Sample records for trace elements li

  1. Visualizing trace element distribution in quartz using cathodoluminescence, electron microprobe, and laser ablation-inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Rusk, Brian; Koenig, Alan; Lowers, Heather

    2011-01-01

    Cathodoluminescent (CL) textures in quartz reveal successive histories of the physical and chemical fluctuations that accompany crystal growth. Such CL textures reflect trace element concentration variations that can be mapped by electron microprobe or laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Trace element maps in hydrothermal quartz from four different ore deposit types (Carlin-type Au, epithermal Ag, porphyry-Cu, and MVT Pb-Zn) reveal correlations among trace elements and between trace element concentrations and CL textures. The distributions of trace elements reflect variations in the physical and chemical conditions of quartz precipitation. These maps show that Al is the most abundant trace element in hydrothermal quartz. In crystals grown at temperatures below 300 °C, Al concentrations may vary by up to two orders of magnitude between adjacent growth zones, with no evidence for diffusion. The monovalent cations Li, Na, and K, where detectable, always correlate with Al, with Li being the most abundant of the three. In most samples, Al is more abundant than the combined total of the monovalent cations; however, in the MVT sample, molar Al/Li ratios are ~0.8. Antimony is present in concentrations up to ~120 ppm in epithermal quartz (~200–300 °C), but is not detectable in MVT, Carlin, or porphyry-Cu quartz. Concentrations of Sb do not correlate consistently with those of other trace elements or with CL textures. Titanium is only abundant enough to be mapped in quartz from porphyry-type ore deposits that precipitate at temperatures above ~400 °C. In such quartz, Ti concentration correlates positively with CL intensity, suggesting a causative relationship. In contrast, in quartz from other deposit types, there is no consistent correlation between concentrations of any trace element and CL intensity fluctuations.

  2. Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity's ChemCam: early results for Gale crater from Bradbury Landing Site to Rocknest

    USGS Publications Warehouse

    Ollila, Ann M.; Newsom, Horton E.; Clark, Benton; Wiens, Roger C.; Cousin, Agnes; Blank, Jen G.; Mangold, Nicolas; Sautter, Violaine; Maurice, Sylvestre; Clegg, Samuel M.; Gasnault, Olivier; Forni, Olivier; Tokar, Robert; Lewin, Eric; Dyar, M. Darby; Lasue, Jeremie; Anderson, Ryan; McLennan, Scott M.; Bridges, John; Vaniman, Dave; Lanza, Nina; Fabre, Cecile; Melikechi, Noureddine; Perett, Glynis M.; Campbell, John L.; King, Penelope L.; Barraclough, Bruce; Delapp, Dorothea; Johnstone, Stephen; Meslin, Pierre-Yves; Rosen-Gooding, Anya; Williams, Josh

    2014-01-01

    The ChemCam instrument package on the Mars rover, Curiosity, provides new capabilities to probe the abundances of certain trace elements in the rocks and soils on Mars using the laser-induced breakdown spectroscopy technique. We focus on detecting and quantifying Li, Ba, Rb, and Sr in targets analyzed during the first 100 sols, from Bradbury Landing Site to Rocknest. Univariate peak area models and multivariate partial least squares models are presented. Li, detected for the first time directly on Mars, is generally low (100 ppm and >1000 ppm, respectively. These analysis locations tend to have high Si and alkali abundances, consistent with a feldspar composition. Together, these trace element observations provide possible evidence of magma differentiation and aqueous alteration.

  3. Multi-stage metasomatism revealed by trace element and Li isotope distributions in minerals of peridotite xenoliths from Allègre volcano (French Massif Central)

    NASA Astrophysics Data System (ADS)

    Gu, Xiaoyan; Deloule, Etienne; France, Lydéric; Ingrin, Jannick

    2016-11-01

    The modal, chemical, and isotopic compositions of mantle peridotite are largely modified by metasomatic processes, which may affect them repeatedly. Xenoliths are commonly used to characterize those metasomatic processes along with the structure, and chemical and isotopic compositions of mantle domains. Nevertheless, the original mantle signatures born by mantle xenoliths are potentially obscured by the interactions occurring between the host magma and the xenolith itself. Here we attempt to identify to which degree the original Li content and isotopic composition, as well as other trace element contents of mantle xenoliths, can be modified by interaction with the host magma. Peridotite xenoliths that have suffered extensive exchange with the entraining magma were sampled in the solidified lava lake of Allègre, Southern French Massif Central, in order to decipher the signature related to peridotite-melt interaction, and to further unravel the evolution of the sub-continental lithospheric mantle. In-situ trace element analyses of clinopyroxene (Cpx) were performed via LA-ICP-MS, and the Li content and isotopic composition of pyroxene and olivine (Ol) via SIMS. Negative HFSE anomalies (Ti/Eu ratios as low as 437) and markedly high LREE/HREE ratios ((La/Yb)N as high as 79) are characteristic of mantle metasomatism at depth. Lithium isotope systematics indicates that at least two different metasomatic events affected the peridotite. Exceptionally high Li contents in Cpx (up to 50 ppm) and slight Li enrichment of Ol rims are ascribed to diffusive Li influx with a positive δ7Li value (+ 3.2‰) from the host magma after entrainment. Conversely, Ol cores preserve extremely light Li isotopic compositions (δ7Li as low as - 25‰) with high Li contents (up to 4.4 ppm) compared to normal mantle, indicating a metasomatic event that occurred before xenolith entrainment. The negative δ7Li signature of this early metasomatism may be related to subduction-related fluids released during the Variscan orogeny. Trace element distributions in minerals reveal that the HFSE and REE composition of Cpx and the negative δ7Li signature in Ol cores were not acquired simultaneously. Therefore at least three successive metasomatic events affected the Allegre peridotites, as revealed through the use of detailed in-situ Li isotopic analyses to trace melt-rock interactions.

  4. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. II. SEVENTEEN TRACE ELEMENTS IN FOUR NEW JERSEY COMMUNITIES (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...

  5. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. III. SEVENTEEN TRACE ELEMENTS IN BIRMINGHAM, ALABAMA AND CHARLOTTE, NORTH CAROLINA (1972)

    EPA Science Inventory

    Seventeen trace elements - arsenic (As), barium (Ba), boron, (B), cadmium, (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and Zinc (Zn) - were measured in human s...

  6. Trace Elements in Water, Sediments and the Elongate Tigerfish Hydrocynus forskahlii (Cuvier 1819) from Lake Turkana, Kenya Including a Comprehensive Health Risk Analysis.

    PubMed

    Otachi, Elick O; Plessl, Christof; Körner, Wilfried; Avenant-Oldewage, Annemariè; Jirsa, Franz

    2015-09-01

    This study presents the distribution of 17 major and trace elements in surface water, sediments and fish tissues from Lake Turkana, Kenya. Eight sediment and ten water samples from the west bank of the lake, as well as 34 specimens of the elongate tigerfish Hydrocynus forskahlii caught in that region were examined. It is the first report for Li, Rb, Sr, Mo from the lake and the first report on most of the trace elements for this fish species. The concentrations of elements in the water and sediments showed no sign of pollution. In fish muscle, Li, Zn and Cd showed relatively high abundances, with mean concentrations of 206, 427 and 0.56 mg/kg dw, respectively. The calculated target hazard quotient values for Li, Zn, Sr and Cd were 138.7, 1.9, 4.1 and 0.76, respectively; therefore the consumption of these fish poses a health risk to humans in the area.

  7. Age-related differences in hair trace elements: a cross-sectional study in Orenburg, Russia.

    PubMed

    Skalnaya, Margarita G; Tinkov, Alexey A; Demidov, Vasily A; Serebryansky, Eugeny P; Nikonorov, Alexandr A; Skalny, Anatoly V

    2016-09-01

    Age-related differences in the trace element content of hair have been reported. However, some discrepancies in the data exist. The primary objective of this study was to estimate the change in hair trace elements content in relation to age. Six hundred and eighteen women and 438 men aged from 10-59 years took part in the current cross-sectional study. Hair Cr, Mn, Ni, Si, Al, As, Be, Cd and Pb tended to decrease with age in the female sample, whereas hair Cu, Fe, I, Se, Li and Sn were characterised by an age-associated increase. Hair levels of Cr, Cu, I, Mn, Ni, Si and Al in men decreased with age, whereas hair Co, Fe, Se, Cd, Li and Pb content tended to increase. Hair mercury increased in association with age in men and in women, whereas hair vanadium was characterised by a significant decrease in both sexes. The difference in hair trace element content between men and women decreased with age. These data suggest that age-related differences in trace element status may have a direct implication in the ageing process.

  8. Origin discrimination of defatted pork via trace elements profiling, stable isotope ratios analysis, and multivariate statistical techniques.

    PubMed

    Park, Yu Min; Lee, Cheong Mi; Hong, Joon Ho; Jamila, Nargis; Khan, Naeem; Jung, Jong-Hyun; Jung, Young-Chul; Kim, Kyong Su

    2018-09-01

    This study verified the origin of 346 defatted Korean and non-Korean pork samples via trace elements profiling, and C and N stable isotope ratios analysis. The analyzed elements were 6 Li, 7 Li, 10 B, 11 B, 51 V , 50 Cr, 52 Cr, 53 Cr, 55 Mn, 58 Ni, 60 Ni, 59 Co, 63 Cu, 65 Cu, 64 Zn, 66 Zn, 69 Ga, 71 Ga, 75 As, 82 Se, 84 Sr, 86 Sr, 87 Sr, 88 Sr, 85 Rb, 94 Mo, 95 Mo, 97 Mo, 107 Ag, 109 Ag, 110 Cd, 111 Cd, 113 Cd, 112 Cd, 114 Cd, 116 Cd, 133 Cs, 206 Pb, 207 Pb, and 208 Pb. Content (mg/kg) of 51 V (0.012), 50 Cr (0.882), 75 As (0.017), 85 Rb (57.7), and 87 Sr (46.3) were high in Korean pork samples whereas 6 Li, 7 Li, 59 Co, 55 Mn, 58 Ni, 84 Sr, 86 Sr, 88 Sr, 111 Cd, and 133 Cs were found higher in non-Korean samples. The results of discriminant analysis showed that the trace elements content and stable isotope ratios were significant for the discrimination of geographical origins with a perfect discrimination rate of 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  10. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  11. Distribution and environmental assessment of trace elements contamination of water, sediments and flora from Douro River estuary, Portugal.

    PubMed

    Ribeiro, C; Couto, C; Ribeiro, A R; Maia, A S; Santos, M; Tiritan, M E; Pinto, E; Almeida, A A

    2018-10-15

    The present study evaluated the content and distribution of several trace elements (Li, Be, Al, V, Cr, Co, Ni, Cu, Zn, Se, Mo, Ag, Cd, Sb, Ba, Tl, Pb, and U) in the Douro River estuary. For that, three matrices were collected (water, sediments and native local flora) to assess the extent of contamination by these elements in this estuarine ecosystem. Results showed their occurrence in estuarine water and sediments, but significant differences were recorded on the concentration levels and pattern of distribution among both matrices and sampling points. Generally, the levels of trace elements were higher in the sediments than in the respective estuarine water. Nonetheless, no correlation among trace elements was determined between water and sediments, except for Cd. Al was the trace element found at highest concentration at both sediments and water followed by Zn. Pollution indices such as geo-accumulation (I geo ), enrichment factor (EF) and contamination factor (CF) were determined to understand the levels and sources of trace elements pollution. I geo showed strong contamination by anthropogenic activities for Li, Al, V, Cr, Ni, Cu, Zn, Ba and Pb at all sampling points while EF and CF demonstrated severe enrichment and contamination by Se, Sb and Pb. Levels of trace elements were compared to acceptable values for aquatic organisms and Sediment Quality Guidelines. The concentration of some trace elements, namely Al, Pb and Cu, were higher than those considered acceptable, with potential negative impact on local living organisms. Nevertheless, permissible values for all trace elements are still not available, demonstrating that further studies are needed in order to have a complete assessment of environmental risk. Furthermore, the occurrence and possible accumulation of trace elements by local plant species and macroalgae were investigated as well as their potential use as bioindicators of local pollution and for phytoremediation purposes. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Luna 16 - Some Li, K, Rb, Sr, Ba, rare-earth, Zr, and Hf concentrations.

    NASA Technical Reports Server (NTRS)

    Philpotts, J. A.; Schnetzler, C. C.; Schuhmann, S.; Thomas , H. H.; Bottino, M. L.

    1972-01-01

    Concentrations of Li, K, Rb, Sr, Na, rare-earths, Zr and Hf have been determined for some Luna 16 core materials by mass-spectrometric isotope-dilution. Two regolith fines samples from different depths in the core, and four rock-chips, including both igneous rocks and breccias, have similar trace-element concentrations. The Luna 16 materials have general lunar trace-element characteristics but differ from other returned lunar samples in a manner that suggests the presence of excess feldspar. Unless the Luna 16 igneous rocks are fused soils, they appear to represent either partial plagioclase cumulates or the least differentiated igneous material yet returned from the moon. The similarity in trace-element concentrations of the igneous rocks and the fines would then suggest largely local derivation of the Luna 16 regolith.

  13. Lithium Zoning in Kīlauea Olivine: Growth vs. Diffusion?

    NASA Astrophysics Data System (ADS)

    Shea, T.; Lynn, K. J.; Garcia, M. O.; Costa Rodriguez, F.

    2016-12-01

    Lithium is a fast-diffusing element with the potential to characterize magmatic processes that occur on timescales of hours to days [1]. However, Li diffusion in olivine is complex. Experimental studies show that it can diffuse via two paths: a `fast' interstitial mechanism and a `slow' vacancy mechanism [1]. Charge balancing relationships with other incompatible trace elements may also play a role in Li diffusion [2]. A detailed study of lithium zoning in natural olivine was undertaken to better understand how Li is correlated with other trace elements and determine if Li diffusion profiles can be used to extract meaningful timescales of magmatic processes. Olivine crystals from the Keanakāko`i explosive period at Kīlauea Volcano (HI) were used in this study because (a) the lavas and tephra generally contain phenocrysts of only olivine in a rapidly quenched glass, which avoid complications of multi-phase systems and post-eruptive diffusion; (b) we previously constrained the magmatic histories of these crystals using major and minor elements; and (c) at concentrations (e.g. 1-10 ppm) and temperatures (e.g. 1150-1250 °C) typical of Kīlauea basalts, Li diffusion is probably dominated by the vacancy mechanism [1]. Euhedral crystals were carefully oriented and mounted on either the a- or b- crystallographic axes (c-axis is always within the plane of section) and polished to the crystal core. High precision LA-ICP-MS analyses of Li (2σ = 0.08 ppm), Na, Al, P, and Cr complement EPMA profiles of Si, Mg, Fe, Ni, and Ca (200 nA current). Core-to-rim transects were collected along two axes (c and a or b) to identify potential diffusion anisotropy effects for Li and other elements. Li zoning is correlated with Na, indicative of a growth signature (also observed for Al, P, and Cr), or is decoupled from incompatible trace elements and have profiles that indicate diffusive re-equilibration. Modeling of Li diffusion profiles yields timescales of hours to days, which probably represent the final stages of magma transport from crustal magma reservoirs and allow ascent rates to be estimated. [1] Dohmen et al. (2010), Geochimica et Cosmochimica Acta, 74, 274-292. [2] Spandler and O'Neill (2010), Contributions to Mineralogy and Petrology, 159, 791-818.

  14. Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS.

    PubMed

    Heitland, Peter; Köster, Helmut D

    2006-03-01

    The paper provides physicians and clinical chemists with statistical data (concentration ranges, geometric mean values, selected percentiles, etc.) about 30 urinary trace elements in order to determine whether people have trace element deficiencies or have been exposed to higher elemental concentrations. Morning urine samples of 72 children and 87 adults from two geographical areas of Germany were collected and the elements Li, Be, V, Cr, Mn, Ni, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, Pt, Au, Pb, Tl, Bi and U were determined by inductively coupled plasma mass spectrometry (ICP-MS) with a new octopole based collision/reaction cell. The urine samples were analysed directly after a simple 1/5 (V/V) dilution with deionised water and nitric acid. Information on exposure conditions of all human subjects were collected by questionnaire-based interviews. The described concentration data down to the ng/l range are very useful for the formulation of reference values. For some elements either new data are described (e.g., for V, Ga, In, Bi, Rh, Mn) or differences to earlier studies were found (e.g., for Be, As). For other elements (e.g., Sb, Se, Mo, Ba, Cu, Zn, Li) our results are in good correlation with previous studies and also complemented with urinary trace element concentrations for children.

  15. Investigation of the Influence of Selected Soil and Plant Properties from Sakarya, Turkey, on the Bioavailability of Trace Elements by Applying an In Vitro Digestion Model.

    PubMed

    Altundag, Huseyin; Albayrak, Sinem; Dundar, Mustafa S; Tuzen, Mustafa; Soylak, Mustafa

    2015-11-01

    The main aim of this study was an investigation of the influence of selected soil and plant properties on the bioaccessibility of trace elements and hence their potential impacts on human health in urban environments. Two artificial digestion models were used to determine trace element levels passing from soil and plants to man for bioavailability study. Soil and plant samples were collected from various regions of the province of Sakarya, Turkey. Digestive process is started by addition of soil and plant samples to an artificial digestion model based on human physiology. Bioavailability % values are obtained from the ratio of the amount of element passing to human digestion to element content of soil and plants. According to bioavailability % results, element levels passing from soil samples to human digestion were B = Cr = Cu = Fe = Pb = Li < Al < Ni < Co < Ba < Mn < Sr < Cd < Na < Zn < Tl, while element levels passing from plant samples to human digestion were Cu = Fe = Ni = Pb = Tl = Na = Li < Co < Al < Sr < Ba < Mn < Cd < Cr < Zn < B. It was checked whether the results obtained reached harmful levels to human health by examining the literature.

  16. Li isotopes in archean zircons

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Ushikubo, T.; Kita, N.; Cavosie, A. J.; Kozdon, R.; Valley, J. W.

    2009-12-01

    Li is a fluid mobile, moderately incompatible element with a large mass difference between its two stable isotopes. Different processes can fractionate 7Li/6Li (fluid-rock interaction, metamorphic reactions, and Li diffusion), leading to variation by over 50‰ of δ7Li for common crustal material. These large variations make δ7Li a potential tracer of continental weathering and of the fluids affecting magma sources. Here, we report δ7Li and trace elements in Archean igneous zircons from TTG and sanukitoid granitoids from the Superior Province (Canada) in order to characterize Li in Archean zircons from well-described samples. These data are compared to detrital zircons from the Jack Hills (Western Australia) for which parent rock-type is uncertain. This study aims to better understand Li substitution in zircon and to evaluate the utility of δ7Li and [Li] for Archean petrogenesis. Zircons (n=71) were analyzed for δ7Li and trace elements (Li, P, Ca, Ti, V, Fe, Y, REE, U, Th) using an IMS-1280 ion microprobe. Most of the zircons display typical igneous REE patterns and zoning by CL. [Li] averages 13.1 ± 9 for TTG, 25.7 ± 19 for Sanukitoid and 31.0 ± 14 ppm for Jack Hills zircons, which are distinct from mantle-related zircons (<0.1 ppm). Values of δ7Li average 1.0 ± 4.5‰ for TTGs, 6.3 ± 4.4‰ for sanukitoids and -2.6 ± 8.8‰ for Jack Hills samples. Trace elements were analyzed from single spots in order to evaluate coupled substitutions. Atomic ratios (3Li+Y+REE)/P average 2.6, showing that Li and trivalent atoms are not charge-balanced by P, and suggesting that Li does not replace Zr, according to the xenotime substitution. However, (Y+REE)/(Li+P) atomic ratios average 1.0 ± 0.6, supporting the hypothesis that Li is interstitial and partly compensates trivalent cations. Several observations in this study suggest that [Li] is primary in the studied zircons: i) if Li is interstitial, charge-balance and slow diffusion of REE would control Li mobility, ii) core-rim or oscillatory zoning is observed for [Li] in many high T zircons, iii) CL zoning and low Ca+Fe, U+Th and U/Th imply little radiation damage. Values of δ7Li become erratic at [Li] < ~5 ppm and low values are not interpreted. We suggest that small amounts of non-ionic substitution could be significant for small [Li], whereas interstitial substitution dominates at > ~5 ppm. Li content and isotopic compositions of TTG zircons suggest genesis from mantle-like material, as suggested by δ18O(Zrc) (5.5 ± 0.4‰, King et al., 1998). Sanukitoids are commonly thought to be derived from the melting of peridotite metasomatized by seawater-like slab-dehydration fluids, (supported by the high δ7Li(Zrc)), followed by extensive fractional crystallization, explaining the high sanukitoid [Li]. [Li] and δ7Li thus reflect petrogenetic processes. The Jack Hills detrital zircons are consistent with crustal sources including TTG, sanukitoid and sediment-contaminated granitoid magmas.

  17. Acceleration of bone regeneration by activating Wnt/β-catenin signalling pathway via lithium released from lithium chloride/calcium phosphate cement in osteoporosis

    NASA Astrophysics Data System (ADS)

    Li, Li; Peng, Xiaozhong; Qin, Yongbao; Wang, Renchong; Tang, Jingli; Cui, Xu; Wang, Ting; Liu, Wenlong; Pan, Haobo; Li, Bing

    2017-03-01

    By virtue of its excellent bioactivity and osteoconductivity, calcium phosphate cement (CPC) has been applied extensively in bone engineering. Doping a trace element into CPC can change physical characteristics and enhance osteogenesis. The trace element lithium has been demonstrated to stimulate the proliferation and differentiation of osteoblasts. We investigated the fracture-healing effect of osteoporotic defects with lithium-doped calcium phosphate cement (Li/CPC) and the underlying mechanism. Li/CPC bodies immersed in simulated body fluid converted gradually to hydroxyapatite. Li/CPC extracts stimulated the proliferation and differentiation of osteoblasts upon release of lithium ions (Li+) at 25.35 ± 0.12 to 50.74 ± 0.13 mg/l through activation of the Wnt/β-catenin pathway in vitro. We also examined the effect of locally administered Li+ on defects in rat tibia between CPC and Li/CPC in vivo. Micro-computed tomography and histological staining showed that Li/CPC had better osteogenesis by increasing bone mass and promoting repair in defects compared with CPC (P < 0.05). Li/CPC also showed better osteoconductivity and osseointegration. These findings suggest that local release of Li+ from Li/CPC may accelerate bone regeneration from injury through activation of the Wnt/β-catenin pathway in osteoporosis.

  18. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-03-01

    The aim of this work was to study the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in the different compartments of P. oceanica (leaves, rhizomes, roots and epibiota) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epibiota was the compartment which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. For most trace elements, translocation seemed to be low and acropetal. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  19. The role of the seagrass Posidonia oceanica in the cycling of trace elements

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Malea, P.; Apostolaki, E. T.; Kalantzi, I.; Marín, A.; Karakassis, I.

    2012-07-01

    The aim of this study was to investigate the role of the seagrass Posidonia oceanica on the cycling of a wide set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured the concentration of these trace elements in different compartments of P. oceanica (leaves, rhizomes, roots and epiphytes) in a non-polluted seagrass meadow representative of the Mediterranean and calculated the annual budget from a mass balance. We provide novel data on accumulation dynamics of many trace elements in P. oceanica compartments and demonstrate that trace element accumulation patterns are mainly determined by plant compartment rather than by temporal variability. Epiphytes were the compartment, which showed the greatest concentrations for most trace elements. Thus, they constitute a key compartment when estimating trace element transfer to higher trophic levels by P. oceanica. Trace element translocation in P. oceanica seemed to be low and acropetal in most cases. Zn, Cd, Sr and Rb were the trace elements that showed the highest release rate through decomposition of plant detritus, while Cs, Tl and Bi showed the lowest. P. oceanica acts as a sink of potentially toxic trace elements (Ni, Cr, As and Ag), which can be sequestered, decreasing their bioavailability. P. oceanica may have a relevant role in the cycling of trace elements in the Mediterranean.

  20. New insights into trace elements deposition in the snow packs at remote alpine glaciers in the northern Tibetan Plateau, China.

    PubMed

    Dong, Zhiwen; Kang, Shichang; Qin, Xiang; Li, Xiaofei; Qin, Dahe; Ren, Jiawen

    2015-10-01

    Trace element pollution resulting from anthropogenic emissions is evident throughout most of the atmosphere and has the potential to create environmental and health risks. In this study we investigated trace element deposition in the snowpacks at two different locations in the northern Tibetan Plateau, including the Laohugou (LHG) and the Tanggula (TGL) glacier basins, and its related atmospheric pollution information in these glacier areas, mainly focusing on 18 trace elements (Li, Be, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Nb, Mo, Cd, Sb, Cs, Ba, Tl, and Pb). The results clearly demonstrate that pronounced increases of both concentrations and crustal enrichment factors (EFs) are observed in the snowpack at the TGL glacier basin compared to that of the LHG glacier basin, with the highest EFs for Sb and Zn in the TGL basin, whereas with the highest EFs for Sb and Cd in the LHG basin. Compared with other studies in the Tibetan Plateau and surrounding regions, trace element concentration showed gradually decreasing trend from Himalayan regions (southern Tibetan Plateau) to the TGL basin (central Tibetan Plateau), and to the LHG basin (northern Tibetan Plateau), which probably implied the significant influence of atmospheric trace element transport from south Asia to the central Tibetan Plateau. Moreover, EF calculations at two sites showed that most of the heavy metals (e.g., Cu, Zn, Mo, Cd, Sb, and Pb) were from anthropogenic sources and some other elements (e.g., Li, Rb, and Ba) were mainly originated from crustal sources. MODIS atmospheric optical depth (AOD) fields derived using the Deep Blue algorithm and CALIOP/CALIPSO transect showed significant influence of atmospheric pollutant transport from south Asia to the Tibetan Plateau, which probably caused the increased concentrations and EFs of trace element deposition in the snowpack on the TGL glacier basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A simplified soil extraction sequence to monitor the main and trace element speciation in soil after compost and mineral fertilizer additions upon the composition of wheat grains

    NASA Astrophysics Data System (ADS)

    Sager, Manfred; Erhart, Eva

    2016-04-01

    High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate-soluble Fe together with P and S was independent from oxalate-soluble Al-Mn-Si. In the crops, all element levels were within a non-contaminated and non-deficient range, therefore correlations with concentrations as well as loads in the wheat grains where largely not pronounced. Maximum correlations between plant and soil data were obtained with Li and Be. The load data (concentration times yield, given in g/ha) were much more intercorrelated than the concentrations. Regarding the same element, correlation coefficients between loads and respective concentrations were larger than 0,800 for Al, Ba, Cd, Co, Cr, Li, Mo, Na, Ni, Se, and Sr, which means the transfer remained independent from the load. In case of Ca, Mg, P, S, Zn, however, correlation coefficients between loads and concentrations were < 0,500, thus the transfer was not constant because of obvious metabolic influences. The proposed method of soil characterization was applied at a field trial here for the first time, and offers new possibilities of intercorrelations between plant uptake and geochemical soil fractions.

  2. Using amphibole phenocrysts to track vapor transfer during magma crystallization and transport: An example from Mount St. Helens, Washington

    USGS Publications Warehouse

    Rowe, M.C.; Kent, A.J.R.; Thornber, C.R.

    2008-01-01

    In order to evaluate and further constrain models for volatile movement and vapor enrichment of magma stored at shallow levels, amphibole phenocrysts from 2004-2005 Mount St. Helens dacite were analyzed for major and selected trace elements (Li, Cu, Zn, Mn, and REE) and Li isotopes. Several recent studies have examined fluid-mobile trace element abundances in phencryst phases and melt inclusions as a means of tracking volatile movement within subvolcanic magmatic systems, and high Li contents in plagioclase phenocrysts from 1980 and 2004 Mount St. Helens dacites have been interpreted as evidence that shallow magma was fluxed by a Li-bearing vapor phase prior to eruption. In amphibole phenocrysts, Zn and Mn behave compatibly, correlating to FeO* and Al2O3, and show no systematic change with time. In contrast, Li and Cu abundances in amphibole vary by up to 3 orders of magnitude (7.6-1140????g/g and 1.7 to 94????g/g, respectively), and do not generally correlate with either major or trace elements. However, they do correlate moderately well (R2 = 0.54, >> 95% confidence) with each other and show systematic temporal variations that are opposite to those observed for plagioclase, precluding a simple 1-step diffusion model for Li enrichment. We propose a Diffusion-Crystallization Multi-Stage (DCMS) model to explain the temporal variations and co-variations of Li and Cu. In early erupted dacite (October-December 2004) profiles of Li isotopes in conjunction with measured 7Li intensities and core-to-rim increases in Li concentration are characteristic of Li diffusion into the amphiboles, consistent with prior models of plagioclase enrichment. In amphiboles from 2005 dacite, average Li and Cu concentrations are high (??? 260-660????g/g and ??? 29-45????g/g, respectively) and in contrast to amphiboles from earlier-erupted dacite, correlate weakly with Al2O3??wt.%. Amphibole Al2O3 concentrations are an indicator of pressure, with high-Al amphiboles crystallizing at higher pressures, and we suggest that Li and Cu are partitioned into a fluid phase during ascent and crystallization of the magma so that amphiboles crystallizing at lower pressure have correspondingly lower Li and Cu concentrations. However, low Li and Cu in amphiboles from the dacite at the start of the eruption also require crystallization from a low Li-Cu bearing melt or residence times long enough for amphiboles to re-equilibrate with a Li-Cu depleted melt. Estimated residence times suggest that amphiboles in early dacite could have been present since the end of the 1980-1986 eruptive episode at Mount St. Helens. ?? 2008 Elsevier B.V. All rights reserved.

  3. Geographical traceability of virgin olive oils from south-western Spain by their multi-elemental composition.

    PubMed

    Beltrán, María; Sánchez-Astudillo, María; Aparicio, Ramón; García-González, Diego L

    2015-02-15

    The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Concentrations of trace elements in American alligators (Alligator mississippiensis) from Florida, USA.

    PubMed

    Horai, Sawako; Itai, Takaaki; Noguchi, Takako; Yasuda, Yusuke; Adachi, Haruki; Hyobu, Yuika; Riyadi, Adi S; Boggs, Ashley S P; Lowers, Russell; Guillette, Louis J; Tanabe, Shinsuke

    2014-08-01

    Concentrations of 28 trace elements (Li, Mg, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Tl, Hg, Pb, and Bi) in the livers of juvenile and adult American alligators inhabiting two central Florida lakes, Lake Apopka (LA), and Lake Woodruff National Wildlife Refuge (LW) and one lagoon population located in Merritt Island National Wildlife Refuge (MINWR; NASA), were determined. In juveniles from MINWR, concentrations of nine elements (Li, Fe, Ni, Sr, In, Sb, Hg, Pb and Bi) were significantly higher, whereas six elements (V, Fe, As, Sr, Hg and Bi) were elevated in adults (p<0.05) obtained from MINWR. Significant enrichment of some trace elements in adults, relative to juveniles, was observed at all three sampling areas. Specifically, Fe, Pb and Hg were significantly elevated in adults when compared to juveniles, suggesting age-dependent accumulation of these elements. Further, As, Se and Sn showed the same trend but only in animals collected from MINWR. Mean Fe concentrations in the livers of adults from LA, LW and MINWR were 1770 μg g(-1) DW, 3690 μg g(-1) DW and 5250 μg g(-1) DW, respectively. More than half of the adult specimens from LW and MINWR exhibited elevated hepatic Fe concentrations that exceed the threshold value for toxic effects in donkey, red deer and human. These results prompted us to express our concern on possible exposure and health effects in American alligators by some trace elements derived from NASA activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Age and gender characteristics of the content of macro- and trace elements in the organisms of the children from the European North].

    PubMed

    Soroko, S I; Maksimova, I A; Protasova, O V

    2014-01-01

    By means of the nuclear-emission spectral analysis with inductively connected argon plasma were studied the contents of 28 macro- and trace elements (Al, Ag, Li, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, In, K, Mg, Mn, Na, Ni, Mo, P, Zn, Se, Tl, Pb, Sr, S, Si) in the hair of children and teenagers living in the European North of the Russian Federation (Arkhangelsk region). There were revealed both: decrease and increase of some elements' contents. Also were revealed the dynamics of mentioned elements contents in the hair of the same children in different years. Significant individual variability of the macro and trace elements' status of children-northerners and some gender dependence were revealed.

  6. Trace and Ultra-trace Elements in the Deepest Part of the Vostok Ice Core, Antarctica: Geochemical Characterization of the Sub-glacial Lake Environment

    NASA Astrophysics Data System (ADS)

    Turetta, C.; Planchon, F.; Gabrielli, P.; Cozzi, G.; Cairns, W.; Barbaro, E.; Petit, J. R.; Bulat, S.; Boutron, C.; Barbante, C.

    2016-12-01

    We present in this study comprehensive data on the occurrence of 25 trace and ultra-trace elements in the deepest part of the Vostok ice core. The determination of Li, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Ba, Pb, Bi and U has been performed in the different types of ice encountered from 3271 m to 3609 m of depth, corresponding to atmospheric ice, glacial flour and to accreted ice originating from the freezing of Lake Vostok waters. From atmospheric ice and glacial flour, the relative contributions of primary aerosols were evaluated for each element using a chemical mass balance approach in order to provide a first order evaluation of their partition between soluble (sea-salt) and insoluble (wind-blown dust) fractions in the ice. Sea-salt spray aerosols are the main source of impurities to the ice for certain elements (Na, Mg and K levels, and in a lesser extent to Ca, Sr, Rb, Li and U) while for other elements (Al, V, Cr, Mn, Fe, Co, Cu, Zn, Mo, Sb, Ba and Pb as well as the non sea salt fractions of Mg, K, Ca, Sr, Rb, Li and U) dust inputs appear to primarily control their depositional variability. For the glacial flour, the comparable levels of elements with the overlying atmospheric ice suggest that incorporation of abrasion debris at the glacier is quite limited in the sections considered. For the accreted ice originating from the subglacial waters of Lake Vostok, we observed a major chemical shift in the composition of the ice showing two distinct trends that we assumed to be derived from the chemical speciation of elements. The study of the glacier ice and the glacial flour has allowed us to perform a detailed characterisation of elemental abundances related to the aerosol sources variability and also to illustrate the interaction between the ice-sheet and the bedrock.

  7. Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.

    PubMed

    Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun

    2014-09-01

    The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.

  8. Discrimination of fine-grained sediment provenance using geochemical elements on the inner shelf of the Korean Strait (South Sea), Korea

    NASA Astrophysics Data System (ADS)

    Um, I. K.; Choi, M. S.

    2017-12-01

    The central South Sea mud (CSSM) is located between the Heuksan mud belt (HMB) in the Yellow Sea and Korea Strait shelf mud (KSSM) in the East Sea and developed along the eastward transport pathway in the South Sea. Major elements (Al, Fe, Mg, and Ti), trace elements (Li, Cs, Sc, and Rb), and rare earth elements (REEs) in the fine-grained sediments (<15 μm) of thirty-two surface sediment samples on the CSSM were analyzed to determine the fine-grained sediment provenance. The spatial distribution of the analyzed elements showed a clear separation of the western (W-CSSM) and eastern (E-CSSM) regions of the CSSM. Concentrations of Fe, Ti, Mg, Sc, and REEs were higher in the W-CSSM, whereas concentrations of Al, Cs, Li, and Rb were higher in the E-CSSM. The ratios of trace metals ((Cs+Sc)/Li and Rb/Li) can be successfully used as a provenance indicator in the study area but REEs compositions could not be used to track the provenance of fine-grained sediments because of a grain size effect. The mixing relationships of the provenance indicators showed that the fine-grained sediments of the CSSM comprise a mixture of the sediments discharged from the Seomjin River (SRS) and sediments eroded and transported from the Heuksan mud belt (HMBS) area by the Korean coastal current. Sediments originating from the HMB were deposited mostly in the W-CSSM, whereas those from the Seomjin River were deposited mostly in the E-CSSM

  9. Trace Element Geochemistry of Silica Phases: Understanding the Evolution of the Cerro Pabellón Geothermal System

    NASA Astrophysics Data System (ADS)

    Alvear, B.; Morata, D.; Leisen, M.; Reich, M.; Barra, F.

    2017-12-01

    The study of mineral textures coupled with trace element geochemistry has proven to be a useful tool to understand the evolution of geological environments. The purpose of this study is to provide new constrains on the formation of an active geothermal system, specifically the Cerro Pabellón field. The Cerro Pabellón system is located at 4500 m above sea level and is the first geothermal power plant in operation in Chile and South America. Thirteen samples were collected from a 550 m long drill core. Samples were first studied under petrographic microscopy followed by scanning electron microscopy coupled with a cathodoluminescence detector (CL-SEM). The different textures recognized using petrography and the CL-SEM technique were later analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in order to determine variations in the trace element concentrations as a function of silica textures. Two vein types (A and B) with different silica polymorphs were identified by CL-SEM. Vein type A has only a colloform texture, whereas vein type B, younger and crosscutting the type A, shows zonation, colloform, and jigsaw textures. LA-ICPMS results show high concentrations of Li, Al, Na, K, As, and Sb for all types of silica. A comparison between vein type A and B, show that vein type A is Al-Na-K-Li poor (2088, 36, 309, and 122 ppm average, respectively) and As-Sb rich (43 and 249 ppm average, respectively). On the other hand, vein type B has variable concentrations of Al-Na-K-Li-Sb, but usually higher than in vein type A. Overall, the Cerro Pabellón geothermal system shows high concentrations of Li and Sb, reaching up to 360 and 703 ppm, respectively. Our preliminary results show that the trace element geochemistry is strongly related to the different silica textures, which formed as a response to different thermodynamic conditions and fluid-rock ratios. This work is a contribution to the FONDAP-CONICYT 15090013 Project.

  10. Trace elements and radon in groundwater across the United States, 1992-2003

    USGS Publications Warehouse

    Ayotte, Joseph D.; Gronberg, Jo Ann M.; Apodaca, Lori E.

    2011-01-01

    Trace-element concentrations in groundwater were evaluated for samples collected between 1992 and 2003 from aquifers across the United States as part of the U.S. Geological Survey National Water-Quality Assessment Program. This study describes the first comprehensive analysis of those data by assessing occurrence (concentrations above analytical reporting levels) and by comparing concentrations to human-health benchmarks (HHBs). Data from 5,183 monitoring and drinking-water wells representing more than 40 principal and other aquifers in humid and dry regions and in various land-use settings were used in the analysis. Trace elements measured include aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), uranium (U), vanadium (V), and zinc (Zn). Radon (Rn) gas also was measured and is included in the data analysis. Climate influenced the occurrence and distribution of trace elements in groundwater whereby more trace elements occurred and were found at greater concentrations in wells in drier regions of the United States than in humid regions. In particular, the concentrations of As, Ba, B, Cr, Cu, Mo, Ni, Se, Sr, U, V, and Zn were greater in the drier regions, where processes such as chemical evolution, ion complexation, evaporative concentration, and redox (oxidation-reduction) controls act to varying degrees to mobilize these elements. Al, Co, Fe, Pb, and Mn concentrations in groundwater were greater in humid regions of the United States than in dry regions, partly in response to lower groundwater pH and (or) more frequent anoxic conditions. In groundwater from humid regions, concentrations of Cu, Pb, Rn, and Zn were significantly greater in drinking-water wells than in monitoring wells. Samples from drinking-water wells in dry regions had greater concentrations of As, Ba, Pb, Li, Sr, V, and Zn, than samples from monitoring wells. In humid regions, however, concentrations of most trace elements were greater in monitoring wells than in drinking-water wells; the exceptions were Cu, Pb, Zn, and Rn. Cu, Pb, and Zn are common trace elements in pumps and pipes used in the construction of drinking-water wells, and contamination from these sources may have contributed to their concentrations. Al, Sb, Ba, B, Cr, Co, Fe, Mn, Mo, Ni, Se, Sr, and U concentrations were all greater in monitoring wells than in drinking-water wells in humid regions. Groundwater from wells in agricultural settings had greater concentrations of As, Mo, and U than groundwater from wells in urban settings, possibly owing to greater pH in the agricultural wells. Significantly greater concentrations of B, Cr, Se, Ag, Sr, and V also were found in agricultural wells in dry regions. Groundwater from dry-region urban wells had greater concentrations of Co, Fe, Pb, Li, Mn, and specific conductance than groundwater from agricultural wells. The geologic composition of aquifers and aquifer geochemistry are among the major factors affecting trace-element occurrence. Trace-element concentrations in groundwater were characterized in aquifers from eight major groups based on geologic material, including (1) unconsolidated sand and gravel; (2) glacial unconsolidated sand and gravel; (3) semiconsolidated sand; (4) sandstone; (5) sandstone and carbonate rock; (6) carbonate rock; (7) basaltic and other volcanic rock; and (8) crystalline rock. The majority of groundwater samples and the largest percentages of exceedences of HHBs were in the glacial and nonglacial unconsolidated sand and gravel aquifers; in these aquifers, As, Mn, and U are the most common trace elements exceeding HHBs. Overall, 19 percent of wells (962 of 5,097) exceeded an HHB for at least one trace element. The trace elements with HHBs included in this summary were Sb, As, Ba, Be, B, Cd, Cr,

  11. Ameliorative Effects of Dietary Selenium Against Cadmium Toxicity Is Related to Changes in Trace Elements in Chicken Kidneys.

    PubMed

    Zhang, Runxiang; Wang, Yanan; Wang, Chao; Zhao, Peng; Liu, Huo; Li, Jianhong; Bao, Jun

    2017-04-01

    The ameliorative effects of selenium (Se) against cadmium (Cd)-induced toxicity have been reported extensively. However, few studies have assessed the effects of multiple ions simultaneously on the variations of elements. In this study, the changes in Se, Cd, and 26 other element concentrations were investigated in chicken kidneys. One hundred and twenty-eight 31-week-old laying hens were fed a diet supplemented with either Se, Cd, or both Se and Cd for 90 days. The ion content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). We found that the Se, Cd, and combined Se and Cd treatments significantly affected the trace elements in the chicken kidneys. The Cd supplement caused ion profile disorders, including reduced concentrations of V, Cr, Mn, Mo, As, Ba, Hg, Ti, and Pb and increased Si, Cu, Li, Cd, and Sb. The Se supplement reduced the contents of Co, Mo, and Pb and increased the contents of Cr, Fe, and Se. Moreover, Se also increased the concentrations of Cr, Mn, Zn, and Se and decreased those of Li and Pb, which in contrast were induced by Cd. Complex interactions between elements were analyzed, and both positive and negative correlations among these elements are presented. The present study indicated that Se can help against the negative effects of Cd and may be related to the homeostasis of the trace elements in chicken kidneys.

  12. Investigations on the direct introduction of cigarette smoke for trace elements analysis by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chang, Michael J.; Naworal, John D.; Walker, Kathleen; Connell, Chris T.

    2003-11-01

    Direct introduction of mainstream cigarette smoke into an inductively coupled plasma mass spectrometry (ICP-MS) has been investigated with respect to its feasibility for on-line analysis of trace elements. An automated apparatus was designed and built interfacing a smoking machine with an ICP-MS for smoke generation, collection, injection and analysis. Major and minor elements present in the particulate phase and the gas phase of mainstream cigarette smoke of 2R4F reference cigarettes have been qualitatively identified by examination of their full mass spectra. This method provides a rapid-screening analysis of the transfer of trace elements into mainstream smoke during cigarette combustion. A full suite of elements present in the whole cigarette smoke has been identified, including As, B, Ba, Br, Cd, Cl, Cs, Cu, Hg, I, K, Li, Mn, Na, Pb, Rb, Sb, Sn, Tl and Zn. Of these elements, the major portions of B, Ba, Cs, Cu, K, Li, Mn, Na, Pb, Rb, Sn, Tl and Zn are present in the particulate phase, whereas the major portion of Hg is present in the gas phase. As, Br, Cd, Cl, I and Sb exist in a distribution between the gas phase and the particulate phase. Depending on the element, the precision of measurement ranges from 5 to 25% in terms of relative standard deviation of peak height and peak area, based on the fourth puff of 2R4F mainstream cigarette smoke analyzed in five smoking replicates.

  13. Ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples

    NASA Technical Reports Server (NTRS)

    Meyer, C., Jr.; Anderson, D. H.; Bradley, J. G.

    1974-01-01

    The ion microprobe was used to measure the composition and distribution of trace elements in lunar plagioclase, and these analyses are used as criteria in determining the possible origins of some nonmare lunar samples. The Apollo 16 samples with metaclastic texture and high-bulk trace-element contents contain plagioclase clasts with extremely low trace-element contents. These plagioclase inclusions represent unequilibrated relicts of anorthositic, noritic, or troctolitic rocks that have been intermixed as a rock flour into the KREEP-rich matrix of these samples. All of the plagioclase-rich inclusions which were analyzed in the KREEP-rich Apollo 14 breccias were found to be rich in trace elements. This does not seem to be consistent with the interpretation that the Apollo 14 samples represent a pre-Imbrium regolith, because such an ancient regolith should have contained many plagioclase clasts with low trace-element contents more typical of plagioclase from the pre-Imbrium crust. Ion-microprobe analyses for Ba and Sr in large plagioclase phenocrysts in 14310 and 68415 are consistent with the bulk compositions of these rocks and with the known distribution coefficients for these elements. The distribution coefficient for Li (basaltic liquid/plagioclase) was measured to be about 2.

  14. Multielement analysis of Canadian wines by inductively coupled plasma mass spectrometry (ICP-MS) and multivariate statistics.

    PubMed

    Taylor, Vivien F; Longerich, Henry P; Greenough, John D

    2003-02-12

    Trace element fingerprints were deciphered for wines from Canada's two major wine-producing regions, the Okanagan Valley and the Niagara Peninsula, for the purpose of examining differences in wine element composition with region of origin and identifying elements important to determining provenance. Analysis by ICP-MS allowed simultaneous determination of 34 trace elements in wine (Li, Be, Mg, Al, P, Cl, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Mo, Ag, Cd, Sb, I, Cs, Ba, La, Ce, Tl, Pb, Bi, Th, and U) at low levels of detection, and patterns in trace element concentrations were deciphered by multivariate statistical analysis. The two regions were discriminated with 100% accuracy using 10 of these elements. Differences in soil chemistry between the Niagara and Okanagan vineyards were evident, without a good correlation between soil and wine composition. The element Sr was found to be a good indicator of provenance and has been reported in fingerprinting studies of other regions.

  15. Application of major and trace elements as well as boron isotopes for tracing hydrochemical processes: the case of Trifilia coastal karst aquifer, Greece

    NASA Astrophysics Data System (ADS)

    Panagopoulos, G.

    2009-09-01

    The Trifilia karst aquifer presents a complex hydrochemical character due to the intricate geochemical processes that take place in the area. Their discernment was achieved by using the chemical analyses of major, trace elements and boron isotopes. Major ion composition indicates mixing between seawater and freshwater is occurring. Five hydrochemical zones corresponding to five respective groundwater types were distinguished, in which the chemical composition of groundwater is influenced mainly due to the different salinization grade of the aquifer. The relatively increased temperature of the aquifer indicates the presence of hydrothermal waters. Boron isotopes and trace elements indicate that the intruding seawater has been hydrothermally altered, as it is shown by the δ11B depleted signature and the increased concentrations of Li and Sr. Trace elements analyses showed that the groundwater is enriched in various metallic elements, which derive from the solid hydrocarbons (bitumens), contained in the carbonate sediments of the Tripolis zone. The concentration of these trace elements depends on the redox environment. Thus, in reductive conditions As, Mn, Co and NH4 concentrations are high, in oxidized conditions the V, Se, Mo, Tl and U concentration increases while Ni is not redox sensitive and present high concentration in both environments.

  16. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    NASA Astrophysics Data System (ADS)

    Payré, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R. C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.-Y.; Lasue, J.; Ollila, A.; Rapin, W.; Maurice, S.; Nachon, M.; Le Deit, L.; Lanza, N.; Clegg, S.

    2017-03-01

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantifications of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. These observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.

  17. Simulation of Satellite, Airborne and Terrestrial LiDAR with DART (I):Waveform Simulation with Quasi-Monte Carlo Ray Tracing

    NASA Technical Reports Server (NTRS)

    Gastellu-Etchegorry, Jean-Philippe; Yin, Tiangang; Lauret, Nicolas; Grau, Eloi; Rubio, Jeremy; Cook, Bruce D.; Morton, Douglas C.; Sun, Guoqing

    2016-01-01

    Light Detection And Ranging (LiDAR) provides unique data on the 3-D structure of atmosphere constituents and the Earth's surface. Simulating LiDAR returns for different laser technologies and Earth scenes is fundamental for evaluating and interpreting signal and noise in LiDAR data. Different types of models are capable of simulating LiDAR waveforms of Earth surfaces. Semi-empirical and geometric models can be imprecise because they rely on simplified simulations of Earth surfaces and light interaction mechanisms. On the other hand, Monte Carlo ray tracing (MCRT) models are potentially accurate but require long computational time. Here, we present a new LiDAR waveform simulation tool that is based on the introduction of a quasi-Monte Carlo ray tracing approach in the Discrete Anisotropic Radiative Transfer (DART) model. Two new approaches, the so-called "box method" and "Ray Carlo method", are implemented to provide robust and accurate simulations of LiDAR waveforms for any landscape, atmosphere and LiDAR sensor configuration (view direction, footprint size, pulse characteristics, etc.). The box method accelerates the selection of the scattering direction of a photon in the presence of scatterers with non-invertible phase function. The Ray Carlo method brings traditional ray-tracking into MCRT simulation, which makes computational time independent of LiDAR field of view (FOV) and reception solid angle. Both methods are fast enough for simulating multi-pulse acquisition. Sensitivity studies with various landscapes and atmosphere constituents are presented, and the simulated LiDAR signals compare favorably with their associated reflectance images and Laser Vegetation Imaging Sensor (LVIS) waveforms. The LiDAR module is fully integrated into DART, enabling more detailed simulations of LiDAR sensitivity to specific scene elements (e.g., atmospheric aerosols, leaf area, branches, or topography) and sensor configuration for airborne or satellite LiDAR sensors.

  18. The laser microprobe mass analyser for determining partitioning of minor and trace elements among intimately associated macerals: an example from the Swallow Wood coal bed, Yorkshire, UK

    USGS Publications Warehouse

    Lyons, P.C.; Morelli, J.J.; Hercules, D.M.; Lineman, D.; Thompson-Rizer, C. L.; Dulong, F.T.

    1990-01-01

    A study of the elemental composition of intimately associated coal macerals in the English Swallow Wood coal bed was conducted using a laser microprobe mass analyser, and indicated a similar trace and minor elemental chemistry in the vitrinite and cutinite and a different elemental signature in the fusinite. Three to six sites were analysed within each maceral during the study by laser micro mass spectrometry (LAMMS). Al, Ba, Ca, Cl, Cr, Dy, F, Fe, Ga, K, Li, Mg, Na, S, Si, Sr, Ti, V, and Y were detected by LAMMS in all three macerals but not necessarily at each site analysed. The signal intensities of major isotopic peaks were normalized to the signal intensity of the m z 85 peak (C7H) to determine the relative minor- and trace-element concentrations among the three dominant macerals. The vitrinite and the cutinite were depleted in Ba, Ca, Dy, Li, Mg, Sr, and Y relative to their concentrations observed in the fusinite. The cutinite was distinguished over vitrinite by less Ti, V, Cr and Ca, and K Ca $ ??1 (relative signal intensities). The fusinite, relative to the cutinite and vitrinite, was relatively depleted in Cr, Sc, Ti, and V. The fusinite, as compared with both the cutinite and vitrinite, was relatively enriched in Ba, Ca, Dy, Li, Mg, Sr, and Y, and also showed the most intense m z 64, 65, 66 signals (possibly S2+, HS2+, H2S2+, respectively). The LAMMS data indicate a common source for most elements and selective loss from the maceral precursors in the peat or entrapment of certain elements as mineral matter, most likely during the peat stage or during early diagenesis. The relatively high amounts of Ba, Ca, Dy, Li, Mg, Sr, and Y in the fusinite are consistent with micron and submicron mineral-matter inclusions such as carbonates and Ca-Al phosphates (probably crandallite group minerals). Mineralogical data on the whole coal, the LAMMS chemistry of the vitrinite and cutinite, and scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) of the elements in the macerals are consistent with the presence of micron and submicron inclusions of clays such as kaolinite, illite, and Ca-rich or Ca-bearing minerals (e.g. calcite, Ca-Al phosphates, and illite) which are different in kind and proportions in the three macerals. The variance as measured by the F-statistic for all three macerals indicates generally a nonuniform distribution of minor and trace elements in all three macerals, thus supporting a mineral-matter (inorganic) origin of the elements analysed. Exceptions are Al, K, Fe, Ga, and Sr in the vitrinite and cutinite, which is consistent with organic complexing or a uniform distribution of micron or submicron mineral matter such as illite and phosphate(s). ?? 1990.

  19. Characterisation of a natural quartz crystal as a reference material for microanalytical determination of Ti, Al, Li, Fe, Mn, Ga and Ge

    USGS Publications Warehouse

    Audetat, Andreas; Garbe-Schonberg, Dieter; Kronz, Andreas; Pettke, Thomas; Rusk, Brian G.; Donovan, John J.; Lowers, Heather

    2015-01-01

    A natural smoky quartz crystal from Shandong province, China, was characterised by laser ablation ICP-MS, electron probe microanalysis (EPMA) and solution ICP-MS to determine the concentration of twenty-four trace and ultra trace elements. Our main focus was on Ti quantification because of the increased use of this element for titanium-in-quartz (TitaniQ) thermobarometry. Pieces of a uniform growth zone of 9 mm thickness within the quartz crystal were analysed in four different LA-ICP-MS laboratories, three EPMA laboratories and one solution-ICP-MS laboratory. The results reveal reproducible concentrations of Ti (57 ± 4 μg g-1), Al (154 ± 15 μg g-1), Li (30 ± 2 μg g-1), Fe (2.2 ± 0.3 μg g-1), Mn (0.34 ± 0.04 μg g-1), Ge (1.7 ± 0.2 μg g-1) and Ga (0.020 ± 0.002 μg g-1) and detectable, but less reproducible, concentrations of Be, B, Na, Cu, Zr, Sn and Pb. Concentrations of K, Ca, Sr, Mo, Ag, Sb, Ba and Au were below the limits of detection of all three techniques. The uncertainties on the average concentration determinations by multiple techniques and laboratories for Ti, Al, Li, Fe, Mn, Ga and Ge are low; hence, this quartz can serve as a reference material or a secondary reference material for microanalytical applications involving the quantification of trace elements in quartz.

  20. [Study on the determination of 28 inorganic elements in sunflower seeds by ICP-OES/ICP-MS].

    PubMed

    Liu, Hong-Wei; Qin, Zong-Hui; Xie, Hua-Lin; Cao, Shu

    2013-01-01

    The present paper describes a simple method for the determination of trace elements in sunflower seeds by using inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma spectrometry (ICP-MS). HNO3 + H2O2 were used to achieve the complete decomposition of the organic matrix in a closed-vessel microwave oven. The contents of 10 trace elements (Al, B, Ca, Fe, K, Mg, Na, Si, P and S) in sunflower seeds were determined by ICP-OES while 18 trace elements (As, Ba, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sr, Sn, Sb, Ti, V and Zn) were determined by ICP-MS. The rice reference material (GBW10045) was used as standard reference materials. The results showed a good agreement between measured and certified values for all analytes. The concentrations of necessary micro elements Ca, K, Mg, P and S were higher. This method was simple, sensitive and precise and can perform simultaneous multi-elements determination of sunflower seeds.

  1. Identification of process related trace level impurities in the actinide decorporation agent 3,4,3-LI(1,2-HOPO): Nozzle–skimmer fragmentation via ESI LC–QTOFMS

    DOE PAGES

    Panyala, Nagender R.; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J.

    2014-08-12

    We report that 3,4,3-LI(1,2-HOPO) is a chelating ligand and decorporation agent that can remove radioactive lanthanides and actinides from the body. Identification of trace impurities in drug samples is gaining much interest due to their significant influence on drug activity. In this study, trace impurities were detected in manufactured lots of 3,4,3-LI(1,2-HOPO) by a developed method of Liquid Chromatography coupled with photo-diode array UV detection and Electrospray Ionization-Quadrupole Time of Flight Mass spectrometry (LC-QTOFMS), via induced-in-source or collision-induced mass fragmentation (Nozzle-Skimmer Fragmentation). Molecular ions were fragmented within the nozzle-skimmer region of electrospray ionization (ESI) mass spectrometer equipped with a Timemore » of Flight detector. Eight major (detected at levels higher than a 0.1% threshold) and seven minor trace impurities were identified. The respective structures of these impurities were elucidated via analysis of the generated fragment ions using mass fragmentation and elemental composition software. Proposed structures of impurities were further confirmed via isotopic modeling.« less

  2. Trace element zoning as a record of chemical disequilibrium during garnet growth

    NASA Astrophysics Data System (ADS)

    Chernoff, Carlotta B.; Carlson, William D.

    1999-06-01

    Trace element concentrations in pelitic garnets from the Picuris Range of New Mexico display precipitous changes coincident with abrupt variations in Ca concentration. These patterns probably arise from the transitory participation of different trace element enriched phases in the garnet forming reaction. Changes in the reactant and product assemblages occur at different times during the reaction history for crystals of different size, so they cannot be the result of any event affecting the entire rock, such as a change in pressure, temperature, or fluid composition. Instead, they reflect kinetic factors that cause Ca, Y, Yb, P, Ti, Sc, Zr, Hf, Sr, Na, and Li to fail to achieve chemical equilibrium during garnet growth. Caution is needed to avoid misinterpreting excursions in the concentration of these elements as event markers recording simultaneous rockwide changes in intensive parameters, when in fact they may record transient disequilibrium states that are local in scope, and not contemporaneous.

  3. Trace element analysis by PIXE in several biomedical fields

    NASA Astrophysics Data System (ADS)

    Weber, G.; Robaye, G.; Bartsch, P.; Collignon, A.; Beguin, Y.; Roelandts, I.; Delbrouck, J. M.

    1984-04-01

    Since 1980 in the University of Liége trace element analysis by PIXE has been developed in several directions, among these: the elemental composition of lung parenchyma, hilar lymph nodes, blood content in hematological disorders and renal insufficiency. The content in trace elements of lung tumor and surrounding tissue is measured and compared to similar content previously obtained on unselected patients of comparable ages. The normalization of the bromine deficiency observed in hemodialized patients is achieved by using a dialyzing bath doped with NaBr in order to obtain a normal bromine level of 5.7 μg/ml. The content of Cu, Zn, Br and Se in blood serum from more than 100 patients suffering from malignant hemopathy has been measured. The results are compared with a reference group. These oligoelements have also been measured sequentially for patients under intensive chemotherapy in acute myeloid leukemia.

  4. Chemical durability of alkali-borosilicate glasses studied by analytical SEM, IBA, isotopic-tracing and SIMS

    NASA Astrophysics Data System (ADS)

    Trocellier, P.; Djanarthany, S.; Chêne, J.; Haddi, A.; Brass, A. M.; Poissonnet, S.; Farges, F.

    2005-10-01

    Simple and complex alkali-borosilicate glasses were submitted to aqueous corrosion at room temperature, 60 and 90 °C in solutions with pH ranging between 0 and 12. Analytical scanning electron microscopy (SEM), ion beam analysis (IBA) techniques, isotopic tracing and secondary ion mass-depth profiling (SIMS) have been used to investigate the variations of the surface composition of glass. In acidic medium, the glass surface is generally covered by a thick hydrated silica layer, mobile elements like Li, Na and B and transition elements (Fe, Zr, Mo, etc.) are strongly depleted. Near pH 7, relative enrichments of aluminium, iron and rare earths are shown together with strong Li, Na and B depletions. In basic medium, the glass surface exhibits relative enrichments of the major part of transition metals (from Cr to U) whereas mobile elements seem to be kept close to their nominal concentration level at the glass surface and Si is severely impoverished. Hydrogen incorporated at the glass surface after leaching is much more immobile in neutral and basic media than in acid medium.

  5. Trace elements in hazardous mineral fibres.

    PubMed

    Bloise, Andrea; Barca, Donatella; Gualtieri, Alessandro Francesco; Pollastri, Simone; Belluso, Elena

    2016-09-01

    Both occupational and environmental exposure to asbestos-mineral fibres can be associated with lung diseases. The pathogenic effects are related to the dimension, biopersistence and chemical composition of the fibres. In addition to the major mineral elements, mineral fibres contain trace elements and their content may play a role in fibre toxicity. To shed light on the role of trace elements in asbestos carcinogenesis, knowledge on their concentration in asbestos-mineral fibres is mandatory. It is possible that trace elements play a synergetic factor in the pathogenesis of diseases caused by the inhalation of mineral fibres. In this paper, the concentration levels of trace elements from three chrysotile samples, four amphibole asbestos samples (UICC amosite, UICC anthophyllite, UICC crocidolite and tremolite) and fibrous erionite from Jersey, Nevada (USA) were determined using inductively coupled plasma mass spectrometry (ICP-MS). For all samples, the following trace elements were measured: Li, Be, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Sb, Cs, Ba, La, Pb, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U. Their distribution in the various mineral species is thoroughly discussed. The obtained results indicate that the amount of trace metals such as Mn, Cr, Co, Ni, Cu and Zn is higher in anthophyllite and chrysotile samples, whereas the amount of rare earth elements (REE) is higher in erionite and tremolite samples. The results of this work can be useful to the pathologists and biochemists who use asbestos minerals and fibrous erionite in-vitro studies as positive cyto- and geno-toxic standard references. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Evolving magma storage conditions beneath Mount St. Helens inferred from chemical variations in melt inclusions from the 1980-1986 and current (2004-2006) eruptions: Chapter 33 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Blundy, Jon; Cashman, Katharine V.; Berlo, Kim; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    O contents, consistent with magma extraction from shallow depths. Highly enriched Li in melt inclusions suggests that vapor transport of Li is a characteristic feature of Mount St. Helens. Melt inclusions from the current eruption have subtly different trace-element chemistry from all but one of the 1980-86 melt inclusions, with steeper rareearth-element (REE) patterns and low U, Th, and high-fieldstrength elements (HFSE), indicating addition of a new melt component to the magma system. It is anticipated that increasing involvement of the new melt component will be evident as the current eruption proceeds.

  7. Combined Li-He isotopes in Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle

    NASA Astrophysics Data System (ADS)

    Magna, T.; Wiechert, U.; Stuart, F. M.; Halliday, A. N.; Harrison, D.

    2011-02-01

    Lithium (Li) isotopes are thought to provide a powerful proxy for the recycling of crustal material, affected by low temperature alteration, through the mantle. We present Li isotope compositions for basaltic volcanic rocks from Hengill, Iceland, and Jan Mayen in order to examine possible links between ocean island volcanism and recycled oceanic crust and to address recent suggestions that mantle 3He/ 4He is also related to recycling of ancient slabs. Basaltic glasses spanning a range of chemical enrichment from the Hengill fissure system define an inverse correlation between δ 7Li (3.8-6.9‰) and 3He/ 4He (12-20 RA). The high- 3He/ 4He basalts have low δ 18O as well as excess Eu and high Nb/U, but carry no Li isotope evidence of being the product of recycling of altered slab or wedge material. In fact, there is no clear correlation between Li or He isotopes on the one hand and any of the other fingerprints of recycled slab components. The low- 3He/ 4He samples do have elevated Nb/U, Sr/Nd, positive Eu anomalies and high δ 7Li (˜6.9‰), providing evidence of a cumulate-enriched source that could be part of an ancient altered ocean floor slab. Basalts from Jan Mayen are characterized by large degrees of enrichment in incompatible trace elements typical of EM-like basalts but have homogeneous δ 7Li typical of depleted mantle (3.9-4.7‰) providing evidence for a third mantle source in the North Atlantic. It appears that oceanic basalts can display a wide range in isotope and trace element compositions associated with recycled components whilst exhibiting no sign of modern surface-altered slab or wedge material from the Li isotope composition.

  8. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less

  9. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications

    DOE PAGES

    Payre, Valerie; Fabre, Cecile; Cousin, Agnes; ...

    2017-03-20

    The Chemistry Camera (ChemCam) instrument onboard Curiosity can detect minor and trace elements such as lithium, strontium, rubidium, and barium. Their abundances can provide some insights about Mars' magmatic history and sedimentary processes. We focus on developing new quantitative models for these elements by using a new laboratory database (more than 400 samples) that displays diverse compositions that are more relevant for Gale crater than the previous ChemCam database. These models are based on univariate calibration curves. For each element, the best model is selected depending on the results obtained by using the ChemCam calibration targets onboard Curiosity. New quantificationsmore » of Li, Sr, Rb, and Ba in Gale samples have been obtained for the first 1000 Martian days. Comparing these data in alkaline and magnesian rocks with the felsic and mafic clasts from the Martian meteorite NWA7533—from approximately the same geologic period—we observe a similar behavior: Sr, Rb, and Ba are more concentrated in soluble- and incompatible-element-rich mineral phases (Si, Al, and alkali-rich). Correlations between these trace elements and potassium in materials analyzed by ChemCam reveal a strong affinity with K-bearing phases such as feldspars, K-phyllosilicates, and potentially micas in igneous and sedimentary rocks. However, lithium is found in comparable abundances in alkali-rich and magnesium-rich Gale rocks. This very soluble element can be associated with both alkali and Mg-Fe phases such as pyroxene and feldspar. Here, these observations of Li, Sr, Rb, and Ba mineralogical associations highlight their substitution with potassium and their incompatibility in magmatic melts.« less

  10. Provenance of fine-grained sediments in the inner shelf of the Korea Strait (South Sea), Korea

    NASA Astrophysics Data System (ADS)

    Um, In kwon; Choi, Man Sik; Bae, Sung Ho; Song, Yunho; Kong, Gee Soo

    2017-12-01

    Major metals (Al, Fe, Mg, and Ti), trace metals (Li, Cs, Sc, and Rb), and rare earth elements (REEs) in the fine-grained sediments (< 15 μm) of the central South Sea mud (CSSM) were analyzed to determine the sediment provenance. The spatial distribution of the analyzed elements showed a clear separation between the western (W-CSSM) and eastern (E-CSSM) regions of the CSSM. Concentrations of Fe, Ti, Mg, Sc, and REEs were higher in the WCSSM, whereas concentrations of Al, Cs, Li, and Rb were higher in the E-CSSM. Unlike the ratios of trace metals ((Cs+Sc)/Li and Rb/Li), REEs could not be used to track the provenance of fine-grained sediments because of a grain size effect. The mixing relationships of the provenance indicators showed that the fine-grained sediments of the CSSM comprise a mixture of the sediments discharged from the Seomjin River (SRS) and sediments eroded and transported from the Heuksan mud belt (HMBS) area by the Korean Coastal Current. Sediments originating from the HMB were deposited mostly in the W-CSSM, whereas those from the Seomjin River were deposited mostly in the E-CSSM. This study indicated that sediments from Chinese rivers as well as the Geum River are important even in the inner shelf of the South Sea of Korea.

  11. Provenance of Fine-grained Sediments in the Inner Shelf of the Korea Strait (South Sea), Korea

    NASA Astrophysics Data System (ADS)

    Um, In kwon; Choi, Man Sik; Bae, Sung Ho; Song, Yunho; Kong, Gee Soo

    2018-03-01

    Major metals (Al, Fe, Mg, and Ti), trace metals (Li, Cs, Sc, and Rb), and rare earth elements (REEs) in the fine-grained sediments (< 15 μm) of the central South Sea mud (CSSM) were analyzed to determine the sediment provenance. The spatial distribution of the analyzed elements showed a clear separation between the western (W-CSSM) and eastern (E-CSSM) regions of the CSSM. Concentrations of Fe, Ti, Mg, Sc, and REEs were higher in the WCSSM, whereas concentrations of Al, Cs, Li, and Rb were higher in the E-CSSM. Unlike the ratios of trace metals ((Cs+Sc)/Li and Rb/Li), REEs could not be used to track the provenance of fine-grained sediments because of a grain size effect. The mixing relationships of the provenance indicators showed that the fine-grained sediments of the CSSM comprise a mixture of the sediments discharged from the Seomjin River (SRS) and sediments eroded and transported from the Heuksan mud belt (HMBS) area by the Korean Coastal Current. Sediments originating from the HMB were deposited mostly in the W-CSSM, whereas those from the Seomjin River were deposited mostly in the E-CSSM. This study indicated that sediments from Chinese rivers as well as the Geum River are important even in the inner shelf of the South Sea of Korea.

  12. Pollution Characteristics and Possible Sources of Seldom Monitored Trace Elements in Surface Sediments Collected from Three Gorges Reservoir, China

    PubMed Central

    Gao, Bo; Wei, Xin; Zhou, Huaidong; Lu, Jin; Hao, Hong; Wan, Xiaohong

    2014-01-01

    A geochemical study of Three Gorges Reservoir (TGR) sediments was carried out to analyze the concentrations, distribution, accumulation, and potential sources of the seldom monitored trace elements (SMTEs). The mean concentrations of Li, B, Be, Bi, V, Co, Ga, Sn, Sb, and Tl were 47.08, 2.47, 59.15, 0.50, 119.20, 17.83, 30.31, 3.25, 4.14, and 0.58 mg/kg, respectively. The concentrations of total SMTEs, together with their spatial distribution, showed that the SMTEs were mainly due to anthropogenic inputs in the region of TGR. The assessment by Geoaccumulation Index indicates that Tl, Be, V, Co, and Fe are at the unpolluted level; Bi, Li, Ga, and Sn were at the “uncontaminated to moderately contaminated” level. However, B was classified as “moderately contaminated” level and Sb was ranked as “strongly contaminated” level. The pollution level of the SMTEs is Sb > B > Bi > Li > Ga > Sn > Tl > Be > V > Co > Fe. The results of Correlation Analysis and Principal Component Analysis indicated Be, V, Co, Ga, Sn, Tl, Bi, and Fe in sediments have a natural source. B and Li were positively correlated with each other and mainly attributed into similar anthropogenic input. In addition, Sb has less relationship with other SMTEs, indicating that Sb has another kind of anthropogenic source. PMID:25136647

  13. Experimental and natural partitioning behaviour of trace-elements between hydrous evolved melts, amphibole, plagioclase, and clinopyroxene at shallow crustal conditions

    NASA Astrophysics Data System (ADS)

    Iveson, A. A.; Webster, J. D.; Rowe, M. C.; Neill, O. K.

    2016-12-01

    New experimental data for crystal-melt partitioning behaviour of a suite of trace-elements are presented. Hydrous rhyo-dacitic starting glasses from Mt. Usu, Japan, were doped with Li, Sc, Cr, Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Nb, Mo, Ba, W, and Pb. Aqueous solutions were added such that the volatile phase(s) coexisting with amphibole, plagioclase, and clinopyroxene at run conditions buffered the S, F, and Cl contents of the melts. Internally-heated pressure vessel experiments were conducted at 750-850 °C, 1.0-4.0 Kbar, and ƒO2 ≈ NNO-NNO+2 log units. Major- and minor-element concentrations in the phenocrysts and glasses were analysed by EPMA, and trace-element contents by SIMS and/or LA-ICP-MS. The long run durations, homogeneous glasses, and minimal compositional zonation of crystals suggest that near-equilibrium conditions were achieved. Results of multiple phenocryst and glass analyses show that Nernst-type crystal-melt partition coefficients for these elements range from strongly incompatible e.g. Dmineral/melt ≈ 0 for Nb into plagioclase, to moderately incompatible e.g. Dmineral/melt ≈ 0.75 for Ga into amphibole, to strongly compatible e.g. Dmineral/melt > 50 for Ni into amphibole and clinopyroxene. Furthermore, unlike other elements investigated, partitioning of Li between phenocrysts and melt is similar for all three phases, with average DLicpx/melt ≈ 0.26 > DLiplag/melt ≈ 0.24 > DLiamph/melt ≈ 0.19. Relative to major-element composition of crystalline phases, the temperature, pressure, and ƒO2 conditions do not appear to strongly affect this behaviour. The incorporation of F and Cl into amphiboles is also consistent with the Fe-F and Mg-Cl crystallographic avoidance principles. Importantly, across two orders of magnitude in concentration, partitioning behaviours of all analysed trace-elements appear to obey Henry's Law. The experimental data are integrated with new amphibole, plagioclase, and pyroxene analyses from eruptive products of Augustine and Mt. St. Helens volcanoes. The results are applicable to understanding processes governing melt evolution during shallow magma storage and formation of economic metal deposits, where the crystallisation of porphyry-type magmas leads to fluid exsolution, and enrichment and transport of such trace- and ore-elements.

  14. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka.

    PubMed

    Diyabalanage, Saranga; Fonseka, Sanjeewani; Dasanayake, D M S N B; Chandrajith, Rohana

    2017-01-01

    An alarming increase in chronic kidney disease with unknown etiology (CKDu) has recently been reported in several provinces in Sri Lanka and chronic exposures to toxic trace elements were blamed for the etiology of this disease. Keratinized matrices such as hair and nails were investigated to determine the possible link between CKDu and toxic element exposures. Elements Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Ba, Hg and Pb of hair and nails of patients and age that matched healthy controls were determined with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results showed that trace element contents in the hair of patients varies in the order of Zn>Fe>Al>Mn>Cu>Ba>Sr>Ni>Pb>Cr>B>Hg>Se>Mo>Co>As>Li>Cd while Fe>Al>Zn>Ni>Cu>Mn>Cr>Ba>Sr>B>Pb>Se>Mo>Co>Hg>Li>As>Cd in nail samples. The hair As levels of 0.007-0.165μgg -1 were found in CKDu subjects. However, no significant difference was observed between cases and controls. The total Se content in hair of CKDu subjects ranged from 0.043 to 0.513μgg -1 while it was varied from 0.031 to 1.15μgg -1 in controls. Selenium in nail samples varied from 0.037μgg -1 to 4.10μgg -1 in CKDu subjects and from 0.042μgg -1 to 2.19μgg -1 in controls. This study implies that substantial proportions of Sri Lankan population are Se deficient irrespective of gender, age and occupational exposure. Although some cutaneous manifestations were observed in patient subjects, chemical analyses of hair and nails indicated that patients were not exposed to toxic levels of arsenic or the other studied toxic elements. Therefore the early suggested causative factors such as exposure to environmental As and Cd, can be ruled out. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, western Labrador: Structural, compositional and thermal controls

    NASA Astrophysics Data System (ADS)

    Yang, Panseok; Rivers, Toby

    2000-04-01

    Coexisting biotite and muscovite in ten metapelitic and quartzofeldspathic rocks from western Labrador have been analyzed by electron microprobe for major and minor elements and by a laser ablation microprobe coupled to ICP-MS (LAM-ICP-MS) for selected trace elements - Li, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf and Ta. The samples have experienced a single prograde Grenvillian metamorphism ranging from 490 to 680°C and from 7 to 12 kbar. The trace element compositions of coexisting micas in the metamorphic rocks are used to assess the effects of crystal structure, major element composition and temperature on the partitioning of each element between biotite and muscovite. Overall, trace element distributions are systematic across the range of metamorphic grade and bulk composition, suggesting that chemical equilibrium was approached. Most distribution coefficients (biotite/muscovite) show good agreement with published data. However, distribution coefficients for Co and Sr are significantly different from previous determinations, probably because of contamination associated with older data obtained by bulk analysis techniques. The sequence of distribution coefficients is governed mainly by the ionic radii and charges of substituting cations compared to the optimum ionic radius of each crystallographic site in the micas. In particular, distribution coefficients exhibit the sequence Cr 3+ (0.615 Å) > V 3+ (0.64 Å) > Sc 3+ (0.745 Å) in VI-sites, and Ba 2+ (1.61 Å) > Sr 2+ (1.44 Å) and Cs + (1.88 Å) > K + (1.64 Å) > Rb + (1.72 Å) > Na + (1.39 Å) in XII-sites. The distributions of Li, Sc, Sr and Ba appear to be thermally sensitive but are also controlled by major element compositions of micas. V and Zr partitioning is dependent on T and may be used to cross-check thermometry calculations where the latter suffer from retrograde re-equilibration and/or high concentrations of Fe 3+. The ranges and dependence of distribution coefficients on major element compositions provide important constraints on the values that can be used in geochemical modeling.

  16. Trace elements in sediments, blue spotted tilapia Oreochromis leucostictus (Trewavas, 1933) and its parasite Contracaecum multipapillatum from Lake Naivasha, Kenya, including a comprehensive health risk analysis.

    PubMed

    Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz

    2014-06-01

    This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.

  17. The occurrence and distribution of selected trace elements in the upper Rio Grande and tributaries in Colorado and Northern New Mexico

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Roth, D.A.; Brinton, T.I.; Peart, D.B.; Healy, D.F.

    2001-01-01

    Two sampling trips were undertaken in 1994 to determine the distribution of trace elements in the Upper Rio Grande and several of its tributaries. Water discharges decreased in the main stem of the Rio Grande from June to September, whereas dissolved concentrations of trace elements generally increased. This is attributed to dilution of base flow from snowmelt runoff in the June samples. Of the three major mining districts (Creede, Summitville, and Red River) in the Upper Rio Grande drainage basin, only the Creede District appears to impact the Rio Grande in a significant manner, with both waters and sediments having elevated concentrations of some trace elements considerably downriver. For example, dissolved zinc concentrations upriver of Willow Creek, which primarily drains the Creede District, were about 2-3 μg/L; immediately downstream of the Willow Creek confluence, concentrations were above 20 μg/L; and elevated concentrations occurred in the Rio Grande for the next 100 km. The Red River District does not significantly impact the Upper Rio Grande for most trace elements. Because of current water management practices, it is difficult to assess the impact of the Summitville District on the Upper Rio Grande. There are, however, large increases in many dissolved trace element concentrations as the Rio Grande passes through the San Luis Valley, coincident with elevated concentrations of those same trace elements in tributaries. Among these elements are As, B, Cr, Li, Mn, Mo, Ni, Sr, U, and V. None of the trace elements exceeded U.S. EPA primary drinking water standards in either survey, with the exception of cadmium in Willow Creek. Secondary drinking water standards were frequently violated, especially in tributaries draining areas where mining has occurred. Dissolved zinc (in Willow Creek in both June and September) was the only element that exceeded the EPA Water Quality Criteria for aquatic life of 120 μg/L.

  18. Trace element hydrochemistry indicating water contamination in and around the Yangbajing geothermal field, Tibet, China.

    PubMed

    Guo, Qinghai; Wang, Yanxin

    2009-10-01

    Thirty-eight water samples were collected at Yangbajing to investigate the water contamination resulting from natural geothermal water discharge and anthropogenic geothermal wastewater drainage. The results indicate that snow or snow melting waters, Yangbajing River waters and cold groundwaters are free from geothermal water-related contamination, whereas Zangbo river waters are contaminated by geothermal wastewaters. Moreover, there may exist geothermal springs under the riverbed of a tributary stream of Zangbo River as shown by its Cd, Li, Mo and Pb concentrations. The efforts made in this study show trace element hydrochemistry can well indicate water quality degradation related to geothermal water exploitation.

  19. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy.

    PubMed

    Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos

    2018-03-01

    Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Using elemental profiles and stable isotopes to trace the origin of green coffee beans on the global market.

    PubMed

    Santato, Alessandro; Bertoldi, Daniela; Perini, Matteo; Camin, Federica; Larcher, Roberto

    2012-09-01

    A broad elemental profile incorporating 54 elements (Li, Be, B, Na, Mg, Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Mo, Pd, Ag, Cd, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Tm, Yb, Re, Ir, Pt, Au, Hg, Tl, Pb, Bi and U) in combination with δ(2) H, δ(13) C, δ(15) N and δ(18) O was used to characterise the composition of 62 green arabica (Coffea arabica) and robusta (Coffea canephora) coffee beans grown in South and Central America, Africa and Asia, the four most internationally renowned areas of production. The δ(2) H, Mg, Fe, Co and Ni content made it possible to correctly assign 95% of green coffee beans to the appropriate variety. Canonical discriminant analysis, performed using δ(13) C, δ(15) N, δ(18) O, Li, Mg, P, K, Mn, Co, Cu, Se, Y, Mo, Cd, La and Ce correctly traced the origin of 98% of coffee beans. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.

    PubMed

    Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos

    2018-04-01

    Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Assessment of 28 trace elements and 17 amino acid levels in muscular tissues of broiler chicken (Gallus gallus) suffering from arsenic trioxide.

    PubMed

    Li, Si-Wen; He, Ying; Zhao, Hong-Jing; Wang, Yu; Liu, Juan-Juan; Shao, Yi-Zhi; Li, Jing-Lun; Sun, Xiao; Zhang, Li-Na; Xing, Ming-Wei

    2017-10-01

    The contents of 28 trace elements, 17 amino acid were evaluated in muscular tissues (wings, crureus and pectoralis) of chickens in response to arsenic trioxide (As 2 O 3 ). A total of 200 one-day-old male Hy-line chickens were fed either a commercial diet (C-group) or an As 2 O 3 supplement diet containing 7.5mg/kg (L-group), 15mg/kg (M-group) or 30mg/kg (H-group) As 2 O 3 for 90 days. The elements content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Under As 2 O 3 exposure, the concentration of As were elevated 8.87-15.76 fold, 7.93-15.63 fold and 5.94-12.45 fold in wings, crureus and pectoralis compared to the corresponding C-group, respectively. 19 element levels (lithium (Li), magnesium (Mg), aluminum (Al), silicon (Si), kalium (K), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), selenium (Se), strontium (Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), mercury (Hg) and lead (Pb), 9 element levels (K, Co, Ni, Cu, As, Se, Sr, Sn, Ba and Hg) and 4 element levels (Mn, cobalt (Co), As, Sr and Ba) were significantly increased (P < 0.05) in wing, crureus and pectoralis, respectively. 2 element levels (sodium (Na) and zinc (Zn)), 5 element levels (Li, Na, Si, titanium (Ti and Cr), 13 element levels (Li, Na, Mg, K, V, Cr, iron (Fe), Cu, Zn, Mo, Sn, Hg and Pb) were significantly decreased (P < 0.05) in wing muscle, crureus and pectoralis, respectively. Additionally, in crureus and pectoralis, the content of total amino acids (TAA) was no significant alterations in L and M-group and then increased approximately 10.2% and 7.6% in H-group, respectively (P < 0.05). In wings, the level of total amino acids increased approximately 10% in L-group, whereas it showed unchanged in M and H-group compared to the corresponding C-group. We also observed that significantly increased levels of proline, cysteine, aspartic acid, methionine along with decrease in the tyrosine levels in muscular tissues compared to the corresponding C-group. In conclusion, the residual of As in the muscular tissues of chickens were dose-dependent and disrupts trace element homeostasis, amino acids level in muscular tissues of chickens under As 2 O 3 exposure. Additionally, the response (trace elements and amino acids) were different in wing, thigh and pectoral of chick under As 2 O 3 exposure. This study provided references for further study of heavy metal poisoning and may be helpful to understanding the toxicological mechanism of As 2 O 3 exposure in muscular tissues of chickens. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2015-02-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy), about 30 km away from the study area along the north direction. The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12-month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6-month and 12-month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  4. Assessment of atmospheric trace element concentrations by lichen-bag near an oil/gas pre-treatment plant in the Agri Valley (southern Italy)

    NASA Astrophysics Data System (ADS)

    Caggiano, R.; Trippetta, S.; Sabia, S.

    2014-10-01

    The atmospheric concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti and Zn) were measured by means of the "lichen-bag" technique in the Agri Valley (southern Italy). The lichen samples were collected from an unpolluted site located in Rifreddo forest (southern Italy). The bags were exposed to ambient air for 6 and 12 months. The exposed-to-control (EC) ratio values highlighted that the used lichen species were suitable for biomonitoring investigations. The results showed that the concentrations of almost all the examined trace elements increased with respect to the control after 6-12 month exposures. Furthermore, Ca, Al, Fe, K, Mg and S were the most abundant trace elements both in the 6 and 12 month-exposed samples. Moreover, principal component analysis (PCA) results highlighted that the major sources of the measured atmospheric trace elements were related both to anthropogenic contributions due to traffic, combustion processes, agricultural practices, construction and quarrying activities, and to natural contributions mainly represented by the re-suspension of local soil and road dusts. In addition, the contribution both of secondary atmospheric reactions involving Centro Olio Val d'Agri (COVA) plant emissions and the African dust long-range transport were also identified.

  5. Trace element mobility at the slab-mantle interface: constraints from "hybrid

    NASA Astrophysics Data System (ADS)

    Marocchi, M.; Tropper, P.; Mair, V.; Bargossi, G. M.; Hermann, J.

    2009-04-01

    Subduction mélanges and hybrid rocks are considered, together with mafic rocks, metasediments and serpentinite as an important volatile-bearing portion of subducting slabs (cf. Spandler et al., 2008 and references therein; Miller et al., 2009). In particular, metasomatic rocks occurring in exhumed HP mélanges have recently attracted growing interest for two main reasons: i) metasomatic rocks forming at the interface between ultramafic and crustal rocks of subducting slabs constitute new bulk compositions which can affect the redistribution of major and trace elements and modify the composition of slab fluids moving to the mantle wedge and ii) these mineral assemblages, consisting mainly of hydrous phases can potentially store and transport water at great depth in subduction zones. Ultramafic rocks belonging to the Hochwart peridotite (Ulten Zone, central-eastern Italian Alps) preserve a series of metasomatic mineral zones generated by infiltration of hydrous fluids/melts, which occurred at the gneiss-peridotite interface (Tumiati et al., 2007; Marocchi et al., 2009). The peridotite body of Mt. Hochwart represents an almost unique occurrence where subduction-related mantle metasomatism can be studied on an outcrop scale. The ultramafic body consists of metaperidotites exposed as a hectometre-size lens along a steep gully, associated to monomineralic zones that developed at the contact between the peridotite body and the garnet-bearing gneiss country rocks. The formation of the metasomatic zones composed exclusively of hydrous phases involved extensive H2O-metasomatism as already documented for the Ulten peridotites (Scambelluri et al., 2006; Marocchi et al., 2007). Whole-rock geochemistry and trace element composition of hydrous phases (phlogopite and amphibole) in different metasomatic zones indicate mobility of many elements, including elements such as Ta, which are considered to have scarce mobility in fluids. Trace element composition of accessory minerals in the phlogopite-rich zone suggests that the trace element signature of subduction zone fluids may be fractionated in this zone. The progressive depletion in some trace elements (LREE and LILE) and enrichment in Li from the gneiss towards the peridotite suggests a strong influence of bulk composition on the trace element budget of hydrous minerals. Since these metasomatic zones can be representative of the processes occurring at the slab-mantle interface, we can infer that metasomatic reactions between slab-derived fluids and ultramafic mantle wedge will follow a specific series of reactions and create mineral zones similar to those observed in this study. Despite the mobility of many elements, in the trace element profiles for amphibole and phlogopite across the different zones, we observe a rapid decrease even of the "fluid mobile" element contents within the reaction zone. With the exception of Li, we assist to an abrupt decrease of most of trace element concentrations going towards the peridotite side contact. Thus, according to the present study, it is not likely that the "crustal trace element signature" (i.e. LILE and LREE-enriched) could be able to travel far into the mantle. Our results further favour the evidence that the primary composition of subduction zone fluids reaching the source region of arc magmas is substantially modified by metasomatic reactions occurring in the mantle wedge. Furthermore, we underline that metasomatic rocks such as those observed at Mt. Hochwart are potentially able to transport H2O and other trace elements to greater depths in subduction zones. References: Marocchi M, Hermann J, Morten L (2007)-Lithos 99: 85-104. Marocchi M, Mair V, Tropper P, Bargossi GM (2009)-Mineral Petrol, in press Miller DP, Marschall RH, Schumacher JC (2009)- Lithos 107: 53-67. Scambelluri M, Hermann J, Morten L, Rampone E (2006)- Contrib Mineral Petrol 151:372-394. Spandler CJ, Hermann J, Faure K, Mavrogenes JA, Arculus RJ (2008)- Contrib Mineral Petrol 155: 181-198. Tumiati S, Godard G, Martin S, Klőtzli U, Monticelli D (2007)- Lithos 94: 148-167.

  6. Petrology and chemistry of Permian coals from the Paraná Basin: 1. Santa Terezinha, Leão-Butiá and Candiota Coalfields, Rio Grande do Sul, Brazil

    USGS Publications Warehouse

    Kalkreuth, W.; Holz, M.; Kern, M.; Machado, G.; Mexias, A.; Silva, M.B.; Willett, J.; Finkelman, R.; Burger, H.

    2006-01-01

    Hierarchical cluster analysis identified three groups of major minerals and seven groups of trace elements based on similarity levels. On a regional scale, the coalfields can be separated by the differences in rank (Candiota and Leão-Butiá versus Santa Terezinha) and by applying discriminant analysis based on 4 trace elements (Li, As, Sr, Sb). Highest Rb and Sr values occur at Candiota and are linked to syngenetic volcanism of the area, whereas high Y and Sr values at Santa Terezinha can be related to the frequent diabase intrusions in that area.

  7. Cryptic trace-element alteration of Anorthosite, Stillwater complex, Montana

    USGS Publications Warehouse

    Czamanske, G.K.; Loferski, P.J.

    1996-01-01

    Evidence of cryptic alteration and correlations among K, Ba, and LREE concentrations indicate that a post-cumulus, low-density aqueous fluid phase significantly modified the trace-element contents of samples from Anorthosite zones I and II of the Stillwater Complex, Montana. Concentrations of Ba, Ca, Co, Cr, Cu, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Sr, Th, Zn, and the rare-earth elements (REE) were measured in whole rocks and plagioclase separates from five traverses across the two main plagioclase cumulate (anorthosite) zones and the contiguous cumulates of the Stillwater Complex in an attempt to better understand the origin and solidification of the anorthosites. However, nearly the entire observed compositional range for many trace elements can be duplicated at a single locality by discriminating between samples rich in oikocrystic pyroxene and those which are composed almost entirely of plagioclase and show anhedral-granular texture. Plagioclase separates with high trace-element contents were obtained from the pyroxene-poor samples, for which maps of K concentration show plagioclase grains to contain numerous fractures hosting a fine-grained, K-rich phase, presumed to be sericite. Secondary processes in layered intrusions have the potential to cause cryptic disturbance, and the utmost care must be taken to ensure that samples provide information about primary processes. Although plagioclase from Anorthosite zones I and II shows significant compositional variation, there are no systematic changes in the major- or trace-element compositions of plagioclase over as much as 630 m of anorthosite thickness or 18 km of strike length. Plagioclase in the two major anorthosite zones shows little distinction in trace-element concentrations from plagioclase in the cumulates immediately below, between, and above these zones.

  8. Lithium doped calcium phosphate cement maintains physical mechanical properties and promotes osteoblast proliferation and differentiation.

    PubMed

    Li, Li; Wang, Renchong; Li, Baichuan; Liang, Wei; Pan, Haobo; Cui, Xu; Tang, Jingli; Li, Bing

    2017-07-01

    Calcium phosphate cement (CPC) has been widely used in bone tissue repairing due to its physical mechanical properties and biocompatibility. Addition of trace element to CPC has shown promising evidence to improve the physical properties and biological activities of CPC. Lithium (Li) has effect on osteoblast proliferation and differentiation. In this study, we incorporated Li to CPC and examined the physical properties of Li/CPC and its effect on osteoblast proliferation and differentiation. We found that Li doped CPC maintained similar setting time, pore size distribution, compressive strength, composition, and morphology as CPC without Li. Additionally, Li doped CPC improved osteoblast proliferation and differentiation significantly compared to CPC without Li. To our knowledge, our results, for the first time, show that Li doped CPC has beneficial effect on osteoblast in cell culture while keeps the excellent physical-mechanical properties of CPC. This study will lead to potential application of Li doped CPC in bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 944-952, 2017. © 2016 Wiley Periodicals, Inc.

  9. Comparative trace elemental analysis of cancerous and non-cancerous tissues of rectal cancer patients using PIXE

    NASA Astrophysics Data System (ADS)

    Naga Raju, G. J.; Sarita, P.; Murthy, K. S. R.

    2017-08-01

    Particle Induced X-ray Emission (PIXE), an accelerator based analytical technique has been employed in this work for the analysis of trace elements in the cancerous and non-cancerous tissues of rectal cancer patients. A beam of 3 MeV protons generated from 3 MV Pelletron accelerator at the Ion Beam Laboratory of Institute of Physics, Bhubaneswar, India was used as projectile to excite the atoms present in the tissues samples. PIXE technique, with its capability to detect simultaneously several elements present at very low concentrations, offers an excellent tool for trace element analysis. The characteristic X-rays emitted by the samples were recorded by a high resolution Si (Li) detector. On the basis of the PIXE spectrum obtained for each sample, the elements Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, and Br were identified and their relative concentrations were estimated in the cancerous and non-cancerous tissues of rectum. The levels of Mn, Fe, Co, Cu, Zn, and As were higher (p < 0.005) while the levels of Ca, Cr and Ni were lower (p < 0.005) in the cancer tissues relative to the normal tissues. The alterations in the levels of the trace elements observed in the present work are discussed in this paper with respect to their potential role in the initiation, promotion and inhibition of cancer of the rectum.

  10. Trace metal concentrations of surface snow from Ingrid Christensen Coast, East Antarctica--spatial variability and possible anthropogenic contributions.

    PubMed

    Thamban, Meloth; Thakur, Roseline C

    2013-04-01

    To investigate the distribution and source pathways of environmentally critical trace metals in coastal Antarctica, trace elemental concentrations were analyzed in 36 surface snow samples along a coast to inland transect in the Ingrid Christensen Coast of East Antarctica. The samples were collected and analyzed using the clean protocols and an inductively coupled plasma mass spectrometer. Within the coastal ice-free and ice-covered region, marine elements (Na, Ca, Mg, K, Li, and Sr) revealed enhanced concentrations as compared with inland sites. Along with the sea-salt elements, the coastal ice-free sites were also characterized by enhanced concentrations of Al, Fe, Mn, V, Cr, and Zn. The crustal enrichment factors (Efc) confirm a dominant crustal source for Fe and Al and a significant source for Cr, V, Co, and Ba, which clearly reflects the influence of petrological characteristics of the Larsemann Hills on the trace elemental composition of surface snow. The Efc of elements revealed that Zn, Cu, Mo, Cd, As, Se, Sb, and Pb are highly enriched compared with the known natural sources, suggesting an anthropogenic origin for these elements. Evaluation of the contributions to surface snow from the different sources suggests that while contribution from natural sources is relatively significant, local contamination from the increasing research station and logistic activities within the proximity of study area cannot be ignored.

  11. Correlations of trace elements in breast human tissues: Evaluation of spatial distribution using μ-XRF

    NASA Astrophysics Data System (ADS)

    Silva, Marina Piacenti da; Silva, Deisy Mara da; Ribeiro-Silva, Alfredo; Poletti, Martin Eduardo

    2012-05-01

    The aim of this work is to investigate microscopic correlations between trace elements in breast human tissues. A synchrotron X-ray fluorescence microprobe system (μ-XRF) was used to obtain two-dimensional distribution of trace element Ca, Fe, Cu and Zn in normal (6 samples) and malignant (14 samples) breast tissues. The experiment was performed in X-ray Fluorescence beam line at Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, Brazil. The white microbeam was generated with a fine conical capillary with a 20 μm output diameter. The samples were supported on a XYZ table. An optical microscope with motorized zoom was used for sample positioning and choice the area to be scanned. Automatic two-dimensional scans were programmed and performed with steps of 30 μm in each direction (x, y) on the selected area. The fluorescence signals were recorded using a Si(Li) detector, positioned at 90 degrees with respect to the incident beam, with a collection time of 10 s per point. The elemental maps obtained from each sample were overlap to observe correlation between trace elements. Qualitative results showed that the pairs of elements Ca-Zn and Fe-Cu could to be correlated in malignant breast tissues. Quantitative results, achieved by Spearman correlation tests, indicate that there is a spatial correlation between these pairs of elements (p < 0.001) suggesting the importance of these elements in metabolic processes associated with the development of the tumor.

  12. Marine chemistry of the permian phosphoria formation and basin, Southeast Idaho

    USGS Publications Warehouse

    Piper, D.Z.

    2001-01-01

    Major components in the Meade Peak Member of the Phosphoria Formation are apatite, dolomite, calcite, organic matter, and biogenic silica-a marine fraction; and aluminosilicate quartz debris-a terrigenous fraction. Samples from Enoch Valley, in southeast Idaho, have major element oxide abundances of Al2O3, Fe2O3, K2O, and TiO2 that closely approach the composition of the world shale average. Factor analysis further identifies the partitioning of several trace elements-Ba, Ga, Li, Sc, and Th and, at other sites in southeast Idaho and western Wyoming, B, Co, Cs, Hf, Rb, and Ta-totally into this fraction. Trace elements that fail to show such correlations or factor loadings include Ag, As, Cd, Cr, Cu, Mo, Ni, Se, the rare earth elements (REE), U, V, and Zn. Their terrigenous contribution is determined from minimum values of trace elements versus the terrigenous fraction. These minima too define trace element concentrations in the terrigenous fraction that approximately equal their concentrations in the world shale average. The marine fraction of trace elements represents the difference between the bulk trace element content of a sample and the terrigenous contribution. Of the trace elements enriched above a terrigenous contribution, Ag, Cr, Cu, Mo, and Se show strong loadings on the factor with an organic matter loading and U and the REE on the factor with a strong apatite loading. Cd, Ni, V, and Zn do not show a strong correlation with any of the marine components but are, nonetheless, strongly enriched above a terrigenous contribution. Interelement relationships between the trace elements identify two seawater sources-planktonic debris and basinal bottom water. Relationships between Cd, Cu, Mo, Zn, and possibly Ni and Se suggest a solely biogenic source. Their accumulation rates, and that of PO3-4, further identify the level of primary productivity as having been moderate and the residence time of water in the basin at 4.5 yr. Enrichments of Cr, U, V, and the REE, above both terrigenous and biogenic contributions, define bottom-water redox conditions as having been oxygen depleted, that is, denitrifying but not sulfate reducing.

  13. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  14. Trace Elements in Manganese Minerals as Potential Biosignatures on Mars

    NASA Astrophysics Data System (ADS)

    Lanza, N.; Clegg, S. M.; Cousin, A.; Forni, O.; Kirk, M. F.; Lamm, S. N.; Ollila, A.; Wiens, R. C.

    2017-12-01

    Observations from the Curiosity rover in Gale crater, Mars have shown the presence of high abundances of manganese (>3 wt% MnO) within sedimentary rocks throughout the traverse. Such high Mn abundances point to the past presence of abundant liquid water and strongly oxidizing conditions. On Earth, these types of environments are almost always habitable and are frequently inhabited by microbes. Given its close association with life and habitable environments on Earth, manganese has long been considered a potential biosignature for Mars. However, high concentrations of martian Mn have only recently been observed. In addition to the observations in Gale crater, high abundances of Mn have also been observed in Endeavor crater by the Opportunity rover and in the paired martian meteorites NWA 7034 and 7533 (`Black Beauty'), suggesting that Mn deposits may be more widespread on Mars than previously thought. The goal of this work is to determine whether there are unique signatures from rover payload instruments that can distinguish Mn-rich deposits as biogenic in origin (i.e., produced by life) from abiogenic Mn deposits. Importantly, Mn-oxides are known to scavenge trace metals from water because of their surface charge properties. We hypothesize that the presence and abundance of specific trace elements are the critical, distinguishing evidence for identifying the biogenic origin of Mn-bearing materials. A suite of natural rocks containing Mn-rich minerals with a range of Mn redox states was selected for analysis with laser-induced breakdown spectroscopy (LIBS). Samples with a biogenic origin had mixed valence redox states between Mn3+ and Mn4+ as inferred by mineralogy. Trace elements Ba, Li, Sr, and Rb were quantified and the presence or absence of Zn and Cu was ascertained by examining key LIBS peaks. Results show that samples with a known microbial origin had moderate Mn abundances >30 wt% MnO and higher Li and Ba. These results suggest that high Mn abundance alone is not sufficient evidence of a biosignatures. However, the presence of trace elements may help to infer the redox state of Mn, which may in turn point to samples that are more likely to have a biogenic origin.

  15. Regional differences in plant levels and investigations on the phytotoxicity of lithium.

    PubMed

    Franzaring, Jürgen; Schlosser, Sonja; Damsohn, Walter; Fangmeier, Andreas

    2016-09-01

    The growing use of lithium (Li) in industrial and energetic applications and the inability to completely recycle the alkali metal will most likely increase anthropogenic emissions and environmental concentrations in the future. Although non-essential to plants, Li(+) is an important ultra-trace element in the animal and human diet and is also used in the treatment of e.g. mental disorders. Most of the lithium is consumed with the drinking water and vegetables, but concentrations in foodstuffs vary with the geochemistry of the element. In order to identify potential risks and to avoid an overmedication due to consumption of Li rich or Li contaminated foods it is advisable to identify background levels and to derive recommended Daily Allowances (RDAs) for the element. Although Germany does not possess large amounts of primary or secondary resources of lithium, geochemical investigations (mineral and ground waters and soils) in this country confirm a wide variation of environmental concentrations with generally higher levels in the southwest. Despite the large number of soil and water data, only very few data exist on lithium concentrations in plants and its phytotoxicity. Within the scope of present study common grassland plant species were sampled in regions of SW-Germany with reportedly high geogenic levels of Li. The data are discussed with regard to literature surveys and existing reference values. Since lithium has phytotoxic effects a greenhouse experiment was performed with different Li salts (LiCl and Li2CO3) and plant species (maize, bean and buckwheat) to derive dose-response relationships for the endpoint shoot growth. While corn growth was not reduced significantly by soil concentrations of 118 ppm, EC50 values in buckwheat were 47 and 16 ppm for lithium derived from LiCl and Li2CO3, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The potential leaching and mobilization of trace elements from FGD-gypsum of a coal-fired power plant under water re-circulation conditions.

    PubMed

    Córdoba, Patricia; Castro, Iria; Maroto-Valer, Mercedes; Querol, Xavier

    2015-06-01

    Experimental and geochemical modelling studies were carried out to identify mineral and solid phases containing major, minor, and trace elements and the mechanism of the retention of these elements in Flue Gas Desulphurisation (FGD)-gypsum samples from a coal-fired power plant under filtered water recirculation to the scrubber and forced oxidation conditions. The role of the pH and related environmental factors on the mobility of Li, Ni, Zn, As, Se, Mo, and U from FGD-gypsums for a comprehensive assessment of element leaching behaviour were also carried out. Results show that the extraction rate of the studied elements generally increases with decreasing the pH value of the FGD-gypsum leachates. The increase of the mobility of elements such as U, Se, and As in the FGD-gypsum entails the modification of their aqueous speciation in the leachates; UO2SO4, H2Se, and HAsO2 are the aqueous complexes with the highest activities under acidic conditions. The speciation of Zn, Li, and Ni is not affected in spite of pH changes; these elements occur as free cations and associated to SO4(2) in the FGD-gypsum leachates. The mobility of Cu and Mo decreases by decreasing the pH of the FGD-gypsum leachates, which might be associated to the precipitation of CuSe2 and MoSe2, respectively. Time-of-Flight mass spectrometry of the solid phase combined with geochemical modelling of the aqueous phase has proved useful in understanding the mobility and geochemical behaviour of elements and their partitioning into FGD-gypsum samples. Copyright © 2015. Published by Elsevier B.V.

  17. Natural and anthropic effects on hydrochemistry and major and trace elements in the water mass of a Spanish Pyrenean glacial lake set.

    PubMed

    Santolaria, Zoe; Arruebo, Tomás; Pardo, Alfonso; Rodríguez-Casals, Carlos; Matesanz, José María; Lanaja, Francisco Javier; Urieta, José Santiago

    2017-07-01

    This study presents the key hydrochemical characteristics and concentration levels of major (Ca, Mg, Na, Si, K, Sr, Fe) and trace (Ba, Sc, Cr, Mn, Al, As, Li, Co, Cu, U, Pb, Hg, Au, Sn, Zn, Cd, Ag, Ni) elements in the water mass of four selected Pyrenean cirque glacial lakes (Sabocos, Baños, Truchas and Escalar tarns) with different catchment features, between 2010 and 2013. Resulting data set is statistically analyzed to discriminate between the natural or anthropic origin of the elements. Analyses indicate that in all cases, the main source of most major and trace elements is geological weathering, being thus individual bedrock composition the main driver of differences between lakes. Several anthropogenic sources of airborne Cu, Sc, Co, and Cr must be also considered. The shallowness of the lake is also a factor that may influence element cycling and concentration levels in its water mass. Concentrations of anthropogenic elements were low, comparable to those reported in other glacial lakes, way below the WHO, US EPA, EC, and Spanish legal limits for drinking water quality, indicating the absence of serious pollution. Toxic heavy metals Cd, Pb, Hg, and Zn were not detected in any of the tarns.

  18. Volatile behavior and trace metal transport in the magmatic-geothermal system at Pūtauaki (Mt. Edgecumbe), New Zealand

    NASA Astrophysics Data System (ADS)

    Norling, B.; Rowe, M. C.; Chambefort, I.; Tepley, F. J.; Morrow, S.

    2016-05-01

    The present-day hydrothermal system beneath the Kawerau Geothermal Field, in the Taupo Volcanic Zone, New Zealand, is likely heated from the Pūtauaki (Mt. Edgecumbe) magma system. The aim of this work, as an analog for present day processes, is to identify whether or not earlier erupted Pūtauaki magmas show evidence for volatile exsolution. This may have led to the transfer of volatile components from the magmatic to hydrothermal systems. To accomplish this, minerals and melt inclusions from volcanic products were analyzed for abundances of volatile and ore-forming elements (S, Cl, Li, Cu, Sn, Mo, W, Sb, As, and Tl). The variations in abundance of these elements were used to assess magma evolution and volatile exsolution or fluxing in the magma system. Melt inclusions suggest the evolution of Pūtauaki andesite-dacite magmas is predominantly driven by crystallization processes resulting in rhyodacite-rhyolite glass compositions (although textural and geochemical evidence still indicate a role for magma mixing). Measured mineral-melt partition coefficients for trace metals of interest indicates that, with the exception of Tl in biotite, analyzed metals are all incompatible in Pūtauaki crystallization products. Excluding Li and Cu, other volatile and ore metals recorded in melt inclusions behave incompatibly, with concentrations increasing during evolution from rhyodacitic to rhyolitic melt compositions. Li and Cu appear to have increased mobility likely resulting from diffusive exchange post-crystallization, and may be related to late volatile fluxing. Although S and Cl concentrations decrease with melt evolution, no mineralogical evidence exists to indicate the exsolution and mobility of ore-forming metals from the magma at the time of crystallization. This observation cannot rule out the potential for post-crystallization volatile exsolution and ore-forming metal mobilization, which may only be recorded as diffusive re-equilibration of more rapidly diffusing elements (e.g., Li and Cu).

  19. SIMS Investigations on Growth and Sector Zoning in Natural Hydrothermal Quartz: Isotopic and Trace Element Analyses

    NASA Astrophysics Data System (ADS)

    May, E.; Vennemann, T. W.; Baumgartner, L. P.; Meisser, N.

    2014-12-01

    Quartz is the most abundant mineral in the Earth's crust and is found in virtually every geological context. Despite its ubiquity and the detailed studies on the conditions of quartz crystallization, some questions concerning its growth and sector zoning with regard to trace element incorporation and oxygen isotope fractionations and the implications thereof for interpretations on the conditions of formation remain (e.g., Jourdan et al., 2009). This study presents new in-situ measurements of trace element and oxygen isotope ratios on natural hydrothermal quartz from an extensional gold-bearing quartz vein in the western Swiss Alps. The temperature of formation of the veins is estimated by quartz-hematite oxygen isotope thermometry to be about 360°C. A detailed SEM-CL study of this sample shows cyclic lamellar growth, alternating with phases of dissolution that are directly followed by macro-mosaic growth of the quartz, before returning to a cyclic lamellar growth again. Trace element concentrations (measured for Na, K, Li, Al, and Ti) notably showed Al/Si variations of three orders of magnitude and coupled Al and Li variations, likely substituting for Si in different growth zones with lower values in macro-mosaic zones precipitating after the period of dissolution. The oxygen isotope composition of the crystal, in contrast, is homogeneous through all growth zones (δ18O values between 15.6‰ and 16.2‰) indicating that the fluid must have been buffered by the host-rock and/or the source of the fluid remained the same despite the period of quartz dissolution. Furthermore, the temperature during crystallization of the quartz crystal has likely also remained similar. The fact that no variations are measured in oxygen isotope compositions but some variations in trace element contents may suggest that changes in pressure were important during the formation of this quartz crystal. Give the pressure effects on the solubility of quartz (Fournier and Potter, 1982), both the cyclic character of quartz growth and perhaps also the changes in Al/Si may be related to pressure variations caused by seismic activity during retrograde Alpine metamorphism. A-L. Jourdan et al. (2009) Mineralogical Magazine, 73, 615-632. R.O. Fournier and R.W. Potter (1982) Geochimica et Cosmochimica Acta, 46, 1969-1973.

  20. A multidisciplinary investigation of groundwater fluctuations and their control on river chemistry - Insights from river dissolved concentrations and Li isotopes during flood events

    NASA Astrophysics Data System (ADS)

    Kuessner, M.; Bouchez, J.; Dangeard, M.; Bodet, L.; Thiesson, J.; Didon-Lescot, J. F.; Frick, D. A.; Grard, N.; Guérin, R.; Domergue, J. M.; Gaillardet, J.

    2017-12-01

    Water flow exerts a strong control on weathering reactions in the Critical Zone (CZ). The relationships between hydrology and river chemistry have been widely studied for the past decades [1]. Solute export responds strongly to storm events [2] and investigating the concentration and isotope composition of trace elements in river catchments can advance our understanding of the processes governing water-rock interactions and provide information on the water flow paths during these "hot moments". Especially, lithium (Li) and its isotopes are sensitive to the balance between mineral dissolution and precipitation in the subsurface and therefore, a powerful tool to characterize the response of chemical weathering to hydrology [3]. Hence, high-frequency stream chemistry yields valuable insight into the hydrological processes within the catchment during "hot moments". This study focuses on a CZ Observatory (OHMCV, part of French Research Infrastructure OZCAR). The granitic catchment Sapine (0.54 km2, southern France) is afflicted by big rain events and therefore, it is an appropriate location to study stormflows. Here we combine results from high-frequency stream water sampling during rain events with time-lapse seismic imaging to monitor the changes in aquifer properties [4]. The relationships between concentrations and discharge indicate differential responses of dissolved elements to the hydrological forcing. Especially, systematic changes are observed for Li and its isotopes as a function of water discharge, suggesting maximum secondary mineral formation at intermediate discharge. We suggest that Li dynamics are chiefly influenced by the depth at which water is flowing with, e.g. dissolution of primary minerals in deeper groundwater flows, and water-secondary mineral interaction at shallower depths. The combination of elemental concentrations and Li isotopes in river dissolved load tracing chemical weathering, with hydrogeophysical methods mapping water flows and pools, provides us with a time-resolved image of the CZ, improving our knowledge of the impact of hydrological changes on the chemical mass budgets in catchments. [1] Maher et al. (2011), Earth Planet. Sci. Lett. [2] Kirchner et al. (2010), Hydrol. Processes. [3] Liu et al. (2015), Earth Planet. Sci. Lett. [4] see poster by M. Dangeard et al.

  1. Constraining late stage melt-peridotite interaction in the lithospheric mantle of southern Ethiopia: evidence from lithium elemental and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Seitz, Hans-Michael

    2017-10-01

    Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11-0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88-15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1-5.4 ppm; opx: 1.1-2.3 ppm; cpx: 1.0-1.8 ppm) and in Li isotopic composition (δ7Li in olivine: -9.4 to 1.5‰; in opx: -4.5 to 3.6‰; in cpx: -17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7-3.0 ppm; opx: 1.1-3.1 ppm; cpx: 1.1-2.3 ppm) and Li isotopic compositions (δ7Li in olivine: -1.3 to +1.3‰; in opx: -2.0 to +5.0‰; in cpx: -7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new additional evidence for the existence of late stage metasomatism, which probably occurred at shallow depth briefly before and/or during entrainment and ascent of mantle xenoliths to the surface.

  2. Gamma-rays and heat-treatment conversions of point defects in massive rose quartz from the Borborema Pegmatite Province, Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Guzzo, Pedro L.; Barreto, Sandra B.; Miranda, Milena R.; Gonzaga, Raysa S. G.; Casals, Sandra A.

    2017-11-01

    An extensive characterization of trace elements and point defects in rose quartz from the Borborema Pegmatite Province (BPP) in the northeast of Brazil was carried out by complementary spectroscopic methods. The aim here was to document the change in the configuration of point defects into the quartz lattice induced by heat-treatment and ionizing radiation. The samples were extracted from the core of two granitic rare element (REL) pegmatites, Taboa (Carnaúba dos Dantas, RN) and Alto do Feio (Pedra Lavrada, PB). The contents of Al, P, Ti, Ni, Fe, Ge, Li, Be, B and K were measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Polished plates were heat-treated at 500 and 1000 °C and then irradiated with 50 kGy of γ rays. Point defects were characterized by optical (UV-Vis), infrared (IR), and electron paramagnetic resonance (EPR) spectroscopies. In the as-received condition, [AlO4/H]0 centers, Li- and B-dependent OH defects were observed. Point defects related to Al and Li species were significantly affected by heat-treatment at 1000 °C and/or γ radiation. Paramagnetic centers such as [AlO4]0, [GeO4/Li]0, [TiO4/Li]0 and [O2 3-/Li]0 were created by the diffusion of Li+ ions from their original diamagnetic centers related to substitutional Al3+ and OH-species. The smoky color developed after irradiation and the signal intensities of the paramagnetic centers were independent from the original rose color grade. The samples from the Taboa (TB) pegmatite showed the highest concentration of Al, Ti, Fe and Li elements as well as the highest signal intensities for [AlO4]0, [AlO4/H]0, [GeO4/Li]0 and [TiO4/Li]0 centers. Although TB also showed the higher concentration of B element, the intensity of the 3597 cm-1 IR band related to [BO4/H]0 centers was higher for Alto do Feio (AF) samples. This result suggests that the uptake of B into the quartz core of each pegmatite took place through different mechanisms. It was concluded that the change in the point defect configuration was essentially governed by the motion of Li species whose incorporation into the quartz lattice is closely related to Al concentration.

  3. Elemental analysis with external-beam PIXE

    NASA Astrophysics Data System (ADS)

    Lin, E. K.; Wang, C. W.; Teng, P. K.; Huang, Y. M.; Chen, C. Y.

    1992-05-01

    A beamline system and experimental setup has been established for elemental analysis using PIXE with an external beam. Experiments for the study of the elemental composition of ancient Chinese potsherds (the Min and Ching ages) were performed. Continuum X-ray spectra from the samples bombarded by 3 MeV protons have been measured with a Si(Li) detector. From the analysis of PIXE data, the concentration of the main elements (Al, Si, K, and Ca) and of more than ten trace elements in the matrices and glazed surfaces were determined. Results for two different potsherds are presented, and those obtained from the glaze colorants are compared with the results of measurements on a Ching blue-and-white porcelain vase.

  4. Lithium and boron in late-orogenic granites - Isotopic fingerprints for the source of crustal melts?

    NASA Astrophysics Data System (ADS)

    Romer, Rolf L.; Meixner, Anette; Förster, Hans-Jürgen

    2014-04-01

    Geochemically diverse late- and post-Variscan granites of the Erzgebirge-Vogtland, the Saxon Granulite Massif, and Thuringia (Germany) formed by anatectic melting of Palaeozoic sedimentary successions and associated mafic to felsic volcanic rocks. The compositional diversity of the least evolved of these granites is largely inherited from the protoliths. We present Li and B-isotopic data of these granites and compare them with the isotopic composition of their protoliths, to investigate whether (i) there exist systematic differences in the Li and B-isotopic composition among different granite types and (ii) Li and B-isotopic compositions provide information on the granite sources complementary to information from the isotopic composition of Sr, Nd, and Pb and the trace-element signatures. Low-F biotite and two-mica granite types have flat upper continental crust (UCC)-normalized trace-element pattern with variable enrichments in Li, Rb, Cs, Sn, and W and depletions in Sr, Ba, and Eu. These signatures are least pronounced for the Niederbobritzsch biotite granite, which has the largest contribution of mafic material, and most pronounced for the two-mica granites. The granites show a relatively narrow range of δ7Li values (-3.0 to -0.5) and a broad range of δ11B values (-13.4 to +20.1). The δ11B values are lower in rocks with distinctly higher contents of Li, Rb, Cs, and Sn. The high δ11B of the Niederbobritzsch granite may be explained by the melting of former altered oceanic crust in its source. Relative to UCC, intermediate-F to high-F low-P granites show strong depletions in Sr, Ba, Eu as well as Zr and Hf, strong enrichments in Li, Rb, and Cs as well as Nb, Sn, Ta, and W, and REE pattern with stronger enrichments for HREE than for LREE. These granites show narrow ranges of δ7Li (-2.0 to +1.6) and δ11B values (-14.7 to -9.1), reflecting the smaller variability of the Li and B-isotopic composition in their source lithologies. The anomalously high δ7Li value (14.7) of one granite sample (Burgberg), which is similar to δ7Li values of its wall rocks (up to 14.5), may indicate late-magmatic fluid-rock interaction with external, wall rock-derived fluids. Because of the small compositional range of most source lithologies, the Li and B-isotopic variation in the granites is also small indicating that the isotopic composition of Li and B does not represent a particularly sensitive source tracer, with the exception of source lithologies characterized by extreme δ7Li or δ11B values.

  5. Quality and Trace Element Profile of Tunisian Olive Oils Obtained from Plants Irrigated with Treated Wastewater

    PubMed Central

    Benincasa, Cinzia; Gharsallaoui, Mariem; Perri, Enzo; Briccoli Bati, Caterina; Ayadi, Mohamed; Khlif, Moncen; Gabsi, Slimane

    2012-01-01

    In the present work the use of treated wastewater (TWW) to irrigate olive plants was monitored. This type of water is characterized by high salinity and retains a substantial amount of trace elements, organic and metallic compounds that can be transferred into the soil and into the plants and fruits. In order to evaluate the impact of TWW on the overall quality of the oils, the time of contact of the olives with the soil has been taken into account. Multi-element data were obtained using ICP-MS. Nineteen elements (Li, B, Na, Mg, Al, K, Ca, Sc, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Mo, Ba and La) were submitted for statistical analysis. Using analysis of variance, linear discriminant analysis and principal component analysis it was possible to differentiate between oils produced from different batches of olives whose plants received different types of water. Also, the results showed that there was correlation between the elemental and mineral composition of the water used to irrigate the olive plots and the elemental and mineral composition of the oils. PMID:22654625

  6. Baseline element concentrations in soils and plants, Wattenmeer National Park, North and East Frisian Islands, Federal Republic of Germany

    USGS Publications Warehouse

    Severson, R.C.; Gough, L.P.; van den Boom, G.

    1992-01-01

    Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.Baseline element concentrations are given for dune grass (Ammophilia arenaria), willow (Salix repens), moss (Hylocomium splendens) and associated surface soils. Baseline and variability data for pH, ash, Al, As, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, Hg, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Se, Sr, Th, Ti, V, Y, Yb, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration between five Frisian Islands are given for each of the sample media. In general, only a few elements in each media showed statistically significant differences between the islands sampled. The measured concentrations in all sample media exhibited ranges that cannot be attributed to anthropogenic additions of trace elements, with the possible exception of Hg and Pb in surface soils.

  7. Characterization of Santa Catarina (Brazil) coal with respect to human health and environmental concerns

    USGS Publications Warehouse

    Silva, L.F.O.; Oliveira, M.L.S.; Boit, K.M.; Finkelman, R.B.

    2009-01-01

    The current paper presents the concentration, distribution, and modes of occurrence of trace elements of 13 coals from south Brazil. The samples were collected in the state of Santa Catarina. Chemical analyses and the high ash yields indicate that all studied coals are rich in mineral matter, with SiO2 and Al2O3 dominating as determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Quartz is the main mineral species and is associated with minor levels of feldspars, kaolinite, hematite, and iron-rich carbonates. The contents of trace elements, including As, Pb, Cd, Ni, Cr, Mn, Be, V, U, Zn, Li, Cu, Tl, and Ni, in coals were determined. A comparison of ranges and means of elemental concentrations in Santa Catarina, Brazil, and world coals shows that the ranges of most elements in Santa Catarina coal are very close to the usual worldwide concentration ranges in coal. ?? Springer Science+Business Media B.V. 2008.

  8. A Compilation of Metals and Trace Elements Extracted from Materials Relevant to Pharmaceutical Applications such as Packaging Systems and Devices.

    PubMed

    Jenke, Dennis; Rivera, Christine; Mortensen, Tammy; Amin, Parul; Chacko, Molly; Tran, Thang; Chum, James

    2013-01-01

    Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions and the levels of 32 metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The extracting solvents included aqueous mixtures at low and high pH and an organic solvent mixture (40/60 ethanol water). The sealed vessel extractions were performed by placing an appropriate portion of the test articles and an appropriate volume of extracting solution in inert extraction vessels and exposing the extraction units (and associated extraction blanks) to defined conditions of temperature and duration. The levels of extracted target elements were measured by inductively coupled plasma atomic emission spectroscopy. The overall reporting threshold for most of the targeted elements was 0.05 μg/mL, which corresponds to 0.5 μg/g for the most commonly utilized extraction stoichiometry (1 g of material per 10 mL of extracting solvent). The targeted elements could be classified into four major groups depending on the frequency with which they were present in the over 250 extractions reported in this study. Thirteen elements (Ag, As, Be, Cd, Co, Ge, Li, Mo, Ni, Sn, Ti, V, and Zr) were not extracted in reportable quantities from any of the test articles under any of the extraction conditions. Eight additional elements (Bi, Cr, Cu, Mn, Pb, Sb, Se, and Sr) were rarely extracted from the test articles at reportable levels, and three other elements (Ba, Fe, and P) were infrequently extracted from the test articles at reportable levels. The remaining eight elements (Al, B, Ca, Mg, Na, S, Si, and Zn) were more frequently present in the extracts in reportable quantities. These general trends in accumulation behavior were compared to compiled lists of elements of concern as impurities in pharmaceutical products. Nearly 100 individual test articles, representative of materials used in pharmaceutical applications such as packaging and devices, were extracted under exaggerated conditions, and the levels of thirty-two metals and trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, V, Zn, and Zr) were measured in the extracts. The targeted elements could be classified into four major groups depending on the frequency with which they were present in the extractions reported in this study: those elements that were not extracted in reportable quantities from any of the test articles under any of the extraction conditions, those elements that were rarely extracted from the test articles at reportable levels, those elements that were infrequently extracted from the test articles at reportable levels, and those elements that were more frequently present in the extracts in reportable quantities.

  9. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects

    NASA Astrophysics Data System (ADS)

    Shelley, Rachel U.; Morton, Peter L.; Landing, William M.

    2015-06-01

    The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.

  10. Source and fate of inorganic solutes in the Gibbon River, Yellowstone National Park, Wyoming, USA. II. Trace element chemistry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.

    2010-01-01

    The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.

  11. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones

    NASA Astrophysics Data System (ADS)

    You, C.-F.; Castillo, P. R.; Gieskes, J. M.; Chan, L. H.; Spivack, A. J.

    1996-05-01

    Chemical evaluation of fluids affected during progressive water-sediment interactions provides critical information regarding the role of slab dehydration and/or crustal recycling in subduction zones. To place some constraints on geochemical processes during sediment subduction, reactions between décollement sediments and synthetic NaCl-CaCl 2 solutions at 25-350°C and 800 bar were monitored in laboratory hydrothermal experiments using an autoclave apparatus. This is the first attempt in a single set of experiments to investigate the relative mobilities of many subduction zone volatiles and trace elements but, because of difficulties in conducting hydrothermal experiments on sediments at high P-T conditions, the experiments could only be designed for a shallow (˜ 10 km) depth. The experimental results demonstrate mobilization of volatiles (B and NH 4) and incompatible elements (As, Be, Cs, Li, Pb, Rb) in hydrothermal fluids at relatively low temperatures (˜ 300°C). In addition, a limited fractionation of light from heavy rare earth elements (REEs) occurs under hydrothermal conditions. On the other hand, the high field strength elements (HFSEs) Cr, Hf, Nb, Ta, Ti, and Zr are not mobile in the reacted fluids. The observed behavior of volatiles and trace elements in hydrothermal fluids is similar to the observed enrichment in As, B, Cs, Li, Pb, Rb, and light REEs and depletion in HFSEs in arc magmas relative to magmas derived directly from the upper mantle. Thus, our work suggests a link between relative mobilities of trace elements in hydrothermal fluids and deep arc magma generation in subduction zones. The experimental results are highly consistent with the proposal that the addition of subduction zone hydrous fluids to the subarc mantle, which has been depleted by previous melting events, can produce the unique characteristics of arc magmas. Moreover, the results suggest that deeply subducted sediments may no longer have the composition necessary to generate the other distinct characteristics, such as the B-δ 11 B and B- 10Be systematics, of arc lavas. Finally, the mobilization of B, Cs, Pb, and light REEs relative to heavy REEs in the hydrothermal fluids fractionate the ratios of B/Be, B/Nb, Cs/Rb, Pb/Ce, La/Ba and LREE/HREE, which behave conservatively during normal magmatic processes. These results demonstrate that the composition of slab-derived fluids has great implications for the recycling of elements; not only in arc magmas but also in mantle plumes.

  12. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    NASA Astrophysics Data System (ADS)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this variation is unrelated to differentiation, assimilation or mantle source indicators, such as radiogenic isotopes or trace elements. It, therefore, seems likely that kinetic fractionation of Li isotopes during magma extraction, transport and storage may generate δ7 Li excursions in MORB. No mantle heterogeneities, such as those generated by deeply recycled subducted materials, are invoked in the interpretation of the Li and B isotope data presented here, in contrast to previous work on smaller data sets. Lithium and boron budgets for the silicate Earth are presented that are based on isotope and element mass balance. A refined estimate for the B isotopic composition of the bulk continental crust is given as δ11 B = - 9.1 ± 2.4 ‰ . Mass balance allows the existence of recycled B reservoirs in the deep mantle, but these are not required. However, mass balance among the crust, sediments and seawater shows enrichment of 6 Li in the surface reservoirs, which requires the existence of 7 Li -enriched material in the mantle. This may have formed by the subduction of altered oceanic crust since the Archaean.

  13. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  14. Lithium control on experimental serpentinization processes: implications for natural systems

    NASA Astrophysics Data System (ADS)

    Lafay, Romain; Janots, Emilie; Montes-Hernandez, German

    2014-05-01

    Fluid mobile elements such as As, B, Li or Sb are of prime importance to trace fluid-rock interactions in the oceanic lithosphere from its hydrothermal alteration at the ocean ridge up to its dehydration in deep subduction. Although the cycle of fluid mobile elements is increasingly studied, their partitioning between fluid and mineral are still poorly know and their role on mechanism and kinetic of serpentinization reaction have been neglected. In the present experimental study supported by two kinds of experiments, we focussed on Li study and highlighted that this element play a substantial role on serpentinization reaction kinetic/mechanism and on serpentine textural properties. Indeed, in presence of 200 µg g-1 of dissolved Li alteration rate is 2-4 time faster with respect to olivine alteration reactions in undoped system (1) at same experimental conditions (alkaline solution, T = 200°C, Psat ~16 bar, olivine grains < 150μm). Moreover, serpentinization reaction mechanism is modified in presence of Li and characterized by a decoupling between olivine dissolution and serpentine precipitation. The control of olivine grain size on Li distribution between serpentinization products and fluid suggests for Li sequestration by an adsorption mechanism. Additionaly, with respect to pure chrysotile sythesis (2) we indicated that Li strongly affect chrysotile sizes and morphology especially by favoring wider particles precipitation and stabilizing lizardite (3). Experimental distribution coefficients obtains in both systems are compatible with measurements made on abyssal serpentinites and hydrothermal fluids. These remarkable results increase our ability for understanding the fate of Li during fluid/olivine interaction and its retroactive effect on serpentinization reactions. At mid ocean ridge this may explain Li heterogeneous distributions and links between chemical and mineralogical observations. Moreover in subduction environments, where fluids released from the slab are particularly enriched in Li (up to 100 µg g-1), this last component may substantially favor serpentinite channel formation and propagation. (1) Lafay et al. (2012). J. Cryst. Growth, 347, 62-72. (2) Lafay et al. (2013) Chemistry - A European Journal 19, 5417-5424. (3) Lafay et al. (2014) Microporous et Mesoporous Materials 183; 81-90.

  15. Abundance, distribution and bioavailability of major and trace elements in surface sediments from the Cai River estuary and Nha Trang Bay (South China Sea, Vietnam)

    NASA Astrophysics Data System (ADS)

    Koukina, S. E.; Lobus, N. V.; Peresypkin, V. I.; Dara, O. M.; Smurov, A. V.

    2017-11-01

    Major (Si, Al, Fe, Ti, Mg, Ca, Na, K, S, P), minor (Mn) and trace (Li, V, Cr, Co, Ni, Cu, Zn, As, Sr, Zr, Mo, Cd, Ag, Sn, Sb, Cs, Ba, Hg, Pb, Bi and U) elements, their chemical forms and the mineral composition, organic matter (TOC) and carbonates (TIC) in surface sediments from the Cai River estuary and Nha Trang Bay were first determined along the salinity gradient. The abundance and ratio of major and trace elements in surface sediments are discussed in relation to the mineralogy, grain size, depositional conditions, reference background and SQG values. Most trace-element contents are at natural levels and are derived from the composition of rocks and soils in the watershed. A severe enrichment of Ag is most likely derived from metal-rich detrital heavy minerals such as Ag-sulfosalts. Along the salinity gradient, several zones of metal enrichment occur in surface sediments because of the geochemical fractionation of the riverine material. The parts of actually and potentially bioavailable forms (isolated by four single chemical reagent extractions) are most elevated for Mn and Pb (up to 36% and 32% of total content, respectively). The possible anthropogenic input of Pb in the region requires further study. Overall, the most bioavailable parts of trace elements are associated with easily soluble amorphous Fe and Mn oxyhydroxides. The sediments are primarily enriched with bioavailable metal forms in the riverine part of the estuary. Natural (such as turbidities) and human-generated (such as urban and industrial activities) pressures are shown to influence the abundance and speciation of potential contaminants and therefore change their bioavailability in this estuarine system.

  16. Geochemical properties of topsoil around the coal mine and thermoelectric power plant.

    PubMed

    Stafilov, Trajče; Šajn, Robert; Arapčeska, Mila; Kungulovski, Ivan; Alijagić, Jasminka

    2018-03-19

    The results of the systematic study of the spatial distribution of trace metals in surface soil over the Bitola region, Republic of Macedonia, known for its coal mine and thermo-electrical power plant activities are reported. The investigated region (3200 km 2 ) is covered by a sparse sampling grid of 5 × 5 km, but in the urban zone and around the thermoelectric power plant the sampling grid is denser (1 × 1 km). In total, 229 soil samples from 149 locations were collected including top-soil (0-5 cm) and bottom-soil samples (20-30 cm and 0-30 cm). Inductively coupled plasma - atomic emission spectrometry (ICP-AES) was applied for the determinations of 21 elements (Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, Sr, V and Zn). Based on the results of factor analyses, three geogenic associations of elements have been defined: F1 (Fe, Ni, V, Co, Cr, Mn and Li), F2 (Zn, B, Cu, Cd, Na and K) and F3 (Ca, Sr, Mg, Ba and Al). Even typical trace metals such as As, Cd, Cu, Ni, P, Pb and Zn are not isolated into anthropogenic geochemical associations by multivariate statistical methods still show some trends of local anthropogenic enrichment. The distribution maps for each analyzed element is showing the higher content of these elements in soil samples collected around the thermoelectric power plants than their average content for the soil samples collected from the whole Bitola Region. It was found that this enrichment is a result of the pollution by fly ash from coal burning which deposited near the plant having a high content of these elements.

  17. The geochemistry of environmentally important trace elements in UK coals, with special reference to the Parkgate coal in the Yorkshire-Nottinghamshire Coalfield, UK

    USGS Publications Warehouse

    Spears, D.A.; Tewalt, S.J.

    2009-01-01

    The Parkgate coal of Langsettian age in the Yorkshire-Nottinghamshire coalfield is typical of many coals in the UK in that it has a high sulphur (S) content. Detailed information on the distribution of the forms of S, both laterally and vertically through the seam, was known from previous investigations. In the present work, 38 interval samples from five measured sections of the coal were comprehensively analysed for major, minor and trace elements and the significance of the relationships established using both raw and centered log transformed data. The major elements are used to quantify the variations in the inorganic and organic coal components and determine the trace element associations. Pyrite contains nearly all of the Hg, As, Se, Tl and Pb and is also the major source of the Mo, Ni, Cd and Sb. The clays contain the following elements in decreasing order of association: Rb, Cs, Li, Ga, U, Cr, V, Sc, Y, Bi, Cu, Nb, Sn, Te and Th. Nearly all of the Rb is present in the clay fraction, whereas for elements such as V, Cu and U, a significant amount is thought to be present in the organic matter, based on the K vs trace element regression equations. Only Ge, and possibly Be, would appear to have a dominant organic source. The trace element concentrations are calculated for pyrite, the clay fraction and organic matter. For pyrite it is noted that concentrations agree with published data from the Yorkshire-Nottinghamshire coalfield and also that Tl concentrations (median of 0.33 ppm) in the pyrite are greater than either Hg or Cd. Unlike these elements, Tl has attracted less attention and possibly more information is needed on its anthropogenic distribution and impacts on man and the environment. A seawater source is thought to be responsible for the high concentrations of S, Cl and the non-detrital trace elements in the Parkgate coal. Indicative of the seawater control is the Th/U ratio, which expresses the detrital to non-detrital element contributions. Using other elements, similar ratios can be calculated, which in combination offer greater interpretative value. ?? 2009 Elsevier B.V.

  18. Li-Ion Batteries for Forensic Neutron Dosimetry

    DTIC Science & Technology

    2016-03-01

    capture via lithium ions is tritium requires extraction from the battery such that it can be measured. This research program provides a method for...RMD) The following is a list of papers: 1. Amy Kaczmarowski, “Use of Lithium Ion Batteries for Nuclear Forensic Applications”, Undergraduate...2013. 3. Keith E. Holbert, Amy Kaczmarowski, Tyler Stannard, Erik B. Johnson, “MCNP Estimation of Trace Elements in Lithium - Ion Batteries Subjected

  19. Harvest locations of goose barnacles can be successfully discriminated using trace elemental signatures

    NASA Astrophysics Data System (ADS)

    Albuquerque, Rui; Queiroga, Henrique; Swearer, Stephen E.; Calado, Ricardo; Leandro, Sérgio M.

    2016-06-01

    European Union regulations state that consumers must be rightfully informed about the provenance of fishery products to prevent fraudulent practices. However, mislabeling of the geographical origin is a common practice. It is therefore paramount to develop forensic methods that allow all players involved in the supply chain to accurately trace the origin of seafood. In this study, trace elemental signatures (TES) of the goose barnacle Pollicipes pollicipes, collected from ten sites along the Portuguese coast, were employed to discriminate individual’s origin. Barium (Ba), boron (B), cadmium (Cd), chromium (Cr), lithium (Li), magnesium (Mg), manganese (Mn), phosphorous (P), lead (Pb), strontium (Sr) and zinc (Zn) - were quantified using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Significant differences were recorded among locations for all elements. A regularized discriminant analysis (RDA) revealed that 83% of all individuals were correctly assigned. This study shows TES can be a reliable tool to confirm the geographic origin of goose barnacles at fine spatial resolution. Although additional studies are required to ascertain the reliability of TES on cooked specimens and the temporal stability of the signature, the approach holds great promise for the management of goose barnacles fisheries, enforcement of conservation policies and assurance in accurate labeling.

  20. Lithium toxicity in plants: Reasons, mechanisms and remediation possibilities - A review.

    PubMed

    Shahzad, Babar; Tanveer, Mohsin; Hassan, Waseem; Shah, Adnan Noor; Anjum, Shakeel Ahmad; Cheema, Sardar Alam; Ali, Iftikhar

    2016-10-01

    Lithium (Li) is a naturally occurring element; however, it is one of the non-essential metals for life. Lithium is becoming a serious matter of discussion for the people who do research on trace metals and environmental toxicity in plants. Due to limited information available regarding its mobility from soil to plants, the adverse effects of Li toxicity to plants are still unclear. This article briefly discusses issues around Li, its role and its essentiality in plants and research directions that may assist in inter-disciplinary studies to evaluate the importance of Li's toxicity. Further, potential remediation approaches will also be highlighted in this review. Briefly, Li influenced the growth of plants in both stimulation and reduction ways, depending on the concentration of Li in growth medium. On the negative side, Li reduces the plant growth by interrupting numerous physiological processes and altering metabolism in plant. The contamination of soil by Li is becoming a serious problem, which might be a threat for crop production in the near future. Additionally, lack of considerable information about the tolerance mechanisms of plants further intensifies the situation. Therefore, future research should emphasize in finding prominent and approachable solutions to minimize the entry of Li from its sources (especially from Li batteries) into the soil and food chain. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Geochemical landscapes of the conterminous United States; new map presentations for 22 elements

    USGS Publications Warehouse

    Gustavsson, N.; Bolviken, B.; Smith, D.B.; Severson, R.C.

    2001-01-01

    Geochemical maps of the conterminous United States have been prepared for seven major elements (Al, Ca, Fe, K, Mg, Na, and Ti) and 15 trace elements (As, Ba, Cr, Cu, Hg, Li, Mn, Ni, Pb, Se, Sr, V, Y, Zn, and Zr). The maps are based on an ultra low-density geochemical survey consisting of 1,323 samples of soils and other surficial materials collected from approximately 1960-1975. The data were published by Boerngen and Shacklette (1981) and black-and-white point-symbol geochemical maps were published by Shacklette and Boerngen (1984). The data have been reprocessed using weighted-median and Bootstrap procedures for interpolation and smoothing.

  2. Determination of trace elements of Egyptian cane sugar (Naga Hammady factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analyses.

    PubMed

    Awadallah, R M; Sherif, M K; Mohamed, A E; Grass, F

    1984-01-01

    INAA, AAS and ICP-AES techniques are applied to the determination of trace amounts of Ag, Al, As, Au, Ba, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Cu, Dy, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in the stalks of sugar cane plant after extracting juice, raw juice principal (mixed) juice, juice withdrawn from the successive stages of sugar industry, sirup, deposits from evaporators, molasse, A-? and B-sugar and in the soil samples (collected from the field supplying the factories by cane plants) taken from the immediate vicinity of the plant roots at surface, 30 and 60 cm depth. The results obtained are in a good agreement of the safety baselines of using juice as beverage, molasse derivatives (honey, sweets, ...) as diet for common people in the developed countries and in industry (methanol, ethanol, acetone & acetic acid, ...) and sugar sweeting for many purposes (in beverages, desserts, ...). Differences of trace elements concentrations in soil samples may be reasoned to geochemical and biogeochemical fractionation while those in juice may be due to the changes in the environmental conditions, chemical composition and botanic structures. Variations in trace element contents in the products formed during the successive stages of sugar industry may be a result of evaporation, filtration processes, chemical treatments or corrosion of vessels, containers or engines. Trace elements are very important where they are responsible for enzymatic and biochemical reactions, matabolism, health and diseases.

  3. Trace elements in farmed fish (Cyprinus carpio, Ctenopharyngodon idella and Oncorhynchus mykiss) from Beijing: implication from feed.

    PubMed

    Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei

    2016-06-01

    Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.

  4. Trace element diffusion in minerals: the role of multiple diffusion mechanisms operating simultaneously

    NASA Astrophysics Data System (ADS)

    Dohmen, R.; Marschall, H.; Wiedenbeck, M.; Polednia, J.; Chakraborty, S.

    2016-12-01

    Diffusion of trace elements, often with ionic charge that differs from those of ions in the regular structural sites of a mineral, controls a number of important processes in rocks, such as: (i) Closure of radiogenic isotopic systems, (e.g. Pb diffusion in rutile; REE diffusion in garnet); (ii) Closure of trace element thermometers (e.g., Zr in rutile, Mg in plagioclase, Al in olivine); (iii) Closure of element exchange between melt inclusions and host minerals (e.g., H, REE in olivine). In addition, preserved trace element zoning profiles in minerals can be used for diffusion chronometry (e.g. Nb in rutile, Mg in plagioclase). However, experimentally determined diffusion coefficients of these trace elements are in many cases controversial (e.g., REE in olivine: [1] vs. [2]; Mg in plagioclase: [3] vs. [4]). We have carried out experiments to study the diffusion behavior in olivine, rutile, and plagioclase, and are able to show that two mechanisms of diffusion, differing in rates by up to four orders of magnitude, may operate simultaneously in a given crystal. The two mechanisms result in complex diffusion profile shapes. As a general rule, the incorporation of heterovalent substituting elements in relatively high concentrations is necessary to activate two diffusion mechanisms. This behavior is produced by the control of these elements on the point defect chemistry of a mineral - these impurities become a majority point defect when a threshold concentration limit is exceeded. In certain cases, e.g., for Li in olivine, the trace element can also be incorporated in different sites, resulting in interaction of the different species with other point defects (vacancies) during diffusion. Thus, depending on the diffusion couple used in the experiment, the associated concentration gradients within the mineral, and the analytical techniques used to measure the diffusion profile, only one diffusion mechanism may be activated or detected. These studies allow us to explain some of the differing results noted above and such considerations need to be taken into account when modelling diffusion in natural systems. [1] Cherniak 2010, Am Mineral 95:362-368; [2] Spandler and O'Neill 2010, Contrib Mineral Petrol 159:791-818; [3] Faak et al. 2013 Geochim Cosmochim Acta 123:195-217; [4] Van Orman et al. 2014 Earth Planet Sci Lett 385:79-88

  5. Distribution of lithium in agricultural and grazing land soils at European continental scale (GEMAS project)

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Reimann, Clemens; Ladenberger, Anna; Birke, Manfred

    2017-04-01

    The environmental chemistry of Li has received attention because Li has been shown to have numerous and important implications for human health and agriculture and the stable isotope composition of lithium is a powerful geochemical tool that provides quantitative information about Earth processes such as sediment recycling, global chemical weathering and its role in the carbon cycle, hydrothermal alteration, and groundwater evolution. However, the role of bedrock sources, weathering and climate changes in the repartition of Li at the continental scale has been scarcely investigated. Agricultural soil (Ap-horizon, 0-20 cm) and grazing land soil (Gr-horizon, 0-10 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) as a part of the GEMAS (GEochemical Mapping of Agricultural and grazing land Soil) soil mapping project. GEMAS soil data have been used to provide a general view of element mobility and source rocks at the continental scale, either by reference to average crustal abundances or to normalized patterns of element mobility during weathering processes. The survey area includes a diverse group of soil parent materials with varying geological history, a wide range of climate zones and landscapes. The concentrations of Li in European soil were determined by ICP-MS after a hot aqua regia extraction, and their spatial distribution patterns generated by means of a GIS software. Due to the partial nature of the aqua regia extraction, the mean concentration of Li in the European agricultural soil (ca 11.4 mg/kg in Ap and Gr soils) is about four times lower than in the Earth's upper continental crust (UCC = 41 mg/kg). The combined plot histogram - density trace one- dimensional scattergram - boxplot of the aqua regia data displays the univariate data distribution of Li. The one-dimensional scattergram and boxplot highlight the existence of many outliers at the lower end of the Li distribution and very few at the upper end. Though the density trace, histogram and boxplot suggest a slight skew, the data distributions are still rather symmetrical in the log-scale. The median values of the Ap and Gr samples do overlap, demonstrating they are not statistically different at the 5 % significance level. The maps of Li in the aqua regia extraction show a distinct difference between northern Europe with predominantly low concentrations (median 6.4 mg/kg) and southern Europe with significantly higher values (median 15 mg/kg). The maximum extent of the last glaciation is visible as a discrete concentration break on the maps. The principal Li anomalies occur spatially associated with the granitic rocks and Li-pegmatites and their weathering products throughout Europe, e.g. in central Sweden (Central Scandinavian Clay Belt) and in the western part of the Alpine Region (higher Li concentrations). Even the new Li-deposit near Wolfsberg, Austria is marked by a clear anomaly. In southern Europe, high Li values occurring over limestone areas can be attributed to secondary Li enrichment during weathering controlled by climate (temperature and precipitation).

  6. Multivariate analyses of Erzgebirge granite and rhyolite composition: Implications for classification of granites and their genetic relations

    USGS Publications Warehouse

    Forster, H.-J.; Davis, J.C.; Tischendorf, G.; Seltmann, R.

    1999-01-01

    High-precision major, minor and trace element analyses for 44 elements have been made of 329 Late Variscan granitic and rhyolitic rocks from the Erzgebirge metallogenic province of Germany. The intrusive histories of some of these granites are not completely understood and exposures of rock are not adequate to resolve relationships between what apparently are different plutons. Therefore, it is necessary to turn to chemical analyses to decipher the evolution of the plutons and their relationships. A new classification of Erzgebirge plutons into five major groups of granites, based on petrologic interpretations of geochemical and mineralogical relationships (low-F biotite granites; low-F two-mica granites; high-F, high-P2O5 Li-mica granites; high-F, low-P2O5 Li-mica granites; high-F, low-P2O5 biotite granites) was tested by multivariate techniques. Canonical analyses of major elements, minor elements, trace elements and ratio variables all distinguish the groups with differing amounts of success. Univariate ANOVA's, in combination with forward-stepwise and backward-elimination canonical analyses, were used to select ten variables which were most effective in distinguishing groups. In a biplot, groups form distinct clusters roughly arranged along a quadratic path. Within groups, individual plutons tend to be arranged in patterns possibly reflecting granitic evolution. Canonical functions were used to classify samples of rhyolites of unknown association into the five groups. Another canonical analysis was based on ten elements traditionally used in petrology and which were important in the new classification of granites. Their biplot pattern is similar to that from statistically chosen variables but less effective at distinguishing the five groups of granites. This study shows that multivariate statistical techniques can provide significant insight into problems of granitic petrogenesis and may be superior to conventional procedures for petrological interpretation.

  7. Re-evaluation and extension of the scope of elements in US Geological Survey Standard Reference Water Samples

    USGS Publications Warehouse

    Peart, D.B.; Antweiler, Ronald C.; Taylor, Howard E.; Roth, D.A.; Brinton, T.I.

    1998-01-01

    More than 100 US Geological Survey (USGS) Standard Reference Water Samples (SRWSs) were analyzed for numerous trace constituents, including Al, As, B, Ba, Be, Bi, Br, Cd, Cr, Co, Cu, I, Fe, Pb, Li, Mn, Mo, Ni, Rb, Sb, Se, Sr, Te, Tl, U, V, Zn and major elements (Ca, Mg, Na, SiO2, SO4, Cl) by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry. In addition, 15 USGS SRWSs and National Institute of Standards and Technology (NIST) standard reference material (SRM) 1641b were analyzed for mercury using cold vapor atomic fluorescence spectrometry. Also USGS SRWS Hg-7 was analyzed using isotope dilution-inductively coupled plasma mass spectrometry. The results were compared with the reported certified values of the following standard reference materials: NIST SRM 1643a, 1643b, 1643c and 1643d and National Research Council of Canada Riverine Water Reference Materials for Trace Metals SLRS-1, SLRS-2 and SLRS-3. New concentration values for trace and major elements in the SRWSs, traceable to the certified standards, are reported. Additional concentration values are reported for elements that were neither previously published for the SRWSs nor traceable to the certified reference materials. Robust statistical procedures were used that were insensitive to outliers. These data can be used for quality assurance/quality control purposes in analytical laboratories.

  8. Impact of Elevated CO2 on Trace Element Release from Aquifer Sediments of the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Fox, P. M.; Nico, P. S.; Davis, J. A.; Spycher, N.

    2014-12-01

    Carbon capture and storage (CCS) is a promising technique for mitigating climate change by storing large volumes of carbon dioxide in deep saline aquifers. In California, the thick marine sediments of the Central and Salinas Valleys have been identified as prime targets for future CO2 storage. However, the potential impacts on water quality of overlying drinking-water aquifers must be studied before CCS can be implemented. In this study, we compare trace element release from San Joaquin Valley aquifer sediments with a wide range of textural and redox properties. Kinetic batch experiments were performed with artificial groundwater continuously equilibrated under CO2-saturated (at 1 atm) and background CO2 (0.002-0.006 atm) conditions, resulting in a shift of nearly 3 pH units. In addition, the reversibility of trace element release was studied by sequentially lowering the CO2 from 1.0 atm to 0.5 atm to background concentrations (0.002-0.006 atm) for CO2-saturated systems in order to mimic the dissipation of a CO2 plume in the aquifer. During exposure to high CO2, a number of elements displayed enhanced release compared to background CO2 experiments (Ca, Mg, Li, Si, B, As, Sr, Ni, Fe, Mn, V, Ti, and Co) with concentrations of As, Fe, and Mn exceeding EPA maximum contaminant levels in some cases. On the other hand, Mo and U showed suppressed release. Most intriguing, many of the elements showing enhanced release displayed at least some degree of irreversibility when CO2 concentrations were decreased to background levels. In fact, in some cases (i.e., for V), an element showed further release when CO2 concentrations were decreased. These results suggest that there may be longer-term effects on groundwater quality that persist even after the CO2 plume has dissipated. Several different mechanisms of trace element release including ion exchange, desorption, and carbonate mineral dissolution are explored. Preliminary modeling results suggest that carbonate mineral dissolution can play a key role in driving trace element release even in sediments where carbonates are in low abundance.

  9. How Trace Element Levels of Public Drinking Water Affect Body Composition in Turkey.

    PubMed

    Cetin, Ihsan; Nalbantcilar, Mahmut Tahir; Tosun, Kezban; Nazik, Aydan

    2017-02-01

    Since waterborne minerals appear in ionic form and are readily absorbed by the gastrointestinal tract, drinking water could be a crucial source of mineral intake. However, no comprehensive research has yet determined how trace elements in drinking water relate to body composition. We aimed to assess the relationship between clinically important trace elements in public drinking water and body composition in average, overweight and obese individuals in Turkey. The study's population consisted of 423 participants: 143 overweight, 138 obese and 142 healthy control individuals, grouped according to clinical cutoff points of body mass index (BMI). We measured levels of lithium (Li), nickel (Ni), lead (Pb), silicon (Si), tin (Sn), strontium (Sr), boron (B), aluminium (Al), barium (Ba) and rubidium (Rb) in samples from wells of municipal water by using inductively coupled plasma mass spectrometry. We gauged all the participants' body composition measurements with a BC-418 body composition analyser. In all the participants, body weight values showed significant positive correlations with Ni levels in drinking water, as did BMI values with Al levels and percentage of obesity with Ni, Si and B levels. In particular, Ni levels showed significant positive correlations with the basal metabolic rate, activity calories, and total activity of participants. Giving findings showing correlations between obesity-related parameters and Al, Si, B and Ni content in drinking water, we hope that these associations will be clarified with further studies including cellular, experimental and clinical studies. Hence, medical practitioners must be aware of trace element levels in drinking water for overweight and obese patients.

  10. Harvest locations of goose barnacles can be successfully discriminated using trace elemental signatures

    PubMed Central

    Albuquerque, Rui; Queiroga, Henrique; Swearer, Stephen E.; Calado, Ricardo; Leandro, Sérgio M.

    2016-01-01

    European Union regulations state that consumers must be rightfully informed about the provenance of fishery products to prevent fraudulent practices. However, mislabeling of the geographical origin is a common practice. It is therefore paramount to develop forensic methods that allow all players involved in the supply chain to accurately trace the origin of seafood. In this study, trace elemental signatures (TES) of the goose barnacle Pollicipes pollicipes, collected from ten sites along the Portuguese coast, were employed to discriminate individual’s origin. Barium (Ba), boron (B), cadmium (Cd), chromium (Cr), lithium (Li), magnesium (Mg), manganese (Mn), phosphorous (P), lead (Pb), strontium (Sr) and zinc (Zn) - were quantified using Inductively Coupled Plasma−Mass Spectrometry (ICP-MS). Significant differences were recorded among locations for all elements. A regularized discriminant analysis (RDA) revealed that 83% of all individuals were correctly assigned. This study shows TES can be a reliable tool to confirm the geographic origin of goose barnacles at fine spatial resolution. Although additional studies are required to ascertain the reliability of TES on cooked specimens and the temporal stability of the signature, the approach holds great promise for the management of goose barnacles fisheries, enforcement of conservation policies and assurance in accurate labeling. PMID:27292413

  11. Trace Element Determination from the Guliya Ice Core to Characterize Aerosol Deposition over the Western Tibetan Plateau during the Last 500 Years

    NASA Astrophysics Data System (ADS)

    Sierra Hernandez, R.; Gabrielli, P.; Beaudon, E.; Wegner, A.; Thompson, L. G.

    2014-12-01

    The Tibetan Plateau or Third Pole covers over 5 million km2, and has ~46,000 glaciers that collectively contain one of the Earth's largest stores of fresh water. The Guliya ice cap located in the western Kunlun Shan on the Qinghai-Tibetan Plateau, China, is the largest (> 200 km2) ice cap in the subtropical zone. In 1992, a 308.6 m ice core to bedrock was recovered from the Guliya ice cap. The deepest 20 meters yielded the first record extending back through the last glacial cycle found outside of the Polar Regions. Because of its continental location on the northwestern side of the Tibetan Plateau, the atmospheric circulation over the Guliya ice cap is dominated by westerly air flow from the Eurasian region. Therefore the site is expected to be unaffected by the fallout of anthropogenic trace metals originating from the inner Asian continent and rather may serve to characterize trace metal emissions from the western countries. Here we present preliminary results of the determination of 29 trace elements, Rb, Sr, Nb, Mo, Ag, Cd, Sn, Sb, Cs, Ba, Ta, Tl, Pb, Bi, U, Li, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and As, from Guliya ice core samples spanning the period 1500 - 1992 AD at seasonal (1750-1992 AD) and annual (1500-1750 AD) resolution. This Guliya trace element record will complement the developing records from the Dasuopu glacier, central Himalaya, and from the Puruogangri ice cap in the western Tanggula Shan in central Tibetan Plateau, which in contrast to Guliya are influenced by the monsoon. We investigate the possible sources both natural and anthropogenic of atmospheric trace elements and their fluxes over the Tibetan Plateau during the last 500 years.

  12. Review of Trace-Element Field-Blank Data Collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Program, May 2004-January 2008

    USGS Publications Warehouse

    Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2010-01-01

    Trace-element quality-control samples (for example, source-solution blanks, field blanks, and field replicates) were collected as part of a statewide investigation of groundwater quality in California, known as the Priority Basins Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basins Project is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB) to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Trace-element field blanks were collected to evaluate potential bias in the corresponding environmental data. Bias in the environmental data could result from contamination in the field during sample collection, from the groundwater coming into contact with contaminants on equipment surfaces or from other sources, or from processing, shipping, or analyzing the samples. Bias affects the interpretation of environmental data, particularly if any constituents are present solely as a result of extrinsic contamination that would have otherwise been absent from the groundwater that was sampled. Field blanks were collected, analyzed, and reviewed to identify and quantify extrinsic contamination bias. Data derived from source-solution blanks and laboratory quality-control samples also were considered in evaluating potential contamination bias. Eighty-six field-blank samples collected from May 2004 to January 2008 were analyzed for the concentrations of 25 trace elements. Results from these field blanks were used to interpret the data for the 816 samples of untreated groundwater collected over the same period. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). The detection frequency and the 90th percentile concentration at greater than 90 percent confidence were determined from the field-blank data for each trace element, and these results were compared to each constituent's long-term method detection level (LT-MDL) to determine whether a study reporting level (SRL) was necessary to ensure that no more than 10 percent of the detections in groundwater samples could be attributed solely to contamination bias. Only two of the trace elements analyzed, Li and Se, had zero detections in the 86 field blanks. Ten other trace elements (Sb, As, Be, B, Cd, Co, Mo, Ag, Tl, and U) were detected in fewer than 5 percent of the field blanks. The field-blank results for these constituents did not necessitate establishing SRLs. Of the 13 constituents that were detected in more than 5 percent of the field blanks, six (Al, Ba, Cr, Mn, Hg, and V) had field-blank results that indicated a need for SRLs that were at or below the highest laboratory reporting levels (LRL) used during the sampling period; these SRLs were needed for concentrations between the LT-MDLs and LRLs. The other seven constituents with detection frequencies above 5 percent (Cu, Fe, Pb, Ni, Sr, W, and Zn) had field-blank results that necessitated SRLs greater than the highest LRLs used during the study period. SRLs for these seven constituents, each set at the 90th percentile of their concentrations in the field blanks, were at least an order of magnitude below the regulatory thresholds established for drinking water for health or aesthetic purposes; therefore, reporting values below the SRLs as less than or equal to (=) the measured value would not prevent the identification of values greater than the drinking-water thresholds. The SRLs and drinking-water thresholds, respectively, for these 7 trace elements are Cu (1.7 ?g/L and 1,300

  13. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    NASA Astrophysics Data System (ADS)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  14. Trace Element Study of MORB Glasses from 14¡ã-16¡ãN along Mid-Atlantic Ridge by LA-ICP- MS

    NASA Astrophysics Data System (ADS)

    Barzoi, C. A.; Casey, J. F.; Gao, Y.; Lapen, T.

    2007-12-01

    A comparison of 20 MORB glasses from 14°-16° N along the Mid-Atlantic Ridge using both solution-based and in situ laser ablation-based ICP-MS trace element analyses on the same samples was conducted. Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Gd, Dy, Ho, Er, Tm, Yb,Lu, Hf, Ta, Pb, Th, and U were analyzed using the Varian 810 quadrupole ICP-MS. The instrument features a 90 degree ion mirror and low noise double-off-axis quadrupole that allows high sensitivity and low backgrounds. Precision in term of relative standard deviation (RSD) of the measurements for both methods based on repeated analyses of USGS BIR-1G and BHVO-2G glass standards and Max Planck KL-2G glass standard is within 5 % for all trace elements with the exception of Pb, which averaged 12 %. Measured trace element abundances are within 2% of recommended standard values using both solution and laser ablation methods. Comparison between the analyte concentrations obtained by solution-based ICP-MS and in situ microanalysis by laser ablation reveals little systematic differences in abundances(<5% for all elements). The two-method correlation and strong repeatability of the results indicate that rapid in situ trace element analysis by laser ablation ICP-MS is likely to become a preferred method of trace element analysis for MORB glasses. Our geochemical results and previous studies of MORB glasses in the region of the MAR between 14°-16°N show that basalts are characterized isotopic and incompatible element enrichment.The nature of the enrichment has been the topic of significant discussion and speculation because a specific mantle plume is not well defined in the region. Likewise the magma supply is probably small in the region as the magmatic crust is interpreted to be very thin in most of the area studied. Integrated studies of major element, trace element, and isotopic variations among basalts, gabbroic rocks and igneous and residual ultramafic rocks in the region indicate that 1) the enriched basalts have positive Ta-Nb anomalies, enriched relative to U, Th, and La 2) basalts have relatively high SiO2 abundances compared to the global average, 3) basalts show a HIMU isotopic signature, and 4) bulk major element abundances and mineral chemistry in mantle rocks indicate that they are among the most depleted,although variably refertilized, residual mantle assemblages sampled to date along MORs.We suggest that much of the regional variation in major and trace element data, as well as isotopic data and the unusual regional geology (multiple core complexes) can be explained by melting of a sub-axial mantle that contains two end members, one highly depleted and the other enriched. These components appear to involve ancient recycled ocean crust and lithospheric mantle.

  15. The chemical signatures of progressive dehydration stages in subducted serpentinites

    NASA Astrophysics Data System (ADS)

    Pettke, T.; Spandler, C.; Kodolanyi, J.; Scambelluri, M.

    2009-04-01

    Fluids mediate chemical cycling in subduction zones. Nonetheless, the chemistry of serpentinite-dehydration fluids from down-going slabs and their chemical effects on ascent are only very poorly constrained. We report new data on discontinuous dehydration reactions, including the measurement of individual fluid inclusions in prograde minerals from natural occurrences, and one case study tracing the infiltration of serpentinite-derived fluid in mafic eclogite. Together, these studies demonstrate that serpentinite-derived fluids are commonly dilute, but that there may be selected trace element abundances (and ratios ?) that characterize such fluid provenance. Brucite dehydration represents the first relevant liberation of crystal-bound water from serpentinites formed on the ocean floor (ocean floor mantle hydration chemistry is addressed in Kodolanyi et al., this session). Discordant olivine-Ti-clinohumite-antigorite-clinopyroxene-magnetite veins in ca. 2.3 GPa antigorite serpentinites of the Erro Tobbio in the Ligurian Alps, Italy, formed from aqueous, dilute fluids containing Li, Sr, Ba, Rb, Pb as determined on texturally-early fluid inclusions in olivine. This prograde olivine preserves high Ni (1500 - 3000 µg/g) and is identified most readily by elevated Li (1-20 µg/g), B (1-20 µg/g) and Mn contents. Aqueous fluid inclusions in some clinopyroxene (Cpx) of the same veins host variably (sometimes highly) saline fluid inclusions, interpreted to represent the "spent" fluid after formation of hydrous vein minerals (chlorite, antigorite). Vein bulk-rock trace-element concentrations show enrichment in Ti, Ba, Nb, Li, HREE and Cu relative to the wall rocks, accompanied by depletion in Cr. This mostly reflects the mineral transformations (sources / sinks) occurring at this stage of serpentinite dehydration. Antigorite-breakdown is arguably the most prominent water release from down-going slabs. Olivine-orthopyroxene-chlorite rocks at Cerro del Almirez (Spain), recording this dehydration event, contain olivine-hosted polyphase inclusions interpreted to represent fluid inclusions trapped during antigorite breakdown. Preliminary compositional data show enrichments in B, Cs, Pb, Li, Sr, Rb, K, Ba (decreasing order) and depletions in Ca, Ti, La relative to primitive mantle, closely corresponding to the incompatible element pattern of typical island arc lavas. Transfer of such fluids to the melting source of island arc magmas may be critical to developing their distinctive trace element signatures. Omphacite-rich (± garnet, rutile, talc and zircon) veins cutting eclogite (Fe-Ti gabbro protolith, Monviso, W Italian Alps) record serpentinite-derived fluid pathways though the subducted slab at ca. 70 km depth. Although these veins largely formed by local eclogite-derived fluids, they also preserve discrete generations of vein minerals enriched in Mg, Cr, Ni, B, As and Sb, and zircon with elevated Epsilon(Hf) compared to host-rock eclogite zircon. These chemical and isotopic characteristics suggest external fluid input, from serpentinite dehydration. Moreover, distinctive oscillatory or irregular Cr zonations observed in omphacite, garnet and rutile from the veins are interpreted to record episodic fracturing and fluid infiltration over >10 m along transient brittle fractures at high pressures. Our current data suggest that dehydration fluid pervades the rock at the site of liberation, and that episodic fluid escape from the dehydration site may be effectively channelized. This supports growing evidence for highly focused reactive fluid flow through slabs. Robust constraints on the chemical composition and nature of dehydration fluids from serpentinites and how they evolve during ascent may greatly aid in recognizing such features from outcrop to thin-section scales, in turn providing us with more comprehensive sample material to advance our understanding on fluid-mediated cycling in subduction zones. Reference Kodolanyi et al., this session

  16. Lithium in tektites and impact glasses: Implications for sources, histories and large impacts

    NASA Astrophysics Data System (ADS)

    Magna, T.; Deutsch, A.; Mezger, K.; Skála, R.; Seitz, H.-M.; Mizera, J.; Řanda, Z.; Adolph, L.

    2011-04-01

    Lithium (Li) abundances and isotope compositions were determined in a representative suite of tektites (moldavites, Muong Nong-type tektites and an australite, Ivory Coast tektites and bediasites), impact-related glasses (Libyan Desert Glass, zhamanshinites and irghizites), a glass fragment embedded in the suevite from the Ries impact crater and sedimentary materials in order to test a possible susceptibility of Li to fractionation during hypervelocity impact events and to de-convolve links to their potential parental sources. The overall data show a large spread in Li abundance (4.7-58 ppm Li) and δ 7Li values (-3.2‰ to 26.0‰) but individual groups of tektites and impact glasses have distinctive Li compositions. Most importantly, any significant high-temperature Li isotope fractionation can be excluded by comparing sedimentary lithologies from central Europe with moldavites. Instead, we suggest that Li isotope compositions in tektites and impact-related glasses are probably diagnostic of the precursor materials and their pre-impact geological histories. The Muong Nong-type tektites and australite specimen are identical in terms of Li concentrations and δ 7Li and we tentatively endorse their common origin in a single impact event. Evidence for low-temperature Rayleigh fractionation, which must have operated prior to impact-induced melting and solidification, is provided for a subset of Muong Nong-type tektites. Although Li isotope variations in most tektites are broadly similar to those of the upper continental crust, Libyan Desert Glass carries high δ 7Li ⩾24.7‰, which appears to mirror the previous fluvial history of parental material that was perhaps deposited in lacustrine environment or coastal seawater. Lithium isotopes in impact-related glasses from the Zhamanshin crater define a group distinct from all other samples and point to melting of chemically less evolved mafic lithologies, which is also consistent with their major and trace element patterns. Extreme shock pressures and the related extreme post-shock temperatures alone appear not to have any effect on the Li isotope systematics; therefore, useful information on parental lithologies and magmatic processes may be retrieved from analyses of Martian and lunar meteorites. Moreover, lack of significant Li depletion in tektites provides further constraints on the loss of moderately volatile elements during the Moon-forming impact.

  17. The Systematics of Light Lithophile Elements (Li, Be, B) in Lunar Picritic Glasses

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Layne, G. D.; Papike, J. J.

    1993-07-01

    Lunar picritic glasses are thought to be the product of either partial melting of the deep lunar mantle followed by rapid ascent [1,2] or polybaric partial melting initiated in the deep lunar mantle [3]. The near primary compositions of these volcanic glasses provide us with a unique perspective for evaluating mare basaltic magmatism and the characteristics and evolution of the lunar mantle. Because of their obvious importance in deciphering the evolution of the Earth-Moon system, we have initiated an extensive trace element study of these picritic glasses using ion microprobe techniques. Here, we report the initial results of light lithophile element (LLE) analyses of these glasses. This is the first reported study of LLE in lunar basalts. The LLE have only recently received attention in terrestrial basaltic systems [4-6]. Their correlations with other more routinely analyzed trace elements (Li:Yb or V, Be:Nd, B:K) in a variety of terrestrial mantle environments have yielded several important insights into mantle magmatism [4-6]. Ion microprobe analyses of the glasses were conducted using a Cameca 4f ion microprobe operated on the UNM campus. The light lithophile elements were analyzed under the following conditions: 10-kV O- primary beam, 8-nA primary beam current, 10-15-micrometer beam diameter, sample voltage offset of -70 +- 25 V, and a 150-micrometer secondary ion image field with a 33-micrometer field aperature inserted. Counting times included background (2 seconds), 30Si (2 seconds), 7Li (2 seconds), 9Be (4 seconds), and 11B (8 seconds). Each analysis involved 30 to 40 counting cycles. These counting times resulted in precision for Li of better than 1.2% and for B and Be of better than 2.2%. Standards for Li, Be, and B in basaltic glass matrices were kindly provided by J. Ryan [4-6]. Calibration curves (LLE/30Si x wt% SiO2 vs. LLE concentration) were originally defined by a minimum of five standards for each element and are linear for the concentration ranges found in the picritic lunar glasses. Picritic glasses analyzed in the initial study were from the Apollo 12, 14, 15, and 17 sites. This suite of glasses ranged in TiO2 from 0.3 to 17 wt%. All glasses had been previously analyzed for major and trace elements (REE, Cr, V, Sr, Ba, Co, Zr) by electron microprobe and ion microprobe [2]. The LLE show a wide range of variability with Li ranging from 1.2 to 23.8 ppm, Be ranging from 0.06 to 3.09 ppm, and B ranging from 0.20 to 3.87 ppm. Traverses across individual glass beads suggest they are homogeneous with regard to LLE. Except for the A17 VLT glasses and the A15 yellow glasses, the individual glass groups [1] show very limited LLE variability. LLE content is positively correlated to TiO2 content. LLE concentrations also parallel the enrichment of other lithophile elements such as Ba, Zr, Sr, and the REE. Unlike terrestrial basalts [4-6], the concentration of LLE in the picritic glasses is negatively correlated with SiO2 and MgO. B/Be ranges from 0.40 to 4.6. Over 85% of the analyzed glasses have B/Be between 0.9 and 3.0, similar to the average B/Be value of 3 for MORB [6]. Li/B and Li/Be values range from 3.2 to 30.8 and 2.7 to 41.7, respectively. These LLE ratios are not correlated with TiO2, but appear to be characteristic of individual sampling sites and therefore reflect subtle differences in the sources of the picritic magmas. The LLE and LLE ratios also indicate a KREEP component had been incorporated into some of these picritic magmas. Shearer and Papike [2] suggested this incorporation occurs in the zone of melting and reflected overturning of the LMO cumulate pile. The initial data reported here suggest that the LLE may be useful in deciphering the mare basalt record. Further analyses of these glasses will allow a more detailed comparison of picritic glass sources with mare basalt sources and a better interpretation of the compositional relationships among picritic glasses. Acknowledgments: SIMS analyses were performed at the UNM/SNL Ion Microprobe Facility, a joint operation of the Institute of Meteoritics, UNM, and Sandia National Laboratories. This research was funded by NASA grant NAGW-3347. References: [1] Delano J. W. (1986) Proc. LPSC, 16th, in JGR, XX D201-D213. [2] Shearer C. K. and Papike J. J. (1993) GCA, in review. [3] Longhi J. (1992) GCA, 56, 2235-2252. [4] Ryan J. G. and Langmuir C. H. (1987) GCA, 51, 1727- 1741. [5] Ryan J. G. and Langmuir C. H. (1988) GCA, 52, 237-244. [6] Ryan J. G. and Langmuir C. H. (1993) GCA, 57, 1489-1498.

  18. Atomistic simulation of trace element incorporation into garnets - comparison with experimental garnet-melt partitioning data

    NASA Astrophysics Data System (ADS)

    van Westrenen, W.; Allan, N. L.; Blundy, J. D.; Purton, J. A.; Wood, B. J.

    2000-05-01

    We have studied the energetics of trace element incorporation into pure almandine (Alm), grossular (Gros), pyrope (Py) and spessartine (Spes) garnets (X 3Al 2Si 3O 12, with X = Fe, Ca, Mg, Mn respectively), by means of computer simulations of perfect and defective lattices in the static limit. The simulations use a consistent set of interatomic potentials to describe the non-Coulombic interactions between the ions, and take explicit account of lattice relaxation associated with trace element incorporation. The calculated relaxation (strain) energies Urel are compared to those obtained using the Brice (1975) model of lattice relaxation, and the results compared to experimental garnet-melt trace element partitioning data interpreted using the same model. Simulated Urel associated with a wide range of homovalent (Ni, Mg, Co, Fe, Mn, Ca, Eu, Sr, Ba) and charge-compensated heterovalent (Sc, Lu, Yb, Ho, Gd, Eu, Nd, La, Li, Na, K, Rb) substitutions onto the garnet X-sites show a near-parabolic dependence on trace element radius, in agreement with the Brice model. From application of the Brice model we derived apparent X-site Young's moduli EX(1+, 2+, 3+) and the 'ideal' ionic radii r0(1+, 2+, 3+), corresponding to the minima in plots of Urel vs. radius. For both homovalent and heterovalent substitutions r0 increases in the order Py-Alm-Spes-Gros, consistent with crystallographic data on the size of garnet X-sites and with the results of garnet-melt partitioning studies. Each end-member also shows a marked increase in both the apparent EX and r0 with increasing trace element charge ( Zc). The increase in EX is consistent with values obtained by fitting to the Brice model of experimental garnet-melt partitioning data. However, the increase in r0 with increasing Zc is contrary to experimental observation. To estimate the influence of melt on the energetics of trace element incorporation, solution energies ( Usol) were calculated for appropriate exchange reactions between garnet and melt, using binary and other oxides to simulate cation co-ordination environment in the melt. Usol also shows a parabolic dependence on trace element radius, with inter-garnet trends in EX and r0 similar to those found for relaxation energies. However, r0( i+) obtained from minima in plots of Usol vs. radius are located at markedly different positions, especially for heterovalent substitutions ( i = 1, 3). For each end-member garnet, r0 now decreases with increasing Zc, consistent with experiment. Furthermore, although different assumptions for trace element environment in the melt, e.g., REE 3+ (VI) vs. REE 3+ (VIII), lead to parabolae with differing curvatures and minima, relative differences between end-members are always preserved. We conclude that: 1. The simulated variation in r0 and EX between garnets is largely governed by the solid phase. This stresses the overriding influence of crystal local environment on trace element partitioning. 2. Simulations suggest r0 in garnets varies with trace element charge, as experimentally observed. 3. Absolute values of r0 and EX can be influenced by the presence and structure of a coexisting melt. Thus, quantitative relations between r0, E and crystal chemistry should be derived from well-constrained systematic mineral-melt partitioning studies, and cannot be predicted from crystal-structural data alone.

  19. Toxic and essential elements in Lebanese cheese.

    PubMed

    Bou Khozam, Rola; Pohl, Pawel; Al Ayoubi, Baydaa; Jaber, Farouk; Lobinski, Ryszard

    2012-01-01

    Concentrations of 20 minor, trace and ultratrace elements relevant to human health (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, V) were determined in four different varieties of the most consumed cheese in Lebanon (Halloumi, Double Crème, Baladi, Labneh) sampled at five different provinces (Grand Beirut, South of Lebanon, North of Lebanon, Mount of Lebanon and Beka'a) during the wet and dry seasons. The analyses were carried out by double focussing sector field inductively coupled plasma-mass spectrometry (ICP-MS) in order to avoid errors due to polyatomic interferences. Levels of toxic elements (As, Cd, Pb) were generally below the WHO permissible levels in dairy products. Concentrations of most elements were considerably affected by the type of cheese, the geographical site and the season of sampling.

  20. Zircon/fluid trace element partition coefficients measured by recrystallization of Mud Tank zircon at 1.5 GPa and 800-1000 °C

    NASA Astrophysics Data System (ADS)

    Ayers, John C.; Peters, Timothy J.

    2018-02-01

    Hydrothermal zircon grains have trace element characteristics such as low Th/U, high U, and high rare earth element (REE) concentrations that distinguish them from magmatic, metamorphic, and altered zircon grains, but it is unclear whether these characteristics result from distinctive fluid compositions or zircon/fluid fractionation effects. New experiments aimed at measuring zircon/fluid trace element partition coefficients Dz/f involved recrystallizing natural Mud Tank zircon with low trace element concentrations in the presence of H2O, 1 m NaOH, or 1 m HCl doped with ∼1000 ppm of rare earth elements (REE), Y, U and Th and ∼500 ppm of Li, B, P, Nb, Ba, Hf, and Ta. Experiments were run for 168 h at 1.5 GPa, 800-1000 °C, and fO2 = NNO in a piston cylinder apparatus using the double capsule method. LA-ICP-MS analysis shows that run product zircon crystals have much higher trace element concentrations than in Mud Tank zircon starting material. Dz/f values were estimated from run product zircon analyses and bulk composition using mass balance. Most elements behave incompatibly, with median Dz/f being highest for Hf = 8 and lowest for B = 0.02. Addition of NaOH or HCl had little influence on Dz/f values. Dz/f for LREE are anomalously high, likely due to contamination of run product zircon with quenched solutes enriched in incompatible elements, so DLREE were estimated using lattice strain theory. Brice curves for +3 ions yield zircon/fluid DLu/DLa of ∼800-5000. A Brice curve fit to +4 ions yielded DCe4+ values. Estimated concentrations of Ce3+ and Ce4+ show that the average Ce4+/Ce3+ in zircon of 27 is much higher than in fluid of 0.02. Th and U show little fractionation, with median DTh/DU = 0.7, indicating that the low Th/U in natural hydrothermal zircon is inherited from the fluid. Natural fluid compositions estimated from measured Dz/f and published compositions of hydrothermal zircon grains from aplite and eclogite reflect the mineralogy of the host rock, e.g., fluid in equilibrium with eclogite garnet is depleted in heavy REE relative to middle REE, and has low Th/U.

  1. Determining baselines and variability of elements in plants and soils near the Kenai National Wildlife Refuge, Alaska

    USGS Publications Warehouse

    Crock, J.G.; Severson, R.C.; Gough, L.P.

    1992-01-01

    Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell for Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.Recent investigations on the Kenai Peninsula had two major objectives: (1) to establish elemental baseline concentrations ranges for native vegetation and soils; and, (2) to determine the sampling density required for preparing stable regional geochemical maps for various elements in native plants and soils. These objectives were accomplished using an unbalanced, nested analysis-of-variance (ANOVA) barbell sampling design. Hylocomium splendens (Hedw.) BSG (feather moss, whole plant), Picea glauca (Moench) Voss (white spruce, twigs and needles), and soil horizons (02 and C) were collected and analyzed for major and trace total element concentrations. Using geometric means and geometric deviations, expected baseline ranges for elements were calculated. Results of the ANOVA show that intensive soil or plant sampling is needed to reliably map the geochemistry of the area, due to large local variability. For example, producing reliable element maps of feather moss using a 50 km cell (at 95% probability) would require sampling densities of from 4 samples per cell Al, Co, Fe, La, Li, and V, to more than 15 samples per cell for Cu, Pb, Se, and Zn.

  2. Impact of the Di(2-Ethylhexyl) Phthalate Administration on Trace Element and Mineral Levels in Relation of Kidney and Liver Damage in Rats.

    PubMed

    Aydemir, Duygu; Karabulut, Gözde; Şimşek, Gülsu; Gok, Muslum; Barlas, Nurhayat; Ulusu, Nuriye Nuray

    2018-04-13

    Di(2-ethylhexyl) phthalate (DEHP) is a widely used synthetic polymer in the industry. DEHP may induce reproductive and developmental toxicity, obesity, carcinogenesis and cause abnormal endocrine function in both human and wildlife. The aim of this study was to investigate trace element and mineral levels in relation of kidney and liver damage in DEHP-administered rats. Therefore, prepubertal male rats were dosed with 0, 100, 200, and 400 mg/kg/day of DEHP. At the end of the experiment, trace element and mineral levels, glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6-PGD), glutathione reductase (GR) and glutathione S-transferase (GST) enzyme activities were evaluated in the serum, liver, and kidney samples of rats. Furthermore, serum clinical biochemistry parameters, organ/body weight ratios and histological changes were investigated to evaluate impact of DEHP more detailed. Our data indicated that sodium (Na), calcium (Ca), potassium (K), lithium (Li), rubidium (Rb) and cesium (Cs) levels significantly decreased, however iron (Fe) and selenium (Se) concentrations significantly increased in DEHP-administered groups compared to the control in the serum samples. On the other hand, upon DEHP administration, selenium concentration, G6PD and GR activities were significantly elevated, however 6-PGD activity significantly decreased compared to the control group in the kidney samples. Decreased G6PD activity was the only significant change between anti-oxidant enzyme activities in the liver samples. Upon DEHP administration, aberrant serum biochemical parameters have arisen and abnormal histological changes were observed in the kidney and liver tissue. In conclusion, DEHP may induce liver and kidney damage, also result abnormalities in the trace element and mineral levels.

  3. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, P.R.; Meeker, K.; Finnegan, D.

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gasesmore » and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.« less

  4. Evaluation of LiDAR Imagery as a Tool for Mapping the Northern San Andreas Fault in Heavily Forested Areas of Mendocino and Sonoma Counties, California

    NASA Astrophysics Data System (ADS)

    Prentice, C. S.; Koehler, R. D.; Baldwin, J. N.; Harding, D. J.

    2004-12-01

    We are mapping in detail active traces of the San Andreas Fault in Mendocino and Sonoma Counties in northern California, using recently acquired airborne LiDAR (also known as ALSM) data. The LiDAR data set provides a powerful new tool for mapping geomorphic features related to the San Andreas Fault because it can be used to produce high-resolution images of the ground surfaces beneath the forest canopy along the 70-km-long section of the fault zone encompassed by the data. Our effort represents the first use of LiDAR data to map active fault traces in a densely vegetated region along the San Andreas Fault. We are using shaded relief images generated from bare-earth DEMs to conduct detailed mapping of fault-related geomorphic features (e.g. scarps, offset streams, linear valleys, shutter ridges, and sag ponds) between Fort Ross and Point Arena. Initially, we map fault traces digitally, on-screen, based only on the geomorphology interpreted from LiDAR images. We then conduct field reconnaissance using the initial computer-based maps in order to verify and further refine our mapping. We found that field reconnaissance is of utmost importance in producing an accurate and detailed map of fault traces. Many lineaments identified as faults from the on-screen images were determined in the field to be old logging roads or other features unrelated to faulting. Also, in areas where the resolution of LiDAR data is poor, field reconnaissance, coupled with topographic maps and aerial photographs, permits a more accurate location of fault-related geomorphic features. LiDAR images are extremely valuable as a base for field mapping in this heavily forested area, and the use of LiDAR is far superior to traditional mapping techniques relying only on aerial photography and 7.5 minute USGS quadrangle topographic maps. Comparison with earlier mapping of the northern San Andreas fault (Brown and Wolfe, 1972) shows that in some areas the LiDAR data allow a correction of the fault trace location of up to several hundred meters. To date we have field checked approximately 24 km of the 70-km-long section of the fault for which LiDAR data is available. The remaining 46 km will be field checked in 2005. The result will be a much more accurate map of the active traces of the northern San Andreas Fault, which will be of great use for future fault studies.

  5. Laser-ablation ICP-MS as a tool for whole rock trace element analyses on fused powders

    NASA Astrophysics Data System (ADS)

    Girard, G.; Rooney, T. O.

    2013-12-01

    Here we present an accurate and precise technique for routine trace element analysis of geologic materials by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). We focus on rock powders previously prepared for X-ray fluorescence by fusion in a Li2B4O7 flux, and subsequently quenched in a Pt mold to form a glass disk. Our method allows for the analysis up to 30 trace elements by LA-ICP-MS using a Photon-Machines Analyte G2 193 nm excimer laser coupled to a Thermo-Fisher Scientific ICAP Q quadrupole ICP-MS. Analyses are run as scans on the surface of the disks. Laser ablation conditions for which trace element fractionation effects are minimal have been empirically determined to be ~ 4 J m-2 fluence, at 10 Hz , and 10 μm s-1 scan speed, using a 110 μm laser beam size. Ablated material is carried into the ICP-MS by a He carrier at a rate of 0.75 L min-1. Following pre-ablation to remove surface particles, samples are ablated for 200 s, of which 140 s are used for data acquisition. At the end of each scan, a gas blank is collected for 30 s. Dwell times for each element vary between 15 and 60 μs, depending on abundance and instrument sensitivity, allowing 120 readings of each element during the data acquisition time window. To correct for variations in the total volume of material extracted by the laser, three internal standards are used, Ca, Fe and Zr. These elements are routinely analyzed by X-ray fluorescence by the Geoanalytical laboratory at Michigan State University with precision and accuracy of <5%. The availability of several internal standards allows for better correction of possible persisting laser ablation fractionation effects; for a particular trace element, we correct using the internal standard that best reproduces its ablation behavior. Our calibration is based on a combination of fused powders of US Geological Survey and Geological Survey of Japan rock standards, NIST SRM 612 glass, and US Geological Survey natural and synthetic basalt glasses. Instrumental drift is monitored during each run using two fused standards analyzed multiple times as unknowns. We routinely achieve an external precision of <5% on multiple replicates of standards run as unknowns, which are also within <5% of certified values. Elements analyzed include most first row transition metals, large ion lithophile elements, high field strength elements, lanthanide and actinide rare earth elements.

  6. Geochemical modeling of low melt-fraction anatexis in a peraluminous system: The Pena Negra complex (central Spain)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bea, F.

    1991-07-01

    A study was made of the chemical fractionation associated with four cases of anatectic segregation of low melt-fraction cordieritic granites from migmatized meta-greywackes. The aims of the study were to (1) reveal the fractionation patterns of major and trace elements, (2) compare the major element chemistry of leucogranites and the quantitative behavior of source minerals during anatexis - inferred by mass-balance adjustment - with available experimental data for peraluminous systems, and (3) discuss the behavior of trace elements in crustal melting by comparing the chemically determined composition of leucogranites with the results of three fractionation models. Two of these assumemore » a perfect diffusive behavior of trace elements within residual solids, but they use a different set of distribution coefficients. The third assumes a perfect nondiffusive behavior. In relation to their source rocks, the leucogranites are strongly depleted in Li, Transition Elements, and Light Rare Earth Elements, but enriched in K{sub 2}O, SiO{sub 2}, and Ba. Mass balance analysis using the Anatexis Mixing Model shows that the chemistry of cordierite leucogranites is compatible with its having originated by closed-system, water-undersaturated anatexis on previously migmatized meta-greywackes, leaving a residue enriched in cordierite plus biotite and exhausted in K-feldspar. Biotite melts congruently unless important amounts of sillimanite were also present in the source. Compared with experimental metals obtained from sources with the same chemical composition but with a different femic mineralogy (biotite + sillimanite, instead of cordierite + biotite), the Pena Negra leucogranites are richer in K{sub 2}O and MgO with a lower Fe/(Fe + Mg) ratio. The differences in magnesium are believed to result from the changes in the mineral assemblage of the source rocks.« less

  7. Determination of Trace Elements in Edible Nuts in the Beijing Market by ICP-M.

    PubMed

    Yin, Liang Liang; Tian, Qing; Shao, Xian Zhang; Kong, Xiang Yin; Ji, Yan Qin

    2015-06-01

    Nuts have received increased attention from the public in recent years as important sources of some essential elements, and information on the levels of elements in edible nuts is useful to consumers. Determination of the elemental distributions in nuts is not only necessary in evaluating the total dietary intake of the essential elements, but also useful in detecting heavy metal contamination in food. The aim of this study was to determine the mineral contents in edible nuts, and to assess the food safety of nuts in the Beijing market. Levels of Li, Cr, Mn, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, Th, and U in 11 types of edible nuts and seeds (macadamia nuts, lotus nuts, pistachios, sunflower seeds, pine nuts, almonds, walnuts, chestnuts, hazelnuts, cashews, and ginkgo nuts) as well as raisins were determined by inductively coupled plasma mass spectrometry (ICP-MS). The accuracy of the method was validated using standard reference materials GBW10014 (cabbage) and GBW10016 (tea). Our results provide useful information for evaluating the levels of trace elements in edible nuts in the Beijing market, will be helpful for improving food safety, and will aid in better protecting consumer interests. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. Assessment of stream water chemistry and impact of geothermal fluid in the up-Buyuk Menderes Basin, Turkey.

    PubMed

    Davraz, Aysen; Aksever, Fatma; Afsin, Mustafa

    2017-12-01

    The discharge of geothermal fluid into the natural water environment may lead to serious damages. In this study, the impact of geothermal waste water on surface water has been investigated in the up-Buyuk Menderes River, Turkey. Thermal return water from district heating and from thermal bath in the Sandıklı region were the most important source of major solutes and trace elements to the up-Buyuk Menderes River and tributaries. The thermal contribution causes a drastic increase in Na, SO 4 ions, EC, and temperature of surface waters. The concentrations of As, Al, B, Fe, Cr, Li, S, P, Pb, U, Mn, and Zn are increasing dramatically downstream of thermal water inputs in the Kufi Creek tributary. In addition to natural thermal water inputs, water quality was impacted by anthropogenic trace and major element inputs from surface waters. The increased of some trace elements (Al, As, B, Cu, Cd, Fe, Mn, P, U) in surface water are related to anthropogenic activities such as agricultural activities, sewage effluents, and stockyards in the study area. Additionally, surface water quality of the up-Buyuk Menderes River and tributaries was evaluated according to standards given by the Environmental Protection Agency of both Turkey and USA. Our study demonstrates the influence of thermal water inputs on water quality of surface waters.

  9. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian; Romer, Rolf L.; Stracke, Andreas; Steenfelt, Agnete; Smart, Katie A.; Muehlenbachs, Karlis; Torsvik, Trond H.

    2017-05-01

    Kimberlite and carbonatite magmas that intrude cratonic lithosphere are among the deepest probes of the terrestrial carbon cycle. Their co-existence on thick continental shields is commonly attributed to continuous partial melting sequences of carbonated peridotite at >150 km depths, possibly as deep as the mantle transition zone. At Tikiusaaq on the North Atlantic craton in West Greenland, approximately 160 Ma old ultrafresh kimberlite dykes and carbonatite sheets provide a rare opportunity to study the origin and evolution of carbonate-rich melts beneath cratons. Although their Sr-Nd-Hf-Pb-Li isotopic compositions suggest a common convecting upper mantle source that includes depleted and recycled oceanic crust components (e.g., negative ΔεHf coupled with > + 5 ‰ δ7Li), incompatible trace element modelling identifies only the kimberlites as near-primary low-degree partial melts (0.05-3%) of carbonated peridotite. In contrast, the trace element systematics of the carbonatites are difficult to reproduce by partial melting of carbonated peridotite, and the heavy carbon isotopic signatures (-3.6 to - 2.4 ‰ δ13C for carbonatites versus -5.7 to - 3.6 ‰ δ13C for kimberlites) require open-system fractionation at magmatic temperatures. Given that the oxidation state of Earth's mantle at >150 km depth is too reduced to enable larger volumes of 'pure' carbonate melt to migrate, it is reasonable to speculate that percolating near-solidus melts of carbonated peridotite must be silicate-dominated with only dilute carbonate contents, similar to the Tikiusaaq kimberlite compositions (e.g., 16-33 wt.% SiO2). This concept is supported by our findings from the North Atlantic craton where kimberlite and other deeply derived carbonated silicate melts, such as aillikites, exsolve their carbonate components within the shallow lithosphere en route to the Earth's surface, thereby producing carbonatite magmas. The relative abundances of trace elements of such highly differentiated 'cratonic carbonatites' have only little in common with those of metasomatic agents that act on the deeper lithosphere. Consequently, carbonatite trace element systematics should only be used with caution when constraining carbon mobility and metasomatism at mantle depths. Regardless of the exact nature of carbonate-bearing melts within the mantle lithosphere, they play an important role in enrichment processes, thereby decreasing the stability of buoyant cratons and promoting rift initiation - as exemplified by the Mesozoic-Cenozoic breakup of the North Atlantic craton.

  10. Geographic and Oceanographic Information within Trace Metals in Moray Eel Otoliths

    NASA Astrophysics Data System (ADS)

    Savidge, W.; Windom, H.; Buck, C.

    2016-02-01

    Adult moray eels exhibit high site fidelity to particular reefs. We hypothesized that the trace metal composition of otoliths of eels could potentially provide insight into gradients in oceanographic processes on the South Atlantic Bight continental shelf where eels are resident on patchy hardbottom reefs throughout the entire region. Otoliths of moray eels collected from the mid-shelf of South Carolina were examined for their trace metal composition (Ba, Sr, Pb, Cu, Li, Mg, V, Mn, Zn). Samples were broadly lumped into four regions: "North," "North Cape Romain," "South Cape Romain," and "South". Trace metal composition within otoliths showed no latitudinal trends. However, factor analysis of the trace metals revealed that otoliths from the South Cape Romain region appeared as a compositionally distinct subgroup, based primarily on their Li and Mg content. Recent work on corals (Montagna et al. 2014) has shown the Li/Mg ratio within coral skeletons is sensitive to calcification temperature and can be used as a paleothermometer. If analogous processes influence Li/Mg ratios within otoliths, the data suggest that the bottom water at the South Cape Romain site is colder than other locations along the South Carolina shelf, perhaps as a result of locally enhanced upwelling. Additional samples from NC, SC, GA, and FL are being examined to see if other sites within the South Atlantic Bight show similar patterns. Montagna, P., McCulloch, M., Douville, E., et al. 2014. Li/Mg systematics in scleratinian corals: Calibration of the thermometer. Geochim Cosmochim Acta 132: 288-310.

  11. New perspectives on the Li isotopic composition of the upper continental crust and its weathering signature

    NASA Astrophysics Data System (ADS)

    Sauzéat, Lucie; Rudnick, Roberta L.; Chauvel, Catherine; Garçon, Marion; Tang, Ming

    2015-10-01

    Lithium isotopes are increasingly used to trace both present-day and past weathering processes at the surface of the Earth, and could potentially be used to evaluate the average degree of past weathering recorded by the upper continental crust (UCC). Yet the previous estimate of average δ7Li of the UCC has a rather large uncertainty, hindering the use of Li isotopes for this purpose. New δ7Li for desert and periglacial loess deposits (windblown dust) from several parts of the world (Europe, Argentina, China and Tajikistan) demonstrate that the former are more homogeneous than the latter, and may therefore serve as excellent proxies of the average composition of large tracts of the UCC. The Li isotopic compositions and concentrations of desert loess samples are controlled by eolian sorting that can be quantified by a binary mixing between a weathered, fine-grained end-member, dominated by phyllosilicates and having low δ7Li, and an unweathered, coarse-grained end-member, that is a mixture of quartz and plagioclase having higher δ7Li. We use correlations between insoluble elements (REE, Nd/Hf and Fe2O3/SiO2), Li concentrations (henceforth referred as [Li]), and δ7Li to estimate a new, more precise, average Li isotopic composition and concentration for the UCC: [ Li ] = 30.5 ± 3.6 (2 σ) ppm, and δ7Li = + 0.6 ± 0.6 (2 σ). The δ7Li for desert loess deposits is anti-correlated with the chemical index of alteration (CIA). Using this relationship, along with our average δ7Li, we infer that (1) the present-day CIA of the average UCC is 61-2+4 (2 σ), higher than the common reference value of 53, and (2) the average proportion of chemically weathered components is as high as 37-10+17 (2 σ)% at the surface of the Earth.

  12. Trace-element deposition in the Cariaco Basin, Venezuela Shelf, under sulfate-reducing conditions: a history of the local hydrography and global climate, 20 ka to the present

    USGS Publications Warehouse

    Piper, David Z.; Dean, Walter E.

    2002-01-01

    A sediment core from the Cariaco Basin on the Venezuelan continental shelf, which recovered sediment that has been dated back to 20 ka (thousand years ago), was examined for its major-element-oxide and trace-element composition. Cadmium (Cd), chromium (Cr), copper (Cu), molybdenum (Mo), nickel (Ni), vanadium (V), and zinc (Zn) can be partitioned between a siliciclastic, terrigenous-derived fraction and two seawater-derived fractions. The two marine fractions are (1) a biogenic fraction represented by nutrient trace elements taken up mostly in the photic zone by phytoplankton, and (2) a hydrogenous fraction that has been derived from bottom water via adsorption and precipitation reactions. This suite of trace elements contrasts with a second suite of trace elements—barium (Ba), cobalt (Co), gallium (Ga), lithium (Li), the rare-earth elements, thorium (Th), yttrium (Y), and several of the major-element oxides—that has had solely a terrigenous source. The partitioning scheme, coupled with bulk sediment accumulation rates measured by others, allows us to determine the accumulation rate of trace elements in each of the three sediment fractions and of the fractions themselves. The current export of organic matter from the photic zone, redox conditions and advection of bottom water, and flux of terrigenous debris into the basin can be used to calculate independently trace-element depositional rates. The calculated rates show excellent agreement with the measured rates of the surface sediment. This agreement supports a model of trace-element accumulation rates in the subsurface sediment that gives a 20-kyr history of upwelling into the photic zone (that is, primary productivity), bottom-water advection and redox, and provenance. Correspondence of extrema in the geochemical signals with global changes in sea level and climate demonstrates the high degree to which the basin hydrography and provenance have responded to the paleoceanographic and paleoclimatic regimes of the last 20 kyr. The accumulation rate of the marine fraction of Mo increased abruptly at about 14.8 ka (calendar years), from less than 0.5 µg cm-2 yr-1 to greater than 4 µg cm-2 yr-1. Its accumulation rate remained high but variable until 8.6 ka, when it decreased sharply to 1 µg cm-2 yr-1. It continued to decrease to 4.0 ka, to its lowest value for the past 15 kyr, before gradually increasing to the present. Between 14.8 ka and 8.6 ka, its accumulation rate exhibited strong maxima at 14.4, 13.0, and 9.9 ka. The oldest maximum corresponds to melt-water pulse IA into the Gulf of Mexico. A relative minimum, centered at about 11.1 ka, corresponds to melt-water pulse IB; a strong maximum occurs in the immediately overlying sediment. The maximum at 13.0 ka corresponds to onset of the Younger Dryas cold event. This pattern to the accumulation rate of Mo (and V) can be interpreted in terms of its deposition from bottom water of the basin, the hydrogenous fraction, under SO42- -reducing conditions, during times of intense bottom-water advection 14.8 ka to 11.1 ka and significantly less intense bottom-water advection 11 ka to the present. The accumulation rate of Cd shows a pattern that is only slightly different from that of Mo, although its deposition was determined largely by the rain rate of organic matter into the bottom water, a biogenic fraction whose deposition was driven by upwelling of nutrient-enriched water into the photic zone. Its accumulation exhibits only moderately high rates, on average, during both melt-water pulses. Its highest rate, and that of upwelling, occurred during the Younger Dryas, and again following melt-water pulse IB. The marine fractions of Cu, Ni, and Zn also have a strong biogenic signal. The siliciclastic terrigenous debris, however, represents the dominant source, and host, of Cu, Ni, and Zn. All four trace elements have a consid-erably weaker hydrogenous signal than biogenic signal. Accumulation rates of the terrigenous fraction, as reflected by accumulation rates of Th and Ga, show strong maxima at 16.2 and 12.7 ka and minima at 14.1 and 11.1 ka. Co, Li, REE, and Y have a similar distribution. The minima occurred during melt-water pulses IA and IB, the maxima during the Younger Dryas and the rise in sea level following the last glacial maximum.

  13. Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Vianello, Gilmo; Vittori, Livia; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    Macro- and micronutrients concentrations, and PTEs contents in soils and plants (rice) from the rice district in the Venetian territory (NE Italy) have been determined by ICP-MS spectrometry, with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0-30cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with moderate soil contamination by trace elements (namely Li, Sn, Tl, Sr, Ti, Fe). Heavy metal (Sb, As, Be, Cd, Co, Cr, Ni, Pb, Cu, V, Zn ) concentrations in soils are below the threshold indicated by the Italian legislation (DM 152/2006). Cd, Sn, and Ti contents in soils are positively correlated with soil pH, while As, Fe, Li, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of Strontium, soil metal contents are always correlated between variable couples. HMs in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an accumulator plant of As, Pb, Cr, Ba, and Ti, whereas it is as an indicator plant for Cu, Fe, Ni, Mn and Zn. The results of multiple linear regression analysis showed that soil pH has a larger effect on Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn concentrations in grain than other soil parameters. The average translocation of metals from soil to root was found to be >1, irrespective of the essential/not essential function; conversely, only essential elements ((Cu, Fe, Mn, Zn) are translocated rather easily from roots to leaves (TF ≤1) via phloem (TF< <1), and very little translocated to grains (TF< <1). Therefore, it is suggested that rice could be useful in contaminated-sites restoration projects by the phytostabilization technique. Moreover, there is very limited hazard for human population consuming rice crops. Key Words: Macro- and micronutrients concentrations, heavy metals, trace elements, rice plant, Italy, accumulator plant, indicator plant * Corresponding author. Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  14. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes increase in the Mississippi and Columbia Basins, whereas fluxes markedly decrease in the Colorado Basin. No consistent pattern in trace element fluxes was detected in the Rio Grande Basin.

  15. Trace elements and organic contaminants in stream sediments from the Red River of the North Basin

    USGS Publications Warehouse

    Brigham, M.E.; Tornes, L.H.

    1996-01-01

    To assess the presence and distribution of a variety of hydro-phobic chemicals in streams in the Red River of the North Basin, bottom sediments were analyzed for trace elements, organochlorines, and polycyclic aromatic hydrocarbons (PAHs). Glaciolacustrine clays and carbonate minerals are common in fine sediments of the region, and can help explain the distribution of many elements. Aluminum (Al), an indicator of glaciolacustrine clay minerals, correlates strongly (r>0.75, p<0.05) with Cr, Co, Fe, La, Li, K, Sc, and Ti; and moderately (0.55

  16. High-fluorine rhyolite: An eruptive pegmatite magma at the Honeycomb Hills, Utah

    NASA Astrophysics Data System (ADS)

    Congdon, Roger D.; Nash, W. P.

    1988-11-01

    The Honeycomb Hills rhyolite dome in western Utah displays chemical and mineralogical features characteristic of a rare-element pegmatite magma. The lavas show extreme enrichments in such trace elements as Rb (≤1960 ppm), Cs (≤78), Li (≤344), Sn (≤33), Be (≤270), and Y (≤156). Phenocrysts (10%-50% by volume) include sanidine (Or66-70), plagioclase (Ab83-92), quartz, biotite approaching fluorsiderophyllite, and fluortopaz, as well as accessory phases common to highly differentiated granites and pegmatites, including zircon, thorite, fluocerite, columbite, fergusonite, and samarskite. Low temperatures (600 to 640 °C), coupled with high phenocryst and silica content, might normally preclude eruption due to the extremely high viscosity of the melt. However, high concentrations of fluorine (2%-3%) could domal lavas significantly reduce viscosity and allow eruption of domal lavas even after dewatering of the mama during the initial pyroclastic phase of the eruptive cycle. Fractionation of phenocrysts and accessory phases, for which partition coefficients have been measured, is sufficient to account for most compositional gradients inferred in the preeruptive magma body, although transport by a fluid phase formed a may have caused upward enrichments in Li, Be, and Cs. If the Honeycomb Hills magma had crystallized at depth, it would have formed a rare-element pegmatite.

  17. Trace Element and Cu Isotopic Tracers of Subsurface Flow and Transport in Wastewater Irrigated Soils

    NASA Astrophysics Data System (ADS)

    Carte, J.; Fantle, M. S.

    2017-12-01

    An understanding of subsurface flow paths is critical for quantifying the fate of contaminants in wastewater irrigation systems. This study investigates the subsurface flow of wastewater by quantifying the distribution of trace contaminants in wastewater irrigated soils. Soil samples were collected from the upper 1m of two wetlands at Penn State University's wastewater irrigation site, at which all effluent from the University's wastewater treatment plant has been sprayed since 1983. Major and trace element and Cu isotopic composition were determined for these samples, in addition to wastewater effluent and bedrock samples. The upper 20 cm of each wetland shows an enrichment of Bi, Cd, Cr, Cu, Mo, Ni, Pb, and Zn concentrations relative to deep (>1m) soils at the site by a factor of 1.7-3.5. Each wetland also has a subsurface clay rich horizon with Bi, Cu, Li, Ni, Pb, and Zn concentrations enriched by a factor of 1.4 to 5 relative to deep soils. These subsurface horizons directly underlie intervals that could facilitate preferential effluent flow: a gravel layer in one wetland, and a silty loam with visible mottling, an indication of dynamic water saturation, in the other. Trace metal concentrations in other horizons from both wetlands fall in the range of the deep soils. Significant variability in Cu isotopic composition is present in soils from both wetlands, with δ65Cu values ranging from 0.74‰ to 5.09‰. Soil δ65Cu correlates well with Cu concentrations, with lighter δ65Cu associated with higher concentrations. The Cu isotopic composition of the zones of metal enrichment are comparable to the ostensible average wastewater effluent δ65Cu value (0.61‰), while other horizons have considerably heavier δ65Cu values. We hypothesize that wastewater is the source of the metal enrichments, as each of the enriched elements are present as contaminants in wastewater, and the enrichments are located in clay-rich horizons conducive to trace metal immobilization due to adsorption. This hypothesis will be further tested by modeling with the reactive transport code CrunchTope. This study provides evidence that trace element and isotopic composition of soils can be useful tracers of subsurface hydrologic pathways and elemental fate and transport.

  18. Foraminiferal Stable Isotope Geochemistry At The Micrometer Scale: Is It A Dream Or Reality?

    NASA Astrophysics Data System (ADS)

    Misra, S.; Shuttleworth, S.; Lloyd, N. S.; Sadekov, A.; Elderfield, H.

    2012-12-01

    Over last few decades trace metals and stable isotope compositions of foraminiferal shells became one of the major tools to study past oceans and associated climate change. Empirical calibrations of δ11B, δ18O, Mg/Ca, Cd/Ca, Ba/Ca shells compositions have linked them to various environmental parameters such as seawater pH, temperature, salinity and productivity. Despite their common use as proxies, little is known about mechanisms of trace metals incorporation into foraminiferal calcite. Trace metals partition coefficients for foraminiferal calcite is significantly different from inorganic calcite precipitates underlining strong biological control on metal transport to the calcification sites and their incorporation into the calcite. Microscale distribution of light elements isotopes (e.g. Li, B, Mg) could potentially provide unique inside into these biomineralization processes improving our understanding of foraminiferal geochemistry. In this work we explore potentials of using recent advances in analytical geochemistry by employing laser ablation and multi-collector ICP-MS to study microscale distribution of Mg isotopes across individual foraminiferal shells and δ11B, and δ7Li analyses of individual shell chambers. The analytical setup includes an Analyte.G2 193nm excimer laser ablation system with two volume ablation cell connected to a Thermo Scientific NEPTUNE Plus MC-ICP-MS with Jet Interface option. We will discuss method limitations and advantages for foraminiferal geochemistry as well as our data on Mg isotopes distribution within shells of planktonic foraminifera.

  19. Main components of PM10 in an area influenced by a cement plant in Catalonia, Spain: Seasonal and daily variations.

    PubMed

    Rovira, Joaquim; Sierra, Jordi; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2018-05-01

    Particulate matter (PM) composition has a key role in a wide range of health outcomes, such as asthma, chronic obstructive pulmonary disease, lung cancer, cardiovascular disease, and death, among others. Montcada i Reixac, a municipality located in the Barcelona metropolitan area (Catalonia, Spain), for its location and orography, is an interesting case- study to investigate air pollution. The area is also characterized by the presence of different industrial emission sources, including a cement factory and a large waste management plant, as well as an intense traffic. In this study, PM 10 levels, trace elements, ions, and carbonaceous particles were determined for a long time period (2013-2016) in this highly polluted area. PM 10 samples were collected during six consecutive days in two campaigns (cold and warm) per year. A number of elements (As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, K, La, Li, Hg, Mg, Mn, Mo, Nb, Nd, Ni, Pb, Pr, Rb, Sb, Sc, Se, Sm, Sn, Sr, Tb, Th, Ti, Tl, U, V, W, Y, Yb, and Zr), ions (Cl - , SO 4 2- , NO 3 - , and NH 4 + ), and carbonaceous content (total carbon, organic plus elemental carbon, and CO 3 2- ), were analysed. These data were used to identify the PM 10 main components: mineral matter, sea spray, secondary inorganic aerosols, organic matter plus elemental carbon, trace elements or indeterminate fraction. Although a clear seasonality (cold vs. warm periods) was found, there were no differences between working days and weekends. Obviously, the cement plant influences the surrounding environment. However, no differences in trace elements related with the cement plant activity (Al, Ca, Ni and V) between weekdays and weekends were noted. However, some traffic-related elements (i.e., Co, Cr, Mn, and Sb) showed significantly higher concentrations in weekdays. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: Implications for the influence of subduction components and the contamination of crustal materials

    NASA Astrophysics Data System (ADS)

    Guo, Kun; Zhai, Shikui; Yu, Zenghui; Wang, Shujie; Zhang, Xia; Wang, Xiaoyuan

    2018-04-01

    The Okinawa Trough is an infant back-arc basin developed along the Ryukyu arc. This paper provides new major and trace element and Sr-Nd-Pb-Li isotope data of volcanic rocks in the Okinawa Trough and combines the published geochemical data to discuss the composition of magma source, the influence of subduction component, and the contamination of crustal materials, and calculate the contribution between subduction sediment and altered oceanic crust in the subduction component. The results showed that there are 97% DM and 3% EMI component in the mantle source in middle trough (MS), which have been influenced by subduction sediment. The Li-Nd isotopes indicate that the contribution of subduction sediment and altered oceanic crust in subduction component are 4 and 96%, respectively. The intermediate-acidic rocks suffer from contamination of continental crust material in shallow magma chamber during fractional crystallization. The acidic rocks in south trough have experienced more contamination of crustal material than those from the middle and north trough segments.

  1. The Dart estuary, Devon, UK: a case study of chemical dynamics and pollutant mobility

    NASA Astrophysics Data System (ADS)

    Schuwerack, P.-M. M.; Neal, M.; Neal, C.

    2007-01-01

    Water, sediments and gill and digestive gland tissues of adult common shore crab (Carcinus maenas), collected at Noss Marina, Sandquay (Britannia Royal Naval College), the Dartmouth Pier, Warfleet Cove and Sugary Cove in the Dart estuary, Devon, UK, were analysed for major, minor and trace elements in spring 2004. Total acid-available measurements analysed included the truly dissolved component and acid-available sediments. Trace metal concentrations are associated largely with particulate and micro-particulate/colloidal phases, the latter being able to pass through standard filter papers. Wide ranges of chemical concentrations were found in the water, sediments and tissues at all the locations. In the water column, 48% of the variance is linked to the sea-salt component (Cl, Na, K, Ca, Mg, B, Li and Sr) and the sediment-associated acid-available fractions are linked to Fe-rich lithogenous materials (Ba, Co, Cu, Fe, Mn, V and Zn). In the sediments, trace elements of Cd, Co, Cr, Fe, Pb, Mn, Ni and V are correlated with the sea salts and associated with the fraction of fine sediments within the total sediment. In the gills and the digestive gland tissues of crabs, high concentrations of Al, Cu and Fe are found and there are correlations between acid-available trace metals of Cu, Cr, Fe, Mn, Ni, Sr and Zn. The relationships between trace metal contaminants, their site-specific concentrations, their temporal and spatial variability and the effects of human activities, such as moorland/agriculture with historic mining and recreational activities in the lower Dart estuary, are discussed.

  2. Spatial and temporal distribution of metals in suspended particulate matter of the Kali estuary, India

    NASA Astrophysics Data System (ADS)

    Suja, S.; Kessarkar, Pratima M.; Fernandes, Lina L.; Kurian, Siby; Tomer, Arti

    2017-09-01

    Major (Al, Fe, Mn, Ti, Mg) and trace (Cu, Zn, Pb, Cr, Ni, Co, Zr, Rb, Sr, Ba, Li, Be, Sc, V, Ga, Nb, Mo, Sn, Sb, Cs, Hf, Ta, Bi, Th, U) elements and particulate organic carbon (POC) concentrations in surface suspended particulate matter (SPM) of the Kali estuary, (central west coast of India) were studied during the pre-monsoon, monsoon and post monsoon seasons to infer estuarine processes, source of SPM and Geoaccumulation Index (Igeo) assigned pollutionIgeo levels. Distribution of SPM indicates the presence of the estuarine turbidity maximum (ETM) during all three seasons near the river mouth and a second ETM during the post monsoon time in the upstream associated with salinities gradient. The SPM during the monsoon is finer grained (avg. 53 μm), characterized by uniformly low normalized elemental concentration, whereas the post and pre monsoon are characterized by high normalized elemental concentration with coarser grain size (avg. 202 μm and 173 μm respectively) with highest ratios in the upstream estuary. The elemental composition and principal component analysis for the upstream estuary SPM support more contribution from the upstream catchment area rocks during the monsoon season; there is additional contribution from the downstream catchment area during the pre and post monsoon period due to the tidal effect. The Kali estuarine SPM has higher Al, Fe, Mn, Ti, Mg, Ni, Co, Ba, Li and V with respect to Average World River SPM (WRSPM). Igeo values for the SPM indicate Kali Estuary to be severely enriched with Mn and moderately enriched with Cu, Zn, Ni, Co, U and Mo in the upstream estuary during pre and post monsoon seasons. Seasonal changes in salinity gradient (reduced freshwater flow due to closing of the dam gates), reduced velocity at meandering region of the estuary and POC of 1.6-2.3% resulted in co-precipitation of trace elements that were further fortified by flocculation and coagulation throughout the water column resulting in metal trapping in the upstream region.

  3. The effect of sampling scheme in the survey of atmospheric deposition of heavy metals in Albania by using moss biomonitoring.

    PubMed

    Qarri, Flora; Lazo, Pranvera; Bekteshi, Lirim; Stafilov, Trajce; Frontasyeva, Marina; Harmens, Harry

    2015-02-01

    The atmospheric deposition of heavy metals in Albania was investigated by using a carpet-forming moss species (Hypnum cupressiforme) as bioindicator. Sampling was done in the dry seasons of autumn 2010 and summer 2011. Two different sampling schemes are discussed in this paper: a random sampling scheme with 62 sampling sites distributed over the whole territory of Albania and systematic sampling scheme with 44 sampling sites distributed over the same territory. Unwashed, dried samples were totally digested by using microwave digestion, and the concentrations of metal elements were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and AAS (Cd and As). Twelve elements, such as conservative and trace elements (Al and Fe and As, Cd, Cr, Cu, Ni, Mn, Pb, V, Zn, and Li), were measured in moss samples. Li as typical lithogenic element is also included. The results reflect local emission points. The median concentrations and statistical parameters of elements were discussed by comparing two sampling schemes. The results of both sampling schemes are compared with the results of other European countries. Different levels of the contamination valuated by the respective contamination factor (CF) of each element are obtained for both sampling schemes, while the local emitters identified like iron-chromium metallurgy and cement industry, oil refinery, mining industry, and transport have been the same for both sampling schemes. In addition, the natural sources, from the accumulation of these metals in mosses caused by metal-enriched soil, associated with wind blowing soils were pointed as another possibility of local emitting factors.

  4. Trophic ecology influence on metal bioaccumulation in marine fish: Inference from stable isotope and fatty acid analyses.

    PubMed

    Le Croizier, Gaël; Schaal, Gauthier; Gallon, Régis; Fall, Massal; Le Grand, Fabienne; Munaron, Jean-Marie; Rouget, Marie-Laure; Machu, Eric; Le Loc'h, François; Laë, Raymond; De Morais, Luis Tito

    2016-12-15

    The link between trophic ecology and metal accumulation in marine fish species was investigated through a multi-tracers approach combining fatty acid (FA) and stable isotope (SI) analyses on fish from two contrasted sites on the coast of Senegal, one subjected to anthropogenic metal effluents and another one less impacted. The concentrations of thirteen trace metal elements (As, Cd, Co, Cr, Cu, Fe, Li, Mn, Ni, Pb, Sn, U, and Zn) were measured in fish liver. Individuals from each site were classified into three distinct groups according to their liver FA and muscle SI compositions. Trace element concentrations were tested between groups revealing that bioaccumulation of several metals was clearly dependent on the trophic guild of fish. Furthermore, correlations between individual trophic markers and trace metals gave new insights into the determination of their origin. Fatty acids revealed relationships between the dietary regimes and metal accumulation that were not detected with stable isotopes, possibly due to the trace metal elements analysed in this study. In the region exposed to metallic inputs, the consumption of benthic preys was the main pathway for metal transfer to the fish community while in the unaffected one, pelagic preys represented the main source of metals. Within pelagic sources, metallic transfer to fish depended on phytoplankton taxa on which the food web was based, suggesting that microphytoplankton (i.e., diatoms and dinoflagellates) were a more important source of exposition than nano- and picoplankton. This study confirmed the influence of diet in the metal accumulation of marine fish communities, and proved that FAs are very useful and complementary tools to SIs to link metal accumulation in fish with their trophic ecology. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Using combinations of metal isotopes as tracers of tailings pond discharges to subsurface aquifers in the Athabasca Oil Sands area, Canada.

    NASA Astrophysics Data System (ADS)

    Gammon, P. R.; Savard, M. M.; Ahad, J. M.; Girard, I.

    2016-12-01

    The Athabasca Oil Sands (AOS) industry in Alberta, Canada deposits voluminous waste streams in Earth's largest tailings ponds (TPs). Detecting and tracing contaminant discharge from TPs to subsurface aquifers has proven difficult because tailings have the same composition as the surrounding environment of unmined oil sand. To trace pond discharge to the subsurface therefore relies on the waste stream hosting additions or alterations induced by mining or industrial processes. Inorganic element or contaminant concentration data have proven ineffective at tracing because there is insufficient alteration of the chemical constituents or their ratios. Metal isotopes have not generally been applied to tracing emissions even though isotopic fractionation is likely induced via the high temperature and pH industrial process. We have generated Mg, Li, Pb and Zn isotopic data for a range of groundwater wells and TPs. Mg isotopes are excellent for distinguishing deep saline brines that are pumped into the waste stream during mine dewatering. Li isotopes appear to be heavily fractionated during processing, which produces a heavy isotopic signature that is an excellent tracer of production water. Pb isotopes discriminate Pb derived from oil-sand versus bedrock carbonate. Juxtapositions of TPs, carbonates and near-surface aquifers are common and of significant regulatory concern, making Pb isotopes particularly useful. Zn isotopic data indicates similarities to Pb isotopes, but are difficult to obtain due to low concentrations. Combining the isotopic data with concentration data and hydrologic models will assist in determining the fluxes of discharges from the TPs to near-surface aquifers. The range of environmental contexts of AOS TPs is limited and thus monitoring discharges to nearby aquifers from TPs could feasibly be accomplished using tailored suites of metal isotopes.

  6. Inductively coupled plasma-mass spectrometric method for the determination of dissolved trace elements in natural water

    USGS Publications Warehouse

    Garbarino, J.R.; Taylor, Howard E.

    1996-01-01

    An inductively coupled plasma-mass spectrometry method was developed for the determination of dissolved Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sr, Tl, U, V, and Zn in natural waters. Detection limits are generally in the 50-100 picogram per milliliter (pg/mL) range, with the exception of As which is in the 1 microgram per liter (ug/L) range. Interferences associated with spectral overlap from concomitant isotopes or molecular ions and sample matrix composition have been identified. Procedures for interference correction and reduction related to isotope selection, instrumental operating conditions, and mathematical data processing techniques are described. Internal standards are used to minimize instrumental drift. The average analytical precision attainable for 5 times the detection limit is about 16 percent. The accuracy of the method was tested using a series of U.S. Geological Survey Standard Reference Water Standards (SWRS), National Research Council Canada Riverine Water Standard, and National Institute of Standards and Technology (NIST) Trace Elements in Water Standards. Average accuracies range from 90 to 110 percent of the published mean values.

  7. Imprints of an "Arc" Signature onto Subduction Zone Eclogites from Central Guatemala

    NASA Astrophysics Data System (ADS)

    Simons, K. K.; Sorensen, S. S.; Harlow, G. E.; Brueckner, H. K.; Goldstein, S. L.; Hemming, N. G.; Langmuir, C. H.

    2007-12-01

    High-pressure, low-temperature (HP-LT) rocks associated with the Motagua fault zone in central Guatemala occur as tectonic blocks in serpentinite mélange. Dismembered jadeitite and albitite veins within the melange are crystallization products of subduction fluids at <400° C and 0.4-1.4 GPa. Lawsonite eclogites represent the deepest, coldest rocks, with peak metamorphic conditions of approx. 2.6 GPa and 480°C. They contain a subduction fluid overprint acquired during retrogression to blue- and green-schist-facies conditions, seen mostly as hydrous phases (e.g. phengite, glaucophane) in veins and overgrowths. The low temperatures recorded in these rocks indicate they have only seen an aqueous fluid, not a melt, and therefore, could provide a window into the acquisition of an arc signature at a cold margin. Trace-element patterns for both eclogite and jadeitite resemble arc lavas, with large enrichments in the most fluid mobile elements (e.g. Cs, Tl, Ba, Pb), moderate enrichments in U, Th, Be and LREE and generally little to no enrichment in HFSE and HREE, although enriched Nb in jadeitite indicates some HFSE mobility. Trace-element patterns also have similarities to average subducting sediment (GLOSS), with enrichments in Th, Be, Ba and Li that suggest a sediment contribution. Nd versus Sr isotopes lie to the right of the mantle array, indicating a hydrous fluid contribution from altered ocean crust or sediment. Overall, Guatemalan eclogites resemble counterparts from the Franciscan Complex (CA) and the Dominican Republic. Guatemalan and Franciscan eclogites are interpreted to have had a MORB protolith despite the arc trace element signature because of: 1) similarities in major elements to MORB; 2) HREE and HFSE abundances similar to MORB; and 3) high 143Nd/144Nd that overlap MORB values. The modifications that transformed these eclogites from a MORB trace element pattern to an arc one can be attributed to an aqueous subduction fluid at moderate depths (<75km). This transformation may be due to the increased solubilities of some minerals (e.g., jadeite, albite, clays, sulfates) at high pressure, high water/rock ratios from dehydration reactions, and an abundance of alkali-aluminosilicate components in subduction fluids. Together these may act to dissolve and transport trace elements (including elements considered insoluble like Nb) out of the slab and into the mantle wedge. The Guatemala data thus indicate that the arc geochemical fingerprint may be achieved at cold margins without the need for melting.

  8. Neutron imaging systems utilizing lithium-containing semiconductor crystals

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold

    2017-04-25

    A neutron imaging system, including: a plurality of Li-III-VI.sub.2 semiconductor crystals arranged in an array, wherein III represents a Group III element and VI represents a Group VI element; and electronics operable for detecting and a charge in each of the plurality of crystals in the presence of neutrons and for imaging the neutrons. Each of the crystals is formed by: melting the Group III element; adding the Li to the melted Group III element at a rate that allows the Li and Group III element to react, thereby providing a single phase Li-III compound; and adding the Group VI element to the single phase Li-III compound and heating. Optionally, each of the crystals is also formed by doping with a Group IV element activator.

  9. Calculation of the overlap factor for scanning LiDAR based on the tridimensional ray-tracing method.

    PubMed

    Chen, Ruiqiang; Jiang, Yuesong; Wen, Luhong; Wen, Donghai

    2017-06-01

    The overlap factor is used to evaluate the LiDAR light collection ability. Ranging LiDAR is mainly determined by the optical configuration. However, scanning LiDAR, equipped with a scanning mechanism to acquire a 3D coordinate points cloud for a specified target, is essential in considering the scanning effect at the same time. Otherwise, scanning LiDAR will reduce the light collection ability and even cannot receive any echo. From this point of view, we propose a scanning LiDAR overlap factor calculation method based on the tridimensional ray-tracing method, which can be applied to scanning LiDAR with any special laser intensity distribution, any type of telescope (reflector, refractor, or mixed), and any shape obstruction (i.e., the reflector of a coaxial optical system). A case study for our LiDAR with a scanning mirror is carried out, and a MATLAB program is written to analyze the laser emission and reception process. Sensitivity analysis is carried out as a function of scanning mirror rotation speed and detector position, and the results guide how to optimize the overlap factor for our LiDAR. The results of this research will have a guiding significance in scanning LiDAR design and assembly.

  10. Constraints of lithium isotopes on petrogenesis of the Northern Luzon arc in Eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Hsiao, C. C.; Chu, M. F.; Lai, Y. M.; Lin, T. H.

    2017-12-01

    Lithium stable isotopes have great potential as a tracer of terrestrial materials in crust-mantle recycling. However, the causes of their variations in arc magmatism remain controversial. The Northern Luzon arc has long been demonstrated incorporation of the sediment melt into its sub-arc mantle. The Li isotopes of volcanic rocks in the Coastal Range, located in Eastern Taiwan, thus are studied to examine the effects of sediment melt on the evolution of Li isotopes in subduction zone and also to constrain the petrogenesis of the northernmost part of Northern Luzon arc. It is worth to note that we had ruled out samples that were significantly influenced by crustal contamination according to the proportion of inherited zircons, trace-elemental and Sr-Nd isotopic geochemistry. Concerning that Li isotopic fractionation is negligible during fractional crystallization and partial melting, the variation of Li/Y and δ7Li in rock samples of this study mainly reflects the geochemistry of magma sources. The overall range of δ7Li is very restricted (δ7Li = +2.9 +5.8) and consistent with that of N-MORB. In addition, ɛNd of the Coastal Range volcanic rocks lowers not only with increasing values of sediment-melt indicators (e.g., Th/Ce, Th/Yb and La/Sm), but also Li/Y (from 0.5 to 1.1 ppm). This suggests the involvement of sediment melt with equivalent δ7Li to and higher Li/Y than those of N-MORB, in magma source of the Coastal Range arc volcanism. In summary, the Li isotopic compositions of the Coastal Range volcanic rocks demonstrate that (1) Li/Y commonly treated as a tracer of fluid in arc magmatism indeed can be significantly affected by the input of sediment melt as well, and (2) sediment melt played a key role in the evolution of Li/Y and lithium isotopes in the mantle wedge, but showed least influence on Li isotopic variation possibly as a result of the similarity between δ7Li of sediments subducted and of the upper mantle.

  11. Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey

    NASA Astrophysics Data System (ADS)

    Koçak, İ.; Koç, Ş.

    2018-06-01

    Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.

  12. Baseline element concentrations in soils and plants, Bull Island, Cape Romain National Wildlife Refuge, South Carolina, U.S.A.

    USGS Publications Warehouse

    Gough, L.P.; Severson, R.C.; Jackson, L.L.

    1994-01-01

    Baseline element concentrations are given for Spanish moss (Tillandsia usneoides), loblolly pine (Pinus taeda), and associated soils. Baseline and variability data for ash, Al, Ba, C, Ca, Cd, Ce, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Na, Nb, Nd, Ni, P, Pb, S, Sc, Sr, Th, Ti, V, Y, and Zn are reported; however, not all variables are reported for all media because, in some media, certain elements were below the analytical detection limit. Spatial variation in element concentration among and within 0.5 km grid cells are given for each of the media. In general, only a few elements in Spanish moss showed statistically significant landscape patterns, whereas several elements in loblolly pine and in soils exhibited differences among sampling grids. Significant differences in the concentration of three elements in Spanish moss and eight elements (including total S) in loblolly pine were observed between two sampling dates (November and June); however, the absolute amount of these differences was small. Except for perhaps Ni and Pb concentrations in Spanish moss, element levels in all sample media exhibited ranges that indicate natural rather than anthropogenic additions of trace elements.

  13. Signals of pollution revealed by trace elements in recent snow from mountain glaciers at the Qinghai-Tibetan plateau.

    PubMed

    Li, Yuefang; Li, Zhen; Cozzi, Giulio; Turetta, Clara; Barbante, Carlo; Huang, Ju; Xiong, Longfei

    2018-06-01

    In order to extract pollution signal of trace elements (TEs) in glacier snow at the Qinghai-Tibetan plateau of China by human activities, concentrations of 18 TEs (Al, Ti, Fe, Rb, Sr, Ba, V, Cr, Mn, Li, Cu, Co, Mo, Cs, Sb, Pb, Tl, and U), 14 rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), Y and Th in digested snow samples from five glaciers in April-May 2013 before monsoon season were measured. Results shown that higher TEs concentrations were found in glaciers at the northern plateau while lower concentrations in glaciers at the central and southern plateau. Discussion revealed that EF values calculated from elements with mass fraction <30% such as Ti and Al, etc in traditional acid leached samples, will overestimate at least 4.6 times the contribution of other sources than dust for TEs such as Sb, Sr, As, Cu and Pb etc. Analysis indicated that most TEs mainly originated from dust sources, whereas Pb, Cu, Mo and Sb showed occasionally significant contributions from polluted sources in three snow pits and the GRHK surface snow samples. The pollution probably originated from mining and smelting, road transport emissions on the plateau and some regions outside of the plateau. Dust provenance tracing results based on REEs indicated that Taklimakan Desert, Qaidam Basin, and Tibetan surface soil were the potential dust sources for the studied glaciers, while the Indian Thar Desert was an occasional dust sources for YZF,XDKMD and GRHK snow samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Analysis of Hair Trace Elements in Children with Autism Spectrum Disorders and Communication Disorders.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Tinkov, Alexey A

    2017-06-01

    The primary objective of the present study is analysis of hair trace elements content in children with communication disorder (CD) and autism spectrum disorder (ASD). A total of 99 children from control, CD, and ASD groups (n = 33) were examined. All children were additionally divided into two subgroups according to age. Hair levels of trace elements were assessed using inductively coupled plasma mass spectrometry. The difference was considered significant at p < 0.01. The obtained data demonstrate that children with CD are characterized by significantly increased hair lithium (Li) (96 %; p = 0.008), selenium (Se) (66 %; p < 0.001), arsenic (As) (96 %; p = 0.005), beryllium (Be) (150 %; p < 0.001), and cadmium (Cd) (72 %; p = 0.007) content, being higher than the respective control values. In the ASD group, hair copper (Cu), iodine (I), and Be levels tended to be lower than the control values. In turn, the scalp hair content of Se significantly exceeded the control values (33 %; p = 0.004), whereas the level of iron (Fe) and aluminum (Al) tended to increase. After gradation for age, the most prominent differences in children with CD were detected in the elder group (5-8 years), whereas in the case of ASD-in the younger group (3-4 years old). Taking into account the role of hair as excretory mechanism for certain elements including the toxic ones, it can be proposed that children suffering from ASD are characterized by more profound alteration of metal handling and excretion in comparison to CD.

  15. Impact of Ficoll density gradient centrifugation on major and trace element concentrations in erythrocytes and blood plasma.

    PubMed

    Lu, Ying; Ahmed, Sultan; Harari, Florencia; Vahter, Marie

    2015-01-01

    Ficoll density gradient centrifugation is widely used to separate cellular components of human blood. We evaluated the suitability to use erythrocytes and blood plasma obtained from Ficoll centrifugation for assessment of elemental concentrations. We determined 22 elements (from Li to U) in erythrocytes and blood plasma separated by direct or Ficoll density gradient centrifugation, using inductively coupled plasma mass spectrometry. Compared with erythrocytes and blood plasma separated by direct centrifugation, those separated by Ficoll had highly elevated iodine and Ba concentration, due to the contamination from the Ficoll-Paque medium, and about twice as high concentrations of Sr and Mo in erythrocytes. On the other hand, the concentrations of Ca in erythrocytes and plasma were markedly reduced by the Ficoll separation, to some extent also Li, Co, Cu, and U. The reduced concentrations were probably due to EDTA, a chelator present in the Ficoll medium. Arsenic concentrations seemed to be lowered by Ficoll, probably in a species-specific manner. The concentrations of Mg, P, S, K, Fe, Zn, Se, Rb, and Cs were not affected in the erythrocytes, but decreased in plasma. Concentrations of Mn, Cd, and Pb were not affected in erythrocytes, but in plasma affected by EDTA and/or pre-analytical contamination. Ficoll separation changed the concentrations of Li, Ca, Co, Cu, As, Mo, I, Ba, and U in erythrocytes and blood plasma, Sr in erythrocytes, and Mg, P, S, K, Fe, Zn, Se, Rb and Cs in blood plasma, to an extent that will invalidate evaluation of deficiencies or excess intakes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Measuring H, O, li, B, and BE on Planetary Surfaces: Calibration of Laser-Induced Breakdown Spectroscopy (libs) Data Under Air, Vacuum, and CO2

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Nelms, M.; Breves, E. A.

    2012-12-01

    Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and other light elements are directly measured are nearly nonexistent in the 1-2 g quantities needed for LIBS analyses. For this study, we have obtained two sample suites that provide calibrations needed for accurate analyses of H, O, B, Be, and Li in geological samples. The first suite of 11 samples was analyzed for oxygen by fast neutron activation analysis. The second suite includes 11 gem-quality minerals representing the major rock-forming species for B, Li, and Be-rich parageneses. Light elements were directly analyzed using a combination of EMPA, XRF, ion microprobe, uranium extraction, proton-induced gamma-ray emission (PIGE), and prompt gamma-ray neutron activation analysis (PGNAA). LIBS spectra were acquired at Mount Holyoke College under air, vacuum, and CO2 to simulate terrestrial, lunar, and martian environments. Spectra were then used to develop three separate calibration models (one for each environment), enabling LIBS characterization of light elements using multivariate analyses. Results show that when direct analyses of H, O, Li, B, and Be are used rather than LOI results, inferred, or indirectly calculated values, optimal root mean squared errors of prediction result. We are actively adding samples to these calibration suites, and we expect that prediction errors (accuracies) of <1wt% for these elements are possible.

  17. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay).

    PubMed

    Campbell, Linda M; Norstrom, Ross J; Hobson, Keith A; Muir, Derek C G; Backus, Sean; Fisk, Aaron T

    2005-12-01

    Total mercury (THg), methylmercury (MeHg) and 22 other trace elements were measured in ice algae, three species of zooplankton, mixed zooplankton samples, Arctic cod (Boreogadus saida), ringed seals (Phoca hispida) and eight species of seabirds to examine the trophodynamics of these metals in an Arctic marine food web. All samples were collected in 1998 in the Northwater Polynya (NOW) located between Ellesmere Island and Greenland in Baffin Bay. THg and MeHg were found to biomagnify through the NOW food web, based on significant positive relationships between log THg and log MeHg concentrations vs. delta15N muscle and liver . The slope of these relationships for muscle THg and MeHg concentrations (slope=0.197 and 0.223, respectively) were similar to those reported for other aquatic food webs. The food web behavior of THg and delta15N appears constant, regardless of trophic state (eutrophic vs. oligotrophic), latitude (Arctic vs. tropical) or salinity (marine vs. freshwater) of the ecosystem. Rb in both liver and muscle tissue and Zn in muscle tissue were also found to biomagnify through this food web, although at a rate that is approximately 25% of that of THg. A number of elements (Cd, Pb and Ni in muscle tissue and Cd and Li in seabird liver tissue) were found to decrease trophically through the food web, as indicated by significantly negative relationships with tissue-specific delta15N. A diverse group of metals (Ag, Ba, La, Li, Sb, Sr, U and V) were found to have higher concentrations in zooplankton than seabirds or marine mammals due to bioconcentration from seawater. The remaining metals (As, Co, Cu, Ga, Mn, Mo and Se in muscle tissue) showed no relationship with trophic position, as indicated by delta15N values, although As in liver tissue showed significant biomagnification in the seabird portion of the food web.

  18. Metasomatic Reaction Zones as Monitors of Trace Element Transfer at the Slab-Mantle Interface: the Case of the Hochwart Peridotite (Ulten Zone, Italy)

    NASA Astrophysics Data System (ADS)

    Marocchi, M.; Hermann, J.; Bargossi, G. M.; Mair, V.; Morten, L.

    2006-12-01

    Ultramafic blocks belonging to the Hochwart peridotite outcrop (Ulten Zone, Italian Alps) preserve a series of metasomatic mineral zones generated by infiltration of Si-rich hydrous fluids which occurred at the gneiss- peridotite interface. The age of the high pressure metamorphism for the Hochwart complex has been constrained at 330 Ma (Tumiati et al., 2003, EPSL, 210, 509-526). The country rocks are stromatic gneisses consisting mainly of quartz, K-feldspar, garnet, kyanite, biotite and muscovite. The ultramafic body consists of strongly serpentinized metaperidotites which are exposed as a hectometre-size lens along a steep gully, associated to monomineralic zones that developed at the contact between the peridotite body and the garnet gneiss country rocks. The composition of the metasomatic zones has been investigated in detail and records an order of metasomatic zoning formed by phlogopite-rich to tremolite-anthophyllite-rich rocks going from the host gneiss towards the peridotite. In some cases, the ultramafics fade into the gneisses developing serpentine and talc which has replaced, presumably at lower temperatures, the serpentine matrix and occurs in association with chlorite. Phlogopite aggregates (phlogopitite) with accessory minerals (quartz + zircon + apatite) and metabasic pods (phlogopite and hornblende) also occur. Black tourmaline (schorl-dravite solid solution) has been found for the first time in the contact near the phlogopite zone, suggesting an external addition of elements (boron and fluorine) to the system at high temperature. The formation of the metasomatic zones composed exclusively of hydrous phases must have involved extensive H2O-metasomatism as already documented for the Ulten peridotites. The source for these fluids can be a system of trondhjemitic-pegmatitic dikes cutting the peridotite that would have channelled aqueous fluids into the ultramafic rocks. Whole-rock geochemistry and trace element (LA ICP-MS) composition of hydrous phases (phlogopite and amphibole) in different metasomatic zones indicate mobility of many elements, including elements such as Ta which are considered to have scarce mobility in fluids. Trace element composition of accessory minerals in the phlogopite-rich zone suggests that the trace element signature of subduction zone fluids may be fractionated in this zone. The progressive depletion in some trace elements (LREE) and enrichment in LILE and Li from the peridotite towards the gneiss suggests a strong influence of bulk composition on the trace element budget of hydrous minerals. Since the ultramafic blocks can be representative of metasomatic processes occurring at the slab-mantle interface, we can infer that metasomatic reactions between slab-derived fluids and ultramafic mantle wedge will follow a specific series of reactions, creating mineral zonation similar to those observed in this study. Our results further favour the evidence that the primary composition of subduction zone fluids is modified substantially by metasomatic reactions occurring in the mantle wedge.

  19. Interstitial Water Geochemistry and Low Temperature Alteration in Volcaniclastic Sediments from the Amami Sankaku Basin at IODP Site U1438 (Expedition 351)

    NASA Astrophysics Data System (ADS)

    Loudin, L. C.; Yogodzinski, G. M.; Sena, C.; van der Land, C.; Zhang, Z.; Marsaglia, K. M.; Meffre, S.

    2014-12-01

    Interstitial water (IW) geochemistry provides insight into the diagenetic transformation of sediment to rock by component dissolution/alteration and precipitation of new mineral phases as pore-filling cements, as well as providing insight into ion exchange reactions with secondary minerals. At Site U1438, 67 IW samples were collected within a ~950 m section of volcaniclastic sediments. These were analyzed for pH as well as major and trace elements. The corresponding host sediments were mineralogically characterized by XRD and petrographic observations. Three alteration zones are inferred: 1) the upper alteration zone (~0-300 mbsf) characterized by maximum IW concentrations of Si (790.1 μM), Sr (138.5 μM) and Mn (279.5 μM), consistent with volcanic glass and siliceous microfossil dissolution, enhanced reduction of Mn oxides, and carbonate recrystallization. Maximum concentrations in Li and B coupled with the lowest pH (6.7) imply that Li and B are released into the IW due to silicate dissolution and clay desorption. 2) At intermediate depths (~300 to ~550 mbsf) Mg, K, Sr, Si, Mn, Li, and B are at concentration minima, possibly due to growth of authigenic minerals. B and Li minimum concentrations occur at high pH (~9) suggesting that these elements are preferentially removed from high pH waters during the precipitation of clay mineral and zeolite cements in primary and secondary (dissolution) pores. The mineralogy of these phases is confirmed by XRD data, and their pore-filling nature is seen in thin sections of the coarser lithologies. 3) The deep alteration zone (>~550m) is characterized by an increase in B, Li, Sr and Ca. At ~650 mbsf, Ca becomes the dominant cation in solution consistent with either mineral interaction with the IW, or diffusive input from underlying igneous basement (~1400 mbsf).

  20. An investigation of upland erosion and sources of fine-sediment using aerial and terrestrial LiDAR, mineralogy, geochemistry, and particle-size, Humbug Creek and Malakoff Diggings State Historic Park, California

    NASA Astrophysics Data System (ADS)

    Curtis, J.; Alpers, C. N.; Howle, J.; Monohan, C.; Ward, J.; Bailey, T. L.; Walck, C.

    2015-12-01

    One of the largest hydraulic mines (1.6 km2) is located in California's Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). Previous work indicates typical annual discharge from Humbug Creek of > 500,000 kg of sediment and > 100 g of mercury. This study uses photogrammetry and repeat high-resolution topographic surveys to quantify erosion rates and geomorphic processes, and sediment "fingerprinting" to quantify contributions of fine-sediment sources. The headwaters of Humbug Creek are underlain by volcanic mudflows, whereas MDSHP's denuded and dissected landscape is composed of weathered auriferous sediments susceptible to chronic rill and gully erosion with block failures and debris flows occurring in more cohesive terrain. Aerial LiDAR (November 2014) was used to create a 1-meter digital elevation model (DEM); photogrammetry will be used to create a pre-1997 DEM from historic aerial photographs. DEM differencing will provide an integrated estimate of long-term erosion averaged over ~20 years in unvegetated areas. Finer-resolution (1-cm) terrestrial LiDAR (T-LiDAR) scans were made in late 2014 at four pit locations and will be repeated in the fall of 2015 and 2016. The T-LiDAR time series will provide annual erosion rates under modern conditions, allowing assessment of relative contributions from shallow surface processes and deeper gravity-driven processes. In 2014‒15 we collected storm runoff and in-situ hillslope samples. Sediment fingerprints (mineralogy, major elements, trace elements, and particle size) for source sediments will be used to assess relative contributions from fine-sediment sources using a statistical mixing model. We will present our approach, preliminary results, and discuss how this study supports selection and implementation of management and remediation strategies to ameliorate the discharge of sediment and mercury and mitigate downstream water-quality impacts.

  1. Fluid-related inclusions in Alpine high-pressure peridotite reveal trace element recycling during subduction-zone dehydration of serpentinized mantle (Cima di Gagnone, Swiss Alps)

    NASA Astrophysics Data System (ADS)

    Scambelluri, Marco; Pettke, Thomas; Cannaò, Enrico

    2015-11-01

    Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 103 PM (primitive mantle), ∼102 PM Tl, Ba, while Rb, B, Sr, Li, U concentrations are of the order of 101 PM, and alkalis are ∼2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.

  2. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China

    USGS Publications Warehouse

    Sun, R.; Liu, Gaisheng; Zheng, Lingyun; Chou, C.-L.

    2010-01-01

    The abundances of nine major elements and thirty-eight trace elements in 520 samples of low sulfur coals from the Zhuji Mine, Huainan Coalfield, Anhui, China, were determined. Samples were mainly collected from 10 minable coal seams of 29 boreholes during exploration. The B content in coals shows that the influence of brackish water decreased toward the top of coal seams; marine transgression and regression occurred frequently in the Lower Shihezi Formation. A wide range of elemental abundances is found. Weighted means of Na, K, Fe, P, Be, B, Co, Ni, Cr, Se, Sb, Ba, and Bi abundances in Zhuji coals are higher, and the remainder elements are either lower or equal to the average values of elements in coals of northern China. Compared to the Chinese coals, the Zhuji coals are higher in Na, K, Be, B, Cr, Co, Se, Sn, Sb, and Bi, but lower in Ti, P, Li, V and Zn. The Zhuji coals are lower only in S, P, V and Zn than average U.S. and world coals. Potassium, Mg, Ca, Mn, Sr, As, Se, Sb and light rare earth elements (LREE) had a tendency to be enriched in thicker coal seams, whereas Fe, Ti, P, V, Co, Ni, Y, Mo, Pb and heavy rare earth elements (HREE) were inclined to concentrate in thinner coal seams. The enrichment of some elements in the Shanxi or Upper Shihezi Formations is related to their depositional environments. The elements are classified into three groups based on their stratigraphic distributions from coal seams 3 to 11-2, and the characteristics of each group are discussed. Lateral distributions of selected elements are also investigated. The correlation coefficients of elemental abundances with ash content show that the elements may be classified into four groups related to modes of occurrence of these elements. ?? 2009 Elsevier B.V. All rights reserved.

  3. Homeostasis of chosen bioelements in organs of rats receiving lithium and/or selenium.

    PubMed

    Kiełczykowska, Małgorzata; Musik, Irena; Żelazowska, Renata; Lewandowska, Anna; Kurzepa, Jacek; Kocot, Joanna

    2016-10-01

    Lithium is an essential trace element, widely used in medicine and its application is often long-term. Despite beneficial effects, its administration can lead to severe side effects including hyperparathyroidism, renal and thyroid disorders. The aim of the current study was to evaluate the influence of lithium and/or selenium treatment on magnesium, calcium and silicon levels in rats' organs as well as the possibility of using selenium as an adjuvant in lithium therapy. The study was performed on rats divided into four groups (six animals each): control-treated with saline; Li-treated with Li2CO3 (2.7 mg Li/kg b.w.); Se-treated with Na2SeO3·H2O (0.5 mg Se/kg b.w.); Se + Li-treated simultaneously with Li2CO3 and Na2SeO3·H2O (2.7 mg Li/kg b.w. and of 0.5 mg Se/kg b.w., respectively). The administration was performed in form of water solutions by stomach tube once a day for 3 weeks. In the organs (liver, kidney, brain, spleen, heart, lung and femoral muscle) the concentrations of magnesium, calcium and silicon were determined. Magnesium was increased in liver of Se and Se + Li given rats. Lithium decreased tissue Ca and co-administration of selenium reversed this effect. Silicon was not affected by any treatment. The beneficial effect of selenium on disturbances of calcium homeostasis let suggest that further research on selenium application as an adjuvant in lithium therapy is worth being performed.

  4. Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China.

    PubMed

    Falandysz, Jerzy; Chudzińska, Maria; Barałkiewicz, Danuta; Drewnowska, Małgorzata; Hanć, Anetta

    2017-04-01

    Data on multi-trace element composition and content relationships have been obtained for Cantharellus cibarius, C. tubaeformis, and C. minor mushrooms from Poland and China by inductive coupled plasma-dynamic reaction cell-mass spectroscopy. There is no previous data published on As, Li, V, Tl, and U in chanterelles from Poland and on Ba, Co, Cr, Ni, Rb, and Sr in chanterelles from China. The results implied a role of the soil background geochemistry at the collection site with the occurrence of Ag, As, Ba, Cr, Cs, Li, Mn, Pb, Rb, Sr, U, and V in the fruiting bodies. Both geogenic Cd and anthropogenic Cd can contribute in load of this element in chanterelles from the Świetokrzyskie Mts. region in Poland, while geogenic source can be highly dominant in the background areas of Yunnan. An essentiality of Cu and Zn and effort by mushroom to maintain their physiological regulation could be reflected by data for Cantharellus mushrooms from both regions of the world, but its geogenic source (and possibly anthropogenic) can matter also in the region of the Świetokrzyskie Mountains in Poland. The elements Co, Ni, and Tl were at the same order of magnitude in contents in C. cibarius in Poland and Yunnan, China. C. tubaeformis differed from C. cibarius by a lower content of correlated Co, Ni, and Zn. Soil which is polymetallic and highly weathered in Yunnan can be suggested as a natural geogenic source of greater concentrations of As, Ba, Cr, Li, Pb, Sr, U, and V in the chanterelles there while lower of Mn and Rb, when related to chanterelles in Poland. A difference in Cs content between the sites can be attributed as an effect of the 137 Cs release from the Chernobyl accident, in which Poland was much more affected than Yunnan, where deposition was negligible.

  5. Metallic elements and metalloids in Boletus luridus, B. magnificus and B. tomentipes mushrooms from polymetallic soils from SW China.

    PubMed

    Falandysz, Jerzy; Zhang, Ji; Wiejak, Anna; Barałkiewicz, Danuta; Hanć, Anetta

    2017-08-01

    Yunnan Province in China is known for its high biodiversity of mushrooms and a diverse geochemistry of soil bedrock and polymetallic soils, but our knowledge of mineral compositions of mushrooms from Yunnan is scarce. The metallic trace elements, Ag, Ba, Co, Cd, Cs, Cu, Cr, Hg, Li, Mn, Ni, Pb, Rb, Sr, V, Tl, U and Zn, and the metalloids, As and Sb, have been investigated using validated methods with a dynamic reactive cell by mass spectroscopy - inductive coupled plasma and cold vapour - atomic absorption spectroscopy on three popular species of Boletus mushrooms from Southwestern China. The trace mineral profiles in caps and stipes of B. luridus (24 individuals), B. magnificus (29 individuals) and B. tomentipes (38 individuals) have been evaluated. The interspecific differences in the content of several trace elements could be attributed to known differences in the geochemistry of soils in Yunnan, but for copper a difference was observed within species. The mean values of concentrations in composite samples of caps for B. luridus, B. magnificus and B. tomentipes from three to four locations were at the ranges (mgkg -1 dry biomass): Ag (1.3-3.7), As (0.79-53), Ba (4.0-12), Co (0.68-1.2), Cd (0.79-2.2), Cs (0.67-55), Cu (37-77), Cr (5.0-7.6), Hg (2.1-5.4), Li (0.15-0.61), Mn (13-28), Ni (0.86-4.6), Pb (0.59-1.8), Rb (90-120), Sb (0.014-0.088), Sr (0.63-1.6), V (1.4-2.2), Tl (0.017-0.054), U (0.029-0.065) and Zn (130-180). Caps of Boletus mushrooms were richer in Ag, Cu, Hg and Zn than stipes, while other elements were distributed roughly equally between both morphological parts. B. luridus, B. magnificus and B. tomentipes grew in certain sites in Yunnan contained Ag, As, Ba, Cr, Hg, Ni, Sr or V at elevated concentration. A specific geochemistry of the soils type (latosols, lateritic red earths, and red and yellow earths in the Circum-Pacific Mercuriferous Belt of Southwestern China) can explain occurrence of some minerals at greater or elevated amount in mushrooms in Yunnan, while number of available research and data on mineral composition of mushrooms due to geochemical anomalies of soil parent material is so far little. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Updated study reporting levels (SRLs) for trace-element data collected for the California Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project, October 2009-March 2013

    USGS Publications Warehouse

    Davis, Tracy A.; Olsen, Lisa D.; Fram, Miranda S.; Belitz, Kenneth

    2014-01-01

    Groundwater samples have been collected in California as part of statewide investigations of groundwater quality conducted by the U.S. Geological Survey for the Groundwater Ambient Monitoring and Assessment (GAMA) Priority Basin Project (PBP). The GAMA-PBP is being conducted in cooperation with the California State Water Resources Control Board to assess and monitor the quality of groundwater resources used for drinking-water supply and to improve public knowledge of groundwater quality in California. Quality-control samples (source-solution blanks, equipment blanks, and field blanks) were collected in order to ensure the quality of the groundwater sample results. Olsen and others (2010) previously determined study reporting levels (SRLs) for trace-element results based primarily on field blanks collected in California from May 2004 through January 2008. SRLs are raised reporting levels used to reduce the likelihood of reporting false detections attributable to contamination bias. The purpose of this report is to identify any changes in the frequency and concentrations of detections in field blanks since the last evaluation and update the SRLs for more recent data accordingly. Constituents analyzed were aluminum (Al), antimony (Sb), arsenic (As), barium (Ba), beryllium (Be), boron (B), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), iron (Fe), lead (Pb), lithium (Li), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), vanadium (V), and zinc (Zn). Data from 179 field blanks and equipment blanks collected from March 2006 through March 2013 by the GAMA-PBP indicated that for trace elements that had a change in detection frequency and concentration since the previous review, the shift occurred near October 2009, in conjunction with a change in the capsule filters used by the study. Results for 89 field blanks and equipment blanks collected from October 2009 through March 2013 were evaluated for potential contamination bias by using the same approach developed by Olsen and others (2010). Some data collected by the National Water-Quality Assessment (NAWQA) Program for the Southern California Coastal Drainages study unit were included to supplement the GAMA-PBP data. The detection frequency and upper threshold of potential contamination bias (BD-90/90) were determined from field-blank and equipment-blank data for each trace element. The BD-90/90 is the 90th percentile concentration of potential extrinsic contamination calculated by using the binomial probability distribution for greater than 90 percent confidence. Additionally, data from laboratory blanks and blind blanks analyzed by the National Water Quality Laboratory (NWQL) during water years 2010 through 2013, and compiled by the USGS Branch of Quality Systems (BQS), were considered for each trace element. These results were compared to each constituent’s reporting level to determine whether an SRL was necessary to minimize the potential for detections in the groundwater samples, attributed principally to contamination bias. Results of the evaluation were used to set SRLs for trace-element data for about 1,135 samples of groundwater collected by the GAMA-PBP between October 2009 and March 2013. Ten trace elements analyzed (Sb, As, Be, B, Cd, Li, Se, Ag, Tl, and U) had blank results that did not necessitate establishing SRLs during this review or the review by Olsen and others (2010). Five trace elements analyzed (Al, Ba, Cr, Sr, and V) had blank results that necessitated establishing an SRL during the previous review but did not need an SRL starting October 2009. One trace element (Fe) had field and laboratory-blank results that necessitated keeping the previous SRL (6 micrograms per liter [μg/L]). Two trace elements (Ni and W) had quality-control results that warranted decreasing the previous SRL, and five trace elements (Cu, Pb, Mn, Mo, and Zn) had field, laboratory, or blind blank results that warranted establishing an SRL for the first time or increasing the previous SRL. SRLs for Cu (2.1 μg/L), Pb (0.82 μg/L), Mn (0.66 μg/L), Mo (0.023 μg/L), Ni (0.21 μg/L), W (0.023 μg/L), and Zn (6.2 μg/L) were changed to these levels starting October 2009, based on the BD-90/90 concentration for field blanks or the 99th percentile concentration for laboratory or blind blanks. The SRL for Fe was maintained at 6 μg/L, based on the minimum laboratory reporting level for iron. SRLs for these eight constituents were at least an order of magnitude below the regulatory benchmarks established for drinking water for health and aesthetic purposes; therefore, the practice of reporting concentrations below the SRLs as less than or equal to (≤) the measured value would not prevent the identification of values greater than the drinking-water benchmarks. Co was detected in 99 percent of field blanks, and with a BD-90/90 concentration of 0.38 μg/L, all groundwater results starting October 2009 were coded as “reviewed and rejected.” Co does not currently have a regulatory benchmark for drinking water. The primary sources of contamination for trace elements inferred from this review are the equipment or processes used in the field to collect the samples or in the laboratory. In particular, contamination in field blanks of Co and Mn was attributed to the high-capacity 0.45-micrometer pore-size capsule filters that were in regular use beginning in October 2009 by several USGS programs, including the GAMA-PBP and NAWQA Program, for filtering samples for analysis of trace elements. The SRLs determined in this report are intended to be used for GAMA groundwater-quality data for samples collected October 2009 through March 2013, or for as long as quality-control data indicate contamination similar to what was observed in this report; quality-control data should be continuously reviewed and SRLs re-assessed on at least a study-unit basis.

  7. Ferropericlase inclusions in ultradeep diamonds from Sao Luiz (Brazil): high Li abundances and diverse Li-isotope and trace element compositions suggest an origin from a subduction mélange

    NASA Astrophysics Data System (ADS)

    Seitz, Hans-Michael; Brey, Gerhard P.; Harris, Jeffrey W.; Durali-Müller, Soodabeh; Ludwig, Thomas; Höfer, Heidi E.

    2018-05-01

    The most remarkable feature of the inclusion suite in ultradeep alluvial and kimberlitic diamonds from Sao Luiz (Juina area in Brazil) is the enormous range in Mg# [100xMg/(Mg + Fe)] of the ferropericlases (fper). The Mg-richer ferropericlases are from the boundary to the lower mantle or from the lower mantle itself when they coexist with ringwoodite or Mg- perovskite (bridgmanite). This, however, is not an explanation for the more Fe-rich members and a lowermost mantle or a "D" layer origin has been proposed for them. Such a suggested ultra-deep origin separates the Fe-rich fper-bearing diamonds from the rest of the Sao Luiz ultradeep diamond inclusion suite, which also contains Ca-rich phases. These are now thought to have an origin in the uppermost lower mantle and in the transition zone and to belong either to a peridotitic or mafic (subducted oceanic crust) protolith lithology. We analysed a new set of more Fe-rich ferropericlase inclusions from 10 Sao Luiz ultradeep alluvial diamonds for their Li isotope composition by solution MC-ICP-MS (multi collector inductively coupled plasma mass spectrometry), their major and minor elements by EPMA (electron probe micro-analyser) and their Li-contents by SIMS (secondary ion mass spectrometry), with the aim to understand the origin of the ferropericlase protoliths. Our new data confirm the wide range of ferropericlase Mg# that were reported before and augment the known lack of correlation between major and minor elements. Four pooled ferropericlase inclusions from four diamonds provided sufficient material to determine for the first time their Li isotope composition, which ranges from δ7Li + 9.6 ‰ to -3.9 ‰. This wide Li isotopic range encompasses that of serpentinized ocean floor peridotites including rodingites and ophicarbonates, fresh and altered MORB (mid ocean ridge basalt), seafloor sediments and of eclogites. This large range in Li isotopic composition, up to 5 times higher than `primitive upper mantle' Li-abundances, and an extremely large and incoherent range in Mg# and Cr, Ni, Mn, Na contents in the ferropericlase inclusions suggests that their protoliths were members of the above lithologies. This mélange of altered rocks originally contained a variety of carbonates (calcite, magnesite, dolomite, siderite) and brucite as the secondary products in veins and as patches and Ca-rich members like rodingites and ophicarbonates. Dehydration and redox reactions during or after deep subduction into the transition zone and the upper parts of the lower mantle led to the formation of diamond and ferropericlase inclusions with variable compositions and a predominance of the Ca-rich, high-pressure silicate inclusions. We suggest that the latter originated from peridotites, mafic rocks and sedimentary rocks as redox products between calcite and SiO2.

  8. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiClKCI eutectic salt and liquid cadmium or bismuth

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-12-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.

  9. Trace element geochemistry of volcanic gases and particles from 1983--1984 eruptive episodes of Kilauea volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.; Finnegan, D.L.; Zoller, W.H.

    1987-12-10

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (/sup 7/LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 daysmore » after episode 11 (cooling vent samples) and (2) the stage of episode 13 (active vent samples).« less

  10. Temporal-resolved characterization of laser-induced plasma for spectrochemical analysis of gas shales

    NASA Astrophysics Data System (ADS)

    Xu, Tao; Zhang, Yong; Zhang, Ming; He, Yi; Yu, Qiaoling; Duan, Yixiang

    2016-07-01

    Optical emission of laser ablation plasma on a shale target surface provides sensitive laser-induced breakdown spectrometry (LIBS) detection of major, minor or trace elements. An exploratory study for the characterization of the plasma induced on shale materials was carried out with the aim to trigger a crucial step towards the quantitative LIBS measurement. In this work, the experimental strategies that optimize the plasma generation on a pressed shale pellet surface are presented. The temporal evolution properties of the plasma induced by ns Nd:YAG laser pulse at the fundamental wavelength in air were investigated using time-resolved space-integrated optical emission spectroscopy. The electron density as well as the temperatures of the plasma were diagnosed as functions of the decay time for the bulk plasma analysis. In particular, the values of time-resolved atomic and ionic temperatures of shale elements, such as Fe, Mg, Ca, and Ti, were extracted from the well-known Boltzmann or Saha-Boltzmann plot method. Further comparison of these temperatures validated the local thermodynamic equilibrium (LTE) within specific interval of the delay time. In addition, the temporal behaviors of the signal-to-noise ratio of shale elements, including Si, Al, Fe, Ca, Mg, Ba, Li, Ti, K, Na, Sr, V, Cr, and Ni, revealed the coincidence of their maximum values with LIBS LTE condition in the time frame, providing practical implications for an optimized LIBS detection of shale elements. Analytical performance of LIBS was further evaluated with the linear calibration procedure for the most concerned trace elements of Sr, V, Cr, and Ni present in different shales. Their limits of detection obtained are elementally dependent and can be lower than tens of parts per million with the present LIBS experimental configurations. However, the occurrence of saturation effect for the calibration curve is still observable with the increasing trace element content, indicating that, due to the complex composition of shale materials, the omnipresent "matrix effect" is still a great challenging for the performance of quantitative LIBS measurement even in the framework of the LTE approach.

  11. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China

    USGS Publications Warehouse

    Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y.

    2008-01-01

    Boehmite-rich coal of Pennsylvanian age was discovered earlier at the Heidaigou Surface Mine, Jungar Coalfield, Inner Mongolia, China. This paper reports new results on 29 bench samples of the no. 6 coal from a drill core from the adjacent Haerwusu Surface Mine, and provides new insights into the origin of the minerals and elements present. The results show that the proportion of inertinite in the no. 6 coal is higher than in other Late Paleozoic coals in northern China. Based on mineral proportions (boehmite to kaolinite ratio) and major element concentrations in the coal benches of the drill core, the no. 6 coal may be divided into five sections (I to V). Major minerals in Sections I and V are kaolinite. Sections II and IV are mainly kaolinite with a trace of boehmite, and Section III is high in boehmite. The boehmite is derived from bauxite in the weathered surface (Benxi Formation) in the sediment-source region. The no. 6 coal is rich in Al2O3 (8.89%), TiO2 (0.47%), Li (116????g/g), F (286????g/g), Ga (18????g/g), Se (6.1????g/g), Sr (350????g/g), Zr (268????g/g), REEs (172????g/g), Pb (30????g/g), and Th (17????g/g). The elements are classified into five associations by cluster analysis, i.e. Groups A, B, C, D, and E. Group A (ash-SiO2-Al2O3-Na2O-Li) and Group B (REE-Sc-In-Y-K2O-Rb-Zr-Hf-Cs-U-P2O5-Sr-Ba-Ge) are strongly correlated with ash yield and mainly have an inorganic affinity. The elements that are negatively or less strongly correlated with ash yield (with exceptions of Fe2O3, Be, V, and Ni) are grouped in the remaining three associations: Group C, Se-Pb-Hg-Th-TiO2-Bi-Nb-Ta-Cd-Sn; Group D, Co-Mo-Tl-Be-Ni-Sb-MgO-Re-Ga-W-Zn-V-Cr-F-Cu; and Group E, S-As-CaO-MnO-Fe2O3. Aluminum is mainly distributed in boehmite, followed by kaolinite. The high correlation coefficients of the Li-ash, Li-Al2O3, and Li-SiO2 pairs indicate that Li is related to the aluminosilicates in the coal. The boehmite-rich coal is high in gallium and F, which occur in boehmite and the organic matter. Selenium and Pb are mainly in epigenetic clausthalite fillings in fractures. The abundant rare earth elements in the coal benches were supplied from two sources: the bauxite on the weathered surface of the Benxi Formation and from adjacent partings by groundwater leaching during diagenesis. The light rare earth elements (LREEs) are more easily leached from the partings and incorporated into the organic matter than the heavy REEs, leading to a higher ratio of LREEs to HREEs in the coal benches than in the overlying partings. ?? 2008 Elsevier B.V. All rights reserved.

  12. Annual Quality Assurance Conference Files by Nicola Watson and Rui Li

    EPA Pesticide Factsheets

    26th Annual Quality Assurance Conference. Abstract: An Innovative Water Management Device for Online and Canister-based Thermal Desorption of Trace-level VVOCs in High Humidity Ambient Air by Nicola Watson and Rui Li

  13. Trace metal assay of U(3)O(8) powder by electrothermal AAS.

    PubMed

    Page, A G; Godbole, S V; Kulkarni, M J; Porwal, N K; Shelar, S S; Joshi, B D

    1983-10-01

    Methods have been developed for the direct determination of Ag, Ca, K., Li, Mg, Na, Pb, Sn and Zn in U(3)O(8) powder samples by electrothermal AAS. Nanogram and lower amounts of these elements have been determined with a relative standard deviation of 6-16% in mg amounts of sample (either alone or mixed with an equal weight of graphite). The results for NBL reference samples were in reasonable agreement with the certified values. X-Ray diffraction studies on the residues left from the graphite mixtures after the atomization cycle, confirmed the formation of uranium carbide (UC(2)).

  14. Development of a certified reference material (NMIJ CRM 7505-a) for the determination of trace elements in tea leaves.

    PubMed

    Zhu, Yanbei; Narukawa, Tomohiro; Inagaki, Kazumi; Kuroiwa, Takayoshi; Chiba, Koichi

    2011-01-01

    A certified reference material (CRM) for trace elements in tea leaves has been developed in National Metrology Institute of Japan (NMIJ). The CRM was provided as a dry powder (<90 µm) after frozen pulverization of washed and dried fresh tea leaves from a tea plant farm in Shizuoka Prefecture, Japan. Characterization of the property value for each element was carried out exclusively by NMIJ with at least two independent analytical methods, including inductively coupled plasma mass spectrometry (ICP-MS), high-resolution (HR-) ICP-MS, isotope-dilution (ID-) ICP-MS, inductively coupled plasma optical emission spectrometry (ICP-OES), graphite-furnace atomic-absorption spectrometry (GF-AAS) and flame atomic-absorption spectrometry (FAAS). Property values were provided for 19 elements (Ca, K, Mg, P, Al, B, Ba, Cd, Cu, Fe, Li, Mn, Na, Ni, Pb, Rb, Sr, Zn and Co) and informative values for 18 elements (Ti, V, Cr, Y, and all of the lanthanides, except for Pm whose isotopes are exclusively radioactive). The concentration ranges of property values and informative values were from 1.59% (mass) of K to 0.0139 mg kg(-1) of Cd and from 0.6 mg kg(-1) of Ti to 0.0014 mg kg(-1) of Lu, respectively. Combined relatively standard uncertainties of the property values were estimated by considering the uncertainties of the homogeneity, analytical methods, characterization, calibration standard, and dry-mass correction factor. The range of the relative combined standard uncertainties was from 1.5% of Mg and K to 4.1% of Cd.

  15. Assessing elemental ratios as a paleotemperature proxy in shells of patelloid limpets

    NASA Astrophysics Data System (ADS)

    Graniero, L. E.; Surge, D. M.; Gillikin, D. P.

    2016-02-01

    Archaeological shell and fish middens are rich sources of paleoenvironmental proxy data. Patelloid limpet shells are common constituents in archaeological middens found along European, African, and South American coastlines. Paleotemperature reconstructions using oxygen isotope ratios of limpet shells depend on the ability to constrain the oxygen isotope ratio of seawater; therefore, alternative proxies are necessary for coastal localities where this is not possible. The study evaluates whether Mg/Ca, Sr/Ca, Li/Ca, Li/Mg, and Sr/Li ratios are reliable proxies of SST in shells of the patelloid limpets, P. vulgata and N. deaurata. We compare Mg/Ca, Sr/Ca, Li/Ca, Li/Mg, and Sr/Li ratios to the seasonal variations in contemporaneous δ18Oshell records which primarily record seasonal changes in SST. Elemental ratios (Mg/Ca, Sr/Ca, Li/Ca, Sr/Li, Li/Mg) show no significant correlations with reconstructed SST in P. vulgata and N. deaurata shells. Shell δ13C values show no significant ontogenetic trends, suggesting that these limpets show little change in metabolic carbon incorporation into the shell with increasing ontogenetic age. Although growth rate exhibits a logarithmic decrease with age based on calculated linear extension rates, growth rate does not correlate with elemental profiles in these limpets. Overall, elemental ratios (are not reliable recorders of paleotemperature in patelloid limpets. Further research is necessary to establish the controls on elemental ratio concentrations in limpet shells.

  16. Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basaltic terrain in Central Siberia

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Schott, J.; Dupré, B.

    2006-07-01

    The chemical status of ˜40 major and trace elements (TE) and organic carbon (OC) in pristine boreal rivers draining the basaltic plateau of Central Siberia (Putorana) and interstitial solutions of permafrost soils was investigated. Water samples were filtered in the field through progressively decreasing pore size (5 μm → 0.22 μm → 0.025 μm → 10 kDa → 1 kDa) using cascade frontal filtration technique. Most rivers and soil porewaters exhibit 2-5 times higher than the world average concentration of dissolved (i.e., <0.22 μm) iron (0.03-0.4 mg/L), aluminum (0.03-0.4 mg/L), OC (10-20 mg/L) and various trace elements that are usually considered as immobile in weathering processes (Ti, Zr, Ga, Y, REEs). Ultrafiltration revealed strong relationships between concentration of TE and that of colloidal Fe and Al. According to their partition during filtration and association with colloids, two groups of elements can be distinguished: (i) those weakly dependent on ultrafiltration and that are likely to be present as truly dissolved inorganic species (Li, Na, K, Si, Mn, Mo, Rb, Cs, As, Sb) or, partially (20-30%) associated with small size Fe- and Al-colloids (Ca, Mg, Sr, Ba) and to small (<1-10 kDa) organic complexes (Co, Ni, Cu, Zn), and (ii) elements strongly associated with colloidal iron and aluminum in all ultrafiltrates largely present in 1-100 kDa fraction (Ga, Y, REEs, Pb, V, Cr, Ti, Ge, Zr, Th, U). TE concentrations and partition coefficients did not show any detectable variations between different colloidal fractions for soil porewaters, suprapermafrost flow and surface streams. TE concentration measurements in river suspended particles demonstrated significant contribution (i.e., ⩾30%) of conventionally dissolved (<0.22 μm) forms for usually "immobile" elements such as divalent transition metals, Cd, Pb, V, Sn, Y, REEs, Zr, Hf, Th. The Al-normalized accumulation coefficients of TE in vegetation litter compared to basalts achieve 10-100 for B, Mn, Zn, As, Sr, Sn, Sb, and the larch litter degradation is able to provide the major contribution to the annual dissolved flux of most trace elements. It is hypothesized that the decomposition of plant litter in the topsoil horizon leads to Fe(III)-, Al-organic colloids formation and serves as an important source of elements in downward percolating fluids.

  17. Compositions of modern dust and surface sediments in the Desert Southwest, United States

    USGS Publications Warehouse

    Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.; Reynolds, R.L.

    2009-01-01

    Modern dusts across southwestern United States deserts are compositionally similar to dust-rich Av soil horizons (depths of 0-0.5 cm and 1-4 cm at 35 sites) for common crustal elements but distinctly different for some trace elements. Chemical compositions and magnetic properties of the soil samples are similar among sites relative to dust sources, geographic areas, and lithologic substrates. Exceptions are Li, U, and W, enriched in Owens Valley, California, and Mg and Sr, enriched in soils formed on calcareous fan gravel in southeast Nevada. The Av horizons are dominated by dust and reflect limited mixing with substrate sediments. Modern dust samples are also similar across the region, except that Owens Valley dusts are higher in Mg, Ba, and Li and dusts both there and at sites to the north on volcanic substrates are higher in Sb and W. Thus, dust and Av horizons consist of contributions from many different sources that are well mixed before deposition. Modern dusts contain significantly greater amounts of As, Cd, Cr, Cu, Ni, Pb, and Sb than do Av horizons, which record dust additions over hundreds to thousands of years. These results suggest that modern dust compositions are influenced by anthropogenic sources and emissions from Owens (dry) Lake after its artificial desiccation in 1926. Both modern dusts and Av horizons are enriched in As, Ba, Cu, Li, Sb, Th, U, and W relative to average crustal composition, which we interpret to indicate that the geologic sources of dust in the southwestern United States are geochemically distinctive.

  18. Quantitative analysis of major elements in silicate minerals and glasses by micro-PIXE

    USGS Publications Warehouse

    Campbell, J.L.; Czamanske, G.K.; MacDonald, L.; Teesdale, W.J.

    1997-01-01

    The Guelph micro-PIXE facility has been modified to accommodate a second Si(Li) X-ray detector which records the spectrum due to light major elements (11 ??? Z ??? 20) with no deleterious effects from scattered 3 MeV protons. Spectra have been recorded from 30 well-characterized materials, including a broad range of silicate minerals and both natural and synthetic glasses. Sodium is mobile in some of the glasses, but not in the studied mineral lattices. The mean value of the instrumental constant H for each of the elements Mg, Al, and Si in these materials is systematically 6-8% lower than the H-value measured for the pure metals. Normalization factors are derived which permit the matrix corrections requisite for trace-element measurements in silicates to be based upon pure metal standards for Mg, Al and Si, supplemented by well-established, silicate mineral standards for the elements Na, K and Ca. Rigorous comparisons of electron microprobe and micro-PIXE analyses for the entire, 30-sample suite demonstrate the ability of micro-PIXE to produce accurate analysis for the light major elements in silicates. ?? 1997 Elsevier Science B.V.

  19. Indicators of Provenance Weathering: Li and δ7Li in Mudrocks from the British Caledonides

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Rudnick, R. L.; McDonough, W. F.; Merriman, R. J.

    2008-12-01

    We determined the Li concentration [Li] and isotopic composition (δ7Li), as well as major, trace element and Sr and Nd isotopic compositions of mudrocks (mudstone, shale, slate) from three Lower Paleozoic basins within the British Caledonides in order to determine the effects of sub-greenschist facies metamorphism on Li and the factors that control Li in mudrocks. [Li] varies widely, from 29 to 139 ppm, with mudrocks from the northern Lake District generally having higher concentrations (56-136 ppm, average 102 ppm) than those from the Scottish Southern Uplands (28-74 ppm, average 50 ppm) or southern Lake District (40-91 ppm, average 52 ppm) basins. δ7Li of mudrocks from the northern Lake District (δ7Li =-3.2 ±1.6 permil, 2σ) are relatively constant compared to those of the mudrocks from the southern Lake District (-3.4 permil to 0 permil) and the Southern Uplands (-4.4 permil to +3.7 permil). Metamorphic grade, determined by the Kübler index method, does not correlate with [Li] or δ7Li, indicating that sub-greenschist facies metamorphism had little effect on Li in these mudrocks. Collectively, the data for all three basins show a negative correlation between [Li] and δ7Li and a positive correlation between [Li] and the chemical index of alteration (CIA), suggesting that provenance exerts the greatest control on Li in mudrocks. Samples from the northern Lake District, which were deposited in an extensional basin, have homogeneous REE patterns, similar to shale composites (PAAS and NASC), the highest CIA, Th/U and [Li] and the lowest δ7Li and ɛNd, consistent with their derivation from a highly weathered ancient continental source. By contrast, mudrocks from the Southern Uplands range to the lowest CIA, Th/U and [Li] and have the highest δ7Li and ɛNd. These samples were deposited in a subudction zone on the southern margin of the Laurentian craton and contain volcanic detritus derived from a proximal arc. They have the most variable REE patterns, ranging from average shale-like patterns to less LREE-enriched patterns. The heterogeneity within the Southern Uplands mudrocks points to a mixed provenance that includes juvenile crustal materials (lower [Li], ɛNd and Th/U, higher δ7Li), likely derived from the arc, as well as more weathered cratonic detritus. Mudrocks from the southern Lake District deposited in a foreland basin, exhibit geochemical characteristics intermediate between the northern Lake District and the Southern Uplands mudrocks indicating their derivation from a mixed source. Our study shows that Li and δ7Li can provide addition information on the nature of the provenance of mudrocks.

  20. Trace elements in olivine of ultramafic lamprophyres controlled by phlogopite-rich mineral assemblages in the mantle source

    NASA Astrophysics Data System (ADS)

    Veter, Marina; Foley, Stephen F.; Mertz-Kraus, Regina; Groschopf, Nora

    2017-11-01

    Carbonate-rich ultramafic lamprophyres (aillikites) and associated rocks characteristically occur during the early stages of thinning and rifting of cratonic mantle lithosphere, prior to the eruption of melilitites, nephelinites and alkali basalts. It is accepted that they require volatile-rich melting conditions, and the presence of phlogopite and carbonate in the source, but the exact source rock assemblages are debated. Melts similar to carbonate-rich ultramafic lamprophyres (aillikites) have been produced by melting of peridotites in the presence of CO2 and H2O, whereas isotopes and trace elements appear to favor distinct phlogopite-bearing rocks. Olivine macrocrysts in aillikites are usually rounded and abraded, so that it is debated whether they are phenocrysts or mantle xenocrysts. We have analyzed minor and trace element composition in olivines from the type aillikites from Aillik Bay in Labrador, Canada. We characterize five groups of olivines: [1] mantle xenocrysts, [2] the main phenocryst population, and [3] reversely zoned crystals interpreted as phenocrysts from earlier, more fractionated, magma batches, [4] rims on the phenocrysts, which delineate aillikite melt fractionation trends, and [5] rims around the reversely zoned olivines. The main phenocryst population is characterized by mantle-like Ni (averaging 3400 μg g- 1) and Ni/Mg at Mg# of 88-90, overlapping with phenocrysts in ocean island basalts and Mediterranean lamproites. However, they also have low 100 Mn/Fe of 0.9-1.3 and no correlation between Ni and other trace elements (Sc, Co, Li) that would indicate recycled oceanic or continental crust in their sources. The low Mn/Fe without high Ni/Mg, and the high V/Sc (2-5) are inherited from phlogopite in the source that originated by solidification of lamproitic melts at the base of the cratonic lithosphere in a previous stage of igneous activity. The olivine phenocryst compositions are interpreted to result from phlogopite and not high modal pyroxene in the source. The presence of kimberlites and ultramafic lamprophyres of Mesozoic age in Greenland indicates the persistence of a steep edge to the cratonic lithosphere at a time when this had been removed from the western flank in Labrador.

  1. Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom.

    PubMed

    Pokrovsky, O S; Shirokova, L S

    2013-02-01

    This work describes variation of element concentration in surface water of a subarctic organic-rich lake during the diurnal cycle of photosynthesis. An unusually hot summer 2010 in European part of subarctic Russia produced elevated surface water temperature (28-30 °C) and caused massive cyanobacterial bloom. Diurnal variation of ~40 dissolved macro and trace elements and organic carbon were recorded in the humic Lake Svyatoe in the White Sea drainage basin. Two days continuous measurements with 3 h sampling steps at the surface (0.5 m) allowed tracing cyanobacterial activity via pH and O₂ measurement and revealed constant concentrations (within ±20-30%) of all major elements (Na, Mg, Cl, SO₄, K, Ca), organic and inorganic carbon and most trace elements (Li, B, Sc, Ti, Ni, Cu, Ga, As, Rb, Sr, Y, Zr, Mo, Sb, medium and heavy REEs, Hf, Pb, Th, U). The concentration of Mn demonstrated a factor of 3 decrease during the day following Mn adsorption onto cyanobacterial cells due to ~1 pH unit raise during the photosynthesis and Mn release during the night due to desorption from the cell surface. The role of Mn(II) photo-oxidation by reactive oxygen species could be also pronounced, although its contribution to Mn diurnal variation was much smaller than the adsorption at the cell surfaces. Similar pattern, but with much lesser variations (c.a., 10-20%), was recorded for Ba and Fe. On-site ultrafiltration technique allowed to distinguish between low molecular weight (LMW) complexes (<1 kDa) and high molecular weight (HMW) colloids (1 kDa-0.22 μm) and to assess their diurnal pattern. Colloidal Al and Fe were the highest during the night, when the contribution of HMW allochthonous colloids was maximal. Typical insoluble trivalent and tetravalent elements exhibited constant complexation (>80-90%) with HMW allochthonous organics, independent on the diel photosynthetic cycle. Finally, biologically-relevant metals (Cu, Co, Cr, V, and Ni) demonstrated significant variations of colloidal fractions (from 10 to 60%) not directly related to the photosynthesis. The majority of possible metal nutrients, being strongly associated with organic and organo-mineral colloids do not exhibit any measurable concentration variation during photosynthesis. The two types of element behavior during cyanobacterial bloom in the water column--constant concentration and sinusoidal variations--likely depend on element speciation in solution and their relative affinity to surfaces of aquatic microorganisms and complexation with authochthonous and allochthonous organic matter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Quantification of chemical elements in blood of patients affected by multiple sclerosis.

    PubMed

    Forte, Giovanni; Visconti, Andrea; Santucci, Simone; Ghazaryan, Anna; Figà-Talamanca, Lorenzo; Cannoni, Stefania; Bocca, Beatrice; Pino, Anna; Violante, Nicola; Alimonti, Alessandro; Salvetti, Marco; Ristori, Giovanni

    2005-01-01

    Although some studies suggested a link between exposure to trace elements and development of multiple sclerosis (MS), clear information on their role in the aetiology of MS is still lacking. In this study the concentrations of Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn, Sr, Tl, V, W, Zn and Zr were determined in the blood of 60 patients with MS and 60 controls. Quantifications were performed by inductively coupled plasma (ICP) atomic emission spectrometry and sector field ICP mass spectrometry. When the two groups were compared, an increased level of Co, Cu and Ni and a decrement of Be, Fe, Hg, Mg, Mo, Pb and Zn in blood of patients were observed. In addition, the discriminant analysis pointed out that Cu, Be, Hg, Co and Mo were able to discriminate between MS patients and controls (92.5% of cases correctly classified).

  3. Major to ultra trace element bulk rock analysis of nanoparticulate pressed powder pellets by LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Peters, Daniel; Pettke, Thomas

    2016-04-01

    An efficient, clean procedure for bulk rock major to trace element analysis by 193 nm Excimer LA-ICP-MS analysis of nanoparticulate pressed powder pellets (PPPs) employing a binder is presented. Sample powders are milled in water suspension in a planetary ball mill, reducing average grain size by about one order of magnitude compared to common dry milling protocols. Microcrystalline cellulose (MCC) is employed as a binder, improving the mechanical strength of the PPP and the ablation behaviour, because MCC absorbs 193 nm laser light well. Use of MCC binder allows for producing cohesive pellets of materials that cannot be pelletized in their pure forms, such as quartz powder. Rigorous blank quantification was performed on synthetic quartz treated like rock samples, demonstrating that procedural blanks are irrelevant except for a few elements at the 10 ng g-1 concentration level. The LA-ICP-MS PPP analytical procedure was optimised and evaluated using six different SRM powders (JP-1, UB-N, BCR-2, GSP-2, OKUM, and MUH-1). Calibration based on external standardization using SRM 610, SRM 612, BCR-2G, and GSD-1G glasses allows for evaluation of possible matrix effects during LA-ICP-MS analysis. The data accuracy of the PPP LA-ICP-MS analytical procedure compares well to that achieved for liquid ICP-MS and LA-ICP-MS glass analysis, except for element concentrations below ˜30 ng g-1, where liquid ICP-MS offers more precise data and in part lower limits of detection. Uncertainties on the external reproducibility of LA-ICP-MS PPP element concentrations are of the order of 0.5 to 2 % (1σ standard deviation) for concentrations exceeding ˜1 μg g-1. For lower element concentrations these uncertainties increase to 5-10% or higher when analyte-depending limits of detection (LOD) are approached, and LODs do not significantly differ from glass analysis. Sample homogeneity is demonstrated by the high analytical precision, except for very few elements where grain size effects can rarely still be resolved analytically. Matrix effects are demonstrated for PPP analysis of diverse rock compositions and basalt glass analysis when externally calibrated based on SRM 610 and SRM 612 glasses; employing basalt glass GSD-1G or BCR-2G for external standardisation basically eliminates these problems. Perhaps the most prominent progress of the LA-ICP-MS PPP analytical procedure presented here is the fact that trace elements not commonly analysed, i.e. new, unconventional geochemical tracers, can be measured straightforwardly, including volatile elements, the flux elements Li and B, the chalcophile elements As, Sb, Tl, Bi, and elements that alloy with metal containers employed in conventional glass production approaches. The method presented here thus overcomes many common problems and limitations in analytical geochemistry and is shown to be an efficient alternative for bulk rock trace elements analysis.

  4. Fluid-rock interaction recorded in fault rocks of the Nobeoka Thrust, fossilized megasplay fault in an ancient accretionary complex

    NASA Astrophysics Data System (ADS)

    Hasegawa, R.; Yamaguchi, A.; Fukuchi, R.; Kitamura, Y.; Kimura, G.; Hamada, Y.; Ashi, J.; Ishikawa, T.

    2017-12-01

    The relationship between faulting and fluid behavior has been in debate. In this study, we clarify the fluid-rock interaction in the Nobeoka Thrust by major/trace element composition analysis using the boring core of the Nobeoka Thrust, an exhumed analogue of an ancient megasplay fault in Shimanto accretionary complex, southwest Japan. The hanging wall and the footwall of the Nobeoka Thrust show difference in lithology and metamorphic grade, and their maximum burial temperature is estimated from vitrinite reflectance analysis to be 320 330°C and 250 270°C, respectively (Kondo et al., 2005). The fault zone was formed in a fluid-rich condition, as evidenced by warm fluid migration suggested by fluid inclusion analysis (Kondo et al., 2005), implosion brecciation accompanied by carbonate precipitation followed by formation of pseudotachylyte (Okamoto et al., 2006), ankerite veins coseismically formed under reducing conditions (Yamaguchi et al., 2011), and quartz veins recording stress rotation in seismic cycles (Otsubo et al., 2016). In this study, first we analyzed the major/trace element composition across the principal slip zone (PSZ) of the Nobeoka Thrust by using fragments of borehole cores penetrated through the Nobeoka Thrust. Many elements fluctuated just above the PSZ, whereas K increase and Na, Si decrease suggesting illitization of plagioclase, as well as positive anomalies in Li and Cs were found within the PSZ. For more detail understanding, we observed polished slabs and thin sections of the PSZ. Although grain size reduction of deformed clast and weak development of foliation were observed entirely in the PSZ by macroscopic observation, remarkable development of composite planar fabric nor evidence of friction melting were absent. In this presentation, we show the result of major/trace element composition corresponding to the internal structure of PSZ, and discuss fluid-rock interaction and its impact to megasplay fault activity in subduction zones.

  5. Analysis of laser induced plasma of lithium iron phosphate/LiFePO4 using Nd:YAG laser at low pressure

    NASA Astrophysics Data System (ADS)

    Suliyanti, M. M.; Hidayah, A. N.; Isnaeni

    2017-04-01

    Preliminary analysis of lithium in Lithium Iron Phosphate (LiFePO4) powder using laser induced plasma spectroscopy at low pressure had been done. Recently, LiFePO4-based batteries are widely used in most electric cars and bikes due to less toxic. However, lithium (Li) element is very difficult to detect since it is a very light element. In this work, we used a Nd:YAG laser (1064 nm wavelength, 5 ns pulse width at 10 Hz repetition rate) that was focused on LiFePO4 sample at low pressure. The main Li peak emission in LiFePO4 powder and sheet can be easily detected using this technique. We report the results of experimental study on Li element emission lines at wavelength 460.18 nm, 610.37 nm and 670.83 nm using 2 mJ and 12 mJ laser irradiation at 5 Torr and 35 Torr air atmosphere. The results of this study showed promising application of laser-induced plasma spectroscopy to detect and analyse Li in various samples.

  6. Investigation of drinking water quality in Kosovo.

    PubMed

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO.

  7. Petrological characterization of the seismic low-velocity anomaly beneath the Eifel volcanic field (West Germany) using major and trace element compositions of olivine macrocrysts

    NASA Astrophysics Data System (ADS)

    Dejan, Prelevic; Dieter, Mertz; Regina, Mertz-Kraus; Stephan, Buhre

    2014-05-01

    The Eifel volcanic field is part of the Central European Cenozoic Magmatic Province and was periodically active from the mid-Cretaceous until the latest Pleistocene. Two contrasting models are used to explain sources and magma generation mechanisms of the Pleistocene Eifel volcanism: i) decompressional partial melting at the base of the subcontinental lithosphere as a consequence of extension caused by lithospheric flexuring from emplacement of Alpine nappes (Wilson & Downes, 1991); ii) plume-type thermal upwelling in the asthenosphere on the basis of seismic tomography indicating a low-velocity anomaly beneath the Eifel probably caused by temperatures higher than the normal asthenosphere adiabat (e.g., Ritter et al. 2001). We present high-precision electron microprobe data for major and minor elements as well as laser ablation ICP-MS data for trace elements of olivine from the Eifel in order to put new constraints on the origin of Pleistocene Eifel volcanism. Being an early liquidus phase in the crystallization of basaltic melts, olivine composition may be used to characterize the composition of primary mantle melts and their source region in terms of major and trace elements. Moreover, it is useful for T estimation providing a snapshot of the liquid equilibria at early magmatic stage. In addition, important petrological parameters can be constrained, like the extent of prior melt extraction of their mantle source, the presence of different geochemical components in the source, olivine residence times etc. Olivine macrocrysts occur in most of the Eifel Mg-rich lavas, forming up to 10 vol% of the rocks. We studied olivines from 10 representative lava flows of basanitic composition. Based on compositional and textural differences, three genetic groups are recognized: i) volumetrically dominant igneous olivines or phenocrysts (melt related); they are equilibrated with their host melt showing normal zonation (core-rim Fo89-80) and NiO contents up to 0.3 wt%, whereas Cr2O3 and CaO are around 0.18 wt% and 0.20 wt%, respectively; ii) mantle xenocrysts are typically mantled by olivine of phenocrystal composition, with the plateau-like core compositions typically with Fo91.5 and NiO contents around 0.4 wt%; a number of features supports their mantle origin, namely CaO contents lower than 0.1 wt%, homogeneous compositions within the grain (typical for mantle olivine, resulting from long equilibration times), anhedral shapes showing deformation features such as kink bands etc; iii) a genetic group also demonstrating xenocrystic features (e.g., compositional disequilibration with the host melt, the mantling by olivine of phenocrystal composition); however, it differs from the mantle olivine by having higher CaO (> 0.3 wt%), slightly lower Mg# (up to 90), and considerably lower NiO contents (< 0.1 wt%); we interpret these grains to originate from wherlitic assemblages within the lithospheric mantle. Our preliminary estimation of the olivine-liquid equilibria using compositions of the phenocrysts indicates temperatures not considerably higher than 1300 oC. The trace element composition of olivine phenocrysts and two types of xenocrysts show several important characteristics. Relative to mantle xenocrystal olivine that is depleted in the most trace elements, phenocrysts are considerably enriched in Li and Zn, and depleted in Ti. Low NiO xenocrysts have high Ti with slightly elevated Li concentration. There is a certain overlap between the phenocrysts from Eifel lavas and those from orogenic Mediterranean volcanics, indicating compositional similarities in their mantle sources that may imply the presence of common metasomatizing agent(s). Wilson, M. & Downes, H. (1991). Journal of Petrology 32, 811-849. Ritter, J. R. R., Jordan, M., Christensen, U. R. & Achauer, U. (2001). Earth and Planetary Science Letters 186, 7-14.

  8. Root Cause Assessment of Pressure Drop Rise of a Packed Bed of Lithium Hydroxide in the International Space Station Trace Contaminant Control System

    NASA Technical Reports Server (NTRS)

    Aguilera, Tatiana; Perry, Jay L.

    2009-01-01

    The trace contaminant control system (TCCS) located in the International Space Station s (ISS) U.S. laboratory module employs physical adsorption, thermal catalytic oxidation, and chemical adsorption to remove trace chemical contamination produced by equipment offgassing and anthropogenic sources from the cabin atmosphere. The chemical adsorption stage, consisting of a packed bed of granular lithium hydroxide (LiOH), is located after the thermal catalytic oxidation stage and is designed to remove acid gas byproducts that may be formed in the upstream oxidation stage. While in service on board the ISS, the LiOH bed exhibited a change in flow resistance that leading to flow control difficulties in the TCCS. Post flight evaluation revealed LiOH granule size attrition among other changes. An experimental program was employed to investigate mechanisms hypothesized to contribute to the change in the packed bed s flow resistance. Background on the problem is summarized, including a discussion of likely mechanisms. The experimental program is described, results are presented, and implications for the future are discussed.

  9. New tracers identify hydraulic fracturing fluids and accidental releases from oil and gas operations.

    PubMed

    Warner, N R; Darrah, T H; Jackson, R B; Millot, R; Kloppmann, W; Vengosh, A

    2014-11-04

    Identifying the geochemical fingerprints of fluids that return to the surface after high volume hydraulic fracturing of unconventional oil and gas reservoirs has important applications for assessing hydrocarbon resource recovery, environmental impacts, and wastewater treatment and disposal. Here, we report for the first time, novel diagnostic elemental and isotopic signatures (B/Cl, Li/Cl, δ11B, and δ7Li) useful for characterizing hydraulic fracturing flowback fluids (HFFF) and distinguishing sources of HFFF in the environment. Data from 39 HFFFs and produced water samples show that B/Cl (>0.001), Li/Cl (>0.002), δ11B (25-31‰) and δ7Li (6-10‰) compositions of HFFF from the Marcellus and Fayetteville black shale formations were distinct in most cases from produced waters sampled from conventional oil and gas wells. We posit that boron isotope geochemistry can be used to quantify small fractions (∼0.1%) of HFFF in contaminated fresh water and likely be applied universally to trace HFFF in other basins. The novel environmental application of this diagnostic isotopic tool is validated by examining the composition of effluent discharge from an oil and gas brine treatment facility in Pennsylvania and an accidental spill site in West Virginia. We hypothesize that the boron and lithium are mobilized from exchangeable sites on clay minerals in the shale formations during the hydraulic fracturing process, resulting in the relative enrichment of boron and lithium in HFFF.

  10. Trace element distribution in waters of the northern catchment area of Lake Linneret, northern Israel

    NASA Astrophysics Data System (ADS)

    Sandler, A.; Brenner, I. B.; Halicz, L.

    1988-02-01

    Waters of the northern watershed of Lake Kineret, sampled during the period 1978 1983, were analyzed for their major and trace element contents. The trace element concentrations of the major water sources of the watershed (the Dan and Banias springs) represent background values. After emergence, the waters are subjected to human activity. In crossing the populated and cultivated Hula Basin in man-made canals, the major and trace element contents increase. In comparison to the trace element concentrations, those of the major elements have narrow ranges and small temporal fluctuations. Trace element concentrations varied by 3 orders of magnitude, and temporal variations were large but not neccessarily seasonal. Point sources of trace elements were urban effluents, fish pond wastes, and peat soil drainage. The trace element concentrations decrease in the waters of the last segment of the Jordan River. All measured trace elements were below the criteria levels established by regulatory agencies. Several, however, were of the same order of magnitude. Addition of wastes from enhanced recycling, and morphologic modification of the final course of the Jordan River could result in increase in the trace element concentrations in the water.

  11. Numerical simulation of trace element transport on subsurface environment pollution in coal mine spoil.

    PubMed

    Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu

    2006-01-01

    An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.

  12. Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.

    PubMed

    Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-04-01

    Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Publisher Correction: 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries

    NASA Astrophysics Data System (ADS)

    Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong

    2018-06-01

    In the version of this Article originally published, a technical error in typesetting led to the traces in Fig. 3a being trimmed and made to overlap. The figure has now been corrected with the traces as supplied by the authors; the original and corrected Fig. 3a are shown below. Also, in the last paragraph of the section "Mechanistic study on Li diffusion in MoS2" the authors incorrectly included the term `high-concentration' in the text "the Li diffusion will be dominated by high-concentration Li migration on the surface of T-MoS2 with a much smaller energy barrier (0.155 eV) to overcome". This term has now been removed from all versions of the Article. Finally, the authors have added an extra figure in the Supplementary Information (Supplementary Fig. 19) to show galvanostatic tests at 1 and 3 mA cm-2 for the MoS2-coated Li symmetric cells. The caption to Fig. 3 of the Article has been amended to reflect this, with the added wording "Galvanostatic tests at 1 and 3 mA cm-2 can be found in Supplementary Fig. 19."

  14. Trace Elements in River Waters

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Viers, J.; Dupré, B.

    2003-12-01

    Trace elements are characterized by concentrations lower than 1 mg L-1 in natural waters. This means that trace elements are not considered when "total dissolved solids" are calculated in rivers, lakes, or groundwaters, because their combined mass is not significant compared to the sum of Na+, K+, Ca2+, Mg2+, H4SiO4, HCO3-, CO32-, SO42-, Cl-, and NO3-. Therefore, most of the elements, except about ten of them, occur at trace levels in natural waters. Being trace elements in natural waters does not necessarily qualify them as trace elements in rocks. For example, aluminum, iron, and titanium are major elements in rocks, but they occur as trace elements in waters, due to their low mobility at the Earth's surface. Conversely, trace elements in rocks such as chlorine and carbon are major elements in waters.The geochemistry of trace elements in river waters, like that of groundwater and seawater, is receiving increasing attention. This growing interest is clearly triggered by the technical advances made in the determination of concentrations at lower levels in water. In particular, the development of inductively coupled plasma mass spectrometry (ICP-MS) has considerably improved our knowledge of trace-element levels in waters since the early 1990s. ICP-MS provides the capability of determining trace elements having isotopes of interest for geochemical dating or tracing, even where their dissolved concentrations are extremely low.The determination of trace elements in natural waters is motivated by a number of issues. Although rare, trace elements in natural systems can play a major role in hydrosystems. This is particularly evident for toxic elements such as aluminum, whose concentrations are related to the abundance of fish in rivers. Many trace elements have been exploited from natural accumulation sites and used over thousands of years by human activities. Trace elements are therefore highly sensitive indexes of human impact from local to global scale. Pollution impact studies require knowledge of the natural background concentrations and knowledge of pollutant behavior. For example, it is generally accepted that rare earth elements (REEs) in waters behave as good analogues for the actinides, whose natural levels are quite low and rarely measured. Water quality investigations have clearly been a stimulus for measurement of toxic heavy metals in order to understand their behavior in natural systems.From a more fundamental point of view, it is crucial to understand the behavior of trace elements in geological processes, in particular during chemical weathering and transport by waters. Trace elements are much more fractionated by weathering and transport processes than major elements, and these fractionations give clues for understanding the nature and intensity of the weathering+transport processes. This has not only applications for weathering studies or for the past mobilization and transport of elements to the ocean (potentially recorded in the sediments), but also for the possibility of better utilization of trace elements in the aqueous environment as an exploration tool.In this chapter, we have tried to review the recent literature on trace elements in rivers, in particular by incorporating the results derived from recent ICP-MS measurements. We have favored a "field approach" by focusing on studies of natural hydrosystems. The basic questions which we want to address are the following: What are the trace element levels in river waters? What controls their abundance in rivers and fractionation in the weathering+transport system? Are trace elements, like major elements in rivers, essentially controlled by source-rock abundances? What do we know about the chemical speciation of trace elements in water? To what extent do colloids and interaction with solids regulate processes of trace elements in river waters? Can we relate the geochemistry of trace elements in aquatic systems to the periodic table? And finally, are we able to satisfactorily model and predict the behavior of most of the trace elements in hydrosystems?An impressive literature has dealt with experimental works on aqueous complexation, uptake of trace elements by surface complexation (inorganic and organic), uptake by living organisms (bioaccumulation) that we have not reported here, except when the results of such studies directly explain natural data. As continental waters encompass a greater range of physical and chemical conditions, we focus on river waters and do not discuss trace elements in groundwaters, lakes, and the ocean. In lakes and in the ocean, the great importance of life processes in regulating trace elements is probably the major difference from rivers.Section 5.09.2 of this chapter reports data. We will review the present-day literature on trace elements in rivers to show that our knowledge is still poor. By comparing with the continental abundances, a global mobility index is calculated for each trace element. The spatial and temporal variability of trace-element concentrations in rivers will be shown to be important. In Section 5.09.3, sources of trace elements in river waters are indicated. We will point out the great diversity of sources and the importance of global anthropogenic contamination for a number of elements. The question of inorganic and organic speciation of trace elements in river water will then be addressed in Section 5.09.4, considering some general relationships between speciation and placement in the periodic table. In Section 5.09.5, we will show that studies on organic-rich rivers have led to an exploration of the "colloidal world" in rivers. Colloids are small particles, passing through the conventional filters used to separate dissolved and suspended loads in rivers. They appear as major carriers of trace elements in rivers and considerably complicate aqueous-speciation calculation. Finally, in Section 5.09.6, the significance of interactions between solutes and solid surfaces in river waters will be reviewed. Regulation by surfaces is of major importance for a great range of elements. Although for both colloids and surface interactions, some progress has been made, we are still far from a unified model that can accurately predict trace-element concentrations in natural water systems. This is mainly due to our poor physical description of natural colloids, surface site complexation, and their interaction with solutes.

  15. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry

    NASA Astrophysics Data System (ADS)

    Lambrecht, Glenn; Diamond, Larryn William

    2014-09-01

    Cathodoluminescence (CL) studies have previously shown that some secondary fluid inclusions in luminescent quartz are surrounded by dark, non-luminescent patches, resulting from fracture-sealing by late, trace-element-poor quartz. This finding has led to the tacit generalization that all dark CL patches indicate influx of low temperature, late-stage fluids. In this study we have examined natural and synthetic hydrothermal quartz crystals using CL imaging supplemented by in-situ elemental analysis. The results lead us to propose that all natural, liquid-water-bearing inclusions in quartz, whether trapped on former crystal growth surfaces (i.e., of primary origin) or in healed fractures (i.e., of pseudosecondary or secondary origin), are surrounded by three-dimensional, non-luminescent patches. Cross-cutting relations show that the patches form after entrapment of the fluid inclusions and therefore they are not diagnostic of the timing of fluid entrapment. Instead, the dark patches reveal the mechanism by which fluid inclusions spontaneously approach morphological equilibrium and purify their host quartz over geological time. Fluid inclusions that contain solvent water perpetually dissolve and reprecipitate their walls, gradually adopting low-energy euhedral and equant shapes. Defects in the host quartz constitute solubility gradients that drive physical migration of the inclusions over distances of tens of μm (commonly) up to several mm (rarely). Inclusions thus sequester from their walls any trace elements (e.g., Li, Al, Na, Ti) present in excess of equilibrium concentrations, thereby chemically purifying their host crystals in a process analogous to industrial zone refining. Non-luminescent patches of quartz are left in their wake. Fluid inclusions that contain no liquid water as solvent (e.g., inclusions of low-density H2O vapor or other non-aqueous volatiles) do not undergo this process and therefore do not migrate, do not modify their shapes with time, and are not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

  16. Trace Elements and Healthcare: A Bioinformatics Perspective.

    PubMed

    Zhang, Yan

    2017-01-01

    Biological trace elements are essential for human health. Imbalance in trace element metabolism and homeostasis may play an important role in a variety of diseases and disorders. While the majority of previous researches focused on experimental verification of genes involved in trace element metabolism and those encoding trace element-dependent proteins, bioinformatics study on trace elements is relatively rare and still at the starting stage. This chapter offers an overview of recent progress in bioinformatics analyses of trace element utilization, metabolism, and function, especially comparative genomics of several important metals. The relationship between individual elements and several diseases based on recent large-scale systematic studies such as genome-wide association studies and case-control studies is discussed. Lastly, developments of ionomics and its recent application in human health are also introduced.

  17. Atmospheric transport of trace elements and nutrients to the oceans

    PubMed Central

    Chance, R.

    2016-01-01

    This paper reviews atmospheric inputs of trace elements and nutrients to the oceans in the context of the GEOTRACES programme and provides new data from two Atlantic GEOTRACES cruises. We consider the deposition of nitrogen to the oceans, which is now dominated by anthropogenic emissions, the deposition of mineral dust and related trace elements, and the deposition of other trace elements which have a mixture of anthropogenic and dust sources. We then consider the solubility (as a surrogate for bioavailability) of the various elements. We consider briefly the sources, atmospheric transport and transformations of these elements and how this results in strong spatial deposition gradients. Solubility of the trace elements also varies systematically between elements, reflecting their sources and cycling, and for some trace elements there are also systematic gradients in solubility related to dust loading. Together, these effects create strong spatial gradients in the inputs of bioavailable trace elements to the oceans, and we are only just beginning to understand how these affect ocean biogeochemistry. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035252

  18. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils

    PubMed Central

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W.; Fallmann, Katharina; Puschenreiter, Markus

    2013-01-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element – tolerating or – accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant–bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils. PMID:23645938

  19. The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils.

    PubMed

    Sessitsch, Angela; Kuffner, Melanie; Kidd, Petra; Vangronsveld, Jaco; Wenzel, Walter W; Fallmann, Katharina; Puschenreiter, Markus

    2013-05-01

    Phytoextraction makes use of trace element-accumulating plants that concentrate the pollutants in their tissues. Pollutants can be then removed by harvesting plants. The success of phytoextraction depends on trace element availability to the roots and the ability of the plant to intercept, take up, and accumulate trace elements in shoots. Current phytoextraction practises either employ hyperaccumulators or fast-growing high biomass plants; the phytoextraction process may be enhanced by soil amendments that increase trace element availability in the soil. This review will focus on the role of plant-associated bacteria to enhance trace element availability in the rhizosphere. We report on the kind of bacteria typically found in association with trace element - tolerating or - accumulating plants and discuss how they can contribute to improve trace element uptake by plants and thus the efficiency and rate of phytoextraction. This enhanced trace element uptake can be attributed to a microbial modification of the absorptive properties of the roots such as increasing the root length and surface area and numbers of root hairs, or by increasing the plant availability of trace elements in the rhizosphere and the subsequent translocation to shoots via beneficial effects on plant growth, trace element complexation and alleviation of phytotoxicity. An analysis of data from literature shows that effects of bacterial inoculation on phytoextraction efficiency are currently inconsistent. Some key processes in plant-bacteria interactions and colonization by inoculated strains still need to be unravelled more in detail to allow full-scale application of bacteria assisted phytoremediation of trace element contaminated soils.

  20. Evaporation Loss of Light Elements as a Function of Cooling Rate: Logarithmic Law

    NASA Technical Reports Server (NTRS)

    Xiong, Yong-Liang; Hewins, Roger H.

    2003-01-01

    Knowledge about the evaporation loss of light elements is important to our understanding of chondrule formation processes. The evaporative loss of light elements (such as B and Li) as a function of cooling rate is of special interest because recent investigations of the distribution of Li, Be and B in meteoritic chondrules have revealed that Li varies by 25 times, and B and Be varies by about 10 times. Therefore, if we can extrapolate and interpolate with confidence the evaporation loss of B and Li (and other light elements such as K, Na) at a wide range of cooling rates of interest based upon limited experimental data, we would be able to assess the full range of scenarios relating to chondrule formation processes. Here, we propose that evaporation loss of light elements as a function of cooling rate should obey the logarithmic law.

  1. Spatial Variations and Sources of Trace Elements in Recent Snow from Glaciers at the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Huang, J.; Li, Y.; Li, Z.; Cozzi, G.; Turetta, C.; Barbante, C.; Xiong, L.

    2017-12-01

    Various trace element (TEs) could be long-range transported through the atmosphere and deposited onto the snow surface. Recently, with the development of economy of China and the surrounding countries, TEs such as Pb, Cd, Mo and Sb in several glaciers from the Tibetan Plateau (TP) have been gradually affected by anthropogenic activities. This study presents the acid leached concentrations of TEs (e.g., Al, As, Ba, Co, Cr, Cs, Cu, Fe, Li, Mn, Mo, Pb, Rb, Sb, Sr, Ti, Tl, U, V) and dust content sampled from Qiumianleike (QMLK), Meikuang (MK), Yuzhufeng (YZF), Xiaodongkemadi (XDKMD), Gurenhekou (GRHK) glaciers on the TP from April to May of 2013. The different concentrations of TEs in the surface snow and snow pit samples over the five glaciers show that TEs were influenced both by surrounding environment of glaciers and seasonal variations of atmospheric impurity loading. Comparison of TEs concentrations with data of other sites, elevated concentrations of As, Cu, Mo, Pb and Sb were observed in glaciers of TP, showing significant atmospheric TEs pollution. Enrichment factor(EF) analysis indicates that Rb, V, U, Cr, Ba, Cs, Li, As, Co, Mn, Tl, Sr and Cu mainly originated from crustal dust, while anthropogenic inputs such as nonferrous metals melting, coal combustion and traffic emission made an important contribution to the Mo, Pb and Sb. Evidences from air mass back trajectories show the air masses arrived at QMLK mostly came from the Taklimakan desert, the TEs from the Taklimakan desert and the western TP could be transported to the MK and YZF glaciers . The air masses derived from the western TP and the southwestern TP affected the environment of the XDKMD and GRHK glaciers. Futhermore, the air masses passed through some big cities with developed industry and large population such as Urumqi, Bishkek, Dushanbe and some countries such as Pakistan and India could also bring pollutants to the studied glaciers.

  2. Geochemistry of organic carbon and trace elements in boreal stratified lakes during different seasons

    NASA Astrophysics Data System (ADS)

    Moreva, O. Y.; Pokrovsky, O. S.; Shirokova, L. S.; Viers, J.

    2008-12-01

    Our knowledge of chemical fluxes in the system rock-soils-rivers-ocean of boreal and glacial landscapes is limited by the least studied part, i.e., the river water transformation between the lake and the river systems. Dissolved organic carbon (DOC), nutrients, major and trace elements are being leached from soil profile to the river but subjected to chemical transformation in the lakes due to phytoplankton and bacterial activity. As a result, many lakes in boreal regions are quite different in chemical composition compared to surrounding rivers and demonstrate important chemical stratification. The main processes responsible for chemical stratification in lakes are considered to be i) diffusion fluxes from the sediment to the bottom water accompanied by sulfate reduction and methanogenesis in the sediments and ii) dissolution/mineralization of precipitating organic matter (mineral fraction, detritus, plankton pellets) in the bottom layer horizons under anoxic conditions. Up to present time, distinguishing between two processes remains difficult. This paper is aimed at filling this gap via detailed geochemical analysis of DOC and trace elements in the water column profiles of three typical stratified lakes of Arkhangelsk region in Kenozersky National Parc (64° N) in winter (glacial) and in summer period. Concentration of most trace elements (Li, B, Al, Ti, V, Cr, Ni, Co, Zn, As, Rb, Sr, Y, Zr, Mo, Sb, Ba, REEs, Th, U) are not subjected to strong variations along the water column, despite the presence of strong or partial redox stratification. Apparently, these elements are not significantly controlled by production/mineralization processes and redox phenomena in the water column, or the influence of these processes is not pronounced under the control by the allochtonous river water input. In particularly, the stability of titanium and aluminum concentration along the depth profile and their independence of iron behavior suggest the important control by dissolved organic matter. Therefore, organo-ferric colloids controlling petrogenic elements speciation in soil and river waters are being replaced by autochthonous organic colloids in the lake system. The same observation is true for some heavy metals such as nickel, copper and zinc, whereas cobalt, as limiting component, is being strongly removed from the photic zone or it is coprecipitating with manganese hydroxide. Results of the present work allow quantitative evaluation of the role of redox processes in the bottom horizons and organic detritus degradation in the creation of chemical stratification of small lakes with high DOC concentration. Further insights on geochemical migration of trace elements in lakes require : i) study of colloidal speciation using in-situ dialysis; ii) monitoring the annual and seasonal dynamics of redox processes and TE concentration variation along the profile; iii) quantitative assessment of bacterial degradation of suspended OM and Mn and Fe redox reactions along the depth profile; iv) setting the sedimentary traps for evaluation of suspended material fluxes, and, v) thorough study of chemical composition of interstitial pore waters.

  3. Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon

    PubMed Central

    van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.

    2010-01-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062

  4. Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.

    PubMed

    Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W

    2010-10-01

    Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.

  5. Tracing Waste Water with Li isotopes

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.

    2015-12-01

    The contribution of human activities such as industries, agriculture and various domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. In the present study, we investigate waste water tracing by the use of Li isotopes in a small river basin near Orléans in France (l'Egoutier, 15 km² and 5 km long). It is well known that Li has strategic importance for numerous industrial applications including its use in the production of batteries for both mobile devices (computers, tablets, smartphones, etc.) and electric vehicles, but also in pharmaceutical formulations. In the present work, we collected river waters samples before and after the release from a waste water treatment plant connected to an hospital. Lithium isotopic compositions are rather homogeneous in river waters with δ7Li values around -0.5‰ ± 1 along the main course of the stream (n=7). The waste water sample is very different from the natural background of the river basin with Li concentration being twice of the values without pollution and significant heavy lithium contribution (δ7Li = +4‰). These preliminary results will be discussed in relation with factors controlling the distribution of Li and its isotopes in this specific system and compared with the release of other metals such as Pb or Zn.

  6. Bulk semiconducting scintillator device for radiation detection

    DOEpatents

    Stowe, Ashley C.; Burger, Arnold; Groza, Michael

    2016-08-30

    A bulk semiconducting scintillator device, including: a Li-containing semiconductor compound of general composition Li-III-VI.sub.2, wherein III is a Group III element and VI is a Group VI element; wherein the Li-containing semiconductor compound is used in one or more of a first mode and a second mode, wherein: in the first mode, the Li-containing semiconductor compound is coupled to an electrical circuit under bias operable for measuring electron-hole pairs in the Li-containing semiconductor compound in the presence of neutrons and the Li-containing semiconductor compound is also coupled to current detection electronics operable for detecting a corresponding current in the Li-containing semiconductor compound; and, in the second mode, the Li-containing semiconductor compound is coupled to a photodetector operable for detecting photons generated in the Li-containing semiconductor compound in the presence of the neutrons.

  7. Surface-water-quality assessment of the Yakima River basin in Washington; spatial and temporal distribution of trace elements in water, sediment, and aquatic biota, 1987-91; with a section on geology

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Cain, Daniel J.; McKenzie, Stuart W.; Rinella, Joseph F.; Crawford, J. Kent; Skach, Kenneth A.; Hornberger, Michelle I.; Gannett, Marshall W.

    1999-01-01

    The report describes the distribution of trace elements in sediment, water, and aquatic biota in the Yakima River basin, Washington. Trace elements were determined from streambed sediment, suspended sediment, filtered and unfiltered water samples, aquatic insects, clams, fish livers, and fish fillets between 1987 and 1991. The distribution of trace elements in these media was related to local geology and anthropogenic sources. Additionally, annual and instantaneous loads were estimated for trace elements associated with suspended sediment and trace elements in filtered water samples. Trace elements also were screened against U.S. Environmental Protection Agency guidelines established for the protection of human health and aquatic life.

  8. A new perspective of using sequential extraction: To predict the deficiency of trace elements during anaerobic digestion.

    PubMed

    Cai, Yafan; Wang, Jungang; Zhao, Yubin; Zhao, Xiaoling; Zheng, Zehui; Wen, Boting; Cui, Zongjun; Wang, Xiaofen

    2018-09-01

    Trace elements were commonly used as additives to facilitate anaerobic digestion. However, their addition is often blind because of the complexity of reaction conditions, which has impeded their widespread application. Therefore, this study was conducted to evaluate deficiencies in trace elements during anaerobic digestion by establishing relationships between changes in trace element bioavailability (the degree to which elements are available for interaction with biological systems) and digestion performance. To accomplish this, two batch experiments were conducted. In the first, sequential extraction was used to detect changes in trace element fractions and then to evaluate trace element bioavailability in the whole digestion cycle. In the second batch experiment, trace elements (Co, Fe, Cu, Zn, Mn, Mo and Se) were added to the reaction system at three concentrations (low, medium and high) and their effects were monitored. The results showed that sequential extraction was a suitable method for assessment of the bioavailability of trace elements (appropriate coefficient of variation and recovery rate). The results revealed that Se had the highest (44.2%-70.9%) bioavailability, while Fe had the lowest (1.7%-3.0%). A lack of trace elements was not directly related to their absolute bioavailability, but was instead associated with changes in their bioavailability throughout the digestion cycle. Trace elements were insufficient when their bioavailability was steady or increased over the digestion cycle. These results indicate that changes in trace element bioavailability during the digestion cycle can be used to predict their deficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Trace element profiles of the sea anemone Anemonia viridis living nearby a natural CO2 vent

    PubMed Central

    Borell, Esther M.; Fine, Maoz; Shaked, Yeala

    2014-01-01

    Ocean acidification (OA) is not an isolated threat, but acts in concert with other impacts on ecosystems and species. Coastal marine invertebrates will have to face the synergistic interactions of OA with other global and local stressors. One local factor, common in coastal environments, is trace element contamination. CO2 vent sites are extensively studied in the context of OA and are often considered analogous to the oceans in the next few decades. The CO2 vent found at Levante Bay (Vulcano, NE Sicily, Italy) also releases high concentrations of trace elements to its surrounding seawater, and is therefore a unique site to examine the effects of long-term exposure of nearby organisms to high pCO2 and trace element enrichment in situ. The sea anemone Anemonia viridis is prevalent next to the Vulcano vent and does not show signs of trace element poisoning/stress. The aim of our study was to compare A. viridis trace element profiles and compartmentalization between high pCO2 and control environments. Rather than examining whole anemone tissue, we analyzed two different body compartments—the pedal disc and the tentacles, and also examined the distribution of trace elements in the tentacles between the animal and the symbiotic algae. We found dramatic changes in trace element tissue concentrations between the high pCO2/high trace element and control sites, with strong accumulation of iron, lead, copper and cobalt, but decreased concentrations of cadmium, zinc and arsenic proximate to the vent. The pedal disc contained substantially more trace elements than the anemone’s tentacles, suggesting the pedal disc may serve as a detoxification/storage site for excess trace elements. Within the tentacles, the various trace elements displayed different partitioning patterns between animal tissue and algal symbionts. At both sites iron was found primarily in the algae, whereas cadmium, zinc and arsenic were primarily found in the animal tissue. Our data suggests that A. viridis regulates its internal trace element concentrations by compartmentalization and excretion and that these features contribute to its resilience and potential success at the trace element-rich high pCO2 vent. PMID:25250210

  10. Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland.

    PubMed

    Mleczek, M; Niedzielski, P; Kalač, P; Budka, A; Siwulski, M; Gąsecka, M; Rzymski, P; Magdziak, Z; Sobieralski, K

    2016-08-01

    The aim of this work was to compare 10 mostly edible aboveground and 10 wood-growing mushroom species collected near a heavily trafficked road (approximately 28,000 vehicles per 24 h) in Poland with regard to their capacity to accumulate 26 trace elements (Ag, Al, As, Au, B, Ba, Bi, Cd, Co, Cr, Cu, Fe, Ga, Ge, In, Li, Mn, Ni, Pb, Re, Sb, Se, Sr, Te, Tl, and Zn) in their fruit bodies in order to illustrate mushroom diversity in element accumulation. All analyses were performed using an inductively coupled plasma optical emission spectrometry (ICP-OES) spectrometer in synchronous dual view mode. The aboveground species had significantly higher levels of 12 elements, including Ag, As, Pb, and Se, compared to the wood-growing species. An opposite relationship was observed only for Au, Ba, and Sr. The results of principal component analysis (PCA) and hierarchical cluster analysis (HCA) implied some new relationships among the analyzed species and elements. Of the analyzed mushroom species, lead content in Macrolepiota procera would seem to pose a health risk; however, at present knowledge regarding lead bioaccessibility from mushrooms is quite limited.

  11. A Narrative Evaluation of Mandarin-Speaking Children With Language Impairment.

    PubMed

    Hao, Ying; Sheng, Li; Zhang, Yiwen; Jiang, Fan; de Villiers, Jill; Lee, Wendy; Liu, Xueman Lucy

    2018-02-15

    We aimed to study narrative skills in Mandarin-speaking children with language impairment (LI) to compare with children with LI speaking Indo-European languages. Eighteen Mandarin-speaking children with LI (mean age 6;2 [years;months]) and 18 typically developing (TD) age controls told 3 stories elicited using the Mandarin Expressive Narrative Test (de Villiers & Liu, 2014). We compared macrostructure-evaluating descriptions of characters, settings, initiating events, internal responses,plans, actions, and consequences. We also studied general microstructure, including productivity, lexical diversity, syntactic complexity, and grammaticality. In addition, we compared the use of 6 fine-grained microstructure elements that evaluate particular Mandarin linguistic features. Children with LI exhibited weaknesses in 5 macrostructure elements, lexical diversity, syntactic complexity, and 3 Mandarin-specific, fine-grained microstructure elements. Children with LI and TD controls demonstrated comparable performance on 2 macrostructure elements, productivity, grammaticality, and the remaining 3 fine-grained microstructure features. Similarities and differences are noted in narrative profiles of children with LI who speak Mandarin versus those who speak Indo-European languages. The results are consistent with the view that profiles of linguistic deficits are shaped by the ambient language. Clinical implications are discussed.

  12. Trace elements as quantitative probes of differentiation processes in planetary interiors

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1980-01-01

    The characteristic trace element signature that each mineral in the source region imparts on the magma constitutes the conceptual basis for trace element modeling. It is shown that abundances of trace elements in extrusive igneous rocks may be used as petrological and geochemical probes of the source regions of the rocks if differentiation processes, partition coefficients, phase equilibria, and initial concentrations in the source region are known. Although compatible and incompatible trace elements are useful in modeling, the present review focuses primarily on examples involving the rare-earth elements.

  13. Parenteral trace element provision: recent clinical research and practical conclusions

    PubMed Central

    Stehle, P; Stoffel-Wagner, B; Kuhn, K S

    2016-01-01

    The aim of this systematic review (PubMed, www.ncbi.nlm.nih.gov/pubmed and Cochrane, www.cochrane.org; last entry 31 December 2014) was to present data from recent clinical studies investigating parenteral trace element provision in adult patients and to draw conclusions for clinical practice. Important physiological functions in human metabolism are known for nine trace elements: selenium, zinc, copper, manganese, chromium, iron, molybdenum, iodine and fluoride. Lack of, or an insufficient supply of, these trace elements in nutrition therapy over a prolonged period is associated with trace element deprivation, which may lead to a deterioration of existing clinical symptoms and/or the development of characteristic malnutrition syndromes. Therefore, all parenteral nutrition prescriptions should include a daily dose of trace elements. To avoid trace element deprivation or imbalances, physiological doses are recommended. PMID:27049031

  14. Trace Elements Characteristic Based on ICP-AES and the Correlation of Flavonoids from Sparganii rhizoma.

    PubMed

    Wang, Xinsheng; Wu, Yanfang; Wu, Chengying; Wu, Qinan; Niu, Qingshan

    2018-04-01

    The aim of the present work was to investigate the trace elements and the correlation with flavonoids from Sparganii rhizoma. The ICP-AES and ultraviolet-visible spectroscopy were employed to analyze trace elements and flavonoids. The concentrations of trace elements and flavonoids were calculated using standard curve. The content of flavonoids was expressed as rutin equivalents. The cluster analysis was applied to evaluate geographical features of S. rhizoma from different geographical regions. The correlation analysis was used to obtain the relationship between the trace elements and flavonoids. The results indicated that the 15 trace elements were measured and the K, Ca, Mg, Na, Mn, Al, Cu, and Zn are rich in Sparganii rhizome. The different producing regions samples were classified into four groups. There was a weak relationship between trace elements and flavonoids.

  15. Trace Elements in Ovaries: Measurement and Physiology.

    PubMed

    Ceko, Melanie J; O'Leary, Sean; Harris, Hugh H; Hummitzsch, Katja; Rodgers, Raymond J

    2016-04-01

    Traditionally, research in the field of trace element biology and human and animal health has largely depended on epidemiological methods to demonstrate involvement in biological processes. These studies were typically followed by trace element supplementation trials or attempts at identification of the biochemical pathways involved. With the discovery of biological molecules that contain the trace elements, such as matrix metalloproteinases containing zinc (Zn), cytochrome P450 enzymes containing iron (Fe), and selenoproteins containing selenium (Se), much of the current research focuses on these molecules, and, hence, only indirectly on trace elements themselves. This review focuses largely on two synchrotron-based x-ray techniques: X-ray absorption spectroscopy and x-ray fluorescence imaging that can be used to identify the in situ speciation and distribution of trace elements in tissues, using our recent studies of bovine ovaries, where the distribution of Fe, Se, Zn, and bromine were determined. It also discusses the value of other techniques, such as inductively coupled plasma mass spectrometry, used to garner information about the concentrations and elemental state of the trace elements. These applications to measure trace elemental distributions in bovine ovaries at high resolutions provide new insights into possible roles for trace elements in the ovary. © 2016 by the Society for the Study of Reproduction, Inc.

  16. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Han, Hong-Bo; Zhou, Si-Si; Zhang, Dai-Jun; Feng, Shao-Wei; Li, Li-Fei; Liu, Kai; Feng, Wen-Fang; Nie, Jin; Li, Hong; Huang, Xue-Jie; Armand, Michel; Zhou, Zhi-Bin

    Lithium bis(fluorosulfonyl)imide (LiFSI) has been studied as conducting salt for lithium-ion batteries, in terms of the physicochemical and electrochemical properties of the neat LiFSI salt and its nonaqueous liquid electrolytes. Our pure LiFSI salt shows a melting point at 145 °C, and is thermally stable up to 200 °C. It exhibits far superior stability towards hydrolysis than LiPF 6. Among the various lithium salts studied at the concentration of 1.0 M (= mol dm -3) in a mixture of ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (3:7, v/v), LiFSI shows the highest conductivity in the order of LiFSI > LiPF 6 > Li[N(SO 2CF 3) 2] (LiTFSI) > LiClO 4 > LiBF 4. The stability of Al in the high potential region (3.0-5.0 V vs. Li +/Li) has been confirmed for high purity LiFSI-based electrolytes using cyclic voltammetry, SEM morphology, and chronoamperometry, whereas Al corrosion indeed occurs in the LiFSI-based electrolytes tainted with trace amounts of LiCl (50 ppm). With high purity, LiFSI outperforms LiPF 6 in both Li/LiCoO 2 and graphite/LiCoO 2 cells.

  17. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste.

    PubMed

    Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin

    2015-03-01

    Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.

  18. Corticosterone levels in relation to trace element contamination along an urbanization gradient in the common blackbird (Turdus merula).

    PubMed

    Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric

    2016-10-01

    In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

  20. A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology

    PubMed Central

    Ragimov, Aligejdar; Faizullin, Rashat; Valiev, Vsevolod

    2017-01-01

    Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water. PMID:29065586

  1. Assessment of trace element impacts on agricultural use of water from the Dan River following the Eden coal ash release.

    PubMed

    Hesterberg, Dean; Polizzotto, Matthew L; Crozier, Carl; Austin, Robert E

    2016-04-01

    Catastrophic events require rapid, scientifically sound decision making to mitigate impacts on human welfare and the environment. The objective of this study was to analyze potential impacts of coal ash-derived trace elements on agriculture following a 35,000-tonne release of coal ash into the Dan River at the Duke Energy Steam Station in Eden, North Carolina. We performed scenario calculations to assess the potential for excessive trace element loading to soils via irrigation and flooding with Dan River water, uptake of trace elements by crops, and livestock consumption of trace elements via drinking water. Concentrations of 13 trace elements measured in Dan River water samples within 4 km of the release site declined sharply after the release and were equivalent within 5 d to measurements taken upriver. Mass-balance calculations based on estimates of soil trace-element concentrations and the nominal river water concentrations indicated that irrigation or flooding with 25 cm of Dan River water would increase soil concentrations of all trace elements by less than 0.5%. Calculations of potential increases of trace elements in corn grain and silage, fescue, and tobacco leaves suggested that As, Cr, Se, Sr, and V were elements of most concern. Concentrations of trace elements measured in river water following the ash release never exceeded adopted standards for livestock drinking water. Based on our analyses, we present guidelines for safe usage of Dan River water to diminish negative impacts of trace elements on soils and crop production. In general, the approach we describe here may serve as a basis for rapid assessment of environmental and agricultural risks associated with any similar types of releases that arise in the future. © 2015 SETAC.

  2. Li-Zn-Pb multi isotopic characterization of the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A.; Widory, D.; Bourrain, X.

    2013-12-01

    The Loire River in France is approximately 1010 km long and drains an area of 117 800 km2. Upstream, the Loire River flows following a south to north direction from the Massif Central down to the city of Orléans, 650 km from its source. The Loire River is one of the main European riverine inputs to the Atlantic Ocean. Over time, its basin has been exposed to numerous sources of anthropogenic metal pollutions, such as metal mining, industry, agriculture and domestic inputs. The Loire River basin is thus an excellent study site to develop new isotope systematics for tracking anthropogenic sources of metal pollutions (Zn and Pb) and also to investigate Li isotope tracing that can provide key information on the nature of weathering processes at the Loire River Basin scale. Preliminary data show that Li-Zn-Pb concentrations and isotopic compositions span a wide range in river waters of the Loire River main stream and the main tributaries. There is a clear contrast between the headwaters upstream and rivers located downstream in the lowlands. In addition, one of the major tributaries within the Massif Central (the Allier River) is clearly influenced by inputs resulting from mineralizations and thermomineral waters. The results showed that, on their own, each of these isotope systematics reveals important information about the geogenic or anthropogenic origin Li-Zn-Pb. Considered together, they are however providing a more integrated understanding of the overall budgets of these elements at the scale of the Loire River Basin.

  3. Polycyclic aromatic hydrocarbons and trace metals in mosque's carpet dust of Riyadh, Saudi Arabia, and their health risk implications.

    PubMed

    El-Mubarak, Aarif H; Rushdi, Ahmed I; Al-Mutlaq, Khalid F; Al Mdawi, Falah Z; Al-Hazmi, Khalid; Dumenden, Ramil S; Pascua, Rex A

    2016-11-01

    The main objectives of this work were to identify and determine the concentrations of polycyclic aromatic hydrocarbons (PAHs) and trace metals in carpet dust samples from various mosques of the city of Riyadh and to assess the health risks associated with the exposure to these pollutants. Therefore, 31 samples of mosque's carpet dust from Riyadh were collected. The results showed that 14 PAHs were present in the dust samples with concentrations ranged from 90 to 22,146 ng g -1 (mean = 4096 ± 4277 ng g -1 ) where low molecular weight compounds were dominant. The presence of PAHs were in the order of naphthalene > chrysene and benzo(b)fluoranthene > benzo(a)pyrene > acenaphthene and benzo(k)fluoranthene > pyrene and the absence of indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene. The diagnostic ratio coupled with principle component analysis (PCA) revealed mix sources of petrogenic from traffic, stack emission, and pyrogenic inputs from essence and perfumed wood burning. Trace metals were significant in the dust samples, and their concentrations decrease in the order of Zn, Mn, Cu, Cr, Pb, Ni, and V where Zn being the highest (94.4 ± 91.5 μg g -1 ) and indium was the lowest (1.9 ± 9.3 μg g -1 ). The trace metals were major in southern and central parts of Riyadh and followed the order of central Riyadh > southern Riyadh > western Riyadh > eastern Riyadh > northern Riyadh. Estimated risk based on the total PAHs was found to be 4.30 × 10 -11 for adult and 1.56 × 10 -11 for children. Elemental non-cancer risk for adults ranged from 7.9 × 10 -4 for Co to 7.58 × 10 -1 for Li and for children ranged from 3.70 × 10 -3 for Co to 3.54 for Li. Policy implication and mitigations of PAHs in Riyadh and Saudi Arabia were highlighted.

  4. Investigation of Drinking Water Quality in Kosovo

    PubMed Central

    Berisha, Fatlume; Goessler, Walter

    2013-01-01

    In the recent years, not much environmental monitoring has been conducted in the territory of Kosovo. This study represents the first comprehensive monitoring of the drinking water situation throughout most of the territory of Kosovo. We present the distribution of major and minor trace elements in drinking water samples from Kosovo. During our study we collected 951 samples from four different sources: private-bored wells; naturally flowing artesian water; pumped-drilled wells; and public water sources (tap water). The randomly selected drinking water samples were investigated by routine water analyses using inductively coupled plasma mass spectrometry (ICPMS) for 32 elements (Li, Be, B, Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Rb, Sr, Mo, Ag, Cd, Sn, Sb, Te, Ba, Tl, Pb, Bi, Th, U). Even though there are set guidelines for elemental exposure in drinking water worldwide, in developing countries, such as Kosovo, the lack of monitoring drinking water continues to be an important health concern. This study reports the concentrations of major and minor elements in the drinking water in Kosovo. Additionally, we show the variation of the metal concentration within different sources. Of the 15 regulated elements, the following five elements: Mn, Fe, Al, Ni, As, and U were the elements which most often exceeded the guidelines set by the EU and/or WHO. PMID:23509472

  5. New Perspectives on the Essential Trace Elements.

    ERIC Educational Resources Information Center

    Frieden, Earl

    1985-01-01

    Provides a comprehensive overview of the 19 essential trace elements, examining: the concept of essentiality; evolution of these elements; possible future essential elements; the lanthanides and actinides; how essential trace elements work; the metalloenzymes; the nonmetals; iodine and the thyroid hormones; and antagonism among these elements. (JN)

  6. Trace element contaminants in mineral fertilizers used in Iran.

    PubMed

    Latifi, Zahra; Jalali, Mohsen

    2018-05-25

    The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

  7. Analysis of trace metals in water by inductively coupled plasma emission spectrometry using sodium dibenzyldithiocarbamate for preconcentration

    USGS Publications Warehouse

    Smith, C.L.; Motooka, J.M.; Willson, W.R.

    1984-01-01

    Since concentrations of trace elements in most natural waters seldom exceed the ??g/L level, analysis of trace elements in natural waters by inductively coupled plasma emission spectrometry (ICP) requires a preconcentration procedure. The elements Ag, Bi, Cd, Co, Cu, Fe, Mo, Ni, Pb, Sn, V, W, and Zn were separated and concentrated from 500 mL of water by coprecipitating them with sodium dibenzyldithiocarbamate (NaDBDTC) using nickel or silver as a carrier. The precipitated trace elements were collected on a membrane filter, redissolved from the filter with hot nitric and hydrochloric acids, and analyzed using ICP. Recoveries for all the trace elements except tungsten exceeded 80%. Coprecipitation of trace elements with NaDBDTC eliminated the use of difficult-to-inject organic solvents, and NaDBDTC coprecipitated a wider array of trace elements than ammoniumpyrrolidinedithiocarbamate (APDC), another commonly used coprecipitate.

  8. Linking trace element variations with macronutrients and major cations in marine mussels Mytilus edulis and Perna viridis.

    PubMed

    Liu, Fengjie; Wang, Wen-Xiong

    2015-09-01

    Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.

  9. Dust is the dominant source of "heavy metals" to peat moss (Sphagnum fuscum) in the bogs of the Athabasca Bituminous Sands region of northern Alberta.

    PubMed

    Shotyk, William; Bicalho, Beatriz; Cuss, Chad W; Duke, M John M; Noernberg, Tommy; Pelletier, Rick; Steinnes, Eiliv; Zaccone, Claudio

    2016-01-01

    Sphagnum fuscum was collected from twenty-five ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca Bituminous Sands (ABS) in northern Alberta (AB) in order to assess the extent of atmospheric contamination by trace elements. As a control, this moss species was also collected at a bog near Utikuma (UTK) in an undeveloped part of AB and 264km SW of the ABS region. For comparison, this moss was also collected in central AB, in the vicinity of the City of Edmonton which is approximately 500km to the south of the ABS region, from the Wagner Wetland which is 22km W of the City, from Seba Beach (ca. 90km W) and from Elk Island National Park (ca. 45km E). All of the moss samples were digested and trace elements concentrations determined using ICP-SMS at a commercial laboratory, with selected samples also analyzed using instrumental neutron activation analysis at the University of Alberta. The mosses from the ABS region yielded lower concentrations of Ag, As, Bi, Cd, Cu, Pb, Sb, Tl, and Zn compared to the moss from the Edmonton area. Concentrations of Ni and Mo in the mosses were comparable in these two regions, but V was more abundant in the ABS samples. Compared with the surface vegetation of eight peat cores collected in recent years from British Columbia, Ontario, Quebec and New Brunswick, the mean concentrations of Ag, As, Bi, Cd, Cu, Mo, Ni, Pb, Sb, Tl and Zn in the mosses from the ABS region are generally much lower. In fact, the concentrations of these trace elements in the samples from the ABS region are comparable to the corresponding values in forest moss from remote regions of central and northern Norway. Lithophile element concentrations (Ba, Be, Ga, Ge, Li, Sc, Th, Ti, Zr) explain most of the variation in trace metal concentrations in the moss samples. The mean concentrations of Th and Zr are greatest in the moss samples from the ABS region, reflecting dust inputs to the bogs from open pit mines, aggregate quarries, and gravel roads. Linear regressions of V, Ni, and Mo (elements enriched in bitumen) versus Sc (a conservative, lithophile element) show excellent correlations in the mosses from the ABS region, but this is true also of Ag, Pb, Sb and Tl: thus, most of the variation in the trace metal concentrations can be explained simply by the abundance of dust particles on the plants of this region. Unlike the moss samples from the ABS region and from UTK where Pb/Sc ratios resemble those of crustal rocks, the moss samples from the other regions studied yielded much greater Pb/Sc ratios implying significant anthropogenic Pb contributions at these other sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Proposal of new trace elements classification to be used in nutrition, oligotherapy and other therapeutics strategies].

    PubMed

    Ramírez Hernández, Javier; Bonete Pérez, María José; Martínez Espinosa, Rosa María

    2014-12-17

    1) to propose a new classification of the trace elements based on a study of the recently reported research; 2) to offer detailed and actualized information about trace elements. the analysis of the research results recently reported reveals that the advances of the molecular analysis techniques point out the importance of certain trace elements in human health. A detailed analysis of the catalytic function related to several elements not considered essential o probably essentials up to now is also offered. To perform the integral analysis of the enzymes containing trace elements informatics tools have been used. Actualized information about physiological role, kinetics, metabolism, dietetic sources and factors promoting trace elements scarcity or toxicity is also presented. Oligotherapy uses catalytic active trace elements with therapeutic proposals. The new trace element classification here presented will be of high interest for different professional sectors: doctors and other professions related to medicine; nutritionist, pharmaceutics, etc. Using this new classification and approaches, new therapeutic strategies could be designed to mitigate symptomatology related to several pathologies, particularly carential and metabolic diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  11. Trace elements have limited utility for studying migratory connectivity in shorebirds that winter in Argentina

    USGS Publications Warehouse

    Torres-Dowdall, J.; Farmer, A.H.; Abril, M.; Bucher, E.H.; Ridley, I.

    2010-01-01

    Trace-element analysis has been suggested as a tool for the study of migratory connectivity because (1) trace-element abundance varies spatially in the environment, (2) trace elements are assimilated into animals' tissues through the diet, and (3) current technology permits the analysis of multiple trace elements in a small tissue sample, allowing the simultaneous exploration of several elements. We explored the potential of trace elements (B, Na, Mg, Al, Si, P, S, K, Ca, Ti, Cr, Mn, Ni, Cu, Zn, As, Sr, Cs, Hg, Tl, Pb, Bi, Th, and U) to clarify the migratory connectivity of shorebirds that breed in North America and winter in southern South America. We collected 66 recently replaced secondary feathers from Red Knots (Calidris canutus) at three sites in Patagonia and 76 from White-rumped Sandpipers (C. fuscicollis) at nine sites across Argentina. There were significant differences in trace-element abundance in shorebird feathers grown at different nonbreeding sites, and annual variability within a site was small compared to variability among sites. Across Argentina, there was no large-scale gradient in trace elements. The lack of such a gradient restricts the application of this technique to questions concerning the origin of shorebirds to a small number of discrete sites. Furthermore, our results including three additional species, the Pectoral Sandpiper (C. melanotos), Wilson's Phalarope (Phalaropus tricolor), and Collared Plover (Charadrius collaris), suggest that trace-element profiles change as feathers age. Temporal instability of trace-element values could undermine their application to the study of migratory connectivity in shorebirds. ?? The Cooper Ornithological Society 2010.

  12. Trace elements in agroecosystems and impacts on the environment.

    PubMed

    He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J

    2005-01-01

    Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.

  13. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  14. Biomonitoring of atmospheric pollution: a novel approach for the evaluation of natural and anthropogenic contribution to atmospheric aerosol particles.

    PubMed

    Caggiano, Rosa; Calamita, Giuseppe; Sabia, Serena; Trippetta, Serena

    2017-03-01

    The investigation of the potential natural and anthropogenic contribution to atmospheric aerosol particles by using lichen-bag technique was performed in the Agri Valley (Basilicata region, southern Italy). This is an area of international concern since it houses one of the largest European on-shore reservoirs and the biggest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri (COVA)) within an anthropized context. In particular, the concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti, and Zn) were measured in lichen bags exposed in 59 selected monitoring points over periods of 6 months (from October 2011 to April 2012) and 12 months (from October 2011 to October 2012). The general origin of the main air masses affecting the sampling site during the study period was assessed by the back trajectories clustering calculated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results allowed the identification and characterization of the crustal material, smoke, sea salt, sulfate, and anthropogenic trace element contributions to the atmospheric aerosol particles in the study area. Finally, the application of the trend surface analysis (TSA) allowed the study of the spatial distribution of the considered contributions highlighting the existence of a continuous broad variation of these contributions in the area of interest.

  15. Perspectives for Li- and Ta-Mineralization in the Borborema Pegmatite Province, NE-Brazil: A review

    NASA Astrophysics Data System (ADS)

    Beurlen, Hartmut; Thomas, Rainer; da Silva, Marcelo R. Rodrigues; Müller, Axel; Rhede, Dieter; Soares, Dwight Rodrigues

    2014-12-01

    The increasing strategic importance of Li- and Ta-ores during the last decades due to the strong consumption growth for rechargeable batteries and high temperature and corrosion resistant capacitors reactivated the interest of studies in pegmatite fields around the world, because these rocks supply respectively 25% and 100% of the world consumption in these elements. Research on petrogenetic issues and major and accessory mineral chemistry variations in rare element (REL)-pegmatites of the Borborema Pegmatite Province in Northeast Brazil were tested as tools for the diagnosis of the metallogenetic potential of rare metals in individual pegmatites and in the province as a whole along the last dozen of years. The results allowed to establish the nearly isobaric (3.8 kbar) crystallization conditions of the REL-pegmatites between approximately 580 °C (liquidus) and 400 °C (solidus) from a peraluminous melt saturated in an aquo-carbonic medium to low salinity volatile phase and an immiscible peralkaline flux-enriched (H2O, CO2, F, B, Li etc.) melt fraction, based on melt and fluid inclusion studies. Mineral-chemistry data from 30 selected REL-pegmatites in the province allowed to classify three of them as being of the complex-spodumene or -lepidolite subtype in Černý's classification. Both subtypes are supposed to be potentially fertile, (highly fractionated, and with good chances to bear Li- and Ta-ore concentrations). It was also possible to identify several pegmatitic granite intrusions with textural and lithogeochemical characteristics also found in source granites of REL-pegmatite provinces elsewhere. Preliminary chemical Pb/U/Th geochronological determinations in uraninite and xenotyme crystals of these granites indicate an age of 520 ± 10 Ma and match recently published Ar/Ar in mica and U/Pb ages in columbite-group minerals (CGM) of the REL-pegmatites between 509 and 525 Ma. Mineral-chemistry data from grains of the outer zones of the pegmatites do not allow to distinguish potentially fertile from barren pegmatites. This discrimination is possible only if samples of the inner intermediate zone, replacement pockets or quartz core are used. From the tested minerals trace-element determinations (mainly Li, Al, Ti, Ge, B among 14 tested elements) by LA-ICP-MS technique in quartz seem to be more efficient than the classical approach (of Rb, K, Cs, Ga, Sr Ta) in K-feldspar or micas, due to the susceptibility to hydrothermal or supergene alteration of the latter. Mineral-chemistry variations in CGM, tourmalines, garnet and gahnite turned out to be efficient discriminators but all of them have the disadvantage of an eventual and, if present, random distribution, typical for accessory minerals in pegmatites, not allowing a regular sampling in most cases. Additional tests are recommended to confirm respectively the preliminary results of mineral-chemistry as exploration tools on a larger number of pegmatites and geochronological data to confirm the existence of another, older, synorogenetic generation of REL-pegmatites in the BPP.

  16. Trace elements transport in western Siberia rivers across a permafrost gradient

    NASA Astrophysics Data System (ADS)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Krickov, I. A.; Kopysov, S. G.; Kolesnichenko, L. G.; Vorobyev, S. N.; Kirpotin, S. N.

    2015-11-01

    Towards a better understanding of trace element transport in permafrost-affected Earth surface environments, we sampled ∼ 60 large and small rivers (< 100 to ≤ 150 000 km2 watershed area) of Western Siberia Lowland (WSL) during spring flood and summer and winter base-flow across a 1500 km latitudinal gradient covering continuous, discontinuous, sporadic and permafrost-free zones. Analysis of ∼ 40 major and trace elements in dissolved (< 0.45 μm) fraction allowed establishing main environmental factors controlling the transport of metals and trace elements in rivers of this environmentally important region. No statistically significant effect of the basin size on most TE concentration was evidenced. Three category of trace elements were distinguished according to their concentration - latitude pattern: (i) increasing northward in spring and winter (Fe, Al, Ga (only winter), Ti (only winter), REEs, Pb, Zr, Hf, Th (only winter)), linked to leaching from peat and/or redox processes and transport in the form of Fe-rich colloids, (ii) decreasing northward during all seasons (Sr, Mo, U, As, Sb) marking the underground water influence of river feeding and (iii) elements without distinct trend from S to N whose variations within each latitude range were higher than the difference between latitudinal ranges (B, Li, Ti (except summer), Cr, V, Mn, Zn, Cd, Cs, Hf, Th). In addition to these general features, specific, northward increase during spring period was mostly pronounced for Fe, Mn, Co, Zn and Ba and may stem from a combination of enhanced leaching from the topsoil and vegetation and bottom waters of the lakes (spring overturn). A spring time northward decrease was observed for Ni, Cu, Zr, Rb. The southward increase in summer was strongly visible for Fe, Ni, Ba, Rb and V, probably due to peat/moss release (Ni, Ba, Rb) or groundwater feeding (Fe, V). The Principal Component Analysis demonstrated two main factors potentially controlling the ensemble of TE concentration variation. The first factor, responsible for 16-20 % of overall variation, included trivalent and tetravalent hydrolysates, Cr, V, and DOC and presumably reflected the presence of organo-mineral colloids, as also confirmed by previous studies in Siberian rivers. The 2nd factor (8-14 % variation) was linked to the latitude of the watershed and acted on elements affected by the groundwater feeding (DIC, Sr, Mo, As, Sb, U), whose concentration decreased significantly northward during all seasons. Overall, the rank of environmental factors on TE concentration in western Siberian rivers was latitude (3 permafrost zones) > season > watershed size. The effect of the latitude was minimal in spring for most TE but highly visible for Sr, Mo, Sb and U. The main factors controlling the shift of river feeding from surface and subsurface flow to deep underground flow in the permafrost-bearing zone were the depth of the active (unfrozen) seasonal layer and its position in organic or mineral horizons of the soil profile. In the permafrost-free zone, the relative role of carbonate mineral-bearing base rock feeding vs. bog water feeding determined the pattern of trace element concentration and fluxes in rivers of various size as a function of season. Comparison of obtained TE fluxes in WSL rivers with those of other subarctic rivers demonstrated reasonable agreement for most trace elements; the lithology of base rocks was the major factor controlling the magnitude of TE fluxes. The climate change in western Siberia and permafrost boundary migration will affect essentially the elements controlled by underground water feeding (DIC, alkaline-earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids. Plant litter-originated divalent metals present as organic complexes may be retained via adsorption on mineral horizon. However, due to various counterbalanced processes controlling element source and sinks in plants - peat - mineral soil - river systems, the overall impact of the permafrost thaw on TE export from the land to the ocean may be smaller than that foreseen by merely active layer thickening and permafrost boundary shift.

  17. Spallogenic Light Elements and Cosmic Ray Origin

    NASA Technical Reports Server (NTRS)

    Ramaty, Reuven

    2000-01-01

    Most of the Galactic Li-6, all of the Be and the bulk of the B are cosmic ray produced. I will discuss the production mechanisms and detail a recently developed evolutionary code for Fe,O and these light elements. I will review the leading models for Li, Be and B origin and discuss their implications on cosmic ray origin. I will also show evidence for extragalactic production of Li-6.

  18. Nuclear microscopy in trace-element biology — from cellular studies to the clinic

    NASA Astrophysics Data System (ADS)

    Lindh, Ulf

    1993-05-01

    The concentration and distribution of trace and major elements in cells are of great interest in cell biology. PIXE can provide elemental concentrations in the bulk of cells or organelles as other bulk techniques such as atomic absorption spectrophotometry and nuclear activation analysis. Supplementary information, perhaps more exciting, on the intracellular distributions of trace elements can be provided using nuclear microscopy. Intracellular distributions of trace elements in normal and malignant cells are presented. The toxicity of mercury and cadmium can be prevented by supplementation of the essential trace element selenium. Some results from an experimental animal model are discussed. The intercellular distribution of major and trace elements in isolated blood cells, as revealed by nuclear microscopy, provides useful clinical information. Examples are given concerning inflammatory connective-tissue diseases and the chronic fatigue syndrome.

  19. Factors affecting trace element content in periurban market garden subsoil in Yunnan Province, China.

    PubMed

    Zu, Yanqun; Bock, Laurent; Schvartz, Christian; Colinet, Gilles; Li, Yuan

    2011-01-01

    Field investigations were conducted to measure subsoil trace element content and factors influencing content in an intensive periurban market garden in Chenggong County, Yunnan Province, South-West China. The area was divided into three different geomorphological units: specifically, mountain (M), transition (T) and lacustrine (L). Mean trace element content in subsoil were determined for Pb (58.2 mg/kg), Cd (0.89 mg/kg), Cu (129.2 mg/kg), and Zn (97.0 mg/kg). Strong significant relationships between trace element content in topsoil and subsoil were observed. Both Pb and Zn were accumulated in topsoil (RTS (ratio of mean trace element in topsoil to subsoil) of Pb and Zn > or =1.0) and Cd and Cu in subsoil (RTS of Cd and Cu < or = 1.0). Subsoil trace element content was related to relief, stoniness, soil color, clay content, and cation exchange capacity. Except for 7.5 YR (yellow-red) color, trace element content increased with color intensity from brown to reddish brown. Significant positive relationships were observed between Fe content and that of Pb and Cu. Trace element content in mountain unit subsoil was higher than in transition and lacustrine units (M > T > L), except for Cu (T > M > L). Mean trace element content in calcareous subsoil was higher than in sandstone and shale. Mean trace element content in clay texture subsoil was higher than in sandy and sandy loam subsoil, and higher Cu and Zn content in subsoil with few mottles. It is possible to model Pb, Cd, Cu, and Zn distribution in subsoil physico-chemical characteristics to help improve agricultural practice.

  20. Trace elements at the intersection of marine biological and geochemical evolution

    USGS Publications Warehouse

    Robbins, Leslie J.; Lalonde, Stefan V.; Planavsky, Noah J.; Partin, Camille A.; Reinhard, Christopher T.; Kendall, Brian; Scott, Clinton T.; Hardisty, Dalton S.; Gill, Benjamin C.; Alessi, Daniel S.; Dupont, Christopher L.; Saito, Mak A.; Crowe, Sean A.; Poulton, Simon W.; Bekker, Andrey; Lyons, Timothy W.; Konhauser, Kurt O.

    2016-01-01

    Life requires a wide variety of bioessential trace elements to act as structural components and reactive centers in metalloenzymes. These requirements differ between organisms and have evolved over geological time, likely guided in some part by environmental conditions. Until recently, most of what was understood regarding trace element concentrations in the Precambrian oceans was inferred by extrapolation, geochemical modeling, and/or genomic studies. However, in the past decade, the increasing availability of trace element and isotopic data for sedimentary rocks of all ages has yielded new, and potentially more direct, insights into secular changes in seawater composition – and ultimately the evolution of the marine biosphere. Compiled records of many bioessential trace elements (including Ni, Mo, P, Zn, Co, Cr, Se, and I) provide new insight into how trace element abundance in Earth's ancient oceans may have been linked to biological evolution. Several of these trace elements display redox-sensitive behavior, while others are redox-sensitive but not bioessential (e.g., Cr, U). Their temporal trends in sedimentary archives provide useful constraints on changes in atmosphere-ocean redox conditions that are linked to biological evolution, for example, the activity of oxygen-producing, photosynthetic cyanobacteria. In this review, we summarize available Precambrian trace element proxy data, and discuss how temporal trends in the seawater concentrations of specific trace elements may be linked to the evolution of both simple and complex life. We also examine several biologically relevant and/or redox-sensitive trace elements that have yet to be fully examined in the sedimentary rock record (e.g., Cu, Cd, W) and suggest several directions for future studies.

  1. Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (Swan Lake), northern China.

    PubMed

    Wang, Feng; Xu, Shaochun; Zhou, Yi; Wang, Pengmei; Zhang, Xiaomei

    2017-06-30

    Trace element poisoning remains a great threat to various waterfowl and waterbirds throughout the world. In this study, we determined the trace element exposure of herbivorous whooper swans (Cygnus cygnus) wintering in Swan Lake (Rongcheng), an important swan protection area in northern China. A total of 70 samples including abiotic factors (seawater, sediments), food sources (seagrass, macroalgae), feathers and feces of whooper swans were collected from the marine lagoon during the winters of 2014/2015 and 2015/2016. Concentrations of Cu, Zn, Pb, Cr, Cd, Hg and As were determined to investigate the trace element exposure of whooper swans wintering in the area. Results showed that there was an increasing trend in sediment trace element concentrations, compared with historical data. The trace element concentrations in swan feces most closely resembled those of Zostera marina leaves, especially for Cd and Cr. The Zn and Hg concentrations in the swan feces (49.57 and 0.01mg/kg, respectively) were lower than the minimum values reported in the literature for other waterfowls, waterbirds and terrestrial birds. However, the concentrations of the other five trace elements fell within the lower and mediate range of values reported for birds across the world. These results suggest that the whooper swans wintering in Swan Lake, Rongcheng are not suffering severe trace element exposure; however, with the increasing input of trace elements to the lagoon, severe adverse impacts may occur in the future, and we therefore suggest that the input of trace elements to this area should be curbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Heavy Metals and Related Trace Elements.

    ERIC Educational Resources Information Center

    Leland, Harry V.; And Others

    1978-01-01

    Presents a literature review of heavy metals and related trace elements in the environment, covering publications of 1976-77. This review includes: (1) trace treatment in natural water and in sediments; and (2) bioaccumulation and toxicity of trace elements. A list of 466 references is presented. (HM)

  3. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries

    NASA Astrophysics Data System (ADS)

    Gracia, Ismael; Ben Youcef, Hicham; Judez, Xabier; Oteo, Uxue; Zhang, Heng; Li, Chunmei; Rodriguez-Martinez, Lide M.; Armand, Michel

    2018-06-01

    Inverse vulcanization copolymers (p(S-DVB)) from the radical polymerization of elemental sulfur and divinylbenzene (DVB) have been studied as cathode active materials in poly(ethylene oxide) (PEO)-based all-solid-state Li-S cells. The Li-S cell comprising the optimized p(S-DVB) cathode (80:20 w/w S/DVB ratio) and lithium bis(fluorosulfonyl)imide/PEO (LiFSI/PEO) electrolyte shows high specific capacity (ca. 800 mAh g-1) and high Coulombic efficiency for 50 cycles. Most importantly, polysulfide (PS) shuttle is highly mitigated due to the strong interactions of PS species with polymer backbone in p(S-DVB). This is demonstrated by the stable cycling of the p(S-DVB)-based cell using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/PEO electrolyte, where successful charging cannot be achieved even at the first cycle with plain elemental S-based cathode material due to the severe PS shuttle phenomenon. These results suggest that inverse vulcanization copolymers are promising alternatives to elemental sulfur for enhancing the electrochemical performance of PEO-based all-solid-state Li-S cells.

  4. Simultaneous quantification of 17 trace elements in blood by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) equipped with a high-efficiency sample introduction system.

    PubMed

    D'Ilio, S; Violante, N; Di Gregorio, M; Senofonte, O; Petrucci, F

    2006-10-10

    A quadrupole inductively coupled plasma mass spectrometer (Q-ICP-MS) equipped with a dynamic reaction cell (DRC) and coupled with a desolvating nebulization system (APEX-IR) was employed to determine 17 elements (Al, As, Ba, Cd, Co, Cr, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, V, and Zr) in blood samples. Ammonia (for Al, Cr, Mn, and V) and O2 (for As and Se) were used as reacting gases. Selection of the best flow rate of the gases and optimization of the quadrupole dynamic bandpass tuning parameter (RPq) were carried out, using digested blood diluted 1+9 with deionized water and spiked with 1 microg L(-1) of Al, Cr, Mn, V and 5 microgL(-1) of As and Se. Detection limits were determined in digested blood using the 3sigma criterion. The desolvating system allowed a sufficient sensitivity to be achieved to determine elements at levels of ng L(-1) without detriment of signal stability. The accuracy of the method was tested with the whole blood certified reference material (CRM), certified for Al, As, Cd, Co, Cr, Mn, Mo, Ni, Pb, Sb, Se, and V, and with indicative values for Ba, Li, Sn, Sr, and Zr. The addition calibration approach was chosen for analysis. In order to confirm the DRC data, samples were also analyzed by means of sector field inductively coupled plasma mass spectrometry (SF-ICP-MS), operating in medium (m/Deltam=4000) and high (m/Deltam=10,000) resolution mode and achieving a good agreement between the two techniques.

  5. Meteoritic trace element toxification and the terminal Mesozoic mass extinction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, S.M.; Erickson, D.J. III

    1985-01-01

    Calculations of trace element fluxes to the earth associated with 5 and 10 kilometer diameter Cl chondrites and iron meteorites are presented. The data indicate that the masses of certain trace elements contained in the bolide, such as Fe, Co, Ni, Cr, Pb, and Cu, are as large as or larger than the world ocean burden. The authors believe that this pulse of trace elements was of sufficient magnitude to perturb the biogeochemical cycles operative 65 million years ago, a probably time of meteorite impact. Geochemical anomalies in Cretaceous-Tertiary boundary sediments suggest that elevated concentrations of trace elements may havemore » persisted for thousands of years in the ocean. Through direct exposure and bioaccumulation, many trophic levels of the global food chain, including that of the dinosaurs, would have been adversely affected by these meteoritic trace elements. The trace element toxification hypothesis may account for the selective extinction of both marine and terrestrial species in the enigmatic terminal Mesozoic event.« less

  6. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou province, China

    USGS Publications Warehouse

    Zhang, Jiahua; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J.

    2002-01-01

    Fourteen samples of minerals were separated by handpicking from Late Permian coals in southwestern Guizhou province, China. These 14 minerals were nodular pyrite, massive recrystallized pyrite, pyrite deposited from low-temperature hydrothermal fluid and from ground water; clay minerals; and calcite deposited from low-temperature hydrothermal fluid and from ground water. The mineralogy, elemental composition, and distribution of 33 elements in these samples were studied by optical microscopy, scanning electron microscope equipped with energy-dispersive X-ray spectrometer (SEM-EDX), X-ray diffraction (XRD), cold-vapor atomic absorption spectrometry (CV-AAS), atomic fluorescence spectrometry (AFS), inductively coupled-plasma mass spectrometry (ICP-MS), and ion-selective electrode (ISE). The results show that various minerals in coal contain variable amounts of trace elements. Clay minerals have high concentrations of Ba, Be, Cs, F, Ga, Nb, Rb, Th, U, and Zr. Quartz has little contribution to the concentration of trace elements in bulk coal. Arsenic, Mn, and Sr are in high concentrations in calcite. Pyrite has high concentrations of As, Cd, Hg, Mo, Sb, Se, Tl, and Zn. Different genetic types of calcite in coal can accumulate different trace elements; for example Ba, Co, Cr, Hg, Ni, Rb, Sn, Sr, and Zn are in higher concentrations in calcite deposited from low-temperature hydrothermal fluid than in that deposited from ground water. Furthermore, the concentrations of some trace elements are quite variable in pyrite; different genetic types of pyrites (Py-A, B, C, D) have different concentrations of trace elements, and the concentrations of trace elements are also different in pyrite of low-temperature hydrothermal origin collected from different locations. The study shows that elemental concentration is rather uniform in a pyrite vein. There are many micron and submicron mosaic pyrites in a pyrite vein, which is enriched in some trace elements, such as As and Mo. The content of trace element in pyrite vein depends upon the content of mosaic pyrite and of trace elements in it. Many environmentally sensitive trace elements are mainly contained in the minerals in coal, and hence the physical coal cleaning techniques can remove minerals from coal and decrease the emissions of potentially hazardous trace elements. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Inorganic trace element content of aerosols at puy de Dôme, France

    NASA Astrophysics Data System (ADS)

    Vlastelic, I.; Sellegri, K.; Colomb, A.; Suchroski, K.; Bouvier, L.; Nauret, F.

    2012-04-01

    The puy de Dôme research station is located at 1465 m above sea level in central France (45° 46' N, 2° 57' E, 1465 m a.s.l.). The station is surrounded by a protected area where agriculture and forests are predominant. The city of Clermont-Ferrand (150 000 inhabitants) is located 16 km east of the station. At the pdD site, the dominant westerly winds bring background or aged air masses. Despite its relatively low elevation, long-term records of gases and meteorological parameters indicate that in winter the site is mainly located in the free troposphere. Aerosol physical and chemical properties (particle size, black carbon mass), and gas-phase mixing ratios (SO2, CO, CO2, O3, NO, and NO2) are measured continuously throughout the year. Since October 2011, inorganic trace element content of aerosols is also monitored weekly. Precisely measured air volumes (typically from 15 to 20 m3) are filtered during two consecutive days and two consecutive nights on high purity teflon filters (47 mm diameter and 1.0 micrometer porosity). The Teflon filters are leached in savillex beakers using HNO3(0.4M) - HF (0.05M) and trace elements concentrations are analyzed by ICPMS (Agilent 7500, Laboratoire Magmas et Volcans). Preliminary data were analyzed in logarithmic plots sorting elements according to their decreasing abundance in the upper continental crust. A first group of elements (Al, Na, Fe, Mg, Ti, Mn, Ba, Sr, Zr, V, Cr, Rb, Li, Y, Ga, Co, Sc, Nb, Th, Hf, Cs, U, Be, Ta and Rare Earth Elements) shows a progressive decreasing trend, which suggests a crustal origin. A second group of elements (Zn, Ni, Cu, B, Pb, As, Sn, W, Ge, Mo, Tl, Sb, Bi, Se, Cd, In and Ag) shows strong positive anomalies that superimpose on the smooth trend. With the exception of Ni, all elements from this second group are volatile to some degree. The excess element concentration (i.e., unsupported by crustal input) decreases in the following order: Zn (7.75 ng/m3), B (1.2 ng/m3), Ni (0.44 ng/m3), Pb (0.34 ng/m3), Sn and Ag (0.18 ng/m3), W (0.13 ng/m3), Sb, As, Mo, Bi, Se, Cd, Ge (<0.1 ng/m3). Over the limited time-period yet investigated, the large variations of concentration ratios, such as Al/Ti (5 to 338) and Zn/Pb (0.5 to 196), point to important and rapid changes in element sources. These changes are currently examined in the light of air mass back-trajectories.

  8. Geochemistry of ocean floor serpentinites world-wide: constraints on the ultramafic input to subduction zones

    NASA Astrophysics Data System (ADS)

    Kodolányi, J.; Pettke, T.; Spandler, C.; Kamber, B.; Gméling, K.

    2009-04-01

    Serpentinite can be a major component of the upper part of the oceanic lithosphere and is a significant H2O-contributor to subduction zones (Scambelluri et al. 2004). Serpentinite dehydration releases large amounts of water through a very limited number of discontinuous reactions and it is therefore expected to have the potential of leaving a trace element chemical fingerprint in overlying rocks (Ulmer and Trommsdorff 1995; Scambelluri et al. 2004; see also Pettke et al. 2009). We present major and trace element whole rock (XRF, ICP-MS and PGAA) and in-situ mineral (EPMA and LA-ICP-MS) analyses of serpentinized peridotites sampled on DSDP/ODP drilling cruises, in order to chemically characterize the hydrated ultramafic input of subduction zones. The studied 39 samples cover all major geodynamic settings where serpentinites occur on recent ocean floors (fast and slow spreading mid-ocean ridges, passive margins and supra-subduction zones). All rock samples consist of one or two serpentine (srp) polymorphs, brucite (brc), magnetite (mag), and relic high-temperature mantle minerals: olivine (ol), orthopyroxene (opx), clinopyroxene (cpx) and spinel (spl). Serpentine + brc replace ol, forming a mesh-like network around relic crystal fragments. Magnetite usually forms strings of individual crystals along the srp mesh-network. Very rare iowaite (a H2O and Cl-bearing Fe-Mg oxy-hydroxide) remnants were found around the ol core of mesh srp and in the srp ± brc replacements after ol mesh cores. Orthopyroxene alters to bastitic pseudomorphs which consist of srp rarely accompanied by brc. Associated mag is generally absent. The degree of ol and opx alteration is variable, i.e., there are samples in which opx is completely whereas ol is only partially altered and vice versa, which suggests variable temperatures of alteration (alteration rate of opx is higher than that of ol above ca. 350 °C; Martin and Fyfe 1970). Clinopyroxene and spl appear to be weakly altered in thoroughly serpentinized samples. Where present, carbonate (cab) forms veins or fills former srp ± brc pseudomorphs after ol or opx. Major, minor and trace element chemistry of the serpentinites generally reflects that of their ultramafic precursor (Mg-rich and Si-poor rocks with low trace element contents). With respect to certain elements, however, we detect significant serpentinization-related changes. Besides their high H2O-contents (8.7-17.2 wt. %), the hydrated harzburgites and lherzolites also display high B and Cl concentrations (8-177 μg/g and 1160-5920 μg/g, respectively) relative to depleted mantle values (0.06 and 0.51 ppm, respectively; Salters and Stracke 2004). Supra-subduction zone serpentinites contain 10 to 100 times more Cs (0.04-1.2 μg/g) and Rb (0.1-7.1 μg/g) than samples from mid-ocean ridges and passive margins (Cs: below 0.07 μg/g; Rb: 0.004-1.17 μg/g). We often observe 100 to 1000-fold enrichments in U, Pb, Sr and Li relative to elements of similar compatibility in the mantle. In-situ mineral analyses suggest that B and Cl reside in serpentine minerals. Cesium and Rb whole rock and mineral chemical data correlate well, too. If carbonates are not present, the Sr budget of serpentinites is largely controlled by serpentine minerals that take up 0.36 to 21 μg/g Sr, i.e., orders of magnitude more than concentrations of precursor ol and opx. Bastites tend to have (about 1.5-4 times) higher trace-element concentrations than mesh rims, suggesting that precursor mineralogy (e.g. harzburgites vs. dunites) and alteration temperature (Martin and Fyfe 1970) can affect serpentinite chemistry. Enrichments of U, Pb and Li may have multiple origins, i.e., may be only partly related to serpentinization and low-temperature carbonate addition. Our study shows that serpentinites from representative geodynamic settings have variable, but generally depleted chemical character, inherited from precursor mantle rocks. However, notably B and Cl are enriched, but not uniformly so and independent of geodynamic setting. Supra-subduction zone serpentinites reveal additional enrichments in Cs, Rb, ±Sr, identifying an alteration fluid source that is not pure seawater. In conclusion, precursor mineralogy and magmatic history together with hydration temperature govern the trace element budget of ocean floor serpentinites, which, apart from supplying H2O to the subduction zone, may also be a significant source of B and Cl to the arc magma source and, depending on geodynamic setting, may even influence the element budget for Cs, Rb, Pb, U and .Sr. References: Martin B, Fyfe WS (1970) Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6: 185-202 Pettke T, Spandler C, Kodolányi J, Scambelluri M (2009) The chemical signatures of progressive dehydration stages in subducted serpentinites (this volume) Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5 Doi: 10.1029/2003GC000597 Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite Subduction: Implications for Fluid Processes and Trace-Element Recycling. Int Geol Rev 46: 595-613 Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268: 858-861

  9. Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far- east Russia: product of recent melt/fluid-rock reaction

    NASA Astrophysics Data System (ADS)

    Rudnick, R. L.; Ionov, D. A.

    2006-12-01

    Peridotite xenoliths from the Tok and Barhatny localities in far-east Russia are characterized by strong Li elemental and isotopic disequilibria caused by addition of Li to the rocks via diffusion from a small-volume grain boundary fluid or melt. Because Li diffuses rapidly at mantle temperatures, the disequilibrium is a transient feature and its preservation in these samples indicates that Li addition occurred shortly before or even during the entrainment of the xenoliths in the host basalts. δ&^{7}Licpx is consistently lower than that of coexisting olivines and Δ&^{7}Liol-cpx, which ranges from 2.8 to 22.9‰,correlates with bulk rock composition. The most refractory samples experienced the greatest overall Li addition and most closely approximate elemental and isotopic equilibrium due to longer equilibration times and probably also greater infiltration of the Li-bearing melt or fluid. The variable but often extreme isotopic compositions produced by this process (δ&^{7}Licpx down to -15 and δ&^{7}Liol up to +12) do not reflect the presence of an isotopically exotic recycled component, as has been previously inferred for xenoliths from this region. The best estimate for the δ&^{7}Li of the source of the Li in the Tok xenoliths is δ&^{7}Li = +1.4, which is identical to that of the host basalt. A single sample from the Koppy locality, which is situated closest to the paleo-Pacific subduction zone, shows both elemental and isotopic equilibration of Li and has a "normal" δ&^{7}Licpx of +3.5. The analytically identical δ&^{7}Li of olivine and cpx from this sample, coupled with its relatively low equilibration temperature of 990°C suggests that there is no discernible Li isotopic fractionation between coexisting minerals at mantle temperatures. This study highlights the very large isotopic effects that can be produced via kinetic fractionation in peridotite xenoliths at high temperatures and associated with host-rock xenolith interactions.

  10. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  11. INAA Application for Trace Element Determination in Biological Reference Material

    NASA Astrophysics Data System (ADS)

    Atmodjo, D. P. D.; Kurniawati, S.; Lestiani, D. D.; Adventini, N.

    2017-06-01

    Trace element determination in biological samples is often used in the study of health and toxicology. Determination change to its essentiality and toxicity of trace element require an accurate determination method, which implies that a good Quality Control (QC) procedure should be performed. In this study, QC for trace element determination in biological samples was applied by analyzing the Standard Reference Material (SRM) Bovine muscle 8414 NIST using Instrumental Neutron Activation Analysis (INAA). Three selected trace element such as Fe, Zn, and Se were determined. Accuracy of the elements showed as %recovery and precision as %coefficient of variance (%CV). The result showed that %recovery of Fe, Zn, and Se were in the range between 99.4-107%, 92.7-103%, and 91.9-112%, respectively, whereas %CV were 2.92, 3.70, and 5.37%, respectively. These results showed that INAA method is precise and accurate for trace element determination in biological matrices.

  12. New insights into trace element wet deposition in the Himalayas: amounts, seasonal patterns, and implications.

    PubMed

    Cong, Zhiyuan; Kang, Shichang; Zhang, Yulan; Gao, Shaopeng; Wang, Zhongyan; Liu, Bin; Wan, Xin

    2015-02-01

    Our research provides the first complete year-long dataset of wet deposition of trace elements in the high Himalayas based on a total of 42 wet deposition events on the northern slope of Mt. Qomolangma (Everest). Except for typical crustal elements (Al, Fe, and Mn), the concentration level of most trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, As, Mo, Cd, Sn, Cs, Pb, Bi, and U) are generally comparable to those preserved in snow pits and ice cores from the nearby East Rongbuk Glacier. Cadmium was the element most affected by anthropogenic emissions. No pronounced seasonal variations are observed for most trace elements despite different transport pathways. In our study, the composition of wet precipitation reflects a regional background condition and is not clearly related to specific source regions. For the trace element record from ice cores and snow pits in the Himalayas, it could be deduced that the pronounced seasonal patterns were caused by the dry deposition of trace elements (aerosols) during their long exposure to the atmosphere after precipitation events. Our findings are of value for the understanding of the trace element deposition mechanisms in the Himalayas.

  13. The occurrence and distribution of trace metals in the Mississippi River and its tributaries

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, J.R.; Brinton, T.I.

    1990-01-01

    Quantitative and semiquantitative analyses of dissolved trace metals are reported for designated sampling sites on the Mississippi River and its main tributaries utilizing depth-integrated and width-integrated sampling technology to collect statistically representative samples. Data are reported for three sampling periods, including: July-August 1987, November-December 1987, and May-June 1988. Concentrations of Al, As, Ba, Be, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Pb, Sr, Tl, U, V, and Zn are reported quantitatively, with the remainder of the stable metals in the periodic table reported semiquantitatively. Correlations between As and V, Ba and U, Cu and Zn, Li and Ba, and Li and U are significant at the 99% confidence level for each of the sampling trips. Comparison of the results of this study for selected metals with other published data show generally good agreement for Cr, Cu, Fe, and Zn, moderate agreement for Mo, and poor agreement for Cd and V.

  14. Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses.

    PubMed

    Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco

    2013-01-01

    To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr in roots.

  15. The effect of tissue structure and soil chemistry on trace element uptake in fossils

    NASA Astrophysics Data System (ADS)

    Hinz, Emily A.; Kohn, Matthew J.

    2010-06-01

    Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.

  16. A Global Overview of Exposure Levels and Biological Effects of Trace Elements in Penguins.

    PubMed

    Espejo, Winfred; Celis, José E; GonzÃlez-Acuña, Daniel; Banegas, Andiranel; Barra, Ricardo; Chiang, Gustavo

    2018-01-01

    Trace elements are chemical contaminants that can be present almost anywhere on the planet. The study of trace elements in biotic matrices is a topic of great relevance for the implications that it can have on wildlife and human health. Penguins are very useful, since they live exclusively in the Southern Hemisphere and represent about 90% of the biomass of birds of the Southern Ocean. The levels of trace elements (dry weight) in different biotic matrices of penguins were reviewed here. Maps of trace element records in penguins were included. Data on exposure and effects of trace elements in penguins were collected from the literature. The most reported trace elements in penguins are aluminum, arsenic, cadmium, lead, mercury, copper, zinc, and manganese. Trace elements have been measured in 11 of the 18 species of penguins. The most studied biotic matrices are feathers and excreta. Most of the studies have been performed in Antarctica and subantarctic Islands. Little is known about the interaction among metals, which could provide better knowledge about certain mechanisms of detoxification in penguins. Future studies of trace elements in penguins must incorporate other metals such as vanadium, cobalt, nickel, and chromium. Data of metals in the species such as Eudyptes pachyrhynchus, Eudyptes moseleyi, Eudyptes sclateri, Eudyptes robustus, Eudyptes schlegeli, Spheniscus demersus, Spheniscus mendiculus, and Megadyptes antipodes are urged. It is important to correlate levels of metals in different biotic matrices with the effects on different species and in different geographic locations.

  17. Trace element supplementation in the biogas production from wheat stillage--optimization of metal dosing.

    PubMed

    Schmidt, Thomas; Nelles, Michael; Scholwin, Frank; Pröter, Jürgen

    2014-09-01

    A trace element dosing strategy for the anaerobic digestion of wheat stillage was developed in this study. Mesophilic CSTR reactors were operated with the sulfuric substrate wheat stillage in some cases under trace element deficiency. After supplementing trace elements during the start-up, one of the elements of Fe, Ni, Co, Mo, and W were depleted in one digester while still augmenting the other elements to determine minimum requirements for each element. The depletion of Fe and Ni resulted in a rapid accumulation of volatile fatty acids while Co and W seem to have a long-term effect. Based on the results it was possible to reduce the dosing of trace elements, which is positive with reference to economic and environmental aspects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Loess as an environmental archive of atmospheric trace element deposition

    NASA Astrophysics Data System (ADS)

    Blazina, T.; Winkel, L. H.

    2013-12-01

    Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.

  19. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome

    PubMed Central

    Choi, Rihwa; Kim, Hyoung-Tae; Lim, Yaeji; Kim, Min-Ji; Kwon, O Jung; Jeon, Kyeongman; Park, Hye Yun; Jeong, Byeong-Ho; Koh, Won-Jung; Lee, Soo-Youn

    2015-01-01

    Deficiencies in essential trace elements are associated with impaired immunity in tuberculosis infection. However, the trace element concentrations in the serum of Korean patients with tuberculosis have not yet been investigated. This study aimed to compare the serum trace element concentrations of Korean adult patients with tuberculosis with noninfected controls and to assess the impact of serum trace element concentration on clinical outcome after antituberculosis treatment. The serum concentrations of four trace elements in 141 consecutively recruited patients with tuberculosis and 79 controls were analyzed by inductively coupled plasma-mass spectrometry. Demographic characteristics were also analyzed. Serum cobalt and copper concentrations were significantly higher in patients with tuberculosis compared with controls, while zinc and selenium concentrations were significantly lower (p < 0.01). Moreover, serum selenium and zinc concentrations were positively correlated (ρ = 0.41, p < 0.05). A high serum copper concentration was associated with a worse clinical outcome, as assessed after one month of antituberculosis therapy. Specifically, culture-positive patients had higher serum copper concentrations than culture-negative patients (p < 0.05). Patients with tuberculosis had altered serum trace element concentrations. Further research is needed to elucidate the roles of individual trace elements and to determine their clinical impact on patients with tuberculosis. PMID:26197334

  20. Lithium target performance evaluation for low-energy accelerator-based in vivo measurements using gamma spectroscopy.

    PubMed

    Aslam; Prestwich, W V; McNeill, F E

    2003-03-01

    The operating conditions at McMaster KN Van de Graaf accelerator have been optimized to produce neutrons via the (7)Li(p, n)(7)Be reaction for in vivo neutron activation analysis. In a number of earlier studies (development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans, Ph.D. Thesis, McMaster University, Hamilton, ON, Canada; Appl. Radiat. Isot. 53 (2000) 657; in vivo measurement of some trace elements in human Bone, Ph.D. Thesis. McMaster University, Hamilton, ON, Canada), a significant discrepancy between the experimental and the calculated neutron doses has been pointed out. The hypotheses formulated in the above references to explain the deviation of the experimental results from analytical calculations, have been tested experimentally. The performance of the lithium target for neutron production has been evaluated by measuring the (7)Be activity produced as a result of (p, n) interaction with (7)Li. In contradiction to the formulated hypotheses, lithium target performance was found to be mainly affected by inefficient target cooling and the presence of oxides layer on target surface. An appropriate choice of these parameters resulted in neutron yields same as predicated by analytical calculations.

  1. [Contents of ten trace elements in Epimedium acuminatum Franch. and its different processed products].

    PubMed

    Chen, H L; Wang, J K; Ren, Y Q; Wu, Z Y

    2001-03-01

    Determine and compare the contents of ten trace elements in crude E. acuminatum and its three different processed products. Using flame atomic absorption spectrometry. The ten trace elements were found in both the crude drug and its three processed products, and in terms of contents some of the trace elements in all the three processed products are higher than those in the crude drug. According to the trace element contents, the three processed products of E. acuminatum have their own advantages. It is thus suggested that thoroughgoing clinical and experimental researches be performed anew for the long-shelved processing methods.

  2. Chemical Reduction of SIM MOX in Molten Lithium Chloride Using Lithium Metal Reductant

    NASA Astrophysics Data System (ADS)

    Kato, Tetsuya; Usami, Tsuyoshi; Kurata, Masaki; Inoue, Tadashi; Sims, Howard E.; Jenkins, Jan A.

    2007-09-01

    A simulated spent oxide fuel in a sintered pellet form, which contained the twelve elements U, Pu, Am, Np, Cm, Ce, Nd, Sm, Ba, Zr,Mo, and Pd, was reduced with Li metal in a molten LiCl bath at 923 K. More than 90% of U and Pu were reduced to metal to form a porous alloy without significant change in the Pu/U ratio. Small fractions of Pu were also combined with Pd to form stable alloys. In the gap of the porous U-Pu alloy, the aggregation of the rare-earth (RE) oxide was observed. Some amount of the RE elements and the actinoides leached from the pellet. The leaching ratio of Am to the initially loaded amount was only several percent, which was far from about 80% obtained in the previous ones on simple MOX including U, Pu, and Am. The difference suggests that a large part of Am existed in the RE oxide rather than in the U-Pu alloy. The detection of the RE elements and actinoides in the molten LiCl bath seemed to indicate that they dissolved into the molten LiCl bath containing the oxide ion, which is the by-product of the reduction, as solubility of RE elements was measured in the molten LiCl-Li2O previously.

  3. An internally consistent inverse model to calculate ridge-axis hydrothermal fluxes

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.; Dosso, S.

    2010-12-01

    Fluid and chemical fluxes from high-temperature, on-axis, hydrothermal systems at mid-ocean ridges have been estimated in a number of ways. These generally use simple mass balances based on either vent fluid compositions or the compositions of altered sheeted dikes. Here we combine these approaches in an internally consistent model. Seawater is assumed to enter the crust and react with the sheeted dike complex at high temperatures. Major element fluxes for both the rock and fluid are calculated from balanced stoichiometric reactions. These reactions include end-member components of the minerals plagioclase, pyroxene, amphibole, chlorite and epidote along with pure anhydrite, quartz, pyrite, pyrrhotite, titanite, magnetite, ilmenite and ulvospinel and the fluid species H2O, Mg2+, Ca2+, Fe2+, Na+, Si4+, H2S, H+ and H2. Trace element abundances (Li, B, K, Rb, Cs, Sr, Ba, U, Tl, Mn, Cu, Zn, Co, Ni, Pb and Os) and isotopic ratios (Li, B, O, Sr, Tl, Os) are calculated from simple mass balance of a fluid-rock reaction. A fraction of the Cu, Zn, Pb, Co, Ni, Os and Mn in the fluid after fluid-rock reaction is allowed to precipitate during discharge before the fluid reaches the seafloor. S-isotopes are tied to mineralogical reactions involving S-bearing phases. The free parameters in the model are the amounts of each mineralogical reaction that occurs, the amounts of the metals precipitated during discharge, and the water-to-rock ratio. These model parameters, and their uncertainties, are constrained by: (i) mineral abundances and mineral major element compositions in altered dikes from ODP Hole 504B and the Pito and Hess Deep tectonic windows (EPR crust); (ii) changes in dike bulk-rock trace element and isotopic compositions from these locations relative to fresh MORB glass compositions; and (iii) published vent fluid compositions from basalt-hosted high-temperature ridge axis hydrothermal systems. Using a numerical inversion algorithm, the probability density of different model parameter sets has been computed and thus the probability of different fluid and chemical fluxes. Most data can be fit by the model within their uncertainty. The entire dataset is best-fit with a water-to-rock mass ratio between 1.3 and 2.1 (~1 to 1.5 x10**13 kg yr-1) implying a substantial fraction of the magmatic (latent) heat available to drive the axial hydrothermal system is extracted by these systems. Many element fluxes are better constrained than in previous studies (e.g., Sr: 2 to 7 x10**8 moles yr-1; Ca: 2 to 7 x10**11 moles yr-1). Future developments will use experimental data to further constrain the model.

  4. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index

    PubMed Central

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study. PMID:27835687

  5. Assessment of trace element contamination of urban surface soil at informal industrial sites in a low-income country.

    PubMed

    Kanda, Artwell; Ncube, France; Hwende, Tamuka; Makumbe, Peter

    2018-05-29

    Trace elements released by human activity are ubiquitously detected in surface soil. The trace element contamination statuses of 20 sampling stations at two busy informal industrial sites of Harare city, Zimbabwe, were evaluated using geochemical indices. Spectrophotometric determinations of concentrations of trace elements in surface soil indicated generally higher values than the reference site and the average upper earth's crust. High contamination factors were observed for trace elements across sampling stations at Gazaland and Siyaso informal industrial sites. Concentrations exhibited heterogeneous distribution of trace elements in surface soil varying with the nature of activity at a sampling station. The pollution load index and degree of contamination suggested highly contaminated surface soil with Cd, Cu and Pb particularly where the following activities were done: (1) welding, (2) automobile maintenance and (3) waste dumping. These results may be very important to reduce soil contamination. Paving surfaces may help to reduce dispersal of trace elements deposited on surface soil to other stations and minimise human exposure via inhalation and contact.

  6. Risk assessment of trace elements in cultured freshwater fishes from Jiangxi province, China.

    PubMed

    Zhang, Li; Zhang, Dawen; Wei, Yihua; Luo, Linguan; Dai, Tingcan

    2014-04-01

    The levels of trace elements (As, Cd, Cr, Cu, Fe, Ni, Pb, Se, and Zn) in eight species of cultured freshwater fishes from Jiangxi province were determined by inductively coupled plasma-mass spectroscopy. All the studied trace element levels in fish muscles from Jiangxi province did not exceed Chinese national standard and European Union standard, and they were often lower than previous studies. The calculated target hazard quotient values for all the studied trace elements in fish samples were much less than 1, suggesting that the studied trace elements in fish muscles from Jiangxi province had not pose obvious health hazards to consumers. As and Cd concentrations in northern snakehead were much higher than that in other fishes, demonstrating that this fish species could be valuable as a bioindicator of As and Cd in environmental surveys. In addition, the highest concentrations of Fe, Zn, and moderate contents of other essential trace elements in crucian carp indicated that crucian carp could be a good nutrient source of essential trace elements for human health.

  7. The Effects of Various Amendments on Trace Element Stabilization in Acidic, Neutral, and Alkali Soil with Similar Pollution Index.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Lee, Sang-Hwan; Kim, Jeong-Gyu

    2016-01-01

    Many studies have examined the application of soil amendments, including pH change-induced immobilizers, adsorbents, and organic materials, for soil remediation. This study evaluated the effects of various amendments on trace element stabilization and phytotoxicity, depending on the initial soil pH in acid, neutral, and alkali conditions. As in all types of soils, Fe and Ca were well stabilized on adsorption sites. There was an effect from pH control or adsorption mechanisms on the stabilization of cationic trace elements from inorganic amendments in acidic and neutral soil. Furthermore, acid mine drainage sludge has shown great potential for stabilizing most trace elements. In a phytotoxicity test, the ratio of the bioavailable fraction to the pseudo-total fraction significantly affected the uptake of trace elements by bok choy. While inorganic amendments efficiently decreased the bioavailability of trace elements, significant effects from organic amendments were not noticeable due to the short-term cultivation period. Therefore, the application of organic amendments for stabilizing trace elements in agricultural soil requires further study.

  8. Tandem Laser Induced Breakdown Spectroscopy (LIBS), Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and/or Laser Ablation Inductively Coupled Plasma Optical Emission Spectroscopy (LA-ICP-OES) for the analysis of samples of geological interest

    NASA Astrophysics Data System (ADS)

    Oropeza, D.

    2016-12-01

    A highly innovative laser ablation sampling instrument (J200 Tandem LA - LIBS) that combines the capabilities and analytical benefits of LIBS, LA-ICP-MS and LA-ICP-OES was used for micrometer-scale, spatially-resolved, elemental analysis of a wide variety of samples of geological interest. Data collected using ablation systems consisted of nanosecond (Nd:YAG operated 266nm) and femtosecond lasers (1030 and 343nm). An ICCD LIBS detector and Quadrupole based mass spectrometer were selected for LIBS and ICP-MS detection, respectively. This tandem instrument allows simultaneous determination of major and minor elements (for example, Si, Ca, Na, and Al, and trace elements such as Li, Ce, Cr, Sr, Y, Zn, Zr among others). The research also focused on elemental mapping and calibration strategies, specifically the use of emission and mass spectra for multivariate data analysis. Partial Least Square Regression (PLSR) is shown to minimize and compensate for matrix effects in the emission and mass spectra improving quantitative analysis by LIBS and LA-ICP-MS, respectively. The study provides a benchmark to evaluate analytical results for more complex geological sample matrices.

  9. Methods for detecting the mobility of trace elements during medium-temperature pyrolysis

    USGS Publications Warehouse

    Shiley, R.H.; Konopka, K.L.; Cahill, R.A.; Hinckley, C.C.; Smith, Gerard V.; Twardowska, H.; Saporoschenko, Mykola

    1983-01-01

    The mobility (volatility) of trace elements in coal during pyrolysis has been studied for distances of up to 40 cm between the coal and the trace element collector, which was graphite or a baffled solvent trap. Nineteen elements not previously recorded as mobile were detected. ?? 1983.

  10. The role of high-energy synchrotron radiation in biomedical trace element research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pounds, J.G.; Long, G.J.; Kwiatek, W.M.

    1987-01-01

    This paper will present the results of an investigation of the distribution of essential elements in the normal hepatic lobule. the liver is the organ responsible for metabolism and storage of most trace elements. Although parenchymal hepatocytes are rather uniform histologically, morphometry, histochemistry, immunohistochemistry, and microdissection with microchemical investigations have revealed marked heterogeneity on a functional and biochemical level. Hepatocytes from the periportal and perivenous zones of the liver parrenchyma differ in oxidative energy metabolism, glucose uptake and output, unreagenesis, biotransformation, bile acid secretion, and palsma protein synthesis and secretion. Although trace elements are intimately involved in the regulation andmore » maintenance of these functions, little is known regarding the heterogeneity of trace element localization of the liver parenchyma. Histochemical techniques for trace elements generally give high spatial resolution, but lack specificity and stoichiometry. Microdissection has been of marginal usefulness for trace element analyses due to the very small size of the dissected parenchyma. The characteristics of the high-energy x-ray microscope provide an effective approach for elucidating the trace element content of these small biological structures or regions. 5 refs., 1 fig., 1 tab.« less

  11. The influence of carbon, sulfur, and silicon on trace element partitioning in iron alloys

    NASA Astrophysics Data System (ADS)

    Han, J.; Van Orman, J. A.; Crispin, K. L.; Ash, R. D.

    2014-12-01

    Non-metallic light elements are important constituents of planetary cores and have a strong influence on the partitioning behavior of trace elements. Planetary cores may contain a wide range of non-metallic light elements, including H, N, S, P, Si, and C. Under highly reducing conditions, such as those that are thought to have pertained during the formation of Mercury's core, Si and C, in addition to sulfur, may be particularly important constituents. Each of these elements may strongly effect and have a different impact on the partitioning behavior of trace elements but their combined effects on trace element partitioning have not been quantified. We investigated the partitioning behavior of more than 25 siderophile trace elements within the Fe-S-C-Si system with varying concentrations of C, S, and Si. The experiments were performed under pressures varying from 1 atm to 2 GPa and temperatures ranging from 1200˚C to 1450˚C. All experiments produced immiscible liquids, one enriched in Si and C, and the other predominantly FeS. We found some highly siderophile elements including Os, Ru, Ir, and Re are much more enriched in Fe-Si-C phase than in Fe-S phase, whereas other trace elements like V, Co, Ag, Hf, and Pb are enriched in S-rich phase. However, not all the trace elements enriched in Fe-Si-C phase are repelled by sulfur. Elements like Re and Ru could have different partitioning trends if sulfur concentration in S-rich phase rises. The partitioning behavior of these trace elements could enhance our understanding of the differentiation of Mercury's core under oxygen-poor conditions.

  12. Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).

    PubMed

    Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas

    2017-01-01

    The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.

  13. Major to ultra trace elements in rainfall collected in suburban Tokyo

    NASA Astrophysics Data System (ADS)

    Shimamura, Tadashi; Iwashita, Masato; Iijima, Satoe; Shintani, Megumi; Takaku, Yuichi

    Major to ultra trace elements such as rare earth elements (REEs), platinum group elements (PGEs) in 20 rainfall events from suburban Tokyo were determined by inductively coupled plasma mass spectrometry (ICP-MS). Anion species were also determined by an ion chromatography (IC). The concentrations of PGEs were so low that only Pt was detected in some rainfall events. Enrichment factors (EFs), refer to soil and sea salt components, were calculated for the measured elements (with Al and Na as references). Be, (Na), Mg, (Al), Si, Cl, K, Fe, Rb, Sr, REEs (except La, Gd), Ta, and U were mostly originated from natural materials (soil and sea salt). For Li, B, Ca, Mn, Sr, Ba, and Cs, the contribution of natural materials was significant. EFs for Cu, Zn, As, Se, Sb, Cd, Pb, Bi, Ag, Te, Au, Pt, SO 4-S and NO 3-N exceeded 100 indicating non-crustal, non-sea salt origin, presumably anthropogenic; however, contribution of volcanic gases could not be excluded for As, Se, Te and Bi. Pt seemed to be uniformly distributed worldwide and a catalyst for automobile emission control may be the main source. Au also showed uniform distribution. On the other hand, EFs for Zr, Nb, Hf and Th were less than unity. Probably these elements resided in acid resistant refractory fine minerals that did not decompose with acid treatment, and did not evaporate and ionize in the ICP. An alternative explanation is that the concentration of these elements was lower in the soil of the sampling area than the average crust. In the crust normalized REE pattern plot, La, Eu and Gd showed clear positive anomalies. La and Gd could have anthropogenic components. A possible source of La and Gd is cracking catalyst for petrol refining, but this source does not fully explain the anomaly. The source of Gd may also be Gd-DTPA (Gadolinium (III) diethyltriaminepentaacetic acid) used for Magnetic Resonance Imaging (MRI) contrast agents. The Eu origin may be soil with higher concentration than the crust average.

  14. Remediation using trace element humate surfactant

    DOEpatents

    Riddle, Catherine Lynn; Taylor, Steven Cheney; Bruhn, Debra Fox

    2016-08-30

    A method of remediation at a remediation site having one or more undesirable conditions in which one or more soil characteristics, preferably soil pH and/or elemental concentrations, are measured at a remediation site. A trace element humate surfactant composition is prepared comprising a humate solution, element solution and at least one surfactant. The prepared trace element humate surfactant composition is then dispensed onto the remediation site whereby the trace element humate surfactant composition will reduce the amount of undesirable compounds by promoting growth of native species activity. By promoting native species activity, remediation occurs quickly and environmental impact is minimal.

  15. The zonal distribution of selected elements above the Kalamazoo porphyry copper deposit, San Manuel district, Pinal County, Arizona

    USGS Publications Warehouse

    Chaffee, M.A.

    1976-01-01

    There may be many as-yet-undiscovered porphyry copper deposits that exist as blind deposits deep within exposed rock bodies. The Kalamazoo porphyry copper-molybdenum deposit is a blind deposit present at depths up to at least 1,000 m (about 3,200 ft) that contains zoning features common to many of the known porphyry copper deposits found in western North and South America. As the preliminary phase in a geochemical study of the Kalamazoo deposit, whole-rock samples of core and cuttings from two drill holes have been analyzed for 60 different elements. Each hole represents a different major rock unit and each has penetrated completely through all the existing alteration zones and the ore zone. Plots of concentration vs. depth for 17 selected elements show distinct high- or low-concentration zones that are spatially related to the ore zone. For most of the ore-related elements no significant correlation with the two lithologies is apparent. The spatial distribution and abundance of elements such as Co, Cu, S, Se, Mn, Tl, Rb, Zn, B, and Li may be useful in determining the direction for exploration to proceed to locate a blind deposit. Trace element studies should be valuable in evaluating areas containing extensive outcrops of rocks with disseminated pyrite. Elemental zoning should be at least as useful as alteration-mineralization zoning for evaluating rock bodies thought to contain blind deposits similar to the Kalamazoo deposit. ?? 1976.

  16. Trace element and stable isotope analysis of fourteen species of marine invertebrates from the Bay of Fundy, Canada.

    PubMed

    English, Matthew D; Robertson, Gregory J; Mallory, Mark L

    2015-12-15

    The Bay of Fundy, Canada, is a macrotidal bay with a highly productive intertidal zone, hosting a large abundance and diversity of marine invertebrates. We analysed trace element concentrations and stable isotopic values of δ(15)N and δ(13)C in 14 species of benthic marine invertebrates from the Bay of Fundy's intertidal zone to investigate bioaccumulation or biodilution of trace elements in the lower level of this marine food web. Barnacles (Balanus balanus) consistently had significantly greater concentrations of trace elements compared to the other species studied, but otherwise we found low concentrations of non-essential trace elements. In the range of trophic levels that we studied, we found limited evidence of bioaccumulation or biodilution of trace elements across species, likely due to the species examined occupying similar trophic levels in different food chains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid rock reaction

    NASA Astrophysics Data System (ADS)

    Rudnick, Roberta L.; Ionov, Dmitri A.

    2007-04-01

    Lithium concentrations and isotopic compositions of coexisting olivine and clinopyroxene (cpx) in well-characterized peridotite xenoliths from Tok (SE Siberian craton) and samples from two other far-east Russian localities reveal strong elemental and isotopic disequilibria, which correlates with bulk rock composition. Lithium concentrations in cpx from Tok (1-12 ppm) are equal to or significantly greater than those in coexisting olivines (1-5 ppm). The Li-rich cpx show core to rim zoning, indicative of Li infiltration from the grain boundaries. Olivines are generally unzoned, although Li concentrations can vary significantly from grain to grain. ol/cpxD varies from 0.2 to 1.0, which is lower than that expected for equilibrium partitioning ( ol/cpxDeq = 1.1 to 2.0), and reflects preferential Li enrichment in cpx. The Li isotopic compositions of both minerals range far beyond normal mantle δ7Li of ˜ + 4 ± 2. δ7Li cpx (- 0.8 to - 14.6) is systematically lighter than δ7Li of coexisting olivine (- 1.7 to + 11.9), and Δ 7Li ol-cpx varies from 2.8 to 22.9‰. The greatest elemental and isotopic disequilibria occur in the most fertile samples (lherzolites) and may reflect longer equilibration times and/or enhanced melt permeability in the more refractory samples. Collectively, these observations suggest that the peridotite minerals experienced Li addition via diffusion from a grain boundary melt or fluid shortly before or coincident with their entrainment into the host basalt (i.e., within tens of thousands of years, based on published diffusion coefficients for Li in cpx at the temperatures of equilibration). This diffusional ingress of Li generated large kinetic isotopic fractionation, leading to unusually light cpx and heavier olivines. Thus, low δ7Li cpx do not reflect the influence of an exotic mantle component related to crustal recycling.

  18. Correlation and toxicological inference of trace elements in tissues from stranded and free-ranging bottlenose dolphins (Tursiops truncatus).

    PubMed

    Stavros, Hui-Chen W; Stolen, Megan; Durden, Wendy Noke; McFee, Wayne; Bossart, Gregory D; Fair, Patricia A

    2011-03-01

    The significance of metal concentrations in marine mammals is not well understood and relating concentrations between stranded and free-ranging populations has been difficult. In order to predict liver concentrations in free-ranging dolphins, we examined concentrations of trace elements (Al, As, Ba, Be, Cd, Co, Cu, Fe, Li, Mn, Ni, Pb, Sb, Se, Sn, total Hg (THg), V, Zn) in skin and liver of stranded bottlenose dolphins (Tursiops truncatus) from the South Carolina (SC) coast and the Indian River Lagoon, Florida (FL) during 2000-2008. Significantly higher concentrations of Zn, Fe, Se, Al, Cu and THg were found in skin while liver exhibited significantly higher Cu, Fe, Mn and THg concentrations for both study sites. Mean skin concentrations of Cu and Mn were significantly higher in SC dolphins while higher concentrations of THg and V were found in FL dolphins. In addition, liver tissues in SC dolphins exhibited significantly higher As concentrations while higher Fe, Pb, Se, THg, and V levels were found in FL dolphins. Two elements (Cu and THg) showed significant age-related correlations with skin concentration while five elements (Cu, Se, THg, Zn and V) showed age-related correlations with liver concentrations. Geographic location influenced age-related accumulation of several trace elements and age-related accumulation of THg in hepatic tissue was observed for both sites to have the highest correlations (r² = 0.90SC; r² = 0.69FL). Mean THg concentration in liver was about 10 times higher in FL dolphins (330 μg g⁻¹ dw) than those samples from SC dolphins (34.3 μg g⁻¹ dw). The mean molar ratio of Hg to Se was 0.93 ± 0.32 and 1.08 ± 0.38 for SC and FL dolphins, respectively. However, the Hg:Se ratio varied with age as much lower ratios (0.2-0.4) were found in younger animals. Of the 18 measured elements, only THg was significantly correlated in skin and liver of stranded dolphins and skin of free-ranging dolphins from both sites suggesting that skin may be useful in predicting Hg concentrations in liver tissue of free-ranging dolphins. Results indicate that 33% of the stranded and 15% of the free-ranging dolphins from FL exceed the minimum 100 μg g⁻¹ wet weight (ww) (~ 400 dw) Hg threshold for hepatic damage while none from SC reached this level. Hepatic concentrations of As in SC dolphins and V in FL dolphins were also highly correlated with skin concentrations which may have some regional specificity predictive value. The present study provides the first application of trace element concentrations derived from stranded bottlenose dolphins to predict liver concentrations in free-ranging populations. Copyright © 2010. Published by Elsevier Ltd.

  19. Constraints on the bioavailability of trace elements to terrestrial fauna at mining and smelting sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pastorok, R.; Schoof, R.; LaTier, A.

    1995-12-31

    At mining and smelting sites, the bioavailability of waste-related trace elements to terrestrial wildlife is limited by mineralogy of the waste material and the geochemistry of the waste-soil mixture. For example, encapsulation of trace elements in inert mineral matrices limits the assimilation of particle-associated trace elements that are ingested by wildlife. The bioavailability of arsenic, cadmium, copper, lead, silver, and zinc at mining and smelting sites in Oklahoma and Montana was evaluated based on analysis of waste material, soil chemistry, and concentrations of trace elements in whole-body samples of key food web species. Concentrations of trace elements were generally elevatedmore » relative to reference area values for selected species of vegetation, insects, spiders, and small mammals. Soil-to-tissue bioconcentration factors derived from field data at these sites were generally low (< 1), with the exception of cadmium in vegetation. For all of the trace elements evaluated, wildlife exposure models indicate that the potential for transfer of contaminants to wildlife species of public concern and high trophic-level predators is limited. Moreover, laboratory feeding experiments conducted with cadmium and lead indicate that the assimilation of waste-related trace elements by mammals is relatively low (24--47 percent for lead in blood and bone; 22--44 percent for cadmium in kidney). The relatively low bioavailability of trace elements at mining and smelting sites should be considered when estimating exposure of ecological receptors and when deriving soil cleanup criteria based on measured or modeled ecological risk.« less

  20. Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.

    PubMed

    Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A

    2017-09-01

    The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. [Determination of Trace Elements in Marine Cetaceans by ICP-MS and Health Risk Assessment].

    PubMed

    Ding, Yu-long; Ning, Xi; Gui, Duan; Mo, Hui; Li, Yu-sen; Wu, Yu-ping

    2015-09-01

    The liver, kidney and muscle samples from seven cetaceans were digested by microwave digestion, and trace elements amounts of V, Cd, Cu, Zn, As, Cr, Ni, Mn, Se, Hg and Pb were determined by inductively coupled plasma mass spectrometry (ICP-MS), and the health risk assessment for Zn, Cu, Cd, Hg, Se in the liver was conducted. The results of international lobster hepatopancreas standard (TORT-2) showed acceptable agreement with the certified values, and the relative standard deviation (RSD) of eleven kinds of trace elements were less than 3.54%, showing that the method is suitable for the determination of trace elements in cetaceans. The experimental results indicated that different tissues and organs of the dolphins had different trace elements, presenting the tissue specificity. There is a certain inter-species difference among different dolphins about the bioaccumulation ability of the trace elements. The distribution of trace elements in whales presented a certain regularity: the contents of most elements in liver, kidney were much higher than the contents of muscle tissues, Cu, Mn, Hg, Se, and Zn exhibit the higher concentrations in liver, while Cd was mainly accumulated in kidney. And according to the health risk assessment in liver, the exceeding standardrate of selenium and copper in seven kinds of whales was 100%, suggesting that these whales were suffering the contamination of trace elements. The experimental results is instructive to the study of trace elements in cetaceans, while this is the first report for the concentrations in organs of Striped dolphin, Bottlenose dolphin, Fraser's Dolphin and Risso's dolphin in China, it may provide us valuable data for the conservation of cetaceans.

  2. Selected elements in major minerals from bituminous coal as determined by INAA: Implications for removing environmentally sensitive elements from coal

    USGS Publications Warehouse

    Palmer, C.A.; Lyons, P.C.

    1996-01-01

    The four most abundant minerals generally found in Euramerican bituminous coals are quartz, kaolinite, illite and pyrite. These four minerals were isolated by density separation and handpicking from bituminous coal samples collected in the Ruhr Basin, Germany and the Appalachian basin, U.S.A. Trace-element concentrations of relatively pure (??? 99+%) separates of major minerals from these coals were determined directly by using instrumental neutron activation analysis (INAA). As expected, quartz contributes little to the trace-element mass balance. Illite generally has higher trace-element concentrations than kaolinite, but, for the concentrates analyzed in this study, Hf, Ta, W, Th and U are in lower concentrations in illite than in kaolinite. Pyrite has higher concentrations of chalcophile elements (e.g., As and Se) and is considerably lower in lithophile elements as compared to kaolinite and illite. Our study provides a direct and sensitive method of determining trace-element relationships with minerals in coal. Mass-balance calculations suggest that the trace-element content of coal can be explained mainly by three major minerals: pyrite, kaolinite and illite. This conclusion indicates that the size and textural relationships of these major coal minerals may be a more important consideration as to whether coal cleaning can effectively remove the most environmentally sensitive trace elements in coal than what trace minerals are present.

  3. Origin and distribution of trace elements in high-elevation precipitation in southern China.

    PubMed

    Zhou, Jie; Wang, Yan; Yue, Taixing; Li, Yuhua; Wai, Ka-Ming; Wang, Wenxing

    2012-09-01

    During a 2009 investigation of the transport and deposition of trace elements in southern China, 37 event-based precipitation samples were collected at an observatory on Mount Heng, China (1,269 m asl). Concentrations of trace elements were analyzed using inductively coupled plasma-mass spectrometry and the wet deposition fluxes were established. A combination of techniques including enrichment factor analysis, principal component analysis, and back trajectory models were used to identify pollutant sources. Trace element concentrations at Mount Heng were among the highest with respect to measured values reported elsewhere. All elements were of non-marine origin. The elements Pb, As, Cu, Se, and Cd were anthropogenic, while Fe, Cr, V, Ba, Mn, and Ni were of mixed crustal/anthropogenic origin. The crustal and anthropogenic contributions of trace elements were 12.8 % (0.9 ~ 17.4 %) and 87.2 % (82.6 ~ 99.1 %), with the maximum crustal fraction being 17.4 % for Fe. Coal combustion, soil and road dust, metallurgical processes, and industrial activities contributed to the element composition. Summit precipitation events were primarily distant in origin. Medium- to long-range transport of trace elements from the Yangtze River Delta and northern China played an important role in wet deposition at Mount Heng, while air masses from south or southeast of the station were generally low in trace element concentrations.

  4. Superconductivity under high pressure in the binary compound CaLi2

    NASA Astrophysics Data System (ADS)

    Debessai, M.; Matsuoka, T.; Hamlin, J. J.; Gangopadhyay, A. K.; Schilling, J. S.; Shimizu, K.; Ohishi, Y.

    2008-12-01

    Feng predicted for CaLi2 highly anomalous properties with possible superconductivity under very high pressures, including for the hcp polymorph a significant lattice bifurcation at pressures above 47 GPa. More recently, however, Feng suggested that for pressures exceeding 20 GPa CaLi2 may dissociate into elemental Ca and Li. Here we present for hcp CaLi2 measurements of the electrical resistivity and ac susceptibility to low temperatures under pressures as high as 81 GPa. Pressure-induced superconductivity is observed in the pressure range of 11-81 GPa, with Tc reaching values as high as 13 K. X-ray diffraction studies to 54 GPa at 150 K reveal that hcp CaLi2 undergoes a structural phase transition above 23 GPa to orthorhombic but does not dissociate into elemental Ca and Li. In the hcp phase a fit of the equation of state with the Murnaghan equation yields the bulk modulus Bo=15(2)GPa and dBo/dP=3.2(6) .

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Zhao, Jie; Lu, Zhenda

    Described here is a method for making an anode of a rechargeable battery, comprising incorporating a composition comprising Li xM into the anode, wherein M is a Group 14 element. Also described here is an anode comprising a composition comprising Li xM, wherein M is a Group 14 element, and a rechargeable battery comprising the anode.

  6. Enrichment and oral bioaccessibility of selected trace elements in fly ash-derived magnetic components.

    PubMed

    Bourliva, Anna; Papadopoulou, Lambrini; Aidona, Elina; Simeonidis, Konstantinos; Vourlias, George; Devlin, Eamonn; Sanakis, Yiannis

    2017-01-01

    The mineralogy, morphology, and chemical composition of magnetic fractions separated from fly ashes (FAs) originating from Greek lignite-burning power plants was investigated. The oral bioaccessibility of potentially harmful elements (PHEs) from the fly ash magnetic fractions (FAMFs) was also assessed using in vitro gastrointestinal extraction (BARGE Unified Bioaccessibility Method, UBM). The FAMFs isolated were in the range 4.6-18.4%, and their mass specific magnetic susceptibility ranged from 1138 × 10 -8 to 1682 × 10 -8  m 3 /kg. XRD analysis and Mossbauer spectroscopy indicated that the dominant iron species were Fe-rich aluminosilicate glass along with magnetite, hematite, and maghemite (in decreasing order). The raw FAs exhibited differences in their chemical composition, indicating the particularity of every lignite basin. The elemental contents of FAMFs presented trends with fly ash type; thus, the FAMFs of high-Ca FAs were enriched in siderophile (Cr, Co, Ni) and lithophile (Cs, Li, Rb) elements and those separated from low-Ca FAs were presented depleted in chalcophile elements. Based on UBM extraction tests, the PHEs were more bioaccessible from the non-magnetic components of the FAs compared to the magnetic ones; however, the bioaccessible fractions estimated for the FAMFs were exceeding 40 % in many cases. Arsenic was found to be significantly bioaccessible (median ~ 80 %) from FAMFs despite the lower As contents in the magnetic fraction.

  7. Trends in Trace Element Fractionation Between Foraminiferal Species and the Role of Biomineralization

    NASA Astrophysics Data System (ADS)

    Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.

    2017-12-01

    Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.

  8. Responses of trace elements to aerobic maximal exercise in elite sportsmen.

    PubMed

    Otag, Aynur; Hazar, Muhsin; Otag, Ilhan; Gürkan, Alper Cenk; Okan, Ilyas

    2014-02-21

    Trace elements are chemical elements needed in minute quantities for the proper growth, development, and physiology of the organism. In biochemistry, a trace element is also referred to as a micronutrient. Trace elements, such as nickel, cadmium, aluminum, silver, chromium, molybdenum, germanium, tin, titanium, tungsten, scandium, are found naturally in the environment and human exposure derives from a variety of sources, including air, drinking water and food. The Purpose of this study was investigated the effect of aerobic maximal intensity endurance exercise on serum trace elements as well-trained individuals of 28 wrestlers (age (year) 19.64±1.13, weight (Kg) 70.07 ± 15.69, height (cm) 176.97 ± 6.69) during and after a 2000 meter Ergometer test protocol was used to perform aerobic (75 %) maximal endurance exercise. Trace element serum levels were analyzed from blood samples taken before, immediately after and one hour after the exercise. While an increase was detected in Chromium (Cr), Nickel (Ni), Molybdenum (Mo) and Titanium (Ti) serum levels immediately after the exercise, a decrease was detected in Aluminum (Al), Scandium (Sc) and Tungsten (W) serum levels. Except for aluminum, the trace elements we worked on showed statistically meaningful responses (P < 0.05 and P < 0.001). According to the responses of trace elements to the exercise showed us the selection and application of the convenient sport is important not only in terms of sportsman performance but also in terms of future healthy life plans and clinically.

  9. Major Cation, Carbon System and Trace Element Chemistry in Pore Waters from a Depth Transect of Cores on the Iberian Margin: Implications for Paleoproxies.

    NASA Astrophysics Data System (ADS)

    Greaves, M.; Elderfield, H.; Hodell, D. A.; Skinner, L. C.; Sevilgen, D.; Grauel, A. L.; de la Fuente, M.; Misra, S.

    2014-12-01

    A significant body of work exists on the chemistry of pore waters from DSDP and ODP drilling cores (e.g. Gieskes 1975; Sayles 1981) showing large gradients in sea salt cations and anions interpreted in terms of diagenetic reactions such as the formation of Mg-rich clays and dolomite formation (Higgins and Schrag, 2010). Another class of diagenetic reactions involves the breakdown of organic matter and trace element behaviour (Froelich et al., 1979). The translation of chemical gradients into fluxes requires estimates of pore water chemistry across the sea water - sediment surface boundary. Additionally, the use of the chemistry of benthic foraminiferal calcite for seawater paleochemistry requires estimation of the chemistry of pore waters which may differ from that of bottom seawater because of diagenetic reactions. In this work we have collected multi core samples from 10 core sites on cruise RRS James Cook JC089 on the southwest Iberian continental margin. Pore waters were extracted from the core surface and at 1 cm depth intervals down core (typically to ~40 cm depth) using Rhizon samplers and analysed for Alkalinity, DIC, ∂13C and Na, K, Mg, Ca, Li, Mn, Fe, Ba, B, Sr by atomic emission spectrophotometry as well as O2 penetration and pH by microelectrodes. This has allowed us to inspect chemical behavior at the bottom water - sediment interface. Some examples of results are a large gradient in ∂13C of DIC, the similarity of zero O2 penetration followed by an increase in Mn concentration and then decrease to zero, the similarity of Li to Mn and, in contrast to much DSDP/ODP work, Ca2+ and Mg2+both decrease with depth in pore waters near the sediment surface. References: Gieskes J.M. Annu. Rev. Earth Planet. Sci. 3, 433 (1975). Sayles F. L. Geochim. Cosmochim. Acta45, 1061 (1981). Higgins J.A. and D.P. Schrag. Geochim. Cosmochim. Acta.74, 5039 (2010). Froelich, P.N., et al., Geochim. Cosmochim. Acta. 43, 1075 (1979).

  10. Major ions, nutrients, and trace elements in the Mississippi River near Thebes, Illinois, July through September 1993

    USGS Publications Warehouse

    Taylor, Howard E.; Antweiler, Ronald C.; Brinton, Terry I.; Roth, David A.; Moody, John A.

    1994-01-01

    Extensive flooding in the upper Mississippi River Basin during summer 1993 had a significant effect on the water quality of the Mississippi River. To evaluate the change in temporal distribution and transport of dissolved constituents in the Mississippi River, six water samples were collected by a discharge-weighted method from July through September 1993 near Thebes, Illinois. Sampling at this location provided water-quality information from the upper Mississippi, the Missouri, and the Illinois River Basins. Dissolved major constituents that were analyzed in each of the samples included bicarbonate, calcium (Ca), carbonate (C03), chloride (Cl), dissolved organic carbon, magnesium (Mg), potassium (K), silica NOD, sodium (Na), and sulfate (S04). Dissolved nutrients included ammonium ion (NH4), nitrate (N03), nitrite (N02), and orthophosphate (P04) . Dissolved trace elements included aluminum (Al), arsenic (As), barium (Ba), boron (B), beryllium (Be), bromide (Br), cadmium (Cd), chromium (Cr), cobalt, (Co), copper (Cu), fluoride (F), iron (Fe), lead, lithium (Li), manganese (Mn), mercury (Hg), molybdenum (Mo), nickel (Ni), strontium (Sr), thallium, uranium (U), vanadium (V), and zinc (Zn). Other physical properties of water that were measured included specific conductance, pH and suspended-sediment concentration (particle size, less than 63 micrometers). Results of this study indicated that large quantities of dissolved constituents were transported through the river system. Generally, pH, alkalinity, and specific conductance and the concentrations of B, Br, Ca, Cl, Cr, K, Li, Mg, Mo, Na, S04, Sr, U, and V increased as water discharge decreased, while concentrations of F, Hg, and suspended sediment sharply decreased as water discharge decreased after the crest of the flood. Concentrations of other constituents, such as Al, As, Ba, Be, Co, Cu, Ni, N03, N02, NH4, P04, and Si02, varied with time as discharge decreased after the crest of the flood. For most constituents, the load transported during floods generally is much greater than that transported during low-flow conditions. How ever, for Cd, Cr, Fe, Mn, V, and Zn, loads increased substantially as water discharge decreased after the crest of the flood.

  11. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore » the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  12. Quantitative Chromatographic Determination of Dissolved Elemental Sulfur in the Non-aqueous Electrolyte for Lithium-Sulfur Batteries

    DOE PAGES

    Zheng, Dong; Yang, Xiao-Qing; Zhang, Xuran; ...

    2014-12-02

    A fast and reliable analytical method is reported for the quantitative determination of dissolved elemental sulfur in non-aqueous electrolytes for Li-S batteries. By using high performance liquid chromatography with a UV detector, the solubility of S in 12 different pure solvents and in 22 different electrolytes was determined. It was found that the solubility of elemental sulfur is dependent on the Lewis basicity, the polarity of solvents and the salt concentration in the electrolytes. In addition, the S content in the electrolyte recovered from a discharged Li-S battery was successfully determined by the proposed HPLC/UV method. Thus, the feasibility ofmore » the method to the online analysis for a Li-S battery is demonstrated. Interestingly, the S was found super-saturated in the electrolyte recovered from a discharged Li-S cell.« less

  13. Integration of airborne LiDAR data and voxel-based ray tracing to determine high-resolution solar radiation dynamics at the forest floor: implications for improving stand-scale distributed snowmelt models

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2012-12-01

    Forest architecture dictates sub-canopy solar irradiance and the resulting patterns can vary seasonally and over short spatial distances. These radiation dynamics are thought to have significant implications on snowmelt processes, regional hydrology, and remote sensing signatures. The variability calls into question many assumptions inherent in traditional canopy models (e.g. Beer's Law) when applied at high resolution (i.e. 1 m). We present a method of estimating solar canopy transmissivity using airborne LiDAR data. The canopy structure is represented in 3-D voxel space (i.e. a cubic discretization of a 3-D domain analogous to a pixel representation of a 2-D space). The solar direct beam canopy transmissivity (DBT) is estimated with a ray-tracing algorithm and the diffuse component is estimated from LiDAR-derived effective LAI. Results from one year at five-minute temporal and 1 m spatial resolutions are presented from Sequoia National Park. Compared to estimates from 28 hemispherical photos, the ray-tracing model estimated daily mean DBT with a 10% average error, while the errors from a Beer's-type DBT estimate exceeded 20%. Compared to the ray-tracing estimates, the Beer's-type transmissivity method was unable to resolve complex spatial patterns resulting from canopy gaps, individual tree canopies and boles, and steep variable terrain. The snowmelt model SNOWPACK was applied at locations of ultrasonic snow depth sensors. Two scenarios were tested; 1) a nominal case where canopy model parameters were obtained from hemispherical photographs, and 2) an explicit scenario where the model was modified to accept LiDAR-derived time-variant DBT. The bulk canopy treatment was generally unable to simulate the sub-canopy snowmelt dynamics observed at the depth sensor locations. The explicit treatment reduced error in the snow disappearance date by one week and both positive and negative melt-season SWE biases were reduced. The results highlight the utility of LiDAR canopy measurements and physically based snowmelt models to simulate spatially distributed stand- and slope-scale snowmelt dynamics at resolutions necessary to capture the inherent underlying variability.iDAR-derived solar direct beam canopy transmissivity computed as the daily average for March 1st and May 1st.

  14. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant standards; but excess application caused trace element accumulations in the environmental media. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  16. Co-digestion of manure and industrial waste--The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Trace elements in dialysis.

    PubMed

    Filler, Guido; Felder, Sarah

    2014-08-01

    In end-stage chronic kidney disease (CKD), pediatric nephrologists must consider the homeostasis of the multiple water-soluble ions that are influenced by renal replacement therapy (RRT). While certain ions such as potassium and calcium are closely monitored, little is known about the handling of trace elements in pediatric dialysis. RRT may lead to accumulation of toxic trace elements, either due to insufficient elimination or due to contamination, or to excessive removal of essential trace elements. However, trace elements are not routinely monitored in dialysis patients and no mechanism for these deficits or toxicities has been established. This review summarizes the handling of trace elements, with particular attention to pediatric data. The best data describe lead and indicate that there is a higher prevalence of elevated lead (Pb, atomic number 82) levels in children on RRT when compared to adults. Lead is particularly toxic in neurodevelopment and lead levels should therefore be monitored. Monitoring of zinc (Zn, atomic number 30) and selenium (Se, atomic number 34) may be indicated in the monitoring of all pediatric dialysis patients to reduce morbidity from deficiency. Prospective studies evaluating the impact of abnormal trace elements and the possible therapeutic value of intervention are required.

  18. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  19. Trace-element concentrations in streambed sediment across the conterminous United States

    USGS Publications Warehouse

    Rice, Karen C.

    1999-01-01

    Trace-element concentrations in 541 streambed-sediment samples collected from 20 study areas across the conterminous United States were examined as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Sediment samples were sieved and the <63-μm fraction was retained for determination of total concentrations of trace elements. Aluminum, iron, titanium, and organic carbon were weakly or not at all correlated with the nine trace elements examined:  arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc. Four different methods of accounting for background/baseline concentrations were examined; however, normalization was not required because field sieving removed most of the background differences between samples. The sum of concentrations of trace elements characteristic of urban settings - copper, mercury, lead, and zinc - was well correlated with population density, nationwide. Median concentrations of seven trace elements (all nine examined except arsenic and selenium) were enriched in samples collected from urban settings relative to agricultural or forested settings. Forty-nine percent of the sites sampled in urban settings had concentrations of one or more trace elements that exceeded levels at which adverse biological effects could occur in aquatic biota.

  20. Development of dried serum spot sampling techniques for the assessment of trace elements in serum samples by LA-ICP-MS.

    PubMed

    Chantada-Vázquez, María Pilar; Moreda-Piñeiro, Jorge; Cantarero-Roldán, Alicia; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2018-08-15

    A novel approach for serum analysis by dried matrix spot (DMS) technique is proposed. The methodology consists of sampling filter paper discs (2.7 mm in diameter) containing the large amount of serum retained after a single spotting. Several oxidizers (sodium chlorate, sodium azide, acetic acid, formic acid, 1-butyl-3-methylimidazoliumm chloride/bromide) were tested (oxidizers premixed with the sample before spotting, and papers previously soaked in concentrated additive/oxidizer solutions). Direct multi-element determination (Al, Be, Ca, Cu, Fe, K, Li, Mg, Mn, Mo, Na, P, Rb, Se, V, and Zn) in dried serum spots at very low levels was therefore assessed by laser ablation (LA) coupled with inductively coupled plasma - mass spectrometry (ICP-MS). Laser ablation was performed using a focused Nd: YAG laser beam in lineal scan mode (wavelength 213 nm, laser fluency 2.2 J cm -2 , repetition rate 20 Hz, laser spot diameter 90 µm, depth 0 µm, scanning speed 12 µm s -1 ). Matrix-matched calibration mode and 13 C as internal standard (for signal intensities normalization) was used throughout the work. Limits of quantification were found to be from 21 µg L -1 to 221 mg L -1 . Repeatability (seven ablations of the same dried serum spot) and reproducibility (two ablations of seven dried serum spot from the same material) offered RSDs below 12% for all analytes, which seems satisfactory for clinical purposes. The method was validated by analyzing several certified reference materials (Seronorm™ level I and II trace elements in serum), and it was applied to several DMS from serum samples from healthy adults. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The Northeast Kingdom batholith, Vermont: magmatic evolution and geochemical constraints on the origin of Acadian granitic rocks

    USGS Publications Warehouse

    Ayuso, R.A.; Arth, Joseph G.

    1992-01-01

    Five Devonian plutons (West Charleston, Echo Pond, Nulhegan, Derby, and Willoughby) that constitute the Northeast Kingdom batholith in Vermont show wide ranges in elemental abundances and ratios consistent with major crustal contributions during their evolution. The batholith consists of metaluminous quartz gabbro, diorite and quartz monzodiorite, peraluminous granodiorite and granite, and strongly peraluminous leucogranite. Contents of major elements vary systematically with increasingSiO40) and have small negative Eu anomalies. The strongly peraluminous Willoughby leucogranite has unique trace-element abundances and ratios relative to the rest of the batholith, including low contents of Hf, Zr, Sr, and Ba, low values of K/Rb (80-164), Th/Ta (<9), Rb/Cs (7-40), K/Cs (0.1-0.5), Ce/Pb (0.5-4), high values of Rb/Sr (1-18) low to moderate REE contents and light-REE enriched patterns (with small negative Eu anomalies). Flat REE patterns (with large negative Eu anomalies) are found in a small, hydrothermally-altered area characterized by high abundances of Sn (up to 26 ppm), Rb (up to 670 ppm), Li (up to 310 ppm), Ta (up to 13.1 ppm), and U (up to 10 ppm). There is no single mixing trend, fractional crystallization assemblage, or assimilationscheme that accounts for all trace elementvariations from quartz gabbro to granite in the Northeast Kingdom batholith. The plutons originated by mixing mantle-derived components and crustal melts generated at different levels in the heterogeneous lithosphere in a continental collisional environment. Hybrid rocks in the batholith evolved by fractional crystallization and assimilation of country rocks (<50% by mass), and some of the leucogranitic rocks were subsequently disturbed by a mild hydrothermal event that resulted in the deposition of small amounts of sulfide minerals. ?? 1992 Springer-Verlag.

  2. Soluble trace elements and total mercury in Arctic Alaskan snow

    USGS Publications Warehouse

    Snyder-Conn, E.; Garbarino, J.R.; Hoffman, G.L.; Oelkers, A.

    1997-01-01

    Ultraclean field and laboratory procedures were used to examine trace element concentrations in northern Alaskan snow. Sixteen soluble trace elements and total mercury were determined in snow core samples representing the annual snowfall deposited during the 1993-94 season at two sites in the Prudhoe Bay oil field and nine sites in the Arctic National Wildlife Refuge (Arctic NWR). Results indicate there were two distinct point sources for trace elements in the Prudhoe Bay oil field - a source associated with oil and gas production and a source associated with municipal solid-waste incineration. Soluble trace element concentrations measured in snow from the Arctic NWR resembled concentrations of trace elements measured elsewhere in the Arctic using clean sample-collection and processing techniques and were consistent with deposition resulting from widespread arctic atmospheric contamination. With the exception of elements associated with sea salts, there were no orographic or east-west trends observed in the Arctic NWR data, nor were there any detectable influences from the Prudhoe Bay oil field, probably because of the predominant easterly and northeasterly winds on the North Slope of Alaska. However, regression analysis on latitude suggested significant south-to-north increases in selected trace element concentrations, many of which appear unrelated to the sea salt contribution.

  3. The effects of trace element content on pyrite oxidation rates

    NASA Astrophysics Data System (ADS)

    Gregory, D. D.; Lyons, T.; Cliff, J. B.; Perea, D. E.; Johnson, A.; Romaniello, S. J.; Large, R. R.

    2017-12-01

    Pyrite acts as both an important source and sink for many different metals and metalloids in the environment, including many that are toxic. Oxidation of pyrite can release these elements while at the same time producing significant amounts of sulfuric acid. Such issues are common in the vicinity of abandoned mines and smelters, but, as pyrite is a common accessory mineral in many different lithologies, significant pyrite oxidation can occur whenever pyritic rocks are exposed to oxygenated water or the atmosphere. Accelerated exposure to oxygen can occur during deforestation, fracking for petroleum, and construction projects. Geochemical models for pyrite oxidation can help us develop strategies to mitigate these deleterious effects. An important component of these models is an accurate pyrite oxidation rate; however, current pyrite oxidation rates have been determined using relatively pure pyrite. Natural pyrite is rarely pure and has a wide range of trace element concentrations that may affect the oxidation rate. Furthermore, the position of trace elements within the mineral lattice can also affect the oxidation rate. For example, elements such as Ni and Co, which substitute into the pyrite lattice, are thought to stabilize the lattice and thus prevent pyrite oxidation. Alternatively, trace elements that are held within inclusions of other minerals could form a galvanic cell with the surrounding pyrite, thus enhancing pyrite oxidation rates. In this study, we present preliminary analyses from three different pyrite oxidation experiments each using natural pyrite with different trace element compositions. These results show that the pyrite with the highest trace element concentration has approximately an order of magnitude higher oxidation rate compared to the lowest trace element sample. To further elucidate the mechanisms, we employed microanalytical techniques to investigate how the trace elements are held within the pyrite. LA-ICPMS was used to determine the variability of trace element content from the pyrite samples. These data were then used to select areas of interest for NanoSIMS analyses, which in turn was used to select areas for TEM and APT. These analyses show that the trace element content of pyrite can be highly variable, which may significantly affect the rate of pyrite oxidation.

  4. Concentrations of selected trace elements in fish tissue and streambed sediment in the Clark Fork-Pend Oreille and Spokane River basins, Washington, Idaho, and Montana, 1998

    USGS Publications Warehouse

    Maret, Terry R.; Skinner, K.D.

    2000-01-01

    Fish tissue and bed sediment samples were collected from 16 stream sites in the Northern Rockies Intermontane Basins study area in 1998 as part of the U.S. Geological Survey National Water-Quality Assessment Program. Bed sediment samples were analyzed for 45 trace elements, and fish livers and sportfish fillets were analyzed for 22 elements to characterize the occurrence and distribution of these elements in relation to stream characteristics and land use activities. Nine trace elements of environmental concern—arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc—were detected in bed sediment, but not all of these elements were detected in fish tissue. Trace-element concentrations were highest in bed sediment samples collected at sites downstream from significant natural mineral deposits and (or) mining activities. Arsenic, cadmium, copper, lead, mercury, and zinc in bed sediment at some sites were elevated relative to national median concentrations, and some concentrations were at levels that can adversely affect aquatic biota. Although trace-element concentrations in bed sediment exceeded various guidelines, no concentrations in sportfish fillets exceeded U.S. Environmental Protection Agency screening values for the protection of human health. Correlations between most trace-element concentrations in bed sediment and fish tissue (liver and fillet) were not significant (r0.05). Concentrations of arsenic, cadmium, copper, lead, mercury, nickel, selenium, and zinc in bed sediment were significantly correlated (r=0.53 to 0.88, p2=0.95 and 0.99, p<0.001) that corresponded to trace-element enrichment categories. These strong relations warrant further study using mine density as an explanatory variable to predict trace-element concentrations in bed sediment.

  5. Trace Elements in Marine Sediment and Organisms in the Gulf of Thailand

    PubMed Central

    Worakhunpiset, Suwalee

    2018-01-01

    This review summarizes the findings from studies of trace element levels in marine sediment and organisms in the Gulf of Thailand. Spatial and temporal variations in trace element concentrations were observed. Although trace element contamination levels were low, the increased urbanization and agricultural and industrial activities may adversely affect ecosystems and human health. The periodic monitoring of marine environments is recommended in order to minimize human health risks from the consumption of contaminated marine organisms. PMID:29677146

  6. A Seven-Year Major and Trace Element Study of Rain Water in the Barcés River Watershed, A Coruña, NW Spain

    NASA Astrophysics Data System (ADS)

    Delgado, Jordi; Cereijo-Arango, José Luis; Juncosa-Rivera, Ricardo

    2016-04-01

    Precipitation constitutes an important source of soluble materials to surface waters and, in areas where they are diluted precipitation (either dry or wet) it can be the most relevant solute source. Certain trace elements may have a limited natural availability in soils and rocks although they can be important with respect the operation of different biogeochemical cycles, for the computation of local/regional atmospheric pollutant loads or from the global mass budget. In the present study we report the results obtained in a long-lasting (December 2008-December 2015) monitoring survey of the chemical composition of bulk precipitation as monthly-integrated samples taken at the headwaters of the Barcés river watershed (A Coruña, Spain). This location was selected based on the necessity of quantification of the chemical composition and elemental loads associated with the different water types (stream water, ground water and precipitation) contributing to the flooding of the Meirama lake. Available data includes information on meteorological parameters (air temperature, relative humidity, atmospheric pressure, wind speed and direction, total and PAR radiation and precipitation) as well as a wide bundle of physico-chemical (pH, redox, electrical conductivity, alkalinity, Li, Na, K, Mg, Ca, Sr, Mn, Fe, NH4, Cs, Rb, Ba, Zn, Cu, Sb, Ni, Co, Cr, V, Cd, Ag, Pb, Se, Hg, Ti, Sn, U, Mo, F, Cl, Br, SO4, NO3, NO2, Al, As, PO4, SIO2, B, O2, DIC, DOC) and isotopic (18Ov-smow and 2Hv-smow) constituents. The average pH of local precipitation is 5.6 (n=65) which is consistent with the expected value for natural, unpolluted rain water. Most of the studied elements (eg. Na, Ca, K, Mg, SiO2, etc.) shows significant increases in their concentration in the dry period of the year. That points towards a more significant contribution of dry deposition in these periods compared with the wet ones. The average electrical conductivity is about 67 S/cm while the average chloride concentration 8 mg/L. Based on standard normalization procedures, the source of some major and trace precipitation elements have been identified, including sea water, soil and pollution/anthropogenic sources as well as multiyear trends. Available data has allowed also the computation of elemental loads in the studied area.

  7. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements are strongly enriched in crystal cores, where there is overprinting of the observed internal fabric, and exhibit numerous concentric annuli towards crystal rims. Conversely, the medium rare earth elements (e.g. Gd, Eu and Sm) exhibit bowl-shaped zoning from core to rim, with no annuli, and core and rim compositions of the medium rare earth elements are the same throughout the population within crystals of differing size. Cr exhibits pronounced spiral zoning, and the average Cr content increases towards garnet rims. In all cases, spirals are centered on the geometric core of the crystals. These LA-ICP-MS maps highlight the complexity of garnet growth over a single prograde event, and indicate that there is still much to be learnt from the analysis of garnet using ever-improving analytical methods. We explore the potential causes of the variations in the distribution of trace elements in garnet, and assess how these zoning patterns may be used to refine our understanding of the intricacies of garnet crystallisation and the spatial and temporal degree of trace element equilibration during metamorphism.

  8. Trace elements in Mediterranean seagrasses and macroalgae. A review.

    PubMed

    Bonanno, Giuseppe; Orlando-Bonaca, Martina

    2018-03-15

    This review investigates the current state of knowledge on the levels of the main essential and non-essential trace elements in Mediterranean vascular plants and macroalgae. The research focuses also on the so far known effects of high element concentrations on these marine organisms. The possible use of plants and algae as bioindicators of marine pollution is discussed as well. The presence of trace elements is overall well known in all five Mediterranean vascular plants, whereas current studies investigated element concentrations in only c. 5.0% of all native Mediterranean macroalgae. Although seagrasses and macroalgae can generally accumulate and tolerate high concentrations of trace elements, phytotoxic levels are still not clearly identified for both groups of organisms. Moreover, although the high accumulation of trace elements in seagrasses and macroalgae is considered as a significant risk for the associated food webs, the real magnitude of this risk has not been adequately investigated yet. The current research provides enough scientific evidence that seagrasses and macroalgae may act as effective bioindicators, especially the former for trace elements in sediments, and the latter in seawater. The combined use of seagrasses and macroalgae as bioindicators still lacks validated protocols, whose application should be strongly encouraged to biomonitor exhaustively the presence of trace elements in the abiotic and biotic components of coastal ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Aerosol deposition (trace elements and black carbon) over the highest glacier of the Eastern European Alps during the last centuries

    NASA Astrophysics Data System (ADS)

    Bertò, Michele; Barbante, Carlo; Gabrieli, Jacopo; Gabrielli, Paolo; Spolaor, Andrea; Dreossi, Giuliano; Laj, Paolo; Zanatta, Marco; Ginot, Patrick; Fain, Xavier

    2016-04-01

    Ice cores are an archive of a wide variety of climatic and environmental information from the past, retaining them for hundreds of thousands of years. Anthropogenic pollutants, trace elements, heavy metals and major ions, are preserved as well providing insights on the past atmospheric circulations and allowing evaluating the human impact on the environment. Several ice cores were drilled in glaciers at mid and low latitudes, as in the European Alps. The first ice cores drilled to bedrock in the Eastern Alps were retrieved during autumn 2011 on the "Alto dell`Ortles glacier", the uppermost glacier of the Ortles massif (3905m, South Tirol, Italy), in the frame of the "Ortles Project". A preliminary dating of the core suggests that it should cover at least 300-400 years. Despite the summer temperature increase of the last decades this glacier still contain cold ice. Indeed, O and H isotopes profiles well describe the atmospheric warming as well as the low temperatures recorded during the Little Ice Age (LIA). Moreover, this glacier is located close to densely populated and industrialized areas and can be used for reconstructing for the first time past and recent air pollution and the human impact in the Eastern European Alps. The innermost part of the core is under analysis by means of a "Continuous Flow Analysis" system. This kind of analysis offers a high resolution in data profiles. The separation between the internal and the external parts of the core avoid any kind of contamination. An aluminum melting head melts the core at about 2.5 cm min-1. Simultaneous analyses of conductivity, dust concentration and size distribution (from 0.8 to 80 μm), trace elements with Inductive Coupled Plasma Mass Spectrometer (ICP-MS, Agilent 7500) and refractory black carbon (rBC) with the Single Particle Soot Photometer (SP2, Droplet Measurement Technologies) are performed. A fraction of the melt water is collected by an auto-sampler for further analysis. The analyzed elements are Li, Na, Mg, Al, K, Ca, Ti, V, Mn, Fe, Ni, Cu, Zn, Rb, Ag, Cd, Sb, I, Ba, Pt, Tl, Pb and U. Trace elements concentrations in the Ortles snow are related to the emissions from the Po Valley, one of the most polluted region of Europe. The results show an increase in the concentration of many heavy metals due to anthropogenic emissions, mainly from the onset of the Industrial Revolution. rBC is one of the most important aerosol species affecting the climate system, particularly the glaciers, by modifying the radiative energy balance. A significant increase of rBC was found in the ice identifying this kind of aerosol as a responsible in forcing the end of the LIA.

  10. Trace element profiles in modern horse molar enamel as tracers of seasonality: Evidence from micro-XRF, LA-ICP-MS and stable isotope analysis

    NASA Astrophysics Data System (ADS)

    de Winter, Niels; Goderis, Steven; van Malderen, Stijn; Vanhaecke, Frank; Claeys, Philippe

    2016-04-01

    A combination of laboratory micro-X-ray Fluorescence (μXRF) and stable carbon and oxygen isotope analysis shows that trace element profiles from modern horse molars reveal a seasonal pattern that co-varies with seasonality in the oxygen isotope records of enamel carbonate from the same teeth. A combination of six cheek teeth (premolars and molars) from the same individual yields a seasonal isotope and trace element record of approximately three years recorded during the growth of the molars. This record shows that reproducible measurements of various trace element ratios (e.g., Sr/Ca, Zn/Ca, Fe/Ca, K/Ca and S/Ca) lag the seasonal pattern in oxygen isotope records by 2-3 months. Laser Ablation-ICP-Mass Spectrometry (LA-ICP-MS) analysis on a cross-section of the first molar of the same individual is compared to the bench-top tube-excitation μXRF results to test the robustness of the measurements and to compare both methods. Furthermore, trace element (e.g. Sr, Zn, Mg & Ba) profiles perpendicular to the growth direction of the same tooth, as well as profiles parallel to the growth direction are measured with LA-ICP-MS and μXRF to study the internal distribution of trace element ratios in two dimensions. Results of this extensive complementary line-scanning procedure shows the robustness of state of the art laboratory micro-XRF scanning for the measurement of trace elements in bioapatite. The comparison highlights the advantages and disadvantages of both methods for trace element analysis and illustrates their complementarity. Results of internal variation within the teeth shed light on the origins of trace elements in mammal teeth and their potential use for paleo-environmental reconstruction.

  11. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation.

    PubMed

    Wang, Guanxing; Zeng, Chen; Zhang, Fan; Zhang, Yili; Scott, Christopher A; Yan, Xuedong

    2017-03-01

    The accumulation of traffic-related trace elements in soil as the result of anthropogenic activities raises serious concerns about environmental pollution and public health. Traffic is the main source of trace elements in roadside soil on the Tibetan Plateau, an area otherwise devoid of industrial emissions. Indeed, the rapid development of tourism and transportation in this region means it is becoming increasingly important to identify the accumulation levels, influence distance, spatial distribution, and other relevant factors influencing trace elements. In this study, 229 soil samples along six segments of the major transportation routes on the Tibetan Plateau (highways G214, S308, and G109), were collected for analysis of eight trace elements (Cr, Co, Ni, As, Cu, Zn, Cd, and Pb). The results of statistical analyses showed that of the eight trace elements in soils, Cu, Zn, Cd, and Pb were primarily derived from traffic. The relationship between the trace element accumulation levels and the distance from the roadside followed an exponential decline, with the exception of Segment 3, the only unpaved gravel road studied. In addition, the distance of influence from the roadside varied by trace element and segment, ranging from 16m to 144m. Background values for each segment were different because of soil heterogeneity, while a number of other potential influencing factors (including traffic volume, road surface material, roadside distance, land cover, terrain, and altitude) all had significant effects on trace-element concentrations. Overall, however, concentrations along most of the road segments investigated were at, or below, levels defined as low on the Nemero Synthesis index. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  13. Trace element concentrations in liver of 16 species of cetaceans stranded on Pacific Islands from 1997 through 2013

    PubMed Central

    Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019

  14. Trace Element Concentrations in Liver of 16 Species of Cetaceans Stranded on Pacific Islands from 1997 through 2013.

    PubMed

    Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A

    2016-01-01

    The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.

  15. Trace Elements Affect Methanogenic Activity and Diversity in Enrichments from Subsurface Coal Bed Produced Water

    PubMed Central

    Ünal, Burcu; Perry, Verlin Ryan; Sheth, Mili; Gomez-Alvarez, Vicente; Chin, Kuk-Jeong; Nüsslein, Klaus

    2012-01-01

    Microbial methane from coal beds accounts for a significant and growing percentage of natural gas worldwide. Our knowledge of physical and geochemical factors regulating methanogenesis is still in its infancy. We hypothesized that in these closed systems, trace elements (as micronutrients) are a limiting factor for methanogenic growth and activity. Trace elements are essential components of enzymes or cofactors of metabolic pathways associated with methanogenesis. This study examined the effects of eight trace elements (iron, nickel, cobalt, molybdenum, zinc, manganese, boron, and copper) on methane production, on mcrA transcript levels, and on methanogenic community structure in enrichment cultures obtained from coal bed methane (CBM) well produced water samples from the Powder River Basin, Wyoming. Methane production was shown to be limited both by a lack of additional trace elements as well as by the addition of an overly concentrated trace element mixture. Addition of trace elements at concentrations optimized for standard media enhanced methane production by 37%. After 7 days of incubation, the levels of mcrA transcripts in enrichment cultures with trace element amendment were much higher than in cultures without amendment. Transcript levels of mcrA correlated positively with elevated rates of methane production in supplemented enrichments (R2 = 0.95). Metabolically active methanogens, identified by clone sequences of mcrA mRNA retrieved from enrichment cultures, were closely related to Methanobacterium subterraneum and Methanobacterium formicicum. Enrichment cultures were dominated by M. subterraneum and had slightly higher predicted methanogenic richness, but less diversity than enrichment cultures without amendments. These results suggest that varying concentrations of trace elements in produced water from different subsurface coal wells may cause changing levels of CBM production and alter the composition of the active methanogenic community. PMID:22590465

  16. Linking major and trace element headwater stream concentrations to DOC release and hydrologic conditions in a bog and peaty riparian zone

    NASA Astrophysics Data System (ADS)

    Broder, Tanja; Biester, Harald

    2017-04-01

    Peatlands and organic-rich riparian zones are known to export large amounts of dissolved organic carbon (DOC) to surface water. In organic-rich, acidic headwater streams main carriers for element export are dissolved organic matter (DOM) and organic-iron complexes. In this environment DOM might also act as major carrier for metals, which otherwise may have a low solubility. This study examines annual and short term event-based variations of major and trace elements in a headwater catchment. Patterns are used to trace hydrological pathways and element sources under different hydrologic preconditions. Furthermore, it elucidates the importance of DOC as carrier of different elements in a bog and a peaty riparian catchment. The study was conducted in a small headwater stream draining an ombrotrophic peatland with an adjacent forested area with peaty riparian soils in the Harz Mountains (Germany). Discharge sampling was conducted weekly at two sites from snowmelt to begin of snowfall and in high resolution during selected discharge events in 2013 and 2014. Element concentrations were measured by means of ICP-MS and ICP-OES. A PCA was performed for each site and for annual and event datasets. Results show that a large number of element concentrations strongly correlate with DOC concentrations at the bog site. Even elements like Ca and Mg, which are known to have a low affinity to DOC. Congruently, the first principal component integrates the DOC pattern (element loadings > 0.8: Ca, Fe, Mg, Mn, Zn, As, Sr, Cd, DOC) and explained about 35 % of total variance and even 50 % during rain events (loadings > 0.8: Al, Ca, Fe, Mg, Mn, Zn, Li, Co, As, Sr, Cd, Pb, DOC). The study cannot verify that all correlating elements bind to DOC. It is likely that also a common mobilization pattern in the upper peat layer by plant decomposition causes the same response to changes in hydrologic pathways. Additionally, a low mineral content and an enrichment of elements like Fe and Mn in the upper peat layers due to prevailing redox conditions might play a major role in a bog environment. At the peaty riparian zone only Ca, Fe, and Sr strongly correlated with DOC over the annual record. The PCA of the annual record display no clear DOC component here, but indicates that DOC is influenced by Component one (element loadings > 0.8: Ca, Mg, Zn, Co, Sr) and two (Al, V, La, Pb, U) suggesting different DOC sources in the peaty riparian zone. A large number of elements correlate with DOC during rain event sampling at the riparian zone. In contrast to the bog site the event-based riparian zone PCA distinguished a clear discharge related component with mineral, groundwater related elements (K, Rb, In, Cs, NO3- and SO42-). Pattern of the mineral and DOC components prove that during base flow discharge is generated in a shallow groundwater layer and successively increases upward to the organic-rich upper soil layer with increasing discharge. Contrarily, bog element pattern confirm a dominating surface-near discharge, due to high hydraulic conductivities.

  17. Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude.

    PubMed

    Pereira, Victor; Carbajales, Paloma; López-Alonso, Marta; Miranda, Marta

    2018-02-24

    Animal feed has traditionally been supplemented with trace elements at dietary concentrations well above physiological needs. However, environmental concerns have led to calls for better adjustment of mineral supplementation to actual physiological needs and, in this context, consideration of breed-related differences in trace element requirements. The aim of this study was to analyze trace element concentrations in the main breeds used for intensive beef production in northern Spain (Holstein-Friesian [HF], Galician Blonde [GB], and GB × HF cross). Samples of blood, internal organs, and muscle were obtained at slaughter from 10 HF, GB, and GB × HF cross calves in the same feedlot. Overall, trace element concentrations in serum and internal organs were within adequate ranges and did not differ between those of breeds, suggesting that trace mineral supplementation was adequate in all groups. The only exception to this was copper, and hepatic copper concentrations were above adequate levels in all calves. This was particularly evident in the HF calves, and the maximum recommended level for human consumption was exceeded in 90% of these animals. Copper, iron, manganese, selenium, and zinc concentrations in muscle were significantly higher in the HF than those in the GB calves, with intermediate values for the crosses. These breed-related differences in trace element concentrations in the muscle may be related to lower muscle mass and/or higher hepatic activity in the HF (dairy) calves than in GB (beef) calves. As meat is an essential source of highly available trace elements in human diets, breed-related differences in trace element concentrations in meat deserve further investigation.

  18. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician

    PubMed Central

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-01-01

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized. PMID:28452962

  19. Trace elements in parenteral nutrition: a practical guide for dosage and monitoring for adult patients.

    PubMed

    Fessler, Theresa A

    2013-12-01

    Parenteral nutrition (PN) is a life-sustaining therapy for hundreds of thousands of people who have severe impairment of gastrointestinal function. Trace elements are a small but very important part of PN that can be overlooked during busy practice. Serious complications can result from trace element deficiencies and toxicities, and this is especially problematic during times of product shortages. Practical information on parenteral trace element use can be gleaned from case reports, some retrospective studies, and very few randomized controlled trials. A general knowledge of trace element metabolism and excretion, deficiency and toxicity symptoms, products, optimal dosages, and strategies for supplementation, restriction, and monitoring will equip practitioners to provide optimal care for their patients who depend on PN.

  20. Trace Elements in Parenteral Nutrition: Considerations for the Prescribing Clinician.

    PubMed

    Jin, Jennifer; Mulesa, Leanne; Carrilero Rouillet, Mariana

    2017-04-28

    Trace elements (TEs) are an essential component of parenteral nutrition (PN). Over the last few decades, there has been increased experience with PN, and with this knowledge more information about the management of trace elements has become available. There is increasing awareness of the effects of deficiencies and toxicities of certain trace elements. Despite this heightened awareness, much is still unknown in terms of trace element monitoring, the accuracy of different assays, and current TE contamination of solutions. The supplementation of TEs is a complex and important part of the PN prescription. Understanding the role of different disease states and the need for reduced or increased doses is essential. Given the heterogeneity of the PN patients, supplementation should be individualized.

  1. Phosphorus and other trace elements from secondary olivine in composite mantle xenoliths (CMX) from Cima Volcanic Field (CVF; California, USA): implications for crystal growth kinetics

    NASA Astrophysics Data System (ADS)

    Baziotis, Ioannis; Asimow, Paul; Ntaflos, Theodoros; Boyce, Jeremy; Koroneos, Antonios; Perugini, Diego; Liu, Yongsheng; Klemme, Stephan; Berndt, Jasper

    2015-04-01

    Phosphorus(P)-rich zones in olivine may reflect excess incorporation of P during rapid growth; zoning patterns may then record growth rate variations (Milman-Barris et al., 2008; Stolper et al., 2009). We report data on interior cuts of two CMX from alkali basalt flows (Mukasa & Wilshire, 1997) in the CVF with second-generation P-rich olivines. In Ci-1-196, a dark layer (~200 μm wide) between lherzolite and websterite is interpreted as a rapidly crystallized melt layer (ML), consisting of Ol+Gl+Pl+Spl+Cpx+Ap+Ilm. Glass (~15 vol%) is variable in composition (P2O5 ≤1.2 wt%, Li 8.22-20.0 ppm). Olivines in the layer have 0.03-0.62 wt% P2O5; P-rich Ol (P2O5 >0.1 wt%) are Fo85-89.3. The lowest P concentrations are consistent with equilibrium with liquid parental to Gl, but the higher concentrations are not. Li concentrations, zoned from 3.84 to 4.90 ppm (core-rim), indicate equilibrium incorporation during crystal growth from a small, evolving melt pool and preservation of this rapidly relaxing gradient. REEs are mostly consistent with equilibrium growth from liquids evolving towards the observed LREE-enriched glass. Most of the clinopyroxenes are diopsides with some augites. Apatite inclusions occur in the rim of P-rich Fo85 and in An54. In Ki-5-301, a dark-coloured area of irregular shape (~200 μm wide) is present along the contact between lherzolite and orthopyroxenite, consisting of Ol+Pl+Gl+Cpx+Spl+Ilm+Ap. It resembles a tabular dyke but is connected to melt-patches infiltrating the host rock. Widespread Glass in the layer has variable composition with two populations not related by fractional crystallization: 1) P2O5 1.02-1.09 wt% and 2) P2O51.62-2.35 wt% (a Gl inclusion in Ol has P2O5 3.57 wt% may have captured melt from the P-rich boundary layer at the interface with the rapidly growing olivine). REEs cluster in the same two groups. Li is as low as 3.66 ppm group 1 and 3-4× higher (9.64-13.3 ppm) in group 2. Olivine occurs as small idiomorphic crystals embedded in Gl and as large (~100 μm) idiomorphic to hypidiomorphic crystals with Gl and Spl inclusions; Mg# ranges from Fo74.5 (rim in contact with Gl) to Fo90.3; P2O5 reaches 3.5 wt% (in a ~Fo84 rim); Li varies from 2.80 (core) to 6.35 ppm (rim). Clinopyroxene (Wo41-43En50-54Fs5-8; P2O5 0.04-0.08 wt%; Li 3.33 ppm) is found both within the ML and as a reaction product between melt and matrix Opx. Trace element geochemistry shows possible equilibrium with ML glass for some elements, but clear disequilibrium for others. Apatite occurs as large (~100 μm) crystals in contact with Ol or Gl, as near-rim inclusions in P-rich Fo84 and as tiny prismatic crystals in Gl; REEs show slight negative Eu anomalies (Eu/Eu*=0.79-0.86) due to prior crystallization of plagioclase. High-resolution X-ray mapping of P in Ol from Ci-1-196 reveals 3-7 μm wide P-rich bands parallel to facets. P2O5 correlates negatively with Si and Mg+Fe+Ca, suggesting a substitution Mg2SiO4 + 1 /2 P2O5 →Mg1.5[]0.5PO4 + 1 /2MgO+SiO2. P-Al-rich areas may grow in minutes, whereas P-Al-poor over few weeks (Jambon et al., 1992). At such rates, dendritic growth (Welsch et al., 2014) implies that core to rim zoning may not be simple growth stratigraphy. A slight correlation between P and Al in our data implies either diffusive relaxation of Al gradients or, judging by dynamic experiments (Grant & Kohn, 2013), cooling rates >10° C/h that generate disequilibrium solute trapping of P but near-equilibrium incorporation of Al. The petrogenetic history following melt intrusion requires rapid cooling and reaction with matrix minerals and crystallization sequence Ol→Cpx→Pl→Ap→Fe-Ox→quench of Gl. P and Li concentrations set upper and lower limits on growth rates after intrusion of melt into CVF xenoliths. Early-crystallized olivine grew rapidly enough that sluggish P became over-enriched but not so fast as to over-enrich other elements. Cpx formed later either as neoblasts or reaction rims in which P was homogeneous (Baziotis et al. 2014) and growth was slower compared to Ol but fast enough to preserve the Li zoning. Li diffuses in Ol a factor of 3 faster than Mg-Fe (Qian et al., 2010) and hence sets a lower limit on time from Ol growth to eruption.

  2. Profiles of non-essential trace elements in ewe and goat milk and their yoghurt, Torba yoghurt and whey.

    PubMed

    Sanal, Hasan; Güler, Zehra; Park, Young W

    2011-01-01

    The objectives of this study were to determine the profiles of non-essential trace elements in ewes' and goats' milk and manufactured products, such as yoghurt, torba yoghurt and whey, as well as changes in trace element content during Torba yoghurt-making processes. Concentrations of non-essential trace elements in ewe (Awassi) and goat (Damascus) milk and their yoghurt, torba yoghurt and whey were quantitatively determined by simultaneous inductively coupled plasma optical emission spectrometer (ICP-OES), after microwave digestion. Aluminium, antimony, arsenic, boron, beryllium, cadmium, nickel, lead, silver, titanium, thallium and vanadium were determined for both types of milk and their products. Barium was not detected in goats' milk or their products. Among all trace elements, boron was the most abundant and beryllium was least present in milk and the manufactured products. The results showed that goats' and ewes' milk and their manufactured products may be a source of 13 non-essential trace elements.

  3. Geological occurrence response to trace elemental migration in coal liquefaction based on SPSS: take no. 11 coalbed in Antaibao mine for example

    NASA Astrophysics Data System (ADS)

    Xia, Xiaohong; Qin, Yong; Yang, Weifeng

    2013-03-01

    Coal liquefaction is an adoptable method to transfer the solid fossil energy into liquid oil in large scale, but the dirty material in which will migrate to different step of liquefaction. The migration rule of some trace elements is response to the react activity of macerals in coal and the geological occurrence of the element nature of itself. In this paper, from the SPSS data correlation analysis and hierarchical clustering dendrogram about the trace elements with macerals respond to coal liquefaction yield, it shows the trace elements in No.11 Antaibao coal seam originated from some of lithophile and sulphophle elements. Correlation coefficient between liquefaction yield of three organic macerals and migration of the elements in liquefaction residue indicated that the lithophile are easy to transfer to residue, while sulphophle are apt to in the liquid products. The activated macerals are response to sulphophle trace elements. The conclusion is useful to the coal blending and environmental effects on coal direct liquefaction.

  4. Variation in Macro and Trace Elements in Progression of Type 2 Diabetes

    PubMed Central

    2014-01-01

    Macro elements are the minerals of which the body needs more amounts and are more important than any other elements. Trace elements constitute a minute part of the living tissues and have various metabolic characteristics and functions. Trace elements participate in tissue and cellular and subcellular functions; these include immune regulation by humoral and cellular mechanisms, nerve conduction, muscle contractions, membrane potential regulations, and mitochondrial activity and enzyme reactions. The status of micronutrients such as iron and vanadium is higher in type 2 diabetes. The calcium, magnesium, sodium, chromium, cobalt, iodine, iron, selenium, manganese, and zinc seem to be low in type 2 diabetes while elements such as potassium and copper have no effect. In this review, we emphasized the status of macro and trace elements in type 2 diabetes and its advantages or disadvantages; this helps to understand the mechanism, progression, and prevention of type 2 diabetes due to the lack and deficiency of different macro and trace elements. PMID:25162051

  5. ATMOSPHERIC COMPOSITION OF WEAK G BAND STARS: CNO AND Li ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczak, Jens; Lambert, David L., E-mail: adamczak@astro.as.utexas.edu

    We determined the chemical composition of a large sample of weak G band stars-a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normalmore » giants and the {sup 12}C/{sup 13}C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.« less

  6. Atmospheric Composition of Weak G Band Stars: CNO and Li Abundances

    NASA Astrophysics Data System (ADS)

    Adamczak, Jens; Lambert, David L.

    2013-03-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12C/13C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  7. Alleviation of environmental risks associated with severely contaminated mine tailings using amendments: Modeling of trace element speciation, solubility, and plant accumulation.

    PubMed

    Pardo, Tania; Bes, Cleménce; Bernal, Maria Pilar; Clemente, Rafael

    2016-11-01

    Tailings are considered one of the most relevant sources of contamination associated with mining activities. Phytostabilization of mine spoils may need the application of the adequate combination of amendments to facilitate plant establishment and reduce their environmental impact. Two pot experiments were set up to assess the capability of 2 inorganic materials (calcium carbonate and a red mud derivate, ViroBind TM ), alone or in combination with organic amendments, for the stabilization of highly acidic trace element-contaminated mine tailings using Atriplex halimus. The effects of the treatments on tailings and porewater physico-chemical properties and trace-element accumulation by the plants, as well as the processes governing trace elements speciation and solubility in soil solution and their bioavailability were modeled. The application of the amendments increased tailings pH and decreased (>99%) trace elements solubility in porewater, but also changed the speciation of soluble Cd, Cu, and Pb. All the treatments made A. halimus growth in the tailings possible; organic amendments increased plant biomass and nutritional status, and reduced trace-element accumulation in the plants. Tailings amendments modified trace-element speciation in porewater (favoring the formation of chlorides and/or organo-metallic forms) and their solubility and plant uptake, which were found to be mainly governed by tailing/porewater pH, electrical conductivity, and organic carbon content, as well as soluble/available trace-element concentrations. Environ Toxicol Chem 2016;35:2874-2884. © 2016 SETAC. © 2016 SETAC.

  8. The geographic distribution of trace elements in the environment: the REGARDS study.

    PubMed

    Rembert, Nicole; He, Ka; Judd, Suzanne E; McClure, Leslie A

    2017-02-01

    Research on trace elements and the effects of their ingestion on human health is often seen in scientific literature. However, little research has been done on the distribution of trace elements in the environment and their impact on health. This paper examines what characteristics among participants in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study are associated with levels of environmental exposure to arsenic, magnesium, mercury, and selenium. Demographic information from REGARDS participants was combined with trace element concentration data from the US Geochemical Survey (USGS). Each trace element was characterized as either low (magnesium and selenium) or high (arsenic and mercury) exposure. Associations between demographic characteristics and trace element concentrations were analyzed with unadjusted and adjusted logistic regression models. Individuals who reside in the Stroke Belt have lower odds of high exposure (4th quartile) to arsenic (OR 0.33, CI 0.31, 0.35) and increased exposure to mercury (OR 0.65, CI 0.62, 0.70) than those living outside of these areas, while the odds of low exposure to trace element concentrations were increased for magnesium (OR 5.48, CI 5.05, 5.95) and selenium (OR 2.37, CI 2.22, 2.54). We found an association between levels of trace elements in the environment and geographic region of residence, among other factors. Future studies are needed to further examine this association and determine whether or not these differences may be related to geographic variation in disease.

  9. Level of minerals and trace elements in the urine of the participants of mountain ultra-marathon race.

    PubMed

    Jablan, Jasna; Inić, Suzana; Stosnach, Hagen; Hadžiabdić, Maja Ortner; Vujić, Lovorka; Domijan, Ana-Marija

    2017-05-01

    The aim of the present study was to explore impact of endurance exercise on urinary level of minerals and trace elements as well as on some oxidative stress and biochemical parameters. Urine samples were collected from participants (n=21) of mountain ultra-marathon race (53km; Medvednica, Zagreb, Croatia), before (baseline value), immediately after, 12h and 24h after the race. In urine samples level of minerals (Ca, P, K and Na) and trace elements (Se, Zn, Mn, Cu, Fe and Co) were assessed using the bench top Total reflection X-ray Fluorescence (TXRF) spectrometer. Oxidative stress was determined as level of malondialdehyde (MDA). Immediately after the race level of minerals, trace elements, MDA, creatinine, ketones, erythrocytes and specific gravity increased compared to their baseline value. In 24h follow-up trace elements involved in antioxidant defence, MDA and biochemical parameters returned to their baseline values, Cu and Co remained increased as after the race, Fe and K tended to return to baseline values while Ca, P and Na continued to increase. Mountain ultra-marathon resulted in alteration of physiologically important minerals and trace elements that for some minerals and trace elements persist, indicating their involvement in recovery processes. However, due to their loss in urine, level of minerals and trace elements in athletes participating in endurance exercise should be monitored. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Geochemistry of ferromanganese nodule-sediment pairs from Central Indian Ocean Basin

    NASA Astrophysics Data System (ADS)

    Pattan, J. N.; Parthiban, G.

    2011-01-01

    Fourteen ferromanganese nodule-sediment pairs from different sedimentary environments such as siliceous ooze (11), calcareous ooze (two) and red clay (one) from Central Indian Ocean Basin (CIOB) were analysed for major, trace and rare earth elements (REE) to understand the possible elemental relationship between them. Nodules from siliceous and calcareous ooze are diagenetic to early diagenetic whereas, nodule from red clay is of hydrogenetic origin. Si, Al and Ba are enriched in the sediments compared to associated nodules; K and Na are almost in the similar range in nodule-sediment pairs and Mn, Fe, Ti, Mg, P, Ni, Cu, Mo, Zn, Co, Pb, Sr, V, Y, Li and REEs are all enriched in nodules compared to associated sediments (siliceous and calcareous). Major portion of Si, Al and K in both nodules and sediments appear to be of terrigenous nature. The elements which are highly enriched in the nodules compared to associated sediments from both siliceous and calcareous ooze are Mo - (307, 273), Ni - (71, 125), Mn - (64, 87), Cu - (43, 80), Co - (23, 75), Pb - (15, 24), Zn - (9, 11) and V - (8, 19) respectively. These high enrichment ratios of elements could be due to effective diagenetic supply of metals from the underlying sediment to the nodule. Enrichment ratios of transition metals and REEs in the nodule to sediment are higher in CIOB compared to Pacific and Atlantic Ocean. Nodule from red clay, exhibit very small enrichment ratio of four with Mn and Ce while, Al, Fe, Ti, Ca, Na, K, Mg, P, Zn, Co, V, Y and REE are all enriched in red clay compared to associated nodule. This is probably due to presence of abundant smectite, fish teeth, micronodules and phillipsite in the red clay. The strong positive correlation ( r ⩾ 0.8) of Mn with Ni, Cu, Zn and Mo and a convex pattern of shale-normalized REE pattern with positive Ce-anomaly of siliceous ooze could be due to presence of abundant manganese micronodules. None of the major trace and REE exhibits any type of inter-elemental relationship between nodule and sediment pairs. Therefore, it may not be appropriate to correlate elemental behaviour between these pairs.

  11. Seasonal Dynamics of Trace Elements in Tidal Salt Marsh Soils as Affected by the Flow-Sediment Regulation Regime

    PubMed Central

    Bai, Junhong; Xiao, Rong; Zhao, Qingqing; Lu, Qiongqiong; Wang, Junjing; Reddy, K. Ramesh

    2014-01-01

    Soil profiles were collected in three salt marshes with different plant species (i.e. Phragmites australis, Tamarix chinensis and Suaeda salsa) in the Yellow River Delta (YRD) of China during three seasons (summer and fall of 2007 and the following spring of 2008) after the flow-sediment regulation regime. Total elemental contents of As, Cd, Cu, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry to investigate temporal variations in trace elements in soil profiles of the three salt marshes, assess the enrichment levels and ecological risks of these trace elements in three sampling seasons and identify their influencing factors. Trace elements did not change significantly along soil profiles at each site in each sampling season. The highest value for each sampling site was observed in summer and the lowest one in fall. Soils in both P. australis and S. salsa wetlands tended to have higher trace element levels than those in T. chinensis wetland. Compared to other elements, both Cd and As had higher enrichment factors exceeding moderate enrichment levels. However, the toxic unit (TU) values of these trace elements did not exceed probable effect levels. Correlation analysis showed that these trace elements were closely linked to soil properties such as moisture, sulfur, salinity, soil organic matter, soil texture and pH values. Principal component analysis showed that the sampling season affected by the flow-sediment regulation regime was the dominant factor influencing the distribution patterns of these trace elements in soils, and plant community type was another important factor. The findings of this study could contribute to wetland conservation and management in coastal regions affected by the hydrological engineering. PMID:25216278

  12. Growth and characterization of LiInSe2 single crystals

    NASA Astrophysics Data System (ADS)

    Ma, Tianhui; Zhu, Chongqiang; Lei, Zuotao; Yang, Chunhui; Sun, Liang; Zhang, Hongchen

    2015-04-01

    Large and crack-free LiInSe2 single crystals were obtained by the vertical gradient freezing method with adding a temperature oscillation technology in a two-zone furnace. X-ray diffraction data showed that the pure LiInSe2 compound was synthesized. The grown crystals had different color depending on melt composition. The atomic ratios of elements of LiInSe2 crystals were obtained by an Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and the structural formula were calculated according to the relative contents of elements. The average absorption coefficients were estimated by using average reflection indices. The absorption coefficients of the thermal annealing samples are 0.6 cm-1 at 2-3 μm. The transparent range of our LiInSe2 crystals is from 0.6 μm to 13.5 μm.

  13. Monitoring of the environmental pollution by trace element analysis in tree-rings using synchrotron radiation total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    de Vives, Ana Elisa Sirito; Moreira, Silvana; Brienza, Sandra Maria Boscolo; Medeiros, Jean Gabriel Silva; Filho, Mário Tomazello; Zucchi, Orghêda Luíza Araújo Domingues; Filho, Virgílio Franco do Nascimento

    2006-11-01

    This paper aims to study the environmental pollution in the tree development, in order to evaluate its use as bioindicator in urban and country sides. The sample collection was carried out in Piracicaba city, São Paulo State, which presents high level of environmental contamination in water, soil and air, due to industrial activities, vehicles combustion, sugar-cane leaves burning in the harvesting, etc. The species Caesalpinia peltophoroides ("Sibipiruna") was selected because it is widely used in urban forestation. Synchrotron Radiation Total Reflection X-ray Fluorescence technique (SR-TXRF) was employed to identify and quantify the elements and metals of nutritional and toxicological importance in the wood samples. The analysis was performed in the Brazilian Synchrotron Light Source Laboratory, using a white beam for excitation and a Si(Li) detector for X-ray detection. In several samples, P, K, Ca, Ti, Fe, Sr, Ba and Pb were quantified. The K/Ca, K/P and Pb/Ca ratios were found to decrease towards the bark.

  14. Progress of pharmacogenomic research related to minerals and trace elements.

    PubMed

    Zeng, Mei-Zi; Tang, Jie; Liu, Zhao-Qian; Zhou, Hong-Hao; Zhang, Wei

    2015-10-01

    Pharmacogenomics explores the variations in both the benefits and the adverse effects of a drug among patients in a target population by analyzing genomic profiles of individual patients. Minerals and trace elements, which can be found in human tissues and maintain normal physiological functions, are also in the focus of pharmacogenomic research. Single-nucleotide polymorphisms (SNPs) affect the metabolism, disposition and efficacy of minerals and trace elements in humans, resulting in changes of body function. This review describes some of the recent progress in pharmacogenomic research related to minerals and trace elements.

  15. Stability of hydrophilic vitamins mixtures in the presence of electrolytes and trace elements for parenteral nutrition: a nuclear magnetic resonance spectroscopy investigation.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Aiello, Federica; Falugiani, Niccolò; Desideri, Ielizza

    2015-03-25

    In total parenteral nutrition (TPN), especially in the case of preterm infants, simultaneous administration of vitamins and trace elements is still a problematic issue: guidelines put in evidence the lack of specific documentation. In this work NMR spectroscopy was applied to the study of vitamins (pyridoxine hydrochloride, thiamine nitrate, riboflavin-5'-phosphate and nicotinamide) stability in presence of salts and trace elements. Vitamins in D2O were first analyzed by (1)H NMR spectroscopy in absence of salts and trace elements; changes in chemical shifts or in diffusion coefficients, measured by NMR DOSY technique, were analyzed. The effects of salts and trace elements on single vitamins and on their admixtures were then investigated by performing quantitative analyses during 48h. Selected vitamins are subject to intermolecular interactions. No degradative effects were observed in presence of salts and trace elements. Only riboflavin-5'-phosphate is subject to precipitation in presence of divalent cations; however, at low concentration and in presence of other vitamins this effect was not observed. Solutions analyzed, in the condition of this study, are stable for at least 48h and vitamins and trace elements can be administered together in TPN. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Toxic effects of trace elements on newborns and their birth outcomes.

    PubMed

    Tang, Mengling; Xu, Chenye; Lin, Nan; Yin, Shanshan; Zhang, Yongli; Yu, Xinwei; Liu, Weiping

    2016-04-15

    Some trace elements are essential for newborns, their deficiency may cause abnormal biological functions, whereas excessive intakes due to environmental contamination may create adverse health effects. This study was conducted to measure the levels of selected trace elements in Chinese fish consumers by assessing their essentiality and toxicity via colostrum intake in newborns, and evaluated the effects of these trace elements on birth outcomes. Trace elements in umbilical cord serum and colostrum of the studied population were relatively high compared with other populations. The geometric means (GM) of estimated daily intake (EDI, mgday(-1)) of the trace elements were in the safe ranges for infant Dietary Reference Intakes (DRIs) recommended by the United States Food and Drug Administration (FDA). When using total dietary intake (TDI, mgkg(-1)bwday(-1)), zinc (Zn) (0.880mgkg(-1)bwday(-1)) and selenium (Se) (6.39×10(-3)mgkg(-1)bwday(-1)) were above the Reference Doses (RfD), set by the United States Environmental Protection Agency (EPA). Multivariable linear regression analyses showed that Se was negatively correlated with birth outcomes. Our findings suggested that overloading of trace elements due to environmental contamination may contribute to negative birth outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D; Charles Shick, C

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less

  18. Heavy metal deposition fluxes affecting an Atlantic coastal area in the southwest of Spain

    NASA Astrophysics Data System (ADS)

    Castillo, Sonia; de la Rosa, Jesús D.; Sánchez de la Campa, Ana M.; González-Castanedo, Yolanda; Fernández-Camacho, Rocío

    2013-10-01

    The present study seeks to estimate the impact of industrial emissions and harbour activities on total atmospheric deposition in an Atlantic coastal area in the southwest of the Iberian Peninsula. Three large industrial estates and a busy harbour have a notable influence on air quality in the city of Huelva and the surrounding area. The study is based on a geochemical characterization of trace elements deposited (soluble and insoluble fractions) in samples collected at a rate of 15 days/sample from June 2008 to May 2011 in three sampling sites, one in the principal industrial belt, another in the city of Huelva, and the last, 56 km outside Huelva city in an area of high ecological interest. The industrial emissions emitted by the Huelva industrial belt exert a notable influence on atmospheric deposition. Major deposition fluxes were registered for Fe, Cu, V, Ni, P, Pb, As, Sn, Sb, Se and Bi, principally in the insoluble fraction, derived from industrial funnel emissions and from harbour activities. Metals such as Mn, Ni, Cu and Zn, and elements such as P also have a significant presence in the soluble fraction converting them into potentially bio-available nutrients for the living organism in the ocean. A principal component analysis certifies three common emissions sources in the area: 1) a mineral factor composed mainly of elements derived from silicate minerals mixed with certain anthropogenic species (Mg, K, Sr, Na, Al, Ba, LREE, Li, Mn, HREE, Ti, Fe, Se, V, SO-, Ni, Ca and P); 2) an industrial factor composed of the same trace elements in the three areas (Sb, Mo, Bi, As, Pb, Sn and Cd) thus confirming the impact of the emissions from the Huelva industrial belt on remote areas; and 3) a marine factor composed of Na, Cl, Mg and SO.

  19. Transfer of subduction fluids into the deforming mantle wedge during nascent subduction: Evidence from trace elements and boron isotopes (Semail ophiolite, Oman)

    NASA Astrophysics Data System (ADS)

    Prigent, C.; Guillot, S.; Agard, P.; Lemarchand, D.; Soret, M.; Ulrich, M.

    2018-02-01

    The basal part of the Semail ophiolitic mantle was (de)formed at relatively low temperature (LT) directly above the plate interface during "nascent subduction" (the prelude to ophiolite obduction). This subduction-related LT deformation was associated with progressive strain localization and cooling, resulting in the formation of porphyroclastic to ultramylonitic shear zones prior to serpentinization. Using petrological and geochemical analyses (trace elements and B isotopes), we show that these basal peridotites interacted with hydrous fluids percolating by porous flow during mylonitic deformation (from ∼850 down to 650 °C). This process resulted in 1) high-T amphibole crystallization, 2) striking enrichments of minerals in fluid mobile elements (FME; particularly B, Li and Cs with concentrations up to 400 times those of the depleted mantle) and 3) peridotites with an elevated δ11B of up to +25‰. These features indicate that the metasomatic hydrous fluids are most likely derived from the dehydration of subducting crustal amphibolitic materials (i.e., the present-day high-T sole). The rapid decrease in metasomatized peridotite δ11B with increasing distance to the contact with the HT sole (to depleted mantle isotopic values in <1 km) suggests an intense interaction between peridotites and rapid migrating fluids (∼1-25 m.y-1), erasing the initial high-δ11B subduction fluid signature within a short distance. The increase of peridotite δ11B with increasing deformation furthermore indicates that the flow of subduction fluids was progressively channelized in actively deforming shear zones parallel to the contact. Taken together, these results also suggest that the migration of subduction fluids/melts by porous flow through the subsolidus mantle wedge (i.e., above the plate interface at sub-arc depths) is unlikely to be an effective mechanism to transport slab-derived elements to the locus of partial melting in subduction zones.

  20. The Pasamonte unequilibrated eucrite: Pyroxene REE systematic and major-, minor-, and trace-element zoning. [Abstract only

    NASA Technical Reports Server (NTRS)

    Pun, A.; Papike, J. J.

    1994-01-01

    We are evaluating the trace-element concentrations in the pyroxenes of Pasamonte. Pasamonte is a characteristic member of the main group eucrites, and has recently been redescribed as a polymict eucrite. Our Pasamonte sample contained eucritic clasts with textures ranging from subophitic to moderately coarse-grained. This study concentrates on pyroxenes from an unequilibrated, coarse-grained eucrite clast. Major-, minor-, and trace-element analyses were measured for zoned pyroxenes in the eucritic clast of Pasamonte. The major- and minor-element zoning traverses were measured using the JEOL 733 electron probe with an Oxford-Link imaging/analysis system. Complemenatry trace elements were then measured for the core and rim of each of the grains by SIMS. The trace elements analyzed consisted of eight REE, Sr, Y, and Zr. These analyses were performed on a Cameca 4f ion probe. The results of the CI chondrite normalized (average CI trace-element analyses for several grains and the major- and minor-element zoning patterns from a single pyroxene grain are given. The Eu abundance in the cores of the pyroxenes represents the detection limit and therefore the (-Eu) anomaly is a minimum. Major- and minor-element patterns are typical for igneous zoning. Pyroxene cores are Mg enriched, whereas the rims are enriched in Fe and Ca. Also, Ti and Mn are found to increase, while Cr and Al generally decrease in core-to-rim traverses. The cores of the pyroxenes are more depleted in the Rare Earth Elements (REE) than the rims. Using the minor- and trace-element concentrations of bulk Pasamonte and the minor- and trace-element concentrations from the cores of the pyroxenes in Pasamonte measured in this study, we calculated partition coefficients between pyroxene and melt. This calculation assumes that bulk Pasamonte is representative of a melt composition.

  1. Reduced trace element concentrations in fast-growing juvenile Atlantic salmon in natural streams.

    PubMed

    Ward, Darren M; Nislow, Keith H; Chen, Celia Y; Folt, Carol L

    2010-05-01

    To assess the effect of rapid individual growth on trace element concentrations in fish, we measured concentrations of seven trace elements (As, Cd, Cs, Hg, Pb, Se, Zn) in stream-dwelling Atlantic salmon (Salmo salar) from 15 sites encompassing a 10-fold range in salmon growth. All salmon were hatched under uniform conditions, released into streams, and sampled approximately 120 days later for trace element analysis. For most elements, element concentrations in salmon tracked those in their prey. Fast-growing salmon had lower concentrations of all elements than slow growers, after accounting for prey concentrations. This pattern held for essential and nonessential elements, as well as elements that accumulate from food and those that can accumulate from water. At the sites with the fastest salmon growth, trace element concentrations in salmon were 37% (Cs) to 86% (Pb) lower than at sites where growth was suppressed. Given that concentrations were generally below levels harmful to salmon and that the pattern was consistent across all elements, we suggest that dilution of elements in larger biomass led to lower concentrations in fast-growing fish. Streams that foster rapid, efficient fish growth may produce fish with lower concentrations of elements potentially toxic for human and wildlife consumers.

  2. Assessment of trace elements levels in patients with Type 2 diabetes using multivariate statistical analysis.

    PubMed

    Badran, M; Morsy, R; Soliman, H; Elnimr, T

    2016-01-01

    The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    USGS Publications Warehouse

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  4. Trace elements in ocean ridge basalts

    NASA Technical Reports Server (NTRS)

    Kay, R. W.; Hubbard, N. J.

    1978-01-01

    A study is made of the trace elements found in ocean ridge basalts. General assumptions regarding melting behavior, trace element fractionation, and alteration effects are presented. Data on the trace elements are grouped according to refractory lithophile elements, refractory siderophile elements, and volatile metals. Variations in ocean ridge basalt chemistry are noted both for regional and temporal characteristics. Ocean ridge basalts are compared to other terrestrial basalts, such as those having La/Yb ratios greater than those of chondrites, and those having La/Yb ratios less than those of chondrites. It is found that (1) as compared to solar or chondrite ratios, ocean ridge basalts have low ratios of large, highly-charged elements to smaller less highly-charged elements, (2) ocean ridge basalts exhibit low ratios of volatile to nonvolatile elements, and (3) the transition metals Cr through Zn in ocean ridge basalts are not fractionated more than a factor of 2 or 3 from the chondritic abundance ratios.

  5. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    NASA Technical Reports Server (NTRS)

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  6. A Synopsis of Technical Issues of Concern for Monitoring Trace Elements in Highway and Urban Runoff

    USGS Publications Warehouse

    Breault, Robert F.; Granato, Gregory E.

    2000-01-01

    Trace elements, which are regulated for aquatic life protection, are a primary concern in highway- and urban-runoff studies because stormwater runoff may transport these constituents from the land surface to receiving waters. Many of these trace elements are essential for biological activity and become detrimental only when geologic or anthropogenic sources exceed concentrations beyond ranges typical of the natural environment. The Federal Highway Administration and State Transportation Agencies are concerned about the potential effects of highway runoff on the watershed scale and for the management and protection of watersheds. Transportation agencies need information that is documented as valid, current, and scientifically defensible to support planning and management decisions. There are many technical issues of concern for monitoring trace elements; therefore, trace-element data commonly are considered suspect, and the responsibility to provide data-quality information to support the validity of reported results rests with the data-collection agency. Paved surfaces are fundamentally different physically, hydraulically, and chemically from the natural surfaces typical of most freshwater systems that have been the focus of many traceelement- monitoring studies. Existing scientific conceptions of the behavior of trace elements in the environment are based largely upon research on natural systems, rather than on systems typical of pavement runoff. Additionally, the logistics of stormwater sampling are difficult because of the great uncertainty in the occurrence and magnitude of storm events. Therefore, trace-element monitoring programs may be enhanced if monitoring and sampling programs are automated. Automation would standardize the process and provide a continuous record of the variations in flow and water-quality characteristics. Great care is required to collect and process samples in a manner that will minimize potential contamination or attenuation of trace elements and other sources of bias and variability in the sampling process. Trace elements have both natural and anthropogenic sources that may affect the sampling process, including the sample-collection and handling materials used in many trace-element monitoring studies. Trace elements also react with these materials within the timescales typical for collection, processing and analysis of runoff samples. To study the characteristics and potential effects of trace elements in highway and urban runoff, investigators typically sample one or more operationally defined matrixes including: whole water, dissolved (filtered water), suspended sediment, bottom sediment, biological tissue, and contaminant sources. The sampling and analysis of each of these sample matrixes can provide specific information about the occurrence and distribution of trace elements in runoff and receiving waters. There are, however, technical concerns specific to each matrix that must be understood and addressed through use of proper collection and processing protocols. Valid protocols are designed to minimize inherent problems and to maximize the accuracy, precision, comparability, and representativeness of data collected. Documentation, including information about monitoring protocols, quality assurance and quality control efforts, and ancillary data also is necessary to establish data quality. This documentation is especially important for evaluation of historical traceelement monitoring data, because trace-element monitoring protocols and analysis methods have been constantly changing over the past 30 years.

  7. pH : a key control of the nature and distribution of dissolved organic matter and associated trace metals in soil

    NASA Astrophysics Data System (ADS)

    Pédrot, M.; Dia, A.; Davranche, M.

    2009-04-01

    Dissolved organic matter is ubiquitous at the Earth's surface and plays a prominent role in controlling metal speciation and mobility from soils to hydrosystems. Humic substances (HS) are usually considered to be the most reactive fraction of organic matter. Humic substances are relatively small and formed by chemically diverse organic molecules, bearing different functional groups that act as binding sites for cations and mineral surfaces. Among the different environmental physicochemical parameters controlling the metal speciation, pH is likely to be the most important one. Indeed, pH affect the dissociation of functional groups, and thus can influence the HS structure, their ability to complex metals, their solubility degree allowing the formation of aggregates at the mineral surface. In this context, soil/water interactions conducted through batch system experiments, were carried out with a wetland organic-rich soil to investigate the effect of pH on the release of dissolved organic carbon (DOC) and associated trace elements. The pH was regulated between 4 and 7.5 using an automatic pH stat titrator. Ultrafiltration experiments were performed to separate the dissolved organic pool following decreasing pore sizes (30 kDa, 5 kDa and 2 kDa with 1 Da = 1 g.mol-1). The pH increase induced a significant DOC release, especially in heavy organic molecules (size >5 kDa) with a high aromaticity (>30 %). These were probably humic acids (HA). This HA release influenced (i) directly the trace element concentrations in soil solution since HA were enriched in several trace elements such as Th, REE, Y, U, Cr and Cu; and (ii) indirectly by the breaking of clay-humic complexes releasing Fe- and Al-rich nanoparticles associated with V, Pb and Ti. By contrast, at acid pH, most HS were complexed onto mineral surfaces. They also sequestered iron nanoparticles. Therefore, at low pH, most part of DOC molecules had a size < 5 kDa and lower aromaticity. Thus, the DOC was mostly composed of simple organic compounds little complexing. Consequently, the soil solution was depleted in trace elements such as Th, REE, Y, U, Cr, Cu, Al, Fe, V, Pb and Ti, but also enriched in Ca, Sr, Ba, Mn, Mg, Co, Zn and in a lesser proportion in Rb, Li and Ni. The aromaticity in the fractions <5 kDa was higher than in the fractions <30 kDa or <0.2 µm. Complementary experiments were performed to understand the HS size distribution and aromaticity according to pH and ionic strength .The molecular size and shape of HS is usually explained by two concepts: (i) the macropolymeric structure with heavy organic molecules considered to be flexible linear polyelectrolytes and (ii) the supramolecular structure with an association of a complex mixture of different molecules held together by dispersive weak forces. Ours results supported the HA supramolecular structure at neutral or basic pH conditions. But, at acid pH, a disruption of the humic supramolecular associations involved the release of small organic molecules with a high aromaticity. Moreover, this aromaticity variation can be due also to the presence of fulvic acids in the fractions <5 kDa and a mixture of heavy organic molecules little complexing in the fractions >5 kDa. These latter molecules displayed a low aromaticity decreasing the global aromaticity of the fractions <30 kDa and <0.2 µm. To summarize, these new data demonstrated that the DOC and trace element concentrations of the soil solutions were strongly controlled by pH. This parameter influenced the nature and the size of the DOC as well as, the trace element concentrations in the soil solutions, with a decreasing contribution of HA when pH decreased. This pH dependence is a key issue of concern since local (human pressure) and/or global (climatic) warning result in pH water changes.

  8. Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China

    USGS Publications Warehouse

    Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.

    2008-01-01

    The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.

  9. Trace element contamination in feather and tissue samples from Anna’s hummingbirds

    USGS Publications Warehouse

    Mikoni, Nicole A.; Poppenga, Robert H.; Ackerman, Joshua T.; Foley, Janet E.; Hazlehurst, Jenny; Purdin, Güthrum; Aston, Linda; Hargrave, Sabine; Jelks, Karen; Tell, Lisa A.

    2017-01-01

    Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.

  10. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.

    PubMed

    Xiao, Jiefeng; Li, Jia; Xu, Zhenming

    2017-10-17

    Lithium is a rare metal because of geographical scarcity and technical barrier. Recycling lithium resource from spent lithium ion batteries (LIBs) is significant for lithium deficiency and environmental protection. A novel approach for recycling lithium element as Li 2 CO 3 from spent LIBs is proposed. First, the electrode materials preobtained by mechanical separation are pyrolyzed under enclosed vacuum condition. During this process the Li is released as Li 2 CO 3 from the crystal structure of lithium transition metal oxides due to the collapse of the oxygen framework. An optimal Li recovery rate of 81.90% is achieved at 973 K for 30 min with a solid-to-liquid ratio of 25 g L -1 , and the purity rate of Li 2 CO 3 is 99.7%. The collapsed mechanism is then presented to explain the release of lithium element during the vacuum pyrolysis. Three types of spent LIBs including LiMn 2 O 4 , LiCoO 2 , and LiCo x Mn y Ni z O 2 are processed to prove the validity of in situ recycling Li 2 CO 3 from spent LIBs under enclosed vacuum condition. Finally, an economic assessment is taken to prove that this recycling process is positive.

  11. Tracking the weathering of basalts on Mars using lithium isotope fractionation models

    PubMed Central

    Losa‐Adams, Elisabeth; Gil‐Lozano, Carolina; Gago‐Duport, Luis; Uceda, Esther R.; Squyres, Steven W.; Rodríguez, J. Alexis P.; Davila, Alfonso F.; McKay, Christopher P.

    2015-01-01

    Abstract Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt‐forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium—7Li and 6Li—have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals—the source of Li—and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history. PMID:27642264

  12. Evaluation of trace element status of organic dairy cattle.

    PubMed

    Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M

    2018-06-01

    The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.

  13. Dietary exposure estimates of twenty-one trace elements from a Total Diet Study carried out in Pavia, Northern Italy.

    PubMed

    Turconi, Giovanna; Minoia, Claudio; Ronchi, Anna; Roggi, Carla

    2009-04-01

    The significant role of trace elements in human health is well documented. Trace elements are those compounds that need to be present in the human diet to maintain normal physiological functions. However, some microelements may become harmful at high levels of exposure, or, on the other hand, may give rise to malnutrition, when their exposure is too low. The aim of the present study was to provide a reliable estimate of the dietary exposure of twenty-one trace elements in a Northern Italian area. For this purpose, trace element analyses were undertaken on total diet samples collected from a university cafeteria in Pavia, Northern Italy. The average daily exposure for the adult people was calculated on the basis of food consumption frequency, portion size and trace element levels in foodstuffs. The mean exposure values satisfy the Italian RDA for all the essential trace elements, except for Fe exposure in females, and are well below the Provisional Tolerable Daily Intake for all the toxic compounds, showing that the probability of dietary exposure to health risks is overall small. As far as Fe exposure is concerned, a potential risk of anaemia in the female adult population should be considered, then studies aimed at evaluating the Fe nutritional status of adult Italian women should be addressed. In conclusion, while not excluding the possibility that the daily exposure determined in the present study may not be representative of the population as a whole, this study provides a good estimate of the Italian adult consumer exposure to twenty-one trace elements.

  14. The effect of pasteurization on trace elements in donor breast milk.

    PubMed

    Mohd-Taufek, N; Cartwright, D; Davies, M; Hewavitharana, A K; Koorts, P; McConachy, H; Shaw, P N; Sumner, R; Whitfield, K

    2016-10-01

    Premature infants often receive pasteurized donor human milk when mothers are unable to provide their own milk. This study aims to establish the effect of the pasteurization process on a range of trace elements in donor milk. Breast milk was collected from 16 mothers donating to the milk bank at the Royal Brisbane and Women's Hospital. Samples were divided into pre- and post-pasteurization aliquots and were Holder pasteurized. Inductively coupled plasma mass spectrometry was used to analyze the trace elements zinc (Zn), copper (Cu), selenium (Se), manganese (Mn), iodine (I), iron (Fe), molybdenum (Mo) and bromine (Br). Differences in trace elements pre- and post-pasteurization were analyzed. No significant differences were found between the trace elements tested pre- and post-pasteurization, except for Fe (P<0.05). The median (interquartile range, 25 to 75%; μg l(-1)) of trace elements for pre- and post- pasteurization aliquots were-Zn: 1639 (888-4508), 1743 (878-4143), Cu: 360 (258-571), 367 (253-531), Se: 12.34 (11.73-17.60), 12.62 (11.94-16.64), Mn: (1.48 (1.01-1.75), 1.49 (1.11-1.75), I (153 (94-189), 158 (93-183), Fe (211 (171-277), 194 (153-253), Mo (1.46 (0.37-2.99), 1.42 (0.29-3.73) and Br (1066 (834-1443), 989 (902-1396). Pasteurization had minimal effect on several trace elements in donor breast milk but high levels of inter-donor variability of trace elements were observed. The observed decrease in the iron content of pasteurized donor milk is, however, unlikely to be clinically relevant.

  15. Chemical analysis and geochemical associations in Devonian black shale core samples from Martin County, Kentucky; Carroll and Washington counties, Ohio; Wise County, Virginia; and Overton County, Tennessee

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Core samples from Devonian shales from five localities in the Appalachian Basin have been analyzed for major, minor, and trace constituents. The contents of major elements are rather similar; however, the minor constituents, organic C, S, PO4, and CO3, show variations by a factor of 10. Trace elements Mo, Ni, Cu, V, Co, U, Zn, Hg, As, and Mn show variations that can be related graphically and statistically to the minor constituents. Down-hole plots show the relationships most clearly. Mn is associated with CO3 content, the other trace elements are strongly Controlled by organic C. Amounts of organic C are generally in the range of 3-6 percent, and S is in the range of 2-5 percent. Trace-element amounts show the following general ranges (ppm, parts per million)- Co, 20-40; Cu,40-70; U, 10-40; As, 20-40, V, 150-300; Ni, 80-150; high values are as much as twice these values. The organic C was probably the concentrating agent, whereas the organic C and sulfide S created an environment for preservation or immobilization of trace elements. Closely spaced samples showing an abrupt transition in color from black to gray and gray to black shale show similar effects of trace-element changes, that is, black shale contains enhanced amounts of organic C and trace elements. Ratios of trace elements to organic C or sulfide S were relatively constant even though deposition rates varied from 10 to 300 meters in 5 million years.

  16. Study on elemental fingerprint of traditional marine Chinese medicine oysters from Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Zheng, Yongjun; Zheng, Kang; Li, Yantuan

    2012-09-01

    In order to investigate the relationship between the trace elements and the characteristics of the oysters, we analyzed the trace elements present in the germplasm of oysters from different producing areas in the Jiaozhou Bay. The element fingerprints were established to reflect the elemental characteristics of the oysters. Concentration patterns of the elements were deciphered by principle component analysis (PCA) and hierarchical cluster analysis (HCA). The six regions were discriminated with accuracy using HCA and PCA based on the concentration of 16 trace elements. The elements were viewed as characteristic elements of the oysters and the fingerprints of these elements could be used to distinguish the quality of the oysters.

  17. Heavy Metals in the Environment-Historical Trends

    NASA Astrophysics Data System (ADS)

    Callender, E.

    2003-12-01

    These six metals, commonly classified as heavy metals, are a subset of a larger group of trace elements that occur in low concentration in the Earth's crust. These heavy metals were mined extensively for use in the twentieth century Industrial Society. Nriagu (1988a) estimated that between 0.5 (Cd) and 310 (Cu) million metric tons of these metals were mined and ultimately deposited in the biosphere. In many instances, the inputs of these metals from anthropogenic sources exceed the contributions from natural sources (weathering, volcanic eruptions, forest fires) by several times ( Adriano, 1986). In this chapter, heavy metals (elements having densities greater than 5) and trace elements (elements present in the lithosphere in concentrations less than 0.1%) are considered synonymous.It has been observed in the past that the rate of emission of these trace metals into the atmosphere is low due to their low volatility. However, with the advent of large-scale metal mining and smelting as well as fossil-fuel combustion in the twentieth century, the emission rate of these metals has increased dramatically. As most of these emissions are released into the atmosphere where the mammals live and breathe, we see a great increase in the occurrence of health problems such as lead (Pb) poisoning, cadmium (Cd) Itai-itai disease, chromium (Cr), and nickel (Ni) carcinogenesis.In this chapter, the author has attempted to present a synopsis of the importance of these metals in the hydrocycle, their natural and anthropogenic emissions into the environment, their prevalent geochemical form incorporated into lacustrine sediments, and their time-trend distributions in watersheds that have been impacted by urbanization, mining and smelting, and other anthropogenic activities. These time trends are reconstructed from major-minor-trace-element distributions in age-dated sediment cores, mainly from reservoirs where the mass sedimentation rates (MSRs) are orders of magnitude greater than those in natural lakes, the consequences of which tend to preserve the heavy-metal signatures and minimize the metal diagenesis (Callender, 2000). This chapter focuses mainly on the heavy metals in the terrestrial and freshwater environments whilst the environmental chemistry of trace metals in the marine environment is discussed in Volume 6, Chapter 3 of the Treatise on Geochemistry.The data presented in Table 2, Table 3, Table 4 and Table 5 are updated as much as possible, with many of the references postdate the late 1980s. Notable exceptions are riverine particulate matter chemistry ( Table 2), some references in Table 3, and references concerning the geochemical properties of the six heavy metals discussed in this chapter. There appears to be no recent publication that updates the worldwide average for riverine particulate matter trace metal chemistry ( Martin and Whitfield, 1981; Martin and Windom, 1991). This is supported by the fact that two recent references ( Li, 2000; Chester, 2000) concerning marine chemistry still refer to this 1981 publication. As for references in Table 3, there is a very limited data available concerning the pathways of heavy-metal transport to lakes. Some of the important works have been considered and reviewed in this chapter. In addition, the analytical chemistry of the sedimentary materials has changed little over the past 30 years until the advent and use of inductively coupled plasma/mass spectrometry (ICP/MS) in the late 1990s. Extensive works concerning the geochemical properties of heavy metals have been published during the past 40 years and to the author's knowledge these have survived the test of time.

  18. The Phosphoria Formation at the Hot Springs Mine in Southeast Idaho; a source of selenium and other trace elements to surface water, ground water, vegetation, and biota

    USGS Publications Warehouse

    Piper, David Z.; Skorupa, J.P.; Presser, T.S.; Hardy, M.A.; Hamilton, S.J.; Huebner, M.; Gulbrandsen, R.A.

    2000-01-01

    Major-element oxides and trace elements in the Phosphoria Formation at the Hot Springs Mine, Idaho were determined by a series of techniques. In this report, we examine the distribution of trace elements between the different solid components aluminosilicates, apatite, organic matter, opal, calcite, and dolomite that largely make up the rocks. High concentrations of several trace elements throughout the deposit, for example, As, Cd, Se, Tl, and U, at this and previously examined sites have raised concern about their introduction into the environment via weathering and the degree to which mining and the disposal of mined waste rock from this deposit might be accelerating that process. The question addressed here is how might the partitioning of trace elements between these solid host components influence the introduction of trace elements into ground water, surface water, and eventually biota, via weathering? In the case of Se, it is partitioned into components that are quite labile under the oxidizing conditions of subaerial weathering. As a result, it is widely distributed throughout the environment. Its concentration exceeds the level of concern for protection of wildlife at virtually every trophic level.

  19. HUMAN SCALP HAIR: AN ENVIRONMENTAL EXPOSURE INDEX FOR TRACE ELEMENTS. I. FIFTEEN TRACE ELEMENTS IN NEW YORK, N.Y. (1971-72)

    EPA Science Inventory

    Previous studies have revealed that hair trace element concentrations can reflect exposure in cases of frank poisoning and deficiency. Correlations have been found also in some populations living in regions where metallurgic processes are conducted. This study reports significant...

  20. Measurement of Trace Elements During the Development and Immune Response of Heliothis virescens Larvae

    USDA-ARS?s Scientific Manuscript database

    While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...

  1. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application

    USDA-ARS?s Scientific Manuscript database

    The application of poultry (Gallus gallus domesticus) litter to agricultural soils may exacerbate losses of trace elements in runoff water, an emerging concern to water quality. We evaluated trace elements (arsenic, cadmium, copper, lead, manganese, mercury, selenium and zinc) in surface runoff and ...

  2. Effect of trace element addition and increasing organic loading rates on the anaerobic digestion of cattle slaughterhouse wastewater.

    PubMed

    Schmidt, Thomas; McCabe, Bernadette K; Harris, Peter W; Lee, Seonmi

    2018-05-18

    In this study, anaerobic digestion of slaughterhouse wastewater with the addition of trace elements was monitored for biogas quantity, quality and process stability using CSTR digesters operated at mesophilic temperature. The determination of trace element concentrations was shown to be deficient in Fe, Ni, Co, Mn and Mo compared to recommendations given in the literature. Addition of these trace elements resulted in enhanced degradation efficiency, higher biogas production and improved process stability. Higher organic loading rates and lower hydraulic retention times were achieved in comparison to the control digesters. A critical accumulation of volatile fatty acids was observed at an organic loading rate of 1.82 g L -1  d -1 in the control compared to 2.36 g L -1  d -1 in the digesters with trace element addition. The improved process stability was evident in the final weeks of experimentation, in which control reactors produced 84% less biogas per day compared to the reactors containing trace elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Discrimination of trait-based characteristics by trace element bioaccumulation in riverine fishes

    USGS Publications Warehouse

    Short, T.M.; DeWeese, L.R.; Dubrovsky, N.M.

    2008-01-01

    Relations between tissue trace element concentrations and species traits were examined for 45 fish species to determine the extent to which trait-based characteristics accounted for relative differences among species in trace element bioaccumulation. Percentages of fish species correctly classified by discriminant analysis according to traits predicted by tissue trace element concentrations ranged from 72% to 87%. Tissue concentrations of copper, mercury, selenium, and zinc appeared to have the greatest overall influence on differentiating species according to trait characteristics. Discrimination of trait characteristics did not appear to be strongly influenced by local sources of trace elements in the streambed sediment. Bioaccumulation was greatest for those species classified as primarily detritivores, having relatively large adult body size, considered nonmigratory with respect to reproductive strategy, occurring mostly in large or variable size streams and rivers, preferring depositional areas within the stream channel, and preferring benthic rather than open-water habitats. Our findings provide evidence of the strong relationship between bioaccumulation of environmental trace elements and trait-based factors that influence contaminant exposure. ?? 2008 NRC.

  4. [Measurement of the status of trace elements in cattle using liver biopsy samples].

    PubMed

    Ouweltjes, W; de Zeeuw, A C; Moen, A; Counotte, G H M

    2007-02-01

    Serum, plasma, or urine samples are usually used for the measurement of the trace elements copper; zinc, iron, selenium, because these samples are easy to obtain; however; these samples are not always appropriate. For example, it is not possible to measure molybdenum, the major antagonist of copper; in blood or urine. Therefore measurement of trace elements in liver tissue is considered the gold standard. For the assessment of selenium the method of choice remains determination of glutathion peroxidase in erythrocytes and for the assessment of magnesium determination of magnesium in urine. We determined the accuracy and repeatability of measuring trace elements in liver biopsies and whole liver homogenates. The levels of trace elements measured were similar in both preparations (92% agreement). Liver biopsy in live animals is a relatively simple procedure but not common in The Netherlands. Reference levels of trace elements, classified as too low, low, adequate, high, and too high, were established on the basis of our research and information in the literature. In a second study we investigated the practical aspects of obtaining liver tissue samples and their use. Samples were collected from cattle on a commercial dairy farm. Liver biopsy provided additional information to that obtained from serum and urine samples. We prepared a biopsy protocol and a test package, which we tested on 14 farms where an imbalance of trace minerals was suspected. Biopsy samples taken from 4 to 6 animals revealed extreme levels of trace elements.

  5. Trace elements are associated with urinary 8-hydroxy-2'-deoxyguanosine level: a case study of college students in Guangzhou, China.

    PubMed

    Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang

    2016-05-01

    Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.

  6. Czochralski growth of NaNO3-LiNO3 solid solution single crystals using axial vibrational control technique

    NASA Astrophysics Data System (ADS)

    Avetissov, Igor; Sadovskiy, Andrei; Belov, Stanislav; Kong Khan, Chan; Mozhevitina, Elena; Sukhanova, Ekaterina; Zharikov, Eugeniy

    2014-09-01

    T-x diagram of LiNO3-NaNO3 quasi-binary system has been improved using an original technique based on Raman measurements of condense phase. (LiNO3)x(NaNO3)1-x solid solution single crystal has been grown at different regimes of axial vibrational control (AVC) technique. Significant difference in segregation coefficient behavior between AVC-CZ and conventional CZ grown crystals has appeared: with AVC intensity increase the segregation coefficient (SC) raises for light molecular weight elements, SC reduces for medium molecular weight elements, and SC remains practically unchangeable for heavy molecular weight elements. Effect of vibrational intensity on vibron and optical characteristics, microhardness of AVC-CZ (LiNO3)x(NaNO3)1-x solid solution single crystals has been studied. For the AVC-CZ crystals has been observed increases in microhardness as well as in optical transmission up to 10 rel% compare to conventional CZ grown crystals.

  7. Diel cycling of trace elements in streams draining mineralized areas: a review

    USGS Publications Warehouse

    Gammons, Christopher H.; Nimick, David A.; Parker, Stephen R.

    2015-01-01

    Many trace elements exhibit persistent diel, or 24-h, concentration cycles in streams draining mineralized areas. These cycles can be caused by various physical and biogeochemical mechanisms including streamflow variation, photosynthesis and respiration, as well as reactions involving photochemistry, adsorption and desorption, mineral precipitation and dissolution, and plant assimilation. Iron is the primary trace element that exhibits diel cycling in acidic streams. In contrast, many cationic and anionic trace elements exhibit diel cycling in near-neutral and alkaline streams. Maximum reported changes in concentration for these diel cycles have been as much as a factor of 10 (988% change in Zn concentration over a 24-h period). Thus, monitoring and scientific studies must account for diel trace-element cycling to ensure that water-quality data collected in streams appropriately represent the conditions intended to be studied.

  8. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  9. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    PubMed

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  10. B and Mg isotopic variations in Leoville mrs-06 type B1 cai:origin of 10Be and 26Al

    NASA Astrophysics Data System (ADS)

    Chaussidon, M.; Robert, F.; Russel, S. S.; Gounelle, M.; Ash, R. D.

    2003-04-01

    The finding [1-3] in Ca-Al-rich refractory inclusions (CAI) of primitive chondrites of traces of the in situ decay of radioactive 10Be (half-life 1.5Myr) indicates that irradiation of the protosolar nebula by the young Sun in its T-Tauri phase has produced significant amounts of the Li-Be-B elements. This irradiation may have produced also some or all of the short-lived 26Al (half-life 0.7Myr) and 41Ca (half-life 0.1Myr) previously detected in CAIs. To constrain the origin of 10Be and 10Al it is important to look for coupled variations in the 10Be/9Be and 26Al/27Al ratios in CAIs and to understand the processes responsible for these variations (e.g. variations in the fluences of irradiation, secondary perturbations of the CAIs, ...) We have thus studied the Li and B isotopic compositions and the Be/Li and Be/B concentration ratios in one CAI (MRS-06) from the Leoville CV3 chondrite in which large variations of the Mg isotopic compositions showing both the in situ decay of 26Al and the secondary redistribution of Mg isotopes have been observed [4]. The results show large variations for the Li and B isotopic compositions (^7Li/^6Li ranging from 11.02±0.21 to 11.82±0.07, and 10B/11B ratios ranging from 0.2457±0.0053 to 0.2980±0.0085). The ^7Li/^6Li ratio tend to decrease towards the rim of the inclusion. The 10B/11B ratios are positively correlated with the ^9Be/11B ratios indicating the in situ decay of 10Be. However perturbations of the 10Be/B system are observed. They would correspond to an event which occurred approximately 2Myr after the formation of the CAI and the irradiation of the CAI precursors which is responsible for the 10Be observed in the core of the CAI. These perturbations seem compatible with those observed for the 26Al/Mg system but they might be due to an irradiation of the already-formed, isolated CAI which would have resulted in increased 10Be/^9Be ratios and low ^7Li/^6Li ratios in the margin of the CAI. [1] McKeegan K. D. et al. (2000) Science, 90, 1334-1337. [2] Sugiura N. et al. et al. (2001) Meteoritics &Planet. Sci., 36, 1397-1408. [3] McPherson G. J. and Huss G. R. (2001) LPS XXXII, Abstract #1882. [4] Ash R. D. et al. (2002) LPS XXXIII, Abstract #2063.

  11. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).

  12. Investigation of the roles of trace elements during hepatitis C virus infection using protein-protein interactions and a shortest path algorithm.

    PubMed

    Zhu, LiuCun; Chen, XiJia; Kong, Xiangyin; Cai, Yu-Dong

    2016-11-01

    Hepatitis is a type of infectious disease that induces inflammation of the liver without pinpointing a particular pathogen or pathogenesis. Type C hepatitis, as a type of hepatitis, has been reported to induce cirrhosis and hepatocellular carcinoma within a very short amount of time. It is a great threat to human health. Some studies have revealed that trace elements are associated with infection with and immune rejection against hepatitis C virus (HCV). However, the mechanism underlying this phenomenon is still unclear. In this study, we aimed to expand our knowledge of this phenomenon by designing a computational method to identify genes that may be related to both HCV and trace element metabolic processes. The searching procedure included three stages. First, a shortest path algorithm was applied to a large network, constructed by protein-protein interactions, to identify potential genes of interest. Second, a permutation test was executed to exclude false discoveries. Finally, some rules based on the betweenness and associations between candidate genes and HCV and trace elements were built to select core genes among the remaining genes. 12 lists of genes, corresponding to 12 types of trace elements, were obtained. These genes are deemed to be associated with HCV infection and trace elements metabolism. The analyses indicate that some genes may be related to both HCV and trace element metabolic processes, further confirming the associations between HCV and trace elements. The method was further tested on another set of HCV genes, the results indicate that this method is quite robustness. The newly found genes may partially reveal unknown mechanisms between HCV infection and trace element metabolism. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Open-water and under-ice seasonal variations in trace element content and physicochemical associations in fluvial bed sediment.

    PubMed

    Doig, Lorne E; Carr, Meghan K; Meissner, Anna G N; Jardine, Tim D; Jones, Paul D; Bharadwaj, Lalita; Lindenschmidt, Karl-Erich

    2017-11-01

    Across the circumpolar world, intensive anthropogenic activities in the southern reaches of many large, northward-flowing rivers can cause sediment contamination in the downstream depositional environment. The influence of ice cover on concentrations of inorganic contaminants in bed sediment (i.e., sediment quality) is unknown in these rivers, where winter is the dominant season. A geomorphic response unit approach was used to select hydraulically diverse sampling sites across a northern test-case system, the Slave River and delta (Northwest Territories, Canada). Surface sediment samples (top 1 cm) were collected from 6 predefined geomorphic response units (12 sites) to assess the relationships between bed sediment physicochemistry (particle size distribution and total organic carbon content) and trace element content (mercury and 18 other trace elements) during open-water conditions. A subset of sites was resampled under-ice to assess the influence of season on these relationships and on total trace element content. Concentrations of the majority of trace elements were strongly correlated with percent fines and proxies for grain size (aluminum and iron), with similar trace element grain size/grain size proxy relationships between seasons. However, finer materials were deposited under ice with associated increases in sediment total organic carbon content and the concentrations of most trace elements investigated. The geomorphic response unit approach was effective at identifying diverse hydrological environments for sampling prior to field operations. Our data demonstrate the need for under-ice sampling to confirm year-round consistency in trace element-geochemical relationships in fluvial systems and to define the upper extremes of these relationships. Whether contaminated or not, under-ice bed sediment can represent a "worst-case" scenario in terms of trace element concentrations and exposure for sediment-associated organisms in northern fluvial systems. Environ Toxicol Chem 2017;36:2916-2924. © 2017 SETAC. © 2017 SETAC.

  14. Reconnaissance of Soil, Ground Water, and Plant Contamination at an Abandoned Oilfield-Service Site near Shawnee, Oklahoma, 2005-2006

    USGS Publications Warehouse

    Mashburn, Shana L.; Smith, S. Jerrod

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Absentee Shawnee Tribe of Oklahoma, began a reconnaissance study of a site in Pottawatomie County, Oklahoma, in 2005 by testing soil, shallow ground water, and plant material for the presence of trace elements and semivolatile organic compounds. Chemical analysis of plant material at the site was investigated as a preliminary tool to determine the extent of contamination at the site. Thirty soil samples were collected from 15 soil cores during October 2005 and analyzed for trace elements and semivolatile organic compounds. Five small-diameter, polyvinyl-chloride-cased wells were installed and ground-water samples were collected during December 2005 and May 2006 and analyzed for trace elements and semivolatile organic compounds. Thirty Johnsongrass samples and 16 Coralberry samples were collected during September 2005 and analyzed for 53 constituents, including trace elements. Results of the soil, ground-water, and plant data indicate that the areas of trace element and semivolatile organic compound contamination are located in the shallow (A-horizon) soils near the threading barn. Most of the trace-element concentrations in the soils on the study site were either similar to or less than trace-element concentrations in background soils. Several trace elements and semivolatile organic compounds exceeded the U.S. Environmental Protection Agency, Region 6, Human Health Medium-Specific Screening Levels 2007 for Tap Water, Residential Soils, Industrial Indoor Soils, and Industrial Outdoor Soils. There was little or no correlation between the plant and soil sample concentrations and the plant and ground-water concentrations based on the current sample size and study design. The lack of correlation between trace-element concentrations in plants and soils, and plants and ground water indicate that plant sampling was not useful as a preliminary tool to assess contamination at the study site.

  15. Anthropogenic versus natural control on trace element and Sr-Nd-Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ˜1500 AD to present

    NASA Astrophysics Data System (ADS)

    Kamenov, George D.; Brenner, Mark; Tucker, Jaimie L.

    2009-06-01

    Analysis of a well-dated peat core from Blue Cypress Marsh (BCM) provides a detailed record of natural and anthropogenic factors that controlled the geochemical cycles of a number of trace elements in Florida over the last five centuries. The trace elements were divided into "natural" and "anthropogenic" groups using concentration trends from the bottom to the top of the core. The "natural" group includes Li, Sc, Cr, Co, Ga, Ge, Zr, Nb, Cs, Ba, Hf, Y, Ta, Th, and REE (Rare Earth Elements). These elements show similar concentrations throughout the core, indicating that changes in human activities after European arrival in the "New World" did not affect their geochemical cycles. The "anthropogenic" group includes Pb, Cu, Zn, V, Sb, Sn, Bi, and Cd. Upcore enrichment of these elements indicates enhancement by anthropogenic activities. From the early 1500s to present, fluxes of the "anthropogenic" metals to the marsh increased significantly, with modern accumulation rates several-fold (e.g., V) to hundreds of times (e.g., Zn) greater than pre-colonial rates. The dominant input mechanism for trace elements from both groups to the marsh has been atmospheric deposition. Atmospheric input of a number of the elements, including the anthropogenic metals, was dominated by local sources during the last century. For several elements, long-distant transport may be important. For instance, REE and Nd isotopes provide evidence for long-range atmospheric transport dominated by Saharan dust. The greatest increase in flux of the "anthropogenic" metals occurred during the 20th century and was caused by changes in the chemical composition of atmospheric deposition entering the marsh. Increased atmospheric inputs were a consequence of several anthropogenic activities, including fossil fuel combustion (coal and oil), agricultural activities, and quarrying and mining operations. Pb and V exhibit similar trends, with peak accumulation rates in 1970. The principal anthropogenic source of V is oil combustion. The decline in V accumulation after 1970 in the BCM peat corresponds to the introduction of low-sulfur fuels and the change from heavy to distilled oils since the 1970s. After the 1920s, Pb distribution in the peat follows closely the history of alkyl lead consumption in the US, which peaked in the 1970s. Pb isotopes support this inference and furthermore, record changes in the ore sources used to produce leaded gasoline. Idaho ores dominated the peat Pb isotope record until the 1960s, followed by Pb from Mississippi Valley Type deposits from the 1960s to the 1980s. Enhanced fluxes of Cu, Zn, Cd, Sn, Sb, Bi, and to some extent Ni during the last century are likely also related to fossil fuel combustion. Local agricultural activities may also have influenced the geochemical cycles of Cu and Zn. The peat record shows enhanced U accumulation during the last century, possibly related to phosphate mining in western Florida. Sr isotopes in the peat core also reflect anthropogenic influence. The 87Sr/ 86Sr ratio decreases from natural background values in the basal part of the core to lower values in the upper part of the core. The Sr isotope shift is probably related to quarrying operations in Florida, and marks the first time an anthropogenic signal has been detected using the Sr isotope record in a peat core.

  16. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on molecular mechanisms involved in such processes as inorganic carbon fixation, organic carbon respiration, or nitrogen transformation, they explain how the cycles of trace elements are critically linked to those of major nutrients such as carbon or nitrogen. But we have relatively little understanding of the binding molecules and the enzymes that mediate the biochemical role of trace metals in the marine environment. In this sense, this chapter is more a "preview" than a review of the field of marine bioinorganic chemistry. To exemplify the concepts and methods of this field, we have chosen to focus on one of its most important topics: the potentially limiting role of trace elements in primary marine production. As a result we center our discussion on particular subsets of organisms, biogeochemical cycles, and trace elements. Our chief actors are marine phytoplankton, particularly eukaryotes, while heterotrophic bacteria make only cameo appearances. The biogeochemical cycles that will serve as our plot are those of the elements involved in phytoplankton growth, the major algal nutrients - carbon, nitrogen, phosphorus, and silicon - leaving aside, e.g., the interesting topic of the marine sulfur cycle. Seven trace metals provide the intrigue: manganese, iron, nickel, cobalt, copper, zinc, and cadmium. But several other trace elements such as selenium, vanadium, molybdenum, and tungsten (and, probably, others not yet identified) will assuredly add further twists in future episodes.We begin this chapter by discussing what we know of the concentrations of trace elements in marine microorganisms and of the relevant mechanisms and kinetics of trace-metal uptake. We then review the biochemical role of trace elements in the marine cycles of carbon, nitrogen, phosphorus, and silicon. Using this information, we examine the evidence, emanating from both laboratory cultures and field measurements, relevant to the mechanisms and the extent of control by trace metals of marine biogeochemical cycles. Before concluding with a wistful glimpse of the future of marine bioinorganic chemistry we discuss briefly some paleoceanographic aspects of this new field: how the chemistry of the planet "Earth" - particularly the concentrations of trace elements in the oceans - has evolved since its origin, chiefly as a result of biological processes and how the evolution of life has, in turn, been affected by the availability of essential trace elements.

  17. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    PubMed

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. PIXE analysis of ancient Chinese Qing dynasty porcelain

    NASA Astrophysics Data System (ADS)

    Cheng, Huansheng; He, Wenquan; Tang, Jiayong; Yang, Fujia; Wang, Jianhua

    1996-09-01

    The major and minor chemical compositions and trace element content of white glaze made in Qing dynasty at kuan kiln have been determined by PIXE. Experimental results show that trace element contents RbSrZr are useful to distinguish the place of production of ancient porcelain. In the porcelain from different kilns situated in a same province, the trace element contents can be different from each other. Determining and comparing the major and minor compositions and trace elemental concentrations in white glaze by PIXE technique, we can distinguish a precious Qing dynasty porcelain made at kuan kiln from a fake.

  19. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin: Trace elements in streambed sediment and fish livers, 1995-96

    USGS Publications Warehouse

    Kroening, Sharon E.; Fallon, James D.; Lee, Kathy E.

    2000-01-01

    In fish livers, all of the trace elements analyzed were detected except antimony, beryllium, cobalt, and uranium. Trace element concentrations in fish livers generally did not show any pronounced patterns. Ranges for concentrations of arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc were similar to those measured in 20 other NAWQA studies across the United States. Cadmium concentrations in fish livers were moderately correlated to fish length and weight. There were no relations between trace element concentrations in fish livers and streambed sediment.

  20. The effect of acidified sample storage time on the determination of trace element concentration in ice cores by ICP-SFMS

    NASA Astrophysics Data System (ADS)

    Uglietti, C.; Gabrielli, P.; Lutton, A.; Olesik, J.; Thompson, L. G.

    2012-12-01

    Trace elements in micro-particles entrapped in ice cores are a valuable proxy of past climate and environmental variations. Inductively coupled plasma sector field mass spectrometry (ICP-SFMS) is generally recognized as a sensitive and accurate technique for the quantification of ultra-trace element concentrations in ice cores. Usually, ICP-SFMS analyses of ice core samples are performed by melting and acidifying aliquots. Acidification is important to transfer trace elements from particles into solution by partial and/or complete dissolution. Only elements in solution and in sufficiently small particles will be vaporized and converted to elemental ions in the plasma for detection by ICP-SFMS. However, experimental results indicate that differences in acidified sample storage time at room temperature may lead to the recovery of different trace element fractions. Moreover, different lithologies of the relatively abundant crustal material entrapped in the ice matrix could also influence the fraction of trace elements that are converted into elemental ions in the plasma. These factors might affect the determination of trace elements concentrations in ice core samples and hamper the comparison of results obtained from ice cores from different locations and/or epochs. In order to monitor the transfer of elements from particles into solution in acidified melted ice core samples during storage, a test was performed on sections from nine ice cores retrieved from low latitude drilling sites around the world. When compared to ice cores from polar regions, these samples are characterized by a relative high content of micro-particles that may leach trace elements into solution differently. Of the nine ice cores, five are from the Tibetan Plateau (Dasuopu, Guliya, Naimonanyi, Puruogangri and Dunde), two from the Andes (Quelccaya and Huascaran), one from Africa (Kilimanjaro) and one from the Eastern Alps (Ortles). These samples were decontaminated by triple rinsing, melted and stored in pre-cleaned low-density polyethylene bottles, and kept frozen until acidification (2% v/v ultra-pure HNO3). Determination of twenty trace elements (Ag, Al, As, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Rb, Sb, Sn, Ti, Tl, U, V, and Zn) was repeated at different times after acidification using the same aliquot. Analyses show a mean increase of 40-50% in trace element concentration in all the samples during the first 15 days of storage after acidification, except Al, Fe, V and Cr, which show a larger increase (90-100%). After 15 days the trace element concentrations reach generally stable values (with small increases within measurement uncertainty), except for the Naimonanyi and Kilimanjaro samples which continue to increase. In contrast, Ag concentration decreases after one week, likely due to its low stability in the acidified solution that may depend on the Cl- concentration. We froze the samples 43 days after the acidification. After two weeks the samples were melted and re-analyzed by ICP-SFMS in two different laboratories as an inter-calibration exercise. The results show a good correspondence between the measured concentrations determined by the two instruments and a consistent additional increase of 20-30% of measured trace element concentrations in almost all samples.

  1. Trace element storage capacity of sediments in dead Posidonia oceanica mat from a chronically contaminated marine ecosystem.

    PubMed

    Di Leonardo, Rossella; Mazzola, Antonio; Cundy, Andrew B; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2017-01-01

    Posidonia oceanica mat is considered a long-term bioindicator of contamination. Storage and sequestration of trace elements and organic carbon (C org ) were assessed in dead P. oceanica mat and bare sediments from a highly polluted coastal marine area (Augusta Bay, central Mediterranean). Sediment elemental composition and sources of organic matter have been altered since the 1950s. Dead P. oceanica mat displayed a greater ability to bury and store trace elements and C org than nearby bare sediments, acting as a long-term contaminant sink over the past 120 yr. Trace elements, probably associated with the mineral fraction, were stabilized and trapped despite die-off of the overlying P. oceanica meadow. Mat deposits registered historic contamination phases well, confirming their role as natural archives for recording trace element trends in marine coastal environments. This sediment typology is enriched with seagrass-derived refractory organic matter, which acts mainly as a diluent of trace elements. Bare sediments showed evidence of inwash of contaminated sediments via reworking; more rapid and irregular sediment accumulation; and, because of the high proportions of labile organic matter, a greater capacity to store trace elements. Through different processes, both sediment typologies represent a repository for chemicals and may pose a risk to the marine ecosystem as a secondary source of contaminants in the case of sediment dredging or erosion. Environ Toxicol Chem 2017;36:49-58. © 2016 SETAC. © 2016 SETAC.

  2. Aluminum, iron, lead, cadmium, copper, zinc, chromium, magnesium, strontium, and calcium content in bone of end-stage renal failure patients.

    PubMed

    D'Haese, P C; Couttenye, M M; Lamberts, L V; Elseviers, M M; Goodman, W G; Schrooten, I; Cabrera, W E; De Broe, M E

    1999-09-01

    Little is known about trace metal alterations in the bones of dialysis patients or whether particular types of renal osteodystrophy are associated with either increased or decreased skeletal concentrations of trace elements. Because these patients are at risk for alterations of trace elements as well as for morbidity from skeletal disorders, we measured trace elements in bone of patients with end-stage renal disease. We analyzed bone biopsies of 100 end-stage renal failure patients enrolled in a hemodialysis program. The trace metal contents of bone biopsies with histological features of either osteomalacia, adynamic bone disease, mixed lesion, normal histology, or hyperparathyroidism were compared with each other and with the trace metal contents of bone of subjects with normal renal function. Trace metals were measured by atomic absorption spectrometry. The concentrations of aluminum, chromium, and cadmium were increased in bone of end-stage renal failure patients. Comparing the trace metal/calcium ratio, significantly higher values were found for the bone chromium/calcium, aluminum/calcium, zinc/calcium, magnesium/calcium, and strontium/calcium ratios. Among types of renal osteodystrophy, increased bone aluminum, lead, and strontium concentrations and strontium/calcium and aluminum/calcium ratios were found in dialysis patients with osteomalacia vs the other types of renal osteodystrophy considered as one group. Moreover, the concentrations of several trace elements in bone were significantly correlated with each other. Bone aluminum was correlated with the time on dialysis, whereas bone iron, aluminum, magnesium, and strontium tended to be associated with patient age. Bone trace metal concentrations did not depend on vitamin D intake nor on the patients' gender. The concentration of several trace elements in bone of end-stage renal failure patients is disturbed, and some of the trace metals under study might share pathways of absorption, distribution, and accumulation. The clinical significance of the increased/decreased concentrations of several trace elements other than aluminum in bone of dialysis patients deserves further investigation.

  3. Volatile and light lithophile elements in high-anorthite plagioclase-hosted melt inclusions from Iceland

    NASA Astrophysics Data System (ADS)

    Neave, David A.; Hartley, Margaret E.; Maclennan, John; Edmonds, Marie; Thordarson, Thorvaldur

    2017-05-01

    Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of volatiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix glasses and 102 melt inclusions from the 10 ka Grímsvötn tephra series (i.e., Saksunarvatn ash) of Iceland's Eastern Volcanic Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrinkage bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in primitive plagioclase-hosted inclusions (182-823) generally exceed values expected for EVZ primary melts (∼ 180), and can be accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51-216 versus ∼15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concentrated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (∼300) indicates that primary melts were S-rich in comparison with most oceanic basalts. Cl and B are unfractionated from similarly compatible trace elements, and preserve records of primary melt heterogeneity. Although primitive plagioclase-hosted melt inclusions from the 10 ka Grímsvötn tephra series record few primary signals in their volatile contents, they nevertheless record information about crustal magma processing that is not captured in olivine-hosted melt inclusions suites.

  4. Geology and geochemistry of the Atacama Desert.

    PubMed

    Tapia, J; González, R; Townley, B; Oliveros, V; Álvarez, F; Aguilar, G; Menzies, A; Calderón, M

    2018-02-14

    The Atacama Desert, the driest of its kind on Earth, hosts a number of unique geological and geochemical features that make it unlike any other environment on the planet. Considering its location on the western border of South America, between 17 and 28 °S, its climate has been characterized as arid to hyperarid for at least the past 10 million years. Notably dry climatic conditions of the Atacama Desert have been related to uplift of the Andes and are believed to have played an important role in the development of the most distinctive features of this desert, including: (i) nitrates and iodine deposits in the Central Depression, (ii) secondary enrichment in porphyry copper deposits in the Precordillera, (iii) Li enrichment in salt flats of the Altiplano, and (iv) life in extreme habitats. The geology and physiography of the Atacama Desert have been largely shaped by the convergent margin present since the Mesozoic era. The geochemistry of surface materials is related to rock geochemistry (Co, Cr, Fe, Mn, V, and Zn), salt flats, and evaporite compositions in endorheic basins (As, B, and Li), in addition to anthropogenic activities (Cu, Mo, and Pb). The composition of surface water is highly variable, nonetheless in general it presents a circumneutral pH with higher conductivity and total dissolved solids in brines. Major water constituents, with the exception of HCO 3 - , are generally related to the increase of salinity, and despite the fact that trace elements are not well-documented, surface waters of the Atacama Desert are enriched in As, B, and Li when compared to the average respective concentrations in rivers worldwide.

  5. Trace element levels and cognitive function in rural elderly Chinese.

    PubMed

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W; Ma, Feng; Hall, Kathleen S; Murrell, Jill R; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C

    2008-06-01

    Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Three trace elements-calcium, cadmium, and copper-were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p <.0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p =.0044 and p =.0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population.

  6. Epidemiology of trace elements deficiencies in Belgian beef and dairy cattle herds.

    PubMed

    Guyot, Hugues; Saegerman, Claude; Lebreton, Pascal; Sandersen, Charlotte; Rollin, Frédéric

    2009-01-01

    Selenium (Se), iodine (I), zinc (Zn) and copper (Cu) deficiencies in cattle have been reported in Europe. These deficiencies are often associated with diseases. The aim of the study was to assess trace element status in Belgian cattle herds showing pathologies and to compare them to healthy cattle herds. Eighty-two beef herds with pathologies, 11 healthy beef herds, 65 dairy herds with pathologies and 20 healthy dairy herds were studied during barn period. Blood and/or milk samples were taken in healthy animals. Plasma Zn, Cu, inorganic I (PII) and activity of glutathione peroxidase in erythrocytes (GPX) were assayed. In milk, I concentration was measured. Data about pathologies and nutrition in the herds were collected. According to defined thresholds, it appeared that a large proportion of deficient herds belonged to "sick" group of herds. This conclusion was supported by the mean value of trace elements and by the fact that a majority of individual values of trace elements was below the threshold. Dairy herds had mean values of trace elements higher than beef herds. More concentrates and minerals were used in healthy herds versus "sick" herds. These feed supplements were also used more often in dairy herds, compared to beef herds. Trace elements deficiencies are present in cattle herds in Belgium and are linked to diseases. Nutrition plays a major role in the trace elements status.

  7. Long-term anaerobic digestion of food waste stabilized by trace elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lei, E-mail: wxzyfx@yahoo.com; Jahng, Deokjin, E-mail: djahng@mju.ac.kr

    Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achievedmore » for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.« less

  8. The role of sample preparation in interpretation of trace element concentration variability in moss bioindication studies

    USGS Publications Warehouse

    Migaszewski, Z.M.; Lamothe, P.J.; Crock, J.G.; Galuszka, A.; Dolegowska, S.

    2011-01-01

    Trace element concentrations in plant bioindicators are often determined to assess the quality of the environment. Instrumental methods used for trace element determination require digestion of samples. There are different methods of sample preparation for trace element analysis, and the selection of the best method should be fitted for the purpose of a study. Our hypothesis is that the method of sample preparation is important for interpretation of the results. Here we compare the results of 36 element determinations performed by ICP-MS on ashed and on acid-digested (HNO3, H2O2) samples of two moss species (Hylocomium splendens and Pleurozium schreberi) collected in Alaska and in south-central Poland. We found that dry ashing of the moss samples prior to analysis resulted in considerably lower detection limits of all the elements examined. We also show that this sample preparation technique facilitated the determination of interregional and interspecies differences in the chemistry of trace elements. Compared to the Polish mosses, the Alaskan mosses displayed more positive correlations of the major rock-forming elements with ash content, reflecting those elements' geogenic origin. Of the two moss species, P. schreberi from both Alaska and Poland was also highlighted by a larger number of positive element pair correlations. The cluster analysis suggests that the more uniform element distribution pattern of the Polish mosses primarily reflects regional air pollution sources. Our study has shown that the method of sample preparation is an important factor in statistical interpretation of the results of trace element determinations. ?? 2010 Springer-Verlag.

  9. Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds.

    PubMed

    Oyewumi, Oluyinka; Schreiber, Madeline E

    2017-08-01

    Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60-70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Trace element geochemistry of volcanic gases and particles from 1983-1984 eruptive episodes of Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Crowe, Bruce M.; Finnegan, David L.; Zoller, William H.; Boynton, William V.

    1987-12-01

    Compositional data have been obtained for volcanic gases and particles collected from fume emitted at the Pu'u O'o vent on the east rift zone of Kilauea volcano. The samples were collected by pumping fume through a filter pack system consisting of a front stage particulate filter followed by four base-treated filters (7LiOH). Particles and condensed phases are trapped on the particulate filter, and acidic gases are collected on the treated filters. The filters are analyzed for 30 elements by instrumental neutron activation analysis. Fume samples were collected from the Pu'u O'o vent for two eruptive episodes: (1) 7 days after episode 11 (cooling vent samples) and (2) the waning stage of episode 13 (active vent samples). Additional samples were collected by aircraft from the gas plume released during the lava fountaining phase of episode 17 (aircraft samples). Element concentrations in the vent gases were > 104 μg m-3 for S, Cl, and F. Enrichment factors (EFs) for the volcanic fume versus the source magma were calculated using the volatile element Br as the reference element for normalization and the U.S. Geological Survey standard BHVO-1 as the magma standard. This removes the ash dilution effect obtained by using an ash constituent (Al, Sc, or Mg) as the reference element. Bromine-normalized EFs (× 105) range from 101 to 102 for Na, K, and Cu; 102 to 105 for Zn, W, Sb, In, Ir, Ag, F, and As; and > 105 for Au, Cd, Re, Cl, Se, and S. The highest enrichment factors are for aircraft samples collected during the most gas-rich phase of an eruption cycle. Metal and volatile-element data form two groups: (1) elements showing little or no variation in abundance ratios with sample type (group 1: Cl, Br, and Re) and (2) elements that show significant variation in abundance ratios by sample type (group 2: Zn, W, Sb, In, Ir, Au, and Cd). Bivariate plots of elements of the first group versus elements of the second group separate by sample type. The separation corresponds to samples collected during eruptive activity versus samples collected during repose periods. Monitoring trace metal ratios in volcanic fume could provide an additional tool for predicting volcanic eruptions. The F/Cl ratio of cooling vent samples is higher than those of active vent or aircraft samples, and the ratio is inversely correlated with EFs for most volatile metals.

  11. Quality monitoring methods of initial and terminal manufacture of LiFePO4 based lithium ion batteries by capillary electrophoresis.

    PubMed

    Xie, Xia; Yang, Yang; Zhou, Henghui; Li, Meixian; Zhu, Zhiwei

    2018-03-01

    Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO 4 , two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO 4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO 4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO 4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1μM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO 4 manufacture. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Trace elements in major marketed marine bivalves from six northern coastal cities of China: concentrations and risk assessment for human health.

    PubMed

    Li, Peimiao; Gao, Xuelu

    2014-11-01

    One hundred and fifty nine samples of nine edible bivalve species (Argopecten irradians, Chlamys farreri, Crassostrea virginica, Lasaea nipponica, Meretrix meretrix, Mytilus edulis, Ruditapes philippinarum, Scapharca subcrenata and Sinonovacula constricta) were randomly collected from eight local seafood markets in six big cities (Dalian, Qingdao, Rizhao, Weifang, Weihai and Yantai) in the northern coastal areas of China for the investigation of trace element contamination. As, Cd, Cr, Cu, Hg, Pb and Zn were quantified. The risk of these trace elements to humans through bivalve consumption was then assessed. Results indicated that the concentrations of most of the studied trace element varied significantly with species: the average concentration of Cu in C. virginica was an order of magnitude higher than that in the remaining species; the average concentration of Zn was also highest in C. virginica; the average concentration of As, Cd and Pb was highest in R. philippinarum, C. farreri and A. irradians, respectively. Spatial differences in the concentrations of elements were generally less than those of interspecies, yet some elements such as Cr and Hg in the samples from different cities showed a significant difference in concentrations for some bivalve species. Trace element concentrations in edible tissues followed the order of Zn>Cu>As>Cd>Cr>Pb>Hg generally. Statistical analysis (one-way ANOVA) indicated that different species examined showed different bioaccumulation of trace elements. There were significant correlations between the concentrations of some elements. The calculated hazard quotients indicated in general that there was no obvious health risk from the intake of trace elements through bivalve consumption. But care must be taken considering the increasing amount of seafood consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Trace elements assessment in agricultural and desert soils of Aswan area, south Egypt: Geochemical characteristics and environmental impacts

    NASA Astrophysics Data System (ADS)

    Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert

    2015-12-01

    Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.

  14. An Algorithm to Identify and Localize Suitable Dock Locations from 3-D LiDAR Scans

    DTIC Science & Technology

    2013-05-10

    Locations from 3-D LiDAR Scans 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Graves, Mitchell Robert 5d. PROJECT NUMBER...Ranging ( LiDAR ) scans. A LiDAR sensor is a sensor that collects range images from a rotating array of vertically aligned lasers. Our solution leverages...Algorithm, Dock, Locations, Point Clouds, LiDAR , Identify 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a

  15. Trace elements contamination and human health risk assessment in drinking water from Shenzhen, China.

    PubMed

    Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang

    2015-01-01

    The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.

  16. Distribution of trace elements in the coastal sea sediments of Maslinica Bay, Croatia

    NASA Astrophysics Data System (ADS)

    Mikulic, Nenad; Orescanin, Visnja; Elez, Loris; Pavicic, Ljiljana; Pezelj, Durdica; Lovrencic, Ivanka; Lulic, Stipe

    2008-02-01

    Spatial distributions of trace elements in the coastal sea sediments and water of Maslinica Bay (Southern Adriatic), Croatia and possible changes in marine flora and foraminifera communities due to pollution were investigated. Macro, micro and trace elements’ distributions in five granulometric fractions were determined for each sediment sample. Bulk sediment samples were also subjected to leaching tests. Elemental concentrations in sediments, sediment extracts and seawater were measured by source excited energy dispersive X-ray fluorescence (EDXRF). Concentrations of the elements Cr, Cu, Zn, and Pb in bulk sediment samples taken in the Maslinica Bay were from 2.1 to over six times enriched when compared with the background level determined for coarse grained carbonate sediments. A low degree of trace elements leaching determined for bulk sediments pointed to strong bonding of trace elements to sediment mineral phases. The analyses of marine flora pointed to higher eutrophication, which disturbs the balance between communities and natural habitats.

  17. Long-term anaerobic digestion of food waste stabilized by trace elements.

    PubMed

    Zhang, Lei; Jahng, Deokjin

    2012-08-01

    The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH(4)/g VS(added)) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements. Copyright © 2012. Published by Elsevier Ltd.

  18. Concentrations of mercury and other trace elements in walleye, smallmouth bass, and rainbow trout in Franklin D. Roosevelt Lake and the upper Columbia River, Washington, 1994

    USGS Publications Warehouse

    Munn, M.D.; Cox, S.E.; Dean, C.J.

    1995-01-01

    Three species of sportfish--walleye, smallmouth bass, and rainbow trout--were collected from Franklin D. Roosevelt Lake and the upstream reach of the Columbia River within the state of Washington, to determine the concentrations of mercury and other selected trace elements in fish tissue. Concentrations of total mercury in walleye fillets ranged from 0.11 to 0.44 milligram per kilogram, with the higher concentrations in the larger fish. Fillets of smallmouth bass and rainbow trout also contained mercury, but generally at lower concentrations. Other selected trace elements were found in fillet samples, but the concentrations were generally low depending on species and the specific trace element. The trace elements cadmium, copper, lead, and zinc were found in liver tissue of these same species with zinc consistently present in the highest concentration.

  19. Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications.

    PubMed

    Cabral, Lucélia; Soares, Claúdio Roberto Fonsêca Sousa; Giachini, Admir José; Siqueira, José Oswaldo

    2015-11-01

    In recent decades, the concentration of trace elements has increased in soil and water, mainly by industrialization and urbanization. Recovery of contaminated areas is generally complex. In that respect, microorganisms can be of vital importance by making significant contributions towards the establishment of plants and the stabilization of impacted areas. Among the available strategies for environmental recovery, bioremediation and phytoremediation outstand. Arbuscular mycorrhizal fungi (AMF) are considered the most important type of mycorrhizae for phytoremediation. AMF have broad occurrence in contaminated soils, and evidences suggest they improve plant tolerance to excess of certain trace elements. In this review, the use of AMF in phytoremediation and mechanisms involved in their trace element tolerance are discussed. Additionally, we present some techniques used to study the retention of trace elements by AMF, as well as a summary of studies showing major benefits of AMF for phytoremediation.

  20. Benthic foraminifera as bio-indicators of trace element pollution in the heavily contaminated Santa Gilla lagoon (Cagliari, Italy).

    PubMed

    Frontalini, Fabrizio; Buosi, Carla; Da Pelo, Stefania; Coccioni, Rodolfo; Cherchi, Antonietta; Bucci, Carla

    2009-06-01

    In order to assess the response of benthic foraminifera to trace element pollution, a study of benthic foraminiferal assemblages was carried out into sediment samples collected from the Santa Gilla lagoon (Sardinia, Italy). The lagoon has been contaminated by industrial waste, mainly trace elements, as well as by agricultural and domestic effluent. The analysis of surficial sediment shows enrichment in trace elements, including Cr, Cu, Hg, Ni, Pb and Zn. Biotic and abiotic data, analyzed with multivariate techniques of statistical analysis, reveal a distinct separation of both the highly polluted and less polluted sampling sites. The innermost part of the lagoon, comprising the industrial complex at Macchiareddu, is exposed to a high load of trace elements which are probably enhanced by their accumulation in the finer sediment fraction. This area reveals lower diversity and higher percentages of abnormalities when compared to the outermost part of the lagoon.

  1. Temperature and Gravity Dependence of Trace Element Abundances in Hot DA White Dwarfs (94-EUVE-094)

    NASA Technical Reports Server (NTRS)

    Finley, David S.

    1998-01-01

    EUV spectroscopy has shown that DA white dwarfs hotter than about 45,000 K may contain trace heavy elements, while those hotter than about 50,000 K almost always have significant abundances of trace heavy elements. One of our continuing challenges is to identify and determine the abundances of these trace constituents, and then to relate the observed abundance patterns to the present conditions and previous evolutionary histories of the hot DA white dwarfs.

  2. Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Özsoy, Türkan; Örnektekin, Sermin

    2009-10-01

    Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.

  3. High Precision Low-blank Lithium Isotope Ratios in Forams.

    NASA Astrophysics Data System (ADS)

    Misra, S.; Froelich, P. N.

    2007-12-01

    We present a high precision (±1‰, 2σ) low blank (<500 fg/ml) method for Li isotope measurements of forams using <2 ng of Li by single collector Quad ICP-MS (Agilent 7500cs). The Li isotope ratio of seawater (δ7Li) recorded in planktonic forams has the potential to constrain the evolution of seawater chemistry and elucidate the factors driving variations of oceanic mass balances linked to the continental and sea floor/hydrothermal silica cycles. In addition a δ7Li record of seawater will complement other long-term recorders of seawater chemistry such as Sr, Os and S isotopes. Li isotope measurements of forams are limited by several factors: low Li concentrations in forams (1-2 ppm), instrument-induced fractionation and mass bias effects, matrix effects, high Li blanks and incomplete recovery of Li during column separation. Modest concentrations of alkali and alkaline earth elements in the matrix result in variable mass bias in measured Li isotope ratios. Even worse, Li strongly fractionates during chromatographic clean-up to remove Na+, Ca2+ and Mg2+, from +100‰ in the leading edge to - 100‰ in the trailing edge of elution peaks (Urey 1938). Consequently, miniscule incomplete recoveries of Li during chromatographic separations can result in large unrecognized isotope fractionation of eluents. Large mass-dependent fractionation caused by a difference of 17% in mass between 6Li and 7Li, makes Li a powerful tracer of geochemical processes, but also promotes large and difficult-to-fix isotope fractionations during laboratory chemical processing. Matrix effects of Na & Ca and of column chromatography on Li isotope ratios were investigated using artificial Li solutions representative of foram compositions (matrix matching). Li/Ca and Li/Na ratios in cleaned forams are 10 μmol/mol and 3 mmol/mol respectively. An ICP-MS tolerance limit of 20 ppb for Na and 20 μM for Ca was established, much higher tolerances than by TIMS. A single step chromatographic method to quantitatively separate Li from matrix elements using both small volume resin (3.4 meq/2ml AG50W-X8) and acid (6 ml of 0.5N HCl) was developed. Our low blank (<0.5 pg/ml) and high yield (>99.99%) column method minimizes errors in measured Li isotope ratios associated with incomplete column recovery and presence of matrix elements. High sensitivity and precision achieved with a 7500cs using cold plasma (600W), soft extraction and peak jumping coupled with very low sample to blank ratios enables high precision (±1‰, 2σ) statistically significant Li isotope measurements using very small mass of Li (0.8 ng). The development of this technique makes possible good quality Li isotope measurements from samples that are mass limited for Li, i.e., reasonable number of picked forams. This will enable us to test interferences regarding chemical cleaning and species effects in planktonic forams along the road toward creating a δ7Li record of seawater for the Cenozoic.

  4. Porosity estimates on basaltic basement samples using the neutron absorption cross section (Σ): Implications for fluid flow and alteration of the oceanic crust

    NASA Astrophysics Data System (ADS)

    Reichow, M. K.; Brewer, T. S.; Marvin, L. G.; Lee, S. V.

    2008-12-01

    Little information presently exists on the heterogeneity of hydrothermal alteration in the oceanic crust or the variability of the associated thermal, fluid, and chemical fluxes. Formation porosities are important controls on these fluxes and porosity measurements are routinely collected during wireline logging operations. These estimates on the formation porosity are measures of the moderating power of the formation in response to bombardment by neutrons. The neutron absorption macroscopic cross-section (Σ = σρ) is a representation of the ability of the rock to slow down neutrons, and as such can be used to invert the porosity of a sample. Boron, lithium and other trace elements are important controls on σ-values, and the distribution of these is influenced by secondary low-temperature alteration processes. Consequently, computed σ-values may be used to discriminate between various basalt types and to identify areas of secondary alteration. Critical in this analysis is the degree of alteration, since elements such as B and Li can dramatically affect the sigma value and leading to erroneous porosity values. We analysed over 150 'pool-samples' for S, Li, Be and B element concentrations to estimate their contribution to the measured neutron porosity. These chemical analyses allow the calculation of the model sigma values for individual samples. Using a range of variably altered samples recovered during IODP Expeditions 309 and 312 we provide bulk estimates of alteration within the drilled section using the measured neutron porosity. B concentration in Hole 1256D increases with depth, with sharp rises at 959 and 1139 mbsf. Elevated wireline neutron porosities cannot always be directly linked with high B content. However, our preliminary results imply that increased neutron porosity (~15) at depths below 1100 mbsf may reflect hydrothermal alteration rather than formation porosity. This interpretation is supported when compared with generally lower computed porosity estimates derived from resistivity measurements for the same intervals.

  5. Trace elements in animal-based food from Shanghai markets and associated human daily intake and uptake estimation considering bioaccessibility.

    PubMed

    Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo

    2013-10-01

    The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.

  6. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  7. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review

    PubMed Central

    Hussain, Mohsina

    2016-01-01

    Human body requires certain essential elements in small quantities and their absence or excess may result in severe malfunctioning of the body and even death in extreme cases because these essential trace elements directly influence the metabolic and physiologic processes of the organism. Rapid urbanization and economic development have resulted in drastic changes in diets with developing preference towards refined diet and nutritionally deprived junk food. Poor nutrition can lead to reduced immunity, augmented vulnerability to various oral and systemic diseases, impaired physical and mental growth, and reduced efficiency. Diet and nutrition affect oral health in a variety of ways with influence on craniofacial development and growth and maintenance of dental and oral soft tissues. Oral potentially malignant disorders (OPMD) are treated with antioxidants containing essential trace elements like selenium but even increased dietary intake of trace elements like copper could lead to oral submucous fibrosis. The deficiency or excess of other trace elements like iodine, iron, zinc, and so forth has a profound effect on the body and such conditions are often diagnosed through their early oral manifestations. This review appraises the biological functions of significant trace elements and their role in preservation of oral health and progression of various oral diseases. PMID:27433374

  8. Trace element partitioning between ionic crystal and liquid

    NASA Technical Reports Server (NTRS)

    Tsang, T.; Philpotts, J. A.; Yin, L.

    1978-01-01

    The partitioning of trace elements between ionic crystals and the melt has been correlated with lattice energy of the host. The solid-liquid partition coefficient has been expressed in terms of the difference in relative ionic radius of the trace element and the homogeneous and heterogeneous strain of the host lattice. Predictions based on this model appear to be in general agreement with data for alkali nitrates and for rare-earth elements in natural garnet phenocrysts.

  9. Phytoaccumulation of trace elements by wetland plants. 2: Water hyacinth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Y.L.; Zayed, A.M.; Qian, J.H.

    Wetland plants are being used successfully for the phytoremediation of trace elements in natural and constructed wetlands. This study demonstrates the potential of water hyacinth (Eichhornia crassipes), an aquatic floating plant, for the phytoremediation of six trace elements. The ability of water hyacinth to take up and translocate six trace elements--As(V), Cd(II), Cr(VI), Cu(II), Ni(II), and Se(VI)--was studied under controlled conditions. Water hyacinth accumulated Cd and Cr best, Se and Cu at moderate levels, and was a poor accumulator of As and Ni. The highest levels of Cd found in shoots and roots were 371 and 6103 mg kg[sup [minus]1]more » dry wt., respectively, and those of Cr were 119 and 32951 mg kg[sup [minus]1] dry wt, respectively. Cadmium, Cr, Cu, Ni, and As were more highly accumulated in roots than in shoots. In contrast, Se was accumulated more in shoots than in roots at most external concentrations. Water hyacinth had high trace element bioconcentration factors when supplied with low external concentrations of all six elements, particularly Cd, Cr, and Cu. Therefore, water hyacinth will be very efficient at phytoextracting trace elements from wastewater containing low concentrations of these elements. The authors conclude that water hyacinth is a promising candidate for phytoremediation of wastewater polluted with Cd, Cr, Cu, and Se.« less

  10. Trace element analysis of soil type collected from the Manjung and central Perak

    NASA Astrophysics Data System (ADS)

    Azman, Muhammad Azfar; Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-01

    Trace elements in soils primarily originated from their parent materials. Parents' material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  11. Quantitative assessment of metal elements using moss species as biomonitors in downwind area of lead-zinc mine.

    PubMed

    Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Andonovska, Katerina Bačeva

    2017-02-23

    Distributions of a total of 21 elements were monitored in significantly lead-zinc polluted area using moss species (Hypnum cupressiforme and Camptothecium lutescens) used interchangeably, covering a denser sampling network. Interspecies comparison was conducted using Box-Cox transformed values, due to their skewed distribution. The median concentrations of trace elements in the both mosses examined decreased in the following order: Fe>Mn>Zn>Pb>Cu>Ni∼Cr∼As>Co>Cd>Hg. For almost all analyzed elements, H. cupressiforme revealed higher bio-accumulative abilities. For arsenic contents was obtained ER-value in favor of C. lutescens. The ER for the element contents according to the distance from the pollution source in selected areas was significantly enriched for the anthropogenic introduced elements As, Cd, Cu, Pb and Zn. After Box-Cox transformation of the content values, T B was significantly different for As (4.82), Cd (3.84), Cu (2.95), Pb (4.38), and Zn (4.23). Multivariate factor analysis singled out four elemental associations: F1 (Al-Co-Cr-Fe-Li-Ni-V), F2 (Cd-Pb-Zn), F3 (Ca-Mg-Na-P) and F4 (Cu) with a total variance of 89%. Spatial distribution visualized the hazardously higher contents of "hot spots" of Cd > 1.30 mg/kg, Cu > 22 mg/kg, Pb > 130 mg/kg and Zn > 160 mg/kg. Therefore, main approach in moss biomonitoring should be based on data management of the element distribution by reducing the effect of extreme values (considering Box-Cox data transformation); the interspecies variation in sampling media does not deviate in relation to H. cupressiforme vs. C. lutescens.

  12. Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa

    NASA Astrophysics Data System (ADS)

    Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika

    2015-02-01

    Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.

  13. The abundance and relative volatility of refractory trace elements in Allende Ca,Al-rich inclusions - Implications for chemical and physical processes in the solar nebula

    NASA Technical Reports Server (NTRS)

    Kornacki, Alan S.; Fegley, Bruce, Jr.

    1986-01-01

    The relative volatilities of lithophile refractory trace elements (LRTE) were determined using calculated 50-percent condensation temperatures. Then, the refractory trace-element abundances were measured in about 100 Allende inclusions. The abundance patterns found in Allende Ca,Al-rich inclusions (CAIs) and ultrarefractory inclusions were used to empirically modify the calculated LRTE volatility sequence. In addition, the importance of crystal-chemical effects, diffusion constraints, and grain transport for the origin of the trace-element chemistry of Allende CAIs (which have important implications for chemical and physical processes in the solar nebula) is discussed.

  14. Nanometer-sized materials for solid-phase extraction of trace elements.

    PubMed

    Hu, Bin; He, Man; Chen, Beibei

    2015-04-01

    This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.

  15. Trace elements geochemistry of fractured basement aquifer in southern Malawi: A case of Blantyre rural

    NASA Astrophysics Data System (ADS)

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Nyirenda, Mathews Tananga; Zhang, Liping; Kaonga, Chikumbusko Chiziwa; Mbewe, Rex

    2017-07-01

    In this study, twenty one (21) trace elements in the basement complex groundwater of Blantyre district, Malawi were analyzed. The majority of the analyzed trace elements in the water were within the standards set by World Health Organization (WHO) and Malawi Standards Board (MSB). But, iron (Fe) (BH16 and 21), manganese (Mn) (BH01) and selenium (Se) (BH02, 13, 18, 19 and 20) were higher than the WHO and MSB standards. Factor analysis (FA) revealed up to five significant factors which accounted for 87.4% of the variance. Factor 1, 2 and 3 suggest evaporite dissolution and silicate weathering processes while the fourth factor may explain carbonate dissolution and pH influence on trace element geochemistry of the studied groundwater samples. According to PHREEQC computed saturation indices, dissolution, precipitation and rock-water-interaction control the levels of trace elements in this aquifer. Elevated concentrations of Fe, Mn and Se in certain boreholes are due to the geology of the aquifer and probable redox status of groundwater. From PHREEQC speciation results, variations in trace element species were observed. Based on this study, boreholes need constant monitoring and assessment for human consumption to avoid health related issues.

  16. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio.

    PubMed

    Xiao, Jie; Chernova, Natasha A; Upreti, Shailesh; Chen, Xilin; Li, Zheng; Deng, Zhiqun; Choi, Daiwon; Xu, Wu; Nie, Zimin; Graff, Gordon L; Liu, Jun; Whittingham, M Stanley; Zhang, Ji-Guang

    2011-10-28

    In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared Li(x)MnPO(4) (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that Li(x)MnPO(4) is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn(2)P(2)O(7) is the main impurity when Li < 1.0 while Li(3)PO(4) begins to form once x > 1.0. The interactions between Mn(2)P(2)O(7) or Li(3)PO(4) impurities and LiMnPO(4) are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li(0.5)MnPO(4) and Li(0.8)MnPO(4) increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li(+) ions that may be related to the interaction between Mn(2)P(2)O(7) and LiMnPO(4) nanoparticles. Among all of the different compositions, Li(1.1)MnPO(4) exhibits the most stable cycling ability probably because of the existence of a trace amount of Li(3)PO(4) impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO(4)·H(2)O precursor, pure and carbon-coated Li(x)MnPO(4) are also investigated to identify the key steps involved in preparing a high-performance LiMnPO(4). This journal is © the Owner Societies 2011

  17. Multi-element study of sediments from the river Khai River - Nha Trang Bay estuarine system, South China Sea.

    NASA Astrophysics Data System (ADS)

    Koukina, Sofia; Lobus, Nikolai; Peresypkin, Valery; Baturin, Gleb; Smurov, Andrey

    2013-04-01

    Major (Al, Fe, Ti, Mg, Ca, Na, K), minor (Mn) and trace (Cr, Ni, Cd, V, Zn, Cu, Pb, Sb, Bi, Sn, Ag, Li, Co, As, Zr, Mo, Hg) elements along with nutrients (TOC, TS, TP) and TIC were first determined in ten surface sediment samples from the Khai River - Nha Trang Bay estuarine system, South China Sea. According to the sediment quality guidelines and reference background values, most of the element contents that were studied were below the threshold levels, while the content of Ag exceeded significantly the hazardous levels in the most of the samples along the river - sea transect. The local anthropogenic and/or environmental sources of Ag within the region need special study. Aluminum and lithium normalization indicated some specific features in the abundance and distribution of the elements along the salinity gradient. The mean grain size of the sediments decreased from the river part to the bay part of the transect. Sedimentary TOC was relatively low (1-2 %) and showed independent distribution along the river - sea transect in relation to the other elements that were studied. Ca, Ba and Sr distribution showed some sporadic enrichment and were largely controlled by the TIC content in sediments. Sedimentary TP, Al, Fe, Mn, Ti, Na, K, Li, Co, Cs, Zn and V varied within the narrow range and tended to increase seaward. These elements are most likely controlled by the accumulation of their fine grained aluminosilicate host minerals and materials at sites determined by hydrodynamic conditions, i. e., in the sea floor depression. TS, As, Sn, Bi, U, Cd and Mo were relatively low in the sediments studied and tended to decrease seaward with the slight elevation in the intermediate part of the transect. These elements can be scavenged by and/or co-precipitated with the dissolved and particulate materials of the river discharge and further deposited on the river - sea geochemical barrier in the course of estuarine sedimentation. The distribution of Ni, Cr, Zr Cu, Pb, Sb, Hg and, especially, Ag was characterized by anomalous high concentrations in the intermediate part of the river - sea transect at sites located in the harbor zone. This might be due to the point anthropogenic pollution from local human activities, i.e., fishing, shipping, fueling, waste and sewage sludge outflow, and, especially, from the construction of new touristic facilities in the Nha Trang Bay. Overall, the abundance and distribution of the environmental/anthropogenic elements are controlled by various estuarine biogeochemical processes characteristic for the marginal filter of the estuarine water mixing zone.

  18. Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis

    USGS Publications Warehouse

    Wang, W.-X.; Fisher, N.S.; Luoma, S.N.

    1996-01-01

    Laboratory experiments employing radiotracer methodology were conducted to determine the assimilation efficiencies from ingested natural seston, the influx rates from the dissolved phase and the efflux rates of 6 trace elements (Ag, Am, Cd, Co, Se and Zn) in the mussel Mytilus edulis. A kinetic model was then employed to predict trace element concentration in mussel tissues in 2 locations for which mussel and environmental data are well described: South San Francisco Bay (California, USA) and Long Island Sound (New York, USA). Assimilation efficiencies from natural seston ranged from 5 to 18% for Ag, 0.6 to 1% for Am, 8 to 20% for Cd, 12 to 16% for Co, 28 to 34% for Se, and 32 to 41% for Zn. Differences in chlorophyll a concentration in ingested natural seston did not have significant impact on the assimilation of Am, Co, Se and Zn. The influx rate of elements from the dissolved phase increased with the dissolved concentration, conforming to Freundlich adsorption isotherms. The calculated dissolved uptake rate constant was greatest for Ag, followed by Zn > Am = Cd > Co > Se. The estimated absorption efficiency from the dissolved phase was 1.53% for Ag, 0.34% for Am, 0.31% for Cd, 0.11% for Co, 0.03% for Se and 0.89% for Zn. Salinity had an inverse effect on the influx rate from the dissolved phase and dissolved organic carbon concentration had no significant effect on trace element uptake. The calculated efflux rate constants for all elements ranged from 1.0 to 3.0% d-1. The route of trace element uptake (food vs dissolved) and the duration of exposure to dissolved trace elements (12 h vs 6 d) did not significantly influence trace element efflux rates. A model which used the experimentally determined influx and efflux rates for each of the trace elements, following exposure from ingested food and from water, predicted concentrations of Ag, Cd, Se and Zn in mussels that were directly comparable to actual tissue concentrations independently measured in the 2 reference sites in national monitoring programs. Sensitivity analysis indicated that the total suspended solids load, which can affect mussel feeding activity, assimilation, and trace element concentration in the dissolved and particulate phases, can significantly influence metal bioaccumulation for particle-reactive elements such as Ag and Am. For all metals, concentrations in mussels are proportionately related to total metal load in the water column and their assimilation efficiency from ingested particles. Further, the model predicted that over 96% of Se in mussels is obtained from ingested food, under conditions typical of coastal waters. For Ag, Am, Cd, Co and Zn, the relative contribution from the dissolved phase decreases significantly with increasing trace element partition coefficients for suspended particles and the assimilation efficiency in mussels of ingested trace elements; values range between 33 and 67% for Ag, 5 and 17% for Am, 47 and 82% for Cd, 4 and 30% for Co, and 17 and 51% for Zn.

  19. Co-occurrence profiles of trace elements in potable water systems: a case study.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Charisiadis, Pantelis; Costa, Costas N

    2014-11-01

    Potable water samples (N = 74) from 19 zip code locations in a region of Greece were profiled for 13 trace elements composition using inductively coupled plasma mass spectrometry. The primary objective was to monitor the drinking water quality, while the primary focus was to find novel associations in trace elements occurrence that may further shed light on common links in their occurrence and fate in the pipe scales and corrosion products observed in urban drinking water distribution systems. Except for arsenic at two locations and in six samples, rest of the analyzed elements was below maximum contaminant levels, for which regulatory values are available. Further, we attempted to hierarchically cluster trace elements based on their covariances resulting in two groups; one with arsenic, antimony, zinc, cadmium, and copper and the second with the rest of the elements. The grouping trends were partially explained by elements' similar chemical activities in water, underscoring their potential for co-accumulation and co-mobilization phenomena from pipe scales into finished water. Profiling patterns of trace elements in finished water could be indicative of their load on pipe scales and corrosion products, with a corresponding risk of episodic contaminant release. Speculation was made on the role of disinfectants and disinfection byproducts in mobilizing chemically similar trace elements of human health interest from pipe scales to tap water. It is warranted that further studies may eventually prove useful to water regulators from incorporating the acquired knowledge in the drinking water safety plans.

  20. A simple model for closure temperature of a trace element in cooling bi-mineralic systems

    NASA Astrophysics Data System (ADS)

    Liang, Yan

    2015-09-01

    Closure temperature is defined as the lower temperature limit at which the element of interest effectively ceases diffusive exchange with its surrounding medium during cooling. Here we generalize the classic equation of Dodson (1973) for cooling mono-mineralic systems to cooling bi-mineralic aggregates by considering diffusive exchange of a trace element between the two minerals in a closed system. We present a simple analytical model that includes key parameters affecting the closure temperature of a trace element in cooling bi-mineralic systems: cooling rate, temperature-dependent diffusion coefficients for the trace element in the two minerals, temperature-dependent partition coefficient of the trace element between the two minerals, effective grain sizes of the two minerals, and volume proportions of the minerals in the system. We show that closure temperatures of a trace element in cooling bi-mineralic systems are bounded by the closure temperatures of the trace element in the two mono-mineralic systems and that our generalized model reduces to Dodson's equation when one of the mineral serves as "an effective infinite" reservoir to the other mineral. Application to closure temperatures of REE in orthopyroxene and clinopyroxene bi-mineralic systems highlights the importance of REE diffusion and partitioning in the pyroxenes as well as clinopyroxene modal abundance and grain size in the systems. Closure temperatures for REE in two-pyroxene bearing equigranular rocks are controlled primarily by diffusion in orthopyroxene unless the modal abundance of clinopyroxene is very small. This has important bearings on the interpretation of temperatures derived from the REE-in-two-pyroxene thermometer.

  1. Phytoaccumulation of trace elements by wetland plants: 3. Uptake and accumulation of ten trace elements by twelve plant species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, J.H.; Zayed, A.; Zhu, Y.L.

    1999-10-01

    Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less

  2. Sequential patterns of essential trace elements composition in Gracilaria verrucosa and its generated products

    NASA Astrophysics Data System (ADS)

    Izzati, Munifatul; Haryanti, Sri; Parman, Sarjana

    2018-05-01

    Gracilaria widely known as a source of essential trace elements. However this red seaweeds also has great potential for being developed into commercial products. This study examined the sequential pattern of essential trace elements composition in fresh Gracilaria verrucosa and a selection of its generated products, nemely extracted agar, Gracilaria salt and Gracilaria residue. The sample was collected from a brackish water pond, located in north part Semarang, Central Java. The collected sample was then dried under the sun, and subsequently processed into aformentioned generated products. The Gracilaria salt was obtain by soaking the sun dried Gracilaria overnight in fresh water overnight. The resulted salt solution was then boiled leaving crystal salt. Extracted agar was obtained with alkali agar extraction method. The rest of remaining material was considered as Gracilaria residue. The entire process was repeated 3 times. The compositin of trace elements was examined using ICP-MS Spectrometry. Collected data was then analyzed by ANOVA single factor. Resulting sequential pattern of its essential trace elements composition was compared. A regular table salt was used as controls. Resuts from this study revealed that Gracilaria verrucosa and its all generated products all have similarly patterned the composition of essential trace elements, where Mn>Zn>Cu>Mo. Additionally this pattern is similar to different subspecies of Gracilaria from different location and and different season. However, Gracilaria salt has distinctly different pattern of sequential essential trace elements composition compared to table salt.

  3. Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic

    NASA Astrophysics Data System (ADS)

    Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.

    2017-12-01

    Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.

  4. Low body temperature, time dilation, and long-trace conditioned flavor aversion in rats.

    PubMed

    Misanin, James R; Anderson, Matthew J; Christianson, John P; Collins, Michele M; Goodhart, Mark G; Rushanan, Scott G; Hinderliter, Charles F

    2002-07-01

    Conditioned flavor aversion was examined in Wistar-derived albino rats that were immersed in cold water for 0, 2.5, 5, or 10 min immediately following 10-min exposure to a.1% saccharin solution and given an intraperitoneal (i.p.) injection of 0.15 M lithium chloride (LiCl) either 90, 135, 180, or 225 min later. Cold water immersion for 2.5, 5, and 10 min led to body temperature decreases of approximately 4.5, 7, and 10 degrees C, respectively. Rats whose body temperatures were not reduced (0 min immersion) showed no saccharin aversion when the LiCl was delayed 90 min. Rats whose body temperatures were reduced 4.5, 7, and 10 degrees C displayed conditioned aversions at LiCl delays up to 135, 180, and 225 min, respectively. These results were interpreted in terms of a cold-induced slowing of a biochemical clock that may uniquely govern specific timing processes involved in associative learning over long delays, such as long-trace conditioned flavor aversion, learned safety, and certain types of learning that involve an extensive time lapse (e.g., extinction of fear). Copyright 2002 Elsevier Science (USA).

  5. Trace elements: implications for nursing.

    PubMed

    Hayter, J

    1980-01-01

    Although most were unknown a few years ago, present evidence indicates that at least 25 trace elements have some pertinence to health. Unlike vitamins, they cannot be synthesized. Some trace elements are now considered important only because of their harmful effects but traces of them may be essential. Zinc is especially important during puberty, pregnancy and menopause and is related to protein metabolism. Both fluoride and cadmium accumulate in the body year after year. Cadmium is positively correlated with several chronic diseases, especially hypertension. It is obtained from smoking and drinking soft water. Silicon, generally associated with silicosis, may be necessary for healthy bone and connective tissue. Chromium, believed to be the glucose tolerance factor, is obtained from brewer's yeast, spices, and whole wheat products. Copper deficiency may be implicated in a wide range of cardiovascular and blood related disorders. Either marginal deficiencies or slight excesses of most trace elements are harmful. Nurses should instruct patients to avoid highly refined foods, fad diets, or synthetic and fabricated foods. A well balanced and varied diet is the best safeguard against trace element excesses or deficiencies.

  6. Trace element diffusion and kinetic fractionation in wet rhyolitic melt

    NASA Astrophysics Data System (ADS)

    Holycross, Megan E.; Watson, E. Bruce

    2018-07-01

    Piston-cylinder experiments were run to determine the chemical diffusivities of 21 trace elements (Sc, V, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Th and U) in hydrous rhyolitic melts at 1 GPa pressure and temperatures from 850 to 1250 °C. Diffusion couple glasses were doped with trace elements in low concentrations to characterize the diffusivities of all cations in a single experiment. Laser ablation ICP-MS was used to evaluate the trace element concentration gradients that developed in the silicate glasses. All calculated diffusion coefficients correspond to the temperature dependence D = D0exp(-Ea/RT). Rhyolite liquids contained either ∼4.1 wt% or ∼6.2 wt% dissolved H2O; separate Arrhenius relationships are produced for each melt composition. Trace element diffusivities in the melt with 6.2 wt% H2O are roughly two times higher than those in the less hydrous melt. Calculated trace element diffusion coefficients cover nearly two orders of magnitude at a given temperature. The high field strength elements are the slowest diffusers, followed by the transition metals and heavy rare earth elements. The light rare earth elements have the fastest diffusion rates in hydrous rhyolitic melt. The measured diffusion coefficients range down to values sufficiently low to preclude diffusive homogenization over geochemically realistic time scales in some cases. The substantial differences in the diffusivities of individual cations may result in fractionated trace element signatures in rhyolite melt pockets. A simple model is used to explore the potential for kinetic fractionation of REE during growth of an apatite crystal in a diffusive boundary layer locally saturated in P2O5. The faster-diffusing light REE are more efficiently transported away from the crystal interface than the slower-moving heavy REE. Diffusion effects will enrich the melt boundary layer in slow-moving HREE relative to the faster LREE. The kinetic fractionation of REE in the melt growth medium will result in a precipitated apatite crystal with a disequilibrium trace element composition.

  7. Dynamics of trace elements in shallow groundwater of an agricultural land in the northeast of Mexico

    NASA Astrophysics Data System (ADS)

    Mora, Abrahan; Mahlknecht, Jürgen; Hernández-Antonio, Arturo

    2017-04-01

    The citrus zone located in northeastern Mexico covers an area of 8000 km2 and produces 10% of the Mexican citrus production. The aquifer system of this zone constitutes the major source of water for drinking and irrigation purposes for local population and provides base flows to surface water supplied to the city of Monterrey ( 4.5 million inhabitants). Although the study area is near the recharge zones, several works have reported nitrate pollution in shallow groundwater of this agricultural area, mainly due to animal manure and human waste produced by infiltration of urban sewers and septic tanks. Thus, the goals of this work were to assess the dynamics of selected trace elements in this aquifer system and determine if the trace element content in groundwater poses a threat to the population living in the area. Thirty-nine shallow water wells were sampled in 2010. These water samples were filtered through 0,45 µm pore size membranes and preserved with nitric acid for storage. The concentrations of Cd, Cs, Cu, Mo, Pb, Rb, Si, Ti, U, Y, and Zn were measured by ICP-MS. Also, sulfate concentrations were measured by ion chromatography in unacidified samples. Principal Component Analysis (PCA) performed in the data set show five principal components (PC). PC1 includes elements derived from silicate weathering, such as Si and Ti. The relationship found between Mo and U with sulfates in PC2 indicates that both elements show a high mobility in groundwater. Indeed, the concentrations of sulfate, Mo and U are increased as groundwater moves eastward. PC3 includes the alkali trace elements (Rb and Cs), indicating that both elements could be derived from the same source of origin. PC4 represents the heavy trace elements (Cd and Pb) whereas PC5 includes divalent trace elements such as Zn and Cu. None of the water samples showed trace element concentrations higher than the guideline values for drinking water proposed by the World Health Organization, which indicates that the analyzed trace elements in groundwater do not pose any significant threat to the population living in this area.

  8. KSC-04pd0545

    NASA Image and Video Library

    2004-03-17

    KENNEDY SPACE CENTER, FLA. - In the middeck of Endeavour, in the Orbiter Processing Facility, Center Director Jim Kennedy (far left) watches as a technician gets ready to lower himself through the LiOH door into the Environmental Control and Life Support System (ECLSS) bay. LiOH refers to lithium hydroxide, canisters of which are stored in the ECLSS bay under the middeck floor. During flight, cabin air from the cabin fan is ducted to two LiOH canisters, where carbon dioxide is removed and activated charcoal removes odors and trace contaminants. Kennedy is taking an opportunity to learn first-hand what workers are doing to enable Return to Flight. Endeavour is in an Orbiter Major Modification period.

  9. Origin, speciation, and fluxes of trace-element gases at Augustine volcano, Alaska: Insights into magma degassing and fumarolic processes

    NASA Astrophysics Data System (ADS)

    Symonds, Robert B.; Reed, Mark H.; Rose, William I.

    1992-02-01

    Thermochemical modeling predicts that trace elements in the Augustine gas are transported from near-surface magma as simple chloride (NaCl, KCl, FeCl 2, ZnCl 2, PbCl 2, CuCl, SbCl 3, LiCl, MnCl 2, NiCl 2, BiCl, SrCl 2), oxychloride (MoO 2Cl 2), sulfide (AsS), and elemental (Cd) gas species. However, Si, Ca, Al, Mg, Ti, V, and Cr are actually more concentrated in solids, beta-quartz (SiO 2), wollastonite (CaSiO 3), anorthite (CaAl 2Si 2O 8), diopside (CaMgSi 2O 6), sphene (CaTiSiO 5), V 2O 3(c), and Cr 2O 3(c), respectively, than in their most abundant gaseous species, SiF 4, CaCl 2, AlF 2O, MgCl 2 TiCl 4, VOCl 3, and CrO 2Cl 2. These computed solids are not degassing products, but reflect contaminants in our gas condensates or possible problems with our modeling due to "missing" gas species in the thermochemical data base. Using the calculated distribution of gas species and the COSPEC SO 2 fluxes, we have estimated the emission rates for many species (e.g., COS, NaCl, KCl, HBr, AsS, CuCl). Such forecasts could be useful to evaluate the effects of these trace species on atmospheric chemistry. Because of the high volatility of metal chlorides (e.g., FeCl 2, NaCl, KCl, MnCl 2, CuCl), the extremely HCl-rich Augustine volcanic gases are favorable for transporting metals from magma. Thermochemical modeling shows that equilibrium degassing of magma near 870°C can account for the concentrations of Fe, Na, K, Mn, Cu, Ni and part of the Mg in the gases escaping from the dome fumaroles on the 1986 lava dome. These calculations also explain why gases escaping from the lower temperature but highly oxidized moat vents on the 1976 lava dome should transport less Fe, Na, K, Mn and Ni, but more Cu; oxidation may also account for the larger concentrations of Zn and Mo in the moat gases. Nonvolatile elements (e.g., Al, Ca, Ti, Si) in the gas condensates came from eroded rock particles that dissolved in our samples or, for Si, from contamination from the silica sampling tube. Only a very small amount of rock contamination occurred (water/rock ratios between 10 4 and 10 6). Erosion is more prevalent in the pyroclastic flow fumaroles than in the summit vents, reflecting physical differences in the fumarole walls: ash vs. lava. Trace element contents of volcanic gases show enormous variability because of differences in the intensive parameters of degassing magma and variable amounts of wall rock erosion in volcanic fumaroles.

  10. Alkali metals levels in the human brain tissue: Anatomical region differences and age-related changes.

    PubMed

    Ramos, Patrícia; Santos, Agostinho; Pinto, Edgar; Pinto, Nair Rosas; Mendes, Ricardo; Magalhães, Teresa; Almeida, Agostinho

    2016-12-01

    The link between trace elements imbalances (both "toxic" and "essential") in the human brain and neurodegenerative disease has been subject of extensive research. More recently, some studies have highlighted the potential role of the homeostasis deregulation of alkali metals in specific brain regions as key factor in the pathogenesis of neurodegenerative diseases such as multiple sclerosis and Alzheimer's disease. Using flame atomic emission spectrometry and inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of the samples, alkali metals (Na, K, Li, Rb and Cs) were determined in 14 different areas of the human brain (frontal cortex, superior and middle temporal gyri, caudate nucleus, putamen, globus pallidus, cingulated gyrus, hippocampus, inferior parietal lobule, visual cortex of the occipital lobe, midbrain, pons, medulla and cerebellum) of adult individuals (n=42; 71±12, range: 50-101 years old) with no known history and evidence of neurodegenerative, neurological or psychiatric disorder. Potassium was found as the most abundant alkali metal, followed by Na, Rb, Cs and Li. Lithium, K and Cs distribution showed to be quite heterogeneous. On the contrary, Rb and Na appeared quite homogeneously distributed within the human brain tissue. The lowest levels of Na, K, Rb and Li were found in the brainstem (midbrain, medulla and pons) and cerebellum, while the lowest levels of Cs were found in the frontal cortex. The highest levels of K (mean±sd; range 15.5±2.5; 8.9-21.8mg/g) Rb (17.2±6.1; 3.9-32.4μg/g and Cs (83.4±48.6; 17.3-220.5ng/g) were found in putamen. The highest levels of Na and Li were found in the frontal cortex (11.6±2.4; 6.6-17.1mg/g) and caudate nucleus (7.6±4.6 2.2-21.3ng/g), respectively. Although K, Cs and Li levels appear to remain largely unchanged with age, some age-related changes were observed for Na and Rb levels in particular brain regions (namely in the hippocampus). Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  12. Selected isotope ratio measurements of light metallic elements (Li, Mg, Ca, and Cu) by multiple collector ICP-MS

    PubMed Central

    Platzner, Thomas I.; Segal, Irina

    2007-01-01

    The unique capabilities of multiple collector inductively coupled mass spectrometry (MC-ICP-MS) for high precision isotope ratio measurements in light elements as Li, Mg, Ca, and Cu are reviewed in this paper. These elements have been intensively studied at the Geological Survey of Israel (GSI) and other laboratories over the past few years, and the methods used to obtain high precision isotope analyses are discussed in detail. The scientific study of isotopic fractionation of these elements is significant for achieving a better understanding of geochemical and biochemical processes in nature and the environment. PMID:17962922

  13. Trace Element Levels and Cognitive Function in Rural Elderly Chinese

    PubMed Central

    Gao, Sujuan; Jin, Yinlong; Unverzagt, Frederick W.; Ma, Feng; Hall, Kathleen S.; Murrell, Jill R.; Cheng, Yibin; Shen, Jianzhao; Ying, Bo; Ji, Rongdi; Matesan, Janetta; Liang, Chaoke; Hendrie, Hugh C.

    2009-01-01

    Background Trace elements are involved in metabolic processes and oxidation-reduction reactions in the central nervous system and could have a possible effect on cognitive function. The relationship between trace elements measured in individual biological samples and cognitive function in an elderly population had not been investigated extensively. Methods The participant population is part of a large cohort study of 2000 rural elderly Chinese persons. Six cognitive assessment tests were used to evaluate cognitive function in this population, and a composite score was created to represent global cognitive function. Trace element levels of aluminum, calcium, cadmium, copper, iron, lead, and zinc were analyzed in plasma samples of 188 individuals who were randomly selected and consented to donating fasting blood. Analysis of covariance models were used to assess the association between each trace element and the composite cognitive score adjusting for demographics, medical history of chronic diseases, and the apolipoprotein E (APOE) genotype. Results Three trace elements—calcium, cadmium, and copper—were found to be significantly related to the composite cognitive score. Increasing plasma calcium level was associated with higher cognitive score (p < .0001). Increasing cadmium and copper, in contrast, were significantly associated with lower composite score (p = .0044 and p = .0121, respectively). Other trace elements did not show significant association with the composite cognitive score. Conclusions Our results suggest that calcium, cadmium, and copper may be associated with cognitive function in the elderly population. PMID:18559640

  14. Transport of trace metals in runoff from soil and pond ash feedlot surfaces

    USGS Publications Warehouse

    Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.

    2011-01-01

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.

  15. Occurrence and distribution of trace elements in snow, streams, and streambed sediments, Cape Krusenstern National Monument, Alaska, 2002-2003

    USGS Publications Warehouse

    Brabets, Timothy P.

    2004-01-01

    Cape Krusenstern National Monument is located in Northwest Alaska. In 1985, an exchange of lands and interests in lands between the Northwest Alaska Native Association and the United States resulted in a 100-year transportation system easement for 19,747 acres in the monument. A road was then constructed along the easement from the Red Dog Mine, a large zinc concentrate producer and located northeast of the monument, through the monument to the coast and a port facility. Each year approximately 1.3 million tonnes of zinc and lead concentrate are transported from the Red Dog Mine via this access road. Concern about the possible deposition of cadmium, lead, zinc and other trace elements in the monument was the basis of a cooperative project with the National Park Service. Concentrations of dissolved cadmium, dissolved lead, and dissolved zinc from 28 snow samples from a 28 mile by 16 mile grid were below drinking water standards. In the particulate phase, approximately 25 percent of the samples analyzed for these trace elements were higher than the typical range found in Alaska soils. Boxplots of concentrations of these trace elements, both in the dissolved and particulate phase, indicate higher concentrations north of the access road, most likely due to the prevailing southeast wind. The waters of four streams sampled in Cape Krusenstern National Monument are classified as calcium bicarbonate. Trace-element concentrations from these streams were below drinking water standards. Median concentrations of 39 trace elements from streambed sediments collected from 29 sites are similar to the median concentrations of trace elements from the U.S. Geological Survey?s National Water-Quality Assessment database. Statistical differences were noted between trace-element concentrations of cadmium, lead, and zinc at sites along the access road and sites north and south of the access road; concentrations along the access road being higher than north or south of the road. When normalized to 1 percent organic carbon, the concentrations of these trace elements are not expected to be toxic to aquatic life when compared to criteria established by the Canadian government and other recent research.

  16. Forearc serpentinites as probes into the chemical, petrological and biological diversity of subduction zones

    NASA Astrophysics Data System (ADS)

    Savov, I. P.

    2017-12-01

    The mantle region that cover the variously fluid-saturated and heated subducted slabs is a site where colossal serpentinization processes occur. Nowhere this is more evident than in the forearcs of convergent plate margins, where the amount of fluids leaving the slabs and intermingling with the overlaying mantle wedge is maximized. The nature of this forearc serpentinization processes can be studied at accretionary prisms, serpentinite mud volcanoes (ODP Sites 125 and 195; IODP Exp. 366- all in the Marianas), or via tectonically exhumed, Proterozoic to modern, forearc melange complexes worldwide (Greenland, California, Kamchatka, Armenia, Cuba, Colombia, among others). I shall review the marine and continental settings hosting forearc serpentinites (FS) with emphasis on the FS fluid and mineral chemistry, imaging of isotopes/elements/molecules and textures (via ToF SIMS), and the environment and the P-T conditions that may lead to stable microbial communities like the recently discovered one under S.Chamorro Seamount that suggests life can exist in the forearcs as deep as 12 km (Plumper et al., 2017; PNAS). FS are very similar to classical abyssal serpentinites (from FZ or TF on the seafloor). They have similar mineralogy, textures, are major reservoir of fluid mobile trace elements (B, Li, Cs, As, Sb, I, Br) and also are a host of often vast isotope fractionations (B, Li, I). Yet differences exist and need to be further explored as both of these serpentinite types may take part of the subducted slab inventory and affect the input-output budgets across the "Subduction Factory". FS are often associated with blueschists, which combined with the FS may help us more fully explore the P-T-t evolution of the entire forearc region.

  17. Redox potential trend with transition metal elements in lithium-ion battery cathode materials

    NASA Astrophysics Data System (ADS)

    Chen, Zhenlian; Li, Jun

    2013-03-01

    First-principles calculations are performed to investigate the relationship between the intrinsic voltage and element-lattice for the popular transition metal oxides and polyoxyanionic compounds as cathode materials for lithium-ion batteries. A V-shape redox potential in olivine phosphates LiMPO4 and orthogonal silicates Li2MSiO4 (M =Mn, Fe, Co, Ni), and an N-shape one in layered oxides LiMO2 (M =Mn, Fe, Co, Ni, Cu) relative to transition metal M elements are found to be inversely characteristic of electronic energy contribution, which costs energy in the lithiation process and is defined as electron affinity. The maxima of electron affinity, locating at different elements for different types of crystal lattices are determined by delectronic configurations that cross the turning point of a full occupancy of electronic bands, which is determined by the cooperative effect of crystal field splitting and intraionic exchange interactions. The Ningbo Key Innovation Team, National Natural Science Foundation of China, Postdoctoral Foundation of China

  18. Simulated full-waveform lidar compared to Riegl VZ-400 terrestrial laser scans

    NASA Astrophysics Data System (ADS)

    Kim, Angela M.; Olsen, Richard C.; Béland, Martin

    2016-05-01

    A 3-D Monte Carlo ray-tracing simulation of LiDAR propagation models the reflection, transmission and ab- sorption interactions of laser energy with materials in a simulated scene. In this presentation, a model scene consisting of a single Victorian Boxwood (Pittosporum undulatum) tree is generated by the high-fidelity tree voxel model VoxLAD using high-spatial resolution point cloud data from a Riegl VZ-400 terrestrial laser scanner. The VoxLAD model uses terrestrial LiDAR scanner data to determine Leaf Area Density (LAD) measurements for small volume voxels (20 cm sides) of a single tree canopy. VoxLAD is also used in a non-traditional fashion in this case to generate a voxel model of wood density. Information from the VoxLAD model is used within the LiDAR simulation to determine the probability of LiDAR energy interacting with materials at a given voxel location. The LiDAR simulation is defined to replicate the scanning arrangement of the Riegl VZ-400; the resulting simulated full-waveform LiDAR signals compare favorably to those obtained with the Riegl VZ-400 terrestrial laser scanner.

  19. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries

    NASA Astrophysics Data System (ADS)

    Aetukuri, Nagaphani B.; McCloskey, Bryan D.; García, Jeannette M.; Krupp, Leslie E.; Viswanathan, Venkatasubramanian; Luntz, Alan C.

    2015-01-01

    Given their high theoretical specific energy, lithium-oxygen batteries have received enormous attention as possible alternatives to current state-of-the-art rechargeable Li-ion batteries. However, the maximum discharge capacity in non-aqueous lithium-oxygen batteries is limited to a small fraction of its theoretical value due to the build-up of insulating lithium peroxide (Li2O2), the battery’s primary discharge product. The discharge capacity can be increased if Li2O2 forms as large toroidal particles rather than as a thin conformal layer. Here, we show that trace amounts of electrolyte additives, such as H2O, enhance the formation of Li2O2 toroids and result in significant improvements in capacity. Our experimental observations and a growth model show that the solvating properties of the additives prompt a solution-based mechanism that is responsible for the growth of Li2O2 toroids. We present a general formalism describing an additive’s tendency to trigger the solution process, providing a rational design route for electrolytes that afford larger lithium-oxygen battery capacities.

  20. Riverine dissolved lithium isotopic signatures in low-relief central Africa and their link to weathering regimes

    NASA Astrophysics Data System (ADS)

    Henchiri, Soufian; Gaillardet, Jérôme; Dellinger, Mathieu; Bouchez, Julien; Spencer, Robert G. M.

    2016-05-01

    The isotopic composition of dissolved lithium (δ7Li) near the Congo River mouth varied from 14‰ to 22‰ in 2010 and was negatively correlated to discharge. From the relationship between dissolved δ7Li and strontium isotopes, we suggest that this large variation is due to mixing of waters from two contrasting continental weathering regimes. One end-member (high δ7Li ≈ 25‰) represents waters sourced from active lateritic soils covering the periphery of the basin (Li highly sequestered into secondary mineral products) and another representing blackwater rivers (low δ7Li ≈ 5.7‰) derived from the swampy central depression where high organic matter content in water leads to congruent dissolution of the Tertiary sedimentary bedrock. This suggests that the lithium isotopic signature of tropical low-relief surfaces is not unique and traces the long-term, large-scale vertical motions of the continental crust that control geomorphological settings. This evolution should be recorded in the oceanic secular δ7Li curve.

  1. [Analysis of primary elemental speciation distribution in mungbean during enzymatic hydrolization].

    PubMed

    Li, Ji-Hua; Huang, Mao-Fang; Zhu, De-Ming; Zheng, Wei-Wan; Zhong, Ye-Jun

    2009-03-01

    In the present paper, trace elements contents of cuprum, zincum, manganese and ferrum in mungbean and their primary speciation distribution during enzymatic hydrolization were investigated with ICP-AES OPTIMA 5300DV plasma emission spectroscopy. The trace elements were separated into two forms, i.e. dissolvable form and particulate form, by cellulose membrane with 0.45 microm of pore diameter. All the samples were digested by strong acid (perchloric acid and nitric acid with 1 : 4 ratio ). The parameters of primary speciations of the four elements were calculated and discussed. The results showed: (1) Contents of cuprum, zincum, manganese and ferrum in mungbean were 12.77, 31.26, 18.14 and 69.38 microg x g(-1) (of dry matter), respectively. Different treatment resulted in different elemental formulation in product, indicating that more attention should be paid to the trace elements pattern when producing mungbean beverage with different processes. (2) Extraction rates of cuprum, zincum, manganese and ferrum in extract were 68.84%, 51.84%, 63.97% and 30.40% with enzymatic treatments and 36.22%, 17.58%, 7.85% and 22.99% with boil treatment, respectively. Both boil and enzymatic treatments led to poor elemental extraction rates, which proved that it was necessary to take deep enzymatic hydrolysis treatment in mungbean beverage process as the trace element utilization rate was concerned. (3) Amylase, protease and cellulose showed different extraction effectiveness of the four trace elements. Generally, protease exhibited highest efficiency for the four elements extraction. All of the four trace elements were mostly in dissolvable form in all hydrolysates and soup. (4) Relative standard deviations and recovery yields are within 0.12%-0.90% (n = 11) and 98.6%-101.4%, respectively. The analysis method in this paper proved to be accurate.

  2. Risk assessment of trace metals in an extreme environment sediment: shallow, hypersaline, alkaline, and industrial Lake Acıgöl, Denizli, Turkey.

    PubMed

    Budakoglu, Murat; Karaman, Muhittin; Kumral, Mustafa; Zeytuncu, Bihter; Doner, Zeynep; Yildirim, Demet Kiran; Taşdelen, Suat; Bülbül, Ali; Gumus, Lokman

    2018-02-23

    The major and trace element component of 48 recent sediment samples in three distinct intervals (0-10, 10-20, and 20-30 cm) from Lake Acıgöl is described to present the current contamination levels and grift structure of detrital and evaporate mineral patterns of these sediments in this extreme saline environment. The spatial and vertical concentrations of major oxides were not uniform in the each subsurface interval. However, similar spatial distribution patterns were observed for some major element couples, due mainly to the detrital and evaporate origin of these elements. A sequential extraction procedure including five distinct steps was also performed to determine the different bonds of trace elements in the < 60-μ particulate size of recent sediments. Eleven trace elements (Ni, Fe, Cd, Pb, Cu, Zn, As, Co, Cr, Al and Mn) in nine surface and subsurface sediment samples were analyzed with chemical partitioning procedures to determine the trace element percentage loads in these different sequential extraction phases. The obtained accuracy values via comparison of the bulk trace metal loads with the total loads of five extraction steps were satisfying for the Ni, Fe, Cd, Zn, and Co. While, bulk analysis results of the Cu, Ni, and V elements have good correlation with total organic matter, organic fraction of sequential extraction characterized by Cu, As, Cd, and Pb. Shallow Lake Acıgöl sediment is characteristic with two different redox layer a) oxic upper level sediments, where trace metals are mobilized, b) reduced subsurface level, where the trace metals are precipitated.

  3. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  4. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Lin; Liu, Yuzi; Zhang, Fan; Liu, Caihong; Shaw, Leon L

    2015-11-25

    The lithium-sulfur (Li-S) battery is a great alternative to the state-of-the-art lithium ion batteries due to its high energy density. However, low utilization of active materials, the insulating nature of sulfur or lithium sulfide (Li2S), and polysulfide dissolution in organic liquid electrolyte lead to low initial capacity and fast performance degradation. Herein, we propose a facile and viable approach to address these issues. This new approach entails synthesis of Li2S/carbon black (Li2S/CB) cores encapsulated by a nitrogen-doped carbon shell with polyvinylpyrrolidone (PVP) assistance. Combining energy-filtered transmission electron microscopy (EFTEM) elemental mappings, XPS and FTIR measurements, it is confirmed that the as-synthesized material has a structure of a Li2S/CB core with a nitrogen-doped carbon shell (denoted as Li2S/CB@NC). The Li2S/CB@NC cathode yields an exceptionally high initial capacity of 1020 mAh/g based on Li2S mass at 0.1 C with stable Coulombic efficiency of 99.7% over 200 cycles. Also, cycling performance shows the capacity decay per cycle as small as 0.17%. Most importantly, to further understand the materials for battery applications, field emission transmission electron microscopy (FETEM) and elemental mapping tests without exposure to air for Li2S samples in cycled cells are reported. Along with the first ever FETEM and field emission scanning electron microscopy (FESEM) investigations of cycled batteries, Li2S/CB@NC cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing Li2S/CB@NC designed here as an outstanding system for high-performance lithium-sulfur batteries.

  5. Variation of Aging Precipitates and Mechanical Strength of Al-Cu-Li Alloys Caused by Small Addition of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Ma, Yun-long; Li, Jin-feng

    2017-09-01

    The effect of small rare earth (RE) addition of 0.11%Ce, 0.2%Er and 0.082%Sc on aging precipitates and mechanical strength of an Al-(3.3-4.2)Cu-1.2Li-X alloy were investigated. It is found that Cu-rich residual particles containing RE element exist in the solutionized alloy, which leads to a decrease of dissolved Cu concentration in the solutionized matrix. Like RE-free alloy, the main aging precipitate types in RE-containing alloy are T1 (Al2CuLi) and θ' (Al2Cu), but their fraction is decreased. The strength of the corresponding alloys is therefore lowered by the small RE addition. Combined with the analysis of some reported references, it is proposed that the effect of small RE addition on Al-Cu-Li alloy strength is also associated with the Cu and Li concentrations and their ratio.

  6. LiBSi2: a tetrahedral semiconductor framework from boron and silicon atoms bearing lithium atoms in the channels.

    PubMed

    Zeilinger, Michael; van Wüllen, Leo; Benson, Daryn; Kranak, Verina F; Konar, Sumit; Fässler, Thomas F; Häussermann, Ulrich

    2013-06-03

    Silicon swallows up boron: The novel open tetrahedral framework structure (OTF) of the Zintl phase LiBSi2 was made by applying high pressure to a mixture of LiB and elemental silicon. The compound represents a new topology in the B-Si net (called tum), which hosts Li atoms in the channels (see picture). LiBSi2 is the first example where B and Si atoms form an ordered common framework structure with B engaged exclusively in heteronuclear B-Si contacts.

  7. Potential health and environmental effects of trace elements and radionuclides from increased coal utilization.

    PubMed Central

    Van Hook, R I

    1979-01-01

    This report addresses the effects of coal-derived trace and radioactive elements. A summary of our current understanding of health and environmental effects of trace and radioactive elements released during coal mining, cleaning, combustion, and ash disposal is presented. Physical and biological transport phenomena which are important in determining organism exposure are also discussed. Biological concentration and transformation as well as synergistic and antagonistic actions among trace contaminants are discussed in terms of their importance in mobility, persistence, availability, and ultimate toxicity. The consequences of implementing the President's National Energy Plan are considered in terms of the impact of the NEP in 1985 and 2000 on the potential effects of trace and radioactive elements from the coal fuel cycle. Areas of needed research are identified in specific recommendations. PMID:540619

  8. The novel approach to the biomonitor survey using one- and two-dimensional Kohonen networks.

    PubMed

    Deljanin, Isidora; Antanasijević, Davor; Urošević, Mira Aničić; Tomašević, Milica; Perić-Grujić, Aleksandra; Ristić, Mirjana

    2015-10-01

    To compare the applicability of the leaves of horse chestnut (Aesculus hippocastanum) and linden (Tilia spp.) as biomonitors of trace element concentrations, a coupled approach of one- and two-dimensional Kohonen networks was applied for the first time. The self-organizing networks (SONs) and the self-organizing maps (SOMs) were applied on the database obtained for the element accumulation (Cr, Fe, Ni, Cu, Zn, Pb, V, As, Cd) and the SOM for the Pb isotopes in the leaves for a multiyear period (2002-2006). A. hippocastanum seems to be a more appropriate biomonitor since it showed more consistent results in the analysis of trace elements and Pb isotopes. The SOM proved to be a suitable and sensitive tool for assessing differences in trace element concentrations and for the Pb isotopic composition in leaves of different species. In addition, the SON provided more clear data on seasonal and temporal accumulation of trace elements in the leaves and could be recommended complementary to the SOM analysis of trace elements in biomonitoring studies.

  9. Multielement extraction system for the determination of 18 trace elements in geochemical samples

    USGS Publications Warehouse

    Clark, J.R.; Viets, J.G.

    1981-01-01

    A Methyl isobutyl ketone-Amine synerGistic Iodide Complex (MAGIC) extraction system has been developed for use in geochemical exploration which separates a maximum number of trace elements from interfering matrices. Extraction curves for 18 of these trace elements are presented: Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Ga, In, Tl, Sa, Pb, As, Sb, Bi, Se, and Te. The acid normality of the aqueous phase controls the extraction into the organic phase, and each of these 18 elements has a broad range of HCl normality over which H is quantitatively extracted, making H possible to determine all 18 trace elements from a single sample digestion or leach solution. The extract can be analyzed directly by flame atomic absorption or inductively coupled plasma emission spectroscopy. Most of these 18 elements can be determined by Nameless atomic absorption after special treatment of the organic extract.

  10. Mantle End-Members: The Trace Element Perspective

    NASA Astrophysics Data System (ADS)

    Willbold, M.; Stracke, A.; Hofmann, A. W.

    2004-12-01

    On the basis of their isotopic composition, ocean island basalts (OIB) have been classified into three to four end-members; HIMU with the most radiogenic Pb isotope ratios of OIB and Enriched Mantle 1 and 2 (EM1, EM2) with less radiogenic but variable Pb isotope and highly radiogenic Sr isotope signatures. It has also been argued that each of these isotopic families has common trace element characteristics that distinguish them from one another and so substantiated this classification. Here, we present new high-precision trace element data for samples from St. Helena, Tristan da Cunha and Gough in the Atlantic Ocean. The overall data-set is augmented by OIB data from the GEOROC database and includes data from all major isotopic families (HIMU: St. Helena, Mangaia, Tubuai, and Rururtu; EM1: Tristan da Cunha, Gough, Pitcairn; and EM2: Samoa, Marquesas, and Society). For each locality we use only islands defining the most extreme isotopic compositions. The entire data-set has been screened to exclude altered and highly differentiated samples. HIMU basalts have a very uniform trace element composition. Compared to HIMU-type basalts, EM-type basalts are enriched in Rb, Ba, and K, and depleted in U, Nb, and Ta, relative to La. Different EM-type OIBs from the same isotopic family (EM1 or EM2), have distinct trace element characteristics that can ultimately only be caused by different source compositions. For example, Ba/Th ratios in samples from both Tristan da Cunha (EM1) and Samoa (EM2) are similarly high (ca. 110) whereas Ba/Th ratios in samples from Pitcairn (EM1) and Society (EM2) samples are consistently lower (ca. 70). Thus on the basis of their trace element composition, EM-type OIB cannot be classified into EM1 and EM2 type basalts, nor can any other grouping be identified. The remarkably uniform isotopic and trace element composition of HIMU-type basalts suggests derivation from a single common source reservoir, most likely subduction-modified oceanic crust. Although there are some trace element characteristics common to all EM-type basalts, which distinguish them from HIMU-type basalts (e.g. uniformly high Th/U ratios of 4.7 ± 0.3, and enrichment in Cs-U), each suite of EM-type basalts has unique trace element signatures that distinguish them from any other suite of EM-type basalts. This is especially obvious when comparing the trace element composition of EM basalts from one isotopic family, for example EM1-type basalts from Tristan, Gough and Pitcairn. Consequently, the trace element systematics of EM-type basalts suggest that there are many different EM-type sources, whereas the isotopic composition of EM-type basalts suggest derivation from two broadly similar sources, i.e. EM1 and EM2. The large variability in subducting sediments with respect to both parent-daughter (e.g. Rb/Sr, Sm/Nd, U/Pb, Th/Pb,...) and other trace element ratios makes it unlikely that there are reproducible mixtures of sediments leading to two different isotopic evolution paths (EM1 and EM2) while preserving a range of incompatible element contents for each isotopic family, as would be required to reconcile the isotopic and trace element characteristics of EM-type basalts. Although this does not a priori argue against sediments as possible source components for OIB, it does argue against two distinct groups of sediments as EM1 and EM2 sources. Further characterization of sources with the same general origin (e.g. a certain type of crust or lithosphere) or identification of processes leading to reservoirs with similar parent-daughter ratio characteristics but different incompatible trace element contents could resolve the apparent conundrum.

  11. Factors to consider for trace element deposition biomonitoring surveys with lichen transplants

    USGS Publications Warehouse

    Ayrault, S.; Clochiatti, R.; Carrot, F.; Daudin, L.; Bennett, J.P.

    2007-01-01

    A trace element deposition biomonitoring experiment with transplants of the fruticose lichen Evernia prunastri was developed, aimed at monitoring the effects of different exposure parameters (exposure orientation and direct rain) and to the elements Ti, V, Cr, Co, Cu, Zn, Rb, Cd, Sb and Pb. Accumulations were observed for most of the elements, confirming the ability of Evernia transplants for atmospheric metal deposition monitoring. The accumulation trends were mainly affected by the exposure orientation and slightly less so by the protection from rain. The zonation of the trace elements inside the thallus was also studied. It was concluded that trace element concentrations were not homogeneous in Evernia, thus imposing some cautions on the sampling approach. A nuclear microprobe analysis of an E. prunastri transplanted thallus in thin cross-sections concluded that the trace elements were mainly concentrated on the cortex of the thallus, except Zn, Ca and K which were also present in the internal layers. The size of the particles deposited or entrapped on the cortex surface averaged 7????m. A list of key parameters to ensure the comparability of surveys aiming at observing temporal or spatial deposition variation is presented. ?? 2006 Elsevier B.V. All rights reserved.

  12. An analysis of human exposure to trace elements from deliberate soil ingestion and associated health risks.

    PubMed

    Ngole-Jeme, Veronica M; Ekosse, Georges-Ive E; Songca, Sandile P

    2018-01-01

    Fifty-seven samples of soils commonly ingested in South Africa, Swaziland, Democratic Republic of Congo (DRC), and Togo were analyzed for the concentrations of arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), and zinc (Zn) and their bioaccessibility in the human gastrointestinal tract. Bioaccessibility values were used to calculate daily intake, and hazard quotient of each trace element, and chronic hazard index (CHI) of each sample. Carcinogenic risk associated with As and Ni exposure were also calculated. Mean pseudo-total concentrations of trace elements in all samples were 7.2, 83.3, 77.1, 15.4, 28.6, 24.9, 56.1, 2.8, and 26.5 mg/kg for As, Cr, Mn, Co, Ni, Cu, Zn, Cd, and Pb, respectively. Percent bioaccessibility of Pb (13-49%) and Zn (38-56%) were highest among trace elements studied. Average daily intake values were lower than their respective reference doses for ell elements except for Pb in selected samples. Samples from DRC presented the highest health risks associated with trace element exposure with most of the samples having CHI values between 0.5 and 1.0. Some samples had higher than unacceptable values of carcinogenic risk associated with As and Ni exposure. Results indicate low trace element exposure risk from ingesting most of the soil samples.

  13. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    PubMed Central

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  14. Trace element analysis of soil type collected from the Manjung and central Perak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azman, Muhammad Azfar, E-mail: m-azfar@nuclearmalaysia.gov.my; Hamzah, Suhaimi; Rahman, Shamsiah Abdul

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. Themore » enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.« less

  15. Depositional setting, petrology and chemistry of Permian coals from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil

    USGS Publications Warehouse

    Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H.

    2010-01-01

    In Brazil economically important coal deposits occur in the southern part of the Paran?? Basin, where coal seams occur in the Permian Rio Bonito Formation, with major coal development in the states of Rio Grande de Sul and Santa Catarina. The current paper presents results on sequence stratigraphic interpretation of the coal-bearing strata, and petrological and geochemical coal seam characterization from the South Santa Catarina Coalfield, Paran?? Basin.In terms of sequence stratigraphic interpretation the precursor mires of the Santa Catarina coal seams formed in an estuarine-barrier shoreface depositional environment, with major peat accumulation in a high stand systems tract (Pre-Bonito and Bonito seams), a lowstand systems tract (Ponta Alta seam, seam A, seam B) and a transgressive systems tract (Irapu??, Barro Branco and Treviso seams).Seam thicknesses range from 1.70 to 2.39. m, but high proportions of impure coal (coaly shale and shaley coal), carbonaceous shale and partings reduce the net coal thickness significantly. Coal lithoypes are variable, with banded coal predominant in the Barro Branco seam, and banded dull and dull coal predominantly in Bonito and Irapu?? seams, respectively. Results from petrographic analyses indicate a vitrinite reflectance range from 0.76 to 1.63 %Rrandom (HVB A to LVB coal). Maceral group distribution varies significantly, with the Barro Branco seam having the highest vitrinite content (mean 67.5 vol%), whereas the Irapu?? seam has the highest inertinite content (33.8. vol%). Liptinite mean values range from 7.8. vol% (Barro Branco seam) to 22.5. vol% (Irapu?? seam).Results from proximate analyses indicate for the three seams high ash yields (50.2 - 64.2wt.%). Considering the International Classification of in-Seam Coals, all samples are in fact classified as carbonaceous rocks (>50wt.% ash). Sulfur contents range from 3.4 to 7.7 wt.%, of which the major part occurs as pyritic sulfur. Results of X-ray diffraction indicate the predominance of quartz and kaolinite (also pyrite). Gypsum, gibbsite, jarosite and calcite were also identified in some samples. Feldspar was noted but is rare. The major element distribution in the three seams (coal basis) is dominated by SiO2 (31.3wt.%, mean value), Al2O3 (14.5wt.%, mean value) and Fe2O3 (6.9 wt.%, mean value). Considering the concentrations of trace elements that are of potential environmental hazards the Barro Branco, Bonito and Irapu?? seams (coal base) are significantly enriched in Co (15.7ppm), Cr (54.5ppm), Li (59.3ppm), Mn (150.4ppm), Pb (58.0ppm) and V (99.6ppm), when compared to average trace elements contents reported for U. S. coals.Hierarchical cluster analysis identified, based on similarity levels, three groups of major elements and seven groups of trace elements. Applying discriminant analyses using trace and major element distribution, it could be demonstrated that the three seams from Santa Catarina show distinct populations in the discriminant analyses plots, and also differ from the coals of Rio Grande do Sul analyzed in a previous study. ?? 2010 Elsevier B.V.

  16. Addition of granular activated carbon and trace elements to favor volatile fatty acid consumption during anaerobic digestion of food waste.

    PubMed

    Capson-Tojo, Gabriel; Moscoviz, Roman; Ruiz, Diane; Santa-Catalina, Gaëlle; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Bernet, Nicolas; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-07-01

    The effect of supplementing granular activated carbon and trace elements on the anaerobic digestion performance of consecutive batch reactors treating food waste was investigated. The results from the first batch suggest that addition of activated carbon favored biomass acclimation, improving acetic acid consumption and enhancing methane production. Adding trace elements allowed a faster consumption of propionic acid. A second batch proved that a synergy existed when activated carbon and trace elements were supplemented simultaneously. The degradation kinetics of propionate oxidation were particularly improved, reducing significantly the batch duration and improving the average methane productivities. Addition of activated carbon favored the growth of archaea and syntrophic bacteria, suggesting that interactions between these microorganisms were enhanced. Interestingly, microbial analyses showed that hydrogenotrophic methanogens were predominant. This study shows for the first time that addition of granular activated carbon and trace elements may be a feasible solution to stabilize food waste anaerobic digestion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Gull-derived trace elements trigger small-scale contamination in a remote Mediterranean nature reserve.

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Tramati, Cecilia Doriana; Vizzini, Salvatrice

    2013-09-15

    The role of a yellow-legged gull (Larus michahellis) small colony in conveying trace elements (As, Cd, Cr, Cu, Ni, Pb, THg, V, Zn) was assessed in a Mediterranean nature reserve (Marinello ponds) at various spatial and temporal scales. Trace element concentrations in guano were high and seasonally variable. In contrast, contamination in the ponds was not influenced by season but showed strong spatial variability among ponds, according to the different guano input. Biogenic enrichment factor B confirmed the role of gulls in the release of trace elements through guano subsidies. In addition, comparing trace element pond concentrations to the US NOAA's SQGs, As, Cu and Ni showed contamination levels associated with possible negative biological effects. Thus, this study reflects the need to take seabirds into account as key factors influencing ecological processes and contamination levels even in remote areas, especially around the Mediterranean, where these birds are abundant but overlooked. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Rare earth elements minimal harvest year variation facilitates robust geographical origin discrimination: The case of PDO "Fava Santorinis".

    PubMed

    Drivelos, Spiros A; Danezis, Georgios P; Haroutounian, Serkos A; Georgiou, Constantinos A

    2016-12-15

    This study examines the trace and rare earth elemental (REE) fingerprint variations of PDO (Protected Designation of Origin) "Fava Santorinis" over three consecutive harvesting years (2011-2013). Classification of samples in harvesting years was studied by performing discriminant analysis (DA), k nearest neighbours (κ-NN), partial least squares (PLS) analysis and probabilistic neural networks (PNN) using rare earth elements and trace metals determined using ICP-MS. DA performed better than κ-NN, producing 100% discrimination using trace elements and 79% using REEs. PLS was found to be superior to PNN, achieving 99% and 90% classification for trace and REEs, respectively, while PNN achieved 96% and 71% classification for trace and REEs, respectively. The information obtained using REEs did not enhance classification, indicating that REEs vary minimally per harvesting year, providing robust geographical origin discrimination. The results show that seasonal patterns can occur in the elemental composition of "Fava Santorinis", probably reflecting seasonality of climate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Use of sediment-trace element geochemical models for the identification of local fluvial baseline concentrations

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Demas, C.R.; Demcheck, D.K.

    1991-01-01

    Studies have demonstrated the utility of fluvial bed sediment chemical data in assesing local water-quality conditions. However, establishing local background trace element levels can be difficult. Reference to published average concentrations or the use of dated cores are often of little use in small areas of diverse local petrology, geology, land use, or hydrology. An alternative approach entails the construction of a series of sediment-trace element predictive models based on data from environmentally diverse but unaffected areas. Predicted values could provide a measure of local background concentrations and comparison with actual measured concentrations could identify elevated trace elements and affected sites. Such a model set was developed from surface bed sediments collected nationwide in the United States. Tests of the models in a small Louisiana basin indicated that they could be used to establish local trace element background levels, but required recalibration to account for local geochemical conditions outside the range of samples used to generate the nationwide models.

  20. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    PubMed Central

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and posttranslational modifications; and the iron levels are influenced by iron import and expression of the iron/heme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated dataset opens new directions for studies of human trace element metabolism. PMID:24522796

  1. Topical index and bibliography of U.S. Geological Survey Trace Elements and related reports

    USGS Publications Warehouse

    Curtis, Diane; Houser, Shirley S.

    1952-01-01

    Part 1, the topical index, lists the titles of reports prepared from 1941 to December 1952, in conjunction with the Geological Survey's program of uranium and other elements of related interest. It includes not only completed Trace Elements reports and those now in preparation, but also Survey publications, publications by Survey personnel in scientific journals, and open-fie releases. The titles are grouped topically under the headings listed in the table of contents. Entries in each category are listed alphabetically, by author, and numbered consecutively. Many of the reports have been cross-indexed, where appropriate. The classification of the Trace Elements reports, insofar as it is known, has been indicated after the title of the report. The classification of some of the earlier Trace Elements reports is uncertain. The Geological Survey does not have additional copies of most of the reports listed, but copies of some of the completed reports can be loaned on request to organizations officially cooperating with the Atomic Energy Commission. Many Trace Elements reports have been made available to the public, either by open-file release, reproduction by Technical Information Service, Oak Ridge (referred to as TIS), by publication as a Geological Survey circular or bulletin or by a publication in a scientific journal. This information is given, following the title of the report. If the abstract of a Trace Element report has been published in Nuclear Science Abstracts, it is noted by the initials NSA following the title of the report. Part 2 is a reference guide to information on the Trace Elements program that is available to the public. This information is categorized according to the type of publication or release.

  2. Contributions of trace elements to the sea by small uncontaminated rivers: Effects of a water reservoir and a wastewater treatment plant.

    PubMed

    Álvarez-Vázquez, Miguel Ángel; Prego, Ricardo; Caetano, Miguel; De Uña-Álvarez, Elena; Doval, Maryló; Calvo, Susana; Vale, Carlos

    2017-07-01

    Trace element contributions from small rivers to estuaries is an issue barely addressed in the literature. In this work, freshwater flowing into the Ria of Cedeira (NW Iberian Peninsula) was studied during a hydrological year through the input from three rivers, one considered uncontaminated (the Das-Mestas River), a second affected by urban treated wastewater discharges (the Condomiñas River), and the third containing a water reservoir for urban supply (the Forcadas River). With the objective of assessing the possible influence of human pressure, the annual yields for selected trace elements (Al, Fe, As, Cd, Co, Cr, Cu, Mn, Mo, Ni and Pb) were estimated and compared by normalizing by basin surface. Both dissolved and particulate transported elements were considered. After the data treatment and analysis it can be highlighted that: (i) the Das Mestas River is suitable to be included between the short European pristine baseline of small rivers, at least regarding the transported trace elements; (ii) natural enrichments were identified associated to the lithology of the basin in the Das-Mestas River (i.e. As) and in the Condomiñas River (i.e. Co, Cr and Ni); this fact highlights the importance of considering the local background for a proper assessment; (iii) the impoundment in the Forcadas River is related with a general decrease, even depletion, of the particulate and dissolved transported trace elements, except Mn; (iv) the discharge of sewage to the Condomiñas River is increasing the inputs to the ria of some trace elements in the particulate phase (i.e. Al, Cu and Pb). Both observed human-induced changes can be regarded as typical disturbances of trace element contributions from small rivers to estuaries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sampling strategy and analysis of trace element concentrations by inductively coupled plasma mass spectrometry on medieval human bones--the concept of chemical life history.

    PubMed

    Skytte, Lilian; Rasmussen, Kaare Lund

    2013-07-30

    Medieval human bones have the potential to reveal diet, mobility and treatment of diseases in the past. During the last two decades trace element chemistry has been used extensively in archaeometric investigations revealing such data. Many studies have reported the trace element inventory in only one sample from each skeleton - usually from the femur or a tooth. It cannot a priori be assumed that all bones or teeth in a skeleton will have the same trace element concentrations. Six different bone and teeth samples from each individual were carefully decontaminated by mechanical means. Following dissolution of ca. 20 mg sample in nitric acid and hydrogen peroxide the assays were performed using inductively coupled plasma mass spectrometry (ICPMS) with quadropole detection. We describe the precise sampling technique as well as the analytical methods and parameters used for the ICPMS analysis. The places of sampling in the human skeleton did exhibit varying trace element concentrations. Although the samples are contaminated by Fe, Mn and Al from the surrounding soil where the bones have been residing for more than 500 years, other trace elements are intact within the bones. It is shown that the elemental ratios Sr/Ca and Ba/Ca can be used as indicators of provenance. The differences in trace element concentrations can be interpreted as indications of varying diet and provenance as a function of time in the life of the individual - a concept which can be termed chemical life history. A few examples of the results of such analyses are shown, which contains information about provenance and diagenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  4. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  5. Trace Elements in Bed Sediments and Biota from Streams in the Santee River Basin and Coastal Drainages, North and South Carolina, 1995-97

    Treesearch

    Thomas A. Abrahamsen

    1999-01-01

    Bed-sediment and tissue samples were collected and analyzed for the presence of trace elements from 25 sites in the Santee River Basin and coastal drainages study area during 1995-97 as part of the U.S. Geological Survey's National Water-Quality Assessment Program, Sediment trace-element priority-pollutant concentrations were compared among streams draining water-...

  6. Evaluating Crustal Contamination Effects On The Lithophile Trace Element Budget Of Shergottites, NWA 856 As A Test Case

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Ferdous, J.; Peslier, A. H.

    2017-01-01

    The issue of whether crustal contamination has affected the lithophile trace element budget of shergottites has been a point of contention for decades. The evaluation has focused on the enriched shergottite compositions as an outcome of crustal contamination of mantle-derived parent magmas or, alternatively, the compositions of these stones reflect an incompatible trace element (ITE) enriched mantle source.

  7. Movement of Trace Elements During Residence in the Antarctic Ice: a Laboratory Simulation

    NASA Technical Reports Server (NTRS)

    Strait, Melissa M.

    1991-01-01

    Recent work has determined that differences in the trace element distribution between Antarctic eucrites and non-Antarctic eucrites may be due to weathering during residence in the ice, and samples that demonstrate trace element disturbances do not necessarily correspond to eucrites that appear badly weathered to the naked eye. This study constitutes a preliminary test of the idea that long-term residence in the ice is the cause of the trace element disturbances observed in the eucrites. Samples of a non-Antarctic eucrite were leached in water at room temperature conditions. Liquid samples were analyzed for rare earth element abundances using ion chromatography. The results for the short-term study showed little or no evidence that leaching had occurred. However, there were tantalizing hints that something may be happening. The residual solid samples are currently being analyzed for the unleached trace metals using instrumental neutron activation analysis and should show evidence of disturbance if the chromatography clues were real. In addition, another set of samples continues to be intermittently sampled for later analysis. The results should give us information about the movement of trace elements under our conditions and allow us to make some tentative extrapolations to what we observe in actual Antarctic eucrite samples.

  8. Essential trace elements and antioxidant status in relation to severity of HIV in Nigerian patients.

    PubMed

    Olaniyi, J A; Arinola, O G

    2007-01-01

    This study was designed to determine the plasma levels of some antioxidants and trace elements in three severity groups of HIV patients compared with non-HIV-infected controls. The plasma levels of antioxidants (total antioxidant, albumin, bilirubin and uric acid) and trace elements (Mg, Fe, Zn, Mn, Cu, Cr, Cd and Se) were estimated spectrophotometrically in controls and patients with CD4 counts of <200; 200-499 and > or =500 cells/microl. Uric acid and Zn were significantly higher, while vitamin E and all the trace elements (except Zn) were significantly lower in HIV-infected patients compared to healthy controls. The highest level of uric acid was observed in those with CD4 counts of <200 cells/microl. All the trace elements (except Zn) were higher in HIV subjects with a CD4 count of 200-499 cells/microl compared to >500 cells/microl. Only uric acid and Zn showed significant correlation with CD4 count. Based on the results of this study, we recommend routine assessment and appropriate supplementation of antioxidants/trace elements in HIV subjects. This supplementation is hoped to strengthen the immune system and reduce the adverse consequences of HIV- related oxidative stress. Copyright 2007 S. Karger AG, Basel.

  9. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The data also indicate that DXVliQP2O5 decrease in the same order, but DOVLiQP2O5 and DOpx/LiQP205 are likely constant, respectively equal to 0.08(3) and 0.007(4), in contrast, DG1ILiQP205 increases from 0.15(3) to 0.36(10) as garnet becomes majoritic, thus silica-enriched, and may also depend on liquid composition (SiO2, P2O5 and Na2O wt%).

  10. Using lead isotopes and trace element records from two contrasting Lake Tanganyika sediment cores to assess watershed – Lake exchange

    USGS Publications Warehouse

    Odigie, Kingsley; Cohen, A.D.; Swarzenski, Peter W.; Flegal, R

    2014-01-01

    Lead isotopic and trace element records of two contrasting sediment cores were examined to reconstruct historic, industrial contaminant inputs to Lake Tanganyika, Africa. Observed fluxes of Co, Cu, Mn, Ni, Pb, and Zn in age-dated sediments collected from the lake varied both spatially and temporally over the past two to four centuries. The fluxes of trace elements were lower (up to 10-fold) at a mid-lake site (MC1) than at a nearshore site (LT-98-58), which is directly downstream from the Kahama and Nyasanga River watersheds and adjacent to the relatively pristine Gombe Stream National Park. Trace element fluxes at that nearshore site did not measurably change over the last two centuries (1815–1998), while the distal, mid-lake site exhibited substantial changes in the fluxes of trace elements – likely caused by changes in land use – over that period. For example, the flux of Pb increased by ∼300% from 1871 to 1991. That apparent accelerated weathering and detrital mobilization of lithogenic trace elements was further evidenced by (i) positive correlations (r = 0.77–0.99, p < 0.05) between the fluxes of Co, Cu, Mn, Ni, Pb, and Zn and those of iron (Fe) at both sites, (ii) positive correlations (r = 0.82–0.98, p < 0.01, n = 9) between the fluxes of elements (Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn) and the mass accumulation rates at the offshore site, (iii) the low enrichment factors (EF < 5) of those trace elements, and (iv) the temporal consistencies of the isotopic composition of Pb in the sediment. These measurements indicate that accelerated weathering, rather than industrialization, accounts for most of the increases in trace element fluxes to Lake Tanganyika in spite of the development of mining and smelting operations within the lake’s watershed over the past century. The data also indicate that the mid-lake site is a much more sensitive and useful recorder of environmental changes than the nearshore site. Furthermore, the lead isotopic compositions of sediment at the sites differed spatially, indicating that the Pb (and other trace elements by association) originated from different natural sources at the two locations.

  11. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  12. The impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester.

    PubMed

    Skalny, Anatoly V; Tinkov, Alexey A; Voronina, Irina; Terekhina, Olga; Skalnaya, Margarita G; Bohan, Tatiana G; Agarkova, Lyubov A; Kovas, Yulia

    2018-01-01

    Trace elements play a significant role in the regulation of human reproduction, while advanced age may have a significant impact on trace element metabolism. The objective of the present study was to assess the impact of lifestyle factors on age-related differences in hair trace element content in pregnant women in the third trimester. A total of 124 pregnant women aged 20–29 (n = 72) and 30–39 (n = 52) were ex- amined. Scalp hair trace element content was assessed using inductively coupled plasma mass spectrometry at NexION 300D (Perkin Elmer, USA) after microwave digestion. The results showed that the elder pregnant women had 36% (p = 0.009), 14% (p = 0.045), and 45% (p = 0.044) lower hair Zn, V, and Cd content, and 16% (p = 0.044) higher hair B levels – in comparison to the respective younger group values. Multiple regression analysis demonstrated that the age of the women had a significant influence on hair V and Zn levels. B content was also significantly influenced by age at first intercourse, smoking status, and specific dietary habits. None of the lifestyle factors were associated with hair Cd content in pregnant women. Hair V levels were also affected by following a special diet. Interestingly, alcohol intake did not have a significant impact on hair trace element content. These data indicate that lifestyle factors have a significant influence on age-related changes in hair trace elements during pregnancy that may impact the outcome of pregnancy.

  13. Mapping Fifteen Trace Elements in Human Seminal Plasma and Sperm DNA.

    PubMed

    Ali, Sazan; Chaspoul, Florence; Anderson, Loundou; Bergé-Lefranc, David; Achard, Vincent; Perrin, Jeanne; Gallice, Philippe; Guichaoua, Marie

    2017-02-01

    Studies suggest a relationship between semen quality and the concentration of trace elements in serum or seminal plasma. However, trace elements may be linked to DNA and capable of altering the gene expression patterns. Thus, trace element interactions with DNA may contribute to the mechanisms for a trans-generational reproductive effect. We developed an analytical method to determine the amount of trace elements bound to the sperm DNA, and to estimate their affinity for the sperm DNA by the ratio: R = Log [metal concentration in the sperm DNA/metal concentration in seminal plasma]. We then analyzed the concentrations of 15 trace elements (Al, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Ti, V, Zn, As, Sb, and Se) in the seminal plasma and the sperm DNA in 64 normal and 30 abnormal semen specimens with Inductively Coupled Plasma/Mass Spectrometry (ICP-MS). This study showed all trace elements were detected in the seminal plasma and only metals were detected in the sperm DNA. There was no correlation between the metals' concentrations in the seminal plasma and the sperm DNA. Al had the highest affinity for DNA followed by Pb and Cd. This strong affinity is consistent with the known mutagenic effects of these metals. The lowest affinity was observed for Zn and Ti. We observed a significant increase of Al linked to the sperm DNA of patients with oligozoospermia and teratozoospermia. Al's reproductive toxicity might be due to Al linked to DNA, by altering spermatogenesis and expression patterns of genes involved in the function of reproduction.

  14. Enhanced analgesic effects of tramadol and common trace element coadministration in mice.

    PubMed

    Alexa, Teodora; Marza, Aurelia; Voloseniuc, Tudor; Tamba, Bogdan

    2015-10-01

    Chronic pain is managed mostly by the daily administration of analgesics. Tramadol is one of the most commonly used drugs, marketed in combination with coanalgesics for enhanced effect. Trace elements are frequent ingredients in dietary supplements and may enhance tramadol's analgesic effect either through synergic mechanisms or through analgesic effects of their own. Swiss Weber male mice were divided into nine groups and were treated with a combination of the trace elements Mg, Mn, and Zn in three different doses and a fixed dose of tramadol. Two groups served as positive (tramadol alone) and negative (saline) controls. Nociceptive assessment by tail-flick (TF) and hot-plate (HP) tests was performed at baseline and at 15, 30, 45, and 60 min after intraperitoneal administration. Response latencies were recorded and compared with the aid of ANOVA testing. All three trace elements enhanced tramadol's analgesic effect, as assessed by TF and HP test latencies. Coadministration of these trace elements led to an increase of approximately 30% in the average pain inhibition compared with the tramadol-alone group. The most effective doses were 0.6 mg/kg b.w. for Zn, 75 mg/kg b.w. for Mg, and 7.2 mg/kg b.w. for Mn. Associating trace elements such as Zn, Mg, and Mn with the standard administration of tramadol increases the drug's analgesic effect, most likely a consequence of their synergic action. These findings impact current analgesic treatment because the addition of these trace elements may reduce the tramadol dose required to obtain analgesia. © 2015 Wiley Periodicals, Inc.

  15. Trace elements record complex histories in diogenites

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; Beck, A. W.; McSween, H. Y.

    2012-12-01

    Diogenite meteorites are cumulate rocks composed mostly of orthopyroxene and chemically linked to eucrites (basaltic) and howardites (brecciated mixtures of diogenites and eucrites). Together, they represent the largest single family of achondrite meteorites delivered to Earth, and have been spectrally linked to the asteroid 4 Vesta, the largest remaining basaltic protoplanet. However, this spectral link is non-unique as many basaltic asteroids likely formed and were destroyed in the early solar system. Recent work suggested that Vesta may be an unlikely parent body for the diogenites based on correlations between trace elements and short-lived isotope decay products, which would be unlikely to survive on a body as large as Vesta due to its long cooling history [1]. Recent analyses of terrestrial and martian olivines have demonstrated that trace element spatial distributions can preserve evidence of their crystallization history even when major elements have been homogenized [2]. We have mapped minor elements including Cr, Al, and Ti in seemingly homogeneous diogenite orthopyroxenes and found a variety of previously unobserved textures. The pyroxenes in one sample (GRA 98108) are seemingly large grains of variable shapes and sizes, but the trace elements reveal internal grain boundaries between roughly-equal sized original subgrains, with equilibrated metamorphic triple junctions between them and trace element depletions at the boundaries. These trends suggest extraction of trace elements by a magma along those relict grain boundaries during a reheating event. Two other samples show evidence of fracturing and annealing, with trace element mobility within grains. One sample appears to have remained a closed system during annealing (MET 01084), while the other has interacted with a fluid or magma to move elements along annealed cracks (LEW 88679). These relict features establish that the history of diogenite pyroxenes is more complex than their homogeneous major element compositions imply. Many trace element analyses are performed using either bulk rock techniques or spot analyses, and these maps suggest those types of analyses likely sample variable trace element abundances even within otherwise homogeneous grains, rendering their results difficult to interpret. Consequently, the correlation discussed previously between trace elements and short lived isotopes has likely been impacted by post-magmatic alteration and cannot solely be used to argue that HED's cannot be derived from Vesta. Furthermore, these maps strengthen the HED-Vesta link by suggesting that the diogenites underwent an extended history of cooling, reheating, partial melting, impact fragmentation, fluid/melt migration, and finally re-annealing. These complicated steps are particularly noteworthy as the pyroxene cumulate layer on the asteroid Vesta should lie beneath the eucritic crust, implying that early impacts were able to penetrate that crust and affect the diogenite layers early in Vesta's history, most likely while the asteroid was still hot enough to allow for annealing and regrowth of fractured grains. [1] Schiller et al. (2011) [2] Milman-Barris et al. (2008)

  16. Vertical distribution of trace-element concentrations and occurrence of metallurgical slag particles in accumulated bed sediments of Lake Roosevelt, Washington, September 2002

    USGS Publications Warehouse

    Cox, S.E.; Bell, P.R.; Lowther, J.S.; Van Metre, P.C.

    2005-01-01

    Sediment cores were collected from six locations in Lake Roosevelt to determine the vertical distributions of trace-element concentrations in the accumulated sediments of Lake Roosevelt. Elevated concentrations of arsenic, cadmium, copper, lead, mercury, and zinc occurred throughout much of the accumulated sediments. Concentrations varied greatly within the sediment core profiles, often covering a range of 5 to 10 fold. Trace-element concentrations typically were largest below the surficial sediments in the lower one-half of each profile, with generally decreasing concentrations from the 1964 horizon to the surface of the core. The trace-element profiles reflect changes in historical discharges of trace elements to the Columbia River by an upstream smelter. All samples analyzed exceeded clean-up guidelines adopted by the Confederated Tribes of the Colville Reservation for cadmium, lead, and zinc and more than 70 percent of the samples exceeded cleanup guidelines for mercury, arsenic, and copper. Although 100 percent of the samples exceeded sediment guidelines for cadmium, lead, and zinc, surficial concentrations of arsenic, copper, and mercury in some cores were less than the sediment-quality guidelines. With the exception of copper, the trace-element profiles of the five cores collected along the pre-reservoir Columbia River channel typically showed trends of decreasing concentrations in sediments deposited after the 1964 time horizon. The decreasing concentrations of trace elements in the upper half of cores from along the pre-reservoir Columbia River showed a pattern of decreasing concentrations similar to reductions in trace-element loading in liquid effluent from an upstream smelter. Except for arsenic, trace-element concentrations typically were smaller at downstream reservoir locations along the pre-reservoir Columbia River. Trace-element concentration in sediments from the Spokane Arm of the reservoir showed distinct differences compared to the similarities observed in cores from along the pre-reservoir Columbia River. Particles of slag, which have physical and chemical characteristics of slag discharged to the Columbia River by a lead-zinc smelter upstream of the reservoir at Trail, British Columbia, were found in sediments of Lake Roosevelt. Slag particles are more common in the upstream reaches of the reservoir. The chemical composition of the interior matrix of slag collected from Lake Roosevelt closely approximated the reported elemental concentrations of fresh smelter slag, although evidence of slag weathering was observed. Exfoliation flakes were observed on the surface of weathered slag particles isolated from the core sediments. The concentrations of zinc on the exposed surface of slag grains were smaller than concentrations on interior surfaces. Weathering rinds also were observed in the cross section of weathered slag grains, indicating that the glassy slag material was undergoing hydration and chemical weathering. Trace elements observed in accumulated sediments in the middle and lower reaches of the reservoir are more likely due to the input from liquid effluent discharges compared to slag discharges from the upstream smelter.

  17. Trace elements in stormflow, ash, and burned soil following the 2009 station fire in southern California

    USGS Publications Warehouse

    Burton, Carmen; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life.

  18. Sensitivity of trace element pyritization to pyrite oxidation processes

    NASA Astrophysics Data System (ADS)

    Moreira, Manuel; Díaz, Rut; Mendoza, Ursula; Capilla, Ramses; Böttcher, Michael; Luiza Albuquerque, Ana; Machado, Wilson

    2014-05-01

    Total trace elements concentration variability in marine sediments has been widely used as a proxy for redox conditions and marine paleoprodutivity. However, partial extraction procedures reduce influences of detrital sedimentary fractions, and information on trace element geochemical partitioning can contribute to provide comprehensive evidences on elemental sensitivity to particular processes. The potential effect of sedimentary pyrite re-oxidative cycling on the degree of trace metal pyritization (DTMP) has not been previously evaluated. This study investigates this effect in 4 sediment cores from the continental shelf under the influence of a tropical upwelling system (Cabo Frio, Brazil). The relation of DTMP with stable isotope signals (δ34SCRS) of chromium reducible sulfur, which becomes lighter in response to intense pyrite re-oxidative cycling in the study area, suggests high (As, Cd and Mn), low (Cu and Zn) or negligible (Cr and Ni) re-oxidation influences. The oldest, pyrite-richer sediments provide an apparent threshold for intense pyrite re-oxidation, after which most trace elements (As, Cd, Zn and Mn) presented more accentuated pyritization. A middle shelf core presented negative correlations of reactive (HCl-soluble) Mn, Cu and Ni with pyrite iron, suggesting Mn oxide (and associated metals) depletion in reaction with pyrite. Results provided evidences for coupled influences from both aerobic and anaerobic oxidative processes on trace elements incorporation into pyrite. Pyrite δ34S signatures under the oxic bottom water from the study area were similar to those from euxinic sedimentary environments, suggesting that pyrite re-oxidative cycling can affect trace element susceptibility to be incorporated and preserved into pyrite in a wide range of sedimentary conditions. The evaluation of trace elements sensitivity to these processes can contribute to improve the use of multiple DTMP data (e.g., as paleoredox proxies). Considering that S re-oxidative cycling is ubiquitous in many sedimentary conditions, such coupled use of DTMP and δ34SCRS proxies can be possibly applied to a large variety of sedimentary environments.

  19. Trace Elements in Stormflow, Ash, and Burned Soil following the 2009 Station Fire in Southern California

    PubMed Central

    Burton, Carmen A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Baumberger, Katherine L.; Backlin, Adam R.; Gallegos, Elizabeth; Fisher, Robert N.

    2016-01-01

    Most research on the effects of wildfires on stream water quality has focused on suspended sediment and nutrients in streams and water bodies, and relatively little research has examined the effects of wildfires on trace elements. The purpose of this study was two-fold: 1) to determine the effect of the 2009 Station Fire in the Angeles National Forest northeast of Los Angeles, CA on trace element concentrations in streams, and 2) compare trace elements in post-fire stormflow water quality to criteria for aquatic life to determine if trace elements reached concentrations that can harm aquatic life. Pre-storm and stormflow water-quality samples were collected in streams located inside and outside of the burn area of the Station Fire. Ash and burned soil samples were collected from several locations within the perimeter of the Station Fire. Filtered concentrations of Fe, Mn, and Hg and total concentrations of most trace elements in storm samples were elevated as a result of the Station Fire. In contrast, filtered concentrations of Cu, Pb, Ni, and Se and total concentrations of Cu were elevated primarily due to storms and not the Station Fire. Total concentrations of Se and Zn were elevated as a result of both storms and the Station Fire. Suspended sediment in stormflows following the Station Fire was an important transport mechanism for trace elements. Cu, Pb, and Zn primarily originate from ash in the suspended sediment. Fe primarily originates from burned soil in the suspended sediment. As, Mn, and Ni originate from both ash and burned soil. Filtered concentrations of trace elements in stormwater samples affected by the Station Fire did not reach levels that were greater than criteria established for aquatic life. Total concentrations for Fe, Pb, Ni, and Zn were detected at concentrations above criteria established for aquatic life. PMID:27144270

  20. Transmission of atmospherically derived trace elements through an undeveloped, forested Maryland watershed

    USGS Publications Warehouse

    Scudlark, J.R.; Rice, Karen C.; Conko, Kathryn M.; Bricker, Owen P.; Church, T.M.

    2005-01-01

    The transmission of atmospherically derived trace elements (Al, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) was evaluated in a small, undeveloped, forested watershed located in north-central Maryland. Atmospheric input was determined for wet-only and vegetative throughfall components. Annual throughfall fluxes were significantly enriched over incident precipitation for most elements, although some elements exhibited evidence of canopy release (Mn) or preferential uptake (As, Cr, and Se). Stream export was gauged based on systematic sampling under varied flow regimes. Particle loading appears to contribute significantly to watershed export (> 10%) for only As, Pb, and Fe, and then only during large precipitation/runoff events. The degree of watershed transmission for each trace element was evaluated based on a comparison of total, net atmospheric input (throughfall) to stream export over an annual hydrologic cycle. This comparison indicates that the atmospheric input of some elements (Al, Cd, Ni, Zn) is effectively transmitted through the watershed, but other elements (Pb, As, Se, Fe, Cr, Cu) appear to be strongly sequestered, in the respective orders noted. Results suggest that precipitation and subsequent soil pH are the primary factors that determine the mobility of sequestered trace element phases.To further resolve primary atmospheric and secondary weathering components, the geochemical model NETPATH was applied. Results indicate that minerals dissolved include chlorite, plagioclase feldspar, epidote, and potassium feldspar; phases formed were kaolinite, pyrite, and silica. The model also indicates that weathering processes contribute negligible amounts of trace elements to stream export, indicative of the unreactive orthoquartzite bedrock lithology underlying the watershed. Thus, the stream export of trace elements primarily reflects atmospheric deposition to the local watershed.

  1. U.S. Geological Survey Trace Elements and related reports through 1953

    USGS Publications Warehouse

    Wallace, Jane H.; Blatcher, Virginia K.; Smith, Harriet B.

    1954-01-01

    This report combines and brings up-to-date the information previously given in Trace Elements Investigations Report 325, "Numerical list of U.S. Geological Survey Trace Elements Reports to April 30, 1953," and Trace Elements Investigations Report 301, "Topical index and bibliography of U.S. Geological Survey Trace Elements and related reports." Part I is a numerical list of U.S. Geological Survey Trace Elements Investigations and Memorandum reports. It supersedes TEI-325. This part lists not only reports (followed by a date) that have been transmitted to the U.S. Atomic Energy Commission, but also reports in preparation (followed by an asterisk) for which tentative titles were available on December 31, 1953. Reports that have been published are indicated by the abbreviation of the medium of publication. (See also part II.) Part II is a reference guide to Trace Elements and related reports that are available to the public; this part supersedes Part 2 of the TEI-301 (published as Geological survey Circular 281). These reports are grouped according to the type of publication or release. Abstracts published in Nuclear Science Abstracts are not included in Part II, although certain TEI and TEM reports, the abstracts of which have been published in NSA, are so indicated in Part I. Publications in process on December 31, 1953, are designated by an asterisk. Part III is a finding list of states, areas, and subjects. It is based on information derived mostly from the titles of reports and, where titles are of a general nature, from a cursory review of the reports. This list is not a complete index of the information given in Trace Elements and related reports, but is designed to find subjects of major interest. Because of the numerous entries for Colorado and Utah, information has been listed by counties and, where possible, by subject under these states. Other states have county listings only if a county is included in the title of a report; otherwise, areas may be listed separately under the state. Major subjects are listed separately in the index and also where appropriate under states. Analytical methods and subjects related to analytical research are listed under Analytical Methods and Research, but not separately throughout the index. Most mineralogic studies are included under the heading Mineralogy, but are not necessarily listed according to location. Part IV is a finding list of authors. The words “with” and “and” are used to indicate seniority of authorship. For example, a listing of Jones and Brown indicates that Jones is the senior author. A listing of Jones with Brown indicates that Brown is the senior author. In both parts III and IV all Trace Elements reports are listed, as well as other related reports that have not been issued as Trace Elements reports. The following standard abbreviations have been used: TEI, Trace Elements Investigations report; TEM, Trace Elements Memorandum report; P, Professional Paper; B, Bulletin; C, Circular; J, Journal; OF, open file; TIS, Technical Information Service release; NSA, Nuclear Science Abstracts; QM, Quadrangle Map Series; and OM, Oil and Gas map or Mineral Investigations map or report.

  2. Investigation of trace elements in ancient pottery from Jenini, Brong Ahafo region, Ghana by INAA and Compton suppression spectrometry

    NASA Astrophysics Data System (ADS)

    Nyarko, B. J. B.; Bredwa-Mensah, Y.; Serfor-Armah, Y.; Dampare, S. B.; Akaho, E. H. K.; Osae, S.; Perbi, A.; Chatt, A.

    2007-10-01

    Concentrations of trace elements in ancient pottery excavated from Jenini in the Brong Ahafo region of Ghana were determined using instrumental neutron activation analysis (INAA) in conjunction with both conventional and Compton suppression counting. Jenini was a slave Camp of Samory Toure during the indigenous slavery and the Trans-Atlantic slave trade. Pottery fragments found during the excavation of the grave tombs of the slaves who died in the slave camps were analysed. In all, 26 trace elements were determined in 40 pottery fragments. These elemental concentrations were processed using multivariate statistical methods, cluster, factor and discriminant analyses in order to determine similarities and correlation between the various samples. The suitability of the two counting systems for determination of trace elements in pottery objects has been evaluated.

  3. Environmental influence on trace element levels in human hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limic, N.; Valkovic, V.

    1986-12-01

    Trace element content of human hair depends on many factors. It has been shown by a large number of investigators that environmental factors play an important role. Elements from air particulates, water, shampoo or other media get incorporated into the hair structure. Here a model is proposed in which different contributions to trace element levels in human hair are factorized and the environmental contribution to the radial and longitudinal concentration profiles can be calculated. With the proper understanding of environmental contamination, hair analysis has better chances of being used as a diagnostic tool.

  4. Isotopic and Trace Element Compositions of Antarctic Micrometeorites and Comparison with IDPs

    NASA Astrophysics Data System (ADS)

    Stadermann, F. J.; Olinger, C. T.

    1992-07-01

    Antarctic micrometeorites (AMMs) show resemblances and differences to both stratospheric interplanetary dust particles (IDPs) and chondritic meteorites, but the exact nature of this relationship has yet to be established. We measured Ne, H, C, and N isotopic compositions, as well as trace element abundances in several AMMs in order to compare the results to similar measurements of IDPs (Stadermann, 1991). AMMs for this study were collected near Cap-Prudhomme (Maurette et al., 1989), and optically selected (Olinger et al., 1990). Noble gases of 23 selected AMMs were extracted through laser vaporization. Nine of these particles contained implanted solar Ne and one showed a clear signature from spallogenic Ne, confirming their extraterrestrial origin. We selected fragments from 6 of these particles, plus 2 containing apparent Ne excess and one with a roughly chondritic bulk chemistry but immeasurably low Ne, for further analyses. Secondary ion mass spectrometry (SIMS) was used to measure the H, C, and N isotopic compositions. These measurements turned out to be difficult, since the concentrations of H and C in the analyzed samples were significantly lower than in IDPs. The low concentration of C also affected the N isotopic measurements because N could only be measured as CN-. We were able to measure H in 9, as well as C and N in 3 AMMs. All measurements yielded isotopically normal results. Previous determinations of the O isotopic compositions of the same samples (Virag, pers. comm.) also gave no indication of isotopic anomalies. These results are significantly different from measurements of IDPs, where isotopic anomalies in H and N were found in roughly 1/2 and 1/3 of the particles, respectively. SIMS was also used to measure the rare earth and trace element abundances in up to 4 different fragments of 6 AMMs. Although most particles had roughly chondritic abundances, anomalous concentrations were found for Ca, Li, Co, Ni, and Ba. Significant Ca depletions up to 0.03 x C1 were observed in 5 out of 6 particles. This effect is well known from IDPs but nonetheless little understood. Enrichments up to 10 x C1 in Li and up to 100 x C1 in Ba were detected in 4 particles each. The Ba enrichment in AMMs has been observed before and can most likely be attributed to terrestrial contamination (Maurette et al., 1992). The origin of the unusual Li enrichment is unknown. Ni was depleted in all analyzed particles and was strongly correlated with Co, whose depletions relative to C1 were always smaller than for Ni. In the particle with the largest Ni-Co depletion, a melted sphere, this effect was accompanied by an Fe depletion. The Fe/Si, Co/Si and Ni/Si ratios relative to C1 were (0.4, 0.06, 0.02). Similar correlated depletions of Fe, Co, and Ni were also found in 2 out of 13 IDPs with otherwise chondritic abundances (Stadermann, 1991). The ratios of their Fe, Co, Ni depletions were (0.2, 0.07, 0.01) and (0.3, 0.03, 0.01), respectively. Interestingly, these 2 IDPs also contained H with isotopically normal composition and C concentrations that were too low for C and N isotopic measurements. One of these particles was a melted spherule. All these similarities suggest that some AMMs and some IDPs may have close relationships, although AMMs and IDPs in general do not represent the same class of extraterrestrial material. Maurette M. et al. (1989) Lunar Planet. Sci. 20, 644-645. Maurette M. et al. (1992) Lunar Planet. Sci. 23, 859-860. Olinger C.T. et al. (1990) Earth Planet. Sci. Lett. 100, 77-93. Stadermann F.J. (1991) Lunar Planet. Sci. 22, 1311-1312.

  5. Trace element biomonitoring using mosses in urban areas affected by mud volcanoes around Mt. Etna. The case of the Salinelle, Italy.

    PubMed

    Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro

    2012-08-01

    Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.

  6. Intercropping with white lupin (Lupinus albus L.); a promising tool for phytoremediation and phytomining research

    NASA Astrophysics Data System (ADS)

    Wiche, Oliver; Székely, Balazs; Moschner, Christin; Heilmeier, Hermann

    2015-04-01

    In recent studies root-soil interactions of white lupine (Lupinus albus L.) have drawn special attention to researchers due to its particularly high potential to increase bioavailability of phosphorous (P) and trace nutrients in soils. In mixed cultures, white lupine has the ability to mobilize P and trace nutrients in soil in excess of its own need and make this excess available for other intercropped companion species. While improved acquisition of P and improved yield parameters have mostly been documented in cereal-lupine intercrops, compared to sole crops, only a few recent studies have evidenced similar effects for trace elements e.g. Fe, Zn and Mn. In this preliminary study we tried to obtain more information about the mobilization of trace elements due to intercropping under field conditions. We hypothesize, that processes that lead to a better acquisition of trace nutrients might also affect other trace elements what could be useful for phytoremediation and phytomining research. Here we report the results of a semi-field experiment were we investigated the effects of an intercropping of white lupine with oat (Avena sativa L.) on the concentrations of trace metals in shoots of oat. We investigated the effects on 12 trace elements, including 4 elements with relevance for plant nutrition (P, Fe, Mn, Zn) and 8 trace elements, belonging to the group of metalloids, lanthanides and actinides with high relevance in phytoremediation (Cd, Pb Th, U) and phytomining research (Sc, La, Nd, Ge). The experiment was carried out on a semi-field lysimer at the off-site soil recycling and remediation center in Hirschfeld (Saxony, Germany). To test the intercropping-dependent mobilization of trace metals in soil and enhanced uptake of elements by oat, white lupine and oat were cultivated on 20 plots (4 m² each) in monocultures and mixed cultures and two different white lupin /oat-ratios (11% and 33%, respectively) applying various treatments. The geometrical arrangement of plots was randomized and every treatment was fivefold replicated. Soil solution was collected weekly with plastic suction cups. Concentrations of trace metals in shoots of oat and soil solution were measured with ICP-MS. As a result, we found that both, concentrations of trace elements in oat plants, as well as the mobility of P and trace metals in soil solution was increased by an intercropping with white lupine. Mixed culture of oat with 11% white lupin significantly increased the concentrations of the trace nutrients Fe, Mn and Zn, as well as the concentrations of the trace metals Pb, La, Nd, Sc, Th and U in tissues of oat. Surprisingly, mixed cultures with 33 % white lupin did not significantly affect trace metal concentrations in oat, what might be the consequence of an increasing competition of roots of white lupin and oat for nutrients and trace metals. In conclusion we found that mixed cultures of white lupin with cereals might be a powerful tool for enhanced phytoremediation and phytomining. However, processes involved in the physiochemical mechanism of element uptake as affected by the oat/white lupin co-cultivation remain unknown and further studies on this topic are planned. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  7. The Interstellar 7Li/6Li Ratio in the Diffuse Gas Near IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, A. M.; Taylor, C. J.; Federman, S. R.; Lambert, D. L.

    2010-11-01

    Supernova remnants are believed to be the primary acceleration sites of Galactic cosmic rays (GCR), which are essential to gas-phase interstellar chemistry since they are a major source of ionization in both diffuse and dense environments. The interaction of accelerated particles with interstellar gas will also synthesize isotopes of the light elements Li, Be, and B through the spallation of CNO nuclei (producing all stable LiBeB isotopes) and through α+α fusion (yielding 6Li and 7Li, only). Type II supernovae may provide an additional source of 7Li and 11B during core collapse through neutrino-induced spallation in the He and C shells of the progenitor star (the ν-process). However, direct observational evidence for light element synthesis resulting from cosmic-ray or neutrino-induced spallation is rare. Here, we examine 7Li/6Li isotope ratios along four lines of sight through the supernova remnant IC 443 using observations of the Li I λ6707 doublet made with the Hobby-Eberly Telescope (HET) at McDonald Observatory. The 7Li/6Li ratio in the general interstellar medium is expected to be similar to the ratio of ~12 that characterizes solar system material. A local enhancement in the cosmic-ray flux will act to lower 7Li/6Li, yielding a ratio of ~2 when cosmic rays dominate Li synthesis. Gamma-ray emission from IC 443 provides strong evidence for the interaction of cosmic rays accelerated by the remnant with the ambient atomic and molecular gas. Yet this material has also been contaminated by the ejecta of a Type II supernova, which should be enriched in 7Li. We are seeking 7Li/6Li ratios that are either higher than the solar system ratio as a result of the ν-process or lower due to cosmic-ray spallation. Since the fine structure separation of the Li I doublet is comparable to the isotope shift (~7 km s-1) and each fine structure line is further split into hyperfine components, the velocity structure along the line of sight must be carefully constrained if meaningful 7Li/6Li ratios are to be determined. In our analysis, the strongest components seen in K I and CH are used to synthesize the complex Li I profiles. We will discuss the implications of our results on 7Li/6Li (and Li/K) ratios in the context of Li production by Type II supernovae.

  8. [Contents of macromineral and trace elements in spirulina (Arthrospira platensis) from France, Chad, Togo, Niger, Mali, Burkina-Faso and Central African Republic].

    PubMed

    Vicat, Jean-Paul; Doumnang Mbaigane, Jean-Claude; Bellion, Yves

    2014-01-01

    Data on mineral elements in spirulinas being limited, we analyzed macrominerals and trace elements of samples from France and Africa. Spirulinas cultivated in France have a composition in macromineral elements similar to those of the literature. The entire contents of trace elements are low. Unlike marine cyanobacteria, they do not concentrate rare-earth elements. Spirulina harvested in Chad has high levels in macrominerals and trace elements, due to traditional drying and harvesting methods. Rare-earth element levels are attributed to this pollution and not to their concentration in spirulinas, because rare-earth element normalized profiles of spirulina are strictly parallel to those of ouadis mud and very different from those of ouadis water. Despite the sometimes high content of total As, normal water consumption in Chad presents no health problems. Spirulinas grown in Togo, Niger, Mali, Burkina-Faso and Central African Republic have chemical compositions similar to those of Chad spirulinas, but with a lower content of macromineral and trace elements, reflecting a lower mineral pollution. Rare-earth element normalized patterns dismiss an aeolian pollution and the pollution is rather of pedological origin. They show no toxicity problem except spirulinas from Burkina-Faso, whose Pb content is too high. The variability of composition of spirulinas can be largely attributed to the mineral pollution of the samples. Significant levels of rare-earth elements sometimes found in the literature reflect this pollution. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements.

    PubMed

    Medvedev, Nickolay S; Shaverina, Anastasiya V; Tsygankova, Alphiya R; Saprykin, Anatoly I

    2016-08-01

    The paper presents a combined technique of germanium dioxide analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) with preconcentration of trace elements by distilling off matrix and electrothermal (ETV) introduction of the trace elements concentrate into the ICP. Evaluation of metrological characteristics of the developed technique of high-purity germanium dioxide analysis was performed. The limits of detection (LODs) for 25 trace elements ranged from 0.05 to 20ng/g. The accuracy of proposed technique is confirmed by "added-found" («or spiking») experiment and comparing the results of ETV-ICP-AES and ICP-AES analysis of high purity germanium dioxide samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A soil sampling reference site: the challenge in defining reference material for sampling.

    PubMed

    de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Jacimovic, Radojko; Jeran, Zvonka; Sansone, Umberto; van der Perk, Marcel

    2008-11-01

    In the frame of the international SOILSAMP project, funded and coordinated by the Italian Environmental Protection Agency, an agricultural area was established as a reference site suitable for performing soil sampling inter-comparison exercises. The reference site was characterized for trace element content in soil, in terms of the spatial and temporal variability of their mass fraction. Considering that the behaviour of long-lived radionuclides in soil can be expected to be similar to that of some stable trace elements and that the distribution of these trace elements in soil can simulate the distribution of radionuclides, the reference site characterised in term of trace elements, can be also used to compare the soil sampling strategies developed for radionuclide investigations.

  11. Pituitary gland levels of mercury, selenium, iron, and zinc in an Alzheimer`s disease study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornett, C.R.; Markesbery, W.R.; Wekstein, D.R.

    1996-12-31

    Mercury, iron, selenium, and zinc imbalances have been observed in comparisons between Alzheimer`s disease (AD) and control subject brains. Analyses of the pituitary gland have demonstrated that this organ retains relatively high concentrations of trace elements, including mercury, iron, and zinc. Our previous work has shown that the pituitary glands of AD and control subjects are typically higher in these trace elements than brain samples from the same subject. Instrumental neutron activation analysis (INAA) was used to compare the pituitary trace element levels of AD and control subjects. This study also describes the intrasubject relationships of brain trace element levelsmore » to those in the pituitary gland of AD and control subjects.« less

  12. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0

  13. Immunohistochemical localization of carbonic anhydrase isozyme II in the gustatory epithelium of the adult rat.

    PubMed

    Daikoku, H; Morisaki, I; Ogawa, Y; Maeda, T; Kurisu, K; Wakisaka, S

    1999-06-01

    The distribution of carbonic anhydrase isozyme II (CA II)-like immunoreactivity (-LI) in the gustatory epithelium was examined in the adult rat. In the circumvallate and foliate papillae, CA II-LI was observed in the cytoplasm of the spindle-shaped taste bud cells, with weak immunoreaction in the surface of the gustatory epithelium. No neuronal elements displayed CA II-LI in these papillae. There was no apparent difference in the distribution pattern between the anterior and posterior portions of the foliate papillae. In immunoelectron microscopy, immunoreaction products for CA II were diffusely distributed in the entire cytoplasm of the taste bud cells having dense round granules at the periphery of the cells. No taste bud cells displaying CA II-LI were detected in the fungiform papillae, but a few thick nerve fibers displayed CA II-LI. In the taste buds of the palatal epithelium, neither taste bud cells nor neuronal elements exhibited CA II-LI. The present results indicate that CA II was localized in the type I cells designated as supporting cells in the taste buds located in the posterior lingual papillae of the adult animal.

  14. Passive degassing at Nyiragongo (D.R. Congo) and Etna (Italy) volcanoes: the chemical characterization of the emissions and assessment of their uptake of trace elements emissions on the local environment

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco

    2014-05-01

    Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.

  15. Geochemical and Crystallographic Study of Turbo Torquatus (Mollusca: Gastropoda) From Southwestern Australia

    NASA Astrophysics Data System (ADS)

    Roger, L. M.; George, A. D.; Shaw, J.; Hart, R. D.; Roberts, M. P.; Becker, T.; Evans, N. J.; McDonald, B. J.

    2018-01-01

    Shells of the marine gastropod Turbo torquatus were sampled from three different locations along the Western Australian coastline, namely Marmion Lagoon (31°S), Rottnest Island (32°S), and Hamelin Bay (34°S). Marmion Lagoon and Rottnest Island have similar sea surface temperature ranges that are ˜1°C warmer than Hamelin Bay, with all sites influenced by the warm southward flowing Leeuwin Current. The shells were characterized using crystallographic, spectroscopic, and geochemical analyses. Shell mineral composition varies between the three sites suggesting the influence of sea surface temperature, oxygen consumption, and/or bedrock composition on shell mineralogy and preferential incorporation and/or elemental discrimination of Mg, P, and S. Furthermore, T. torquatus was found to exert control over the incorporation of most, if not all, the elements measured here, suggesting strong biological regulation. At all levels of testing, the concentrations of Li varied significantly, which indicates that this trace element may not be a suitable environmental proxy. Variation in Sr concentration between sites and between specimens reflects combined environmental and biological controls suggesting that Sr/Ca ratios in T. torquatus cannot be used to estimate sea surface temperature without experimentally accounting for metabolic and growth effects. The mineral composition and microstructure of T. torquatus shells may help identify sea surface temperature variations on geological time scales. These findings support the previously hypothesized involvement of an active selective pathway across the calcifying mantle of T. torquatus for most, if not all, the elements measured here.

  16. Comprehensive mass spectrometric analysis of novel organic semiconductor molecules

    NASA Astrophysics Data System (ADS)

    Prada, Svitlana

    This work presents a comprehensive mass spectrometry (MS) study of novel organic semiconductor molecules including ion mobility/reactivity measurements and trace elemental analysis. The organic molecules investigated here are important semiconductor materials for molecular electronic devices such as Organic Field-Effect Transistors (OFETs) and Light Emitted Diodes (LED). A high-performance orthogonal time-of flight mass spectrometer (TOF-MS) in combination with a matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure was used to perform MALDI/TOF analyses of pentacene and some of its derivatives with and without an added matrix. The observation of ion-molecule reactions between "cold" analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI/TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene. Furthermore, we reported ion mobility measurements of functionalized pentacene ions with a modified triple quadrupole mass spectrometer fitted with an ion molecule reactor (IMR). The IMR is equipped with a variable axial electrostatic drift field (ADF) and is able to trap ions for a prolong period of time. These capabilities were successfully employed in the measurement of ion mobilities in different modes of the IMR operation. Theoretical modeling of the drift dynamics and the special localization of the large ion packet was successfully implemented. The contribution of the quadrupole RF field to the drift dynamics also was taken into consideration. The IMR was successfully employed in the ion-molecule reactions study of four functionalized pentacene derivatives such as TIPS, o-TIPS, 6,13-bis-[(triisopropylsilyl)-ethynyl]-pentacene-2,3-dicarbonitrile (TIPS(CN)2), and 6,13-bis-[(triisopropylsilyl)-ethynyl]-pentacene-2,3,9,10-tetracarbonitrile (TIPS(CN)4). Details of the IMR operation in this mode are extensively discussed. The purity of the starting material is one of the most important parameters for the fabrication of a molecular electronic device. We report the method of determination of trace elemental impurities (Li, Na, Al, Mg, Be, Pb, Mn, Co, Ti, Sn, Cu, Cr, V, Zn, Fe, Ca, K and Ni) in organic semiconductor materials, such as Tetracene, Anthracene, Pentacene, TIPS and Rubrene, using an inductively coupled plasma quadrupole mass spectrometer (ICP-MS) fitted with a dynamic reaction cell (DRC). The determination of Fe, Ca, K and Ni in the organic semiconductor materials was carried out using NH3 as a reaction gas in the DRC mode to obviate the effect of polyatomic isobaric interferences. The other trace elements such as Li, Na, Al, Mg, Be, Pb, Mn, Co, Ti, Sn, Cu, Cr, V and Zn have been determined under standard operating conditions.

  17. Dissociation of diatomic molecules and the exact-exchange Kohn-Sham potential: the case of LiF

    NASA Astrophysics Data System (ADS)

    Makmal, Adi; Kuemmel, Stephan; Kronik, Leeor

    2011-03-01

    The incorrect fractional-charge dissociation of stretched diatomic molecules, predicted by semi-local exchange-correlation functionals, is revisited. This difficulty can be overcome with asymptotically correct non-local potential operators, but should also be absent in exact Kohn-Sham theory, where the potential is local. Here, we show, for the illustrative case of the LiF dimer, that the exact-exchange local Kohn-Sham potential, constructed within the Krieger, Li, and Iafrate (KLI) approximation, can lead to binding energy and charge dissociation curves that are qualitatively correct. This correct behavior is traced back to a characteristic ``step'' structure in the local exchange potential and its relation to the Kohn-Sham eigenvalues is analyzed.

  18. Mental states and activities in Danish narratives: children with autism and children with language impairment.

    PubMed

    Engberg-Pedersen, Elisabeth; Christensen, Rikke Vang

    2017-09-01

    This study focuses on the relationship between content elements and mental-state language in narratives from twenty-seven children with autism (ASD), twelve children with language impairment (LI), and thirty typically developing children (TD). The groups did not differ on chronological age (10;6-14;0) and non-verbal cognitive skills, and the groups with ASD and TD did not differ on language measures. The children with ASD and LI had fewer content elements of the storyline than the TD children. Compared with the TD children, the children with ASD used fewer subordinate clauses about the characters' thoughts, and preferred talking about mental states as reported speech, especially in the form of direct speech. The children with LI did not differ from the TD children on these measures. The results are discussed in the context of difficulties with socio-cognition in children with ASD and of language difficulties in children with LI.

  19. Trace Element Analysis of Biological Samples.

    ERIC Educational Resources Information Center

    Veillon, Claude

    1986-01-01

    Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…

  20. Trace elements in streambed sediments of small subtropical streams on O'ahu, Hawai'i: Results from the USGS NAWQA program

    USGS Publications Warehouse

    De Carlo, E. H.; Tomlinson, M.S.; Anthony, S.S.

    2005-01-01

    Data are presented for trace element concentrations determined in the <63 ??m fraction of streambed sediment samples collected at 24 sites on the island of O'ahu, Hawai'i. Sampling sites were classified as urban, agricultural, mixed (urban/agricultural), or forested based on their dominant land use, although the mixed land use at selected sampling sites consisted of either urban and agricultural or forested and agricultural land uses. Forest dominated sites were used as reference sites for calculating enrichment factors. Trace element concentrations were compared to concentrations from studies conducted in the conterminous United States using identical methods and to aquatic-life guidelines provided by the Canadian Council of Ministers of the Environment. A variety of elements including Pb, Cr, Cu and Zn exceeded the aquatic-life guidelines in selected samples. All of the Cr and Zn values and 16 of 24 Cu values exceeded their respective guidelines. The potential toxicity of elements exceeding guidelines, however, should be considered in the context of strong enrichments of selected trace elements attributable to source rocks in Hawai'i, as well as in the context of the abundance of fine-grained sediment in the streambed of O'ahu streams. Statistical methods including cluster analysis, Kruskal-Wallis non-parametric test, correlation analysis, and principal component analysis (PCA) were used to evaluate differences and elucidate relationships between trace elements and sites. Overall, trace element distributions and abundances can be correlated to three principal sources of elements. These include basaltic rocks of the volcanic edifice (Fe, Al, Ni, Co, Cr, V and Cu), carbonate/seawater derived elements (Mg, Ca, Na and Sr), and elements enriched owing to anthropogenic activity (P, Sn, Cd, Sn, Ba and Pb). Anthropogenic enrichment gradients were observed for Ba, Cd, Pb, Sn and Zn in the four streams in which sediments were collected upstream and downstream. The findings of this study are generally similar to but differ slightly from previous work on sediments and suspended particulate matter in streams, from two urban watersheds of O'ahu, Hawai'i. Inter-element associations in the latter were often stronger and indicated a mixture of anthropogenic, agricultural and basaltic sources of trace elements. Some elements fell into different statistical categories in the two studies, owing in part to differences in study design and the hydrogeological constraints on the respective study areas.

Top