Europe or Mediterranean Sea areas delivering anthropogenic components such as Cu, Cd, Ni, Zn, and P. Airflows derived from North Africa in contrast contained the highest concentrations of Al, Fe, and Sr but generally lower Cu, Cd, Ni, Zn, and P. Relatively high Pb, Ni, and V were found in the local and Arabian airflows suggesting a greater influence of local emission of fuel burning. We used the data and the measured trace metal seawater concentrations to calculate residence times of dissolved trace elements in the upper 50 m surface water of the Gulf (with respect to atmospheric input) and found that the residence times for most elements are in the range of 5-37 years while Cd and V residence times are longer.
NASA Technical Reports Server (NTRS)
Weisberg, M. K.; Prinz, M.; Fogel, R. A.; Shimizu, N.
1993-01-01
Enstatite (En) chondrites record the most reducing conditions known in the early solar system. Their oxidation state may be the result of condensation in a nebular region having an enhanced C/O ratio, reduction of more oxidized materials in a reducing nebula, reduction during metamorphic reheating in a parent body, or a combination of these events. The presence of more oxidized Fe-rich silicates, two types of En (distinguished by red and blue CL), and the juxtaposition of FeO-rich pyroxenes (Fe-pyx) surrounded by blue En (enstatite) in the UEC's (unequilibrated enstatite chondrites) is intriguing and led to the examination of the question of enstatite chondrite formation. Previously, data was presented on the petrologic-geochemical characteristics of the Fe-pyx and coexisting red and blue En. Here minor and trace element abundances (determined by ion probe-SIMS) on these three types of pyroxenes are reported on in the following meteorites: Kota Kota and LEW87223 (EH3), MAC88136 (EL3), St. Marks (EH4), and Hvittis (EL6). More data are currently being collected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spemann, D., E-mail: spemann@uni-leipzig.de; Esquinazi, P., E-mail: esquin@physik.uni-leipzig.de; Setzer, A.
In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearlymore » exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.« less
Minor element distribution in iron disulfides in coal: a geochemical review
Kolker, Allan
2012-01-01
Electron beam microanalysis of coal samples in U.S. Geological Survey (USGS) labs confirms that As is the most abundant minor constituent in Fe disulfides in coal and that Se, Ni, and other minor constituents are present less commonly and at lower concentrations than those for As. In nearly all cases, Hg occurs in Fe disulfides in coal at concentrations below detection by electron beam instruments. Its presence is shown by laser ablation ICP-MS, by selective leaching studies of bulk coal, and by correlation with Fe disulfide proxies such as total Fe and pyritic sulfur. Multiple generations of Fe disulfides are present in coal. These commonly show grain-to-grain and within-grain minor- or trace element compositional variation that is a function of the early diagenetic, coalification, and post-coalification history of the coal. Framboidal pyrite is almost always the earliest Fe disulfide generation, as shown by overgrowths of later Fe disulfides which may include pyrite or marcasite. Cleat- (or vein) pyrite (or marcasite) is typically the latest Fe disulfide generation, as shown by cross-cutting relations. Cleat pyrite forms by fluid migration within a coal basin and consequently may be enriched in elements such as As by deposition from compaction-driven fluids, metal enriched basinal brines or hydrothermal fluids. In some cases, framboidal pyrite shows preferential Ni enrichment with respect to co-occurring pyrite forms. This is consistent with bacterial complexing of metals in anoxic sediments and derivation of framboidal pyrite from greigite (Fe3S4), an Fe monosulfide precursor to framboidal pyrite having the thio-spinel structure which accommodates transition metals. Elements such as As, Se, and Sb substitute for S in the pyrite structure whereas metals, including transition metals, Hg and Pb, are thought to substitute for Fe. Understanding the distribution of minor and trace elements in Fe disulfides in coal has important implications for their availability to the environment through coal mining and use, as well as for potential reduction by coal preparation, and for delineating diagenetic compositional changes throughout and after coal formation.
Blood lead: Its effect on trace element levels and iron structure in hemoglobin
NASA Astrophysics Data System (ADS)
Jin, C.; Li, Y.; Li, Y. L.; Zou, Y.; Zhang, G. L.; Normura, M.; Zhu, G. Y.
2008-08-01
Lead is a ubiquitous environmental pollutant that induce a broad range of physiological and biochemical dysfunctions. The purpose of this study was to investigate its effects on trace elements and the iron structure in hemoglobin. Blood samples were collected from rats that had been exposed to lead. The concentration of trace elements in whole blood and blood plasma was determined by ICP-MS and the results indicate that lead exists mainly in the red blood cells and only about 1-3% in the blood plasma. Following lead exposure, the concentrations of zinc and iron in blood decrease, as does the hemoglobin level. This indicates that the heme biosynthetic pathway is inhibited by lead toxicity and that lead poisoning-associated anemia occurs. The selenium concentration also decreases after lead exposure, which may lead to an increased rate of free radical production. The effect of lead in the blood on iron structure in hemoglobin was determined by EXAFS. After lead exposure, the Fe-O bond length increases by about 0.07 Å and the Fe-Np bond length slightly increases, but the Fe-N ɛ bond length remains unchanged. This indicates that the blood content of Hb increases, but that the content of HbO 2 decreases.
Southern Ocean biological iron cycling in the pre-whaling and present ecosystems.
Maldonado, Maria T; Surma, Szymon; Pakhomov, Evgeny A
2016-11-28
This study aimed to create the first model of biological iron (Fe) cycling in the Southern Ocean food web. Two biomass mass-balanced Ecopath models were built to represent pre- and post-whaling ecosystem states (1900 and 2008). Functional group biomasses (tonnes wet weight km -2 ) were converted to biogenic Fe pools (kg Fe km -2 ) using published Fe content ranges. In both models, biogenic Fe pools and consumption in the pelagic Southern Ocean were highest for plankton and small nektonic groups. The production of plankton biomass, particularly unicellular groups, accounted for the highest annual Fe demand. Microzooplankton contributed most to biological Fe recycling, followed by carnivorous zooplankton and krill. Biological Fe recycling matched previous estimates, and, under most conditions, could entirely meet the Fe demand of bacterioplankton and phytoplankton. Iron recycling by large baleen whales was reduced 10-fold by whaling between 1900 and 2008. However, even under the 1900 scenario, the contribution of whales to biological Fe recycling was negligible compared with that of planktonic consumers. These models are a first step in examining oceanic-scale biological Fe cycling, highlighting gaps in our present knowledge and key questions for future research on the role of marine food webs in the cycling of trace elements in the sea.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).
Trace and minor elements in sphalerite from metamorphosed sulphide deposits
NASA Astrophysics Data System (ADS)
Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.
2014-12-01
Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.
Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan
2011-01-01
Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.
A Thermo-Optic Propagation Modeling Capability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schrader, Karl; Akau, Ron
2014-10-01
A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less
Trace element inhibition of phytase activity.
Santos, T; Connolly, C; Murphy, R
2015-02-01
Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.
Liu, Fengjie; Wang, Wen-Xiong
2015-09-01
Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.
Soroko, S I; Maksimova, I A; Protasova, O V
2014-01-01
By means of the nuclear-emission spectral analysis with inductively connected argon plasma were studied the contents of 28 macro- and trace elements (Al, Ag, Li, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Mg, Mn, Na, Ni, Mo, P, Zn, Se, Tl, Pb, Sr, S, Si) in the hair of children and teenagers living in the European North of the Russian Federation (Arkhangelsk region). There were revealed both: decrease and increase of some elements' contents. Also were revealed the dynamics of mentioned elements contents in the hair of the same children in different years. Significant individual variability of the macro and trace elements' status of children-northerners and some gender dependence were revealed.
Trace elements in unconventional animals: A 40-year experience.
Carpenè, Emilio; Andreani, Giulia; Isani, Gloria
2017-09-01
The role of trace elements in animal health has attracted increasing interest in recent years. The essentiality and toxicity of these elements have been extensively investigated in humans, laboratory animal models and partially in domestic animals, whereas little is known about trace element metabolism in most living organisms. Forty years ago our research started on Cd metabolism in molluscs, thereafter expanding to Zn, Cu, and Fe metabolism in many unconventional animal species of veterinary interest. This review summarizes the main results obtained over this long period of time: some of the findings are original and have not been published to date. They are discussed in more detail and compared with data obtained in conventional animals, including man. Copyright © 2017 Elsevier GmbH. All rights reserved.
Mantle-derived trace element variability in olivines and their melt inclusions
NASA Astrophysics Data System (ADS)
Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura
2018-02-01
Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.
Nickel-iron spherules in tektites - Non-meteoritic in origin
NASA Technical Reports Server (NTRS)
Ganapathy, R.; Larimer, J. W.
1983-01-01
The concentrations of several diagnostic trace elements were determined in two comparatively large NiFe spherules extracted from tektites. The purpose of the study was to obtain some clues about the chemistry of the projectile that is presumed responsible for the formation of these tektites. However, the trace element pattern is distinctly terrestrial implying that the spherules are the result of in-situ reduction of the host rock and are not meteoritic in origin.
Trace elements levels in centenarian 'dodgers'.
Alis, Rafael; Santos-Lozano, Alejandro; Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Fiuza-Luces, Carmen; Garatachea, Nuria; Lucia, Alejandro; Emanuele, Enzo
2016-05-01
Trace element bioavailability can play a role in several metabolic and physiological pathways known to be altered during the aging process. We aimed to explore the association of trace elements with increased lifespan by analyzing the circulating levels of seven trace elements (Cr, Cu, Fe, Mn, Mo, Se and Zn) in a cohort of healthy centenarians or 'dodgers' (≥100 years, free of major age-related diseases) in comparison with sex-matched younger elderly controls. Centenarians showed significant lower Cu (783.7 (76.7, 1608.9) vs 962.5 (676.3, 2064.4)μg/mL, P<0.001), but higher Fe (1.3 (0.4, 4.7) vs 1.1 (0.5, 8.4)μg/mL, P=0.003) and Se (85.7 (43.0, 256.7) vs 77.8 (24.3, 143.8)ng/mL, P=0.002) values compared with elderly controls. The logistic regression analysis identified the combination of Cu and Se as significant predictor variables associated with successful aging (P=0.001), while receiver operating characteristic (ROC) analysis confirmed that Cu and Se (either alone or in combination) were independent variables associated with healthy aging. An 'improved' trace element profile (reduced Cu and elevated Se, which are involved in key physiological processes) could play a role in the resistance to disease showed by centenarian 'dodgers', and, therefore, at least partly, be involved in the healthy aging phenotype shown by these subjects. These results should be confirmed in larger cohorts of other geographic/ethnic origin and the potential cause-effect association tested in mechanistic experimental settings. Copyright © 2016 Elsevier GmbH. All rights reserved.
The Distribution of Dissolved Iron in the West Atlantic Ocean
Rijkenberg, Micha J. A.; Middag, Rob; Laan, Patrick; Gerringa, Loes J. A.; van Aken, Hendrik M.; Schoemann, Véronique; de Jong, Jeroen T. M.; de Baar, Hein J. W.
2014-01-01
Iron (Fe) is an essential trace element for marine life. Extremely low Fe concentrations limit primary production and nitrogen fixation in large parts of the oceans and consequently influence ocean ecosystem functioning. The importance of Fe for ocean ecosystems makes Fe one of the core chemical trace elements in the international GEOTRACES program. Despite the recognized importance of Fe, our present knowledge of its supply and biogeochemical cycle has been limited by mostly fragmentary datasets. Here, we present highly accurate dissolved Fe (DFe) values measured at an unprecedented high intensity (1407 samples) along the longest full ocean depth transect (17500 kilometers) covering the entire western Atlantic Ocean. DFe measurements along this transect unveiled details about the supply and cycling of Fe. External sources of Fe identified included off-shelf and river supply, hydrothermal vents and aeolian dust. Nevertheless, vertical processes such as the recycling of Fe resulting from the remineralization of sinking organic matter and the removal of Fe by scavenging still dominated the distribution of DFe. In the northern West Atlantic Ocean, Fe recycling and lateral transport from the eastern tropical North Atlantic Oxygen Minimum Zone (OMZ) dominated the DFe-distribution. Finally, our measurements showed that the North Atlantic Deep Water (NADW), the major driver of the so-called ocean conveyor belt, contains excess DFe relative to phosphate after full biological utilization and is therefore an important source of Fe for biological production in the global ocean. PMID:24978190
Srichandan, Suchismita; Panigrahy, R C; Baliarsingh, S K; Rao B, Srinivasa; Pati, Premalata; Sahu, Biraja K; Sahu, K C
2016-10-15
Concentrations of trace metals such as iron (Fe), copper (Cu), zinc (Zn), cobalt (Co), nickel (Ni), manganese (Mn), lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), vanadium (V), and selenium (Se) were determined in seawater and zooplankton from the surface waters off Rushikulya estuary, north-western Bay of Bengal. During the study period, the concentration of trace metals in seawater and zooplankton showed significant spatio-temporal variation. Cu and Co levels in seawater mostly remained non-detectable. Other elements were found at higher concentrations and exhibited marked variations. The rank order distribution of trace metals in terms of their average concentration in seawater was observed as Fe>Ni>Mn>Pb>As>Zn>Cr>V>Se>Cd while in zooplankton it was Fe>Mn>Cd>As>Pb>Ni>Cr>Zn>V>Se. The bioaccumulation factor (BAF) of Fe was highest followed by Zn and the lowest value was observed with Ni. Results of correlation analysis discerned positive affinity and good relationship among the majority of the trace metals, both in seawater and zooplankton suggesting their strong affinity and coexistence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Klink, Agnieszka; Polechońska, Ludmiła; Dambiec, Małgorzata; Białas, Kamila
2018-01-01
Trees are widely used for biomonitoring and filtering air in industrial, urban, and rural areas. This research was undertaken to examine accumulation capacities of macroelements (Ca, K, Mg, Na) and trace metals (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) in needles and bark of Pinus sylvestris and leaves and bark of Quercus petraea growing in the vicinity of the chlor-alkali plant PCC Rokita in Brzeg Dolny (Lower Silesia, SW Poland). Because Scots pine is well studied and considered a useful bioindicator, we have used this species as a base for comparison of the accumulation ability of sessile oak that shows some features of good bioindicator, but whose biogeochemistry was scarcely studied. Results showed that for both species leaves contained more macroelements (Ca, K, Mg), whereas the bark was richer in most trace metals (Cd, Cr, Cu, Fe, and Pb). However, trees studied differed with respect to element content. Oak bark and leaves were more effective in accumulating macro- and trace elements (bark Cd, Co, Cr, Cu, K, Mg, Mn, Na, Ni, Pb and leaves Ca, Cr, Cu, Fe, K, Mg, Na, Ni) than Scots pine tissues. Nevertheless, foliar metal accumulation index of these species was similar, suggesting that their overall ability to accumulate trace metals was similar.
The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.
Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana
2015-10-01
To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.
Elemental composition of four farmed fish produced in Portugal.
Lourenço, Helena M; Afonso, Cláudia; Anacleto, Patrícia; Martins, Maria F; Nunes, Maria L; Lino, Ana R
2012-11-01
Farmed gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax), rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima) produced in Portugal were analysed in order to characterize their elemental composition. Atomic absorption (flame and cold vapour) and molecular absorption spectrometry techniques were used to determine all the studied elements. Similar patterns of macro, trace and ultra trace elements were observed for all fish species. The main elements were potassium (K), sodium (Na), phosphorus (P), magnesium (Mg) and calcium (Ca), followed by zinc (Zn), iron (Fe), copper (Cu), chromium (Cr), manganese (Mn) and nickel (Ni). Cadmium (Cd), mercury (Hg) and lead (Pb) concentrations, obtained in this study, allow concluding that these species do not present a hazard for human consumption. In addition, they contain almost all essential elements at concentrations sufficient to suit the dietary reference intake. Nevertheless, P. maxima nutritious trace element content is relatively low compared with the other three species.
Minor and trace element concentrations in adjacent kamacite and taenite in the Krymka chondrite
NASA Astrophysics Data System (ADS)
Meftah, N.; Mostefaoui, S.; Jambon, A.; Guedda, E. H.; Pont, S.
2016-04-01
We report in situ NanoSIMS siderophile minor and trace element abundances in individual Fe-Ni metal grains in the unequilibrated chondrite Krymka (LL3.2). Associated kamacite and taenite of 10 metal grains in four chondrules and one matrix metal were analyzed for elemental concentrations of Fe, Ni, Co, Cu, Rh, Ir, and Pt. The results show large elemental variations among the metal grains. However, complementary and correlative variations exist between adjacent kamacite-taenite. This is consistent with the unequilibrated character of the chondrite and corroborates an attainment of chemical equilibrium between the metal phases. The calculated equilibrium temperature is 446 ± 9 °C. This is concordant with the range given by Kimura et al. (2008) for the Krymka postaccretion thermal metamorphism. Based on Ni diffusivity in taenite, a slow cooling rate is estimated of the Krymka parent body that does not exceed ~1K Myr-1, which is consistent with cooling rates inferred by other workers for unequilibrated ordinary chondrites. Elemental ionic radii might have played a role in controlling elemental partitioning between kamacite and taenite. The bulk compositions of the Krymka metal grains have nonsolar (mostly subsolar) element/Ni ratios suggesting the Fe-Ni grains could have formed from distinct precursors of nonsolar compositions or had their compositions modified subsequent to chondrule formation events.
An attempt to diagnose cancer by PIXE
NASA Astrophysics Data System (ADS)
Uda, M.; Maeda, K.; Sasa, Y.; Kusuyama, H.; Yokode, Y.
1987-03-01
PIXE is suitable especially for trace elemental analysis for atoms with high atomic numbers, which are contained in matrices composed mainly of light elements such as biological materials. An attempt has been made to distinguish elemental concentrations of cancer tissues from those of normal ones. Kidney, testis and urinary bladder cancer tissues were examined by PIXE. Key elements to diagnose these cancers were Ca, Ti, Cr, Fe and Zn. Enrichment of Fe and Ti, and deficiency of Zn could be seen in the kidney cancer. An opposite tendency was observed in the testicular cancer. Imbalance of these elemental concentrations in characteristic organs might give us a possibility for cancer diagnosis.
NASA Astrophysics Data System (ADS)
Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.
2011-11-01
This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions was suggested. This shift was likely promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.
NASA Astrophysics Data System (ADS)
Audry, S.; Pokrovsky, O. S.; Shirokova, L. S.; Kirpotin, S. N.; Dupré, B.
2011-08-01
This study reports the very first results on high-resolution sampling of sediments and their porewaters from three thermokarst (thaw) lakes representing different stages of ecosystem development located within the Nadym-Pur interfluve of the Western Siberia plain. Up to present time, the lake sediments of this and other permafrost-affected regions remain unexplored regarding their biogeochemical behavior. The aim of this study was to (i) document the early diagenesic processes in order to assess their impact on the organic carbon stored in the underlying permafrost, and (ii) characterize the post-depositional redistribution of trace elements and their impact on the water column. The estimated organic carbon (OC) stock in thermokarst lake sediments of 14 ± 2 kg m-2 is low compared to that reported for peat soils from the same region and denotes intense organic matter (OM) mineralization. Mineralization of OM in the thermokarst lake sediments proceeds under anoxic conditions in all the three lakes. In the course of the lake development, a shift in mineralization pathways was evidenced from nitrate and sulfate to Fe- and Mn-oxyhydroxides as the main terminal electron acceptors in the early diagenetic reactions. This shift was promoted by the diagenetic consumption of nitrate and sulfate and their gradual depletion in the water column due to progressively decreasing frozen peat lixiviation occurring at the lake's borders. Trace elements were mobilized from host phases (OM and Fe- and Mn-oxyhydroxides) and partly sequestered in the sediment in the form of authigenic Fe-sulfides. Arsenic and Sb cycling was also closely linked to that of OM and Fe- and Mn-oxyhydroxides. Shallow diagenetic enrichment of particulate Sb was observed in the less mature stages. As a result of authigenic sulfide precipitation, the sediments of the early stage of ecosystem development were a sink for water column Cu, Zn, Cd, Pb and Sb. In contrast, at all stages of ecosystem development, the sediments were a source of dissolved Co, Ni and As to the water column. However, the concentrations of these trace elements remained low in the bottom waters, indicating that sorption processes on Fe-bounding particles and/or large-size organo-mineral colloids could mitigate the impact of post-depositional redistribution of toxic elements on the water column.
Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa
NASA Astrophysics Data System (ADS)
Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika
2015-02-01
Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang
2017-12-01
Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.
NASA Astrophysics Data System (ADS)
Shim, M.; Swarzenski, P. W.; Shiller, A. M.
2010-12-01
The Mississippi River (MR) plays an important role as a major fluvial source of dissolved and particulate materials for the Gulf of Mexico (GOM). This region is periodically disturbed by tropical weather systems including major hurricanes. Such storms have the potential to stir up the normally stratified water column of the Louisiana Shelf and thus can serve as a mechanism for the abrupt termination of seasonal bottom water hypoxia. Additionally, strong tropical systems can cause the resuspension of shelf bottom sediments which could result in the injection of trace elements into the water column. In the summer of 2005, two major hurricanes, Katrina and Rita, passed over the Louisiana Shelf within a month of each other. Three weeks after Rita, we participated in a survey of the waters of the Mississippi River delta outflow, examining the distributions of trace elements (including Ba, Co, Cr, Cs, Cu, Fe, Mn, Ni, Re, U, V, and Zn) in a comparison with previous results in this area. We indeed observed that there was limited stratification on the shelf and that bottom waters were no longer hypoxic. This resulted, for instance, in bottom water dissolved Mn being lower than is typically observed during hypoxia, but with concentrations still compatible with Mn-O2 trends previously reported. Interestingly, for no element were we able to identify an obvious effect of sediment resuspension on its distribution. In general, elemental distributions were compatible with previous observations in the Mississippi outflow system. Co and Re, which have not been reported for this system previously, showed behavior consistent with other systems: input for Co likely from desorption and conservative mixing for Re. For Cs, an element for which there is little information regarding its estuarine behavior, conservative mixing was also observed. Our filtration method, which allowed us to distinguish the dissolved (<0.02 µm) from colloidal (0.02 - 0.45 µm) phase, revealed significant colloidal fractions for Fe and Zn, only. For Fe, the colloidal phase was the dominant fraction and was rapidly removed at low salinity. Dissolved Fe, in contrast, persisted out to mid-salinities, being removed in a similar fashion to nitrate. This ability to distinguish the smaller Fe (likely dominantly organically complexed) from larger colloidal suspensates may be useful in better interpreting the bioavailablity of the Fe in estuarine systems.
Determination of elements in ayurvedic medicinal plants by AAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teerthe, Santoshkumar S.; Kerur, B. R., E-mail: kerurbrk@yahoo.com
India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations ofmore » Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health.« less
[Dietary reference intakes of trace elements for Japanese and problems in clinical fields].
Inoue, Yoshifumi
2016-07-01
In the dietary reference intakes, EAR(estimated average requirement), RDA(recommended dietary allowance), AL(adequate intake), DG(tentative dietary goal for preventing life style related diseases) and UL(tolerable upper intake level) of eight types of trace elements (iron: Fe, zinc: Zn, copper: Cu, manganese: Mn, iodine: I, selenium: Se, chromium: Cr, molybdenum: Mo) have been set. However, in the meals of hospitals, only iron of which has been taken into account. The content of these trace elements in the enteral nutrient released after 2000 was determined by considering the content of dietary reference intakes of trace elements for Japanese and considered so not fall into deficiency. However, enteral nutrient must be used considering the content of Zn, Cu and the Zn/Cu ratio, the selenium content, and the route of administration, in order to avoid falling into deficiency.
NASA Astrophysics Data System (ADS)
Sanchez, J. L.; Osipowicz, T.; Tang, S. M.; Tay, T. S.; Win, T. T.
1997-07-01
The trace element concentrations found in geological samples can shed light on the formation process. In the case of gemstones, which might be of artificial or natural origin, there is also considerable interest in the development of methods that provide identification of the origin of a sample. For rubies, trace element concentrations present in natural samples were shown previously to be significant indicators of the region of origin [S.M. Tang et al., Appl. Spectr. 42 (1988) 44, and 43 (1989) 219]. Here we report the results of micro-PIXE analyses of trace element (Ti, V, Cr, Fe, Cu and Ga) concentrations of a large set ( n = 130) of natural rough rubies from nine locations in Myanmar (Burma). The resulting concentrations are subjected to statistical analysis. Six of the nine groups form clusters when the data base is evaluated using tree clustering and principal component analysis.
On the incorporation of trace elements into human hair measured with micro-PIXE
NASA Astrophysics Data System (ADS)
Bos, A. J. J.; Van Der Stap, C. C. A. H.; Valković, V.; Vis, R. D.; Verheul, H.
1984-04-01
A study has been made on the incorporation of trace elements into human hair by measuring concentration distributions across hair diameters of selected samples using the Amsterdam proton microbeam. Because hair is considered as a recording filament, reflecting metabolic changes over a period of time, a hair of a young mother was plucked 4 months after delivery of her first child. No change in the Zn and Cu concentrations correlated with the period of gestation was observed. A strong increase of Ca in the distal end must be attributed to outside contamination. From a study of a hair root, including the root sheaths, it is found that the method of incorporation of sulfur (minor element) differs strikingly from the behaviour of the trace elements Zn, Cu, Fe and Ca. The Zn and Cu distributions provide evidence of a, not yet reported, transversal transcellular input route, in which the root sheaths play an important role. From the results it is deduced that Zn and Cu seem to be distributed homogeneously by nature, while Fe, present at a high level in the root sheaths, seems to be peaked by nature on the periphery. The results are discussed against the background of the range of values of concentrations of certain elements found in the literature.
Wiche, Oliver; Székely, Balazs; Kummer, Nicolai-Alexeji; Moschner, Christin; Heilmeier, Hermann
2016-09-01
This study aims to investigate how intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) affects the mobile fractions of trace metals (Fe, Mn, Pb, Cd, Th, U, Sc, La, Nd, Ge) in soil solution. Oat and white lupin were cultivated in monocultures and mixed cultures with differing oat/white lupin ratios (11% and 33% lupin, respectively). Temporal variation of soil solution chemistry was compared with the mobilization of elements in the rhizosphere of white lupin and concentrations in plant tissues. Relative to the monocrops, intercropping of oat with 11% white lupin significantly increased the concentrations of Fe, Pb, Th, La and Nd in soil solution as well as the concentrations of Fe, Pb, Th, Sc, La and Nd in tissues of oat. Enhanced mobility of the mentioned elements corresponded to a depletion of elements in the rhizosphere soil of white lupin. In mixed cultures with 33% lupin, concentrations in soil solution only slightly increased. We conclude that intercropping with 11% white lupin might be a promising tool for phytoremediation and phytomining research enhancing mobility of essential trace metals as well as elements with relevance for phytoremediation (Pb, Th) and phytomining (La, Nd, Sc) in soil.
NASA Astrophysics Data System (ADS)
Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.
2012-12-01
Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavic, I.; Draskovic, R.; Tasovac, T.
1973-03-01
A computer program for the determination of trace elements in components of the water systems bed material, suspended material, dissolved substances, plankton, algae) by nondestructive activation analysis was developed. Results of the determination of Cr, Sb, Sc, Fe, Co, Na, and La concentrations in suspended materials from the Danube river, obtained by interpretation of data with a CDC- 3600 computer (64 k words), are presented. (auth)
Trace element abundances in single presolar silicon carbide grains by synchrotron X-ray fluorescence
NASA Astrophysics Data System (ADS)
Kashiv, Yoav
2004-12-01
Synchrotron x-ray fluorescence (SXRF) was applied to the study of presolar grains for the first time in this study. 41 single SiC grains of the KJF size fraction (mass-weighted median size of 1.86 μm) from the Murchison (CM2) Meteorite were analyzed. The absolute abundances of the following elements were determined (not every element in every grain): S, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Sr, Y, Zr, Nb, Mo, Ru, Os, Ir and Pt (underlined elements were detected here for the first time in single grains). There is good agreement between the heavier trace element abundances in the grains and s-process nucleosynthesis calculations. It suggests that smaller 13C pocket sizes are needed in the parent stars, a free parameter in the stellar models, than is deduced from isotopic analyses of s-, and s-mainly, elements, such as Zr and Mo. In addition, the data confirms the radiogenic nature of the Nb in the grains, due to the in situ decay of 93Zr (t 1/2 = 1.5 × 106 year). The data suggest that the trace elements condensed into the host SiC grains by a combination of condensation in solid solution and incorporation of subgrains. It seems that many of the trace elements reside mainly in subgrains of two solid solution: (1)a TiC based solid solution, and (2)a Mo-Ru carbide based solid solution. The presence of subgrains of an Fe-Ni alloy solid solution is suggested as well. Subgrains of all 3 solid solutions were observed previously in presolar graphite grains.* *This dissertation is a compound document (contains both a paper copy and a CD as part of the dissertation). The CD requires the following system requirements: Adobe Acrobat.
NASA Astrophysics Data System (ADS)
Lamborg, C. H.; Buesseler, K. O.; Lam, P. J.
2008-07-01
As part of the Vertical Transport in the Global Ocean (VERTIGO) program, we collected and analyzed sinking particles using sediment traps at three depths in the oceanic mesopelagic zone and at two biogeochemically contrasting sites (N. Central Pacific at ALOHA; N. Pacific Western Subarctic Gyre at K2). In this paper, we present the results of minor and trace element determinations made on these samples. Minor and trace elements in the sinking material showed 2 trends in flux with depth: increasing and constant. The sinking particulate phase of some elements (Al, Fe, Mn) was dominated by material of lithogenic origin and exhibited flux that was constant with depth and consistent with eolian dust inputs (ALOHA), or increasing in flux with depth as a result of lateral inputs from a shelf (K2). This shelf-derived material also appears to have been confined to very small particles, whose inherent sinking rates are slow, and residence time within the mesopelagic "twilight zone" would be consequently long. Furthermore, the flux of this material did not change with substantial changes in the rain of biogenic material from the surface (K2), suggesting mechanistic decoupling from the flux of organic carbon and macronutrients. Micronutrient (Fe, Co, Zn and Cu) fluxes examined in a 1-D mass balance suggest widely differing sources and sinks in the water column as well as impacts from biological uptake and regeneration. For example, total Fe fluxes into and out of the euphotic zone appeared to be dominated by lithogenic material and far exceed biological requirements. The export flux of Fe, however, appeared to be balanced by the eolian input of soluble Fe. For Zn and Cu, the situation is reversed, with atmospheric inputs insufficient to support fluxes, and the cycling therefore dominated by the draw down of an internal pool. For Co, the situation lies in between, with important, but ultimately insufficient atmospheric inputs.
Molybdenite Mineral Evolution: A Study Of Trace Elements Through Time
NASA Astrophysics Data System (ADS)
McMillan, M. M.; Downs, R. T.; Stein, H. J.; Zimmerman, A.; Beitscher, B. A.; Sverjensky, D. A.; Papineau, D.; Armstrong, J. T.; Hazen, R. M.
2010-12-01
Mineral evolution explores changes through time in Earth’s near-surface mineralogy, including diversity of species, relative abundances of species, and compositional ranges of major, minor and trace elements. Such studies elucidate the co-evolution of the geosphere and biosphere. Accordingly, we investigated trace and minor elements in molybdenite (MoS2) with known ages from 3 billion years to recent. Molybdenite, the commonest mineral of Mo, may prove to be a useful case study as a consequence of its presence in Earth’s early history, the effects of oxidation on Mo mobility, and the possible role of Mo mineral coevolution with biology via its role in the nitrogen fixation enzyme nitrogenase. We employed ICPMS, SEM and electron microprobe analyses to detect trace and minor elements. We detected significant amounts of Mn and Cu (~100 ppm) and greater amounts of Fe, W, and Re (to ~4000 ppm). Molybdenites commonly contain micro inclusions, resulting in local concentrations in otherwise homogeneous samples. Inhomogeneities in Fe, Zn and Sn concentrations, for example, point to the presence of pyrite, sphalerite and cassiterite inclusions, respectively. Analyses examined as a function of time reveal that samples containing significant concentrations (>200 ppm, compared to average values < 100 ppm) of W and Re formed primarily within the last billion years. These trends may reflect changes in the mobility of W and Re in oxic hydrothermal fluids at shallow crustal conditions following the Great Oxidation Event.
Zhao, Yueran; Dou, Deqiang; Guo, Yueqiu; Qi, Yue; Li, Jun; Jia, Dong
2018-06-01
Thirteen trace elements and active constituents of 40 batches of Lonicera japonica flos and Lonicera flos were comparatively studied using inductively coupled plasma mass-spectrometry (ICP-MS) and high-performance liquid chromatography-photodiode array (HPLC-PDA). The trace elements were 24 Mg, 52 Cr, 55 Mn, 57 Fe, 60 Ni, 63 Cu, 66 Zn, 75 As, 82 Se, 98 Mo, 114 Cd, 202 Hg, and 208 Pb, and the active compounds were chlorogenic acid, 3,5-O-dicaffeoylquinc acid, 4,5-O-dicaffeoylquinc acid, luteolin-7-O-glucoside, and 4-O-caffeoylquinic acid. The data of 18 variables were statistically processed using principal component analysis (PCA) and discriminate analysis (DA) to classify L. japonica flos and L. flos. The validated method was developed to divide the 40 samples into two groups based on the PCA in terms of 18 variables. Furthermore, the species of Lonicera was better discriminated by using DA with 12 variables. These results suggest that the method and statistical analysis of the contents of trace elements and chemical components can classify the L. japonica flos and L. flos using 12 variables, such as 3,5-O-dicaffeoylquincacid, luteolin-7-O-glucoside, Cd, Mn, Hg, Pb, Ni, 4-O-caffeoyl-quinic acid, 4,5-O-dicaffeoylquinc acid, Fe, Mg, and Cr.
NASA Astrophysics Data System (ADS)
Stedman, J. D.; Spyrou, N. M.
1994-12-01
The trace element concentrations in porcine brain samples as determined by particle-induced X-ray emission (PIXE) analysis, instrumental neutron activation analysis (INAA) and particle-induced gamma-ray emission (PIGE) analysis are compared. The matrix composition was determined by Rutherford backscattering (RBS). Al, Si, P, S, Cl, K, Ca, Mn, Fe and Cd were determined by PIXE analysis Na, K, Sc, Fe, Co, Zn, As, Br, Rb, and Cs by INAA and Na, Mg and Fe by PIGE analysis. The bulk elements C, N, O, Na Cl and S were found by RBS analysis. Elemental concentrations are obtained using the comparator method of analysis rather than an absolute method, the validity which is examined by comparing the elemental concentrations obtained in porcine brain using two separate certified reference materials.
NASA Astrophysics Data System (ADS)
Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.
2015-06-01
The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from andesitic melts, suggesting that magnetite crystallized from an evolved gabbroic melt. Enrichments of Ni, Co, Te, As and Bi in disseminated millerite and niccolite occurring within chromitites, and in disseminated bravoite within magnetites, reflect element mobility during serpentinization. Monosulfide solid solution inclusions within pyroxenes (altered to actinolite) in pyroxenite, and interstitial pyrites and chalcopyrites in magnetite, retain primary characteristics except for Fe-enrichment in chalcopyrite, probably due to sub-solidus re-equilibration with magnetite. Disseminated sulfides are depleted in platinum-group elements (PGE) due to late sulfide saturation and the PGE-depleted nature of the mantle source of the sill-like ultramafic-mafic plutonic rocks in the Nuggihalli greenstone belt.
Trace element composition of Luna 24 Crisium VLT basalt
NASA Technical Reports Server (NTRS)
Haskin, L. A.
1978-01-01
The origins of the individual particles analyzed from the Luna 24 core and the information they provide on the trace-element composition of Mare Crisium basalt are considered. Previous analyses of several Luna 24 soil fragments are reviewed. It is concluded that: (1) the average trace-element concentrations for 12 VLT basalt fragments are the best available estimates for bulk samples of Crisium VLT basalt; (2) there is weak evidence that the average Crisium basalt might have a small positive Eu anomaly relative to chondritic matter; (3) the soils contain components from sources other than the Crisium VLT basalt; and (4) there is no convincing information in concentrations of rare-earth elements, Co, Sc, FeO, or Na2O among the analyzed fragments to indicate more than one parent basalt.
Kosiorek, Milena; Modrzewska, Beata; Wyszkowski, Mirosław
2016-10-01
The aim of the study was to determine the concentrations of selected trace elements in needles and bark of Scots pine (Pinus sylvestris L.), leaves and bark of silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.), as well as in the soil in which the trees grew, depending on their localization and hence the distribution of local pollution sources. The content of trace elements in needles of Scots pine, leaves of silver birch, and Norway maple and in bark of these trees depended on the location, tree species, and analyzed organ. The content of Fe, Mn, and Zn in needles, leaves, and bark of the examined tree species was significantly higher than that of the other elements. The highest average content of Fe and Mn was detected in leaves of Norway maple whereas the highest average content of Zn was found in silver birch leaves. The impact of such locations as the center of Olsztyn or roadside along Road 51 on the content of individual elements tended to be more pronounced than the influence of the other locations. The influence of the sampling sites on the content of trace elements in tree bark was less regular than the analogous effect in needles and leaves. Moreover, the relevant dependences were slightly different for Scots pine than for the other two tree species. The concentrations of heavy metals determined in the soil samples did not exceed the threshold values set in the Regulation of the Minister for the Environment, although the soil along Road 51 and in the center of Olsztyn typically had the highest content of these elements. There were also significant correlations between the content of some trace elements in soil and their accumulation in needles, leaves, and bark of trees.
Paulson, A.J.
2005-01-01
The concentrations of 22 elements also were measured in the suspended matter of Raritan and Lower New York Bays and brackish water sources. The elemental composition of the suspended matter in surface and bottom waters was correlated with Fe concentrations, which ranged between 50 and 900 μmol g− 1. Statistical differences among the geographical regions were detected in the relationships of Ti, Ni, Co, As, and U with Fe, with particulate As being an especially strong geochemical indicator of Raritan River particles. The geochemical signatures of Lower New York Bay particles were similar to those of Upper New York Bay. The geochemical signatures of Raritan River particles were distinctly different than those of the Upper New York Bay, but the influence of Raritan River particles appeared to be limited to only inner Raritan Bay. This study illustrates the utility of trace elements for characterization of physical processes in complex estuaries.
Simon Peter, T; Chandrasekar, N; John Wilson, J S; Selvakumar, S; Krishnakumar, S; Magesh, N S
2017-06-15
Trace element concentration in the beach placer mining areas of Kanyakumari coast, South India was assessed. Sewage and contaminated sediments from mining sites has contaminated the surface sediments. Enrichment factor indicates moderately severe enrichment for Pb, minor enrichment for Mn, Zn, Ni, Fe and no enrichment for Cr and Cu. The Igeo values show higher concentration of Pb ranging in the scale of 3-4, which shows strong contamination due to high anthropogenic activity such as mining and terrestrial influences into the coastal regions. Correlation coefficient shows that most of the elements are associated with each other except Ni and Pb. Factor analysis reveals that Mn, Zn, Fe, Cr, Pb and Cu are having a significant loading and it indicates that these elements are mainly derived from similar origin. The cluster analysis clearly indicated that the mining areas are grouped under cluster 2 and non-mining areas are clustered under group 1. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jungers, R H; Lee, R E; von Lehmden, D J
1975-01-01
A National Fuels Surveillance Network has been established to collect gasoline and other fuels through the 10 regional offices of the Environmental Protection Agency. Physical, chemical, and trace element analytical determinations are made on the collected fuel samples to detect components which may present an air pollution hazard or poison exhaust catalytic control devices. A summary of trace elemental constituents in over 50 gasoline samples and 18 commercially marketed consumer purchased gasoline additives is presented. Quantities of Mn, Ni, Cr, Zn, Cu, Fe, Sb, B, Mg, Pb, and S were found in most regular and premium gasoline. Environmental implications of trace constituents in gasoline are discussed. PMID:1157783
Singhal, R K; Narayanan, Usha; Karpe, Rupali; Kumar, Ajay; Ranade, A; Ramachandran, V
2009-04-01
During this work, controlled redox potential methodology was adopted for the complete separation of traces of uranium from the host matrix of mixed hydroxide of Iron. Precipitates of Fe(+2) and Fe(+3) along with other transuranic elements were obtained from acid leached solution of soil by raising the pH to 9 with 14N ammonia solution. The concentration of the uranium observed in the soil samples was 200-600 ppb, whereas in sediment samples, the concentration range was 61-400 ppb.
Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.
Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun
2014-09-01
The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.
Liu, Xiaobing; Zhang, Yu; Piao, Jianhua; Mao, Deqian; Li, Yajie; Li, Weidong; Yang, Lichen; Yang, Xiaoguang
2017-01-01
The development of reference values of trace elements is recognized as a fundamental prerequisite for the assessment of trace element nutritional status and health risks. In this study, a total of 1400 pregnant women aged 27.0 ± 4.5 years were randomly selected from the China Nutrition and Health Survey 2010–2012 (CNHS 2010–2012). The concentrations of 14 serum trace elements were determined by high-resolution inductively coupled plasma mass spectrometry. Reference values were calculated covering the central 95% reference intervals (P2.5–P97.5) after excluding outliers by Dixon’s test. The overall reference values of serum trace elements were 131.5 (55.8-265.0 μg/dL for iron (Fe), 195.5 (107.0–362.4) μg/dL for copper (Cu), 74.0 (51.8–111.3) μg/dL for zinc (Zn), 22.3 (14.0–62.0) μg/dL for rubidium (Rb), 72.2 (39.9–111.6) μg/L for selenium (Se), 45.9 (23.8-104.3) μg/L for strontium (Sr), 1.8 (1.2–3.6) μg/L for molybdenum (Mo), 2.4 (1.2–8.4) μg/L for manganese (Mn), 1.9 (0.6–9.0) ng/L for lead (Pb), 1.1 (0.3-5.6) ng/L for arsenic (As), 835.6 (219.8–4287.7) ng/L for chromium (Cr), 337.9 (57.0–1130.0) ng/L for cobalt (Co), 193.2 (23.6–2323.1) ng/L for vanadium (V), and 133.7 (72.1–595.1) ng/L for cadmium (Cd). Furthermore, some significant differences in serum trace element reference values were observed between different groupings of age intervals, residences, anthropometric status, and duration of pregnancy. We found that serum Fe, Zn, and Se concentrations significantly decreased, whereas serum Cu, Sr, and Co concentrations elevated progressively compared with reference values of 14 serum trace elements in pregnant Chinese women. The reference values of serum trace elements established could play a key role in the following nutritional status and health risk assessment. PMID:28335545
Distribution and Phase Association of Some Major and Trace Elements in the Arabian Gulf Sediments
NASA Astrophysics Data System (ADS)
Basaham, A. S.; El-Sayed, M. A.
1998-02-01
Twenty-four sediment samples were collected from the Arabian Gulf (ROPME Sea) and analysed for their grain size distribution and carbonate contents as well as the major elements Ca, Mg, Fe and Al and macro and trace elements Mn, Sr, Ba, Zn, Cu, Cr, V, Ni and Hg. Concentration of trace elements are found comparable to previous data published for samples taken before and after the Gulf War, and reflect the natural background level. Grain size analyses, aluminium and carbonate measurements support the presence of two major sediment types: (1) a terrigenous, fine-grained and Al rich type predominating along the Iranian side; and (2) a coarse-grained and carbonate rich type predominating along the Arabian side of the Gulf. Investigation of the correlation of the elements analysed with the sediment type indicates that they could be grouped under two distinct associations: (1) carbonate association including Ca and Sr; and (2) terrigenous association comprising Al, Fe, Mg, Ba, Mn, Zn, Cu, Cr, V, Ni and Hg. Element/Al ratios calculated for the mud non-carbonate fraction indicate that the Euphrates and Tigris rivers have minor importance as sediment sources to the Gulf. Most of the elements have exceptionally high aluminium ratios in sediments containing more than 85-90% carbonate. These sediments are restricted to the southern and south-eastern part of the area where depth is shallow and temperature and salinity are high. Both biological accumulation and chemical and biochemical coprecipitation could be responsible for this anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toga, Yuta; Suzuki, Tsuneaki; Sakuma, Akimasa, E-mail: sakuma@solid.apph.tohoku.ac.jp
2015-06-14
Using first-principles calculations, we investigate the positional dependence of trace elements such as O and Cu on the crystal field parameter A{sub 2}{sup 0}, proportional to the magnetic anisotropy constant K{sub u} of Nd ions placed at the surface of Nd{sub 2}Fe{sub 14}B grains. The results suggest the possibility that the A{sub 2}{sup 0} parameter of Nd ions at the (001) surface of Nd{sub 2}Fe{sub 14}B grains exhibits a negative value when the O or Cu atom is located near the surface, closer than its equilibrium position. At the (110) surface, however, O atoms located at the equilibrium position providemore » a negative A{sub 2}{sup 0}, while for Cu additions A{sub 2}{sup 0} remains positive regardless of Cu's position. Thus, Cu atoms are expected to maintain a positive local K{sub u} of surface Nd ions more frequently than O atoms when they approach the grain surfaces in the Nd-Fe-B grains.« less
Synchrotron-induced X-ray fluorescence from rat bone and lumber vertebra of different age groups
NASA Astrophysics Data System (ADS)
Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Takeda, Tohoru; Tromba, Giuliana; Gigante, Giovanni E.
2009-02-01
The fluorescence spectra from rat bones of different age groups (8, 56 and 78 weeks) and lumber vertebra were measured with 8, 10 and 12 keV synchrotron X-rays. We have utilized the new hard X-ray micro-spectroscopy beamline facility, X27A, available at NSLS with a primary beam spot size of the order of ˜10 μm. With this spatial resolution and high flux throughput, X-ray fluorescent intensities for Ca and other trace elements were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. Regarding the lumber vertebra, we acquired the fluorescence spectra from the left, right and middle portions and calcium accumulation was evaluated and compared with the other samples. We have identified the major trace elements of Ca, Ni, Fe and Zn and minor trace elements of Ti, Cr and Mn in the sample. The percentage of scattered radiation and trace element contributions from these samples were highlighted at different energies.
Long-term anaerobic digestion of food waste stabilized by trace elements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr
Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less
NASA Astrophysics Data System (ADS)
Peterson, M. E.; Kelley, K. A.; Cottrell, E.; Saal, A. E.; Kurz, M. D.
2015-12-01
The oxidation state of the mantle plays an intrinsic role in the magmatic evolution of the Earth. Here we present new μ-XANES measurements of Fe3+/ΣFe ratios (a proxy for ƒO2) in a suite of submarine glasses from the Galapagos Archipelago. Using previously presented major, trace, and volatile elements and isotopic data for 4 groups of glass that come from distinct mantle sources (depleted upper mantle, 2 recycled, and a primitive mantle source) we show that Fe3+/ΣFe ratios vary both with the influence of shallow level processes and with variations in mantle source. Fe3+/ΣFe ratios increase with differentiation (i.e. decreasing MgO), but show a large variation at a given MgO. Progressive degassing of sulfur accompanies decreasing Fe3+/ΣFe ratios, while assimilation of hydrothermally altered crust (as indicated by increasing Sr/Sr*) is shown to increase Fe3+/ΣFe ratios. After taking these processes into account, there is still variability in the Fe3+/ΣFe ratios of the isotopically distinct sample suites studied, yielding a magmatic ƒO2 that ranges from ΔQFM = +0.16 to +0.74 (error < 0.5 log units) and showing that oxidation state varies as a function of mantle source composition in the Galapagos hotspot system. After correcting back to a common MgO content = 8.0 wt%, the trace element depleted group similar to MORB (ITD), and the group similar to Pinta (WD = high Th/La, Δ7/4, Δ8/4 ratios) show Fe3+/ΣFe ratios within the range of MORB (average ITD = 0.162 ± 0.003 and WD = 0.164 ± 0.006). Another trace element enriched group similar to Sierra Negra and Cerro Azul (ITE = enriched Sr and Pb isotopes) shows evidence of mixing between oxidized and reduced sources (ITE oxidized end-member = 0.177). This suggests that mantle sources in the Galapagos that are thought to contain recycled components (i.e., WD and ITE groups) have distinct oxidation states. The high 3He/4He Fernandina samples (HHe group) are shown to be the most oxidized (ave. 0.175 ± 0.006). With C/3He ratios an order of magnitude greater than MORB this suggests that the primitive mantle is a more carbonated and oxidized source than the depleted upper mantle.
Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.
2011-01-01
To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.
Fantuz, F; Ferraro, S; Todini, L; Mariani, P; Piloni, R; Salimei, E
2013-11-01
The aim of this trial was to study the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), cobalt (Co) and iodine (I) in milk and blood serum of lactating donkeys, taking into account the effects of lactation stage and dietary supplementation with trace elements. During a 3-month period, 16 clinically healthy lactating donkeys (Martina-Franca-derived population), randomly divided into two homogeneous groups (control (CTL) and trace elements (TE)), were used to provide milk and blood samples at 2-week intervals. Donkeys in both groups had continuous access to meadow hay and were fed 2.5 kg of mixed feed daily, divided into two meals. The mixed feed for the TE group had the same ingredients as the CTL, but was supplemented with a commercial premix providing 163 mg Zn, 185 mg Fe, 36 mg Cu, 216 mg Mn, 0.67 mg Se, 2.78 mg Co and 3.20 mg I/kg mixed feed. The concentrations of Zn, Fe, Cu, Mn, Se, Co and I were measured in feeds, milk and blood serum by inductively coupled plasma-MS. Data were processed by ANOVA for repeated measures. The milk concentrations of all the investigated elements were not significantly affected by the dietary supplementation with TE. Serum concentrations of Zn, Fe, Cu Mn and Se were not affected by dietary treatment, but TE-supplemented donkeys showed significantly higher concentrations of serum Co (1.34 v. 0.69 μg/l) and I (24.42 v. 21.43 μg/l) than unsupplemented donkeys. The effect of lactation stage was significant for all the investigated elements in milk and blood serum, except for serum manganese. A clear negative trend during lactation was observed for milk Cu and Se concentrations (-38%), whereas that of Mn tended to increase. The serum Cu concentration was generally constant and that of Co tended to increase. If compared with data reported in the literature for human milk, donkey milk showed similarities for Zn, Mn, Co and I. Furthermore, this study indicated that, in the current experimental conditions, the mineral profile of donkey milk was not dependent on dietary TE supply.
Trace Elemental Characterization of Chalk Dust and Their Associated Health Risk Assessment.
Maruthi, Y A; Ramprasad, S; Lakshmana Das, N
2017-02-01
It is evident that chalk produces dust on use, i.e., particulate matter, which will alter the air quality of classrooms and can cause health hazards in teachers. The possible causes for health effects of chalk dust on teachers are still unclear. Hence, the aim of this study is to estimate the concentration of trace elements (Al, Cr, Mn, Fe, Co, Ni, Si, Pb) in chalk dust collected from classrooms by using ICP-MS. Both suspended and settled chalk dust was collected from selected classrooms. Suspended chalk dust was collected with PM2.5 filter paper using fine dust sampler, and settled chalk dust was collected by placing petriplates at a distance of 3 m from the board for a duration period of 30 min. Scanning electron microscopy images of chalk dust were taken up. Potential health risk analysis was also assessed. Results showed that Al, Fe, and Mn are in higher concentration (>1000 μg kg -1 ) in both settled and suspended chalk dust. Cr, Mn, Fe, Co, and Ni were beyond the minimal risk levels in both settled and suspended chalk dust. There are no minimal risk levels for the elements Al, Si, and Pb. The concentration of trace elements in suspended chalk dust was higher than that in settled chalk dust. The SEM images of PM2.5 filter papers (suspended chalk dust) showed that all pores of the sampled filter papers are clogged with chalk dust. The few SEM images of the settled chalk dust showed fibrous shape which is associated with good-quality chalk whereas others showed circular and more aggregated nature of chalk dust from low-quality chalk from which the dust production will be very high. As observed from the result that the trace elements concentration was high in the suspended chalk dust, the fact can be correlated with the SEM images which have shown high density of absorbed chalk dust. With reference to human health risk, dermal exposure was the main route of exposure followed by inhalation and ingestion. Al (aluminum), Fe (iron), Si (silicon), and Mn (manganese) are the major contributors for the non-carcinogenic effects. For all the elements, the carcinogenic effect calculated (LADD) is within the global acceptable limit (10 -6 -10 -4 ).
NASA Astrophysics Data System (ADS)
Koukina, S. E.; Lobus, N. V.; Peresypkin, V. I.; Dara, O. M.; Smurov, A. V.
2017-11-01
Major (Si, Al, Fe, Ti, Mg, Ca, Na, K, S, P), minor (Mn) and trace (Li, V, Cr, Co, Ni, Cu, Zn, As, Sr, Zr, Mo, Cd, Ag, Sn, Sb, Cs, Ba, Hg, Pb, Bi and U) elements, their chemical forms and the mineral composition, organic matter (TOC) and carbonates (TIC) in surface sediments from the Cai River estuary and Nha Trang Bay were first determined along the salinity gradient. The abundance and ratio of major and trace elements in surface sediments are discussed in relation to the mineralogy, grain size, depositional conditions, reference background and SQG values. Most trace-element contents are at natural levels and are derived from the composition of rocks and soils in the watershed. A severe enrichment of Ag is most likely derived from metal-rich detrital heavy minerals such as Ag-sulfosalts. Along the salinity gradient, several zones of metal enrichment occur in surface sediments because of the geochemical fractionation of the riverine material. The parts of actually and potentially bioavailable forms (isolated by four single chemical reagent extractions) are most elevated for Mn and Pb (up to 36% and 32% of total content, respectively). The possible anthropogenic input of Pb in the region requires further study. Overall, the most bioavailable parts of trace elements are associated with easily soluble amorphous Fe and Mn oxyhydroxides. The sediments are primarily enriched with bioavailable metal forms in the riverine part of the estuary. Natural (such as turbidities) and human-generated (such as urban and industrial activities) pressures are shown to influence the abundance and speciation of potential contaminants and therefore change their bioavailability in this estuarine system.
NASA Astrophysics Data System (ADS)
Feltzing, S.; Gustafsson, B.
1998-04-01
We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.
Griffin, W.L.; Slack, J.F.; Ramsden, A.R.; Win, T.T.; Ryan, C.G.
1996-01-01
Trace element contents of tourmalines from massive sulfide deposits and tourmalinites have been determined in situ by proton microprobe; >390 analyses were acquired from 32 polished thin sections. Concentrations of trace elements in the tourmalines vary widely, from <40 to 3,770 ppm Mn, <4 to 1,800 ppm Ni, <2 to 1,430 ppm Cu, <9 to 4,160 ppm Zn, 3 to 305 ppm Ga, <6 to 1,345 ppm Sr, <10 to 745 ppm Sn, <49 to 510 ppm Ba, and <3 to 4,115 ppm Pb. Individual grains and growth zones are relatively homogeneous, suggesting that these trace elements are contained within the crystal structure of the tourmaline, and are not present in inclusions. The highest base metal contents are in ore-related tourmaline samples from Kidd Creek (Ontario), Broken Hill (Australia), and Sazare (Japan). Tourmaline data from these and many other massive sulfide deposits cluster by sample and display broadly linear trends on Zn vs. Fe plots, suggesting chemical control by temperature and hydrothermal and/or metamorphic fluid-mineral equilibria. Significant Ni occurs only in samples from the Kidd Creek Cu-Zn-Pb-Ag deposit, which is associated with a large footwall ultramafic body. An overall antithetic relationship between Zn and Ni probably reflects fluid source controls. Mn is correlated with Fe in tourmalines from barren associations, and possibly in some tourmalines associated with sulfide vein deposits. Sn increases systematically with Fe content irrespective of association; the highest values are found in schorls from granites. Other trace elements are generally uncorrelated with major element concentrations (e.g., Sr-Ca). Base metal proportions in the tourmalines show systematic patterns on ternary Cu-Pb-Zn diagrams that correlate well with the major commodity metals in the associated massive sulfide deposits. For example, data for tourmalines from Cu-Zn deposits (e.g., Ming mine, Newfoundland) fall mainly on the Cu-Zn join, whereas those from Pb-Zn deposits (e.g., Broken Hill, Australia) plot on the Pb-Zn join; no data fall on the Cu-Pb join, consistent with the lack of this metal association in massive sulfide deposits. The systematic relationship between base metal proportions in the tourmalines and the metallogeny of the host massive sulfide deposits indicates that the analyzed tourmalines retain a strong chemical signature of their original hydrothermal formation, in spite of variable metamorphic recrystallization. Such trace element patterns in massive sulfide tourmalines may be useful in mineral exploration, specifically for the evaluation of tourmaline concentrations in rocks, soils, and stream sediments.
Bayat, I; Etehadiyan, M; Ansar, M
1995-01-01
Concentration of trace elements in Nescafé, Fariman sugar, and Sadaf turmeric and mercury content in cancerous blood were determined by radiochemical, neutron activation analysis. By this separation method levels of 110mAg, 198Au, 203Hg, 76Se, 51Cr, 24Na, 42K, 99Mo, 122Sb, 82Br, 59Fe, 60Co were measured without interference in the gamma spectroscopy. A nondestructive method has also been used for the analysis of sodium, potassium, and bromine.
NASA Astrophysics Data System (ADS)
Yan, Ping; He, Man; Chen, Beibei; Hu, Bin
2017-10-01
In this work, di(2-ethylhexyl)phosphoric acid (P204) grafted magnetic nanoparticles were synthesized by fabricating P204 onto Fe3O4@TiO2 nanoparticles based on Lewis acid-base interaction between Ti and phosphate group under weakly acidic condition. The prepared Fe3O4@TiO2@P204 nanoparticles exhibited excellent selectivity for rare earth elements, and good anti-interference ability. Based on it, a method of magnetic solid phase extraction (MSPE) combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for fast preconcentration and determination of trace rare earth elements in environmental samples. Under the optimal conditions, the detection limits of rare earth elements were in the range of 0.01 (Tm)-0.12 (Nd) ng L- 1 with an enrichment factor of 100-fold, and the relative standard deviations ranged from 4.9 (Pr) to 10.7% (Er). The proposed method was successfully applied to the determination of rare earth elements in environmental samples, including river water, lake water, seawater and sediment.
Essential trace elements and antioxidant status in relation to severity of HIV in Nigerian patients.
Olaniyi, J A; Arinola, O G
2007-01-01
This study was designed to determine the plasma levels of some antioxidants and trace elements in three severity groups of HIV patients compared with non-HIV-infected controls. The plasma levels of antioxidants (total antioxidant, albumin, bilirubin and uric acid) and trace elements (Mg, Fe, Zn, Mn, Cu, Cr, Cd and Se) were estimated spectrophotometrically in controls and patients with CD4 counts of <200; 200-499 and > or =500 cells/microl. Uric acid and Zn were significantly higher, while vitamin E and all the trace elements (except Zn) were significantly lower in HIV-infected patients compared to healthy controls. The highest level of uric acid was observed in those with CD4 counts of <200 cells/microl. All the trace elements (except Zn) were higher in HIV subjects with a CD4 count of 200-499 cells/microl compared to >500 cells/microl. Only uric acid and Zn showed significant correlation with CD4 count. Based on the results of this study, we recommend routine assessment and appropriate supplementation of antioxidants/trace elements in HIV subjects. This supplementation is hoped to strengthen the immune system and reduce the adverse consequences of HIV- related oxidative stress. Copyright 2007 S. Karger AG, Basel.
The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba
Mayzel, Boaz; Aizenberg, Joanna; Ilan, Micha
2014-01-01
Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat's coral reefs. PMID:24759635
NASA Astrophysics Data System (ADS)
de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe
2016-04-01
A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.
NASA Astrophysics Data System (ADS)
Zhang, Airui; Jin, Axiang; Wang, Hai; Wang, Xiaokang; Zha, Pengfei; Wang, Meiling; Song, Xiaoping; Gao, Sitian
2018-03-01
Quantitative determination of trace elements like S, Fe, Cu, Mn and Pb in gasoline and S in diesel is of great importance due to the growing concerns over air pollution, human health and engine failure caused by utilization of gasoline and diesel with these harmful elements. A method of total reflection X-ray fluorescence (TXRF) was developed to measure these harmful trace elements in gasoline and diesel. A variety of factors to affect measurement results, including TXRF parameters, microwave-assisted digestion conditions and internal standard element and its addition, were examined to optimize these experimental procedures. The hydrophobic treatment of the surface of quartz reflectors to support the analyte with neutral silicone solutions could prepare thin films of gasoline and diesel digestion solutions for subsequent TXRF analysis. The proposed method shows good potential and reliability to determine the content of harmful trace elements in gasoline and diesel with high sensitivity and accuracy without drawing different standard calibration curves, and can be easily employed to screen gasoline and diesel in routine quality control and assurance.
Abuelo, Angel; Hernandez, Joaquín; Alves-Nores, Víctor; Benedito, José L; Castillo, Cristina
2016-12-01
There has been some recent criticism about the reliability of the assays commonly used to measure oxidant status in cattle, because some recent publications suggested that the concentration of different trace elements influences the results of these assays. The aim of this study was to test the correlation in 502 bovine serum samples between the concentration of several trace elements (Br, Co, Cr, Cu, Fe, I, Mn, Mo, Ni, Se, Sr, V and Zn) and markers of oxidant status (reactive oxygen species (ROS) and total serum antioxidant capacity (SAC)). The Oxidative Stress index (OSi) was also calculated as ROS/SAC. Some significant correlations were found, although weak (|ρ| < 0.50). Therefore, the relationships observed might be attributed to the different pro- and antioxidant effect of the different elements rather than to the assays detecting these elements instead of the oxidised molecules or total antioxidant potential, respectively. The OSi was poorly correlated (|ρ| ≤ 0.36) with the concentration of the studied trace elements, and therefore, its use is recommended to assess shifts in the systemic redox balance.
Trace Uranium Partitioning in a Multiphase Nano-FeOOH System.
McBriarty, Martin E; Soltis, Jennifer A; Kerisit, Sebastien; Qafoku, Odeta; Bowden, Mark E; Bylaska, Eric J; De Yoreo, James J; Ilton, Eugene S
2017-05-02
The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH) 3 ] to nanoparticulate iron oxyhydroxide minerals in the presence of uranyl (UO 2 ) 2+ (aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.
Trace Uranium Partitioning in a Multiphase Nano-FeOOH System
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien
The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH)3] to nanoparticulate iron oxyhydroxide minerals in themore » presence of uranyl (UO 2) 2+(aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.« less
Trace Uranium Partitioning in a Multiphase Nano-FeOOH System
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien
The characterization of trace elements in nanomaterials using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities or dopants affect the properties of the host phase. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic contaminants. The reductive transformation of ferrihydrite (Fe(OH)3) to nano-particulate iron oxyhydroxide minerals in the presencemore » of uranyl (UO2)2+(aq) resulted in the preferential incorporation of U into goethite (a-FeOOH) over lepidocrocite (g-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. Using this model system, we demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations of traditional shell-by-shell EXAFS modeling, enabling the detailed analysis of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multi-phase nano-systems.« less
NASA Astrophysics Data System (ADS)
Hissler, C.; Stille, P.; Juilleret, J.; Iffly, J.; Perrone, T.; Morvan, G.
2013-12-01
Weathering mantels are widespread worldwide and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved carbonate rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual content of associated trace elements in this type of weathering mantle. For instance, these enrichments can represent about five times the content of the underlying Bajocian to Oxfordian limestone/marl complexes, which have been relatively poorly studied compared to weathering mantle developed on magmatic bedrocks. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources (saprolite, Bajocian silty marls and limestones, atmospheric particles deposition...). Of special interest has also been the origin of trace metals and the processes causing their enrichments. Especially Rare Earth Element (REE) distribution patterns and Sr, Nd and Pb isotope ratios are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments shall help to identify mobile phases in the soil system. This may inform on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. Trace metal migration and enrichments were studied on a cambisol developing on an underlying Jurassic limestone. The base is strongly enriched among others in rare earth elements (ΣREE: 2640ppm) or redox-sensitive elements such as Fe (44 wt.%), V (920ppm), Cr (700ppm), Zn (550ppm), As (260ppm), Co (45ppm) and Cd (2.4ppm). The underlying limestone and marl show, compared to average world carbonates, enrichments in the same elements and trace element distribution patterns similar to the soil suggesting their close genetic relationship. Pb, Sr and Nd isotope data allow to identify three principal components in the soil: a silicate-rich phase at close to the surface, a strongly trace metal enriched component at the bottom of the soil profile and an anthropogenic, atmosphere- derived component detected in the soil leachates. The isotopic mixing curves defined by the soil samples point to the close genetic connection between upper and lowermost soil horizons. The Nd isotopic composition of the leachates of all soil horizons are in contrast to the untreated soil and residual soil samples very homogeneous suggesting that the leachable phases of the upper and lower soil horizons are genetically connected. The downward migration of the trace metals is stopped at this soil level due to the presence of important secondary calcite precipitations, smectite and Fe-oxide accumulations. Mass balance calculations indicate that the enrichment process goes along with a volume increase relative to the bottom soil horizons.
NASA Astrophysics Data System (ADS)
Kim, Guebuem; Church, Thomas M.
2002-09-01
Atmospheric samples were collected aboard ship in the South and equatorial Atlantic (35°S-10°N) between 19 May and 20 June 1996. We measured 222Rn in air, 210Pb in aerosol, and trace elements (Fe, Mn, Zn, Pb, Cu, Cd, Ni, and Cr), 210Pb, and 210Po in precipitation samples. The large variation of 222Rn in air suggests a significant change in the incursion of continental air with time and latitude in the remote Atlantic. In the equatorial and subtropical Atlantic (20°S-10°N), 222Rn activity was lower but 210Pb/222Rn ratios were higher than those at higher latitudes. The higher 210Pb/222Rn ratios in the equatorial Atlantic appear to be due to prevailing trade easterly winds which transport a supported source of 210Pb in Saharan dust from the African Sahel. The enrichment of noncrustal trace elements in precipitation samples from the remote equatorial Atlantic was small on account of the remoteness from the continental emission regions and as a result of dilution with Saharan dust. The wet depositional fluxes of major crustal elements (Fe and Mn) were two- to three-fold higher, while those of Cd and Zn were two- to ten-fold lower, in the South and equatorial Atlantic relative to the western North Atlantic (Bermuda) or North Atlantic coast (Lewes, Delaware). Thus, dominant wet precipitation of Saharan dust in the Intertropical Convergence Zone (ITCZ) areas of the equatorial Atlantic appears to be a large potential source of micronutrients (i.e., Fe) to surface seawater.
Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel
2016-01-01
The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.
Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.
2009-01-01
The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating dissolved arsenite. Mercury was associated with <2 nm nanoparticles, and showed greatly increased concentration with depth, possibly indicating association with dissolved organic matter. ?? 2009 Elsevier Ltd.
Orcutt, Karen M; Jones, W Scott; McDonald, Andrea; Schrock, David; Wallace, Karl J
2010-01-01
The measurement of trace analytes in aqueous systems has become increasingly important for understanding ocean primary productivity. In oceanography, iron (Fe) is a key element in regulating ocean productivity, microplankton assemblages and has been identified as a causative element in the development of some harmful algal blooms. The chemosenor developed in this study is based on an indicator displacement approach that utilizes time-resolved fluorescence and fluorescence resonance energy transfer as the sensing mechanism to achieve detection of Fe3+ ions as low as 5 nM. This novel approach holds promise for the development of photoactive chemosensors for ocean deployment.
Taylor, Vivien F; Longerich, Henry P; Greenough, John D
2003-02-12
Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.
Zhong, Cong; Yang, Zhongfang; Jiang, Wei; Hu, Baoqing; Hou, Qingye; Yu, Tao; Li, Jie
2016-12-15
Industrialization and urbanization have led to a deterioration in air quality and provoked some serious environmental concerns. Fifty-four samples of atmospheric deposition were collected from an emerging industrial area and analyzed to determine the concentrations of 11 trace elements (As, Cd, Cu, Fe, Hg, Mn, Mo, Pb, Se, S and Zn). Multivariate geostatistical analyses were conducted to determine the spatial distribution, possible sources and enrichment degrees of trace elements in atmospheric deposition. Results indicate that As, Fe and Mo mainly originated from soil, their natural parent materials, while the remaining trace elements were strongly influenced by anthropogenic or natural activities, such as coal combustion in coal-fired power plants (Pb, Se and S), manganese ore (Mn, Cd and Hg) and metal smelting (Cu and Zn). The results of ecological geochemical assessment indicate that Cd, Pb and Zn are the elements of priority concern, followed by Mn and Cu, and other heavy metals, which represent little threat to local environment. It was determine that the resuspension of soil particles impacted the behavior of heavy metals by 55.3%; the impact of the coal-fired power plants was 18.9%; and the contribution of the local manganese industry was 9.6%. The comparison of consequences from various statistical methods (principal component analysis (PCA), cluster analysis (CA), enrichment factor (EF) and absolute principle component score (APCS)-multiple linear regression (MLR)) confirmed the credibility of this research. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernandez, W. S.; Dias, J. F.; Boufleur, L. A.; Amaral, L.; Yoneama, M. L.; Dias, J. F.
2014-01-01
The aim of this study is to investigate the presence and the concentration of trace elements in hepatic and renal tissues of white mullet (Mugil curema) by Particle-induced X-ray emission (PIXE). Fish specimens were collected in two coastal areas of São Paulo state-Brazil: the Santos estuary (from March 2009 to February 2010) and the Cananéia-Iguape coastal estuarine system (from May 2008 to April 2009). For the elemental analysis, n = 470 sample tissues (liver and kidney) were pooled according to location and type of organ. Trace elements such as Fe, Cu, Zn and Br were observed in both tissues of M. curema with concentrations ranging from 800 μg g-1 for Fe to 7 μg g-1 for Cu. The concentrations of Cu and Zn showed statistical significant differences among the tissues of M. curema (p < 0.05). Relatively higher concentrations of Cu and Zn were observed in the liver tissue. There was no significantly difference in the elemental concentrations between the two studied areas. The Cu levels in liver tissues of M. curema were found to be above the maximum limits for consumption, according to the United States Environmental Protection Agency (EPA) and Brazilian National Health Surveillance Agency (ANVISA).
Geochemical study of stream waters affected by mining activities in the SE Spain
NASA Astrophysics Data System (ADS)
Garcia-Lorenzo, Maria Luz; Perez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Bech, Jaime
2015-04-01
Water pollution by dissolved metals in mining areas has mainly been associated with the oxidation of sulphide-bearing minerals exposed to weathering conditions, resulting in low quality effluents of acidic pH and containing a high level of dissolved metals. According to transport process, three types of pollution could be established: a) Primary contamination, formed by residues placed close to the contamination sources; b) Secondary contamination, produced as a result of transport out of its production areas; c) Tertiary contamination. The aim of this work was to study trace element in water samples affected by mining activities and to apply the MINTEQ model for calculating aqueous geochemical equilibria. The studied area constituted an important mining centre for more than 2500 years, ceasing activity in 1991. The ore deposits of this zone have iron, lead and zinc as the main metal components. As a result, a lot of contaminations sources, formed by mining steriles, waste piles and foundry residues are present. For this study, 36 surficial water samples were collected after a rain episode in 4 different areas. In these samples, the trace element content was determined by by flame atomic absorption spectrometry (Fe and Zn), electrothermal atomization atomic absorption spectrometry (Pb and Cd), atomic fluorescence spectrometry (As) and ICP-MS for Al. MINTEQA2 is a geochemical equilibrium speciation model capable of computing equilibria among the dissolved, adsorbed, solid, and gas phases in an environmental setting and was applied to collected waters. Zone A: A5 is strongly influenced by tailing dumps and showed high trace element content. In addition, is influenced by the sea water and then showed high bromide, chloride, sodium and magnesium content, together with a basic pH. The MINTEQ model application suggested that Zn and Cd could precipitate as carbonate (hidrocincite, smithsonite and otavite). A9 also showed acid pH and high trace element content; is influenced by tailing dumps and also by waters from gully watercourses, transporting materials from Sierra Minera. The MINTEQ simulation showed that Pb and Ca could precipitate as sulphates (anglesite and gypsum). Waters affected by secondary contamination have been mixed with carbonate materials, present in the zone increasing the pH. Some elements have precipitated, such as Cu and Pb, while Cd, Zn and As are soluble. The MINTEQ model results showed that in A10 and A14, Al could precipitate as diaspore but also carbonates could be formed, particularly dolomite. These model in A12 sample showed that soluble Zn could precipitate as carbonate and Al as oxyhydroxide, similarly than in A13. A2 and A6 waters are affected by tertiary contamination and showed basic pH, soluble carbonates and lower trace element content. Only Zn, Cd and Al are present. The speciation model showed that in A2, Cd and Zn could precipitate as carbonates while Al as oxihydroxide. In A6, the model suggested that soluble Pb could precipitate as carbonate (hidrocerusite and cerusite) or as hydroxide; Al as diaspore, Ca as calcite and Fe as hematite. Zone B: All waters are strongly affected by mining activities and showed acid pH, high trace element content and high content of soluble sulphates. The MINTEQ results showed that in B8, Fe could precipitate as hydroxychloride and in B12 could form alunite. In B9, B10, B13 y B14, the model estimates the precipitation of anglesite, gypsum and Fe hydroxichloride (B9 and B10), diaspore in B13 and B14, and gypsum and Fe hydroxychloride in B13. All the sampling points collected in Zone C are affected by primary contamination, because there are a lot of tailing dumps. C1 showed high trace element content because is a reception point of a lot of tailing dumps. Water samples from C3 to C8 also had acid pH and high trace element content, particularly As, Zn and Cd. In addition, they showed high soluble sulphates. C2 water showed neutral pH, soluble carbonate and low trace element content because is influenced by a stabilised tailing dump. In all samples, except C2, the MINTEQ model showed that a lot of efflorescences could be formed, mainly sulphates. Zone D: All waters collected in this zone showed acid pH and high trace element content, mainly Zn, Cd and As. MINTEQ model results showed that elements could precipitate as jarosite but also anglesite in D8 and gypsum in D9, D11 and D12. D1 is affected by secondary contamination, which showed higher pH (still acid) and lower content in soluble salts and trace elements. The MINTEQ model suggested that Al could precipitate as diaspore, gibbsite and alunite. The applied model is an appropriate tool for the analysis of waters affected by mining activities. The obtained simulations confirm natural attenuation processes.
NASA Astrophysics Data System (ADS)
Klumpp, Andreas; Ansel, Wolfgang; Klumpp, Gabriele; Breuer, Jörn; Vergne, Philippe; Sanz, María José; Rasmussen, Stine; Ro-Poulsen, Helge; Ribas Artola, Àngela; Peñuelas, Josep; He, Shang; Garrec, Jean Pierre; Calatayud, Vicent
Within a European biomonitoring programme, Italian ryegrass ( Lolium multiflorum Lam.) was employed as accumulative bioindicator of airborne trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Sb, V, Zn) in urban agglomerations. Applying a highly standardised method, grass cultures were exposed for consecutive periods of four weeks each to ambient air at up to 100 sites in 11 cities during 2000-2002. Results of the 2001 exposure experiments revealed a clear differentiation of trace element pollution within and among local monitoring networks. Pollution was influenced particularly by traffic emissions. Especially Sb, Pb, Cr, Fe, and Cu exhibited a very uneven distribution within the municipal areas with strong accumulation in plants from traffic-exposed sites in the city centres and close to major roads, and moderate to low levels in plants exposed at suburban or rural sites. Accumulation of Ni and V was influenced by other emission sources. The biomonitoring sites located in Spanish city centres featured a much higher pollution load by trace elements than those in other cities of the network, confirming previously reported findings obtained by chemical analyses of dust deposition and aerosols. At some heavily-trafficked sites, legal thresholds for Cu, Pb, and V contents in foodstuff and animal feed were reached or even surpassed. The study confirmed that the standardised grass exposure is a useful and reliable tool to monitor and to assess environmental levels of potentially toxic compounds of particulate matter.
Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng
2016-04-15
Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably occur in 22% areas of all the sampling stations.
Trace metal characterization of aerosol particles and cloud water during HCCT 2010
NASA Astrophysics Data System (ADS)
Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collett, J. L., Jr.; Herrmann, H.
2015-08-01
Trace metal characterization of bulk and size-resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCEs) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn, and Ti were mainly found in coarse mode aerosols while Zn, Pb, and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe and Mn were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu, and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm, while Mn was found mostly in larger drops greater than 22 μm. Fe(III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe(II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol-cloud interaction did not lead to a marked increase in soluble trace metal concentrations; rather it led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.
Trace metal characterization of aerosol particles and cloud water during HCCT 2010
NASA Astrophysics Data System (ADS)
Fomba, K. W.; van Pinxteren, D.; Müller, K.; Iinuma, Y.; Lee, T.; Collet, J., Jr.; Herrmann, H.
2015-04-01
Trace metal characterization of bulk and size resolved aerosol and cloud water samples were performed during the Hill Cap Cloud Thuringia (HCCT) campaign. Cloud water was collected at the top of Mt. Schmücke while aerosol samples were collected at two stations upwind and downwind of Mt. Schmücke. Fourteen trace metals including Ti, V, Fe, Mn, Co, Zn, Ni, Cu, As, Sr, Rb, Pb, Cr, and Se were investigated during four full cloud events (FCE) that fulfilled the conditions of a continuous air mass flow through the three stations. Aerosol particle trace metal concentrations were found to be lower than those observed in the same region during previous field experiments but were within a similar range to those observed in other rural regions in Europe. Fe and Zn were the most abundant elements with concentration ranges of 0.2-111.6 and 1.1-32.1 ng m-3, respectively. Fe, Mn and Ti were mainly found in coarse mode aerosols while Zn, Pb and As were mostly found in the fine mode. Correlation and enrichment factor analysis of trace metals revealed that trace metals such as Ti and Rb were mostly of crustal origin while trace metals such as Zn, Pb, As, Cr, Ni, V, and Cu were of anthropogenic origin. Trace metals such as Fe, Mn, were of mixed origins including crustal and combustion sources. Trace metal cloud water concentration decreased from Ti, Mn, Cr, to Co with average concentrations of 9.18, 5.59, 5.54, and 0.46 μg L-1, respectively. A non-uniform distribution of soluble Fe, Cu and Mn was observed across the cloud drop sizes. Soluble Fe and Cu were found mainly in cloud droplets with diameters between 16 and 22 μm while Mn was found mostly in larger drops greater than 22 μm. Fe (III) was the main form of soluble Fe especially in the small and larger drops with concentrations ranging from 2.2 to 37.1 μg L-1. In contrast to other studies, Fe (II) was observed mainly in the evening hours, implying its presence was not directly related to photochemical processes. Aerosol cloud interaction did not lead to a mark increase in soluble trace metal concentrations, but led to differences in the chemical composition of the aerosol due to preferential loss of aerosol particles through physical processes including cloud drop deposition to vegetative surfaces.
Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications
NASA Astrophysics Data System (ADS)
Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.
2016-09-01
Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the trace elements Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive trace element fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of trace element abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in addition a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical contaminants of kyanite products, besides Fe, Ca, and Mg, appears predictable from the observed correlation of Ti with formation temperature. Iron will be hard to predict because its incorporation is mainly controlled by the oxidizing conditions during kyanite formation and the estimation of these conditions requires advanced analytical methods. Magnesium and Ca are consistently low in all investigated samples. From a regional exploration viewpoint, group C and D kyanites have the lowest Ti and relative low Fe and, therefore, will be most refractory. Due to their attractive blue colour, kyanite-bearing rocks of group C have potential as ornamental or dimension stone.
Flow of essential elements in subcellular fractions during oxidative stress.
Lago, Larissa; Nunes, Emilene A; Vigato, Aryane A; Souza, Vanessa C O; Barbosa, Fernando; Sato, João R; Batista, Bruno L; Cerchiaro, Giselle
2017-02-01
Essential trace elements are commonly found in altered concentrations in the brains of patients with neurodegenerative diseases. Many studies in trace metal determination and quantification are conducted in tissue, cell culture or whole brain. In the present investigation, we determined by ICP-MS Fe, Cu, Zn, Ca, Se, Co, Cr, Mg, and Mn in organelles (mitochondria, nuclei) and whole motor neuron cell cultured in vitro. We performed experiments using two ways to access oxidative stress: cell treatments with H 2 O 2 or Aβ-42 peptide in its oligomeric form. Both treatments caused accumulation of markers of oxidative stress, such as oxidized proteins and lipids, and alteration in DNA. Regarding trace elements, cells treated with H 2 O 2 showed higher levels of Zn and lower levels of Ca in nuclei when compared to control cells with no oxidative treatments. On the other hand, cells treated with Aβ-42 peptide in its oligomeric form showed higher levels of Mg, Ca, Fe and Zn in nuclei when compared to control cells. These differences showed that metal flux in cell organelles during an intrinsic external oxidative condition (H 2 O 2 treatment) are different from an intrinsic external neurodegenerative treatment.
John A. McLean; P. Laks; T.L. Shore
1983-01-01
Western spruce budworm were reared on three host foliages and artificial medium. Trace element analyses showed large differences in elemental concentrations between food sources and only minor differences between insect life stages. Discriminant analyses were carried out to test the distinctiveness of adult chemoprints from each rearing regime. Fe, Cu, and Zn were...
NASA Astrophysics Data System (ADS)
Sager, Manfred; Unterfrauner, Hans
2013-04-01
Cambisols sampled in alpine pastures were packed into soil columns in order to monitor downward migration of nutrient and trace elements, applied within the residue from anaerobic digestion of a pig manure. 2 rain events per week were simulated. The manure added substantial amounts of K, ammonium, Na, Ca, P, S, Cl, B, Zn and Cu to the soil, whereas Mg, Mn, Ni, Cr, Pb, Cd and V were at the same level. In the eluates, total elemental composition as well as nitrate and ammonium were monitored. Addition of soluble Fe (at 1000 mg/l as FeCl3) decreased the release of soluble sulphate, but had no significant effect on the release of Fe and P. During subsequent rain events, exchangeable K remained enriched in the topsoil, wheras total sulfur moved to deeper layers. After 8 weeks, the columns were dismantled and analyzed for quasi-total and mobile fractions. Both in topsoils and subsoils, manure addition finally increased soil pH in case of low P soils, but decreased soil pH in case of high pH soils. Effects of manure applications on groundwater formation processes will be discussed.
Essential and toxic elements in infant foods from Spain, UK, China and USA.
Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A
2012-09-01
Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.
Zhang, H; Nie, H T; Wang, Q; Wang, Z Y; Zhang, Y L; Guo, R H; Wang, F
2015-05-01
A comparative slaughter trial was conducted to estimate the trace element concentrations and distributions in the main body tissues and the net requirements for maintenance and growth of Dorper × Hu crossbred lambs. Thirty-five lambs of each gender (19.2 ± 0.36 kg initial BW) were used. Seven lambs of each gender were randomly chosen and slaughtered at approximately 20 kg BW as the baseline group for measuring initial body composition. Another 7 lambs of each gender were also randomly chosen and offered a pelleted mixed diet for ad libitum intake and slaughtered at approximately 28 kg BW. The remaining 21 sheep of each gender were randomly divided into 3 groups with 7 sheep each and assigned to ad libitum or 40 or 70% of ad libitum intake of a pelleted mixed diet (42:58 concentrate:roughage, DM basis). The 3 groups of each gender were slaughtered when the sheep fed ad libitum reached approximately 35 kg BW. Empty body (head + feet, hide, viscera + blood, and carcass) trace element contents were determined after slaughter. The results showed that the trace elements were mainly distributed in viscera (blood included), except for Zn, which was mainly distributed in the muscle and bone tissues. The net requirements were calculated using the comparative slaughter technique. For males and females, the daily net trace element requirements for maintenance were 356.1 and 164.1 μg Fe, 4.3 and 3.4 μg Mn, 42.0 and 29.8 μg Cu, and 83.5 and 102.0 μg Zn per kilogram empty body weight (EBW), respectively. Net requirements for growth decreased from 65.67 to 57.27 mg Fe, 0.35 to 0.25 mg Mn, and 3.45 to 2.82 mg Cu and increased from 26.36 to 26.65 mg Zn per kilogram EBW gain (EBWG) for males. Net requirements for growth decreased from 30.66 to 22.14 mg Fe, 0.43 to 0.32 mg Mn, 2.86 to 2.18 mg Cu, and 27.71 to 25.83 mg Zn per kilogram EBWG for females from 20 to 35 kg BW. This study indicated that the net trace element requirements for Dorper × Hu crossbred lambs may be different from those of purebred or other genotypes, and more data are needed for sheep in general.
Qie, Guanghao; Wang, Yan; Wu, Chen; Mao, Huiting; Zhang, Ping; Li, Tao; Li, Yaxin; Talbot, Robert; Hou, Chenxiao; Yue, Taixing
2018-06-01
The concentrations of particulate mercury (PHg) and other trace elements in PM 2.5 and PM 10 in the atmosphere were measured at the summit of Mount Tai during the time period of 15 June - 11 August 2015. The average PHg concentrations were 83.33 ± 119.1 pg/m 3 for PM 2.5 and 174.92 ± 210.5 pg/m 3 for PM 10 . Average concentrations for other trace elements, including Al, Ca, Fe, K, Mg, Na, Pb, As, Se, Cu, Cd, Cr, V, Mo, Co, Ag, Ba, Mn, Zn and Ni ranged from 0.06 ng/m 3 (Ag) to 354.33 ng/m 3 (Ca) in PM 2.5 and 0.11 ng/m 3 (Co) to 592.66 ng/m 3 (Ca) in PM 10 . The average concentrations of PHg were higher than those at other domestic mountain sites and cities in other counties, lower than those at domestic city sites. Other trace elements showed concentrations lower than those at the domestic mountain sites. Due possibly to increased control of emissions and the proportion of new energy, the PHg and trace element concentrations decreased, but the PHg showed concentrations higher than those at the Mountain sites, this showed that the reasons was not only severely affected by anthropogenic emissions, but also associated with other sources. The concentration changed trend of the main trace elements indicated that PHg, trace elements and particle matters present positive correlation and fine particulate matter has a greater surface area which was conductive to adsorption of Hg and trace elements to particles. On June 19, June 27 and July 6, according to the peak of mercury and trace elements, we can predict the potential sources of these three days. The results of principal component analysis (PCA) suggested that, crustal dust, coal combustion, and vehicle emissions were the main emission sources of PHg and other trace elements in Mount Tai. The 24-h backward trajectories and potential source contribution function (PSCF) analysis revealed that air masses arriving at Mount Tai were mainly affected by Shandong province. Mount Tai was subjected to five main airflow trajectories. Clusters 1, 2, 3, and 5 represented four pathways for local and regional sources and cluster 4 originated long-distance transportation. Central Shandong was the main source regions of PHg, Pb, Se, As, Cu and Cd. Southeastern and northwestern Shandong province and northern Jiangsu province were the most polluted source regions of Mn, Zn, and Ni. The crustal elements Fe and Ca had similar distributions of potential source regions, suggested by the highest PSCF values in southeastern Shandong and northern Jiangsu. Copyright © 2018 Elsevier Ltd. All rights reserved.
Concentrations and bioaccessibilities of trace elements in barbecue charcoals.
Sharp, Annabel; Turner, Andrew
2013-11-15
Total and bioaccessible concentrations of trace elements (Al, As, Cd, Cu, Fe, Hg, Mn, Ni, Pb and Zn) have been measured in charcoals from 15 barbecue products available from UK retailers. Total concentrations (available to boiling aqua regia) were greater in briquetted products (with mean concentrations ranging from 0.16 μg g(-1) for Cd to 3240 μg g(-1) for Al) than in lumpwoods (0.007 μg g(-1) for Cd to 28 μg g(-1) for Fe), presumably because of the use of additives and secondary constituents (e.g. coal) in the former. On ashing, and with the exception of Hg, elemental concentrations increased by factors ranging from about 1.5 to 50, an effect attributed to the combustion of organic components and offset to varying extents by the different volatilities of the elements. Concentrations in the ashed products that were bioaccessible, or available to a physiologically based extraction test (PBET) that simulates, successively, the chemical conditions in the human stomach and intestine, exhibited considerable variation among the elements studied. Overall, however, bioaccessible concentrations relative to corresponding total concentrations were greatest for As, Cu and Ni (attaining 100% in either or both simulated PBET phases in some cases) and lowest for Pb (generally <1% in both phases). A comparison of bioaccessible concentrations in ashed charcoals with estimates of daily dietary intake suggest that Al and As are the trace elements of greatest concern to human health from barbecuing. Copyright © 2013 Elsevier B.V. All rights reserved.
Liao, Kuan-Yung; Liao, Heng-Hsin; Niziński, Przemysław; Momčilović, Berislav; Jabłońska-Czapla, Magdalena; Prystupa, Andrzej; Sak, Jarosław J.; Kocjan, Ryszard
2017-01-01
The aim of this study was to determine if altered levels of selected trace elements manifest themselves during chronic depression. To identify elements strongly associated with chronic depression, relationships between the elemental contents of hair and nails and the interelement correlations were checked. Inductively coupled plasma mass spectrometry and ion chromatography were used to evaluate the contents of Zn, Cu, Co, Pb, Mn, and Fe in hair and nail samples from a total of 415 subjects (295 patients and 120 healthy volunteers). The study included logistic regression models to predict the probability of chronic depression. To investigate possible intercorrelations among the studied elements, the scaled principal component analysis was used. The research has revealed differences in TE levels in the group of depressed men and women in comparison to the healthy subjects. Statistically significant differences in both hair and nails contents of several elements were observed. Our study also provides strong evidence that the intermediary metabolism of certain elements is age- and gender-dependent. Zn, Mn, Pb, and Fe contents in hair/nails seem to be strongly associated with chronic depression. We found no statistically significant residence-related differences in the contents of studied elements in nonoccupationally exposed patients and healthy subjects. PMID:28386550
Błażewicz, Anna; Liao, Kuan-Yung; Liao, Heng-Hsin; Niziński, Przemysław; Komsta, Łukasz; Momčilović, Berislav; Jabłońska-Czapla, Magdalena; Michalski, Rajmund; Prystupa, Andrzej; Sak, Jarosław J; Kocjan, Ryszard
2017-01-01
The aim of this study was to determine if altered levels of selected trace elements manifest themselves during chronic depression. To identify elements strongly associated with chronic depression, relationships between the elemental contents of hair and nails and the interelement correlations were checked. Inductively coupled plasma mass spectrometry and ion chromatography were used to evaluate the contents of Zn, Cu, Co, Pb, Mn, and Fe in hair and nail samples from a total of 415 subjects (295 patients and 120 healthy volunteers). The study included logistic regression models to predict the probability of chronic depression. To investigate possible intercorrelations among the studied elements, the scaled principal component analysis was used. The research has revealed differences in TE levels in the group of depressed men and women in comparison to the healthy subjects. Statistically significant differences in both hair and nails contents of several elements were observed. Our study also provides strong evidence that the intermediary metabolism of certain elements is age- and gender-dependent. Zn, Mn, Pb, and Fe contents in hair/nails seem to be strongly associated with chronic depression. We found no statistically significant residence-related differences in the contents of studied elements in nonoccupationally exposed patients and healthy subjects.
Douglas, G; Adeney, J; Johnston, K; Wendling, L; Coleman, S
2012-01-01
This study investigates the use of a mineral processing by-product, neutralized used acid (NUA), primarily composed of gypsum and Fe-oxyhydroxide, as a soil amendment. A 1489-d turf farm field trial assessed nutrient, trace element, and radionuclide mobility of a soil amended with ∼5% by mass to a depth of 15 cm of NUA. Average PO-P fluxes collected as subsoil leachates were 0.7 and 26.6 kg ha yr for NUA-amended and control sites, respectively, equating to a 97% reduction in PO-P loss after 434 kg P ha was applied. Total nitrogen fluxes in NUA-amended soil leachates were similarly reduced by 82%. Incorporation of NUA conferred major changes in leachate geochemistry with a diverse suite of trace elements depleted within NUA-amended leachates. Gypsum dissolution from NUA resulted in an increase from under- to oversaturation of the soil leachates for a range of Fe- and Ca-minerals including calcite and ferrihydrite, many of which have a well-documented ability to assimilate PO-P and trace elements. Isotopic analysis indicated little Pb addition from NUA. Both Sr and Nd isotope results revealed that NUA and added fertilizer became an important source of Ca to leachate and turf biomass. The NUA-amended soils retained a range of U-Th series radionuclides, with little evidence of transfer to soil leachate or turf biomass. Calculated radioactivity dose rates indicate only a small increment due to NUA amendment. With increased nutrient, trace element, and solute retention, and increased productivity, a range of potential agronomic benefits may be conferred by NUA amendment of soils, in addition to the potential to limit offsite nutrient loss and eutrophication. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Trace elements transport in western Siberia rivers across a permafrost gradient
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Krickov, I. A.; Kopysov, S. G.; Kolesnichenko, L. G.; Vorobyev, S. N.; Kirpotin, S. N.
2015-11-01
Towards a better understanding of trace element transport in permafrost-affected Earth surface environments, we sampled ∼ 60 large and small rivers (< 100 to ≤ 150 000 km2 watershed area) of Western Siberia Lowland (WSL) during spring flood and summer and winter base-flow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ∼ 40 major and trace elements in dissolved (< 0.45 μm) fraction allowed establishing main environmental factors controlling the transport of metals and trace elements in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentration was evidenced. Three category of trace elements were distinguished according to their concentration - latitude pattern: (i) increasing northward in spring and winter (Fe, Al, Ga (only winter), Ti (only winter), REEs, Pb, Zr, Hf, Th (only winter)), linked to leaching from peat and/or redox processes and transport in the form of Fe-rich colloids, (ii) decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding and (iii) elements without distinct trend from S to N whose variations within each latitude range were higher than the difference between latitudinal ranges (B, Li, Ti (except summer), Cr, V, Mn, Zn, Cd, Cs, Hf, Th). In addition to these general features, specific, northward increase during spring period was mostly pronounced for Fe, Mn, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A spring time northward decrease was observed for Ni, Cu, Zr, Rb. The southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). The Principal Component Analysis demonstrated two main factors potentially controlling the ensemble of TE concentration variation. The first factor, responsible for 16-20 % of overall variation, included trivalent and tetravalent hydrolysates, Cr, V, and DOC and presumably reflected the presence of organo-mineral colloids, as also confirmed by previous studies in Siberian rivers. The 2nd factor (8-14 % variation) was linked to the latitude of the watershed and acted on elements affected by the groundwater feeding (DIC, Sr, Mo, As, Sb, U), whose concentration decreased significantly northward during all seasons. Overall, the rank of environmental factors on TE concentration in western Siberian rivers was latitude (3 permafrost zones) > season > watershed size. The effect of the latitude was minimal in spring for most TE but highly visible for Sr, Mo, Sb and U. The main factors controlling the shift of river feeding from surface and subsurface flow to deep underground flow in the permafrost-bearing zone were the depth of the active (unfrozen) seasonal layer and its position in organic or mineral horizons of the soil profile. In the permafrost-free zone, the relative role of carbonate mineral-bearing base rock feeding vs. bog water feeding determined the pattern of trace element concentration and fluxes in rivers of various size as a function of season. Comparison of obtained TE fluxes in WSL rivers with those of other subarctic rivers demonstrated reasonable agreement for most trace elements; the lithology of base rocks was the major factor controlling the magnitude of TE fluxes. The climate change in western Siberia and permafrost boundary migration will affect essentially the elements controlled by underground water feeding (DIC, alkaline-earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids. Plant litter-originated divalent metals present as organic complexes may be retained via adsorption on mineral horizon. However, due to various counterbalanced processes controlling element source and sinks in plants - peat - mineral soil - river systems, the overall impact of the permafrost thaw on TE export from the land to the ocean may be smaller than that foreseen by merely active layer thickening and permafrost boundary shift.
Trace element distributions in the water column near the Deepwater Horizon well blowout.
Joung, DongJoo; Shiller, Alan M
2013-03-05
To understand the impact of the Deepwater Horizon well blowout on dissolved trace element concentrations, samples were collected from areas around the oil rig explosion site during four cruises in early and late May 2010, October 2010, and October 2011. In surface waters, Ba, Fe, Cu, Ni, Mn, and Co were relatively well correlated with salinity during all cruises, suggesting mixing with river water was the main influence on metal distributions in these waters. However, in deep oil/gas plumes (1000-1400 m depth), modestly elevated concentrations of Co and Ba were observed in late May, compared with postblowout conditions. Analysis of the oil itself along with leaching experiments confirm the oil as the source of the Co, whereas increased Ba was likely due to drilling mud used in the top kill attempt. Deep plume dissolved Mn largely reflected natural benthic input, though some samples showed slight elevation probably associated with the top kill. Dissolved Fe concentrations were low and also appeared largely topographically controlled and reflective of benthic input. Estimates suggest that microbial Fe demand may have affected the Fe distribution but probably not to the extent of Fe becoming a growth-limiting factor. Experiments showed that the dispersant can have some limited impact on dissolved-particulate metal partitioning.
Iron and zinc fortification of corn tortilla made either at the household or at industrial scale.
Tovar, Luis Raul; Larios-Saldaña, Alfredo
2005-03-01
Fe and Zn deficiencies among the Mexican population are widespread, and one-third of children and women of childbearing age are anemic. Since diets that are Fe-deficient are most probably also Zn-deficient, a proprietary process was developed to fortify corn tortilla with these trace elements at the first stage of treatment with lime. Phytic acid (PA), Ca, Fe, and Zn content were determined, as well as the molar ratios of phytate/Fe, phytate/Zn, and Ca x phytate to Zn in traditional and fortified tortillas; the Student's t-test was used to detect differences between the treatments (p < 0.001). Contents of Fe and Zn in the fortified tortilla relative to the traditional tortilla were 1.9 and 3.4 times greater than the latter, whereas PA contents showed the opposite result, i.e. traditional tortillas had 1.65 times more PA than the fortified tortilla. Consequently the calculated molar ratios were statistically more favorable for fortified than for traditional tortillas (p < 0.001). The process developed allows making iron- and zinc-fortified tortillas by lime-treating or nixtamalizing corn either at the household, at small-scale tortilla shops, or at industrial scale by using lime fortified with both trace elements. The cost of this fortification is negligible.
Skalny, Anatoly V; Tinkov, Alexey A; Voronina, Irina; Terekhina, Olga; Skalnaya, Margarita G; Kovas, Yulia
2018-01-01
The objective of the present study was to perform comparative analysis of hair trace element content in women with natural and in vitro fertilization (IVF)-induced pregnancy. Hair trace element content in 33 women with IVF-induced pregnancy and 99 age- and body mass index-matched control pregnant women (natural pregnancy) was assessed using inductively coupled plasma mass spectrometry. The results demonstrated that IVF-pregnant women are characterized by significantly lower hair levels of Cu, Fe, Si, Zn, Ca, Mg, and Ba at p < 0.05 or lower. Comparison of the individual levels with the national reference values demonstrated higher incidence of Fe and Cu deficiency in IVF-pregnant women in comparison to that of the controls. IVF pregnancy was also associated with higher hair As levels (p < 0.05). Multiple regression analysis revealed a significant interrelation between IVF pregnancy and hair Cu, Fe, Si, and As content. Hair Cu levels were also influenced by vitamin/mineral supplementation and the number of pregnancies, whereas hair Zn content was dependent on prepregnancy anthropometric parameters. In turn, planning of pregnancy had a significant impact on Mg levels in scalp hair. Generally, the obtained data demonstrate an elevated risk of copper, iron, zinc, calcium, and magnesium deficiency and arsenic overload in women with IVF-induced pregnancy. The obtained data indicate the necessity of regular monitoring of micronutrient status in IVF-pregnant women in order to prevent potential deleterious effects of altered mineral homeostasis.
Trace elements in agroecosystems and impacts on the environment.
He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J
2005-01-01
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.
Experimental Constraints on Iron Mobilization into Biomass Burning Aerosols
NASA Astrophysics Data System (ADS)
Sherry, A. M.; Romaniello, S. J.; Herckes, P.; Anbar, A. D.
2017-12-01
Atmospheric deposition of iron (Fe) can limit marine primary productivity and, therefore, carbon dioxide uptake. Recent modeling studies suggest that biomass burning aerosols may contribute a significant amount of soluble Fe to the surface ocean. To address this hypothesis, we collected foliage samples from species representative of several biomes impacted by severe fire events. Existing studies of burn-induced trace element mobilization have often collected both entrained soil particles along with material from burning biomass, making it difficult to determine the actual source of aerosolized trace metals. In order to better constrain the importance of biomass vs. entrained soil as a source of trace metals in burn aerosols, we conducted burn experiments using soil-free foliage representative of a variety of fire-impacted ecosystems. The resulting burn aerosols were collected in two stages (PM > 2.5 μm and PM < 2.5 μm) on cellulose filters using a high-volume air sampler equipped an all-Teflon impactor. Unburned foliage and burn aerosols were analyzed for Fe and other trace metals using inductively coupled plasma mass spectrometry (ICP-MS). Our results show that 0.06-0.86 % of Fe in plant biomass is likely mobilized as atmospheric aerosols during biomass burning events, depending on the type of foliage. We used these results and estimates of annual global wildfire area to estimate the impact of biomass burning aerosols on total atmospheric Fe flux to the ocean. We estimate that biomass-derived Fe likely contributes 3% of the total soluble Fe flux from aerosols. Prior studies, which implicitly included both biomass and soil-derived Fe, concluded that biomass burning contributed as much as 7% of the total marine soluble Fe flux from aerosols. Together, these studies suggest that biomass and fire-entrained soil probably contribute equally to the total fire-derived Fe aerosol flux. Further study of solubility differences between plant- and soil-derived Fe is needed to improve estimates of the soluble Fe contribution from biomass burning to the marine soluble Fe flux.
Juárez, Andrea; Arribére, María A; Arcagni, Marina; Williams, Natalia; Rizzo, Andrea; Ribeiro Guevara, Sergio
2016-09-01
Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.
[Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].
Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu
2013-01-01
The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.
Trace-Element Analysis by Use of PIXE Technique on Agricultural Products
NASA Astrophysics Data System (ADS)
Takagi, A.; Yokoyama, R.; Makisaka, K.; Kisamori, K.; Kuwada, Y.; Nishimura, D.; Matsumiya, R.; Fujita, Y.; Mihara, M.; Matsuta, K.; Fukuda, M.
2009-10-01
In order to examine whether a trace-element analysis by PIXE (Particle Induced X-ray Emission) gives a clue to identify production area of agricultural products, we carried out a study on soy beans as an example. In the present study, a proton beam at the energy of 2.3MeV was provided by Van de Graaff accelerator at Osaka University. We used a Ge detector with Be window to measure X-ray spectra. We prepared sample soy beans from China, Thailand, Taiwan, and 7 different areas in Japan. As a result of PIXE analysis, 5 elements, potassium, iron, zinc, arsenic and rubidium, have been identified. There are clear differences in relative amount of trace-elements between samples from different international regions. Chinese beans contain much more Rb than the others, while there are significant differences in Fe and Zn between beans of Thailand and Taiwan. There are relatively smaller differences among Japanese beans. This result shows that trace-elements bring us some practical information of the region where the product grown.
NASA Astrophysics Data System (ADS)
Salomone, Vanesa N.; Riera, Marina; Cerchietti, Luciana; Custo, Graciela; Muniain, Claudia
2017-05-01
Seaweed have a great capacity to accumulate heavy metals in their tissues. The chemical characterization of seaweed is important due to their use in environmental monitoring and human or animal food. The aim of the present study was to evaluate the multi-elemental composition of seaweed from San Jorge Gulf (Patagonia, Argentina) by Total Reflection X-ray Fluorescence (TXRF). The elements As, Br, Cu, Cr, Fe, Mn, Ni, Pb, Rb, Sr, V and Zn were seasonally analyzed and quantified in blades of Macrocystis pyrifera. TXRF showed to be a suitable technique for simultaneous multi-element analysis in this kind of samples. The results revealed seasonal variations in the chemical content for some elements; arsenic content was maximum in summer and autumn, iron concentration increased to the winter and zinc concentration was maximum in autumn. The sum of principal micronutrients (Fe + Zn + Mn + Cu) varied between 114 and 171 mg k- 1 g dw. The total As concentration ranged between 36 and 66 mg kg- 1. Lead, nickel and copper were not detected.
Trace elements in organisms of different trophic groups in the White Sea
NASA Astrophysics Data System (ADS)
Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.
2015-09-01
Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.
Serum trace elements in obese Egyptian children: a case–control study
2014-01-01
Background To date, only a few studies on child obesity concerned Trace Elements (TE). TE is involved in the pathogenesis of obesity and obesity related diseases. We tried to assess trace elements status [zinc (Zn), copper (Cu), selenium (Se), iron (Fe), and chromium (Cr)] in obese Egyptian children and their relationships with serum leptin and metabolic risk factors of obesity. Methods This was a case–control study performed with 80 obese children (BMI ≥ 95thcentile for age and gender) and 80 healthy non-obese children with comparable age and gender as the control group. For all subjects, serum Zn, Cu, Se, Fe, ferritin and Cr as well as biochemical parameters including lipid profile, serum glucose and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed. Levels of serum leptin were measured by (enzyme-linked immunosorbent assay [ELISA] method), and serum insulin was measured by an electrochemiluminesce immunoassay. Results Compared to the control group, serum Zn, Se, and Fe levels were significantly lower (all P < 0.01) and serum Cu level was significantly higher (P < 0.01) in the obese children. Meanwhile, no significant differences were observed in serum ferritin or Cr levels (P > 0.05). A significant negative correlation was found between serum leptin and zinc levels in the obese children (r = −0.746; P < 0.01). Further, serum Zn showed significant negative correlations with total cholesterol TC levels (P < 0.05) and were positively correlated with high density lipoprotein- cholesterol HDL-C levels (P < 0.01) in the obese children. In addition, serum Se levels showed significant positive correlations with HOMA-IR values in the obese children (P < 0.01). Conclusion The obese children may be at a greater risk of developing imbalance (mainly deficiency) of trace elements which may be playing an important role in the pathogenesis of obesity and related metabolic risk factors. PMID:24555483
Dial, Angela R; Misra, Sambuddha; Landing, William M
2015-04-30
Accurate determination of trace metals has many applications in environmental and life sciences, such as constraining the cycling of essential micronutrients in biological production and employing trace metals as tracers for anthropogenic pollution. Analysis of elements such as Fe, As, Se, and Cd is challenged by the formation of polyatomic mass spectrometric interferences, which are overcome in this study. We utilized an Octopole Collision/Reaction Cell (CRC)-equipped Quadrupole-Inductively Coupled Plasma Mass Spectrometer for the rapid analysis of small volume samples (~250 μL) in a variety of matrices containing HNO3 and/or HCl. Efficient elimination of polyatomic interferences was demonstrated by the use of the CRC in Reaction Mode (RM; H2 gas) and in Collision-Reaction Mode (CRM; H2 and He gas), in addition to hot plasma (RF power 1500 W) and cool plasma (600 W) conditions. It was found that cool plasma conditions with RM achieved the greatest signal sensitivity while maintaining low detection limits (i.e. (56) Fe in 0.44 M HNO3 has a sensitivity of 160,000 counts per second (cps)-per-1 µg L(-1) and a limit of detection (LoD) of 0.86 ng L(-1) ). The average external precision was ≤ ~10% for minor (≤10 µg L(-1) ) elements measured in a 1:100 dilution of NIST 1643e and for iron in rainwater samples under all instrumental operating conditions. An improved method has been demonstrated for the rapid multi-element analysis of trace metals that are challenged by polyatomic mass spectrometric interferences, with a focus on (56) Fe, (75) As, (78) Se and (111) Cd. This method can contribute to aqueous environmental geochemistry and chemical oceanography, as well as other fields such as forensic chemistry, agriculture, food chemistry, and pharmaceutical sciences. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sager, Manfred; Erhart, Eva
2016-04-01
High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate-soluble Fe together with P and S was independent from oxalate-soluble Al-Mn-Si. In the crops, all element levels were within a non-contaminated and non-deficient range, therefore correlations with concentrations as well as loads in the wheat grains where largely not pronounced. Maximum correlations between plant and soil data were obtained with Li and Be. The load data (concentration times yield, given in g/ha) were much more intercorrelated than the concentrations. Regarding the same element, correlation coefficients between loads and respective concentrations were larger than 0,800 for Al, Ba, Cd, Co, Cr, Li, Mo, Na, Ni, Se, and Sr, which means the transfer remained independent from the load. In case of Ca, Mg, P, S, Zn, however, correlation coefficients between loads and concentrations were < 0,500, thus the transfer was not constant because of obvious metabolic influences. The proposed method of soil characterization was applied at a field trial here for the first time, and offers new possibilities of intercorrelations between plant uptake and geochemical soil fractions.
Sulphursoil - Delano Development Corporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1985-06-01
A sizable amount of technical information has been accumulated on the effects of agricultural applications of the natural mineral product called Sul-Fe. This technical information supports the field observations of farmers, landscapers and gardeners who have used the product. Sul-Fe is often evaluated in terms of its sulphur content alone. When compared to elemental sulphur (100% sulphur), the 18 to 21% sulphur content of Sul-Fe seems relatively low. However, as the following technical data indicates, when judged on actual effects, Sul-Fe's complex mixture of minerals has several advantages over elemental sulphur. When judged on the basis of soil acidulation, Sul-Femore » has more immediate effects than elemental sulphur. The rapid acidifying effect is due to Sul-Fe's content of crystalline sulphuric acid. Sul-Fe also has long-term effects on soil pH due to its content of sulphur and sulfides and the time required to oxidize these materials. Elemental sulphur contains sulphur in only one chemical form which must be microbially oxidized before it becomes reactive in the soil solution, a reaction that takes quite some time in some soils. Sul-Fe is thus better than elemental sulphur in terms of immediate effects and comparable in terms of long term effects. Applied blends of Sul-Fe supplemented with elemental sulphur may provide for a maximization of both short and long term effects. An additional benefit derived from the use of Sul-Fe is the addition to the soil of a variety of trace nutrients including iron, calcium, zinc, copper, manganese, magnesium, and molybdenum.« less
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
Field and laboratory experiments indicate that a number of factors associated with filtration other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample) can produce significant variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. The bulk of these variations result from the inclusion/exclusion of colloidally associated trace elements in the filtrate, although dilution and sorption/desorption from filters also may be factors. Thus, dissolved trace element concentrations quantitated by analyzing filtrates generated by processing whole water through similar pore-sized filters may not be equal or comparable. As such, simple filtration of unspecified volumes of natural water through unspecified 0.45-??m membrane filters may no longer represent an acceptable operational definition for a number of dissolved chemical constituents.
Jafri, Azliana Jusnida Ahmad; Arfuzir, Natasha Najwa Nor; Lambuk, Lidawani; Iezhitsa, Igor; Agarwal, Renu; Agarwal, Puneet; Razali, Norhafiza; Krasilnikova, Anna; Kharitonova, Maria; Demidov, Vasily; Serebryansky, Evgeny; Skalny, Anatoly; Spasov, Alexander; Yusof, Ahmad Pauzi Md; Ismail, Nafeeza Mohd
2017-01-01
Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL -1 ). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL -1 ) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity. Copyright © 2016 Elsevier GmbH. All rights reserved.
The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.
Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z
2000-12-01
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.
NASA Astrophysics Data System (ADS)
Beard, A. D.; Downes, H.; Hegner, E.; Sablukov, S. M.
2000-03-01
The Arkhangelsk kimberlite province (AKP) is situated in the north of the Baltic Shield within the buried southeastern portion of the Kola-Kuloi craton. It forms part of the extensive Devonian magmatic event of the northern Baltic Shield and Kola Peninsula. Two main groups of kimberlites can be distinguished within the province: (1) kimberlites from the diamondiferous Zolotitsa field that have geochemical and isotopic affinities with Group 2 kimberlites and lamproites; (2) diamond-poor Ti-Fe-rich kimberlites from other Arkhangelsk fields that have geochemical and isotopic affinities with Group 1 kimberlites. However, the Zolotitsa and Ti-Fe-rich kimberlites have mineralogical characteristics that are not typical for their respective assigned kimberlite group classifications. Both groups of Arkhangelsk kimberlites are apparently transitional to Group 1 kimberlites, Group 2 kimberlites and lamproites as they are defined elsewhere in the world. An associated kimberlite from the Mela Sill Complex has strong affinities with carbonatites. The low Al 2O 3, high Ni and Cr contents, and high Mg# in both groups of kimberlites indicate strongly depleted lherzolitic-harzburgitic mantle sources. Trace element patterns show a variable enrichment of incompatible elements and strong LREE enrichment. However, kimberlites from the Zolotitsa field have overall lower trace element abundances and less steep REE patterns, suggesting a higher degree of partial melt and/or a less enriched source compared to that of the Ti-Fe-rich kimberlites. A calciocarbonatite of the Mela Sill Complex has trace element and REE patterns typical of other carbonatites closely associated with kimberlites. 87Sr/ 86Sri and 143Nd/ 144Ndi isotope compositions of the Arkhangelsk kimberlites and carbonatite reveal that at least two mantle sources are required to explain the isotopic variation: (1) most of the Zolotitsa and Mela kimberlites and the Mela carbonatite are derived from an ancient enriched lithospheric source (EMI); (2) the Ti-Fe-rich kimberlites are derived from a plume-related asthenospheric mantle source with an isotopic composition close to Bulk Earth. Present-day Pb isotope compositions reveal that the Zolotitsa kimberlites have values close to Group 1 kimberlites. However, the Ti-Fe-rich kimberlites generally have slightly more radiogenic Pb isotope values.
Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei
2016-06-01
Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.
NASA Astrophysics Data System (ADS)
Das, Supriyo Kumar; Routh, Joyanto; Roychoudhury, Alakendra N.; Veldhuis, Marcel J. W.; Ismail, Hassan E.
2017-12-01
Rich in upwelled nutrients, the Southern Benguela is one of the most productive ecosystems in the world ocean. However, despite its ecological significance the role of trace elements influencing phytoplankton population in the Southern Benguela Upwelling System (SBUS) has not been thoroughly investigated. Here, we report pigment composition, macronutrients (nitrate, phosphate and silicate) and concentrations of dissolved Cd, Co, Fe and Zn during late austral summer and winter seasons in 2004 to understand the relationship between the selected trace elements and phytoplankton biomass in St. Helena Bay (SHB), which falls within the southern boundary of the SBUS. Chlorophyll a concentrations indicate higher phytoplankton biomass associated with high primary production during late summer in SHB where high diatom population is inferred from the presence of fucoxanthin. Diminished phytoplankton biomass and a shift from diatoms to dinoflagellates as the dominant phytoplankton taxa are indicated by diagnostic pigments during late winter. Dissolved trace elements (Cd, Co and Zn) and macronutrients play a significant role in phytoplankton biomass, and their distribution is affected by biological uptake and export of trace elements. Continuous uptake of Zn by diatoms may cause an onset of Zn depletion leading to a period of extended diatom proliferation during late summer. Furthermore, the transition from diatom to dinoflagellate dominated phytoplankton population is most likely facilitated by depletion of trace elements (Cd and Co) in the water column.
Zhang, Y.; Mahowald, N.; Scanza, R. A.; ...
2015-10-12
Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less
Impact of Elevated CO2 on Trace Element Release from Aquifer Sediments of the San Joaquin Valley, CA
NASA Astrophysics Data System (ADS)
Fox, P. M.; Nico, P. S.; Davis, J. A.; Spycher, N.
2014-12-01
Carbon capture and storage (CCS) is a promising technique for mitigating climate change by storing large volumes of carbon dioxide in deep saline aquifers. In California, the thick marine sediments of the Central and Salinas Valleys have been identified as prime targets for future CO2 storage. However, the potential impacts on water quality of overlying drinking-water aquifers must be studied before CCS can be implemented. In this study, we compare trace element release from San Joaquin Valley aquifer sediments with a wide range of textural and redox properties. Kinetic batch experiments were performed with artificial groundwater continuously equilibrated under CO2-saturated (at 1 atm) and background CO2 (0.002-0.006 atm) conditions, resulting in a shift of nearly 3 pH units. In addition, the reversibility of trace element release was studied by sequentially lowering the CO2 from 1.0 atm to 0.5 atm to background concentrations (0.002-0.006 atm) for CO2-saturated systems in order to mimic the dissipation of a CO2 plume in the aquifer. During exposure to high CO2, a number of elements displayed enhanced release compared to background CO2 experiments (Ca, Mg, Li, Si, B, As, Sr, Ni, Fe, Mn, V, Ti, and Co) with concentrations of As, Fe, and Mn exceeding EPA maximum contaminant levels in some cases. On the other hand, Mo and U showed suppressed release. Most intriguing, many of the elements showing enhanced release displayed at least some degree of irreversibility when CO2 concentrations were decreased to background levels. In fact, in some cases (i.e., for V), an element showed further release when CO2 concentrations were decreased. These results suggest that there may be longer-term effects on groundwater quality that persist even after the CO2 plume has dissipated. Several different mechanisms of trace element release including ion exchange, desorption, and carbonate mineral dissolution are explored. Preliminary modeling results suggest that carbonate mineral dissolution can play a key role in driving trace element release even in sediments where carbonates are in low abundance.
Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A
2017-08-01
The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.
Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.
Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun
2016-02-01
Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.
NASA Astrophysics Data System (ADS)
Thiagarajan, N.; Lee, C.
2003-12-01
Desert varnish is a slow-growing dark patina commonly found on rock surfaces in arid environments. Varnishes consist of about 30% Mn and Fe oxides accompanied by oxides of Si, Al, Mg, K and Ca, which occur primarily in the form of clays. Although it is generally agreed that varnishes have an atmospheric origin, their exact formation mechanism remains highly debated. Two endmember hypotheses are gradual accumulation of wind-blown dust followed by diagenesis, and direct chemical precipitation of dissolved elements from atmospheric aerosols. To rule out one of these hypotheses, we investigated the trace-element systematics of varnishes, in particular, focusing on those elements that have contrasting solubilities in aqueous environments. If our trace element analyses are consistent with the varnishes being derived from dissolved atmospheric constituents then the data can be used to quantify the paleofluxes of the soluble fraction of atmospheric aerosols to various depositional environments. For example, this will have implications for the transport of metals to the ocean that are immediately biologically available. We collected varnishes deposited on smooth basaltic lava flow surfaces in the Cima Volcanic Field (Mojave Desert) and in Death Valley, California. The chosen lava flows retain original flow surface structure and are topographical highs; the effects of erosion are hence minimal. Varnishes were scraped off with a quartz rod to minimize trace element contamination and the trace element compositions were then determined by ICP-MS using an external synthetic standard for calibration. Our analyses show that the rare-earth elements (REEs), Co, Ni, and Pb are enriched 1.5 to 10 times relative to the upper continental crust (UCC) and that Nb, Ti, Ta, Hf, Th, Rb and Cs are depleted to varying degrees relative to UCC and the REEs. These fractionations can be explained by their differing chemical behaviors in aqueous environments. The extreme depletion in Rb and Cs reflect their high solubilities and tendency to be progressively leached out by rain water. Nb, Ti, Ta, Hf and Th are present only in detrital concentrations, reflecting their high insolublities and their probable depletion in the Fe- and Mn-rich components of the varnish. Co, Ni, Pb and Ce are soluble but readily coprecipitate with Mn oxides hence their 10-fold enrichments. Enrichments caused by diagenesis of dust accreted on the varnish substrate cannot achieve the 10-fold enrichments of some elements observed here, indicating that the aqueous component must be derived directly from the atmosphere. Remarkably, we find that ferro-manganese crusts produced by hydrogenous processes in the marine environment have trace-element abundance patterns nearly identical to those of varnishes. Relative to the upper continental crust, they are enriched in REEs, Co, Ni, and Pb, depleted in Nb, Ti, Ta, Hf, Th, Rb and Cs and are anomalously high in Ce. These unexpected similarities provide additional evidence that desert varnishes represent the direct precipitation of aqueous components in the atmosphere. It may be possible to estimate the aqueous atmospheric input of such trace elements as the REEs into the ocean. For example, multiplying the Nd/Fe and Nd/Mn ratios of the varnishes by estimates of modern day Fe and Mn wet deposition inputs to the ocean yields an oceanic input of 4 to 15 x 107 moles of Nd/year. This is slightly larger than the amount of dissolved Nd entering the oceans each year (2.4 x 106 moles/yr) via rivers, hence, there is a significant atmospheric input of REEs into the ocean in aqueous form.
Assimilation and regeneration of trace elements by marine copepods
Wang, W.-X.; Reinfelder, J.R.; Lee, B.-G.; Fisher, N.S.
1996-01-01
Assimilation efficiencies (AE) of five trace elements (Am, Cd, Co, Se, and Zn) and carbon by neritic copepods (Acartia tonsa and Temora longicornis) feeding at different food concentrations and on different food types (diatoms, green algae, flagellates, dinoflagellates, and Fe oxides) were measured with radiotracer techniques. Food concentration had little influence on AEs of C, Cd, Co, and Se within a range of 16-800 ?? C liter-1. AEs of Am and Zn were highest at low food concentrations (16-56 ??g C liter-1) but remained relatively constant when food levels exceeded 160 ??g C liter-1. Different algal diets had no major influence on AEs, which generally were in the order Cd > Se > Zn > Co > Am. Metals (Cd, Co, and Zn) were assimilated from Fe oxides with 50% less efficiency than from algal cells. Element regeneration into the dissolved phase was a significant route for the release of ingested elements by copepods and increased with increased food concentration. Element regeneration rates for Cd, Se, and Zn were comparable to the regeneration rates of major nutrients such as P (30-70% daily). Retention half-times of elements in decomposing fecal pellets ranged from 10 d (Am). The efficient assimilation and regeneration of Cd, Se, and Zn can significantly lengthen the residence time of these elements in ocean surface waters.
NASA Astrophysics Data System (ADS)
Liu, Bilin; Chen, Xinjun; Fang, Zhou; Hu, Song; Song, Qian
2015-12-01
We applied solution-based ICP-MS method to quantify the trace-elemental signatures in statoliths of jumbo flying squid, Dosidius gigas, which were collected from the waters off northern and central Chile during the scientific surveys carried out by Chinese squid jigging vessels in 2007 and 2008. The age and spawning date of the squid were back-calculated based on daily increments in statoliths. Eight elemental ratios (Sr/Ca, Ba/Ca, Mg/Ca, Mn/Ca, Na/Ca, Fe/Ca, Cu/Ca and Zn/Ca) were analyzed. It was found that Sr is the second most abundant element next to Ca, followed by Na, Fe, Mg, Zn, Cu, Ba and Mn. There was no significant relationship between element/Ca and sea surface temperature (SST) and sea surface salinity (SSS), although weak negative or positive tendency was found. MANOVA analysis showed that multivariate elemental signatures did not differ among the cohorts spawned in spring, autumn and winter, and no significant difference was found between the northern and central sampling locations. Classification results showed that all individuals of each spawned cohorts were correctly classified. This study demonstrates that the elemental signatures in D. gigas statoliths are potentially a useful tool to improve our understanding of its population structure and habitat environment.
NASA Technical Reports Server (NTRS)
Pun, A.; Papike, J. J.
1994-01-01
We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.
Petroleum formation during serpentinization: the evidence of trace elements
NASA Astrophysics Data System (ADS)
Szatmari, P.; Fonseca, T. C.; Miekeley, N. F.
2002-05-01
An organic source of petroleum formation is well attested by many biomarkers. This need not, however, exclude contribution from inorganic sources. During serpentinization, in the absence of free oxygen, oxidation of bivalent Fe to magnetite breaks up the water molecule, generating hydrogen and creating one of the most reducing environments near the Earth's surface (Janecky & Seyfried, 1986). Szatmari (1989) proposed that some petroleum forms at plate boundaries by Fischer-Tropsch-type synthesis over serpentinizing peridotites and suggested that Ni, an element rare in the continental crust but important in both petroleum and the mantle, may be indicative of such a source. Recently, Holm and Charlou (2001) observed hydrocarbon formation by Fischer-Tropsch-type synthesis over serpentinizing peridotites of the Mid-Atlantic Ridge. To test whether the relative amounts of other trace elements in petroleum are in agreement with a serpentinizing source, we analyzed by internally coupled plasma-mass spectroscopy (ICP-MS) 22 trace elements in 68 oils sampled in seven sedimentary basins throughout Brazil. We found that trace elements in the oils correlate well with mantle peridotites and reflects the process of hydrothermal serpentinization during continental breakup. Four groups may be distinguished. In serpentinites, trace elements of the first group, Ti, Cr, Mn, and Fe, are largely retained in low-solubility magnetite and other spinels formed during serpentinization or inherited from the original peridotites. In the oils, when normalized to mantle peridotites, these elements are at relatively low levels, about 10,000 times less than their abundances in mantle peridotites, reflecting their low availability from stable minerals. In contrast, trace elements of the second group, which includes V, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Ba, La, Ce, and Nd, pass during serpentinization mostly into serpentine minerals or solution. In the oils, when normalized to mantle peridotites, these elements are at higher levels than those of the first group, about 300 times less than their abundances in mantle peridotites, reflecting their higher availability during serpentinization. Within both groups, trace metal ratios and A/(A+B) type proportionalities in the oils are close to mantle peridotites. V behaves somewhat differently: in lacustrine sequences V contents in the oils are low and the ratios of V to other elements of the second group are mantle-like, whereas in marine sequences V and its ratios to other trace elements rise by orders of magnitude. Trace elements commonly enriched in formation fluids and hydrothermal brines (Rb, Sr, Ba, Cu, Zn), when normalized to mantle peridotites, are enriched in the oils by about 0.5 order of magnitude relative to other elements of the second group. The third group of elements includes S, Mo, and As. These elements occur in the oils at abundances similar to sea water and are, when normalized to mantle peridotites and Ni, enriched in the oils by several orders of magnitude, indicating sea water reacting with peridotites during sepentinization as their possible source. Finally trace elements of the fourth group, such as Pb and Ag, are enriched in the oils by several orders of magnitude relative to both mantle peridotites and sea water and were presumably mobilized from shales by hydrothermal fluids. References:Holm, N.G. and Charlou, J.L., 2001, EPSL 191, 1-8. Janecky, D.R. and Seyfried, W.E., 1986, Geochim. Cosmochim. Acta 50, 1357-1378. Szatmari, P., 1989, AAPG Bull. 73, 989-998.
Effect of organic and conventional rearing system on the mineral content of pork.
Zhao, Yan; Wang, Donghua; Yang, Shuming
2016-08-01
Dietary composition and rearing regime largely determine the trace elemental composition of pigs, and consequently their concentration in animal products. The present study evaluates thirteen macro- and trace element concentrations in pork from organic and conventional farms. Conventional pigs were given a commercial feed with added minerals; organic pigs were given a feed based on organic feedstuffs. The content of macro-elements (Na, K, Mg and Ca) and some trace elements (Ni, Fe, Zn and Sr) in organic and conventional meat samples showed no significant differences (P>0.05). Several trace element concentrations in organic pork were significantly higher (P<0.05) compared to conventional pork: Cr (808 and 500μg/kg in organic and conventional pork, respectively), Mn (695 and 473μg/kg) and Cu (1.80 and 1.49mg/kg). The results showed considerable differences in mineral content between samples from pigs reared in organic and conventional systems. Our results also indicate that authentication of organic pork can be realized by applying multivariate chemometric methods such as discriminant analysis to this multi-element data. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manoli, E.; Chelioti-Chatzidimitriou, A.; Karageorgou, K.; Kouras, A.; Voutsa, D.; Samara, C.; Kampanos, I.
2017-10-01
Harbors are often characterized by high levels of air pollutants that are emitted from ship traffic and other harbor activities. In the present study, the concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) and trace elements (As, Cd, Ni, Pb, Cr, Mn, Zn, and Fe) bounded to the inhalable particulate matter PM10 were studied in the harbor of Volos, central Greece, during a 2-year period (2014-2015). Seasonal and daily variations were investigated. Moreover, total carcinogenic and mutagenic activities of PAHs were calculated. The effect of major wind sectors (sea, city, industrial, harbor) was estimated to assess the potential contribution of ship traffic and harbor activities, such as scrap metal handling operations. Results showed that the harbor sector (calm winds ≤ 0.5 m s-1) was associated with the highest concentrations of PM10. The harbor sector was also associated with relatively increased levels of trace elements (As, Fe, Cr, Mn, Ni), however the effect of this sector was lower than the corresponding effect of the industrial wind sector. The sea sector showed only a slight increase in B[a]Py and Σ12PAHs, whereas the highest increasing effect for PAHs and traffic-related elements, such as Pb and Zn, was evidenced for the city sector.
NASA Astrophysics Data System (ADS)
Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan
2013-10-01
The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.
Yang, Rongwang; Zhang, Yanyi; Gao, Weijia; Lin, Nannan; Li, Rong; Zhao, Zhengyan
2018-06-16
Some trace elements may participate in the pathogenesis of attention-deficit hyperactivity disorder (ADHD). This study aimed to investigate the trace element status of zinc (Zn), copper (Cu), iron (Fe), magnesium (Mg), and lead (Pb) in children with ADHD, and to compare them with normal controls. Associations between examined elements and SNAP-IV rating scores of ADHD symptoms were also assessed. Four hundred nineteen children with ADHD (8.8 ± 2.1 years) and 395 matched normal controls (8.9 ± 1.7 years) were recruited in the study. The concentrations of Zn, Fe, Cu, Mg, and Pb in the whole blood were measured by atomic absorption spectrometry. Lower zinc levels (P < 0.001) and the number out of normal ranges (P = 0.015) were found in children with ADHD when compared with the normal control group. The difference remained when adjusting the factor of BMI z-score. No significant between-group differences were found in levels of other elements. Zinc levels were negatively correlated with parent-rated scores of inattentive subscale of SNAP-IV (r = - 0.40) as well as with total score of SNAP-IV (r = - 0.24). Other significant associations were not observed. The present results indicated that there were alterations in blood levels of zinc, which was associated with the symptom scores of ADHD.
Rodriguez, J H; Klumpp, A; Fangmeier, A; Pignata, M L
2011-03-15
The carbon dioxide (CO(2)) levels of the global atmosphere and the emissions of heavy metals have risen in recent decades, and these increases are expected to produce an impact on crops and thereby affect yield and food safety. In this study, the effects of elevated CO(2) and fly ash amended soils on trace element accumulation and translocation in the root, stem and seed compartments in soybean [Glycine max (L.) Merr.] were evaluated. Soybean plants grown in fly ash (FA) amended soil (0, 1, 10, 15, and 25% FA) at two CO(2) regimes (400 and 600 ppm) in controlled environmental chambers were analyzed at the maturity stage for their trace element contents. The concentrations of Br, Co, Cu, Fe, Mn, Ni, Pb and Zn in roots, stems and seeds in soybeans were investigated and their potential risk to the health of consumers was estimated. The results showed that high levels of CO(2) and lower concentrations of FA in soils were associated with an increase in biomass. For all the elements analyzed except Pb, their accumulation in soybean plants was higher at elevated CO(2) than at ambient concentrations. In most treatments, the highest concentrations of Br, Co, Cu, Fe, Mn, and Pb were found in the roots, with a strong combined effect of elevated CO(2) and 1% of FA amended soils on Pb accumulation (above maximum permitted levels) and translocation to seeds being observed. In relation to non-carcinogenic risks, target hazard quotients (TQHs) were significant in a Chinese individual for Mn, Fe and Pb. Also, the increased health risk due to the added effects of the trace elements studied was significant for Chinese consumers. According to these results, soybean plants grown for human consumption under future conditions of elevated CO(2) and FA amended soils may represent a toxicological hazard. Therefore, more research should be carried out with respect to food consumption (plants and animals) under these conditions and their consequences for human health. Copyright © 2010 Elsevier B.V. All rights reserved.
Preliminary examination of the Yamato-86032 lunar meteorite. II - Major and trace element chemistry
NASA Technical Reports Server (NTRS)
Koeberl, Christian; Warren, Paul H.; Lindstrom, Marilyn M.; Spettel, Bernhard; Fukuoka, Takaaki
1989-01-01
Results of the chemical composition analysis of Yamato-86032, found in Antarctica in 1986, are summarized. The meteorite may be classified as an anorthositic breccia, but its trace element composition is different from the composition of the other known lunar meteorites. The major element chemistry of Y-86032 is similar to the other lunar meteorites, except for the iron content, which is lower by a factor of about 1.4. The abundances of incompatible and lithophile elements such as Zr, Hf, Ta, Th, or the REEs are very low and comparable to Y-82192/3. Other elements, in particular Fe, Ti, Sc, Cr, Mn, and Co, have lower abundances in Y-86032 than in Y-82192/3. Variations between individual analysis demonstrate that the rock itself is heterogeneous.
Godson, Prince S; Magesh, N S; Peter, T Simon; Chandrasekar, N; Krishnakumar, S; Vincent, Salom Gnana Thanga
2018-01-01
Forty two surface sediment samples were collected in order to document baseline elemental concentration along the Southwest coast of Tamil Nadu, India. The elements detected were Manganese (Mn), Zinc (Zn), Iron (Fe), Copper (Cu), Nickel (Ni) and Lead (Pb). The concentration of Fe and Mn was primarily controlled by the riverine input. The source of Pb and Zn is attributed to leaded petrol and anti-biofouling paints. The calculated index (EF, Igeo and CF) suggests that the sediments of the study area are significantly enriched with all elements except Pb. The contamination factor showed the order of Mn>Zn>Fe>Cu>Ni>Pb. The sediment pollution index (SPI) revealed that the sediments belonged to low polluted to dangerous category. The correlation matrix and dendrogram showed that the elemental distribution was chiefly controlled by riverine input as well as anthropogenic activity in the coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
ThomasArrigo, Laurel K; Mikutta, Christian; Byrne, James; Kappler, Andreas; Kretzschmar, Ruben
2017-06-20
In freshwater wetlands, organic flocs are often found enriched in trace metal(loid)s associated with poorly crystalline Fe(III)-(oxyhydr)oxides. Under reducing conditions, flocs may become exposed to aqueous Fe(II), triggering Fe(II)-catalyzed mineral transformations and trace metal(loid) release. In this study, pure ferrihydrite, a synthetic ferrihydrite-polygalacturonic acid coprecipitate (16.7 wt % C), and As- (1280 and 1230 mg/kg) and organic matter (OM)-rich (18.1 and 21.8 wt % C) freshwater flocs dominated by ferrihydrite and nanocrystalline lepidocrocite were reacted with an isotopically enriched 57 Fe(II) solution (0.1 or 1.0 mM Fe(II)) at pH 5.5 and 7. Using a combination of wet chemistry, Fe isotope analysis, X-ray absorption spectroscopy (XAS), 57 Fe Mössbauer spectroscopy and X-ray diffraction, we followed the Fe atom exchange kinetics and secondary mineral formation over 1 week. When reacted with Fe(II) at pH 7, pure ferrihydrite exhibited rapid Fe atom exchange at both Fe(II) concentrations, reaching 76 and 89% atom exchange in experiments with 0.1 and 1 mM Fe(II), respectively. XAS data revealed that it transformed into goethite (21%) at the lower Fe(II) concentration and into lepidocrocite (73%) and goethite (27%) at the higher Fe(II) concentration. Despite smaller Fe mineral particles in the coprecipitate and flocs as compared to pure ferrihydrite (inferred from Mössbauer-derived blocking temperatures), these samples showed reduced Fe atom exchange (9-30% at pH 7) and inhibited secondary mineral formation. No release of As was recorded for Fe(II)-reacted flocs. Our findings indicate that carbohydrate-rich OM in flocs stabilizes poorly crystalline Fe minerals against Fe(II)-catalyzed transformation by surface-site blockage and/or organic Fe(II) complexation. This hinders the extent of Fe atom exchange at mineral surfaces and secondary mineral formation, which may consequently impair Fe(II)-activated trace metal(loid) release. Thus, under short-term Fe(III)-reducing conditions facilitating the fast attainment of solid-solution equilibria (e.g., in stagnant waters), Fe-rich freshwater flocs are expected to remain an effective sink for trace elements.
Atmospheric wet deposition of trace elements to a suburban environment, Reston, Virginia, USA
Conko, Kathryn M.; Rice, Karen C.; Kennedy, Margaret M.
2004-01-01
Wet deposition from a suburban area in Reston, Virginia was collected during 1998 and analyzed to assess the anion and trace-element concentrations and depositions. Suburban Reston, approximately 26 km west of Washington, DC, is densely populated and heavily developed. Wet deposition was collected bi-weekly in an automated collector using trace-element clean sampling and analytical techniques. The annual volume-weighted concentrations of As, Cd, and Pb were similar to those previously reported for a remote site on Catoctin Mt., Maryland (70 km northwest), which indicated a regional signal for these elements. The concentrations and depositions of Cu and Zn at the suburban site were nearly double those at remote sites because of the influence of local vehicular traffic. The 1998 average annual wet deposition (μg m−2 yr−1) was calculated for Al (52,000), As (94), Cd (54), Cr (160), Cu (700), Fe (23,000), Mn (2000), Ni (240), Pb (440), V (430), and Zn (4100). The average annual wet deposition (meq m−2 yr−1) was calculated for H+ (74), Cl− (8.5), NO3− (33), and SO42− (70). Analysis of digested total trace-element concentrations in a subset of samples showed that the refractory elements in suburban precipitation comprised a larger portion of the total deposition of trace elements than in remote areas.
Ebrahimzadeh, Mohammad Ali; Eslami, Shahram; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad
2011-12-01
The concentrations of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in the brain, heart, liver, gill, gonad, spleen, kidney, and red and white muscles of Liza saliens (leaping mullet). Trace element levels in fish samples were analyzed by flame atomic absorption spectrometry. Among the non-essential metals, the levels of Ni and Pb in the tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, the levels of the non-essential metals were much higher than those of manganese in the red and white muscles. Fe distribution pattern in tissues was in order of spleen > liver > heart > gill > brain > kidney > gonad > red muscle > white muscle. Red muscle was not within the safe limits for human consumption because non-essential metal (Ni, Pb) contents were higher than standard limits.
Binder, A B
1998-09-04
Lunar Prospector is providing a global map of the composition of the moon and analyzing the moon's gravity and magnetic fields. It has been in a polar orbit around the moon since 16 January 1998. Neutron flux data show that there is abundant H, and hence probably abundant water ice, in the lunar polar regions. Gamma-ray and neutron data reveal the distribution of Fe, Ti, and other major and trace elements on the moon. The data delineate the global distributions of a key trace element-rich component of lunar materials called KREEP and of the major rock types. Magnetic mapping shows that the lunar magnetic fields are strong antipodal to Mare Imbrium and Mare Serenitatis and has discovered the smallest known magnetosphere, magnetosheath, and bow shock complex in the solar system. Gravity mapping has delineated seven new gravity anomalies and shown that the moon has a small Fe-rich core of about 300 km radius.
The impact of adipogenic diet on rats' tissue trace elements content.
Tinkov, A A; Gatiatulina, E R; Popova, E V; Polyakova, V S; Skalvaya, A A; Agletdinov, E F; Nikonorov, A A; Radysh, I V; Kkarganov, M Yu; Skalny, A V
2016-01-01
The influence of high-fat diet (HFD) on trace elements status, adipokine level, and markers of carbohydrate and lipid metabolism in weanling Wistar rats was investigated. A total of 20 male 1-months-old Wistar rats divided into two equal groups were used in the present study. The first group of animals obtained a standard diet (STD), whereas animals from the second group (NAFLD) were maintained on high-fat diet containing 10 and 31.6% of total calories from fat, respectively, during 1 month. Fat diet (HFD). Trace element status (using inductively coupled plasma mass spectrometry), serum levels of insulin, adiponectin, and leptin (using enzyme-linked immunosorbent assay), total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), glucose (spectrophotometrically), apolipoprotein A1 (ApoA1) and B (ApoB) (using immunoturbidimetric method) were assessed. It was shown that 1-month HFD feeding resulted in significant increase of EDAT, RPAT, total adipose tissue mass, and adipocyte area. HFD-fed animals were also characterized by a significant increase in circulating leptin levels and leptin-to-adiponectin ratio as compared to the control ones. No significant HFD-related difference in serum lipid spectrum, adiponectin, apolipoproteins, glucose, insulin, and HOMA-IR were revealed. Liver Cu, I, Mn, Se, Zn; EDAT Cr, V, Co, Cu, Fe,I, and RPAT Co, Cu, I, Cr, V, Fe, and Zn were significantly decreased in HFD-fed rats in comparison with the control group levels. Hair Co, Mn, Si, and V levels significantly exceeded the respective control values, whereas Se and I content were decreased in studied animals. At the same time, only serum Cu was significantly decreased in HFD-fed rats. The interplay between the impaired trace elements metabolism of HFD-fed weanling Wistar rats and disorder of adipokine balance was demonstrated. It is supposed that the altered trace elements status is primary and precedes other metabolic obesity-related disturbances.
Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.
1991-01-01
Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.
What do the trace metal contents of urine and toenail samples from Qatar׳s farm workers bioindicate?
Kuiper, Nora; Rowell, Candace; Nriagu, Jerome; Shomar, Basem
2014-05-01
Qatar׳s farm workers provide a unique population for exposure study: they are young, healthy males. This study combined trace element profiles in urine and toenail with survey information from 239 farm workers to assess the extent to which the biomarkers provide complementary exposure information. Urinary Mo levels (average=114 µg/L) were elevated; average urinary values (µg/L) for all other elements were: V (1.02), Cr (0.55), Mn (2.15), Fe (34.1), Co (0.47), Ni (2.95), Cu (15.0), As (47.8), Se (25.7), Cd (1.09), Ba (22.5), Pb (2.50) and U (0.15). Average toenail concentrations (mg/kg) were: Mn (2.48), Cu (4.43), As (0.26), Se (0.58), Mo (0.07), Cd (0.03), Ba (1.00), Pb (0.51) and U (0.02). No significant association was found between corresponding elements in urine and toenails. Elemental profiles suggest groundwater (with the exception of Mo) and soil-dust-crop exposure pathways cannot account for elemental variations. The main factors moderating trace element contents are related to depuration processes involving participants׳ trace element body burden prior to work in Qatar, and interactions of trace element metabolic cycles which over-ride the exposure footprint. Toenail and urine need to be carefully validated before reliable use as biomarkers of exposure in general populations for most elements in the study. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Goto, Kosuke T.; Nozaki, Tatsuo; Toyofuku, Takashi; Augustin, Adolpho H.; Shimoda, Gen; Chang, Qing; Kimura, Jun-Ichi; Kameo, Koji; Kitazato, Hiroshi; Suzuki, Katsuhiko
2017-12-01
Hydrogenous ferromanganese (Fe-Mn) crusts can provide records of long-term environmental changes during the Cenozoic. To understand the paleoceanographic conditions in the southwestern Atlantic Ocean, we investigated depth profiles of major- and trace-element concentrations as well as Os and Pb isotopic compositions in a Fe-Mn crust collected from the southern flank of the São Paulo Ridge in the southwestern Atlantic. Major and trace element data plotted on ternary Mn-Fe-10×(Ni+Co+Cu) and rare-earth element plus yttrium (REY) discrimination diagrams indicate that the analyzed sample is a typical hydrogenous Fe-Mn crust. The obtained 187Os/188Os data were matched to the Cenozoic seawater Os isotope evolution curve reconstructed from pelagic sediments. The result suggests that the Fe-Mn crust has accreted over 30 Myr with growth rates of 0.5-3 mm/Myr, although the sample likely grew in two directions during the early stage of its growth. We found no evidence of growth hiatus in the sample, which may contrast with the growth histories of many Pacific Fe-Mn crusts. Hence, the conditions favorable for the accretion of hydrogenous Fe-Mn crusts were likely to have developed on the São Paulo Ridge over the past 30 Myr. The Pb isotopic compositions show very limited ranges (e.g., 206Pb/204Pb=18.80-18.85), and are similar to those of pre-anthropogenic seawater in the Southern Ocean. As the São Paulo Ridge is located near the Vema Channel, which is presently a major path of Antarctic Bottom Water, we suggest that a strong northward bottom current has continuously swept detrital and biogenic sediments from the ridge, and played a vital role in the Fe-Mn crust formation since 30 Ma.
Grotti, Marco; Soggia, Francesco; Ardini, Francisco; Magi, Emanuele; Becagli, Silvia; Traversi, Rita; Udisti, Roberto
2015-11-01
From January to December 2010, surface snow samples were collected with monthly resolution at the Concordia station (75°06'S, 123°20'E), on the Antarctic plateau, and analysed for major and trace elements in both dissolved and particulate (i.e. insoluble particles, >0.45 μm) phase. Additional surface snow samples were collected with daily resolution, for the determination of sea-salt sodium and not-sea-salt calcium, in order to support the discussion on the seasonal variations of trace elements. Concentrations of alkaline and alkaline-earth elements were higher in winter (April-October) than in summer (November-March) by a factor of 1.2-3.3, in agreement with the higher concentration of sea-salt atmospheric particles reaching the Antarctic plateau during the winter. Similarly, trace elements were generally higher in winter by a factor of 1.2-1.5, whereas Al and Fe did not show any significant seasonal trend. Partitioning between dissolved and particulate phases did not change with the sampling period, but it depended only on the element: alkaline and alkaline-earth elements, as well as Co, Cu, Mn, Pb and Zn were for the most part (>80%) in the dissolved phase, whereas Al and Fe were mainly associated with the particulate phase (>80%) and Cd, Cr, V were nearly equally distributed between the phases. Finally, the estimated marine and crustal enrichment factors indicated that Cd, Cr, Cu, Pb and Zn have a dominant anthropogenic origin, with a possible contribution from the Concordia station activities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Strontium and Trace Metals in the Mississippi River Mixing Zone
NASA Astrophysics Data System (ADS)
Xu, Y.; Marcantonio, F.
2001-12-01
Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.
Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.
Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen
2013-08-01
Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.
Álvarez-Vázquez, Miguel Ángel; Prego, Ricardo; Caetano, Miguel; De Uña-Álvarez, Elena; Doval, Maryló; Calvo, Susana; Vale, Carlos
2017-07-01
Trace element contributions from small rivers to estuaries is an issue barely addressed in the literature. In this work, freshwater flowing into the Ria of Cedeira (NW Iberian Peninsula) was studied during a hydrological year through the input from three rivers, one considered uncontaminated (the Das-Mestas River), a second affected by urban treated wastewater discharges (the Condomiñas River), and the third containing a water reservoir for urban supply (the Forcadas River). With the objective of assessing the possible influence of human pressure, the annual yields for selected trace elements (Al, Fe, As, Cd, Co, Cr, Cu, Mn, Mo, Ni and Pb) were estimated and compared by normalizing by basin surface. Both dissolved and particulate transported elements were considered. After the data treatment and analysis it can be highlighted that: (i) the Das Mestas River is suitable to be included between the short European pristine baseline of small rivers, at least regarding the transported trace elements; (ii) natural enrichments were identified associated to the lithology of the basin in the Das-Mestas River (i.e. As) and in the Condomiñas River (i.e. Co, Cr and Ni); this fact highlights the importance of considering the local background for a proper assessment; (iii) the impoundment in the Forcadas River is related with a general decrease, even depletion, of the particulate and dissolved transported trace elements, except Mn; (iv) the discharge of sewage to the Condomiñas River is increasing the inputs to the ria of some trace elements in the particulate phase (i.e. Al, Cu and Pb). Both observed human-induced changes can be regarded as typical disturbances of trace element contributions from small rivers to estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Skytte, Lilian; Rasmussen, Kaare Lund
2013-07-30
Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.
Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz
2014-06-01
This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.
Palazzolo, Dominic L.; Crow, Andrew P.; Nelson, John M.; Johnson, Robert A.
2017-01-01
Introduction: ECIGs are currently under scrutiny concerning their safety, particularly in reference to the impact ECIG liquids (E-liquids) have on human health. One concern is that aerosolized E-liquids contain trace metals that could become trapped in respiratory tissues and induce pathology. Methods: To mimic this trapping, peristaltic pumps were used to generate and transport aerosol onto mixed cellulose ester (MCE) membranes where aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were subsequently captured and quantified. The presence of trace metals on unexposed MCE membranes and on MCE membranes exposed to mainstream smoke served as control and comparison, respectively. The presence of these metals was also determined from the E-liquid before aerosolization and untouched by the ECIG device. All metals were quantified using ICP-MS. The ECIG core assembly was analyzed using scanning electron microscopy with elemental analysis capability. Results: The contents (μg) of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn on control MCE membranes were 1.2 ± 0.2, 0.050 ± 0.002, 0.047 ± 0.003, 0.05 ± 0.01, 0.001 ± 0.001, 0.16 ± 0.04, 0.005 ± 0.003, 0.014 ± 0.006, and 0.09 ± 0.02, respectively. The contents of all trace metals on MCE membranes exposed to aerosol were similar to controls, except Ni which was significantly (p < 0.01) higher (0.024 ± 0.004 μg). In contrast, contents of Al, As, Fe, Mn, and Zn on MCE membranes exposed to smoke were significantly higher (p < 0.05) than controls. The contents of Al, As, Cu, Fe, and Mn on smoke-exposed MCE membranes were also significantly higher (p < 0.05) than their content on aerosol-exposed membranes. The contents per cigarette equivalent of metals in E-liquid before aerosolization were negligible compared to amounts of aerosolized E-liquid, except for Fe (0.002 μg before and 0.001 μg after). Elemental analysis of the core assembly reveals the presence of several of these trace metals, especially Al, Fe, Ni, and Zn. Conclusions: In general, from the single ECIG-device/E-liquid combination used, the amount of trace metals from ECIG-generated aerosol are lower than in traditional mainstream smoke, Only Ni in the ECIG-generated aerosol was higher than control. The most probable source of Ni in this aerosol is the core assembly. PMID:28119618
Monitoring trace elements in Antarctic penguin chicks from South Shetland Islands, Antarctica.
Jerez, Silvia; Motas, Miguel; Benzal, Jesús; Diaz, Julia; Barbosa, Andrés
2013-04-15
The concentration of human activities in the near-shore ecosystems from the northern Antarctic Peninsula area can cause an increasing bioavailability of pollutants for the vulnerable Antarctic biota. Penguin chicks can reflect this potential impact in the rookeries during the breeding season. They also can reflect biomagnification phenomena since they are on the top of the Antarctic food chain. The concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were measured by ICP-MS in samples of liver, kidney, muscle, bone, feather and stomach content of gentoo, chinstrap and Adélie penguin chicks (n=15 individuals) collected opportunistically in the Islands of King George and Deception (South Shetland Islands, Antarctica). The detected levels of some trace elements were not as low as it could be expected in the isolated Antarctic region. Penguin chicks can be useful indicators of trace elements abundance in the study areas. Carcasses of Antarctic penguin chicks were used to evaluate the bioavailability of trace elements in the Islands of King George and Deception. Copyright © 2013 Elsevier Ltd. All rights reserved.
Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather
2015-01-01
A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.
Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA
NASA Astrophysics Data System (ADS)
Weisend, R.; Morton, P. L.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.
2014-12-01
Phytoplankton in oligotrophic marine deserts depend on remote sources to supply trace nutrients. To examine these sources, marine particulate matter samples from the central North Pacific (Station ALOHA) were collected during the July-August 2012 HOE-DYLAN cruises and analyzed for a suite of trace (e.g., Fe, Mn) and major (e.g. Al, P) elements. Daily surface SPM samples were examined for evidence of atmospheric deposition and biological uptake, while five vertical profiles were examined for evidence of surface vertical export and subsurface horizontal transport from nearby sources (e.g., margin sediments, hydrothermal plumes). Maxima in surface particulate P (a biological tracer) corresponded with a diatom bloom, and surprisingly also coincided with maxima in particulate Al (typically a tracer for lithogenic inputs). The surface particulate Al distributions likely result from the adsorption of dissolved Al onto diatom silica frustules, not from atmospheric dust deposition. In addition, a subsurface maximum in particulate Al and P was observed four days later at 75m, possibly resulting from vertical export of the surface diatom bloom. The distributions of other bioactive trace elements (e.g. Cd, Co, Cu) will be presented in the context of the diatom bloom and other biological, chemical and physical features. A second, complementary poster is also being presented which examines the cycling of trace elements in lithogenic particles (Morton et al., "Trace Element Cycling in Lithogenic Particles at Station ALOHA").
[Monitoring of trace elements in oysters marketed in Recife, Pernambuco, Brazil].
Cavalcanti, André Dias
2003-01-01
Samples of oysters marketed in Recife, Pernambuco, Brazil, were monitored for the concentration of trace elements (Hg, Zn, Fe, Cu, and Mn) for one year (from March 2001 to February 2002). Mercury was the principal contaminant found in oysters and the element posing the greatest public health risk. Mercury levels in oysters reached 551.12 g/kg (wet weight). These values suggest that oyster consumption should be restricted, especially among communities that gather them as a subsistence activity, as well as by children and pregnant women. Evaluation of mercury concentration in seafood is an important factor for assessing the risk of contamination among individuals who are not occupationally exposed.
Assessment of total soil and plant trace elements in rice-based production systems in NE Italy
NASA Astrophysics Data System (ADS)
Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Vianello, Gilmo; Vittori, Livia; Wahsha, Mohammad; Spiandorello, Massimo
2014-05-01
Macro- and micronutrients concentrations, and PTEs contents in soils and plants (rice) from the rice district in the Venetian territory (NE Italy) have been determined by ICP-MS spectrometry, with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0-30cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with moderate soil contamination by trace elements (namely Li, Sn, Tl, Sr, Ti, Fe). Heavy metal (Sb, As, Be, Cd, Co, Cr, Ni, Pb, Cu, V, Zn ) concentrations in soils are below the threshold indicated by the Italian legislation (DM 152/2006). Cd, Sn, and Ti contents in soils are positively correlated with soil pH, while As, Fe, Li, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of Strontium, soil metal contents are always correlated between variable couples. HMs in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an accumulator plant of As, Pb, Cr, Ba, and Ti, whereas it is as an indicator plant for Cu, Fe, Ni, Mn and Zn. The results of multiple linear regression analysis showed that soil pH has a larger effect on Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn concentrations in grain than other soil parameters. The average translocation of metals from soil to root was found to be >1, irrespective of the essential/not essential function; conversely, only essential elements ((Cu, Fe, Mn, Zn) are translocated rather easily from roots to leaves (TF ≤1) via phloem (TF< <1), and very little translocated to grains (TF< <1). Therefore, it is suggested that rice could be useful in contaminated-sites restoration projects by the phytostabilization technique. Moreover, there is very limited hazard for human population consuming rice crops. Key Words: Macro- and micronutrients concentrations, heavy metals, trace elements, rice plant, Italy, accumulator plant, indicator plant * Corresponding author. Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com
Red sea corals as biomonitors of trace metal pollution.
Hanna, R G; Muir, G L
1990-05-01
Red Sea corals have been found to be biomonitors of trace metal pollution. A comparative study was undertaken on three species from a polluted area near a desalination plant at Jeddah (Saudi Arabia) and from an unpolluted area. The results show that corals take-up trace elements from their aquatic environment and thereby act to record changes in the composition of that environment. Variations in the composition of skeletons and soft tissues of corals have been correlated with changes in sea water composition. Three coral species, Porites lutea, Goniastrea retiformis and Pocillopora verrucosa have been analysed for Hg, Cu, Zn, Pb, Mn, Fe, Ni, Cd, V, Al, Cr, Mg, B, Ca, and Sr in both skeletal and soft tissues. Results show that corals in the polluted areas have significantly higher concentrations of trace elements compared to that of corals from unpolluted areas.
NASA Astrophysics Data System (ADS)
Badro, James; Fiquet, Guillaume; Guyot, François; Gregoryanz, Eugene; Occelli, Florent; Antonangeli, Daniele; d'Astuto, Matteo
2007-02-01
We measured compressional sound velocities in light element alloys of iron (FeO, FeSi, FeS, and FeS2) at high-pressure by inelastic X-ray scattering. This dataset provides new mineralogical constraints on the composition of Earth's core, and completes the previous sets formed by the pressure-density systematics for these compounds. Based on the combination of these datasets and their comparison with radial seismic models, we propose an average composition model of the Earth's core. We show that the incorporation of small amounts of silicon or oxygen is compatible with geophysical observations and geochemical abundances. The effect of nickel on the calculated light element contents is shown to be negligible. The preferred core model derived from our measurements is an inner core which contains 2.3 wt.% silicon and traces of oxygen, and an outer core containing 2.8 wt.% silicon and around 5.3 wt.% oxygen.
Solubility of aerosol trace elements: Sources and deposition fluxes in the Canary Region
NASA Astrophysics Data System (ADS)
López-García, Patricia; Gelado-Caballero, María Dolores; Collado-Sánchez, Cayetano; Hernández-Brito, José Joaquín
2017-01-01
African dust inputs have important effects on the climate and marine biogeochemistry of the subtropical North Atlantic Ocean. The impact of dust inputs on oceanic carbon uptake and climate is dependent on total dust deposition fluxes as well as the bioavailability of nutrients and metals in the dust. In this work, the solubility of trace metals (Fe, Al, Mn, Co and Cu) and ions (Ca, sulphate, nitrate and phosphate) has been estimated from the analysis of a long-time series of 109 samples collected over a 3-year period in the Canary Islands. Solubility is primarily a function of aerosol origin, with higher solubility values corresponding to aerosols with more anthropogenic influence. Using soluble fractions of trace elements measured in this work, atmospheric deposition fluxes of soluble metals and nutrients have been calculated. Inputs of dissolved nutrients (P, N and Fe) have been estimated for the mixed layer. Considering that P is the limiting factor when ratios of these elements are compared with phytoplankton requirements, an increase of 0.58 nM of P in the mixed layer (∼150 m depth) and in a year can be estimated, which can support an increase of 0.02 μg Chla L-1 y-1. These atmospheric inputs of trace metals and nutrients appear to be significant relative to the concentrations reported in this region, especially during the summer months when the water column is more stratified and deep-water nutrient inputs are reduced.
Assessment of Trace Element Concentrations in Birds of Prey in Korea.
Kim, Jungsoo; Oh, Jong-Min
2016-07-01
This study presents liver concentrations of trace elements of cinereous vultures (Aegypius monachus), common buzzards (Buteo buteo), common kestrels (Falco tinnunculus), and Eurasian eagle owls (Bubo bubo) collected in Korea from 2007 to 2008. Iron (Fe), manganese (Mn), copper (Cu), lead (Pb), and cadmium (Cd) concentrations in common kestrel juveniles were greater than in other juveniles of birds of prey. Adult cinereous vultures had greater Fe, Pb, and Cd concentrations than in those of other species, but common kestrels had greater Mn and Cu concentrations than in those of other birds of prey. Zinc concentrations in Eurasian eagle owl juveniles and adults were greater than in juveniles and adults of other species, respectively. In common kestrels, Fe, Cu, Pb, and Cd concentrations were significantly greater in adults than in juveniles. In Eurasian eagle owls, only Pb concentrations were greater in adults than in juveniles. Essential elements, such as Fe, Zn, Mn, and Cu concentrations, were within the range of other birds of prey studies. Seventeen individual birds of prey (30 %) were at a level considered Pb exposed (6-30 µg/g dw). This is a greater proportion than reported earlier in herons, egrets, and other birds from Korea. Elevated Pb concentration might be attributed to ingestion of Pb shot and bullet fragments for cinereous vultures and common buzzards, and urbanization for common kestrels. Cadmium concentrations in birds of prey were within the background concentrations (<3 µg/g dw) for wild birds.
Warren, Crystal; Duzgoren-Aydin, Nurdan S; Weston, James; Willett, Kristine L
2012-01-01
Hurricanes are relatively frequent ecological disturbances that may cause potentially long-term impacts to the coastal environment. Hurricane Katrina hit the Mississippi Gulf Coast in August 2005, and caused a storm surge with the potential to change the trace element content of coastal surface sediments. In this study, surface estuarine and marine sediments were collected monthly following the storm from ten sites along the Mississippi Gulf Coast (Mobile Bay, Grand Bay Bayous Heron and Cumbest, Pascagoula, Ocean Springs, Biloxi Gulf, Back Biloxi Bay, Gulfport Gulf, Gulfport Courthouse Rd, and Gulfport Marina). Concentrations of V, Cr, Mn, Fe, Co, Ni, Zn, As, Cd, and Pb were measured by inductively coupled plasma-mass spectrometry to evaluate their temporal and spatial variations in the year following Hurricane Katrina. Sediments were characterized by pH, particle size distribution and total carbon and nitrogen content. Trace element contents of the sediments were determined in both <2 mm and <63 μm grain size fractions. Results revealed no significant temporal and spatial variability in trace element concentrations, in either size fraction. Potential ecological risk of the sediments was assessed by using NOAA SQuiRTs' guideline values; most concentrations remained below probable adverse effects guidelines to marine organisms suggesting that trace elements redistributed by Hurricane Katrina would not cause an adverse impact on resident organisms. Instead, the concentrations of trace elements were site-dependent, with specific contaminants relating to the use of the area prior to Hurricane Katrina.
Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China
Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.
2008-01-01
The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Shujie; Li, Huaiming; Zhai, Shikui; Yu, Zenghui; Cai, Zongwei
2017-12-01
In this study, geochemical compositions of elements in sulfide samples collected from the Deyin-1 hydrothermal field near the 15°S southern Mid-Atlantic Ridge (SMAR) were analyzed by the X-ray fluorescence spectrometry (XRF) and inductively coupled plasma mass spectrometry (ICP-MS) to examine the enrichment regulations of ore-forming elements and hydrothermal mineralization. These sulfide precipitates can be classified macroscopically into three types: Fe-rich sulfide, Fe-Cu-rich sulfide and Fe-Zn-rich sulfide, and are characterized by the enrichment of base metal elements along with a sequence of Fe>Zn>Cu. Compared with sulfides from other hydrothermal fields on MAR, Zn concentrations of sulfides in the research area are significantly high, while Cu concentrations are relatively low. For all major, trace or rare-earth elements (REE), their concentrations and related characteristic parameters exhibit significant variations (up to one or two orders of magnitude), which indicates the sulfides from different hydrothermal vents or even a same station were formed at different stages of hydrothermal mineralization, and suggests the variations of chemical compositions of the hydrothermal fluid with respect to time. The hydrothermal temperatures of sulfides precipitation decreased gradually from station TVG10 (st.TVG10) to st.TVG12, and to st.TVG11, indicating that the precipitation of hydrothermal sulfides is subjected to conditions changed from high temperature to low temperature, and that the hydrothermal activity of study area was at the late stage of a general trend of evolution from strong to weak. The abnormally low concentrations of REE in sulfides and their similar chondrite-normalized REE patterns show that REEs in all sulfides were derived from a same source, but underwent different processes of migration or enrichment, or sulfides were formed at different stages of hydrothermal mineralization. The sulfides collected from the active hydrothermal vent were mainly attributed to precipitating directly from the hydrothermal fluid, while those collected from the extinct hydrothermal chimney might have already been altered by the seawater. Generally, ore-forming elements in the sulfides can be divided into three groups: Fe-based element group, Cu-based element group and Zn-based element group. The first group includes Fe, Mn, Cr, Mo, Sn, Rb and bio-enriching elements, such as P and Si, reflecting the similar characteristics to Fe in the study area. And the second group contains Cu, W, Co, Se, Te and Bi, suggesting the similar behavior with Cu. Moreover, the third group includes Zn, Hf, Hg, Cd, Ta, Ga, Pb, As, Ag, Ni and Sb, which indicates the geochemical characteristics of most dispersed trace elements controlled by Zn-bearing minerals to some extent.
Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea
Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere
2016-01-01
This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi, Meriandra dianthera, Lepidium sativum, Brassica nigra, and Nigella sativa. These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different (P < 0.05). PMID:27795982
Sium, Mussie; Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere
This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi , Meriandra dianthera , Lepidium sativum , Brassica nigra, and Nigella sativa . These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different ( P < 0.05).
Baseline study on essential and trace elements in polished rice from South Korea.
Jung, Myung Chae; Yun, Seong-Taek; Lee, Jin-Soo; Lee, Jong-Un
2005-09-01
In 2000, 63 (polished) white rice samples were collected in eight administrative areas all over South Korea and analyzed for 16 elements by inductively coupled plasma atomic emission spectrometry (ICP-AES). Potassium had the highest content, next to Mg, Ca, Si, Zn, Na, Al and Fe. Most of the samples contained worldwide average concentrations of essential and trace elements in rice grains reported by various researches. For inter-area differences in those elements in the rice, the statistical analysis showed no significant differences (p > 0.05) among the eight administrative areas, suggesting that inter-area differences were not substantial in most cases. Thus, the present data can be used as national background levels of elements in rice produced in South Korea. Using the published data on daily consumption of rice in South Korea, it was possible to estimate the daily intake of As, Cd, Cu, Pb and Zn via rice. The results showed that a regular consumption of rice produced in Korea plays an important role in accumulation of essential and trace elements in Korean, especially for farm-households consuming relatively large amounts of rice.
Nworie, Obinna Elijah; Qin, Junhao; Lin, Chuxia
2017-08-21
A batch experiment was conducted to examine the effects of six low-molecular-weight organic acids on the mobilization of arsenic and trace metals from a range of contaminated soils. The results showed that the organic acids behaved differently when reacting with soil-borne As and trace metals. Oxalic acid and acetic acid had the strongest and weakest capacity to mobilize the investigated elements, respectively. The solubilisation of iron oxides by the organic acids appears to play a critical role in mobilizing other trace metals and As. Apart from acidification and complexation, reductive dissolution played a dominant role in the dissolution of iron oxides in the presence of oxalic acid, while acidification tended to be more important for dissolving iron oxides in the presence of other organic acids. The unique capacity of oxalic acid to solubilize iron oxides tended to affect the mobilization of other elements in different ways. For Cu, Mn, and Zn, acidification-driven mobilization was likely to be dominant while complexation might play a major role in Pb mobilization. The formation of soluble Fe and Pb oxalate complexes could effectively prevent arsenate or arsenite from combining with these metals to form solid phases of Fe or Pb arsenate or arsenite.
Su, Shaowei; Chen, Beibei; He, Man; Hu, Bin; Xiao, Zuowei
2014-02-01
A novel Fe3O4@SiO2@polyaniline-graphene oxide composite (MPANI-GO) was prepared through a simple noncovalent method and applied to magnetic solid phase extraction (MSPE) of trace rare earth elements (REEs) in tea leaves and environmental water samples followed by inductively coupled plasma mass spectrometry (ICP-MS) detection. The prepared MPANI-GO was characterized by transmission electron microscopy and vibrating sample magnetometer. Various parameters affecting MPANI-GO MSPE of REEs have been investigated. Under the optimized conditions, the limits of detection (LODs, 3σ) for REEs were in the range of 0.04-1.49 ng L(-1) and the relative standard deviations (RSDs, c=20 ng L(-1), n=7) were 1.7-6.5%. The accuracy of the proposed method was validated by analyzing a Certified Reference Material of GBW 07605 tea leaves. The method was also successfully applied for the determination of trace REEs in tea leaves and environmental water samples. The developed MPANI-GO MSPE-ICP-MS method has the advantages of simplicity, rapidity, high sensitivity, high enrichment factor and is suitable for the analysis of trace REEs in samples with complex matrix. © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Ebraheem, A.; Dao, E.; Geraki, K.; Farquharson, M. J.
2014-04-01
Breast cancer is the most common cancer and ovarian cancer is the 8th most common cancer affecting women worldwide. This study highlights the changes of trace element levels accompanied by the progression from ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) of the breast, using micro probe Synchrotron Radiation X-ray Fluorescence (μSRXRF). The average values for the increase in Ca, Fe and Zn in tumour regions with respect to surrounding regions for the DCIS samples were significantly higher compared to the increase in the IDC samples (P <0.01).This study was also carried out to find a connection between ovarian cancer and breast cancer with respect to the cellular distribution of Ca, Cu, Fe, and Zn. For IDC, DCIS and ovarian cases, the statistical analysis reveals a significant increase in the levels of Ca, Cu and Zn concentrations in cancer tissue when compared to the normal surrounding tissue. For Fe, the differences between tumour regions with respect to surrounding regions were found to be not significant in IDC and ovarian cases. In DCIS cases, the results reveal a significant increase in the levels of Fe in cancer tissue when compared to the surrounding normal breast tissue (P <0.01).
NASA Astrophysics Data System (ADS)
van Westrenen, W.; Allan, N. L.; Blundy, J. D.; Purton, J. A.; Wood, B. J.
2000-05-01
We have studied the energetics of trace element incorporation into pure almandine (Alm), grossular (Gros), pyrope (Py) and spessartine (Spes) garnets (X 3Al 2Si 3O 12, with X = Fe, Ca, Mg, Mn respectively), by means of computer simulations of perfect and defective lattices in the static limit. The simulations use a consistent set of interatomic potentials to describe the non-Coulombic interactions between the ions, and take explicit account of lattice relaxation associated with trace element incorporation. The calculated relaxation (strain) energies Urel are compared to those obtained using the Brice (1975) model of lattice relaxation, and the results compared to experimental garnet-melt trace element partitioning data interpreted using the same model. Simulated Urel associated with a wide range of homovalent (Ni, Mg, Co, Fe, Mn, Ca, Eu, Sr, Ba) and charge-compensated heterovalent (Sc, Lu, Yb, Ho, Gd, Eu, Nd, La, Li, Na, K, Rb) substitutions onto the garnet X-sites show a near-parabolic dependence on trace element radius, in agreement with the Brice model. From application of the Brice model we derived apparent X-site Young's moduli EX(1+, 2+, 3+) and the 'ideal' ionic radii r0(1+, 2+, 3+), corresponding to the minima in plots of Urel vs. radius. For both homovalent and heterovalent substitutions r0 increases in the order Py-Alm-Spes-Gros, consistent with crystallographic data on the size of garnet X-sites and with the results of garnet-melt partitioning studies. Each end-member also shows a marked increase in both the apparent EX and r0 with increasing trace element charge ( Zc). The increase in EX is consistent with values obtained by fitting to the Brice model of experimental garnet-melt partitioning data. However, the increase in r0 with increasing Zc is contrary to experimental observation. To estimate the influence of melt on the energetics of trace element incorporation, solution energies ( Usol) were calculated for appropriate exchange reactions between garnet and melt, using binary and other oxides to simulate cation co-ordination environment in the melt. Usol also shows a parabolic dependence on trace element radius, with inter-garnet trends in EX and r0 similar to those found for relaxation energies. However, r0( i+) obtained from minima in plots of Usol vs. radius are located at markedly different positions, especially for heterovalent substitutions ( i = 1, 3). For each end-member garnet, r0 now decreases with increasing Zc, consistent with experiment. Furthermore, although different assumptions for trace element environment in the melt, e.g., REE 3+ (VI) vs. REE 3+ (VIII), lead to parabolae with differing curvatures and minima, relative differences between end-members are always preserved. We conclude that: 1. The simulated variation in r0 and EX between garnets is largely governed by the solid phase. This stresses the overriding influence of crystal local environment on trace element partitioning. 2. Simulations suggest r0 in garnets varies with trace element charge, as experimentally observed. 3. Absolute values of r0 and EX can be influenced by the presence and structure of a coexisting melt. Thus, quantitative relations between r0, E and crystal chemistry should be derived from well-constrained systematic mineral-melt partitioning studies, and cannot be predicted from crystal-structural data alone.
Airborne mineral components and trace metals in Paris region: spatial and temporal variability.
Poulakis, E; Theodosi, C; Bressi, M; Sciare, J; Ghersi, V; Mihalopoulos, N
2015-10-01
A variety of mineral components (Al, Fe) and trace metals (V, Cr, Mn, Ni, Cu, Zn, Cd, Pb) were simultaneously measured in PM2.5 and PM10 fractions at three different locations (traffic, urban, and suburban) in the Greater Paris Area (GPA) on a daily basis throughout a year. Mineral species and trace metal levels measured in both fractions are in agreement with those reported in the literature and below the thresholds defined by the European guidelines for toxic metals (Cd, Ni, Pb). Size distribution between PM2.5 and PM10 fractions revealed that mineral components prevail in the coarse mode, while trace metals are mainly confined in the fine one. Enrichment factor analysis, statistical analysis, and seasonal variability suggest that elements such as Mn, Cr, Zn, Fe, and Cu are attributed to traffic, V and Ni to oil combustion while Cd and Pb to industrial activities with regional origin. Meteorological parameters such as rain, boundary layer height (BLH), and air mass origin were found to significantly influence element concentrations. Periods with high frequency of northern and eastern air masses (from high populated and industrialized areas) are characterized by high metal concentrations. Finally, inner city and traffic emissions were also evaluated in PM2.5 fraction. Significant contributions (>50 %) were measured in the traffic site for Mn, Fe, Cr, Zn, and Cu, confirming that vehicle emissions contribute significantly to their levels, while in the urban site, the lower contributions (18 to 33 %) for all measured metals highlight the influence of regional sources on their levels.
Microbial biofilms control economic metal mobility in an acid-sulfate hydrothermal system
NASA Astrophysics Data System (ADS)
Phillips-Lander, C. M.; Roberts, J. A.; Hernandez, W.; Mora, M.; Fowle, D. A.
2012-12-01
Trace metal cycling in hydrothermal systems has been the subject of a variety of geochemical and economical geology studies. Typically in these settings these elements are sequestered in sulfide and oxide mineral fractions, however in near-surface low-temperature environments organic matter and microorganisms (typically in mats) have been implicated in their mobility through sorption. Here we specifically examine the role of microbial biofilms on metal partitioning in an acid-sulfate hydrothermal system. We studied the influence of microorganisms and microbial biofilms on trace metal adsorption in Pailas de Aguas I, an acid-sulfate hot spring on the southwest flank of Rincon de la Vieja, a composite stratovolcano in the Guanacaste Province, Costa Rica. Spring waters contain high suspended loads, and are characterized by high T (79.6-89.3oC), low pH (2.6-4), and high ionic strengths (I= 0.5-0.8). Waters contain high concentrations of the biogeochemically active elements Fe (4-6 mmol/l) and SO42- (38 mmol/l), but PO43- are below detection limits (bdl). Silver, Ni, and Mo concentrations are bdl; however other trace metals are present in solution in concentrations of 0.1-0.2 mg/l Cd, 0.2-0.4 mg/l Cr and V, 0.04-1 mg/l Cu,. Preliminary 16S rRNA analyses of microorganisms in sediments reveal several species of algae, including Galderia sp., Cyanidium sp, γ-proteobacteria, Acidithiobacillus caldus, Euryarcheota, and methanogens. To evaluate microbial biofilms' impact on trace metal mobility we analyzed a combination of suspended, bulk and biofilm associated sediment samples via X-ray diffraction (XRD) and trace element sequential extractions (SE). XRD analysis indicated all samples were primarily composed of Fe/Al clay minerals (nontronite, kaolinite), 2- and 6-line ferrihydrite, goethite, and hematite, quartz, and opal-α. SE showed the highest concentrations of Cu, Mo, and V were found in the suspended load. Molybdenum was found primarily in the residual and organic fractions of suspended sediments. Copper is distributed in all but the carbonate fraction of suspended sediments. Vanadium was bound primarily to the oxide and residual fractions with Si, which is probably found as opal-α. In contrast, biofilm sediments had the highest concentrations of Fe, Si, Cd, Al, Zn, Ag, and Ni. Trace metals were sequestered mainly in the organic fraction in decreasing concentrations of: Cu
NASA Astrophysics Data System (ADS)
Pokrovsky, O. S.; Schott, J.; Dupré, B.
2006-07-01
The chemical status of ˜40 major and trace elements (TE) and organic carbon (OC) in pristine boreal rivers draining the basaltic plateau of Central Siberia (Putorana) and interstitial solutions of permafrost soils was investigated. Water samples were filtered in the field through progressively decreasing pore size (5 μm → 0.22 μm → 0.025 μm → 10 kDa → 1 kDa) using cascade frontal filtration technique. Most rivers and soil porewaters exhibit 2-5 times higher than the world average concentration of dissolved (i.e., <0.22 μm) iron (0.03-0.4 mg/L), aluminum (0.03-0.4 mg/L), OC (10-20 mg/L) and various trace elements that are usually considered as immobile in weathering processes (Ti, Zr, Ga, Y, REEs). Ultrafiltration revealed strong relationships between concentration of TE and that of colloidal Fe and Al. According to their partition during filtration and association with colloids, two groups of elements can be distinguished: (i) those weakly dependent on ultrafiltration and that are likely to be present as truly dissolved inorganic species (Li, Na, K, Si, Mn, Mo, Rb, Cs, As, Sb) or, partially (20-30%) associated with small size Fe- and Al-colloids (Ca, Mg, Sr, Ba) and to small (<1-10 kDa) organic complexes (Co, Ni, Cu, Zn), and (ii) elements strongly associated with colloidal iron and aluminum in all ultrafiltrates largely present in 1-100 kDa fraction (Ga, Y, REEs, Pb, V, Cr, Ti, Ge, Zr, Th, U). TE concentrations and partition coefficients did not show any detectable variations between different colloidal fractions for soil porewaters, suprapermafrost flow and surface streams. TE concentration measurements in river suspended particles demonstrated significant contribution (i.e., ⩾30%) of conventionally dissolved (<0.22 μm) forms for usually "immobile" elements such as divalent transition metals, Cd, Pb, V, Sn, Y, REEs, Zr, Hf, Th. The Al-normalized accumulation coefficients of TE in vegetation litter compared to basalts achieve 10-100 for B, Mn, Zn, As, Sr, Sn, Sb, and the larch litter degradation is able to provide the major contribution to the annual dissolved flux of most trace elements. It is hypothesized that the decomposition of plant litter in the topsoil horizon leads to Fe(III)-, Al-organic colloids formation and serves as an important source of elements in downward percolating fluids.
Determination of trace elements in the reproduction systems of some rare animals using pixe
NASA Astrophysics Data System (ADS)
Suqing, Chen; Nengming, Wang; Jianxuan, Chen; Dazhong, Zhang
In order to search for the significance of artificial feeding, reproduction and heredity, trace elements in the reproductive systems of some rare animals, including giant panda, lesser panda, marmot and river deer, have been determined. Typcial X-ray spectra of various samples are given. The elemental contents in ovary and testis of the giant panda and the lesser panda are calculated by means of yttrium as an internal standard. Elemental relative concentrations are calculated from peak areas in the spectra for thick samples. It is found that for the concentration of the elements Cr, Mn, Fe, Ni, Cu, As in the ovary there exist no significant different between the giant panda and the lesser panda. The concentration of Zn, however, shows a remakable difference. The importance of zinc in biological processes is discussed.
Ennouri, Rym; Zaaboub, Noureddine; Fertouna-Bellakhal, Mouna; Chouba, Lassad; Aleya, Lotfi
2016-03-01
Tunis Gulf (northern Tunisia, Mediterranean Sea) is of great economic importance due to its abundant fish resources. Rising urbanization and industrial development in the surrounding area have resulted in an increase in untreated effluents and domestic waste discharged into the gulf via its tributary streams. Metal (Cd, Pb, Hg, Cu, Zn, Fe, and Mn) and major element (Mg, Ca, Na, and K) concentrations were measured in the grain fine fraction <63 μm by atomic absorption spectrophotometry. Results showed varying spatial distribution patterns for metals, indicating complex origins and controlling factors such as anthropogenic activities. Sediment metal concentrations are ranked as follows: Fe > Mg > Zn > Mn > Pb > Cu > Cd > Hg. Metals tend to be concentrated in proximity to source points, suggesting that the mineral enrichment elements come from sewage of coastal towns and pollution from industrial dumps and located along local rivers, lagoons, and on the gulf shore itself. This study showed that trace metal and major element concentrations in surface sediments along the Tunis Gulf shores were lower than those found in other coastal areas of the Mediterranean Sea.
Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos
2018-03-01
Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.
A view on elemental distribution alterations of coronary artery walls in atherogenesis
NASA Astrophysics Data System (ADS)
Pallon, J.; Homman, P.; Pinheiro, T.; Halpern, M. J.; Malmqvist, K.
1995-09-01
In this study, the Nuclear Microprobe technique was employed to investigate the elemental concentration alterations of minor and trace elements at the different cellular layers and structures of freeze-dried cryosections of human coronary arteries. Nuclear microprobe analyses enable to determine 7 elements, i.e., P, S, Cl, K, Ca, Fe and Zn in the artery walls. Furthermore, it was possible to identify early modifications of the artery due to the atherosclerosis progression that cannot be detected with specific staining or conventional histological methods. These modifications are shown to be related to abnormal Fe and Zn depositions in the surroundings of the elastic laminae. Later on, the calcifications of these regions occur, contributing to the elastic laminae damage and leading to the atheroma growing and maturation.
Noël, Marie; Christensen, Jennie R; Spence, Jody; Robbins, Charles T
2015-10-01
We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size=30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r(2)=0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. Copyright © 2015 Elsevier B.V. All rights reserved.
de Macêdo, Gustavo R; Tarantino, Taiana B; Barbosa, Isa S; Pires, Thaís T; Rostan, Gonzalo; Goldberg, Daphne W; Pinto, Luis Fernando B; Korn, Maria Graças A; Franke, Carlos Roberto
2015-05-15
Concentrations of elements (As, Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Sr, V, Zn) were determined in liver, kidneys and bones of Eretmochelys imbricata and Chelonia mydas specimens found stranded along the northern coast of Bahia, Brazil. Results showed that the concentrations of Cd, Cu, Ni and Zn in the liver and kidneys of juvenile C. mydas were the highest found in Brazil. We also observed a significant difference (p<0.05) on the bioaccumulation of trace elements between the two species: Al, Co, Mo, Na and Se in the liver; Al, Cr, Cu, K, Mo, Ni, Pb, Sr and V in the kidneys; and Al, Ba, Ca, Cd, Mn, Ni, Pb, Se, Sr and V in the bones. This study represents the first report on the distribution and concentration of trace elements in E. imbricata in the Brazilian coast. Copyright © 2015 Elsevier Ltd. All rights reserved.
Muñoz-Vera, Ana; Peñas Castejón, Jose Matías; García, Gregorio
2016-09-15
The effects of an abandoned mining area, exploited for centuries in the mining district of Cartagena-La Union, result in a continuous supply of heavy metals into the Mar Menor coastal lagoon after rain episodes. As a consequence, concentration of trace elements in water column and sediments of this ecosystem is usually higher than in other areas. For monitoring ecosystem health, this study assessed the ability of Rhizostoma pulmo to bioaccumulate trace elements. A total of 57 individuals were sampled at eight different sampling stations during the summer of 2012. Although the concentrations of different analyzed elements (Al, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sn, and Pb) were moderate, bioconcentration levels in relation to seawater metal concentration were extremely high. In any case, the use or disposal of these organisms should consider their metal content, because of their potential environmental and health implications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anicić, M; Tasić, M; Frontasyeva, M V; Tomasević, M; Rajsić, S; Mijić, Z; Popović, A
2009-02-01
Active biomonitoring with wet and dry moss bags was used to examine trace element atmospheric deposition in the urban area of Belgrade. The element accumulation capability of Sphagnum girgensohnii Russow was tested in relation to atmospheric bulk deposition. Moss bags were mounted for five 3-month periods (July 2005-October 2006) at three representative urban sites. For the same period monthly bulk atmospheric deposition samples were collected. The concentrations of Al, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, and Pb were determined by instrumental neutron activation analyses and atomic absorption spectrometry. Significant accumulation of most elements occurred in the exposed moss bags compared with the initial moss content. High correlations between the elements in moss and bulk deposits were found for V, Cu, As, and Ni. The enrichment factors of the elements for both types of monitor followed the same pattern at the corresponding sites.
Kolker, A.; Finkelman, R.B.
1998-01-01
Mode-of-occurrence data are summarized for 13 potentially hazardous elements (Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, Hg, Pb, Th, U) in coal. Recent work has refined mode-of-occurrence data for Ni, Cr, and As, as compared to previous summaries. For Cr, dominant modes of occurrence include the clay mineral illite, an amorphous CrO(OH) phase, and Cr-bearing spinels. Nickel is present in Fe-sulfides (pyrite and marcasite) and is also organically bound. Arsenic-bearing pyrite may be the dominant host of As in bituminous coals. Concentration data for the 13 HAPs, obtained primarily by quantitative microanalysis techniques, are compiled for mineral and organic portions of coal. HAPs element concentrations are greatest in Fe-sulfides, and include maxima of 2,300 ppm (Co), 4,500 ppm (Ni), 4.9wt.% (As), 2,000 ppm (Se), 171 ppm (Hg), and 5,500 ppm (Pb). Trace-element microanalysis is a significant refinement over bulk methods, and shows that there is considerable trace-element variation on a fine scale for a given coal, and from one coal to another. ?? 1998 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Kosior, Grzegorz; Samecka-Cymerman, Aleksandra; Kolon, Krzysztof; Brudzińska-Kosior, Anna; Bena, Waldemar; Kempers, Alexander J
2015-07-01
Intensive lignite and glass sand mining and industrial processing release waste which may contain elements hazardous to the aquatic ecosystem and constitute a potential risk to human health. Therefore, their levels must be carefully controlled. As a result, we examined the effects of sewage on the aquatic Fontinalis antipyretica moss in the Nysa Łużycka (lignite industry) and the Kwisa Rivers (glass sand industry). The Nysa Łużycka and the Kwisa Rivers appeared to be heavily polluted with As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn, which were reflected in the extremely high concentration of these elements in F. antipyretica along the studied watercourses. In the Nysa Łużycka, trace element composition in the moss species is affected by lignite industry with accumulation in its tissues of the highest concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb and Zn, while samples from the Kwisa sites influenced by glass sand industry revealed the highest concentrations of As, V and Fe. The principal component and classification analysis classifies the concentration of elements in the aquatic F. antipyretica moss, thus enabling the differentiation of sources of water pollution in areas affected by mining industry.
Alhidary, Ibrahim A; Alsofi, M A; Abdoun, K A; Samara, E M; Okab, A B; Al-Haidary, A A
2018-03-01
This study aimed to evaluate the effect of dietary chromium (Cr) supplementation on the apparent metabolism of some trace elements in camel calves reared under hot summer conditions. The study was conducted on a total of 15 male camel calves (5-6 months old) reared under hot summer conditions for 12 weeks. The animals were housed individually under shelter and divided into three dietary treatment groups (diets supplemented with 0.0, 0.5, or 1.0 mg Cr/kg DM), five animals each. At the end of the study, a metabolic trial was conducted on all camels for the evaluation of trace elements metabolism. Cr excretion, absorption, and retention showed an increasing trend with the increasing level of dietary Cr supplementation. Dietary Cr supplementation at 0.5 mg Cr/kg DM to camel calves resulted in a significant (P < 0.05) increase in Cu and an increasing trend in Zn and Mn excretion via urine and feces. However, Fe retention increased significantly (P < 0.05) in camel calves fed on diet supplemented with Cr. Dietary Cr supplementation to camel calves resulted in an increasing trend of plasma Cr concentration, while plasma concentration of Cu and Zn tended to decrease and without any effect on plasma Fe concentration. The results of the present study suggests that care should be taken for the negative interaction of Cr with the utilization of other trace elements, in cases where Cr is supplemented to the diet as a feed additive to promote growth and immunity under hot climatic conditions.
NASA Astrophysics Data System (ADS)
Denniston, Rhawn F.; Shearer, Charles K.; Layne, Graham D.; Vaniman, David T.
1997-05-01
Fracture-lining calcite samples from Yucca Mountain, Nevada, obtained as part of the extensive vertical sampling in studies of this site as a potential high-level waste repository, have been characterized according to microbeam-scale (25-30 μm) trace and minor element chemistry, and cathodoluminescent zonation patterns. As bulk chemical analyses are limited in spatial resolution and are subject to contamination by intergrown phases, a technique for analysis by secondary ion mass spectrometry (SIMS) of minor (Mn, Fe, Sr) and trace (REE) elements in calcite was developed and applied to eighteen calcite samples from four boreholes and one trench. SIMS analyses of REE in calcite and dolomite have been shown to be quantitative to abundances < 1 × chondrite. Although the low secondary ion yields associated with carbonates forced higher counting times than is necessary in most silicates, Mn, Fe, Sr, and REE analyses were obtained with sub-ppm detection limits and 2-15% analytical precision. Bulk chemical signatures noted by Vaniman (1994) allowed correlation of minor and trace element signatures in Yucca Mountain calcite with location of calcite precipitation (saturated vs. unsaturated zone). For example, upper unsaturated zone calcite exhibits pronounced negative Ce and Eu anomalies not observed in calcite collected below in the deep unsaturated zone. These chemical distinctions served as fingerprints which were applied to growth zones in order to examine temporal changes in calcite crystallization histories; analyses of such fine-scale zonal variations are unattainable using bulk analytical techniques. In addition, LREE (particularly Ce) scavenging of calcite-precipitating solutions by manganese oxide phases is discussed as the mechanism for Ce-depletion in unsaturated zone calcite.
Mesías Monsalve, Stephanie; Martínez, Leonardo; Yohannessen Vásquez, Karla; Alvarado Orellana, Sergio; Klarián Vergara, José; Martín Mateo, Miguel; Costilla Salazar, Rogelio; Fuentes Alburquenque, Mauricio; Cáceres Lillo, Dante D
2018-06-01
Air quality in schools is an important public health issue because children spend a considerable part of their daily life in classrooms. Particulate size and chemical composition has been associated with negative health effects. We studied levels of trace element concentrations in fine particulate matter (PM 2.5 ) in indoor versus outdoor school settings from six schools in Chañaral, a coastal city with a beach severely polluted with mine tailings. Concentrations of trace elements were measured on two consecutive days during the summer and winter of 2012 and 2013 and determined using X-ray fluorescence. Source apportionment and element enrichment were measured using principal components analysis and enrichment factors. Trace elements were higher in indoor school spaces, especially in classrooms compared with outdoor environments. The most abundant elements were Na, Cl, S, Ca, Fe, K, Mn, Ti, and Si, associated with earth's crust. Conversely, an extremely high enrichment factor was determined for Cu, Zn, Ni and Cr; heavy metals associated with systemic and carcinogenic risk effects, whose probably origin sources are industrial and mining activities. These results suggest that the main source of trace elements in PM 2.5 from these school microenvironments is a mixture of dust contaminated with mine tailings and marine aerosols. Policymakers should prioritize environmental management changes to minimize further environmental damage and its direct impact on the health of children exposed.
Major and trace elements in organically or conventionally produced milk.
Hermansen, John E; Badsberg, Jens H; Kristensen, Troels; Gundersen, Vagn
2005-08-01
A total of 480 samples of milk from 10 organically and 10 conventionally producing dairy farms in Denmark and covering 8 sampling periods over 1 year (triplicate samplings) were analysed for 45 trace elements and 6 major elements by high-resolution inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. Sampling, sample preparation, and analysis of the samples were performed under carefully controlled contamination-free conditions. The dairy cattle breeds were Danish-Holstein or Jersey. Sources of variance were quantified, and differences between production systems and breeds were tested. The major source of variation for most elements was week of sampling. Concentrations of Al, Cu, Fe, Mo, Rb, Se, and Zn were within published ranges. Concentrations of As, Cd, Cr, Mn and Pb were lower, and concentrations of Co and Sr were higher than published ranges. Compared with Holsteins, Jerseys produced milk with higher concentrations of Ba, Ca, Cu, Fe, Mg, Mn, Mo, P, Rh, and Zn and with a lower concentration of Bi. The organically produced milk, compared with conventionally produced milk, contained a significantly higher concentration of Mo (48 v. 37 ng/g) and a lower concentration of Ba (43 v. 62 ng/g), Eu (4 v. 7 ng/g), Mn (16 v. 20 ng/g) and Zn (4400 v. 5150 ng/g respectively). The investigation yielded typical concentrations for the following trace elements in milk, for which no or very few data are available: Ba, Bi, Ce, Cs, Eu, Ga, Gd, In, La, Nb, Nd, Pd, Pr, Rh, Sb, Sm, Tb, Te, Th, Ti, Tl, U, V, Y, and Zr.
Quantification of multiple elements in dried blood spot samples.
Pedersen, Lise; Andersen-Ranberg, Karen; Hollergaard, Mads; Nybo, Mads
2017-08-01
Dried blood spots (DBS) is a unique matrix that offers advantages compared to conventional blood collection making it increasingly popular in large population studies. We here describe development and validation of a method to determine multiple elements in DBS. Elements were extracted from punches and analyzed using inductively coupled plasma-mass spectrometry (ICP-MS). The method was evaluated with quality controls with defined element concentration and blood spiked with elements to assess accuracy and imprecision. DBS element concentrations were compared with concentrations in venous blood. Samples with different hematocrit were spotted onto filter paper to assess hematocrit effect. The established method was precise and accurate for measurement of most elements in DBS. There was a significant but relatively weak correlation between measurement of the elements Mg, K, Fe, Cu, Zn, As and Se in DBS and venous whole blood. Hematocrit influenced the DBS element measurement, especially for K, Fe and Zn. Trace elements can be measured with high accuracy and low imprecision in DBS, but contribution of signal from the filter paper influences measurement of some elements present at low concentrations. Simultaneous measurement of K and Fe in DBS extracts may be used to estimate sample hematocrit. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Dolci, Natiely Natalyane; Sá, Fabian; da Costa Machado, Eunice; Krul, Ricardo; Rodrigues Neto, Renato
2017-09-10
Levels of trace elements were investigated in feathers of 51 adults and 47 eggshells of brown boobies Sula leucogaster from one bird colony in the Marine National Park of Currais Islands, Brazil, between December 2013 and October 2014. Average concentrations (μg g -1 , dry weight) in feathers and eggshells, respectively, were Al 50.62-9.58, As 0.35-2.37, Cd 0.05-0.03, Co 0.38-2.1, Cu 15.12-0.99, Fe 47.47-22.92, Mg 815.71-1116.92, Ni 0.29-11.85, and Zn 94.16-1.98. In both arrays, the average concentration of Mg was the highest among all the elements analyzed, while the lowest was recorded for Cd. As and Ni presented levels at which biological impacts might occur. Zn concentrations were higher than those considered normal in other organs. Levels of Al, Fe, Cu, Zn, and Cd were higher in feathers, whereas higher contents of Mg, Co, Ni, and As occurred in eggshells. The comparison between the elements in eggshells collected at different seasons showed no significant difference (p > 0.05) due, probably, to the lack of temporal variation on foraging behavior and/or on bioavailability of trace elements. Metals and arsenic in feathers and eggshells were mostly not correlated. Future studies on Paraná coast should focus on the speciation of the elements, especially As, Ni, and Zn, which proved to be a possible problem for the environment and biota. It is necessary to investigate both matrices, shell and internal contents of the eggs, in order to verify if the differences previously reported in other studies also occur in eggs of brown boobies in the Marine National Park of Currais Islands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bea, F.
1991-07-01
A study was made of the chemical fractionation associated with four cases of anatectic segregation of low melt-fraction cordieritic granites from migmatized meta-greywackes. The aims of the study were to (1) reveal the fractionation patterns of major and trace elements, (2) compare the major element chemistry of leucogranites and the quantitative behavior of source minerals during anatexis - inferred by mass-balance adjustment - with available experimental data for peraluminous systems, and (3) discuss the behavior of trace elements in crustal melting by comparing the chemically determined composition of leucogranites with the results of three fractionation models. Two of these assumemore » a perfect diffusive behavior of trace elements within residual solids, but they use a different set of distribution coefficients. The third assumes a perfect nondiffusive behavior. In relation to their source rocks, the leucogranites are strongly depleted in Li, Transition Elements, and Light Rare Earth Elements, but enriched in K{sub 2}O, SiO{sub 2}, and Ba. Mass balance analysis using the Anatexis Mixing Model shows that the chemistry of cordierite leucogranites is compatible with its having originated by closed-system, water-undersaturated anatexis on previously migmatized meta-greywackes, leaving a residue enriched in cordierite plus biotite and exhausted in K-feldspar. Biotite melts congruently unless important amounts of sillimanite were also present in the source. Compared with experimental metals obtained from sources with the same chemical composition but with a different femic mineralogy (biotite + sillimanite, instead of cordierite + biotite), the Pena Negra leucogranites are richer in K{sub 2}O and MgO with a lower Fe/(Fe + Mg) ratio. The differences in magnesium are believed to result from the changes in the mineral assemblage of the source rocks.« less
Trace metals in Bermuda rainwater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jickells, T.D.; Knap, A.H.; Church, T.M.
1984-02-20
The concentration of Cd, Cu, Fe, Mn, Ni, Pb, and Zn have been measured in Bermuda rainwater. Factor analysis indicates that Fe, Mn, and Pb have similar to acidic components derived from North America. The other metals all behave simiarly but differently to the acides. Sea salt, even after allowances for fractionation, apparently contributes minor amounts of Cu, Pb, and Zn and uncertain amounts of Fe, Mn, and Cd to Atlantic Ocean precipitation. Wash out ratios, calculated from this data along with earlier measurements of atmospheric trace metal concentration on Bermuda, are of the same order as those reported frommore » other remote ocean areas. The wet depositional fluxes of Cu, Ni, Pb, and Zn to the western Atlantic Ocean are significant compared to measured oceanic flux rates. However, the wet depositional fluxes of Fe and Mn to this area are relatively small, suggesting additional inputs, while an excess wet depositional flux of Cd suggests large-scale atmospheric recycling of this element.« less
Inferring episodic atmospheric iron fluxes in the Western South Atlantic
NASA Astrophysics Data System (ADS)
Evangelista, Heitor; Maldonado, Juan; dos Santos, Elaine A.; Godoi, Ricardo H. M.; Garcia, Carlos A. E.; Garcia, Virginia M. T.; Jonhson, Erling; Dias da Cunha, Kenya; Leite, Carlos Barros; Van Grieken, René; Van Meel, Katleen; Makarovska, Yaroslava; Gaiero, Diego M.
2010-02-01
Iron (Fe) and other trace elements such as Zn, Mn, Ni and Cu are known as key-factors in marine biogeochemical cycles. It is believed that ocean primary productivity blooms in iron deficient regions can be triggered by iron in aeolian dust. Up to now, scarce aerosol elemental composition, based on measurements over sea at the Western South Atlantic (WSA), exist. An association between the Patagonian semi-desert dust/Fe and chlorophyll-a variability at the Argentinean continental shelf is essentially inferred from models. We present here experimental data of Fe enriched aerosols over the WSA between latitudes 22°S-62°S, during 4 oceanographic campaigns between 2002 and 2005. These data allowed inferring the atmospheric Fe flux onto different latitudinal bands which varied from 30.4 to 1688 nmolFe m -2 day -1 (October 29th-November 15th, 2003); 5.83-1586 nmolFe m -2 day -1 (February 15th-March 6th, 2004) and 4.73-586 nmolFe m -2 day -1(October 21st-November 5th, 2005).
NASA Astrophysics Data System (ADS)
Khairudin, Nurshafiq Ezam; Siong, Khoo Kok; Siong, Wee Boon
2014-02-01
Lichens have been used as effective biomonitors of atmospheric pollutants as they can take up nutrients and pollutants directly from the atmosphere. In this study, trace element contents in epiphytic lichens were determined using INAA method. Samples were collected from 7 sampling locations around Bandar Baru Bangi, Selangor. The elements detected were As (1.73+0.85 mg/kg), Ce (3.65+1.91 mg/kg), Co (0.29+0.12 mg/kg), Cr (5.92+3.54 mg/kg), Cs (0.92+0.25 mg/kg), Eu (0.03+0.02 mg/kg), Fe (1280+760 mg/kg), Hf (0.37+0.18 mg/kg), La (1.52+0.89 mg/kg), Rb (27.7+4.8 mg/kg), Sc (0.33+0.19 mg/kg), Sm (0.28+0.16 mg/kg), Th (1.21+0.62 mg/kg) and Zn (116+27 mg/kg). Comparisons were then made between the elemental concentrations obtained and the baseline data from literature. Results showed that most of the elements were within the concentration range of the baseline data. Enrichment factors (EF) of the trace element in lichens showed that most of the elements were within the range of the baseline data except for As which was found to be slightly enriched (EF: 13.2 - 28.5). Regression analysis indicated significant correlation (p<0.05) with Sc for most of the elements which signifies crustal input except for Cs and Rb. The poor correlations of Cs and Rb with Sc may be due to the mobility of these elements. In summary, trace element data obtained using INAA were very useful and demonstrated that lichens were suitable biomonitors for identifying potential trace element pollutants in ambient air around the sampling area.
NASA Astrophysics Data System (ADS)
Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.
2016-12-01
We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.
Xu, Nian; Morgan, Bree; Rate, Andrew W
2018-05-17
Land disposal of dredged sulfide-rich coastal sediments generates secondary coastal acid sulfate soils (CASS), as previously reduced sulfide minerals oxidise to produce acidic drainage rich in Fe, SO 4 2- and rare-earth elements (REEs). Few studies investigate both the source and the sink of REEs in the context of interpreting their mobilisation and potential use in tracing anthropogenic activity. Here we investigate REE signatures in estuarine sediments (and overlying surface waters) that have received acute, long-term (>15 years) acidic drainage from legacy sulfuric dredge spoils. It was found that the dredge spoil continues to act as a source of acidity (pH 3.5-5.5), Fe and REEs during development of CASS, and contains negligible acid volatile sulfide (AVS, a proxy for FeS) and relatively low concentrations of ΣREE (mean 44.5 mg/kg, range 4.1-362 mg/kg). In the receiving sediments, high AVS concentrations (mean 92.2 μmol/g, range 0.38-278 μmol/g) reflect elevated FeS content, likely due to high inputs of Fe and SO 4 2- from the acidic drainage, and correspond with a high concentration of total S (mean 852 μmol/g, range 105-2209 μmol/g) and an accumulation of ΣREE (mean 670 mg/kg, range 19.9-1819 mg/kg). Importantly, where drain sediments that were previously enriched in highly reactive sulfidic minerals and trace elements and have become exposed to the atmosphere (e.g. Site 3) and partially oxidised, they provide a further source of acidification, remobilising the REEs to the downstream sediments. Interestingly, we also found a clear positive correlation between phosphorous and REEs both in the dredge spoil and sediment, suggesting phosphate minerals may act as a sink for REEs in CASS influenced drain sediments. This is further supported by strong positive gadolinium anomalies (1.1-1.6) and high calculated anthropogenic Gd values (12-38%), which may reflect the influence of phosphate fertiliser on this eutrophic system. Copyright © 2018 Elsevier B.V. All rights reserved.
Skrivan, M; Skrivanová, V; Marounek, M
2005-10-01
An experiment was conducted to evaluate the effect of dietary content and combinations of Zn, Fe, and Cu on deposition of these elements in egg components, liver, and excreta. Excreta were applied as a manure to a lawn, and 3 mo later soil and herbage samples were taken and analyzed. The experiment comprised 144 hens in 8 groups. The basal diet contained Zn, Fe, and Cu at 63.4, 92.8, and 9.0 mg/kg, respectively. It was supplemented with 1, 2, or 3 trace elements (inorganic forms) at 80 mg of Zn/kg, 120 mg of Fe/kg, and 25 mg of Cu/kg. Recovery of Zn, Fe, and Cu in eggs of hens fed the basal diet was 10.7, 9.8, and 4.4% of the alimentary intake, respectively. A Zn-Cu antagonism was observed; deposition of Zn in the yolk was significantly decreased by Cu addition and vice versa (P < 0.01). Supplementation of the basal diet with Fe increased Fe concentration in egg yolk and white by 6.3 and 2.2%, respectively. The combination of Fe with Zn and Cu, however, increased Fe concentration in the yolk and white by 36.7 and 34.9%, respectively (P < 0.01). The enrichment of eggs with the other elements was marginal (Cu) or absent (Zn). Effects of Zn, Fe, and Cu of the basal diet on liver concentrations of these elements were relatively small, and no antagonism between Zn and Cu was apparent. Supplementation of the basal diet with the combination of Zn and Fe, however, significantly decreased hepatic concentration of Cu. On the other hand, Cu supplementation significantly increased Fe concentration in livers of hens fed the Fe-supplemented diet (P < 0.01). Concentrations of Zn, Fe, and Cu in excreta were related to their dietary content. High concentrations of Zn, Fe, and Cu in excreta corresponded with limited deposition of the 3 elements in eggs and liver. Concentrations of Zn, Fe, and Cu in herbage correlated significantly with the supply of these elements by hen excreta into soil. The Zn supplied by hen excreta was more stable than Fe and Cu; thus Zn could accumulate in the soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Huan; Qian, Yu; Cochran, J. Kirk
Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less
Feng, Huan; Qian, Yu; Cochran, J. Kirk; ...
2017-01-18
Here, this article reports a nanometer-scale investigation of trace element (As, Ca, Cr, Cu, Fe, Mn, Ni, S and Zn) distributions in the root system Spartina alterniflora during dormancy. The sample was collected on a salt marsh island in Jamaica Bay, New York, in April 2015 and the root was cross-sectioned with 10 μm resolution. Synchrotron X-ray nanofluorescence was applied to map the trace element distributions in selected areas of the root epidermis and endodermis. The sampling resolution was 60 nm to increase the measurement accuracy and reduce the uncertainty. The results indicate that the elemental concentrations in the epidermis,more » outer endodermis and inner endodermis are significantly (p < 0.01) different. The root endodermis has relatively higher concentrations of these elements than the root epidermis. Furthermore, this high resolution measurement indicates that the elemental concentrations in the outer endodermis are significantly (p < 0.01) higher than those in the inner endodermis. These results suggest that the Casparian strip may play a role in governing the aplastic transport of these elements. Pearson correlation analysis on the average concentrations of each element in the selected areas shows that most of the elements are significantly (p < 0.05) correlated, which suggests that these elements may share the same transport pathways.« less
Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana
2017-01-01
An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.
Zduniak, Piotr; Surmacki, Adrian; Erciyas-Yavuz, Kiraz; Chudzińska, Maria; Barałkiewicz, Danuta
2014-09-01
Melanin is the most common pigment in animal integuments including bird plumage. It has been shown that several trace elements may play roles in the production and signaling function of melanin-colored plumage. We investigated coloration and content of various metal elements in the rectrices of two insectivorous passerines, Common Redstarts (Phoenicurus phoenicurus) and Blackcaps (Sylvia atricapilla), which have eumelanin- and pheomelanin-based coloration, respectively. We hypothesized that 1) the two species would differ in concentrations of metals important in melanin synthesis (Ca, Fe, Cu, Zn), 2) differences in metal concentration levels would be related to feather coloration. Our study confirmed the first prediction and provides the first evidence that selected elements may play a greater role in pheomelanin than in eumelanin synthesis. Concentrations of three elements considered as important in melanin synthesis (Ca, Fe, Zn) were 52% to 93% higher in rusty colored Common Redstart feathers compared to the dark gray Blackcap feathers. However, element concentrations were not correlated with feather coloration or sex in either species. Our study suggests that, of the two melanin forms, pheomelanin synthesis may bear higher costs associated with the acquisition of specific elements or limited elements may create trade-offs between ornamentation and other physiological functions. Our findings warrant further investigations designed to better understand the roles of macro- and microelements in the synthesis of both forms of melanin. Copyright © 2014 Elsevier Inc. All rights reserved.
Bulk, rare earth, and other trace elements in Apollo 14 and 15 and Luna 16 samples.
NASA Technical Reports Server (NTRS)
Laul, J. C.; Wakita, H.; Showalter, D. L.; Boynton, W. V.; Schmitt, R. A.
1972-01-01
Measurement of 24 and 34 bulk, minor, and trace elements in lunar specimens by instrumental and radiochemical neutron activation analysis shows greater Al2O3, Na2O, and K2O abundances and higher TiO2, FeO, MnO and Cr2O3 depletions in Apollo 14 soil samples as compared to Apollo 11 samples and to most of Apollo 12 samples. The uniform abundances in 14230 core tube soils and three other Apollo 14 soils indicate that the regolith is uniform to at least 22 cm depth and within about 200 m from the lunar module.
Kara, Derya; Fisher, Andrew; Hill, Steve
2015-11-01
A new method for the extraction and preconcentration of trace elements (Al, Ba, Cd, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn) from edible oils by producing detergentless micro-emulsions via an ultrasound-assisted extraction using a water phase containing Lipase at pH 3 as an extractant was developed. The trace elements in the water phase post-extraction were determined against matrix matched standards using ICP-MS. In the first step of the work, the parameters that affect extraction, such as pH, the volume of 1% lipase in the water phase and the ultrasonic and centrifugation times were optimized. Under the optimal conditions, the detection limits (µg kg(-1)) were 0.46, 0.03, 0.007, 0.028, 0.67, 0.038, 0.022, 0.14, 0.17, 0.05 and 0.07 for Al, Ba, Cd, Cu, Fe, Mn, Mo, Ni, Ti, V and Zn respectively for edible oils (3 Sb/m). A certified reference material (EnviroMAT HU-1 Used oil) was analysed to check the accuracy of the developed method. Results obtained were in agreement with certified values with a t-test showing that no significant differences at the 95% confidence levels were found. The proposed method was applied to different edible oils such as sunflower oil, rapeseed oil, olive oil and salmon oil. Copyright © 2015 Elsevier B.V. All rights reserved.
Davraz, Aysen; Aksever, Fatma; Afsin, Mustafa
2017-12-01
The discharge of geothermal fluid into the natural water environment may lead to serious damages. In this study, the impact of geothermal waste water on surface water has been investigated in the up-Buyuk Menderes River, Turkey. Thermal return water from district heating and from thermal bath in the Sandıklı region were the most important source of major solutes and trace elements to the up-Buyuk Menderes River and tributaries. The thermal contribution causes a drastic increase in Na, SO 4 ions, EC, and temperature of surface waters. The concentrations of As, Al, B, Fe, Cr, Li, S, P, Pb, U, Mn, and Zn are increasing dramatically downstream of thermal water inputs in the Kufi Creek tributary. In addition to natural thermal water inputs, water quality was impacted by anthropogenic trace and major element inputs from surface waters. The increased of some trace elements (Al, As, B, Cu, Cd, Fe, Mn, P, U) in surface water are related to anthropogenic activities such as agricultural activities, sewage effluents, and stockyards in the study area. Additionally, surface water quality of the up-Buyuk Menderes River and tributaries was evaluated according to standards given by the Environmental Protection Agency of both Turkey and USA. Our study demonstrates the influence of thermal water inputs on water quality of surface waters.
Devadasu, Elsin Raju; Madireddi, Sai Kiran; Nama, Srilatha; Subramanyam, Rajagopal
2016-12-01
A trace element, iron (Fe) plays a pivotal role in photosynthesis process which in turn mediates the plant growth and productivity. Here, we have focused majorly on the photochemistry of photosystem (PS) II, abundance of proteins, and organization of supercomplexes of thylakoids from Fe-depleted cells in Chlamydomonas reinhardtii. Confocal pictures show that the cell's size has been reduced and formed rosette-shaped palmelloids; however, there is no cell death. Further, the PSII photochemistry was reduced remarkably. Further, the photosynthetic efficiency analyzer data revealed that both donor and acceptor side of PSII were equally damaged. Additionally, the room-temperature emission spectra showed the fluorescence emission maxima increased due to impaired energy transfer from PSII to PSI. Furthermore, the protein data reveal that most of the proteins of reaction center and light-harvesting antenna were reduced in Fe-depleted cells. Additionally, the supercomplexes of PSI and PSII were destabilized from thylakoids under Fe-deficient condition showing that Fe is an important element in photosynthesis mechanism.
Isotope pattern deconvolution as a tool to study iron metabolism in plants.
Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio; Lucena, Juan José; García-Tomé, Maria Luisa; Hernández-Apaolaza, Lourdes
2008-01-01
Isotope pattern deconvolution is a mathematical technique for isolating distinct isotope signatures from mixtures of natural abundance and enriched tracers. In iron metabolism studies measurement of all four isotopes of the element by high-resolution multicollector or collision cell ICP-MS allows the determination of the tracer/tracee ratio with simultaneous internal mass bias correction and lower uncertainties. This technique was applied here for the first time to study iron uptake by cucumber plants using 57Fe-enriched iron chelates of the o,o and o,p isomers of ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA) and ethylenediamine tetraacetic acid (EDTA). Samples of root, stem, leaves, and xylem sap, after exposure of the cucumber plants to the mentioned 57Fe chelates, were collected, dried, and digested using nitric acid. The isotopic composition of iron in the samples was measured by ICP-MS using a high-resolution multicollector instrument. Mass bias correction was computed using both a natural abundance iron standard and by internal correction using isotope pattern deconvolution. It was observed that, for plants with low 57Fe enrichment, isotope pattern deconvolution provided lower tracer/tracee ratio uncertainties than the traditional method applying external mass bias correction. The total amount of the element in the plants was determined by isotope dilution analysis, using a collision cell quadrupole ICP-MS instrument, after addition of 57Fe or natural abundance Fe in a known amount which depended on the isotopic composition of the sample.
Speciations of trace metals in the Danube alluvial sediments within an oil refinery.
Relić, Dubravka; Dordević, Dragana; Popović, Aleksandar; Blagojević, Tamara
2005-07-01
A sequential extraction procedure was applied to identify forms of Ni, Zn, Pb and Cu with Fe- and Mn-oxides associated in alluvial sediments of the River Danube within Pancevo Oil Refinery (Serbia). The five steps of the sequential extraction procedure partitioned metals into: CH(3)COONH(4) extractable (S1); NH(2)OH.HCl carbonate extractable and easily reducible (S2); (NH(4))(2)C(2)O(2)/H(2)C(2)O(2) moderately reducible (S3); H(2)O(2)-HNO(3) organic extractable (S4); and HCl acid soluble residue (S5). Extracted concentrations of trace metals, analyzed after all five steps, were found to be (mg kg(-1)) for Mn: 656, Fe: 26734, Ni: 32.3, Zn: 72.8, Pb: 13.4 and Cu: 27.0. Most of the elements were found in acid soluble residue, characterizing stable compounds in sediments. Non-residual fractions of trace metals (sum of the first four fractions) were analyzed because they are more bioavailable than the residual amount. Correlation analysis and two multivariate analysis methods (principal component and cluster analysis) were used to understand and visualize the associations between the non-residual fractions of trace metals and certain forms, more or less crystalline of Fe- and Mn-oxides within the analyzed sediments, since Fe- and Mn-oxides play an important role in trace metal sorption within aquatic systems, especially within the Danube alluvium where the fluctuations of groundwater are very frequent and the level of groundwater could come close to surface.
Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.
Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos
2018-04-01
Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
A SIMS study of lunar 'komatiitic glasses' - Trace element characteristics and possible origin
NASA Technical Reports Server (NTRS)
Shearer, C. K.; Papike, J. J.; Galbreath, K. C.; Wentworth, S. J.; Shimizu, N.
1990-01-01
In Apollo 16 regolith breccias, Wentworth and McKay (1988) identified a suite of minute (less than 120 microns) 'komatiitic glass beads'. The wide major element compositional range, and ultra-Mg-prime character of the glasses suggest a variety of possible origins from complex impact processes to complex volcanic processes involving rather unusual and primitive magmatism. The extent of trace element depletion or enrichment in these glasses appears to be correlated to the siderophile character of the element (ionization potential or experimentally determined silicate melt/Fe metal partition coefficients. The ultra-Mg-prime glasses are depleted in Co relative to a bulk Moon Mg/Co exhibited by many lunar samples (volcanic glasses, basalts, regolith breccia, estimated upper mantle). The low Co and high incompatible element concentrations diminish the possibility that these glasses are a product of lunar komatiitic volcanism or impact, excavation, and melting of a very high Mg-prime plutonic unit.
Rodriguez, J H; Pignata, M L; Fangmeier, A; Klumpp, A
2010-06-01
The accumulation of polycyclic aromatic hydrocarbons (PAHs) in Tillandsia capillaris Ruiz and Pav. form capillaris and trace elements in T. capillaris and Lolium multiflorum (LAM) cv. Lema was assessed and evaluated in the city of Stuttgart, Germany. Several sites (urban, suburban and rural) categorized according to type and intensity of vehicular traffic were investigated. At these sites, plants of T. capillaris and standardized cultures of L. multiflorum were exposed to ambient air. Foliar concentrations of PAHs (16 priority pollutants according to US-EPA) and of the trace elements Br, Co, Cu, Fe, Mn, Ni, Pb and Zn were determined. A high level of vehicular traffic was associated with the largest concentrations of PM(10) in ambient air and with the highest contents of PAHs and heavy metals in the bioindicator plants. The results showed a similar pattern between T. capillaris and the standardized biomonitor L. multiflorum. Therefore, these results allow us to propose T. capillaris as a suitable bioindicator to assess the distribution of pollution impacts caused by PAHs and trace elements in different subtropical and tropical regions. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Zhang, Wanli; Zhang, Lei; Li, Aimin
2015-11-01
This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enrichment and Bioavailability of Trace Elements in Soil in Vicinity of Railways in Japan.
Wang, Zhen; Watanabe, Izumi; Ozaki, Hirozaku; Zhang, Jianqiang
2018-01-01
This study focuses on the concentrations, distribution, pollution levels, and bioavailability of 12 trace elements in soils along 6 different railways in Japan. Three diesel powered railways and three electricity powered railways were chosen as target. Surface soils (< 3 cm) were collected in vicinity of railways for analysis. Digestion and extraction were performed before concentration and bioavailability analysis. Enrichment factor was applied to investigate contamination levels of selected elements. The mean concentrations of Cr, Co, Ni, Cu, Zn, Sn, and Pb in soil samples were higher than soil background value in Japan. Concentrations of trace elements in soils along different railway had different characteristics. Horizontal distribution of Cu, Zn, Cd, Sn, and Pb in soil samples showed obviously downtrend with distance along railways with high frequency. Concentrations of V, Mn, Fe, and Co were higher in soils along railways which pass through city center. According to principal component analysis and cluster analysis, concentrations of Cu, Zn, Sn, and Pb could be considered as the indicators of soil contamination level along electricity powered trains, whereas indicators along diesel powered trains were not clear. Enrichment factor analysis proved that operation of freight trains had impact on pollution level of Cr, Ni, and Cd. Bioavailability of Mn, Co, Zn, and Cd in soil along electricity-powered railways were higher, and bioavailability of Pb in railways located in countryside was lower. Thus, enrichment and bioavailability of trace elements can be indicators of railway-originated trace elements pollution in soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killingbeck, K.T.
1985-02-01
Autumnal resorption and accretion of copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) were measured in the foliage of five gallery forest trees species on the Konza Prairie Research Natural Area. Presenescence and postabscission leaves from five trees each of Quercus macrocarpa, Q. muehlenbergii, Fraxinus pennsylvanica, Celtis occidentalis, and Ulmus rubra, were sampled. Three species resorbed 19, 25, and 26%, respectively, of their presenescence foliar Zn, and one species resorbed 35% of its presenescence foliar Fe. This validates the prediction made by others that Zn and Fe are withdrawn from the senescing foliage of at least some deciduous species.more » Net accretions of Cu (43, 44, 69%), Fe (36, 40%), and Mn (19, 57%) occurred during the same period. The two oak species were responsible for most of the resorption, while the three non-oak species accounted for all of the significant accretions. Such well-defined differences in element conservation may influence interspecific competition by accentuating, or compensating for, species differences in element uptake ability and element use efficiency. Demand:availability ratios proved useful in predicting the likelihood that a given element would be conserved through resorption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coussy, Samuel; Grangeon, Sylvain; Bataillard, Philippe
The prediction of the long term trace element mobility in anthropogenic soils would be a way to anticipate land management and should help in reusing slightly contaminated materials. In the present study, iron (Fe) and zinc (Zn) status evolution was investigated in a 100-year old Technosol. The site of investigation is an old brownfield located in the Nord-Pas-de-Calais region (France) which has not been reshaped since the beginning of the last century. The whole soil profile was sampled as a function of depth, and trace elements mobility at each depth was determined by batch leaching test. A specific focus onmore » Fe and Zn status was carried out by bulk analyses, such as selective dissolution, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Fe and Zn status in the profile samples was also studied using laterally resolved techniques such as μ-particle induced X-ray emission (μ-PIXE) and μ-Rutherford backscattering spectroscopy (μ-RBS). The results indicate that (i) Fe is mainly under Fe(III) form, except a minor contribution of Fe(II) in the deeper samples, (ii) some Fe species inherited from the past have been weathered and secondary minerals are constituted of metal-bearing sulphates and Fe (hydr)oxides, (iii) ferrihydrite is formed during pedogenesis (iv) 20 to 30% more Fe (hydr)oxides are present in the surface than in depth and (v) Zn has tetrahedral coordination and is sorbed to phases of increasing crystallinity when depth increases. Zn-bearing phases identified in the present study are: complex Fe, Mn, Zn sulphides, sulphates, organic matter, and ferrihydrite. Soil formation on such material does not induce a dramatic increase of Zn solubility since efficient scavengers are concomitantly formed in the system. However, Technosols are highly heterogeneous and widely differ from one place to another. The behavior examined in this study is not generic and will depend on the type of Technosol and on the secondary minerals formed as well as on the nature and amount of organic matter.« less
Magmatic apatite - a window into melt evolution of the Dalgety pluton.
NASA Astrophysics Data System (ADS)
Pope, M. D.; Tailby, N.; Webster, J. D.
2017-12-01
The Dalgety Pluton is located in the Lachlan Fold Belt in southeastern Australia, and is a coarse grained, peraluminous, S-type, biotite granodiorite. Historically, pluton emplacement has been thought of as cooling from a single, large body of magma over a geologically quick period. Current studies suggest issues with this model and propose a slower, incremental model of emplacement in some settings (Glazner et al., 2004). This work proposes that the emplacement of the Dalgety Pluton occurred in incremental phases demonstrated through halogen, minor, and trace element concentrations in apatites. Apatites from 13 samples collected along a north-south transect of the pluton were analyzed using a 5-spectrometer Cameca SX-100 calibrated for seventeen elements (F, Na, Cl, P, Mg, Al, Si, Ca, S, K, Ti, Mn, Fe, Sr, Ba, La, and Ce) at the American Museum of Natural History. The majority of apatites are fluorapatites, having >50 % F, <15 % Cl, and <25 % OH (calculated from Ketchum et al., 2015). However, the concentrations of the halogens vary throughout the pluton with the highest Cl concentrations near the southern edge. Two of the minor elements, Mn and Fe, also show distinct variation with the lowest concentrations being 0.35 wt% in Mn and 0.25 wt% in Fe and the highest being 1.10 wt% and 0.95 wt%, respectively. Trace elements Ce and La vary as well with their highest concentrations being 0.29 wt% and 0.11 wt% and their lowest for both being below the detection limit of the electron probe. Elemental variation across the pluton is seen in the concentration of minor elements and halogens with a sharp increases at 10,000 meters and again at 21,000 meters from the southern rim of the pluton. Similar shifts in concentration are also seen in the trace elements, however the concentrations decrease at these distances. These wholesale elemental fluctuations in composition are indicative of a dramatic shift in melt composition supporting the hypothesis of multiple melt injection in the Dalgety Pluton. Reference: Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W. and Taylor, R.Z., 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers?. GSA today, 14(4/5), pp.4-12.
Cryptic trace-element alteration of Anorthosite, Stillwater complex, Montana
Czamanske, G.K.; Loferski, P.J.
1996-01-01
Evidence of cryptic alteration and correlations among K, Ba, and LREE concentrations indicate that a post-cumulus, low-density aqueous fluid phase significantly modified the trace-element contents of samples from Anorthosite zones I and II of the Stillwater Complex, Montana. Concentrations of Ba, Ca, Co, Cr, Cu, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Sr, Th, Zn, and the rare-earth elements (REE) were measured in whole rocks and plagioclase separates from five traverses across the two main plagioclase cumulate (anorthosite) zones and the contiguous cumulates of the Stillwater Complex in an attempt to better understand the origin and solidification of the anorthosites. However, nearly the entire observed compositional range for many trace elements can be duplicated at a single locality by discriminating between samples rich in oikocrystic pyroxene and those which are composed almost entirely of plagioclase and show anhedral-granular texture. Plagioclase separates with high trace-element contents were obtained from the pyroxene-poor samples, for which maps of K concentration show plagioclase grains to contain numerous fractures hosting a fine-grained, K-rich phase, presumed to be sericite. Secondary processes in layered intrusions have the potential to cause cryptic disturbance, and the utmost care must be taken to ensure that samples provide information about primary processes. Although plagioclase from Anorthosite zones I and II shows significant compositional variation, there are no systematic changes in the major- or trace-element compositions of plagioclase over as much as 630 m of anorthosite thickness or 18 km of strike length. Plagioclase in the two major anorthosite zones shows little distinction in trace-element concentrations from plagioclase in the cumulates immediately below, between, and above these zones.
Tabelin, Carlito Baltazar; Hashimoto, Ayaka; Igarashi, Toshifumi; Yoneda, Tetsuro
2014-03-01
Sedimentary rocks excavated in Japan from road- and railway-tunnel projects contain relatively low concentrations of hazardous trace elements like boron (B), arsenic (As) and selenium (Se). However, these seemingly harmless waste rocks often produced leachates with concentrations of hazardous trace elements that exceeded the environmental standards. In this study, the leaching behaviors and release mechanisms of B, As and Se were evaluated using batch leaching experiments, sequential extraction and geochemical modeling calculations. The results showed that B was mostly partitioned with the residual/crystalline phase that is relatively stable under normal environmental conditions. In contrast, the majority of As and Se were associated with the exchangeable and organics/sulfides phases that are unstable under oxidizing conditions. Dissolution of water-soluble phases controlled the leaching of B, As and Se from these rocks in the short term, but pyrite oxidation, calcite dissolution and adsorption/desorption reactions became more important in the long term. The mobilities of these trace elements were also strongly influenced by the pH of the rock-water system. Although the leaching of Se only increased in the acidic region, those of B and As were enhanced under both acidic and alkaline conditions. Under strongly acidic conditions, the primarily release mechanism of B, As and Se was the dissolution of mineral phases that incorporated and/or adsorbed these elements. Lower concentrations of these trace elements in the circumneutral pH range could be attributed to their strong adsorption onto minerals like Al-/Fe-oxyhydroxides and clays, which are inherently present and/or precipitated in the rock-water system. The leaching of As and B increased under strongly alkaline conditions because of enhanced desorption and pyrite oxidation while that of Se remained minimal due to its adsorption onto Fe-oxyhydroxides and co-precipitation with calcite. Copyright © 2013 Elsevier B.V. All rights reserved.
Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho
Piper, D.Z.
2001-01-01
Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE, above both terrigenous and biogenic contributions, define bottom-water redox conditions as having been oxygen depleted, that is, denitrifying but not sulfate reducing.
Stavros, Hui-Chen W; Stolen, Megan; Durden, Wendy Noke; McFee, Wayne; Bossart, Gregory D; Fair, Patricia A
2011-03-01
The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations. Copyright © 2010. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wang, Xin; Pu, Wei; Zhang, Xueying; Ren, Yong; Huang, Jianping
2015-08-01
We collected 92 snow samples from 13 sites across northeastern China from January 7 to February 15, 2014. The surface snow samples were analyzed for the major water-soluble ions (SO42-, NO3-, F-, Cl-, Na+, K+, Ca2+, Mg2+, and NH4+) and trace element (Al, As, Mn, V, Cd, Cu, Pb, Zn, Fe, Cr, and Ni). The results indicated that the higher concentrations of NO3- and SO42- and the trace elements Zn, Pb, Cd, Ni, and Cu were likely attributable to enhanced local industrial emissions in East Asia especially in China. In addition, snow samples characterized by higher enrichment factors of trace elements (Cu, Cd, As, Zn, Pb) were indicative of an anthropogenic source. Emissions from fossil fuel combustion and biomass burning were likely important contributors to the chemical elements in seasonal snow with long-range transport. On the other hand, the large attribution of K+ appeared in the higher latitude demonstrated that biomass burning was a dominated factor of the chemical species in seasonal snow in the higher latitude of China than that in the lower latitude. Finally, an interannual comparison with the 2010 China snow survey also confirmed the source attributions of chemical speciation in seasonal snow in these regions.
Toxic trace elements at gastrointestinal level.
Vázquez, M; Calatayud, M; Jadán Piedra, C; Chiocchetti, G M; Vélez, D; Devesa, V
2015-12-01
Many trace elements are considered essential [iron (Fe), zinc (Zn), copper (Cu)], whereas others may be harmful [lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As)], depending on their concentration and chemical form. In most cases, the diet is the main pathway by which they enter our organism. The presence of toxic trace elements in food has been known for a long time, and many of the food matrices that carry them have been identified. This has led to the appearance of legislation and recommendations concerning consumption. Given that the main route of exposure is oral, passage through the gastrointestinal tract plays a fundamental role in their entry into the organism, where they exert their toxic effect. Although the digestive system can be considered to be of crucial importance in their toxicity, in most cases we do not know the events that occur during the passage of these elements through the gastrointestinal tract and of ascertaining whether they may have some kind of toxic effect on it. The aim of this review is to summarize available information on this subject, concentrating on the toxic trace elements that are of greatest interest for organizations concerned with food safety and health: Pb, Cd, Hg and As. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario
NASA Astrophysics Data System (ADS)
Marcon, V.; Kaszuba, J. P.
2012-12-01
Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a similar manner, increasing in concentration with injection but continually decreasing after about 830 hours until termination of the experiment. SEM images and geochemical models indicate initial dissolution of all rocks and minerals, re-precipitation of Ca-Mg-Fe carbonates and Fe-sulfides, and precipitation of anhydrite in both systems. Calcite dissolves more readily than dolomite in these experiments, but re-precipitates in veins on dolomite. If brines leak from a storage reservoir and mix with a potable aquifer, the experimental results suggest that Ba, Cu, and Zn will not be contaminants of concern. Pb, Fe and As (still under consideration) initially exceed the EPA threshold and may require careful attention in a sequestration scenario. However, experimentally observed trends of decreasing trace metal concentration suggest that these metals could become less of a concern during the life of a carbon repository. Finally, the caprock plays an active role in trace metal mobilization in the system. The caprock provides a source of metals, although subsequent precipitation may remove metals from solution.
NASA Astrophysics Data System (ADS)
Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo
2015-12-01
Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (<5 μm) contain halite crystals indicating a saline environment during magnetite growth. The combination of these observations are consistent with a formation model for IOA deposits in northern Chile that involves crystallization of magnetite microlites from a silicate melt, nucleation of aqueous fluid bubbles on magnetite surfaces, and formation and ascent of buoyant fluid bubble-magnetite aggregates. Decompression of the fluid-magnetite aggregate during ascent along regional-scale transcurrent faults promotes continued growth of the magmatic magnetite microlites from the Fe-rich magmatic-hydrothermal fluid, which manifests in magnetite rims that have trace element abundances consistent with growth from a magmatic-hydrothermal fluid. Mass balance calculations indicate that this process can leach and transport sufficient Fe from a magmatic source to form large IOA deposits such as Los Colorados. Furthermore, published experimental data demonstrate that a saline magmatic-hydrothermal ore fluid will scavenge significant quantities of metals such as Cu and Au from a silicate melt, and when combined with solubility data for Fe, Cu and Au, it is plausible that the magmatic-hydrothermal ore fluid that continues to ascend from the IOA depositional environment can retain sufficient concentrations of these metals to form iron oxide copper-gold (IOCG) deposits at lateral and/or stratigraphically higher levels in the crust. Notably, this study provides a new discrimination diagram to identify magnetite from Kiruna-type deposits and to distinguish them from IOCG, porphyry and Fe-Ti-V/P deposits, based on low Cr (<100 ppm) and high V (>500 ppm) concentrations.
Ternengo, S; Marengo, M; El Idrissi, O; Yepka, J; Pasqualini, V; Gobert, S
2018-04-01
A study on Trace Elements (TE) from sea urchin gonads has been conducted in the western Mediterranean Sea. Contamination data were used to determine a Trace Method Pollution Index (TEPI). TE concentrations varied considerably depending on the location of the sampling stations. The results showed that five trace elements (Zn, Fe, As, Al, Cu) are ubiquitous. The geographical area considered (Corsica) represents an important range of environmental conditions and types of pressure that can be found in the western Mediterranean Sea. TEPI was used to classify the studied sites according to their degree of contamination and allowed reliable comparison of TE contamination between local and international sites. TE contamination of the western Mediterranean Sea displayed a north-to-south gradient, from the Italian coasts down through the insular Corsican coasts to the north African littoral. Due to the increasing environmental pressure on the Mediterranean Sea, a regular monitoring of TE levels in marine organisms is necessary to prevent any further environmental deterioration. Copyright © 2018 Elsevier Ltd. All rights reserved.
Horowitz, A.J.; Elrick, K.A.; Smith, J.J.
2001-01-01
Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.
Trace elements in sera of patients with hepatitis B: Determination and analysis
NASA Astrophysics Data System (ADS)
Saod, Wahran M.; Darwish, Nadiya T.; Zaidan, Tahseen A.; Alfalujie, Abdul Wahab A.
2018-04-01
Chronic Hepatitis B (HBV) is the leading cause of morbidity and mortality worldwide with about 248 million people having HBV infection. Trace elements e.g. copper (Cu), zinc (Zn), selenium (Se) and iron (Fe) are constituent components of many metal proteins and metalloenzymes in human sera. Therefore, the ratios of these trace elements in human sera are often stated to be a good marker for diagnosing various diseases including HBV. The aims of this study are: to compare the level of trace elements in sera of patients infected with HBV and healthy participants, and to evaluate the efficiency of analytical techniques (e.g. Inductively Coupled Plasma-Mass spectrometry (ICP-MS), Atomic Absorption Spectroscopy (hydride generation) (AAS) and Graphite Furnace Atomic Absorption Spectroscopy (GFAAS) that are currently used to detect Fe and Se elements in Patients' human sera. The findings of this study show that the concentration range of copper element between (132.80±28.64 µg/dl) to (105.66±23.20 µg/dl) was significantly higher in HBV infected patients as compared to those in healthy controls (91.27±9.20 µg/dl). Iron concentration range between (206.64±61.60 µg/l) to (170.00±36.71 µg/l) was significantly higher in HBV infected patients as compared to those in healthy controls (158.00±15.13 µg/l). However, patients with HBV had significantly lower serum concentrations of zinc with a concentration range between (111.64±20.90 µg/dl) to (99.25±24.06 µg/dl) as compared to those in healthy controls (113.44±16.38 µg/dl). While selenium concentration range between (64.39±7.39 µg/l) to (51.10±4.96 µg/l) was significantly lower in HBV infected patients as compared to those in healthy controls (67.68±7.60) (μg/l). Moreover, the results of this study suggest that (AAS) technique was the most accurate method to measure the concentration of selenium element, while (UV and ICP-MS) analytical techniques have the same efficiency in measuring the iron concentration.
Habte, Girum; Hwang, In Min; Kim, Jae Sung; Hong, Joon Ho; Hong, Young Sin; Choi, Ji Yeon; Nho, Eun Yeong; Jamila, Nargis; Khan, Naeem; Kim, Kyong Su
2016-12-01
This study was aimed to establish the elemental profiling and provenance of coffee samples collected from eleven major coffee producing regions of Ethiopia. A total of 129 samples were analyzed for forty-five elements using inductively coupled plasma (ICP)-optical emission spectroscopy (OES), ICP-mass spectrometry (MS) and direct mercury analyzer (DMA). Among the macro elements, K showed the highest levels whereas Fe was found to have the lowest concentration values. In all the samples, Ca, K, Mg, P and S contents were statistically significant (p<0.05). Micro elements showed the concentrations order of: Mn>Cu>Sr>Zn>Rb>Ni>B. Contents of the trace elements were lower than the permissible standard values. Inter-regions differentiation by cluster analysis (CA), linear discriminant analysis (LDA) and principal component analysis (PCA) showed that micro and trace elements are the best chemical descriptors of the analyzed coffee samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Highly Reducing Partitioning Experiments Relevant to the Planet Mercury
NASA Technical Reports Server (NTRS)
Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.
2017-01-01
With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury's surface by MESSENGER (K, Na, Fe, Ti, Cl, Al, Cr, Mn, U, Th) and other geochemically relevant elements (P, F, H, N, C, Co, Ni, Mo, Ce, Nd, Sm, Eu, Gd, Dy, Yb) are added to the starting composition at trace abundances (approximately 500 ppm) so that they are close enough to infinite dilution to follow Henry's law of trace elements, and their partitioning behavior can be measured between the metal, silicate, and sulfide phases. The results of these experiments will allow us to assess the thermal and magmatic evolution of the planet Mercury from a geochemical standpoint.
Bravo, Sandra; García-Ordiales, Efrén; García-Navarro, Francisco Jesús; Amorós, José Ángel; Pérez-de-Los-Reyes, Caridad; Jiménez-Ballesta, Raimundo; Esbrí, José María; García-Noguero, Eva María; Higueras, Pablo
2017-09-07
Castilla-La Mancha (central Spain) is a region characterized by significant agricultural production aimed at high-quality food products such as wine and olive oil. The quality of agricultural products depends directly on the soil quality. Soil geochemistry, including dispersion maps and the recognition of baselines and anomalies of various origins, is the most important tool to assess soil quality. With this objective, 200 soil samples were taken from agricultural areas distributed among the different geological domains present in the region. Analysis of these samples included evaluation of edaphological parameters (reactivity, electrical conductivity, organic matter content) and the geochemistry of major and trace elements by X-ray fluorescence. The dataset obtained was statistically analyzed for major elements and, in the case of trace elements, was normalized with respect to Al and analyzed using the relative cumulative frequency (RCF) distribution method. Furthermore, the geographic distribution of analytical data was characterized and analyzed using the kriging technique, with a correspondence found between major and trace elements in the different geologic domains of the region as well as with the most important mining areas. The results show an influence of the clay fraction present in the soil, which acts as a repository for trace elements. On the basis of the results, of the possible elements related with clay that could be used for normalization, Al was selected as the most suitable, followed by Fe, Mn, and Ti. Reference values estimated using this methodology were lower than those estimated in previous studies.
Kosior, Grzegorz; Steinnes, Eiliv; Samecka-Cymerman, Aleksandra; Lierhagen, Syverin; Kolon, Krzysztof; Dołhańczuk-Śródka, Agnieszka; Ziembik, Zbigniew
2017-03-01
The past uranium/polymetallic mining activities in the Sudety (SW Poland) left abandoned mines, pits, and dumps of waste rocks with trace elements and radionuclides which may erode or leach out and create a potential risk for the aquatic ecosystem, among others. In the present work four rivers affected by effluents from such mines were selected to evaluate the application of aquatic mosses for the bioindication of 56 elements. Naturally growing F. antipyretica and P. riparioides were compared with transplanted samples of the same species. The results demonstrate serious pollution of the examined rivers, especially with As, Ba, Fe, Mn, Pb, Ti, U and Zn, reaching extremely high concentrations in native moss samples. In the most polluted rivers native F. antipyretica and P. riparioides samples showed significantly higher concentrations of As, Ba, Cu, Fe, La, Nd, Ni, Pb, U and Zn than corresponding transplanted samples, whereas at less polluted sites a reverse situation was sometimes observed. Transplanted moss moved from clean to extremely polluted rivers probably protects itself against the accumulation of toxic elements by reducing their uptake. Selection of native or transplanted F. antipyretica and P. riparioides depended on the pollution load. Copyright © 2016. Published by Elsevier Ltd.
Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.
Keshavarzi, Behnam; Moore, Farid; Ansari, Maryam; Rastegari Mehr, Meisam; Kaabi, Helena; Kermani, Maryam
2015-01-01
The distribution of 10 macronutrients and trace metals in the arable soils of Isfahan Province, their phytoavailability, and associated health risks were investigated; 134 plant and 114 soil samples (from 114 crop fields) were collected and analyzed at harvesting time. Calculation of the soil pollution index (SPI) revealed that arable soil polluted by metals was more severe in the north and southwest of the study area. The results of cluster analysis indicated that Pb, Zn, and Cu share a similar origin from industries and traffic. The concentrations of macronutrients and trace metals in the sampled crops were found in the order of K > Ca > S > Mg > P and Fe > Mn > Zn > Cu > Pb, respectively, whereas calculation of the bioconcentration factor (BCF) indicated that the accumulation of the investigated elements in crops was generally in the order of S ≈ K > P > Mg > Ca and Zn > Cu > Mn > Pb > Fe, respectively. Thus, various parameters including crop species and the physical, chemical, and biological properties of soil also affected the bioavailability of the elements besides the total element contents in soil. Daily intake (DI) values of elements were lower than the recommended daily intake (RDI) levels in rice grains except for Fe and Mn, but for wheat grains, all elements displayed DI values higher than the RDI. Moreover, based on the hazard index (HI) values, inhabitants are experiencing a significant potential health risk solely due to the consumption of wheat and rice grains (particularly wheat grains). Mn health quotient (HQ) also indicated a high risk of Mn absorption for crop consumer inhabitants.
NASA Astrophysics Data System (ADS)
Stosnach, Hagen; Mages, Margarete
2009-04-01
In clinical service laboratories, one of the most common analytical tasks with regard to inorganic traces is the determination of the nutrition-relevant elements Fe, Cu, Zn, and Se. Because of the high numbers of samples and the commercial character of these analyses, a time-consuming sample preparation must be avoided. In this presentation, the results of total reflection X-ray fluorescence measurements with a low-power system and different sample preparation procedures are compared with those derived from analysis with common methods like Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). The results of these investigations indicate that the optimal total reflection X-ray fluorescence analysis of the nutrition-relevant elements Fe, Cu, Zn, and Se can be performed by preparing whole blood and serum samples after dilution with ultrapure water and transferring 10 μl of internally standardized sample to an unsiliconized quartz glass sample carrier with subsequent drying in a laboratory oven. Suitable measurement time was found to be 600 s. The enhanced sample preparation by means of microwave or open digestion, in parts combined with cold plasma ashing, led to an improvement of detection limits by a factor of 2 for serum samples while for whole blood samples an improvement was only observed for samples prepared by means of microwave digestion. As the matrix elements P, S, Cl, and for whole blood Fe have a major influence on the detection limits, most probably a further enhancement of analytical quality requires the removal of the organic matrix. However, for the routine analysis of the nutrition-relevant elements, the dilution preparation was found to be sufficient.
NASA Astrophysics Data System (ADS)
Vizzini, S.; Di Leonardo, R.; Costa, V.; Tramati, C. D.; Luzzu, F.; Mazzola, A.
2013-12-01
Research into the effects of ocean acidification on marine ecosystems has increasingly focused on natural CO2 vents, although their intrinsic environmental complexity means observations from these areas may not relate exclusively to pH gradients. In order to assess trace element levels and distribution in the Levante Bay (Vulcano Island, NE Sicily, Italy) and its suitability for studying biological effects of pH decline, Ba, Fe and trace elements (As, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn) in sediment were analysed from 7 transects. Where present, Cymodocea nodosa leaves and epiphytes were also analysed. At the spatial scale of the bay, trace element concentrations in sediments and biota showed wide variability, possibly related to both input from fluid emissions and seawater physico-chemical variables (i.e. pH and Eh), which may considerably affect the solubility and bioavailability of potentially harmful trace elements. According to two pollution indices (MSPI: Marine Sediment Pollution Index and SQG-Q: Sediment Quality Guideline Quotient), the bay can be considered to be affected by low contamination with moderate potential for adverse biological effects, especially in the area between about 150 and 350 m from the primary vent, where localized detrimental effects on biota may occur. Generally, biological samples showed concentrations that were comparable with the lower values of seagrass ranges. The overall results of this study support the complex spatial dynamics of trace elements in the CO2 vent studied, which are constrained by both direct input from the vent and/or biogeochemical processes affecting element precipitation at the sediment-seawater interface. Consequently, great caution should be used when relating biological changes along pH gradients to the unifactorial effect of pH only, as interactions with concurrent, multiple stressors, including trace element enrichments, may occur. This finding has implications for the use of CO2 vents as analogues in ocean acidification research. They should be considered more appropriately as analogues for low pH environments with non-negligible trace element contamination which, in a scenario of continuous increase in anthropogenic pollution, may be very common.
Zhao, Ning; Yang, Bin; Duan, Yu-Cen; Lei, Ran
2011-08-01
Abstract Five different pretreatment methods, including dry ashing and microwave digestion with four acid systems (HNO3 + H2O2, HNO3 + H2O2 + HF, HNO3 + HClO4 and HNO3 + HClO4 + HF), were employed for digestion of the samples of Rosa rugosa. Nine major and trace elements were determined using ICP-OES method. The addition standard recovery rates indicate that, with the system of HNO3 + HClO4, better results can be obtained for most of the determined elements. With this method, except for Fe, the recovery rates are in the range of 95.4%-104.6%. For Fe, higher recovery rate (99%) was obtained with HNO3 + H2O2 + HF system.
Elemental analysis of size-fractionated particulate matter sampled in Göteborg, Sweden
NASA Astrophysics Data System (ADS)
Wagner, Annemarie; Boman, Johan; Gatari, Michael J.
2008-12-01
The aim of the study was to investigate the mass distribution of trace elements in aerosol samples collected in the urban area of Göteborg, Sweden, with special focus on the impact of different air masses and anthropogenic activities. Three measurement campaigns were conducted during December 2006 and January 2007. A PIXE cascade impactor was used to collect particulate matter in 9 size fractions ranging from 16 to 0.06 µm aerodynamic diameter. Polished quartz carriers were chosen as collection substrates for the subsequent direct analysis by TXRF. To investigate the sources of the analyzed air masses, backward trajectories were calculated. Our results showed that diurnal sampling was sufficient to investigate the mass distribution for Br, Ca, Cl, Cu, Fe, K, Sr and Zn, whereas a 5-day sampling period resulted in additional information on mass distribution for Cr and S. Unimodal mass distributions were found in the study area for the elements Ca, Cl, Fe and Zn, whereas the distributions for Br, Cu, Cr, K, Ni and S were bimodal, indicating high temperature processes as source of the submicron particle components. The measurement period including the New Year firework activities showed both an extensive increase in concentrations as well as a shift to the submicron range for K and Sr, elements that are typically found in fireworks. Further research is required to validate the quantification of trace elements directly collected on sample carriers.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Benedix, Gretchen K.; Hammond, Samantha J.; Bland, Philip A.; Rehkämper, Mark; Kreissig, Katharina; Strekopytov, Stanislav
2017-02-01
The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni-FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni-FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni-FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections.
NASA Astrophysics Data System (ADS)
Brandt, Frederik Ejvang; Holm, Paul Martin; Søager, Nina
2017-01-01
New high-precision minor element analysis of the most magnesian olivine cores (Fo85-88) in fifteen high-MgO (Mg#66-74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite-pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios ( 1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.
Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto
2012-09-01
A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Broder, Tanja; Biester, Harald
2017-04-01
Peatlands and organic-rich riparian zones are known to export large amounts of dissolved organic carbon (DOC) to surface water. In organic-rich, acidic headwater streams main carriers for element export are dissolved organic matter (DOM) and organic-iron complexes. In this environment DOM might also act as major carrier for metals, which otherwise may have a low solubility. This study examines annual and short term event-based variations of major and trace elements in a headwater catchment. Patterns are used to trace hydrological pathways and element sources under different hydrologic preconditions. Furthermore, it elucidates the importance of DOC as carrier of different elements in a bog and a peaty riparian catchment. The study was conducted in a small headwater stream draining an ombrotrophic peatland with an adjacent forested area with peaty riparian soils in the Harz Mountains (Germany). Discharge sampling was conducted weekly at two sites from snowmelt to begin of snowfall and in high resolution during selected discharge events in 2013 and 2014. Element concentrations were measured by means of ICP-MS and ICP-OES. A PCA was performed for each site and for annual and event datasets. Results show that a large number of element concentrations strongly correlate with DOC concentrations at the bog site. Even elements like Ca and Mg, which are known to have a low affinity to DOC. Congruently, the first principal component integrates the DOC pattern (element loadings > 0.8: Ca, Fe, Mg, Mn, Zn, As, Sr, Cd, DOC) and explained about 35 % of total variance and even 50 % during rain events (loadings > 0.8: Al, Ca, Fe, Mg, Mn, Zn, Li, Co, As, Sr, Cd, Pb, DOC). The study cannot verify that all correlating elements bind to DOC. It is likely that also a common mobilization pattern in the upper peat layer by plant decomposition causes the same response to changes in hydrologic pathways. Additionally, a low mineral content and an enrichment of elements like Fe and Mn in the upper peat layers due to prevailing redox conditions might play a major role in a bog environment. At the peaty riparian zone only Ca, Fe, and Sr strongly correlated with DOC over the annual record. The PCA of the annual record display no clear DOC component here, but indicates that DOC is influenced by Component one (element loadings > 0.8: Ca, Mg, Zn, Co, Sr) and two (Al, V, La, Pb, U) suggesting different DOC sources in the peaty riparian zone. A large number of elements correlate with DOC during rain event sampling at the riparian zone. In contrast to the bog site the event-based riparian zone PCA distinguished a clear discharge related component with mineral, groundwater related elements (K, Rb, In, Cs, NO3- and SO42-). Pattern of the mineral and DOC components prove that during base flow discharge is generated in a shallow groundwater layer and successively increases upward to the organic-rich upper soil layer with increasing discharge. Contrarily, bog element pattern confirm a dominating surface-near discharge, due to high hydraulic conductivities.
NASA Astrophysics Data System (ADS)
Gangloff, Sophie; Stille, Peter; Pierret, Marie-Claire; Weber, Tiphaine; Chabaux, François
2014-04-01
Dissolved Organic Carbon (DOC) plays an important role in the behavior of major and trace elements in the soil and influences their transfer from soil to soil solution. The first objective of this study is to characterize different organic functional groups for the Water Extractable Organic Carbon (WEOC) fractions of a forest soil as well as their evolution with depth. The second objective is to clarify the influence of these organic functional groups on the migration of the trace elements in WEOC fractions compared to those in the soil solution obtained by lysimeter plates. All experiments have been performed on an acidic forest soil profile (five depths in the first meter) of the experimental spruce parcel in the Stengbach catchment. The Infra-red spectra of the freeze-dried WEOC fractions show a modification of the molecular structure with depth, i.e. a decrease of the polar compounds such as polysaccharides and an increase of the less polar hydro-carbon functional groups with a maximum value of the aromaticity at 30 cm depth. A Hierarchical Ascending Classification (HAC) of the evolution of Water Extractable Chemical Elements (WECE) with the evolution of the organic functional groups in the organic matter (OM) enriched soil compartments permits recognition of relationships between trace element behavior and the organic functional group variations. More specifically, Pb is preferentially bound to the carboxylic acid function of DOC mainly present in the upper soil compartment and rare earth elements (REE) show similar behavior to Fe, V and Cr with a good affinity to carboxy-phenolic and phenolic groups of DOC. The experimental results show that heavy REE compared to light REE are preferentially bound to the aromatic functional group. This different behavior fractionates the REE pattern of soil solutions at 30 cm depth due to the here observed aromaticity enrichment of DOC. These different affinities for the organic functional groups of the DOC explain some aspects of the behavior of trace elements in soil solutions and in the soil profile but, also the competition between trace elements in complexation with DOC. The results of this study are important for the understanding of the mobility and the migration of pollutants (as heavy metals or radionuclides) as well as nutrients in natural ecosystems. WE PrN/YbN is constant between 3 and 16 cm depth whereas SS PrN/YbN slightly decreases from 0.80 at 5 cm depth to 0.74 at 10 cm depth. This results from Pr (LREE) enrichment in the soil solution of the upper soil compartment caused by vegetation controlled LREE recycling and/or atmospheric depositions (see above). WE PrN/YbN and SS PrN/YbN show similar depth dependent distributions including the enrichment at 30 cm depth. It results from Yb depletion at this depth and enrichment in the deeper soil compartment compared to Pr. Similar to Marsac et al. (2012, 2013) one might suggest that there is competition between Fe3+, Al3+ and REE for the binding with DOC. They have a high affinity with the same organic functional groups which is confirmed by the classification scheme (Fig. 8). The studies of Marsac et al. suggest that at acidic pH and low metal/DOC ratios, Fe3+and Al3+ compete more with HREE than LREE; moreover, at high metal/DOC ratios and acidic pH, Al3+ competes with LREE. The Fig. 13 showing the variations of WECEN for Al and Fe in function of WECEN LREE and HREE confirms Marsac et al.’s observations. The slope of the extrapolation line resulting from WECEN Al and HREE values remains rather unchanged for the OM depleted and enriched soil compartments; thus, the change in the metal/DOC ratio in the soil does not change the extraction behavior of Al and HREE. However, the WECEN Fe strongly increase compared to the corresponding HREE values in the OM enriched compartment pointing to the competition between Fe and HREE. Alternatively, one observes that the WECEN Fe and LREE values in the OM enriched compartment plot on the extrapolation line derived from OM depleted soil samples. Thus, in this case, the change in the metal/DOC ratio does not affect the extraction behavior of Fe and LREE. However, the WECEN values for Al and corresponding LREE of samples from the OM enriched soil compartment plot below the extrapolation line and point to the competition between Al and LREE. These results are also in agreement with the REE distribution pattern of the soil solutions from the same site which are at greater depth LREE depleted (Stille et al., 2009).
PIXE analysis of caries related trace elements in tooth enamel
NASA Astrophysics Data System (ADS)
Annegarn, H. J.; Jodaikin, A.; Cleaton-Jones, P. E.; Sellschop, J. P. F.; Madiba, C. C. P.; Bibby, D.
1981-03-01
PIXE analysis has been applied to a set of twenty human teeth to determine trace element concentration in enamel from areas susceptible to dental caries (mesial and distal contact points) and in areas less susceptible to the disease (buccal surfaces), with the aim of determining the possible roles of trace elements in the curious process. The samples were caries-free anterior incisors extracted for periodontal reasons from subjects 10-30 years of age. Prior to extraction of the sample teeth, a detailed dental history and examination was carried out in each individual. PIXE analysis, using a 3 MeV proton beam of 1 mm diameter, allowed the determination of Ca, Mn, Fe, Cu, Zn, Sr and Pb above detection limits. As demonstrated in this work, the enhanced sensitivity of PIXE analysis over electron microprobe analysis, and the capability of localised surface analysis compared with the pooled samples required for neutron activation analysis, makes it a powerful and useful technique in dental analysis.
Gustavsson, J; Svensson, B H; Karlsson, A
2011-01-01
The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 degrees C). It was concluded that daily supplementation with Co (0.5 mg L(-1)), Ni (0.2 mg L(-1)) and Fe (0.5 g L(-1)) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L(-1) day(-1).
Essential and toxic elements in honeys from a region of central Italy.
Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L
2015-01-01
Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.
da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S
2015-10-01
Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drava, Giuliana, E-mail: drava@difar.unige.it; Bri
Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10–15 years with annual resolution. In the present study, the concentrations ofmore » As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the “a posteriori” reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. - Highlights: • Branch bark allows the historical reconstruction of atmospheric trace elements. • This approach is simple, reliable, widely applicable and “a posteriori”. • Downward time trends were found for Cd, Pb and Zn; upward trend for V.« less
NASA Astrophysics Data System (ADS)
Araújo, Daniel Ferreira; Peres, Lucas G. M.; Yepez, Santiago; Mulholland, Daniel S.; Machado, Wilson; Tonhá, Myller; Garnier, Jérémie
2017-10-01
The Sepetiba Bay, Southeastern Brazil, has undergone intense environmental changes due to anthropogenic influence. This work aims to: (i) evaluate the changes in the drainage landscape use over the last decades, (ii) identify new and past punctual and diffuse anthropogenic sources and assess risks of man-induced disturbances of the coastal zones of Sepetiba. A multivariate statistics approach on the sediment's elemental geochemical dataset discriminated three groups: the electroplating waste-affected elements (As, Cd, Pb, Cu and Zn), terrigenous elements (Si, K, Ti, Al and Fe), and biogenic and carbonate-derived elements (Ca, Mg, Mn, P, Ni, and Cr). Sediment core profiles of trace elements evidence records of former environmental impacts from old metallurgical wastes. Analysis of two Landsat images from 30 years ago and 2015 reveals a decrease in the mangrove area of nearly 26%. The ongoing suppression of mangroves could enhance the release of trace elements into the Sepetiba Bay, increasing the risks to human and biota health.
NASA Technical Reports Server (NTRS)
King, W. E.; Ethridge, E. C.
1985-01-01
The role of trace additions of reactive elements like Y, Ce, Th, or Hf to Cr bearing alloys was studied by applying a new developed technique of transverse section analytical electron microscopy. This reactive-element effect improves the high temperature oxidation resistance of alloys by strongly reducing the high temperature oxidation rate and enhancing the adhesion of the oxide scale, however, the mechanisms for this important effect remain largely unknown. It is indicated that the presence of yttrium affects the oxidation of Fe-Cr-Y alloys in at least two ways. The reactive element alters the growth mechanism of the oxide scale as evidenced by the marked influence of the reactive element on the oxide scale microstructure. The present results also suggest that reactive-element intermetallic compounds, which internally oxidize in the metal during oxidation, act as sinks for excess vacancies thus inhibiting vacancy condensation at the scale-metal interface and possibly enhancing scale adhesion.
Drava, Giuliana; Brignole, Daniele; Giordani, Paolo; Minganti, Vincenzo
2017-04-01
Tree bark has proved to be a useful bioindicator for trace elements in the atmosphere, however it reflects an exposure occurring during an unidentified period of time, so it provides spatial information about the distribution of contaminants in a certain area, but it cannot be used to detect temporal changes or trends, which is an important achievement in environmental studies. In order to obtain information about a known period of time, the bark collected from the annual segments of tree branches can be used, allowing analyses going back 10-15 years with annual resolution. In the present study, the concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, Pb, V and Zn were measured by atomic emission spectrometry in a series of samples covering the period from 2001 to 2013 in an urban environment. Downward time trends were significant for Cd, Pb and Zn. The only trace element showing an upward time trend was V. The concentrations of the remaining six trace elements were constant over time, showing that their presence in bark is not simply proportional to the duration of exposure. This approach, which is simple, reliable and widely applicable at a low cost, allows the "a posteriori" reconstruction of atmospheric trace element deposition when or where no monitoring programme is in progress and no other natural archives are available. Copyright © 2017 Elsevier Inc. All rights reserved.
Elements and inorganic ions as source tracers in recent Greenland snow
NASA Astrophysics Data System (ADS)
Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.
2017-09-01
Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.
NASA Astrophysics Data System (ADS)
Carvalho, M. L.; Marques, A. F.; Lima, M. T.; Reus, U.
2004-08-01
The purpose of the present work is to investigate the suitability of TXRF technique to study the distribution of trace elements along human bones of the 13th century, to conclude about environmental conditions and dietary habits of old populations and to study the uptake of some elements from the surrounding soil. In this work, we used TXRF to quantify and to make profiles of the elements through long bones. Two femur bones, one from a man and another from a woman, buried in the same grave were cross-sectioned in four different points at a distance of 1 cm. Microsamples of each section were taken at a distance of 1 mm from each other. Quantitative analysis was performed for Ca, Mn, Fe, Cu, Zn, Sr, Ba and Pb. Very high concentrations of Mn and Fe were obtained in the whole analysed samples, reaching values higher than 2% in some samples of trabecular tissue, very much alike to the concentrations in the burial soil. A sharp decrease for both elements was observed in cortical tissue. Zn and Sr present steady concentration levels in both kinds of bone tissues. Pb and Cu show very low concentrations in the inner tissue of cortical bone. However, these concentrations increase in the regions in contact to trabecular tissue and external surface in contact with the soil, where high levels of both elements were found. We suggest that contamination from the surrounding soil exists for Mn and Fe in the whole bone tissue. Pb can be both from post-mortem and ante-mortem origin. Inner compact tissue might represent in vivo accumulation and trabecular one corresponds to uptake during burial. The steady levels of Sr and Zn together with soil concentration lower levels for these elements may allow us to conclude that they are originated from in vivo incorporation in the hydroxyapatite bone matrix.
A factor influence study of trace element bioaccumulation in moss bags.
Cesa, M; Campisi, B; Bizzotto, A; Ferraro, C; Fumagalli, F; Nimis, P L
2008-10-01
Moss bags of Rhynchostegium riparioides were exposed to different water concentrations of 11 trace elements under laboratory conditions, according to a saturated fractional factorial design (67 treated combinations), with the aim of measuring (1) element uptake and (2) the main effects and first-order interactions of influent factors. Bioaccumulation was directly proportional to water concentration, but the uptake ratio (ranging from 10(2) to 10(5)) also depended on the concentration of other metals. The highest uptake ratios were observed for Al, Cu, Cr, Hg, and Pb. The multiple regression model showed that interactions among elements exist and induce both antagonism (Fe is the most frequent competitor) and synergism (Cr exerts a great influence on Pb and Zn uptake). Interactions might be relatively strong (as for As, Cr, and Pb) or weak (Cd and Hg). This evidence should be taken into consideration in biomonitoring surveys of industrial sites, where effluents release more than one contaminant.
Fu, Hongbo; Wang, Huadong; Jia, Junwei; Ni, Zhibo; Dong, Fengzhong
2018-01-01
Due to the influence of major elements' self-absorption, scarce observable spectral lines of trace elements, and relative efficiency correction of experimental system, accurate quantitative analysis with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) is in fact not easy. In order to overcome these difficulties, standard reference line (SRL) combined with one-point calibration (OPC) is used to analyze six elements in three stainless-steel and five heat-resistant steel samples. The Stark broadening and Saha - Boltzmann plot of Fe are used to calculate the electron density and the plasma temperature, respectively. In the present work, we tested the original SRL method, the SRL with the OPC method, and intercept with the OPC method. The final calculation results show that the latter two methods can effectively improve the overall accuracy of quantitative analysis and the detection limits of trace elements.
Enhanced identification of trace element fingerprint of prehistoric pigments by PIXE mapping
NASA Astrophysics Data System (ADS)
Lebon, M.; Pichon, L.; Beck, L.
2018-02-01
The elemental composition of Fe rich rocks used as pigment during prehistoric periods can provide valuable information about the type of material used and their geological origin. However, these materials present several analytical constraints since their patrimonial value involve using non-invasive techniques maintaining a high sensitivity of the detection and the quantification of trace elements. Micro-beam techniques also require to take into account the heterogeneity of these geomaterials from the macroscopic to microscopic scales. Several previous studies have demonstrated that PIXE analysis satisfies these analytical conditions. However, application of micro-PIXE analysis is still complex when thin and discontinuous layer of pigment is deposed on the surface of other materials such as rocks or bones. In such case, PIXE imaging could improve the ability to take into account the high heterogeneity of such archaeological objects. In study, we used PIXE imaging system developed at the NewAGLAE facility in order to visualize distribution of elements associated with iron-rich pigment phase. The results obtained show that PIXE maps can improve the identification of the main trace elements specific to the iron mineral phase. By grouping pixels of iron-rich areas and performing quantitative treatment, it was possible to reveal additional trace elements associated to pigment. This study highlights the contribution of PIXE imaging to the identification of elements associated with mineral phases of interest and to use them as proxies to discriminate different geological materials used in archaeological context.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya
Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less
NASA Astrophysics Data System (ADS)
Mitchell, Andrew C.; Brown, Giles H.
2007-01-01
SummaryWe present diurnal (i) 0.45 and 0.1 μm pore-size filtered and (ii) operationally defined labile particulate-associated major, minor and trace element concentrations and fluxes in glacial outflow waters draining Haut Glacier d'Arolla, Switzerland. We use speciation modelling (PHREEQCi) and water-suspended sediment interaction experiments are utilised under conditions analogous to the subglacial channellised hydrological system, in order to assess controls on, and the most suitable sampling methods to investigate short-term variations in the mode of major, minor and trace element species export from a glacierised headwater catchment. 0.45 μm pore-size filtered major ions, Sr and U are exported in glacial outflow waters predominately as mobile monovalent or divalent ions or as carbonate complexes, and are controlled by hydrological variations over diurnal cycles, exhibiting an inverse concentration with increasing meltwater discharge. Conversely, 0.45 μm pore-size filtered concentrations of most minor and trace elements ( e.g. Fe, Mn, Co, Ba and Pb) exhibit variations that are not strongly inter-correlated with meltwater discharge or suspended sediment concentrations (SSC) over diurnal periods. The use of 0.45 and 0.1 μm pore-size filter membranes indicates that significant colloidal material is not passing through the 0.45 μm pore-size filters, and these unsystematic variations are not a result of colloid measurement. Speciation modelling applied to meltwaters and observations during water-rock interaction experiments suggest that these unsystematic temporal variations reflect physicochemical controls. This includes sorption, and the oversaturation and precipitation of Fe and Al (oxi)hydroxides, and the co-precipitation of other species. Diurnal pH variations appear important in controlling such short-term physicochemical controls, which limits such species use for hydrological investigations. The percentage of total elemental fluxes exported as the labile particulate-associated flux (%PAF) for each minor and trace element changes dramatically between and during the diurnal cycles, reflecting species-specific sensitivity to hydrological and physicochemical controls. Hydrological interpretations of hydrochemical data must be made carefully when using chemical determinations by ICP-MS, since we demonstrate that measurements will comprise of any material that passes through the filter. This can lead to higher concentration measurements than if determined by ion chromatography, which measures truly ionic dissolved species.
The first survey of airborne trace elements at airport using moss bag technique.
Vuković, Gordana; Urošević, Mira Aničić; Škrivanj, Sandra; Vergel, Konstantin; Tomašević, Milica; Popović, Aleksandar
2017-06-01
Air traffic represents an important way of social mobility in the world, and many ongoing discussions are related to the impacts that air transportation has on local air quality. In this study, moss Sphagnum girgensohnii was used for the first time in the assessment of trace element content at the international airport. The moss bags were exposed during the summer of 2013 at four sampling sites at the airport 'Nikola Tesla' (Belgrade, Serbia): runway (two), auxiliary runway and parking lot. According to the relative accumulation factor (RAF) and the limit of quantification of the moss bag technique (LOQ T ), the most abundant elements in the samples were Zn, Na, Cr, V, Cu and Fe. A comparison between the element concentrations at the airport and the corresponding values in different land use classes (urban central, suburban, industrial and green zones) across the city of Belgrade did not point out that the air traffic and associated activities significantly contribute to the trace element air pollution. This study emphasised an easy operational and robust (bio)monitoring, using moss bags as a suitable method for assessment of air quality within various microenvironments with restriction in positioning referent instrumental devices.
Trace elements in fish from the Arabian Gulf and the Shatt al-Arab river, Iraq
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abaychi, J.; Al-Saad, H.T.
1988-02-01
In the Arabian Gulf region, recently, vast industrial, agricultural, economic and social developments have taken place, in addition to an increase in population. This may enhance the magnitude of environmental pollution year by year. No detailed study has been undertaken to assess the concentrations of trace elements in commercial species of fish from the Arabian Gulf and the Shatt al-Arab River, despite the fact that fish are considered an essential part of the diet in the region. Therefore, an investigation was carried out on the concentration of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in themore » following fish species from the Arabian Gulf: Tylosurus strongylurus, Eleutheoronema tetradactum, Pomadasys arel, Platycephalus indicus, Ilisha elongata, Thryssa hamiltonii, Arius thalassinus, Acanthophagrus luteus, Johnieops sina, Liza dussumeiri, Hilsa ilisha, Nematolosa nasus and Otoliths argenteus, and on species from the Shatt al-Arab River: Mesopotamichthys sharpeyi, Barbus xanthopterus, Barbus scheich, Aspius vorax, Cyprinus carpio, and Barbus grypus. Trace element levels in sediment samples from the area were also determined since sediments can accumulate different elements and may reflect the extent of pollution by these elements.« less
Application of relativistic electrons for the quantitative analysis of trace elements
NASA Astrophysics Data System (ADS)
Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.
1984-04-01
Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.
Gholampour, Akbar; Nabizadeh, Ramin; Hassanvand, Mohammad Sadegh; Taghipour, Hasan; Rafee, Mohammad; Alizadeh, Zahra; Faridi, Sasan; Mahvi, Amir Hossein
2016-01-01
Concentration of particulate matter (PM10 and total suspended particulate (TSP)) and their elemental constituents were measured to identify the major sources of elements in urban and industrial suburban sites in Tabriz, Iran, from September 2012 to June 2013. TSP and PM10 samples were collected using high-volume samplers. Concentrations of 31 elements in aerosols and crustal soil were determined by ICPMS. The most abundant detected metals in the urban sampling sites were Al (217.5-4019.9 ng m(-3)), Fe (272.5-7658.0 ng m(-3)), Pt (4.7-1994.4 ng m(-3)), and P (13.6-2054.8 ng m(-3) (for TSP and Al (217.6-3687.3 ng m(-3)), Fe (197.1-3724.9 ng m(-3)), Pt (65.9-2054.5 ng m(-3)), and P (11.0-756.6 ng m(-3)( for PM10. In the suburban sampling site, the most abundant detected metals were Al (2083.0-9664.0 ng m(-3)), Fe (360.0-7221.5 ng m(-3)), P (229.4-870.5 ng m(-3)), and Ti (137.3-849.7 ng m(-3)) for TSP and Al (218.5-4179.6 ng m(-3)), Fe (106.3-2005.1 ng m(-3)), P (251.9-908.4 ng m(-3)), and Ba (10.6-584.9 ng m(-3)) for PM10. For the crustal soil, the most abundant detected elements included Al (60,088-60,694 ppm), Fe (19,886-20,474 ppm), Ti (894-3481 ppm), and Si (365-4246 ppm). Key emission sources were identified, and the concentrations contributed from individual sources were estimated. Enrichment factor (EF) explaining a preponderance of the variance in the data was applied to the datasets. EF calculations revealed that non-crustal trace elements were more enriched in the urban than suburban sampling sites. Results of the factor analysis on the elements showed that emissions from road traffic (involving oil and fuel combustions by vehicles, platinum group elements from vehicle exhaust, and resuspension of particulate matter from polluted soil) and construction dust from nearby construction sites and electricity generation plant were the major contributors of anthropogenic metals at ambient atmosphere in Tabriz. Results of this study elucidated the need for developing pollution control strategy, especially vehicle exhaust control, and creating green spaces around the city.
NASA Astrophysics Data System (ADS)
Mueller, Barbara
2016-04-01
Using bacteria of the strain Pseudomonas fluorescens wild type CHA0 and its genetic derivative strains CHA77, CHA89, CHA400, CHA631 and CHA661 (which differ in one gene only) the changes in chemical, mineralogical and rheological properties of the clay mineral vermiculite affected by microbial activity were studied in order to test whether the individually different production of metabolites by the genetically engineered strains may alter the clay mineral vermiculite in distinct ways. With the novel strategy of working with living wild type bacteria, their genetic derivatives and clay, the following properties of the mineral altered by the various strains of Pseudomonas fluorescens were determined: grain size, X-Ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, BET surface and uptake of trace elements. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to determine the changes in major, minor and trace elements of the clay vermiculite affected by microbial activity. Among all analyzed trace elements, Fe, Mn and Cu are the most interesting. Fe and Mn are taken up from the clay mineral by all bacterial strains whereas Cu is only removed from vermiculite by strains CHA0, CHA77, CHA400 and CHA661. The latter mentioned strains all produce the antibiotics 2,4-diacetylphloroglucinol and monoacetylphloroglucinol which can complex Cu efficiently. Therefore the alteration of only one gene of the bacteria is causing significant effects on the clay mineral.
NASA Astrophysics Data System (ADS)
Fortner, Sarah K.; Lyons, W. Berry
2018-04-01
Here we present a synthesis of the trace element chemistry in melt on the surface Canada Glacier, Taylor Valley, McMurdo Dry Valleys (MDV), Antarctica ( 78°S). The MDV is largely ice-free. Low accumulation rates, strong winds, and proximity to the valley floor make these glaciers dusty in comparison to their inland counterparts. This study examines both supraglacial melt streams and cryoconite holes. Supraglacial streams on the lower Canada Glacier have median dissolved (<0.4 µm) concentrations of Fe, Mn, As, Cu, and V of 71.5, 75.5, 3.7, 4.6, and 4.3 nM. All dissolved Cd concentrations and the vast majority of Pb values are below our analytical detection (i.e. 0.4 and 0.06 nM). Chemical behavior did not follow similar trends for eastern and western draining waters. Heterogeneity likely reflects distinctions eolian deposition, rock:water ratios, and hydrologic connectivity. Future increases in wind-delivered sediment will likely drive dynamic responses in melt chemistry. For elements above detection limits, dissolved concentrations in glacier surface melt are within an order of magnitude of concentrations observed in proglacial streams (i.e. flowing on the valley floor). This suggests that glacier surfaces are an important source of downstream chemistry. The Fe enrichment of cryoconite water relative to N, P, or Si exceeds enrichment observed in marine phytoplankton. This suggests that the glacier surface is an important source of Fe to downstream ecosystems.
De Carlo, E. H.; Tomlinson, M.S.; Anthony, S.S.
2005-01-01
Data are presented for trace element concentrations determined in the <63 ??m fraction of streambed sediment samples collected at 24 sites on the island of O'ahu, Hawai'i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors. Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai'i, as well as in the context of the abundance of fine-grained sediment in the streambed of O'ahu streams. Statistical methods including cluster analysis, Kruskal-Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream. The findings of this study are generally similar to but differ slightly from previous work on sediments and suspended particulate matter in streams, from two urban watersheds of O'ahu, Hawai'i. Inter-element associations in the latter were often stronger and indicated a mixture of anthropogenic, agricultural and basaltic sources of trace elements. Some elements fell into different statistical categories in the two studies, owing in part to differences in study design and the hydrogeological constraints on the respective study areas.
Regimes of association of arsenic and selenium during pulverized coal combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wayne S. Seames; Jost O.L. Wendt
2007-07-01
A suite of six coals, of widely differing As, Se, Ca, Fe, and sulfur contents, was burned under self-sustaining conditions in a 17 kW downflow laboratory combustor. Size segregated ash-laden aerosol samples were isokinetically withdrawn and collected on a Berner low pressure impactor. Correlations between trace element concentration (As or Se) and that of major elements (as functions of particle size) were then used to infer chemical associations between trace metals and Ca and/or Fe, and how these depended on sulfur. These baseline data led to formation of the following hypotheses, namely: (1) dominant As and Se partitioning mechanisms dependmore » on the availability of Ca and/or Fe active sites for surface reaction; (2) increasing combustion temperature increases the availability of active cation sites, and increases partitioning of As and Se to fly ash by surface reaction; (3) sulfur competes with these surface reactions, decreasing As and Se partitioning to fly ash surfaces. These hypotheses were tested by manipulating the As, Se, Ca, Fe, and S contents for various coals by doping. Temperature was adjusted in order to achieve comparisons of different coals and different coal constituents at similar thermal conditions, through O{sub 2} and CO{sub 2} addition, as required. These results confirmed the hypotheses above, and allowed an association regime map to be constructed. This map shows that both As and Se associate with Fe and Ca, provided active sites are available. Se reacts preferentially with Fe over Ca when both are available while As reactions with both Fe and Ca are comparable. Sulfur can prevent association of both As and Se, by preferentially reacting with active sites, especially those on Fe. When sufficient sites are not available, the release of vapor-phase As and Se species is promoted. 23 refs., 4 figs., 4 tabs.« less
Luciano-Mateo, Fedra; Cabré, Noemí; Nadal, Martí; García-Heredia, Anabel; Baiges-Gaya, Gerard; Hernández-Aguilera, Anna; Camps, Jordi; Joven, Jorge; Domingo, José Luis
2018-07-01
The metabolic alterations associated with obesity include mineral dysregulation. Essential trace elements are nutrients with a relevant function in a large number of cellular processes and multiple roles in the correct functioning of metabolic enzymes. Paraoxonase-1 (PON1) is an antioxidant and anti-inflammatory enzyme that is compromised in obesity. In the present study, the potential alterations in trace elements in morbidly obese women were assessed in relation to serum PON1 activity and concentration, as well as to other obesity-related comorbidities such as diabetes mellitus and fatty liver. We recruited 41 morbidly obese women and 51 control individuals. The serum concentrations of 30 elements, PON1 paraoxonase and lactonase activities, and PON1 concentration were measured. We observed significant alterations in the levels of As, Ba, Cu, Ca, Fe, Mg, Na, Se, Sr, and Zn in obese women; some of them (As, Ca, Cr, Cu, Mg, and Se) being significantly correlated with serum PON1 values. The most relevant changes were observed in the concentrations of As, Sr and Mg, the last of which was also significantly associated with diabetes mellitus. The current results raise the possibility that increased ingestion and/or storage of a number of trace elements may be factors predisposing to obesity-related comorbidities and metabolic alterations. Copyright © 2018 Elsevier GmbH. All rights reserved.
Dai, S.; Wang, X.; Chen, W.; Li, D.; Chou, C.-L.; Zhou, Y.; Zhu, Chen; Li, H.; Zhu, Xudong; Xing, Y.; Zhang, W.; Zou, J.
2010-01-01
The No. 12 Coal (Late Permian) in the Songzao Coalfield, Chongqing, southwestern China, is characteristically high in pyrite and some trace elements. It is uniquely deposited directly above mafic tuff beds. Samples of coal and tuffs have been studied for their mineralogy and geochemistry using inductively coupled plasma-mass spectrometry, X-ray fluorescence, plasma low-temperature ashing plus powder X-ray diffraction, and scanning electron microscopy equipped with energy-dispersive X-ray analysis.The results show that the minerals of the No. 12 Coal are mainly composed of pyrite, clay minerals (kaolinite, chamosite, and illite), ankerite, calcite, and trace amounts of quartz and boehmite. Kaolinite and boehmite were mainly derived from sediment source region of mafic tuffs. Chamosite was formed by the reaction of kaolinite with Fe-Mg-rich fluids during early diagenesis. The high pyrite (Sp,d=8.83%) in the coal was related to marine transgression over peat deposits and abundant Fe derived from the underlying mafic tuff bed. Ankerite and calcite were precipitated from epigenetic fluids.Chemical compositions of incompatible elements indicate that the tuffs were derived from enriched mantle and the source magmas had an alkali-basalt character. Compared to other coals from the Songzao Coalfield and common Chinese coals, the No. 12 Coal has a lower SiO2/Al2O3 (1.13) but a higher Al2O3/Na2O (80.1) value and is significantly enriched in trace elements including Sc (13.5??g/g), V (121??g/g), Cr (33.6??g/g), Co (27.2??g/g), Ni (83.5??g/g), Cu (48.5??g/g), Ga (17.3??g/g), Y (68.3??g/g), Zr (444??g/g), Nb (23.8??g/g), and REE (392??g/g on average). Above mineralogical compositions, as well as similar ratios of selected elements (e.g., SiO2/Al2O3 and Al2O3/Na2O) and similar distribution patterns of incompatible elements (e.g., the mantle-normalized diagram for incompatible elements and chondrite-normalized diagram for rare earth elements) of coal and tuff, indicated that enriched trace elements above were largely derived from mafic tuffs, in addition to a minor amount from the Kandian Oldland. ?? 2010 Elsevier B.V.
Quantification of trace elements and speciation of iron in atmospheric particulate matter
NASA Astrophysics Data System (ADS)
Upadhyay, Nabin
Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to the atmosphere.
Rodríguez-Pérez, Celia; Vrhovnik, Petra; González-Alzaga, Beatriz; Fernández, Mariana F; Martin-Olmedo, Piedad; Olea, Nicolás; Fiket, Željka; Kniewald, Goran; Arrebola, Juan P
2018-05-01
There is increasing evidence linking levels of trace elements (TEs) in adipose tissue with certain chronic conditions (e.g., diabetes or obesity). The objectives of this study were to assess concentrations of a selection of nine essential and possibly-essential TEs in adipose tissue samples from an adult cohort and to explore their socio-demographic, dietary, and lifestyle determinants. Adipose tissue samples were intraoperatively collected from 226 volunteers recruited in two public hospitals from Granada province. Trace elements (Co, Cr, Cu, Fe, Mn, Mo, Se, V, and Zn) were analyzed in adipose tissue by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Data were collected on socio-demographic characteristics, lifestyle, diet, and health status by face-to-face interview. Predictors of TE concentrations were assessed by using multivariable linear and logistic regression. All TEs were detected in all samples with the exception of Se (53.50%). Iron, zinc, and copper showed the highest concentrations (42.60 mg/kg, 9.80 mg/kg, and 0.68 mg/kg, respectively). Diet was the main predictor of Cr, Fe, Mo, and Se concentrations. Body mass index was negatively associated with all TEs (β coefficients = -0.018 to -0.593, p = 0.001-0.090) except for Mn and V. Age showed a borderline-significant positive correlation with Cu (β = 0.004, p = 0.089). Residence in a rural or semi-rural area was associated with increased Co, Cr, Fe, Mo, Mn, V and Zn concentrations and with β coefficients ranging from 0.196 to 0.544 (p < 0.05). Furthermore, individuals with higher educational level showed increased Cr, Co, Fe and V concentrations (β coefficients = 0.276-0.368, p = 0.022-0.071). This is the first report on the distribution of these TEs in adipose tissue and on their determinants in a human cohort and might serve as an initial step in the elucidation of their clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sellés, Alberto J Núñez; Rodríguez, Maria D Durruthy; Balseiro, Eduardo Rodríguez; Gonzalez, Luis Nieto; Nicolais, Valeria; Rastrelli, Luca
2007-03-21
An aqueous decoction of mango (Mangifera indica L.) stem bark (MSB) has been developed in Cuba on an industrial scale to be used as a nutritional supplement, cosmetic, and phytomedicine, with antioxidant, anti-inflammatory, analgesic, and immunomodulatory properties. The concentration of major and trace elements was determined for 16 varieties of MSB belonging to two cultivars and grown in Cuba in the same soil (red ferralytic). Plants were classified into two groups, according to the tree age (12 and 26 year olds) and were analyzed for As, Ca, Cd, Cu, Fe, Hg, K, Mg, Pb, Se, and Zn content by means of ICP-AES technique. Experimental data were processed by ANOVA and principal component analysis in terms of elements, variety, and plant age, to choose the most adequate varieties for industrial purposes.
Diyabalanage, Saranga; Abekoon, Sumith; Watanabe, Izumi; Watai, Chie; Ono, Yuko; Wijesekara, Saman; Guruge, Keerthi S; Chandrajith, Rohana
2016-06-01
The Mahaweli is the largest river basin in Sri Lanka that provides water to the dry zone region through multipurpose irrigation schemes . Selenium, arsenic, cadmium, and other bioimportant trace elements in surface waters of the upper Mahaweli River were measured using ICP-MS. Trace element levels were then compared with water from two other rivers (Maha Oya, Kalu Ganga) and from six dry zone irrigation reservoirs. Results showed that the trace metal concentrations in the Mahaweli upper catchment were detected in the order of Fe > Cu > Zn > Se > Cr > Mn > As > Ni > Co > Mo. Remarkably high levels of Ca, Cr, Co, Ni, Cu, As, and Se were observed in the Mahaweli Basin compared to other study rivers. Considerably high levels of Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Se were found in upstream tributaries of the Mahaweli River. Such metals possibly originated from phosphate and organic fertilizers that are heavily applied for tea and vegetable cultivations within the drainage basin. Cadmium that is often attributed to the etiology of unknown chronic kidney diseases in certain parts of the dry zone is much lower than previously reported levels. Decrease in these metals in the lower part of the Mahaweli River could be due to adsorption of trace metals onto sediment and consequent deposition in reservoirs.
Lund Rasmussen, Kaare; Skytte, Lilian; D'imporzano, Paolo; Orla Thomsen, Per; Søvsø, Morten; Lier Boldsen, Jesper
2017-01-01
The differences in trace element concentrations among 19 different bone elements procured from 10 archaeologically derived human skeletons have been investigated. The 10 individuals are dated archaeologically and some by radiocarbon dating to the medieval and post-medieval period, an interval from ca. AD 1150 to ca. AD 1810. This study is relevant for two reasons. First, most archaeometric studies analyze only one bone sample from each individual; so to what degree are the bones in the human body equal in trace element chemistry? Second, differences in turnover time of the bone elements makes the cortical tissues record the trace element concentrations in equilibrium with the blood stream over a longer time earlier in life than the trabecular. Therefore, any differences in trace element concentrations between the bone elements can yield what can be termed a chemical life history of the individual, revealing changes in diet, provenance, or medication throughout life. Thorough decontamination and strict exclusion of non-viable data has secured a dataset of high quality. The measurements were carried out using Inductively Coupled Plasma Mass Spectrometry (for Fe, Mn, Al, Ca, Mg, Na, Ba, Sr, Zn, Pb and As) and Cold Vapor Atomic Absorption Spectroscopy (for Hg) on ca. 20 mg samples. Twelve major and trace elements have been measured on 19 bone elements from 10 different individuals interred at five cemeteries widely distributed in medieval and renaissance Denmark. The ranges of the concentrations of elements were: Na (2240-5660 µg g -1 ), Mg (440-2490 µg g -1 ), Al (9-2030 µg g -1 ), Ca (22-36 wt. %), Mn (5-11450 µg g -1 ), Fe (32-41850 µg g -1 ), Zn (69-2610 µg g -1 ), As (0.4-120 µg g -1 ), Sr (101-815 µg g -1 ), Ba (8-880 µg g -1 ), Hg (7-78730 ng g -1 ), and Pb (0.8-426 µg g -1 ). It is found that excess As is mainly of diagenetic origin. The results support that Ba and Sr concentrations are effective provenance or dietary indicators. Migrating behavior or changes in diet have been observed in four individuals; non-migratory or non-changing diet in six out of the 10 individuals studied. From the two most mobile (most changing diet) individuals in the study, it is deduced that the fastest turnover is seen in the trabecular tissues of the long bones and the hands and the feet, and that these bone elements have higher turnover rates than centrally placed trabecular bone tissue, such as from the ilium or the spine. Comparing Sr and published bone turnover times, it is concluded that the differences seen in Sr concentrations are not caused by diagenesis, but by changes of diet or provenance. Finally, it is concluded that there can be two viable interpretations of the Pb concentrations, which can either be seen as an indicator for social class or a temporal development of increased Pb exposure over the centuries. © 2016 Wiley Periodicals, Inc.
Exposure of women to trace elements through the skin by direct contact with underwear clothing.
Nguyen, Thao; Saleh, Mahmoud A
2017-01-02
Heavy metals pose a potential danger to human health when present in textile materials. In the present study, inductive coupled plasma mass spectrometry (ICPMS) was used to determine the concentrations and the identity of extractable inorganic elements from different brands of women undergarments. A total of 120 samples consisting of 63 cottons, 44 nylons and 13 polyesters manufactured in 14 different countries having different colors were analyzed for their extractable metals contents. Elements analyzed were Ag, Al, As, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Sb, Se, Sr, Ti, V and Zn. Cotton undergarments were rich in Al, Fe and Zn, nylon undergarments had high levels of Cr, Cu and Al, while polyester fabrics contained higher levels of Ni and Fe compared to cotton or nylon. With respect to manufacturing countries, China, Egypt and India showed the highest concentrations of metals in all fabrics. With respect to the color, black garments were characteristic by high concentration of Fe, blue colors with Cu, brown garments with Fe and Cu, green garments with Cu and Fe, pink garments with Al, purple garments with Al and Cu and red garments with Cr, Zn and Al. The consumer should be made aware of the potential dangers of these metals in their clothing.
NASA Astrophysics Data System (ADS)
Ohnemus, D.; Rauschenberg, S.; Twining, B. S.
2014-12-01
The elemental stoichiometries of phytoplankton are critical ecological and chemical parameters due to biological participation in, if not control over, the marine cycles of many GEOTRACES trace elements and isotopes (TEI). Elemental stoichiometries in euphotic zone protists can be used as end-members in biogeochemical models for bioactive elements (e.g. Fe, Si) and can provide insight into relationships found in the deep ocean and sediments (e.g. Cd:P, Zn:Si) due to broad and organism-specific geochemical links. Though sub-euphotic zone (e.g. hydrothermal, margin-sourced lateral) inputs and processes are also interesting aspects of these cycles, biological incorporation of TEIs in the euphotic zone is, fundamentally, where "the rubber meets the road." Using the 2013 Pacific GEOTRACES super stations and Peruvian coastal transect as ecological waypoints, we present and compare results from three methods for studying trace elemental composition of phytoplankton: single-cell synchrotron x-ray fluorescence (SXRF); weak chemical leaching (acetic acid/hydroxylamine); and total chemical digestion (HNO3/HCl/HF). This combination of techniques allows examination of taxon-specific trends in biotic stoichiometry across the Eastern Pacific and also provides traditional bulk chemical metrics for both biotic and bulk shallow particulate composition.
Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago
2017-07-01
This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.
Ribeiro, Roberta de Oliveira Resende; Mársico, Eliane Teixeira; de Jesus, Edgar Francisco Oliveira; da Silva Carneiro, Carla; Júnior, Carlos Adam Conte; de Almeida, Eduardo; Filho, Virgílio Franco do Nascimento
2014-04-01
Trace and minor elements in Brazilian honey were analyzed by total reflection X-ray fluorescence spectroscopy. Up to 12 elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Sr) were detected in 160 samples of honey from 4 regions of Rio de Janeiro State (Barra Mansa, Teresópolis, northern and southern Nova Friburgo). The results showed the samples from Teresópolis had higher rates of essential and nonessential elements than samples from the other regions, except for Ni. K and Ca were the most abundant elements in all samples, in the range of 116.5 to 987.0 μg g(-1) . Ni, Cu, Zn, Se, and Sr were identified in small concentrations (0.01 to 12.08 μg g(-1) ) in all samples, indicating a low level of contamination in all the regions. © 2014 Institute of Food Technologists®
Zhang, Hua; Wang, Zhen-Yu; Yang, Xin; Zhao, Hai-Tian; Zhang, Ying-Chun; Dong, Ai-Jun; Jing, Jing; Wang, Jing
2014-03-15
The objective of this study was to investigate the level of 18 trace elements of two freeze-dried samples from the Blueberry (Vaccinium corymbosum) and the Strawberry (Fragaria × Ananassa). The total free amino acid composition in the blueberry and strawberry was determined by an Amino Acid Analyzer. Eleven free amino acids were found in both berries. The trace elements in each dried fruit sample were determined by ICP-MS with microwave digestion. The linearity range of the standard curves was 0-1250.0 μg L(-1) (Mg, P, K, Ca),while in all cases, except for B, Na, Al, Cr, Mn, Fe, Ni, Cu, Zn, Se, Cd, Pb, Ge and As, which was 125.0 μg mL(-1), all related coefficients were above 0.9999; recovery was in the range of 79.0-106.8%. Minor concentrations of nutritional elements were found in each freeze-dried berry. In sum, the toxic trace element analysis found the content of toxic trace elements in each freeze-dried berry sample was safe for human consumption and that the overall quality of the blueberry surpassed that of the strawberry. The results certify that the two freeze-dried berries have potential for human consumption in value-added products and have a certain theoretical and practical significance. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
[Determination of trace elements in waste beer yeasts by ICP-MS with microwave digestion].
Cheng, Xian-zhong; Jin, Can; Zhang, Kai-cheng
2008-10-01
The waste beer yeast has rich nutritional compositions and is widely used in food, medical and forage industries. The security of the yeast plays an important role in everyone's daily life. But the yeast contanining microamount of lead, cadmium, chromium, arsenic and other harmful metals is endangering human health. A new method was developed for the direct determination of eight elements, namely copper, lead, zinc, iron, manganese, cadmium, chromium and arsenic in waste beer yeast by inductively coupled plasma-mass spectrometry (ICP-MS) with microwave digestion. The parameters of plasma system, mass system, vacuum system and spectrometer system were optimized. The spectral interferences were eliminated by selecting alternation analytical isotopes of 65Cu, 208Pb, 66Zn, 57Fe, 55Mn, 114Cd, 52Cr and 5As, and the internal standards of Rh was selected to compensate the drift of analytical signals. The samples were digested with concentrated nitric acid-hydrogen peroxide (2:1) mixed solution more rapidly and more effectively. The effects of the type of mixed acid , the volume of digesting solution, heating time, and heating power were investigated in detail. In the closed system, the complete digestion was performed using 4 mL HNO3 and 2mL H2O2 for 2.0 min at 0.5 MPa, 3 min at 1.0 MPa and 5 min at 1.5 MPa. The detection limits of these eight elements were 0.013-0.122 microg x L(-1). The relative standard deviation (RSD) was 0.94%-3.26% (n=9), and the addition standard recovery was 98.4%-102.6% for all elements. The proposed method has been applied to the determination of trace elements of Cu, Pb, Zn, Fe, Mn, Cd, Cr and As in waste beer yeast samples with satisfactory results. The determination results indicated that the content of trace elements of Cu, Pb, Cd and As in waste beer yeast samples are significantly low.
Góral, Marta; Szefer, Piotr; Ciesielski, Tomasz; Warzocha, Jan
2009-10-01
The concentrations of Ag, Cd, Co, Cr, Cu, Fe, Ni, Pb, Mn and Zn in Saduria entomon and adjacent bottom sediments from the southern Baltic were determined by FAAS. In order to estimate the strength of correlations between accumulated elements in these crustaceans and surficial sediment, bioaccumulation factors (BAFs) were calculated. The results of factor analysis (FA) and the Kruskal-Wallis analysis of variance (ANOVA) clearly indicate geographical differences between the concentrations of these elements. Cd, Co, Fe, Ni, Pb and Zn levels were higher in S. entomon from the Gulf of Gdańsk, whereas Cr and Mn levels were higher in the crustaceans inhabiting open Baltic waters. The concentrations of Ag and Cu were comparable in both regions. There was a tendency for metal concentrations to distinguish organisms inhabiting the muddy bottom from those living in sandy sediments. The granulometric composition of the sediment appears to influence trace metal bioavailability. The results show that S. entomon could be a valuable sentinel organism for biomonitoring heavy metal contamination in the southern Baltic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Jordana R.; Gill, Gary A.; Kuo, Li-Jung
2016-04-20
Trace element determinations in seawater by inductively coupled plasma mass spectrometry are analytically challenging due to the typically very low concentrations of the trace elements and the potential interference of the salt matrix. In this study, we did a comparison for uranium analysis using inductively coupled plasma mass spectrometry (ICP-MS) of Sequim Bay seawater samples and three seawater certified reference materials (SLEW-3, CASS-5 and NASS-6) using seven different analytical approaches. The methods evaluated include: direct analysis, Fe/Pd reductive precipitation, standard addition calibration, online automated dilution using an external calibration with and without matrix matching, and online automated pre-concentration. The methodmore » which produced the most accurate results was the method of standard addition calibration, recovering uranium from a Sequim Bay seawater sample at 101 ± 1.2%. The on-line preconcentration method and the automated dilution with matrix-matched calibration method also performed well. The two least effective methods were the direct analysis and the Fe/Pd reductive precipitation using sodium borohydride« less
Souza, A M; Salviano, A M; Melo, J F B; Felix, W P; Belém, C S; Ramos, P N
2016-01-01
In this study we determined the concentration of metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the water lower São Francisco River basin, to evaluate the influence of urbanization and industrialization on environmental changes in the water resource. All samples were analyzed using the IUPAC adapted method and processed in an atomic absorption spectrophotometer. The sampling stations located near the industrial areas were influenced by industrialization because they presented higher concentrations of Cd, Cr, Ni and Cu. The other sampled locations showed changes with regard the trace elements probably originating in the soil, like Fe, Zn and Pb. There was a gradual increase in the concentrations of metals, in general, in the period of highest rainfall of the hydrographic network. Overall, except for Zn and Mn, the trace elements exceeded the maximum allowed value established by national legislation (CONAMA). Lower São Francisco River basin has suffered interference from urbanization and industrialization, so awareness programs should be developed so as to control and lessen future problems.
Grosbois, C; Schäfer, J; Bril, H; Blanc, G; Bossy, A
2009-03-01
The Upper Isle River (SW France) drains the second most productive gold-mining district of France. A high resolution survey during one hydrological year of As, Cl(-), Cr, Fe, Mn, Mo, SO(4)(2-), Th and U dissolved concentrations in surface water aimed to better understand pathways of trace element export to the river system downstream from the mining district. Dissolved concentrations of As (up to 35000 ng/L) and Mo (up to 292 ng/L) were about 3-fold higher than the regional dissolved background and showed a negative logarithmic relation with discharge. Dissolved concentrations of Cr (up to 483 ng/L), Th (up to 48 ng/L) and U (up to 184 ng/L) increased with discharge. Geochemical relationships between molar ratios in surface water, geochemical background as well as rain- and groundwater data were combined. The contrasting behavior of distinct element groups was explained by a scenario involving three seasonal components: (i) The high flow component is poorly concentrated in As and Mo but highly concentrated in Cr, Th, U. This has been attributed to diffuse sources such as water-soil interactions, atmospheric inputs, bedrock and bed sediment weathering. Although this component probably also includes a contribution by weathering of sulfide veins, this signal is masked by dilution. (ii) One low flow component presents high SO(4)(2-), Fe, As and Mo and moderate Cr, Th and U concentrations. This component has been attributed to point sources such as mine gallery effluents, mining waste weathering and groundwater inputs from natural and/or mining-induced sulfide oxidation in the ore deposit. (iii) A second low flow component showing high As plus Mo concentrations associated with very low SO(4)(2-), Fe, Cr, Th and U concentrations, probably reflects trace element scavenging by ferric oxyhydroxide formation in the adjacent aquifer. This is supported by the decrease of Fe, Cr, Th and U in surface waters. Flux estimates suggest contrasting element-specific impacts on annual dissolved fluxes. Runoff may account for the major part of annual dissolved As, Mo, Th and U fluxes in the Upper Isle River. Inputs related to sulfide oxidation respectively contributed approximately 30% and approximately 24% to annual As and Mo fluxes. The formation of ferric oxyhydroxides strongly retained Cr, Th and U during the low flow, limiting their dissolved concentrations in surface waters. If this process may eventually decrease As mobility, its impact on dissolved As concentrations in surface water may be limited or/and counterbalanced by As release during sulfide oxidation.
Hydrothermal impacts on trace element and isotope ocean biogeochemistry.
German, C R; Casciotti, K A; Dutay, J-C; Heimbürger, L E; Jenkins, W J; Measures, C I; Mills, R A; Obata, H; Schlitzer, R; Tagliabue, A; Turner, D R; Whitby, H
2016-11-28
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.
Hydrothermal impacts on trace element and isotope ocean biogeochemistry
Dutay, J.-C.; Heimbürger, L. E.; Jenkins, W. J.; Measures, C. I.; Mills, R. A.; Obata, H.; Turner, D. R.; Whitby, H.
2016-01-01
Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035265
Abraham, Mwesigye R; Susan, Tumwebaze B
2017-02-01
The mining and processing of copper in Kilembe, Western Uganda, from 1956 to 1982 left over 15 Mt of cupriferous and cobaltiferous pyrite dumped within a mountain river valley, in addition to mine water which is pumped to the land surface. This study was conducted to assess the sources and concentrations of heavy metals and trace elements in Kilembe mine catchment water. Multi-element analysis of trace elements from point sources and sinks was conducted which included mine tailings, mine water, mine leachate, Nyamwamba River water, public water sources and domestic water samples using ICP-MS. The study found that mean concentrations (mg kg -1 ) of Co (112), Cu (3320), Ni (131), As (8.6) in mine tailings were significantly higher than world average crust and were being eroded and discharged into water bodies within the catchment. Underground mine water and leachate contained higher mean concentrations (μg L -1 ) of Cu (9470), Co (3430) and Ni (590) compared with background concentrations (μg L -1 ) in un contaminated water of 1.9, 0.21 and 0.67 for Cu, Co and Ni respectively. Over 25% of household water samples exceeded UK drinking water thresholds for Al of 200 μg L -1 , Co exceeded Winsconsin (USA drinking) water thresholds of 40 μg L -1 in 40% of samples while Fe in 42% of samples exceeded UK thresholds of 200 μg L -1 . The study however found that besides mining activities, natural processes of geological weathering also contributed to Al, Fe, and Mn water contamination in a number of public water sources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anicić, M; Tomasević, M; Tasić, M; Rajsić, S; Popović, A; Frontasyeva, M V; Lierhagen, S; Steinnes, E
2009-11-15
To clarify the peculiarities of trace element accumulation in moss bags technique (active biomonitoring), samples of the moss Sphagnum girgensohnii Rusow were exposed in bags with and without irrigation for 15 days up to 5 months consequently in the semi-urban area of Belgrade (Serbia) starting from July 2007. The accumulation capacity for 49 elements determined by ICP-MS in wet and dry moss bags was compared. The concentration of some elements, i.e. Al, V, Cr, Fe, Zn, As, Se, Sr, Pb, and Sm increased continuously with exposure time in both dry and wet moss bags, whereas concentration of Na, Cl, K, Mn, Rb, Cs, and Ta decreased. Irrigation of moss resulted in a higher accumulation capacity for most of the elements, especially for Cr, Zn, As, Se, Br, and Sr. Principal component analysis was performed on the datasets of element concentrations in wet and dry moss bags for source identification. Results of the factor analysis were similar but not identical in the two cases due to possible differences in element accumulation mechanisms.
NASA Astrophysics Data System (ADS)
Camarero, Lluís; Bacardit, Montserrat; de Diego, Alberto; Arana, Gorka
2017-10-01
Atmospheric deposition collected at remote, high elevation stations is representative of long-range transport of elements. Here we present time-series of Al, Fe, Ti, Mn, Zn, Ni, Cu, As, Cd and Pb deposition sampled in the Central Pyrenees at 2240 m a.s.l, representative of the fluxes of these elements over South West Europe. Trace element deposition did not show a simple trend. Rather, there was statistical evidence of several underlying factors governing the variability of the time-series recorded: seasonal cycles, trends, the effects of the amount of precipitation, climate-controlled export of dust, and changes in anthropogenic emissions. Overall, there were three main modes of variation in deposition. The first mode was related to North Atlantic Oscillation (NAO), and affected Al, Fe, Ti, Mn and Pb. We interpret this as changes in the dust export from Northern Africa under the different meteorological conditions that the NAO index indicates. The second mode was an upward trend related to a rise in the frequency of precipitation events (that also lead to an increase in the amount). More frequent events might cause a higher efficiency in the scavenging of aerosols. As, Cu and Ni responded to this. And finally, the third mode of variation was related to changes in anthropogenic emissions of Pb and Zn.
Gao, Li; Gao, Bo; Peng, Wenqi; Xu, Dongyu; Yin, Shuhua
2018-01-01
As the largest man-made reservoir in China, the Three Gorges Reservoir (TGR) has significant influence on national drinking water safety. The geochemical behavior of trace elements at the sediment-water interface (SWI) is still unknown. The mobilization characteristics of trace elements (As, Mo and W)-determined by diffusive gradients in thin films (DGT)-were studied to quantitatively calculate the release trends in the SWI in three typical tributaries and the mainstream of the TGR in the summer. The results showed that concentrations of DGT-labile As, Mo and W in the overlying water and sediment cores showed significant variations in the ranges of 0.05-50.90, 0.30-1.63 and 0.01-0.42μgL -1 , respectively. The apparent net diffusive fluxes were significantly positive in most sampling sites (77.8% for As, 88.8% for Mo and 66.6% for W), suggesting that the sediment was the source of these three elements. It was noteworthy that the maximum net diffusive fluxes of As and W were found in the upstream of Meixi tributary, which may be attributed to anthropogenic activities. In addition, As, Mo and W may be incorporated in Fe and Mn oxyhydroxides and these three elements simultaneously remobilized with Fe and Mn. Copyright © 2017 Elsevier Inc. All rights reserved.
Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement
Borrok, D.M.; Wanty, R.B.; Ridley, W.I.; Wolf, R.; Lamothe, P.J.; Adams, M.
2007-01-01
The measurement of Cu, Fe, and Zn isotopes in natural samples may provide valuable information about biogeochemical processes in the environment. However, the widespread application of stable Cu, Fe, and Zn isotope chemistry to natural water systems remains limited by our ability to efficiently separate these trace elements from the greater concentrations of matrix elements. In this study, we present a new method for the isolation of Cu, Fe, and Zn from complex aqueous solutions using a single anion-exchange column with hydrochloric acid media. Using this method we are able to quantitatively separate Cu, Fe, and Zn from each other and from matrix elements in a single column elution. Elution of the elements of interest, as well as all other elements, through the anion-exchange column is a function of the speciation of each element in the various concentrations of HCl. We highlight the column chemistry by comparing our observations with published studies that have investigated the speciation of Cu, Fe, and Zn in chloride solutions. The functionality of the column procedure was tested by measuring Cu, Fe, and Zn isotopes in a variety of stream water samples impacted by acid mine drainage. The accuracy and precision of Zn isotopic measurements was tested by doping Zn-free stream water with the Zn isotopic standard. The reproducibility of the entire column separation process and the overall precision of the isotopic measurements were also evaluated. The isotopic results demonstrate that the Cu, Fe, and Zn column separates from the tested stream waters are of sufficient purity to be analyzed directly using a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS), and that the measurements are fully-reproducible, accurate, and precise. Although limited in scope, these isotopic measurements reveal significant variations in ??65Cu (- 1.41 to + 0.30???), ??56Fe (- 0.56 to + 0.34???), and ??66Zn (0.31 to 0.49???) among samples collected from different abandoned mines within a single watershed. Hence, Cu, Fe, and Zn isotopic measurements may be a powerful tool for fingerprinting specific metal sources and/or examining biogeochemical reactions within fresh water systems.
NASA Astrophysics Data System (ADS)
Gangidine, A.; Czaja, A. D.; Havig, J. R.
2017-12-01
Positively identifying fossil microorganisms is often a challenge due to poor preservation. Thermal and geological alteration can lead to extreme distortion in ancient microbial fossils to the point that they may be morphologically unrecognizable, making it crucial to have a biosignature that can be used regardless of such conditions to help establish biogenicity. Through analysis of trace element sequestration by silicified microorganisms of various ages, a new biosignature may be developed with the potential to be robust and yield paleobiological information, even in the absence of morphological preservation. Biological materials preserved in modern silica-depositing hot springs from Yellowstone National Park have been shown to contain a higher concentration of certain trace elements relative to the surrounding non-biological material. BIO-SIMS analyses also have shown apparent co-localization of certain trace elements relative to recently silicified microbes (Figure 1). By measuring the abundances, ratios, and spatial distributions of major and trace elements (e.g., Si, C, N, Fe, Mn, Ga, As) in modern and ancient microorganisms, it will be possible to deduce what elements are preferentially concentrated by life, and if this signature is preserved in the rock record during and after the fossilization process. By evaluating trace element abundances and distributions in a suite of hot spring deposit samples of ages ranging from modern (Yellowstone National Park) to 3.5 Ga (Dresser Formation), this biosignature may be calibrated across all timescales. Such a biosignature would provide a strong tool for determining biogenicity by itself, or strengthen any argument for or against biogenicity when used in unison with other detection methods. As hydrothermal silica deposits are thought to be widespread on the Martian surface, the use of this trace element biosignature for the upcoming Mars 2020 mission would allow a robust analysis to aid in the determination of the biogenicity of collected samples. For a mission such as Mars 2020, with a primary mission objective of finding ancient life, the burden of proof for identifying putative life will be unprecedented.
Composition and trace element content of coal in Taiwan
Tsai, L.-Y.; Chen, C.-F.; Finkelman, R.B.
2005-01-01
To investigate the trace element contents of local coal, four coal samples were collected from operating mines in NW Taiwan. Detailed petrographic and chemical characterization analyses were then conducted. Analytical results indicate that (1) the samples were high volatile bituminous coal in rank with ash content ranging from 4.2 to 14.4% and with moisture content ranging from 2.7 to 4.6%; (2) the macerals were mostly composed of vitrinite with vitrinite reflectance less than 0.8%; (3) the sample of Wukeng mine has the highest Fe2O3 (29.5%), TI (54.8 ppm), Zn (140 ppm), and As (697 ppm) contents in ash and Hg (2.3 ppm) in the coal. If used properly, these coals should not present health hazards.
Chemical characterization of seven Large Area Collector particles by SXRF. [cosmic dust composition
NASA Technical Reports Server (NTRS)
Flynn, G. J.; Sutton, S. R.
1991-01-01
Optical microscopy and synchrotron X-ray fluorescence (SXRF) are used to analyze the chemical composition of seven dark-appearing cosmic-dust particles obtained in the stratosphere during NASA Johnson Large Area Collector flights. The experimental setup and procedures are outlined, and the results are presented in extensive tables. Three of the particles had abundances similar to those of chondrites (except for low Ca values in one particle); two had a metallic appearance and spectra dominated by Fe and Zn; one contained Cu and Cr plus small amounts of Fe and Zn; and one had igneous-type abundances of minor and trace elements while containing all of the elements seen in chondritic particles, suggesting it may be of extraterrestrial origin.
Preda, Micaela; Cox, Malcolm E
2002-11-01
The Pumicestone region is a unique catchment in northern Moreton Bay, southeast Queensland. The region supports a wide range of land-use activities as well as attractions such as nature conservation areas. One environmental aspect that has not previously been addressed in this area is the occurrence of minor and trace metals in estuarine sediments associated with the main estuaries of the region. The trace metals included in this investigation are: vanadium, chromium, molybdenum, cobalt, nickel, copper, zinc, cadmium, lead and arsenic. To determine and evaluate the occurrence and distribution of metals in the area, several components have been analysed: bedrock material, pre-industrial settings, recent estuarine sediments, soils of estuarine origin and mangrove pneumatophores. The 40 sites chosen for sediment and soil samples cover a variety of estuarine settings and represent a range of natural conditions in terms of channel and bank morphology, tidal energy, vegetation cover, relationship to bedrock, water salinity and land disturbance. The chemical, mineralogical and statistical analyses employed in this study enabled (a) establishment of background values for the area, (b) determination of relationships between metals and (c) identification of sites with anomalous metal concentrations. All the metals found in the sediments of the area are sourced from the geological bedrock. The dominant trace elements identified in sediments are Zn, V and Cr. The remaining metals are highly variable spatially. All trace metals are controlled by the presence of Fe and Mn oxides, and by the grainsize of the sediment. Typically, fine-grained Fe-rich materials tend to adsorb more trace metals than sandy sediments. In soils that have developed from estuarine muds, some metals such as Cr, Mo, Pb and As tend to be in larger quantities than in the estuarine counterparts. Some of the elements, which occur in significant amounts in the sediment, have been detected in mangrove tissue (Avicenniamarina) such as V, Cr, Zn, Fe and Mn. Of particular note is Cu, which is present in mangrove tissue in quantities many times exceeding the sediment concentration. The comparative analysis of pre-industrial settings and recent sediments and soils highlighted some areas of metal enrichment such as acid-affected sites where oxidation of pyrite has mobilised metals from sediments; these metals are then redistributed in Fe-rich surficial layers. Disturbed banks within the estuaries are also likely to have low levels of metal enrichment due to boating activities.
NASA Astrophysics Data System (ADS)
Bilenker, L.; Weis, D.; Scoates, J. S.
2017-12-01
We present stable Fe and radiogenic isotope and complementary trace element data for samples from Atlantis Massif. This oceanic core complex is located at 30°N where the Atlantis Transform Fault intersects the Mid-Atlantic Ridge (MAR) and is associated with the Lost City Hydrothermal Field (LCHF). It is a unique place to investigate the abiotic and biotic geochemical processes that play a role in the alteration of both crustal and mantle seafloor rocks. The samples analyzed represent a shallow (<15 m) survey of five drill sites (IODP Expedition 357) within Atlantis Massif, varying in distance from the LCHF and MAR. Analyses were performed on a sample set spanning a wide range in degree of alteration and lithology. Bulk measurements involved dissolving whole rock powders, whereas in situ analyses were performed on digested microdrilled samples or by laser ablation. Bulk rock Fe isotope values (n = 34) are correlated with loss-on-ignition (LOI) by sample lithology and location relative to LCHF. Using LOI as a proxy for degree of alteration, this observation indicates that the Fe isotope systematics of seafloor crustal and mantle rocks preserve indicators of fluid flow and source. The Hf and Nd isotope compositions for various lithologies form all analyzed sites are homogeneous, indicating minimal alteration of these isotopic systems. Bulk Sr values provide insight into elemental exchange between seawater and the surface of Atlantis Massif and bulk Pb isotopes allow for fingerprinting of the source of basalt breccias through comparison with published Pb isotope values of MAR basalts. The new results cluster around the Pb, Hf, Nd isotopic composition of mid-ocean ridge basalt from 30.68°N and do not match samples north or south of that location. In situ Fe isotope data within three altered samples reflect varying degrees of hydrothermal and seawater interaction, where the Fe isotope ratios within each sample are likely correlated with extent of exchange or redox. Laser trace element and Pb isotope data in progress will allow us to investigate this further. This study contributes to our understanding of element mobility and mass transfer during chemical reactions within the seafloor, provides insight into the source of the lithological units and fluid flow, and allows for quantification of alteration processes.
Trace elements in lake sediments measured by the PIXE technique
NASA Astrophysics Data System (ADS)
Gatti, Luciana V.; Mozeto, Antônio A.; Artaxo, Paulo
1999-04-01
Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernão Lake, that is an oxbow lake of the Moji-Guaçu River basin, in the state of São Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy.
Effect of royal jelly on serum trace elements in rats undergoing head and neck irradiation.
Cihan, Yasemin Benderli; Cihan, Celaleddin; Mutlu, Hasan; Unal, Dilek
2013-01-01
This study aims to investigate the effects of radiation on serum trace elements and the changes in these elements as induced by royal jelly in rats undergoing head and neck irradiation. Thirty-two Sprague-Dawley male rats at the age of eight weeks with a mean weight of 275±35 g were included in the study. Subjects were divided into four groups with eight rats in each group: group 1: controls (C), group 2: radiation-only (RT), group 3: radiation plus royal jelly 50 mg/kg (RT+RJ50) and group 4: royal jelly 50 mg/kg-only (RJ50). Radiotherapy was applied to the head and neck area by single fraction at a dose of 22 Gy. The royal jelly was given once daily for seven days. The subjects were sacrificed on the seventh day of the study. Trace elements in blood samples were measured using ICP/MS method. When the trace element levels among the groups were compared using ANOVA test, a statistically significant difference was found in Al, As, Ca, Cd, Cr, K, Mg, Pb, Se, and Sn levels (p<0.05). No significant difference was found in the levels of Ag, Ba, Co, Cs, Cu, Fe, Ga, Hg, Mn, Na, Ni, Rb, Sr, Ti, U, V, and Zn (p>0.05). It was observed that oxidative stress was reduced in the radiation plus royal jelly group, compared to the radiation-only group. Our study results suggest that head and neck irradiation increases oxidative stress, leading to some changes in the trace element levels, while royal jelly exhibits a protective effect against the oxidative stress induced by radiation.
Altundag, Huseyin; Tuzen, Mustafa
2011-11-01
The aim of this study was used to investigate the level of trace metals (Ba, Pb, Cd, Mn, Cr, Co, Ni, Cu, Mn, Zn, Sr and Fe) in some dried fruits (Prunus domestica L., Ficus carica L., Morus alba L., Vitis vinifera L., Prunus armeniaca L., and Malus domestica) samples from Turkey. Trace elements were determined by ICP-OES after dry, wet and microwave digestion methods in dried fruit samples. Validation of the proposed method was carried out by using a NIST-SRM 1515-Apple Leaves certified reference material. Element concentrations in dried fruit samples were 0.33-1.77 (Ba), 0.12-0.54 (Cd), 0.25-1.03 (Co), 0.45-2.30 (Cr), 0.43-2.74 (Cu), 0.56-4.87 (Mn), 0.61-2.54 (Ni), 0.40-2.14 (Pb), 2.16-6.54 (Zn), 0.83-12.02 (Al), 11.82-40.80 (Fe) and 0.16-6.34 (Sr) μg/g. The analytical parameters show that the microwave oven digestion procedure provided best results as compared to the wet and dry digestion procedures. The results were compared with the literature values. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characterization of elemental release during microbe granite interactions at T = 28 °C
NASA Astrophysics Data System (ADS)
Wu, Lingling; Jacobson, Andrew D.; Hausner, Martina
2008-02-01
This study used batch reactors to characterize the mechanisms and rates of elemental release (Al, Ca, K, Mg, Na, F, Fe, P, Sr, and Si) during interaction of a single bacterial species ( Burkholderia fungorum) with granite at T = 28 °C for 35 days. The objective was to evaluate how actively metabolizing heterotrophic bacteria might influence granite weathering on the continents. We supplied glucose as a C source, either NH 4 or NO 3 as N sources, and either dissolved PO 4 or trace apatite in granite as P sources. Cell growth occurred under all experimental conditions. However, solution pH decreased from ˜7 to 4 in NH 4-bearing reactors, whereas pH remained near-neutral in NO 3-bearing reactors. Measurements of dissolved CO 2 and gluconate together with mass-balances for cell growth suggest that pH lowering in NH 4-bearing reactors resulted from gluconic acid release and H + extrusion during NH 4 uptake. In NO 3-bearing reactors, B. fungormum likely produced gluconic acid and consumed H + simultaneously during NO 3 utilization. Over the entire 35-day period, NH 4-bearing biotic reactors yielded the highest release rates for all elements considered. However, chemical analyses of biomass show that bacteria scavenged Na, P, and Sr during growth. Abiotic control reactors followed different reaction paths and experienced much lower elemental release rates compared to biotic reactors. Because release rates inversely correlate with pH, we conclude that proton-promoted dissolution was the dominant reaction mechanism. Solute speciation modeling indicates that formation of Al-F and Fe-F complexes in biotic reactors may have enhanced mineral solubilities and release rates by lowering Al and Fe activities. Mass-balances further reveal that Ca-bearing trace phases (calcite, fluorite, and fluorapatite) provided most of the dissolved Ca, whereas more abundant phases (plagioclase) contributed negligible amounts. Our findings imply that during the incipient stages of granite weathering, heterotrophic bacteria utilizing glucose and NH 4 only moderately elevate silicate weathering reactions that consume atmospheric CO 2. However, by enhancing the dissolution of non-silicate, Ca-bearing trace minerals, they could contribute to high Ca/Na ratios commonly observed in granitic watersheds.
Seasonally-resolved trace element concentrations in stalagmites from a shallow cave in New Mexico
NASA Astrophysics Data System (ADS)
Sekhon, N.; Banner, J.; Miller, N. R.; Carlson, P. E.; Breecker, D.
2017-12-01
High-resolution (sub-annual/seasonal) paleoclimate records extending beyond the instrumental period are required to test climate models and better understand how climate warming/cooling and wetting/drying are manifested seasonally. This is particularly the case for areas such as the southwest United States where precipitation and temperature seasonality dictate the regional climate. Study of a 20thcentury stalagmite (Carlson et al., in prep) documented (1) seasonal variation in trace element compositions of a stalagmite from a shallow, well-ventilated cave and (2) demonstrated the seasonal variation in stalagmite Mg to be in agreement with predicted temperature-dependent fractionation between water and calcite. The seasonal nature of variability was constrained by monitoring the cave on a monthly basis (Casteel and Banner, 2015; Carlson et al., in prep). Here we expand on using stalagmites from shallow, well-ventilated caves as archives of seasonally-resolved climate recorders by studying trace element variations in two coeval modern stalagmites (SBFC-1 and SBFC-2) cored from Sitting Bull Falls, southern New Mexico. Seasonal cycles will be confirmed by analyzing Mg, Ba, and Sr in in-situ calcite precipitated on artificial substrates as available (July, Sept., and Nov. 2017). The chronology is constrained by semi-automated peak counting and 14C bomb-peak. In addition, principal component analyses of trace element data identify two primary underlying modes of trace element variability for soil-derived elements (Cu, Zn, and Fe) and bedrock-derived elements (Mg, Sr, and Ba). We hypothesize that the soil-derived elements are transported by seasonal infiltration of organic colloids and the bedrock-derived elements are controlled by variability in cave air temperature, drip water, and calcite growth rate. The two modes of variability will be calibrated against instrumental data over the 20th century. When complete, these new seasonally resolved proxy records will constrain the pattern and mechanism of the regional climate in southwest United States with a focus on drought indicators.
Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G
2007-10-01
A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.
Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China
Sun, R.; Liu, Gaisheng; Zheng, Lingyun; Chou, C.-L.
2010-01-01
The abundances of nine major elements and thirty-eight trace elements in 520 samples of low sulfur coals from the Zhuji Mine, Huainan Coalfield, Anhui, China, were determined. Samples were mainly collected from 10 minable coal seams of 29 boreholes during exploration. The B content in coals shows that the influence of brackish water decreased toward the top of coal seams; marine transgression and regression occurred frequently in the Lower Shihezi Formation. A wide range of elemental abundances is found. Weighted means of Na, K, Fe, P, Be, B, Co, Ni, Cr, Se, Sb, Ba, and Bi abundances in Zhuji coals are higher, and the remainder elements are either lower or equal to the average values of elements in coals of northern China. Compared to the Chinese coals, the Zhuji coals are higher in Na, K, Be, B, Cr, Co, Se, Sn, Sb, and Bi, but lower in Ti, P, Li, V and Zn. The Zhuji coals are lower only in S, P, V and Zn than average U.S. and world coals. Potassium, Mg, Ca, Mn, Sr, As, Se, Sb and light rare earth elements (LREE) had a tendency to be enriched in thicker coal seams, whereas Fe, Ti, P, V, Co, Ni, Y, Mo, Pb and heavy rare earth elements (HREE) were inclined to concentrate in thinner coal seams. The enrichment of some elements in the Shanxi or Upper Shihezi Formations is related to their depositional environments. The elements are classified into three groups based on their stratigraphic distributions from coal seams 3 to 11-2, and the characteristics of each group are discussed. Lateral distributions of selected elements are also investigated. The correlation coefficients of elemental abundances with ash content show that the elements may be classified into four groups related to modes of occurrence of these elements. ?? 2009 Elsevier B.V. All rights reserved.
Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico
NASA Astrophysics Data System (ADS)
Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.
2016-05-01
PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.
NASA Astrophysics Data System (ADS)
Symonds, Robert B.; Reed, Mark H.; Rose, William I.
1992-02-01
Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.
Krawczyk, Magdalena
2014-01-01
In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Vetter, Scott K.; Shervais, John W.
1993-01-01
Early studies of mare basalts from the Apollo 15 site established that two distinct groups are represented: the olivine-normative basalts (ONB) and the quartz-normative basalts (QNB). The ONB and QNB suites are distinguished petrographically by their phenocryst assemblages (the ONB's are olivine-phyric, the QNB's are generally pyroxene-phyric) and chemically by their major element compositions: the QNB's are higher in SiO2 and MgO/FeO, and lower in FeO and TiO2 than ONB's with similar MgO contents. Experimental data show that the QNB suite is derived from a more magnesian, olivine-normative parent magma, a conclusion which is supported by the recent discovery of high-SiO2 olivine-normative basalt clasts in breccia 15498. The high-SiO2 ONB's fall on olivine control lines with primitive QNB's, and least-squares mixing calculations are consistent with the high-SiO2 ONB's being parental to the more evolved QNB suite. These high-SiO2 ONB's are included as part of the 'QNB suite'. Our major element modeling results also are consistent with the conclusions of earlier studies which showed that the ONB and QNB suites cannot be related to one another by low pressure crystal fractionation. The combination of high Mg#, high SiO2, and low TiO2 in the QNB suite precludes a relationship to the ONB suite by simple removal of liquidus minerals (olivine and pigeonite). Despite these significant differences in petrography and major element composition, both groups have nearly identical trace element concentrations and chondrite-normalized abundance patterns. The major question to be addressed by any petrogenetic model for Apollo 15 mare basalts is how to form mare basalt suites with distinctly different major element characteristics but nearly identical trace element compositions. The similarity in trace element concentrations imply compositionally similar source regions and similar percent melting, but these conclusions are not easily reconciled with the observed differences in major element compositions, which require sources with distinct mineralogies or large differences in percent melt.
NASA Astrophysics Data System (ADS)
Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.
2012-04-01
Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the biogeochemical processes acting in the rhizosphere which can play an important role in the availability of trace elements (either nutrient or toxic) for plant uptake. Research is supported by MIUR - FIRB "Futuro in ricerca", internal grant of Unibz (TN5031 & TN5046) and the Autonomous Province of Bolzano (Rhizotyr TN5218).
NASA Astrophysics Data System (ADS)
Milidragovic, Dejan; Francis, Don
2016-07-01
Although terrestrial picritic magmas with FeOTOT ⩾13 wt.% are rare in the geological record, they were relatively common ca. 2.7 Ga during the Neoarchean episode of enhanced global growth of continental crust. Recent evidence that ferropicritic underplating played an important role in the ca. 2.74-2.70 Ga reworking of the Ungava craton provides the impetus for a comparison of ca. 2.7 Ga ferropicrite occurrences in the global Neoarchean magmatic record. In addition to the Fe-rich plutons of the Ungava craton, volumetrically minor ferropicritic flows, pyroclastic deposits, and intrusive rocks form parts of the Neoarchean greenstone belt stratigraphy of the Abitibi, Wawa, Wabigoon and Vermillion domains of the southern and western Superior Province. Neoarchean ferropicritic rocks also occur on five other Archean cratons: West Churchill, Slave, Yilgarn, Kaapvaal, and Karelia; suggesting that ca. 2.7 Ga Fe-rich magmatism was globally widespread. Neoarchean ferropicrites form two distinct groups in terms of their trace element geochemistry. Alkaline ferropicrites have fractionated REE profiles and show no systematic HFSE anomalies, broadly resembling the trace element character of modern-day ocean island basalt (OIB) magmas. Magmas parental to ca. 2.7 Ga alkaline ferropicrites also had high Nb/YPM (>2), low Al2O3/TiO2 (<8) and Sc/Fe (⩽3 × 10-4) ratios, and were enriched in Ni relative to primary pyrolite mantle-derived melts. The high Ni contents of the alkaline ferropicrites coupled with the low Sc/Fe ratios are consistent with derivation from olivine-free garnet-pyroxenite sources. The second ferropicrite group is characterized by decisively non-alkaline primary trace element profiles that range from flat to LREE-depleted, resembling Archean tholeiitic basalts and komatiites. In contrast to the alkaline ferropicrites, the magmas parental to the subalkaline ferropicrites had flat HREE, lower Nb/YPM (<2), higher Al2O3/TiO2 (8-25) and Sc/Fe (⩾4 × 10-4) ratios, and were depleted in Ni relative to melts of pyrolitic peridotite; suggesting they were derived from garnet-free peridotite sources. Neodymium isotopic evidence indicates that the source of alkaline ferropicrites was metasomatically enriched shortly before magma generation (⩽3.0 Ga), but the subalkaline ferropicrites do not show evidence of precursor metasomatism. The metasomatic enrichment of the alkaline ferropicrite sources may have been accompanied by conversion of Fe-rich peridotite to secondary garnet-pyroxenite. Melting experiments on ;pyrolitic; compositions and consideration of the dependence of the density of silicate liquids on pressure and temperature, suggest that ferropicrites cannot originate by melting of normal terrestrial mantle (Mg-number = 0.88-0.92) at high pressures and temperatures. The geochemical similarity between the subalkaline ferropicrites and the shergottite-nakhlite-chassigny (SNC) and howardite-eucrite-diogenite (HED) differentiated meteorites suggests, however, that the Fe-rich mantle may originate from the infall of Fe-rich chondritic meteorites. The occurrence of ca. 2.7 Ga Fe-rich rocks on at least six cratons that are commonly coeval with the more ubiquitous komatiites and Mg-tholeiites is consistent with the existence of heterogeneous Fe-rich ;plums; throughout the Neoarchean mantle. The paucity of ferropicrites in the post-2.7 Ga geological record suggests that majority of these Fe-rich plums have been melted out during the global Neoarchean melting of the mantle.
Odegård, M; Mansfeld, J; Dundas, S H
2001-08-01
Calibration materials for microanalysis of Ti minerals have been prepared by direct fusion of synthetic and natural materials by resistance heating in high-purity graphite electrodes. Synthetic materials were FeTiO3 and TiO2 reagents doped with minor and trace elements; CRMs for ilmenite, rutile, and a Ti-rich magnetite were used as natural materials. Problems occurred during fusion of Fe2O3-rich materials, because at atmospheric pressure Fe2O3 decomposes into Fe3O4 and O2 at 1462 degrees C. An alternative fusion technique under pressure was tested, but the resulting materials were characterized by extensive segregation and development of separate phases. Fe2O3-rich materials were therefore fused below this temperature, resulting in a form of sintering, without conversion of the materials into amorphous glasses. The fused materials were studied by optical microscopy and EPMA, and tested as calibration materials by inductively coupled plasma mass spectrometry, equipped with laser ablation for sample introduction (LA-ICP-MS). It was demonstrated that calibration curves based on materials of rutile composition, within normal analytical uncertainty, generally coincide with calibration curves based on materials of ilmenite composition. It is, therefore, concluded that LA-ICP-MS analysis of Ti minerals can with advantage be based exclusively on calibration materials prepared for rutile, thereby avoiding the special fusion problems related to oxide mixtures of ilmenite composition. It is documented that sintered materials were in good overall agreement with homogeneous glass materials, an observation that indicates that in other situations also sintered mineral concentrates might be a useful alternative for instrument calibration, e.g. as alternative to pressed powders.
Rusk, B.G.; Lowers, H.A.; Reed, M.H.
2008-01-01
High-resolution electron microprobe maps show the distribution of Ti, Al, Ca, K, and Fe among quartz growth zones revealed by scanning electron microscope-cathodoluminescence (SEM-CL) from 12 hydrothermal ore deposits formed between ???100 and e1750 ??C. The maps clearly show the relationships between trace elements and CL intensity in quartz. Among all samples, no single trace element consistently correlates with variations in CL intensity. However in vein quartz from five porphyry-Cu (Mo-Au) deposits, CL intensity always correlates positively with Ti concentrations, suggesting that Ti is a CL activator in quartz formed at >400 ??C. Ti concentrations in most rutile-bearing vein quartz from porphyry copper deposits indicate reasonable formation temperatures of 2000 ppm, but in high-temperature quartz, Al concentrations are consistently in the range of several hundred ppm. Aluminum concentrations in quartz refl ect the Al solubility in hydrothermal fluids, which is strongly dependent on pH. Aluminum concentrations in quartz therefore reflect fluctuations in pH that may drive metal-sulfide precipitation in hydrothermal systems. ?? 2008 The Geological Society of America.
EDXRF quantitative analysis of chromophore chemical elements in corundum samples.
Bonizzoni, L; Galli, A; Spinolo, G; Palanza, V
2009-12-01
Corundum is a crystalline form of aluminum oxide (Al(2)O(3)) and is one of the rock-forming minerals. When aluminum oxide is pure, the mineral is colorless, but the presence of trace amounts of other elements such as iron, titanium, and chromium in the crystal lattice gives the typical colors (including blue, red, violet, pink, green, yellow, orange, gray, white, colorless, and black) of gemstone varieties. The starting point for our work is the quantitative evaluation of the concentration of chromophore chemical elements with a precision as good as possible to match the data obtained by different techniques as such as optical absorption photoluminescence. The aim is to give an interpretation of the absorption bands present in the NIR and visible ranges which do not involve intervalence charge transfer transitions (Fe(2+) --> Fe(3+) and Fe(2+) --> Ti(4+)), commonly considered responsible of the important features of the blue sapphire absorption spectra. So, we developed a method to evaluate as accurately as possible the autoabsorption effects and the secondary excitation effects which frequently are sources of relevant errors in the quantitative EDXRF analysis.
Erkekoglu, Pinar; Arnaud, Josiane; Rachidi, Walid; Kocer-Gumusel, Belma; Favier, Alain; Hincal, Filiz
2015-01-01
Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer for synthetic polymers, is known to have endocrine disruptive potential, reproductive toxicity, and induces hepatic carcinogenesis in rodents. Selenium (Se) is a component of several selenoenzymes which are essential for cellular antioxidant defense and for the functions of mammalian reproductive system. The present study was designed to investigate the effects of DEHP exposure on trace element distribution in liver, testis, and kidney tissues and plasma of Se-deficient and Se-supplemented rats. Se deficiency was produced by feeding 3-week old Sprague-Dawley rats with ≤0.05mg Se/kg diet for 5 weeks, and supplementation group were on 1mg Se/kg diet. DEHP treated groups received 1000mg/kg dose by gavage during the last 10 days of feeding period. Se, zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) levels were measured by inductively coupled plasma mass spectrometry (ICP-MS). Se supplementation caused significant increases in hepatic, renal, and testicular Se levels. With DEHP exposure, plasma Se and Zn, kidney Se, Cu and Mn levels were significantly decreased. Besides, liver Fe decreased markedly in all the DEHP-treated groups. Liver and kidney Mn levels decreased significantly in DEHP/SeD group compared to both DEHP and SeD groups. These results showed the potential of DEHP exposure and/or different Se status to modify the distribution pattern of essential trace elements in various tissues, the importance of which needs to be further evaluated. Copyright © 2014. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Herut, Barak; Kress, Nurit; Shefer, Edna; Hornung, Hava
1999-12-01
The trace element contamination levels in mollusks were evaluated for different marine coastal sites in the Mediterranean (Israeli coast), Red (Israeli coast) and North (German coast) Seas. Three bivalve species (Mactra corallina, Donax sp, and Mytilus edulis) and two gastropod species (Patella sp.and Cellana rota) were sampled at polluted and relatively clean sites, and their soft tissue analyzed for Hg, Cd, Zn, Cu, Mn and Fe concentrations. Representative samples were screened for organic contaminants [(DDE), polychlorinated biphenyls PCBs and polycyclic aromatic hydrocarbons (PAHs)] which exhibited very low concentrations at all sites. In the Red Sea, the gastropod C. rota showed low levels of Hg (below detection limit) and similar Cd concentrations at all the examined sites, while other trace elements (Cu, Zn, Mn, Fe) were slightly enriched at the northern beach stations. Along the Mediterranean coast of Israel, Hg and Zn were enriched in two bivalves (M. corallina and Donax sp.) from Haifa Bay, both species undergoing a long-term decrease in Hg based on previous studies. Significant Cd and Zn enrichment was detected in Patella sp. from the Kishon River estuary at the southern part of Haifa Bay. In general, Patella sp. and Donax sp. specimens from Haifa Bay exhibited higher levels of Cd compared to other sites along the Israeli Mediterranean coast, attributed to the enrichment of Cd in suspended particulate matter. Along the German coast (North Sea) M. edulis exhibited higher concentrations of Hg and Cd at the Elbe and Eider estuaries, but with levels below those found in polluted sites elsewhere.
Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane
2012-01-01
In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625
Trace elements during primordial plexiform network formation in human cerebral organoids
Sartore, Rafaela C.; Cardoso, Simone C.; Lages, Yury V.M.; Paraguassu, Julia M.; Stelling, Mariana P.; Madeiro da Costa, Rodrigo F.; Guimaraes, Marilia Z.; Pérez, Carlos A.
2017-01-01
Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood. PMID:28194309
Ben Salem, Zohra; Laffray, Xavier; Al-Ashoor, Ahmed; Ayadi, Habib; Aleya, Lotfi
2017-04-01
The uptake of metals in roots and their transfer to rhizomes and above-ground plant parts (stems, leaves) of cattails (Typha latifolia L.) were studied in leachates from a domestic landfill site (Etueffont, France) and treated in a natural lagooning system. Plant parts and corresponding water and sediment samples were taken at the inflow and outflow points of the four ponds at the beginning and at the end of the growing season. Concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni and Zn in the different compartments were estimated and their removal efficiency assessed, reaching more than 90% for Fe, Mn and Ni in spring and fall as well in the water compartment. The above- and below-ground cattail biomass varied from 0.21 to 0.85, and 0.34 to 1.24kgdryweight/m 2 , respectively, the highest values being recorded in the fourth pond in spring 2011. The root system was the first site of accumulation before the rhizome, stem and leaves. The highest metal concentration was observed in roots from cattails growing at the inflow of the system's first pond. The trend in the average trace element concentrations in the cattail plant organs can generally be expressed as: Fe>Mn>As > Zn>Cr>Cu>Ni>Cd for both spring and fall. While T. latifolia removes trace elements efficiently from landfill leachates, attention should also be paid to the negative effects of these elements on plant growth. Copyright © 2016. Published by Elsevier B.V.
Roma, Antonella De; Abete, Maria Cesarina; Brizio, Paola; Picazio, Giuseppe; Caiazzo, Marcello; D'auria, Jacopo Luigi; Esposito, Mauro
2017-07-01
Human exposure to contaminated food is a general health concern worldwide; it is necessary to evaluate food safety with respect to contaminants present in the edible parts of major food crops. This study evaluated the concentrations of 17 trace elements (As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Sn, Tl, V, and Zn) from 51 potato plantations in the Campania region, inside the area known as the "Triangle of Death," with inductively coupled plasma mass spectrometry analysis. Results confirm that the potatoes collected from the suburban area of Naples contained concentrations of trace elements below the safe limits prescribed by the Food and Agriculture Organization of the United Nations and the World Health Organization. The concentrations of elements were similar to those reported for potatoes grown in other countries. Monitoring the content of toxic and potentially toxic elements is one of the most important aspects of food quality assurance. The environmental persistence of metals may result in the accumulation of significant levels of these contaminants in plants. They are absorbed to different extents, depending on their source, soil and climatic factors, plant genotype, and agrotechnical conditions, thereby entering the food chain and representing a risk to human health.
Elemental analysis of different varieties of rice samples using XRF technique
NASA Astrophysics Data System (ADS)
Kaur, Jaspreet; Kumar, Anil
2016-05-01
Rice is most consumed staple food in the world providing over 21% of the calorie intake of world's population having high yielding capacity. Elements detected in rice are Al, As, Br, Cd, Cl, Co, Cs, Cu, Fe, Hg, K, Mg, Mn, Mo, Rb, Se and Zn by using Instrumental Neutron Activation with k0 standardization (R. Jayasekera etal,2004). Some of these trace elements are C, H, O, N, S, Ca, P, K, Na, Cl, Mn, Ti, Mg, Cu, Fe, Ni, Si and Zn are essential for growth of human physique The deficiency or excess of these elements in food is known to cause a variety of malnutrition or health disorders in the world. Every year, various varieties of rice are launched by Punjab Agriculture University, Ludhiana. The main purpose of which is to increases the yield to attain the maximum profit. But this leads to changing the elemental concentration in them, which may affect the human health according to variation in the nutrition values. The main objective is to study the presence of elemental concentration in various varieties of rice using EDXRF technique.
Chemical Analyses of Pre-Holocene Rocks from Medicine Lake Volcano and Vicinity, Northern California
Donnelly-Nolan, Julie M.
2008-01-01
Chemical analyses are presented in an accompanying table (Table 1) for more than 600 pre-Holocene rocks collected at and near Medicine Lake Volcano, northern California. The data include major-element X-ray fluorescence (XRF) analyses for all of the rocks plus XRF trace element data for most samples, and instrumental neutron activation analysis (INAA) trace element data for many samples. In addition, a limited number of analyses of Na2O and K2O by flame photometry (FP) are included as well assome wet chemical analyses of FeO, H2O+/-, and CO2. Latitude and longitude location information is provided for all samples. This data set is intended to accompany the geologic map of Medicine Lake Volcano (Donnelly-Nolan, in press); map unit designations are given for each sample collected from the map area.
The effect of membrane filtration on dissolved trace element concentrations
Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R.
1996-01-01
The almost universally accepted operational definition for dissolved constituents is based on processing whole-water samples through a 0.45-??m membrane filter. Results from field and laboratory experiments indicate that a number of factors associated with filtration, other than just pore size (e.g., diameter, manufacturer, volume of sample processed, amount of suspended sediment in the sample), can produce substantial variations in the 'dissolved' concentrations of such elements as Fe, Al, Cu, Zn, Pb, Co, and Ni. These variations result from the inclusion/exclusion of colloidally- associated trace elements. Thus, 'dissolved' concentrations quantitated by analyzing filtrates generated by processing whole-water through similar pore- sized membrane filters may not be equal/comparable. As such, simple filtration through a 0.45-??m membrane filter may no longer represent an acceptable operational definition for dissolved chemical constituents. This conclusion may have important implications for environmental studies and regulatory agencies.
Chen, Lingyun; Shen, Mei; Ma, Ande; Han, Weili
2018-03-01
Fresh Mashui orange samples were pretreated with microwave digestion using an HNO 3 -H 2 O 2 system. The levels of Mg, K, Ca, Fe, Mn, Cu, Zn, As, Cd, and Pb in the seeds, pulp, and peel were then determined using inductively coupled plasma mass spectrometry (ICP-MS) combined with collision cell technology (CCT) and kinetic energy discrimination (KED). The standard curve coefficient of determinations of the ten tested elements were between 0.9995 and 0.9999. The instrument detection limit was between 0.112 ng/L and 3.05 ng/mL. The method detection limit was between 0.0281 and 763 ng/g. The average recovery rate was between 85.0 and 117%. The current results showed that Mashui oranges are rich in three elements, namely Mg, K, and Ca. The concentrations of K and Ca were significantly higher than that of Mg in the peel. The content of K was the highest in the seeds. Fe, Mn, Cu, and Zn had the second highest concentrations, and Fe was the highest in the seeds, while Cu was the lowest in the peel. As, Cd, and Pb (hazardous elements) had the lowest concentrations of all the tested elements.
Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0
Stanton, M.R.; Gemery-Hill, P. A.; Shanks, Wayne C.; Taylor, C.D.
2008-01-01
High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn) Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals. Nonoxidative sphalerite dissolution (mediated by H+) is characterized by a "fast" stage in the first 24-30 h, followed by a "slow" stage for the remainder of the reaction. Over the pH range 2.0-4.0, and for similar extent of reaction (reaction time), sphalerite composition, and surface area, the rates of release of Zn, Fe, Cd, Cu, Mn and Pb from sphalerite generally increase with lower pH. Zinc and Fe exhibit the fastest rates of release, Mn and Pb have intermediate rates of release, and Cd and Cu show the slowest rates of release. The largest variations in metal release rates occur at pH 2.0. At pH 3.0 and 4.0, release rates show less variation and appear less dependent on the metal abundance in the solid. For the same extent of reaction (100 h), rates of Zn release range from 1.53 ?? 10-11 to 5.72 ?? 10-10 mol/m2/s; for Fe, the range is from 4.59 ?? 10-13 to 1.99 ?? 10-10 mol/m2/s. Trace metal release rates are generally 1-5 orders of magnitude slower than the Zn or Fe rates. Results indicate that the distributions of Fe and Cd are directly related to the rate of sphalerite dissolution throughout the reaction at pH 3.0 and 4.0 because these two elements substitute readily into sphalerite. These two metals are likely to be more amenable to usage in predictive acid dissolution models because of this behavior. The Pb distribution shows no strong relation to sphalerite dissolution and appears to be controlled by pH-dependent solubility, most likely related to trace amounts of galena. The distribution of Cu is similar to that of Fe but is the most-dependent of all metals on its mole fraction ratio (Zn:Cu) in sphalerite. The Mn distributions suggest an increase in the rate of Mn release relative to sphalerite dissolution occurs in low Mn samples as pH increases. The Mn distribution in high Mn samples is nearly independent of pH and sphalerite dissolution at pH 2.0 but shows a dependence on these two parameters at higher pH (3.0-4.0).
NASA Astrophysics Data System (ADS)
Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.
2016-08-01
The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.
NASA Astrophysics Data System (ADS)
Gregory, Daniel D.; Lyons, Timothy W.; Large, Ross R.; Jiang, Ganqing; Stepanov, Aleksandr S.; Diamond, Charles W.; Figueroa, Maria C.; Olin, Paul
2017-11-01
The trace element content of pyrite is a recently developed proxy for metal abundance in paleo-oceans. Previous studies have shown that the results broadly match those of whole rock studies through geologic time. However, no detailed study has evaluated the more traditional proxies for ocean chemistry for comparison to pyrite trace element data from the same samples. In this study we compare pyrite trace element data from 14 samples from the Wuhe section of the Ediacaran-age Doushantuo Formation, south China, measured by laser ablation inductively coupled plasma mass spectrometry with new and existing whole rock trace element concentrations; total organic carbon; Fe mineral speciation; S isotope ratios; and pyrite textural relationships. This approach allows for comparison of data for individual trace elements within the broader environmental context defined by the other chemical parameters. The results for discrete pyrite analyses show that several chalcophile and siderophile elements (Ag, Sb, Se, Pb, Cd, Te, Bi, Mo, Ni, and Au) vary among the samples with patterns that mirror those of the independent whole rock data. A comparison with existing databases for sedimentary and hydrothermal pyrite allows us to discriminate between signatures of changing ocean conditions and those of known hydrothermal sources. In the case of the Wuhe samples, the observed patterns for trace element variation point to primary marine controls rather than higher temperature processes. Specifically, our new data are consistent with previous arguments for pulses of redox sensitive trace elements interpreted to be due to marine oxygenation against a backdrop of mostly O2-poor conditions in the Ediacaran ocean-with important implications for the availability of bioessential elements. The agreement between the pyrite and whole rock data supports the use of trace element content of pyrite as a tracer of ocean chemistry in ways that complement existing approaches, while also opening additional windows of opportunity. For example, unlike the potential vulnerability of whole rock data to secondary alteration, the pyrite record may survive greenschist facies metamorphism. Furthermore, early-formed pyrite can be identified through textural relationships as a proxy of primary marine chemistry even in the presence of hydrothermal overprints on whole rock chemistry via secondary fluids. Finally, pyrite analyses may allow for the possibility of more quantitative interpretations of the ancient ocean once the elemental partitioning between the mineral and host fluids are better constrained. Collectively, these advances can greatly increase the number of basins that may be investigated for early ocean chemistry, especially those of Precambrian age.
Emissions inventory of PM2.5 trace elements across the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam Reff; Prakash V. Bhave; Heather Simon
2009-08-15
This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM2.5 emissions in the NEI were organized and aggregated into a set of 84 source categories for which chemical speciation profiles are available (e.g., Unpaved Road Dust, Agricultural Soil, Wildfires). Emission estimates for ten metals classified as Hazardous Air Pollutants (HAP) were refined using data from a recent HAP NEI. All emissions were spatially gridded, and U.S. emissions maps for dozens of trace elements (e.g., Fe,more » Ti) are presented for the first time. Nationally, the trace elements emitted in the highest quantities are silicon (3.8 x 10{sup 5} ton/yr), aluminium (1.4 x 10{sup 5} ton/yr), and calcium (1.3 x 10{sup 5} ton/yr). Our chemical characterization of the PM2.5 inventory shows that most of the previously unspeciated emissions are comprised of crustal elements, potassium, sodium, chlorine, and metal-bound oxygen. Coal combustion is the largest source of S, Se, Sr, Hg and primary sulfates. This work also reveals that the largest PM2.5 sources lacking specific speciation data are off-road diesel-powered mobile equipment, road construction dust, marine vessels, gasoline-powered boats, and railroad locomotives. 28 refs., 4 figs.« less
Odabasi, Mustafa; Tolunay, Doganay; Kara, Melik; Ozgunerge Falay, Ezgi; Tuna, Gizem; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Elbir, Tolga
2016-04-15
Several trace and macro elements (n=48) were measured in pine needle, branch, bark, tree ring, litter, and soil samples collected at 27 sites (21 industrial, 6 background) to investigate their spatial and historical variation in Aliaga industrial region in Turkey. Concentrations generally decreased with distance from the sources and the lowest ones were measured at background sites far from major sources. Spatial distribution of anthropogenic trace elements indicated that their major sources in the region are the iron-steel plants, ship-breaking activities and the petroleum refinery. Patterns of 40 elements that were detected in most of the samples were also evaluated to assess their suitability for investigation of historical variations. Observed increasing trends of several trace and macro elements (As, Cr, Fe, Mo, Ni, V, Cu, Pb, Sb, Sn, and Hg) in the tree-ring samples were representative for the variations in anthropogenic emissions and resulting atmospheric concentrations in Aliaga region. It was shown that lanthanides (La, Ce, Pr, Nd, Sm, Gd, Dy, Er, Yb) could also be used for the investigation of historical variations due to specific industrial emissions (i.e., petroleum refining). Results of the present study showed that tree components, litter, and soil could be used to determine the spatial variations of atmospheric pollution in a region while tree rings could be used to assess the historical variations. Copyright © 2016 Elsevier B.V. All rights reserved.
Falandysz, Jerzy; Frankowska, Aneta; Jarzynska, Grazyna; Dryzałowska, Anna; Kojta, Anna K; Zhang, Dan
2011-01-01
This paper provides data on baseline concentrations, interrelationships and bioconcentration potential of 12 metallic elements by King Bolete collected from 11 spatially distant sites across Poland. There are significant differences in concentrations of metals (Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr, Zn) and their bioconcentration potential in King Bolete Boletus edulis at 11 spatially distant sites surveyed across Poland. These have resulted from significant geographical differences in trace metal concentrations in a layer (0-10 cm) of organic and mineral soil underneath to fruiting bodies and possible local bioavailabilities of macro- (Ca, K, Mg, Na) and trace metals (Al, Ba, Cd, Cu, Fe, Mn, Sr, Zn) to King Bolete. The use of highly appreciated wild-grown edible King Bolete mushroom has established a baseline measure of regional minerals status, heavy metals pollution and assessment of intake rates for wild mushroom dish fanciers against which future changes can be compared. Data on Cd, Cu and Zn from this study and from literature search can be useful to set the maximum limit of these metals in King Bolete collected from uncontaminated (background) areas. In this report also reviewed are data on Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, Sr and Zn accumulation in King Bolete.
Gao, Bo; Wei, Xin; Zhou, Huaidong; Lu, Jin; Hao, Hong; Wan, Xiaohong
2014-01-01
A geochemical study of Three Gorges Reservoir (TGR) sediments was carried out to analyze the concentrations, distribution, accumulation, and potential sources of the seldom monitored trace elements (SMTEs). The mean concentrations of Li, B, Be, Bi, V, Co, Ga, Sn, Sb, and Tl were 47.08, 2.47, 59.15, 0.50, 119.20, 17.83, 30.31, 3.25, 4.14, and 0.58 mg/kg, respectively. The concentrations of total SMTEs, together with their spatial distribution, showed that the SMTEs were mainly due to anthropogenic inputs in the region of TGR. The assessment by Geoaccumulation Index indicates that Tl, Be, V, Co, and Fe are at the unpolluted level; Bi, Li, Ga, and Sn were at the “uncontaminated to moderately contaminated” level. However, B was classified as “moderately contaminated” level and Sb was ranked as “strongly contaminated” level. The pollution level of the SMTEs is Sb > B > Bi > Li > Ga > Sn > Tl > Be > V > Co > Fe. The results of Correlation Analysis and Principal Component Analysis indicated Be, V, Co, Ga, Sn, Tl, Bi, and Fe in sediments have a natural source. B and Li were positively correlated with each other and mainly attributed into similar anthropogenic input. In addition, Sb has less relationship with other SMTEs, indicating that Sb has another kind of anthropogenic source. PMID:25136647
Phase analysis of Košice meteorite: Preliminary results
NASA Astrophysics Data System (ADS)
Sitek, J.; Dekan, J.; Degmová, J.; Sedlačková, K.
2012-10-01
Meteorite fall was observed by the Košice town in Slovakia in February 2010 and it was classified as an ordinary chondrite H5. The samples were prepared in powder form scratched from the surface. Mossbauer spectra were measured at room temperature and liquid nitrogen temperature. Spectra consist of components related to iron-bearing phases with different content. Non-magnetic part was fitted with three quadrupole doublets. According to its parameters, we identified olivine, pyroxene, and traces of Fe3+ phases. Magnetic part consists of an iron-rich Fe-Ni alloy with hyperfine magnetic field similar to kamacite α-Fe(Ni,Co) and troilite. Main elements were also determined by X-ray fluorescence spectroscopy.
Guha, Anirban; Gera, Sandeep; Sharma, Anshu
2012-03-01
Mastitis is a highly morbid disease that requires detection at the subclinical stage. Tropical countries like India mainly depend on milch buffaloes for milk. The present study was conducted to investigate whether the trace minerals viz. copper (Cu), iron (Fe), zinc (Zn), cobalt (Co) and manganese (Mn) and enzyme activity of lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in riverine buffalo milk can be used as an indicator of subclinical mastitis (SCM) with the aim of developing suitable diagnostic kit for SCM. Trace elements and enzyme activity in milk were estimated with Atomic absorption Spectrophotometer, GBC 932 plus and biochemical methods, respectively. Somatic cell count (SCC) was done microscopically. The cultural examination revealed Gram positive bacteria as the most prevalent etiological agent. A statistically significant (p<0.01) increase in SCC, Fe, Zn, Co and LDH occurred in SCM milk containing gram positive bacterial agents only. ALP was found to be elevated in milk infected by both gram positive and negative bacteria. The percent sensitivity, specificity and accuracy, predictive values and likelihood ratios were calculated taking bacterial culture examination and SCC≥2×10(5) cells/ml of milk as the benchmark. Only ALP and Zn, the former being superior, were found to be suitable for diagnosis of SCM irrespective of etiological agents. LDH, Co and Fe can be introduced in the screening programs where Gram positive bacteria are omnipresent. It is recommended that both ALP and Zn be measured together in milk to diagnose buffalo SCM, irrespective of etiology.
Soares, Bruno M; Vieira, Augusto A; Lemões, Juliana S; Santos, Clarissa M M; Mesko, Márcia F; Primel, Ednei G; Montes D'Oca, Marcelo G; Duarte, Fábio A
2012-04-01
This work reports, for the first time, the determination of major and trace elements (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Se, Sn, Sr, Ti, Tl, U, V, and Zn) in the fractions of the synthesis of fatty acid methyl esters (FAMEs). These include fresh microalgae, residual biomass, lipid fraction, crude FAMEs, insoluble fraction and purified FAMEs from microalgae Chlorella sp. A microwave-assisted digestion procedure in closed vessels was applied for sample digestion and subsequent element determination by inductively coupled plasma-based techniques. The proposed method was suitable for the multielement determination in FAMEs and its fractions obtained from microalgae. The element concentration was compared with results found in the literature and a careful discussion about the use of residual biomass for different applications was performed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Forte, Giovanni; Bocca, Beatrice; Oggiano, Riccardo; Clemente, Simonetta; Asara, Yolande; Sotgiu, Maria Alessandra; Farace, Cristiano; Montella, Andrea; Fois, Alessandro Giuseppe; Malaguarnera, Michele; Pirina, Pietro; Madeddu, Roberto
2017-09-01
Sardinian (Italy) island population has a uniquely high incidence of amyotrophic lateral sclerosis (ALS). Essential trace element levels in blood, hair, and urine of ALS Sardinian patients were investigated in search of valid biomarkers to recognize and predict ALS. Six elements (Ca, Cu, Fe, Mg, Se, and Zn) were measured in 34 patients compared to 30 age- and sex-matched healthy controls by a validated method. Levels of Ca and Cu in blood and of Se and Zn in hair were significantly higher in ALS than in controls, while urinary excretion of Mg and Se was significantly decreased. The selected cut-off concentrations for these biomarkers may distinguish patients with or without ALS with sufficient sensitivity and specificity. Many positive (as Se-Cu and Se-Zn) and negative associations (as Ca-Mg and Ca-Zn) between elements suggested that multiple metals involved in multiple mechanisms have a role in the ALS degeneration.
NASA Astrophysics Data System (ADS)
Nedjimi, Bouzid
2018-05-01
The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.
Hussain, Rahib; Luo, Kunli; Chao, Zhao; Xiaofeng, Zhao
2018-05-07
This study probe the probable impacts of coal mining pollution and its impacts on human's health and environment. A total of 144 samples including coal and coal wastes, soil, plants, foods, and water were collected from the Hancheng county and countryside of Shaanxi, China. All the samples were analyzed for trace elements using ICP-MS, OES, and AFS. Results showed that the concentration of Se, As, Cr, Cu, Pb, Cd, Co, Ni, Mo, U, Th (mgKg -1 ), Fe, Mn, Al, Ti (%) etc., in coal and coal wastes were 7.5, 12.1, 275, 55, 54.2, 0.8, 14.8, 94.5, 8.9, 4.9, 17.2, 3.5, 0.02, 19, 0.7, respectively. While in soil 0.6, 12, 194, 27.5, 7.4, 0.6, 11.3, 83.4, 0.7, 1.7, 9.9, 3.1, 0.04, 10.5, and 0.4 for the above elements, respectively. In Hancheng foods, the average concentration of Se-0.09, As-0.15, Cr-1.8, Cu-3.2, Pb-0.4, Cd-0.02, Co-0.09, Ni-0.4, Mo-0.64, U-0.01, Th-0.03, Fe-129, Mn-15.6, Al-234, and Ti-5.2 in mgKg -1 , respectively, which are comparably higher than the countryside. The elemental concentration in groundwater of both areas was below the WHO-2004 standard. In Hancheng, the average daily intake (mgKg -1 bw/d) of Se 0.004-0.0038, As 0.004-0.13, Cr 0.055-0.06, Cd 0.001-0.004, Ni 0.018-13.91, Pb 0.05-0.001 adult-children, respectively. The toxic trace elements such as Cr, Cu, Mn, Pb, Ti, Cd, Co, Th, Fe, Al, and Mo caused non-carcinogenic risk with high morbidity in children than adults. By assessing environmental risks, coal and coal wastes caused high risk, food and plants faced moderate to high risk, while mountain and agriculture soil are prone to low to considerable risk. The pollution in Hancheng County is extreme as compared to the countryside. The study concluded that the contamination is geogenic in both the areas but coal mining enhance the metals contamination and has extensive impacts on the living community and environment of Hancheng areas.
Gurumurthy, G P; Balakrishna, K; Tripti, M; Audry, Stéphane; Riotte, Jean; Braun, J J; Udaya Shankar, H N
2014-04-01
The study presents a 3-year time series data on dissolved trace elements and rare earth elements (REEs) in a monsoon-dominated river basin, the Nethravati River in tropical Southwestern India. The river basin lies on the metamorphic transition boundary which separates the Peninsular Gneiss and Southern Granulitic province belonging to Archean and Tertiary-Quaternary period (Western Dharwar Craton). The basin lithology is mainly composed of granite gneiss, charnockite and metasediment. This study highlights the importance of time series data for better estimation of metal fluxes and to understand the geochemical behaviour of metals in a river basin. The dissolved trace elements show seasonality in the river water metal concentrations forming two distinct groups of metals. First group is composed of heavy metals and minor elements that show higher concentrations during dry season and lesser concentrations during the monsoon season. Second group is composed of metals belonging to lanthanides and actinides with higher concentration in the monsoon and lower concentrations during the dry season. Although the metal concentration of both the groups appears to be controlled by the discharge, there are important biogeochemical processes affecting their concentration. This includes redox reactions (for Fe, Mn, As, Mo, Ba and Ce) and pH-mediated adsorption/desorption reactions (for Ni, Co, Cr, Cu and REEs). The abundance of Fe and Mn oxyhydroxides as a result of redox processes could be driving the geochemical redistribution of metals in the river water. There is a Ce anomaly (Ce/Ce*) at different time periods, both negative and positive, in case of dissolved phase, whereas there is positive anomaly in the particulate and bed sediments. The Ce anomaly correlates with the variations in the dissolved oxygen indicating the redistribution of Ce between particulate and dissolved phase under acidic to neutral pH and lower concentrations of dissolved organic carbon. Unlike other tropical and major world rivers, the effect of organic complexation on metal variability is negligible in the Nethravati River water.
Geological-hydrogeochemical characteristics of a “silver spring” water source (the Lozovy ridge)
NASA Astrophysics Data System (ADS)
Ivanova, I. S.; Bragin, I. V.; Chelnokov, G. A.; Bushkareva, K. Yu; Shvagrukova, E. V.
2016-03-01
Geological and hydrogeological characteristics of the Lozovy ridge (Southern Primorye) are studied, as far as karst phenomena are widely distributed within its boundaries. Water-bearing rocks of the karst water source “Silver Spring” (“Serebryany Klyuch”), which is located near the bottom of the “Bear’s fang” (“Medvezhiy klyk”) cave, are investigated. It is found that karst rocks are presented by calcite (CaCO3), and an accessory mineral is barite (BaSO4). It is determined that among the trace elements forming the composition of carbonate water-bearing rocks the maximum concentrations are typical for Sr, Ba, Fe, Al, Za, Mn, Cu, and Ni. Also, the chemical composition of the waters taken from the “Silver Spring” water source is studied. These waters are fresh, hydrocarbonate, calcium, and weakly alkaline. Among the elements of the spring, such elements as Sr, Ba, Fe, Al, Zn, Mn, Cu, and Ni have the maximum concentration. The other elements have concentrations less than 1 µg/l.
Poikāne, Rita; Carstensen, Jacob; Dahllöf, Ingela; Aigars, Juris
2005-07-01
The dynamics (fate) of trace metals in suspended particulate matter within the Gulf of Riga has not yet been adequately addressed in the scientific literature. Therefore, during a two year period (2001-2002) samples of suspended particulate matter and surface sediments for trace metal analysis were collected in the Gulf of Riga and the Daugava river, and these data were combined with background information from the national marine monitoring program in Latvia. This paper presents a descriptive study of solid phase trace metals (aluminium, iron, cadmium, chromium, copper, manganese, nickel, lead and zinc) dynamics and their spatial distribution within the Gulf of Riga based on Principal Component Analysis and Cluster analysis. Fluvial particulate matter and particulate Al, Fe, Cr and Ni were brought into the Gulf of Riga mainly during spring flood and thereafter quickly diluted by the water masses of the Gulf of Riga. Fine-grained suspended material and particulate Al and Fe were well mixed and evenly distributed through all deepwater basins of the Gulf of Riga. The increase of particulate Mn below the thermocline in August and a strong negative correlation with dissolved oxygen concentrations suggested that particulate Mn in the water column and the sediments were regulated mainly by changing oxic-anoxic conditions in the sediments of the Gulf of Riga. The observed correlation between Al and Fe in the water column is in contrast to that observed in the nepheloid layer where Fe correlated with Mn, obviously due to fast diagenetic processes on sediment surface. The observed negative correlation of Cd and Zn with total carbon and total nitrogen in the nepheloid layer might indicate different sedimentation mechanisms of these elements, however, this assumption is still inconclusive.
Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects
NASA Astrophysics Data System (ADS)
Shelley, Rachel U.; Morton, Peter L.; Landing, William M.
2015-06-01
The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.
Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain).
López, J M; Callén, M S; Murillo, R; García, T; Navarro, M V; de la Cruz, M T; Mastral, A M
2005-09-01
An assessment of the air quality of Zaragoza (Spain) was performed by determining the trace element content in airborne PM10 in a sampling campaign from July 2001 to July 2002. Samples were collected in a heavy traffic area with a high volume air sampler provided with a PM10 cutoff inlet. The levels of 16 elements (Al, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, V, and Zn) were quantified after collecting the PM10 on Teflon-coated glass fiber filters (GFF). Regarding the PM10, 32% exceedance of the proposed PM10 daily limit was obtained, some of them corresponding to summer and autumn periods. The limit values of toxic trace elements from US-EPA, WHO, and EC were not exceeded, considering Zaragoza as a moderately polluted city under the current air quality guidelines. The contribution of anthropogenic sources to atmospheric elemental levels was reflected by the high values of enrichment factors for Zn, Pb, and Cu compared to the average crustal composition. Statistical analyses also determined the contribution of different sources to the PM10, finding that vehicle traffic and anthropogenic emissions related to combustion and industrial processes were the main pollutant sources as well as natural sources associated with transport of dust from Africa for specific dates. Regarding the influence of meteorological conditions on PM10 and trace elements concentrations, it was found that calm weather conditions with low wind speed favor the PM10 collection and the pollution for trace elements, suggesting the influence of local sources.
Effects of electromagnetic pulse on serum element levels in rat.
Li, Kangchu; Ma, Shirong; Ren, Dongqing; Li, Yurong; Ding, Guirong; Liu, Junye; Guo, Yao; Guo, Guozhen
2014-04-01
Electromagnetic pulse (EMP) was a potentially harmful factor to the human body, and a biological dosimetry to evaluate effects of EMP is necessary. Little is known about effects of EMP on concentration of macro and trace elements in serum so far. In this study, Sprague-Dawley rats were randomly divided into 50-kV/m EMP-exposed group (n = 10), 100-kV/m EMP-exposed group (n = 10), 200-kV/m EMP-exposed group (n = 40), and the sham-exposed group (n = 20). The macro and trace element concentrations in serum were examined at 6, 12, 24, and 48 h after EMP exposure at different electric field intensities. Compared with the sham-exposed groups, the concentration of sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), zinc (Zn), copper (Cu), iron (Fe), selenium (Se), and manganese (Mn) in rat serum was not changed significantly within 48 h after 200 pulses of EMP exposure at electric field intensity of 50, 100, and 200 kV/m although the K level was decreased and the Ca level was increased with the electric field intensity of EMP increasing. In addition, there was a tendency that the Zn level was decreased with the time going on within 48 h after EMP exposure. Under our experimental conditions, EMP exposure cannot affect the concentration of macro and trace elements in rat serum. There was no time-effect or dose-effect relationship between EMP exposure and serum element levels. The macro and trace elements in serum are not suitable endpoints of biological dosimetry of EMP.
Mendil, Durali; Demirci, Zafer; Tuzen, Mustafa; Soylak, Mustafa
2010-03-01
Fish species (Sarda sarda, Mulus barbatus ponticus, Trachurus trachurus and Merlangius merlangus) were collected from the Black sea, Turkey between 2008 and 2009 (spring, summer, autumn and winter). The samples were analyzed using flame and graphite furnace atomic absorption spectrometry after microwave digestion. The maximum metal concentrations were found to be as 25.5-41.4 microg/g (Fe), 17.8-25.7 microg/g (Zn), 0.28-0.64 microg/g (Pb), 0.64-0.99 microg/g (Cr), 1.3-3.6 microg/g (Mn), 1.4-1.9 microg/g (Cu), 0.18-0.35 microg/g (Cd) and 0.25-0.42 microg/g (Co) for fish species. The concentration of trace metals in samples is depended on fish species. Some species is accumulated trace metals at high ratio. Trace element levels in analyzed fish species were acceptable to human consumption at nutritional and toxic levels. The levels of lead and cadmium in fish samples were higher than the recommended legal limits. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
PIXE analysis of ancient Chinese Changsha porcelain
NASA Astrophysics Data System (ADS)
Lin, E. K.; Yu, Y. C.; Wang, C. W.; Liu, T. Y.; Wu, C. M.; Chen, K. M.; Lin, S. S.
1999-04-01
In this work, proton induced X-ray emission (PIXE) method was applied for the analysis of ancient Chinese Changsha porcelain produced in the Tang dynasty (AD 618-907). A collection of glazed potsherds was obtained in the complex of the famous kiln site at Tongguan, Changsha city, Hunan province. Studies of elemental composition were carried out on ten selected Changsha potsherds. Minor and trace elements such as Ti, Mn, Fe, Co, Cu, Rb, Sr, and Zr in the material of the porcelain glaze were determined. Variation of these elements from sample to sample was investigated. Details of results are presented and discussed.
Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.
Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less
Bioturbating animals control the mobility of redox-sensitive trace elements in organic-rich mudstone
Harazim, Dario; McIlroy, Duncan; Edwards, Nicholas P.; ...
2015-10-07
Bioturbating animals modify the original mineralogy, porosity, organic content, and fabric of mud, thus affecting the burial diagenetic pathways of potential hydrocarbon source, seal, and reservoir rocks. High-sensitivity, synchrotron rapid scanning X-ray fluorescence elemental mapping reveals that producers of phycosiphoniform burrows systematically partition redox-sensitive trace elements (i.e., Fe, V, Cr, Mn, Co, Ni, Cu, and As) in fine-grained siliciclastic rocks. Systematic differences in organic carbon content (total organic carbon >1.5 wt%) and quality (Δ 13C org~0.6‰) are measured between the burrow core and host sediment. The relative enrichment of redox-sensitive elements in the burrow core does not correlate with significantmore » neo-formation of early diagenetic pyrite (via trace metal pyritization), but is best explained by physical concentration of clay- and silt-sized components. A measured loss (~–15%) of the large-ionic-radius elements Sr and Ba from both burrow halo and core is most likely associated with the release of Sr and Ba to pore waters during biological ( in vivo) weathering of silt- to clay-sized lithic components and feldspar. In conclusion, this newly documented effect has significant potential to inform the interpretation of geochemical proxy and rock property data, particularly from shales, where elemental analyses are commonly employed to predict reservoir quality and support paleoenvironmental analysis.« less
NASA Astrophysics Data System (ADS)
Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang
2016-07-01
Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the complex composition of shale materials, the omnipresent "matrix effect" is still a great challenging for the performance of quantitative LIBS measurement even in the framework of the LTE approach.
Bioactive trace metal time series during Austral summer in Ryder Bay, Western Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Bown, Johann; Laan, Patrick; Ossebaar, Sharyn; Bakker, Karel; Rozema, Patrick; de Baar, Hein J. W.
2017-05-01
The Western Antarctic Peninsula, one of the most productive regions of the Southern Ocean, is currently affected by the increasing of atmospheric and oceanic temperatures. For several decades, the Rothera Time Series (RaTS) site located in Ryder Bay has been monitored by the British Antarctic Survey and has shown long lasting phytoplankton summer blooms (over a month) that are likely driven by the length of the sea ice season. The dynamics of phytoplankton blooms in Ryder Bay may just as well be influenced by natural fertilization of iron and other bioactive trace metals due to the proximity of land, islands and glaciers. For the first time, temporal distributions in the surface layer (0-75 m depth) of six bioactive trace metals (dissolved: Fe, Mn, Zn, Cd, Cu and dissolved labile Co) have been investigated with high temporal and spatial resolution at the RaTS site during a total of 2 and 3.5 months respectively, over two consecutive summers. Most of the studied trace elements showed wide ranges of concentrations and this dynamics appears to be driven by phytoplankton uptake, remineralization and occasional vertical mixing associated with storm episodes. The biological uptake of DMn, DZn, DCd, DCoL and DCu was proportional to uptake of phosphate and silicate, which was associated with weak to strong linear relationships depending on which phytoplankton bloom events was considered. This further suggests that the surface water distributions of these studied bio-active trace metals were mainly driven by biological uptake and remineralization during austral spring and summer in Ryder Bay. Even though DFe did not show any strong relationship with phosphate, DFe decreasing concentrations during each bloom event suggest that Fe is a key essential element for phytoplankton in the area of study. The consistency of trace metals/nutrient ratios during two consecutive summers indicates that over-winter scavenging removal was slow relative to mixing. The increase of DCd/P and DCoL/P drawdown ratios during the two consecutive blooms monitored during the second season could reflect the substitution of DZn by trace metals DCd and DCoL due to lowered DZn concentrations after the first bloom. Relationships of trace elements versus silicate appear to be dominated by diatoms abundances which tend to vary both at the season and bloom time scale. Simultaneous short-term events of depletions of both nutrients and bio-active trace metals might induce stress in the growth of the phytoplankton assemblage.
Trace elements quantified by the APXS on Mars
NASA Astrophysics Data System (ADS)
Gellert, R.; Berger, J. A.; Boyd, N.; O'Connell-Cooper, C.; Desouza, E.; Thompson, L. M.; VanBommel, S.; Yen, A.
2017-12-01
The APXS accurately quantifies many trace elements within the dime-sized sample: Ni, Cu, Zn, Ga, Ge, Pb, Br, Se, As, and Y with 20 ppm detection limit (DL) and Rb, Sr, Zr, Co, Cr, and Mn with 200 ppm DL. Together with the major and minor elements, this gives important constraints for a variety of formation processes of the investigated soils, floats or extensive bedrock on Mars. The global soil, found at all rover landing sites, was used to define an average Mars value for Ni, Zn, Cr and Mn, with a consistent value of Fe/Mn 50 for soils and igneous rocks. All other APXS trace elements are below DL. Strong enrichments or depletions can both give evidence for the formation processes and link together groups of rocks and indicate their common diagenetic origin. Felsic rocks at Gale and Gusev have Cr, Ni and Zn far below soil, indicating their likely igneous origin. Further, similarly low values are found in elevated silica samples in the Murray Fm. at Gale where these elements have been mobilized and leached by fluids. High Sr and Ga was found in the host rock surrounding the Garden City vein system, which contains also high Ge, Mn and Cu, indicating mobilization in high temperature and/or acidic fluids after the Murray was lithified. The fracture fill sample Stephen at Windjana is high in Zn, Co and Cu. Germanium is enriched in the Murray Fm with very consistent values of about 100 ppm over many kilometers and 200 meters elevation, similar to perviously found bedrock at Yellowknife Bay and Windjana in Gale. Zinc is highly elevated but changes significantly with elevation in Murray, often correlated with Fe/Mn, possibly indicating changing redox conditions. Pb and Se are highly enriched at Pahrump (150, 75 ppm, resp.), drop first to low values and increase again uphill towards HematiteRidge. Nodules found at Pahrump show striking evidence for (Mg, Ni)-sulfates with Nickel up to 4% in the sulfates. All together these trends might indicate hydrothermal activity. The MER APXS instruments with somewhat higher DL found similar patterns. Elevated Ge was found at Home plate, Gusev crater, and at the rim of Endeavour crater at Meridiani Planum. Together with detailed investigations of SNC meteorites, the APXS detected trace elements supplement the bulk chemistry significantly and allow new insights into the formation processes encountered on Mars
Trace element analyses of fluid-bearing diamonds from Jwaneng, Botswana
NASA Astrophysics Data System (ADS)
Schrauder, Marcus; Koeberl, Christian; Navon, Oded
1996-12-01
Fibrous diamonds from Botswana contain abundant micro-inclusions, which represent syngenetic mantle fluids under high pressure. The major element composition of the fluids within individual diamonds was found to be uniform, but a significant compositional variation exists between different diamond specimens. The composition of the fluids varies between a carbonatitic and a hydrous endmember. To constrain the composition of fluids in the mantle, the trace element contents of thirteen micro-inclusion-bearing fibrous diamonds from Botswana was studied using neutron activation analysis. The concentrations of incompatible elements (including K, Na, Br, Rb, Sr, Zr, Cs, Ba, Hf, Ta, Th, U, and the LREEs) in the fluids are higher than those of mantle-derived rocks and melt inclusions. The compatible elements (e.g., Cr, Co, Ni) have abundances that are similar to those of the primitive mantle. The concentrations of most trace elements decrease by a factor of two from the carbonate-rich fluids to the hydrous fluids. Several models may explain the observed elemental variations. Minerals in equilibrium with the fluid were most likely enriched in incompatible elements, which does not agree with derivation of the fluids by partial melting of common peridotites or eclogites. Fractional crystallization of a kimberlite-like magma at depth may yield carbonatitic fluids with low mg numbers (atomic ratio [Mg/(Mg+Fe)]) and high trace element contents. Fractionation of carbonates and additional phases (e.g., rutile, apatite, zircon) may, in general, explain the concentrations of incompatible elements in the fluids, which preferably partition into these phases. Alternatively, mixing of fluids with compositions similar to those of the two endmembers may explain the observed variation of the elemental contents. The fluids in fibrous diamonds might have equilibrated with mineral inclusions in eclogitic diamonds, while peridotitic diamonds do not show evidence of interaction with these fluids. The chemical composition of the fluids in fibrous diamonds indicates that, at p, T conditions that are characteristic for diamond formation, carbonatitic and hydrous fluids are efficient carriers of incompatible elements.
Understanding the evolution of S- and I-type granitic plutons through analysis of apatite.
NASA Astrophysics Data System (ADS)
Hess, B. L.; Fiege, A.; Tailby, N.
2017-12-01
The major and trace element composition of apatites from the Lachlan fold belt (LFB) S- and I-type granitoids (Australia) and the Central French Massif (CFM) S-type leucogranites (France) were analyzed to investigate their compositional and redox variation. Apatite is a common accessory mineral in magmatic systems that can incorporate a variety of trace elements, including the polyvalent elements sulfur (S), iron (Fe), and manganese (Mn). It was recently discovered that apatite can incorporate three oxidation states of S (S6+, S4+, S2-) into its structure as a function of oxygen fugacity [1]. However, the oxidation states of Mn and Fe in apatite are essentially unknown (2+ and/or 3+). In this study, we collected many electron probe line transects across apatites in several different host phases from a variety of S- and I-type plutons. The F-H-Cl contents of the S- and I-type LFB samples were similar ( 2.9 wt% F, 0.4 wt% Cl, 0.5 wt% OH). The CFM S-types contained virtually no Cl and ranged from near-endmember OH-apatite to near-endmember F-apatite. The apatites of all studied the S- and I-type plutons are characterized by similar ranges of Fe content (<1.5 wt% Fe), while Mn reaches much higher concentrations in the S-type when compared to I-type apatites (<6.5 wt% Mn). The S content of the apatites varies significantly, from <50 ppm S in the LFB S-types, up to 2,000 ppm S in the LFB I-types, and reaching 1,650 ppm S in the CFM S-types. The elevated S contents in the LFB I-type and CFM S-type apatites allowed us to measure the S oxidation states by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra show variability in S oxidation states ranging from mostly sulfate down to nearly equal S6+/S2- ratios, indicating redox variations during apatite formation. The S-type Mn + Fe content plots in a 1:1 ratio against calcium (Ca) in atoms per formula unit, while the I-type apatites have too low Mn and Fe to show a clear trend. Thus, divalent Mn and Fe probably replace Ca2+ in the S-types' apatite structure, while the incorporation of trivalent Mn or Fe in apatite is rather unlikely. We suggest that Mn and Fe contents in apatite may become a useful tracer of melt evolution once the distributions coefficients are experimentally calibrated. [1] Konecke et al. (2017), Am Mineral
Severson, R.C.; Gough, L.P.; van den Boom, G.
1992-01-01
Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.
LA-ICP-MS Study of Trace Elements in the Chanuskij Metal
NASA Technical Reports Server (NTRS)
Petaev, Michail I.
2005-01-01
This progress report covers work done during the second year of the 3-year proposal. During this year we resolved many issues relevant to the analytical technique developed by us for measuring trace elements in meteoritic metals. This technique was used to measure concentrations of Fe, Ni, Co, Cr, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sb, W, Re, Os, Ir, Pt, and Au in eight large (120 - 160 microns) metal grains from both "igneous" and "metamorphic" lithologies of the Chanuskij silicate inclusions. The first application of OUT technique to metal grains from thin sections showed some limitations. Small thickness of metal grains in the thin section limited the signal to 3-4 time-slices instead of 10- 1 1 ones in polished sections of iron meteorites studied before.
Anal, Jasha Momo H.
2014-01-01
Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430
Mondal, Sovik; Haldar, Sudipto; Saha, Pinaki; Ghosh, Tapan Kumar
2010-11-01
Supplementation of broiler diets with copper, manganese, and zinc at levels higher than that stipulated by the National Research Council 1994 reportedly improved live weight, feed conversion, and cured leg abnormality supposedly caused by inadequate intake of Mn and Zn. The objective of the study was to ascertain the effects of plethoric supplementation of copper (Cu), manganese (Mn), and zinc (Zn) on performance and metabolic responses in broiler chickens. The study also aimed to discriminate the responses of the birds when the mineral elements were supplemented either in an inorganic or in an organic form. Cobb 400 broiler chickens (1-day old, n = 300) were assigned to three dietary treatments each containing nine replicates with ten birds for 39 days. The treatments included a control in which the diet was devoid of supplemental trace elements and treatments supplemented with an inorganic trace element premix (ITM) and supplemented with a combination of the inorganic and an organic trace element premix (OTM). The ITM contained (per kilogram) copper, 15 g; iron, 90 g; manganese, 90 g; zinc, 80 g (all as sulfated salts); iodine (as potassium iodide), 2 g; and selenium (as sodium selenite), 0.3 g. The OTM on the other hand, contained copper, 2.5 g; iron, 15 g; manganese, 15 g; zinc, 13.33 g; and chromium, 0.226 g (all as protein chelates). Plethoric supplementation of trace elements improved live weight gain and feed/gain ratio (p < 0.05). Leg abnormality developed in the 16% of the control group of birds but not in the supplemented group. Metabolizability of dry matter, organic matter, and protein was higher (p < 0.01) in the ITM and OTM groups. Excretion of Cu, Fe, and Zn decreased (p < 0.1) due to supplementation of the trace elements leading to increased apparent absorption of the said mineral elements (p < 0.01). Concentration of the concerned trace elements in serum, liver, and composite muscle samples was higher (p < 0.05) in the ITM and OTM dietary groups indicating an increased deposition of the said mineral elements due to supplementation. Although the study revealed subtle difference between the inorganic and organic mineral premixes with regards to the parameters mentioned above, it became apparent that it is possible to reduce excretion of these trace elements by a judicious escalation in the level of supplementation. The results of the present investigation further revealed that the trace mineral requirement of broiler chickens suggested by the National Research Council may not be optimum to support the maximum growth potential of the high yielding strains, and it is reasonable to consider a review of the current NRC recommendations to meet the needs of the modern birds.
NASA Astrophysics Data System (ADS)
Bhattacharyya, S.; Donahoe, R. J.; Graham, E. Y.
2006-12-01
For much of the U.S., coal-fired power plants are the most important source of electricity for domestic and industrial use. Large quantities of fly ash and other coal combustion by-products are produced every year, the majority of which is impounded in lagoons and landfills located throughout the country. Many older fly ash disposal facilities are unlined and have been closed for decades. Fly ash often contains high concentrations of toxic trace elements such as arsenic, boron, chromium, molybdenum, nickel, selenium, lead, strontium and vanadium. Trace elements present in coal fly ash are of potential concern due to their toxicity, high mobility in the environment and low drinking water MCL values. Concern about the potential release of these toxic elements into the environment due to leaching of fly ash by acid rain, groundwater or acid mine drainage has prompted the EPA to develop national standards under the subtitle D of the Resource Conservation and Recovery Act (RCRA) to regulate ash disposal in landfills and surface impoundments. An attempt is made to predict the leaching of toxic elements into the environment by studying trace element partitioning in coal fly ash. A seven step sequential chemical extraction procedure (SCEP) modified from Filgueiras et al. (2002) is used to determine the trace element partitioning in seven coal fly ash samples collected directly from electric power plants. Five fly ash samples were derived from Eastern Bituminous coal, one derived from Western Sub-bituminous coal and the other derived from Northern Lignite. The sequential chemical extraction procedure gives valuable information on the association of trace elements: 1) soluble fraction, 2) exchangeable fraction, 3) acid soluble fraction, 4) easily reducible fraction, 5) moderately reducible fraction, 6) poorly reducible fraction and 7) oxidizable organics/sulfide fraction. The trace element partitioning varies with the composition of coal fly ash which is influenced by the type of coal burned. Preliminary studies show that in some fly ash samples, significant amounts of As, B, Mo, Se, Sr and V are associated with the soluble and exchangeable fraction, and thus would be highly mobile in the environment. Lead, on the other hand, is mainly associated with the amorphous Fe and Mn oxide fractions and would be highly immobile in oxidizing conditions, but mobile in reducing conditions. Ni and Cr show different associations in different fly ash samples. In most fly ash samples, significant amounts of the trace elements are associated with more stable fractions that do not threaten the environment. The study of trace element partitioning in coal fly ash thus helps us to predict their leaching behavior under various conditions.
Peruzzu, Angela; Solinas, Giuliana; Asara, Yolande; Forte, Giovanni; Bocca, Beatrice; Tolu, Francesco; Malaguarnera, Lucia; Montella, Andrea; Madeddu, Roberto
2015-08-01
Sardinia is an Italian region with a high incidence of type 1 diabetes mellitus. This study aimed to determine the associations of trace elements with lipid profiles and glycaemic control in patients with T1DM. A total of 192 patients with T1DM who attended the Unit of Diabetology and Metabolic Diseases in Sassari, Italy, were enrolled. Trace elements zinc, copper, selenium, chromium, and iron were measured in whole blood by sector field inductively coupled plasma mass spectrometry. The correlations between metabolic variables and the levels of trace elements were determined. Zinc was positively correlated with total cholesterol (P=0.023), low-density lipoprotein (P=0.0015), and triglycerides (P=0.027). Iron as significantly correlated with TC (P=0.0189), LDL (P=0.0121), and high-density lipoprotein (HDL) (P=0.0466). In males, Cr was positively correlated with HDL (P=0.0079) and Se, in females was correlated with TG (P=0.0113). The mean fasting plasma glucose was166.2mgdL(-1). Chromium was correlated with fasting plasma glucose (P=0.0149), particularly in males (P=0.0038). Overall, 63.5% of the patients had moderate HbA1c (7-9%). Copper was significantly correlated with HbA1c% in males (P=0.0155). In conclusion, the results of this study indicate that trace elements show different associations with lipid levels and glycaemic control in T1DM. Zinc, Fe, and Se were associated with lipid levels whereas Cu and Cr were associated with HbA1c%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3
NASA Technical Reports Server (NTRS)
Borkowski, Kazimierz J.; Reynolds, Stephen P.; Hwang, Una; Green, David A.; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca
2013-01-01
G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of approximately 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities (is) approximately greater than 18,000 km s-1 have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe K alpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities greater than 18,000 km s-1 were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.
NASA Astrophysics Data System (ADS)
Park, Y.-R.; Kim, G.-Y.
2009-04-01
The small body, ca. 1.3 by 1.6km, of a hot-air ballon shape hornblende gabbro - diorite Complex, in Gowoonri, Hwacheon, Korea consists of marginal diorite and central hornblende gabbro. The volumetrically dominant hornblende gabbro in the core of the Complex shows a zoned distribution with three layers distinguished by different dominant mafic mineral phases. From the margin toward the core of the hornblende gabbro body, the domintant mafic minerals change from amphibole phenocryst of nearly rounded shape in cross section with pyroxene pseudomorph through prismatic shape of amphibole to polycrystalline biotite aggregates. Systematic variations in geochemical characteristics among three distinct zones of hornblende gabbro body are also observed. From the outer zone toward the core, major oxides such as MnO, MgO, and CaO show a decreasing tendency, whereas total FeO/(total FeO + MgO) value shows an increasing tendency. Concentrations of trace elements also show systematic variations. Where incompatible elements such as Ba and Th increase, compatible elements like Cr and Sc decrease from the margin toward the core. The zonal distribution divided by change in dominant mafic mineral phase from pyroxene through amphibole to biotite, and systematic compositional changes in both major and trace elements from the outer zone toward the core of the hornblende gabbro body suggest that an inward crystallization mechanism played a major role in the formation of the hornblende gabbro in Guwoonri, Hwacheon, Korea.