Trace-fossil and storm-deposit relationships of San Carlos formation, west Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, C.L.; Bednarski, S.P.
1986-05-01
Two distinct assemblages of trace fossils are preserved in the storm deposits in delta-front facies of the Upper Cretaceous San Carlos Formation, west Texas. The assemblages represent two widely differing responses to storm deposition and sediment-trace-fossil relationships, indicating that other environmental parameters, probably water depth and oxygen levels, influenced trace-fossil distribution within the San Carlos delta front. Evidence of the storm-deposited nature of the sandstones includes a scoured basal contact, planar to hummocky cross-stratification, and a upper contact that is either ripple marked or is gradational with overlying shales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegan, J.R.; Curran, H.A.
Small-scale fluctuations in sea level were revealed by detailed analysis of trace fossil assemblages formed by infaunal organisms within the Lowville (Black River Grp.), Napanee, and Kings Falls limestones (Trenton Grp.) at Ingham Mills. The paleodepositional environment of the Lowville Limestone (LL) is interpreted as peritidal, representing the high intertidal to shallow subtidal zones. The trace fossil assemblages define clearly several fluctuations within this environment. Large, well-formed specimens of the trace fossil Beaconites barretti occur within tidal channel and levee beds of the LL. In other regions this trace fossil has consistently been associated with channel and levee beds, mostmore » commonly in fluvial settings. The occurrence of Beaconites in the LL extends the age range of this ichnogenus to Ordovician time (oldest previous record is Silurian) and broadens its paleoenvironment range. The Napanee (Np) and lower Kings Falls (KF), limestones have most commonly been described as being deposited in a lagoonal setting. Both formations contain well-preserved trace fossils; the primary difference being that the Np exhibits much lower trace and body fossil diversities than the KF. The low diversity of trace fossils in the Np was most likely the result of limiting environmental conditions such as low oxygen and/or hypersalinity. The higher diversity of trace fossils in the KF indicates that the ancient lagoon became increasingly controlled by normal marine conditions, and, therefore, hospitable to a more diverse group of organisms. The trace fossil assemblages of the Black River and Trenton Group limestones indicate that the infaunal organisms of these Ordovician communities were highly sensitive to small-scale sea-level fluctuations.« less
Stanley, T.M.; Feldmann, R.M.
1998-01-01
The Cambro-Ordovician Deadwood Formation and Aladdin Sandstone represent intertidal and subtidal, nearshore deposystems that contain few well-preserved body fossils, but contain abundant trace fossils. The present study uses the much neglected trace-fossil fauna to describe the diverse paleoenvironments represented in the Deadwood-Aladdin deposystems, and to better understand the environmental conditions that controlled benthic life in the Early Paleozoic. The Deadwood-Aladdin ichnotaxa can be separated into three distinct assemblages based on the changing sedimentologic and hydrodynamic conditions that existed across the Cambro-Ordovician shelf. Trace-fossil assemblages and corresponding lithofacies characteristics indicate that the Deadwood-Aladdin deposystems formed within an intertidal-flat and subtidal-shelf environment. Based on the distribution and numbers of preserved ichnotaxa, the intertidal flat can be subdivided further into an ecologically stressful inner sand-flat environment, and a more normal marine outer sand-flat environment, both of which belong to a mixed, Skolithos-Cruziana softground ichnofacies. The inner sand flat is characterized by low diversity, low numbers, and a general lack of complexly constructed ichnotaxa. Trace fossils common to both assemblages tend to be smaller in the inner flat compared to the outer sand flat. Taphonomic effects, such as substrate type and sediment heterogeneity, also aid in differentiating between the inner and outer sand-flat assemblages. The subtidal shelf environment is categorized in the Cruziana Ichnofacies. Ichnological evidence of periodic tempestite deposition and hardground development within this subtidal regime is manifested by high diversity and low abundance of ichnogenera.
Dysaerobic trace fossils and ichnofabrics in the upper Jurassic Kimmeridge Clay of southern England
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wignall, P.B.
The trace fossil suite from the Kimmeridge Clay is calibrated against an oxygen gradient derived from previous geochemical, lithological and shelly macrofaunal studies. Several soft-bodied trace markers appear to have tolerated lower oxygen tensions than even the hardiest shelly benthic macrofauna-a common occurrence in both recent and ancient dysaerobic settings. Lowest diversity trace fossil assemblages consist of Astacimorphichnus etchesi (new ichnotaxon), a small endostratal pascichnial trace attributed to pioneering polychaete populations. Ekdale and Masons' (1988) contention that fodinichnia dominate the lowest diversity and lowest oxygen settings is not substantiated as the only example of this feeding strategy, Rhizocorallium irregulare, ismore » encountered in moderately diverse trace fossil assemblages associated with a low diversity shelly macrofauna. Upper dysaerobic conditions are characterized by the development of a surface mixed layer and the consequent destruction of fine lamination. Tiering is only developed under normal oxygen conditions with Chondrites as the deepest trace. In contrast to many previous studies, Chondrites is never found in dysaerobic facies.« less
The potential of paleozoic nonmarine trace fossils for paleoecological interpretations
Maples, C.G.; Archer, A.W.
1989-01-01
Many Late Paleozoic environments have been interpreted as marine because of the co-occurrence of supposedly exclusively marine trace fossils. Beginning in the Late Ordovician, however, nonmarine trace-fossil diversity increased throughout the Paleozoic. This diversification of nonmarine organisms and nonmarine trace fossils was especially prevalent in Devonian and later times. Diversification of freshwater organisms is indicated by the large number of freshwater fish, arthropods, annelids and molluscs that had developed by the Carboniferous. In addition to diverse freshwater assemblages, entirely terrestrial vertebrate and invertebrate ecosystems had developed by the Devonian. This rapid diversification of freshwater and terrestrial organisms is inherently linked to development and diversification of land plants and subsequent shedding of large quantities of organic detritus in nonmarine and marginal-marine areas. Nearshore marine organisms and their larvae that are able to tolerate relatively short periods of lowered salinities will follow salt-water wedges inland during times of reduced freshwater discharge. Similarly, amphidromous marine organisms will migrate periodically inland into nonmarine environments. Undoubtedly, both of these processes were active in the Paleozoic. However, both processes are restricted to stream/distributary channels, interdistributary bays, or estuaries. Therefore, the presence of diverse trace-fossil assemblages in association with floodplain deposits is interpreted to reflect true nonmarine adaptation and diversity. Conversely, diverse trace-fossil assemblages in association with stream/distributary channel deposits, interdistributary-bay deposits, or estuarine deposits may reflect migration of salt-water wedges inland, or migration of marine organisms into freshwater environments (amphidromy), or both. ?? 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, R.A.; King, D.T. Jr.
The use of x-radiography has been applied to slabbed cores of Jurassic Smackover limestones from southwestern Alabama to enhance the complete petrologic description of the rocks. Through x-radiography, trace fossils have been revealed in what would otherwise appear to be homogeneous rock. In these biogenic structures, organic material, partly fecal in origin, is concentrated as infill packing in actively filled burrows. A microreducing environment within the burrow results in the mineralization by finely disseminated FeS/sub 2/. The density difference between FeS/sub 2/, which has a high absorption coefficient, and the surrounding calcium carbonate highlights the burrows in the x-radiographs. Thismore » characteristic burrow mineralization is shown well in the Smackover where a Zoophycus-Thalassinoides trace-fossil assemblage has been identified. Zoophycus, a feeding structure, is characterized by concave-upward traces with whorled peaks, and is best seen in slabs cut perpendicular to bedding. Thalassinoides is a dwelling structure characterized by a boxwork burrow system and is best seen in cores cut parallel to bedding. This assemblage is restricted to facies that is laterally persistent throughout the Smackover in most of Escambia County, Alabama. This trace-fossil assemblage is found in an oolitic pelletal packstone. This unit is overlain by an oolitic grainstone and is stratigraphically above a sparsely fossiliferous, laminated wackestone and packstone. Trace fossils in this horizon are abundant, but the traces are not found in stratigraphically adjacent lithofacies. Detecting these otherwise unseen trace fossils by x-radiography assisted the paleoenvironmental interpretation of this depositional facies as a low-energy subwave-base carbonate-shelf deposit.« less
Dinosaur Footprints and Other Ichnofauna from the Cretaceous Kem Kem Beds of Morocco
Ibrahim, Nizar; Varricchio, David J.; Sereno, Paul C.; Wilson, Jeff A.; Dutheil, Didier B.; Martill, David M.; Baidder, Lahssen; Zouhri, Samir
2014-01-01
We describe an extensive ichnofossil assemblage from the likely Cenomanian-age ‘lower’ and ‘upper’ units of the ‘Kem Kem beds’ in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous. PMID:24603467
Trace fossils in diatomaceous strata of Miocene Monterey Formation: their character and implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savdra, C.E.; Bottjer, D.J.
Younger parts of the Miocene Monterey Formation are commonly characterized by relatively unaltered diatomaceous strata. A common characteristic of these deposits is the preservation of varvelike lamination, indicative of deposition under anoxic or nearly anoxic conditions. Although laminated rock types are volumetrically dominant, bioturbated intervals are by no means rare, but little attention has been paid to the trace fossils themselves. Our study of trace fossils in the Monterey Formation demonstrated the significance of these biogenic structures in paleoenvironmental and paleoecologic analyses. In particular, trace fossils provide a means for detailed reconstruction of paleo-oxygenation conditions during Monterey deposition. Trace fossilsmore » in several Monterey sections exposed in central and southern California were examined in detail. At all localities, three major ichnofossil assemblages or ichnofacies were recognized: (1) Chondrites, (2) Planolites, and (3) Thalassinoides. The size and diversity of the three major ichnofacies and their lithologic associations suggest that the distribution of these facies is controlled primarily by the level of paleo-bottom water oxygenation. The Chondrites ichnofacies represents very low paleo-oxygen levels just above the anoxic threshold. The Planolites ichnofacies, with greater variety of larger burrow types, is indicative of slightly higher levels of oxygenation. Moderately to well-oxygenated conditions are suggested by the Thalassinoides ichnofacies. More detailed information on paleoenvironmental conditions can be gleaned by applying a refined trace-fossil tiering model. When used in detailed (centimeter-scale) vertical sequence analyses, this tiering model permits the translation of data on the composition, size parameters, and cross-cutting relationships of trace-fossil assemblages into relative paleo-oxygenation curves.« less
Mángano, M. Gabriela; Buatois, L.A.; West, R.R.; Maples, C.G.
1999-01-01
The trace fossil Asteriacites, recorded in Cambrian to Recent shallow- and deep-marine facie??s, is traditionally interpreted as the resting trace of asterozoans. Well-preserved specimens of A. lumbricalis are abundant in Pennsylvanian (Upper Carboniferous) shallow- and marginalmarine siliciclastic deposits of eastern Kansas and western Missouri. Detailed morphologic analysis of these specimens suggests that they record the activities of mobile epifaunal ophiuroids. Evidence of a brittle star (ophiuroid) producer rather than sea star (asteroid) is provided by (1) trace-fossil morphologic features reflecting the anatomy of the producer (e.g., well-differentiated central structure, slender vermiform arms) and ophiuroid burrowing technique (e.g., proximal arm expansion, arm branching), and (2) mode of occurrence (e.g., gregarious behavior, horizontal and vertical repetition). Vertical and horizontal repetition produces complex aggregates of A. lumbricalis that are interpreted either as escape structures (fugichnia) or as feeding structures, respectively. Ophiura texturata is proposed.as a modern analogue for the A. lumbricalis producer, based on inferred life habit and feeding behavior. Asteriacites lumbricalis is present in two different intertidal trace-fossil assemblages. The first assemblage is characterized by high diversity and records tidal flats developed outside of embayments under normal marine conditions. The second assemblage consists of A. lumbricalis together with a few other ichnotaxa and represents a depauperate association that developed in restricted tidal flats within an embayment or estuarine setting. This challenges the conventional view of Asteriacites as a normal-marine salinity indicator. Some echinoderms, and particularly asterozoans, penetrate and inhabit modern environments of depressed salinity. The presence of Asteriacites in Pennsylvanian marginal-marine facie??s of Kansas and Missouri provides evidence that ophiuroids had adapted to brackish-water conditions by the late Paleozoic.
Late Early Permian continental ichnofauna from Lake Kemp, north-central Texas, USA
Lucas, S.G.; Voigt, S.; Lerner, A.J.; Nelson, W.J.
2011-01-01
Continental trace fossils of Early Permian age are well known in the western United States from Wolfcampian (~. Asselian to Artinskian) strata, but few examples are known from Leonardian (~. Kungurian) deposits. A substantial ichnofauna from strata of the lower part of the Clear Fork Formation at Lake Kemp, Baylor County, Texas, augments the meager North American record of Leonardian continental trace fossil assemblages. Ichnofossils at Lake Kemp occur in the informally-named Craddock dolomite member of the Clear Fork Formation, which is 12-15. m above the local base of the Clear Fork. The trace-bearing stratum is an up-to-0.3. m thick, laminated to flaser-bedded, dolomitic siltstone that also contains mud cracks, raindrop impressions, microbially induced mat structures, and some land-plant impressions. We interpret the Craddock dolomite member as the feather-edge of a marine transgressive carbonate deposit of an irregular coastline marked by shallow bays or estuaries on the eastern shelf of the Midland basin, and the trace-fossil-bearing stratum at Lake Kemp is an unchannelized flow deposit on a muddy coastal plain. The fossil site at Lake Kemp yields a low to moderately diverse fauna of invertebrate and vertebrate traces. A sparse invertebrate ichnofauna consists of arthropod feeding and locomotion traces assigned to Walpia cf. W. hermitensis White, 1929 and Diplichnites gouldi Gevers in Gevers et al., 1971. Tetrapod footprints are most common and assigned to Batrachichnus salamandroides (Geinitz, 1861), cf. Amphisauropus kablikae (Geinitz and Deichm??ller, 1882), and Dromopus lacertoides (Geinitz, 1861), which represent small temnospondyl, seymouriamorph, and basal sauropsid trackmakers. Both the traces and sedimentary features of the fossil horizon indicate a freshwater setting at the time of track formation, and the trace assemblage represents the Scoyenia ichnofacies and the Batrachichnus ichnofacies in an overbank environment with sheet flooding and shallow ephemeral pools on an extensive coastal plain. The Lake Kemp tetrapod track assemblage is characteristic of the global Early Permian tetrapod ichnofauna found in red beds, which is dominated by a handful of ichnogenera that include Batrachichnus, Limnopus, Amphisauropus, Dromopus, Varanopus, Hyloidichnus, Ichniotherium and Dimetropus, which are the tracks of temnospondyls, seymouriamorphs, diadectomorphs, "pelycosaurs", "captorhinomorphs", and araeoscelids. The Lake Kemp tracks also further document the continuity of the ichnogenera Batrachichnus, Amphisauropus and Dromopus from Wolfcampian into Leonardian time and thus support the concept that Wolfcampian and Leonardian red-bed tetrapod footprints represent a single biostratigraphic assemblage. ?? 2011 Elsevier B.V.
Fauna and paleoecological setting of the La Meseta Formation (Eocene), Antarctica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldmann, R.M.; Wiedman, L.A.; Zinsmeister, W.J.
The La Meseta Formation, an Eocene sandstone from Seymour Island, Palmer Peninsula, Antarctica, has yielded a diverse fossil assemblage of body and trace fossils representative of a cool temperate, littoral to shallow sublittoral habitat. Over 61 taxa of macroinvertebrates, excluding gastropod body fossils, and more than 18 ichnogenera collected from the La Meseta represent the largest, most comprehensive and most diverse assemblage of Paleogene fossils from Antarctica. Included in the body fossil assemblage are species representative of at least 26 taxa of bivales, four taxa of echinoids, two of crinoids, two of ophiuroids, two of asteroids, one inarticulate and fourmore » articulate brachiopods, two barnacles, six decapod crustaceans, two cyclostome and two cheilostome bryozoans, a scaphopod and one coral. The traces include several burrow forms characteristic of the Skolithos ichnofacies of Seilacher (1967), several halo and rind burrows, gastropod predation borings, and abundant examples of teredid bivalve borings in lithified wood.Autecological analyses of the preserved organisms and environmental interpretations of the ichnogenera indicate a littoral to very shallow sublittoral environment of deposition, generally above wave base, for the la Meseta Sandstone. Modern congeneric descendants of the body fossils are known to inhabit both deep water and shallow water habitats. Of the 20 extant genera of bivalves reported from the La Meseta, 19 generally occur only in cool temperate habitats. Only one genus is known to occur south of 60/sup 0/. Most of the shallow water forms are known from cool temperate, austral regimes.« less
NASA Astrophysics Data System (ADS)
Jurkowska, Agata; Uchman, Alfred
2013-12-01
Jurkowska, A. and Uchman, A. 2013. The trace fossil Lepidenteron lewesiensis (Mantell, 1822) from the Upper Cretaceous of southern Poland. Acta Geologica Polonica, 63
Cretaceous Small Scavengers: Feeding Traces in Tetrapod Bones from Patagonia, Argentina
de Valais, Silvina; Apesteguía, Sebastián; Garrido, Alberto C.
2012-01-01
Ecological relationships among fossil vertebrate groups are interpreted based on evidence of modification features and paleopathologies on fossil bones. Here we describe an ichnological assemblage composed of trace fossils on reptile bones, mainly sphenodontids, crocodyliforms and maniraptoran theropods. They all come from La Buitrera, an early Late Cretaceous locality in the Candeleros Formation of northwestern Patagonia, Argentina. This locality is significant because of the abundance of small to medium-sized vertebrates. The abundant ichnological record includes traces on bones, most of them attributable to tetrapods. These latter traces include tooth marks that provde evidence of feeding activities made during the sub-aerial exposure of tetrapod carcasses. Other traces are attributable to arthropods or roots. The totality of evidence provides an uncommon insight into paleoecological aspects of a Late Cretaceous southern ecosystem. PMID:22253800
NASA Astrophysics Data System (ADS)
Chrząstek, Alina; Wypych, Monika
2018-03-01
The Coniacian quartz sandstones (Żerkowice Member, Rakowice Wielkie Formation) that crop out at quarries near Czaple-Nowa Wieś Grodziska (North Sudetic Synclinorium) contain a low-diversity assemblage of trace fossils: Gyrochorte isp., Ophiomorpha nodosa (Lundgren, 1891), Ophiomorpha isp., Phycodes cf. curvipalmatum (Pollard, 1981), ?Phycodes isp., Planolites cf. beverleyensis (Billings, 1862), Thalassinoides paradoxicus (Woodward, 1830) and ?Thalassinoides isp. Moreover, interesting compound burrow systems, here referred to as Thalassinoides-Phycodes cf. palmatus and ?Thalassinoides-Phycodes, were recognised at the Czaple Quarry. Additionally, ?Gyrochorte isp., Phycodes cf. flabellum (Miller and Dyer, 1878) and ?Treptichnus isp. were encountered at correlative levels in the Rakowice Małe Quarry. Some of these ichnotaxa have not been recorded previously from Coniacian sandstones of the Żerkowice Member. Additionally, in slabs of these sandstones, the gastropod Nerinea bicincta (Bronn, 1836) and the bivalve Lima haidingeri (Zittel, 1866) were found. These interesting finds, in particular the gastropods, were already noted from the study area in the first half of the twentieth century by (Scupin (1912-1913)). Ethologically, the trace fossil assemblage is represented by domichnia or domichnia/fodinichnia (Ophiomorpha, Thalassinoides), fodinichnia (Phycodes) and pascichnia (Gyrochorte, Planolites). The compound burrow systems (Thalassinoides-Phycodes) are interpreted as dwelling/feeding structures. The possible tracemakers are crustaceans (Ophiomorpha, Thalassinoides) or worm-like animals (annelids and other) (Planolites, ?Phycodes, Gyrochorte and ?Treptichnus). The assemblage of trace fossils is characteristic of the Skolithos ichnofacies and Cruziana ichnofacies, typical of shallow-marine settings. Ichnological studies, as well as the presence of accompanying fossils (bivalves, gastropods), confirm the palaeoenvironmental reconstruction of the Żerkowice Member sandstones by (Leszczyński (2010)). That author interpreted the Coniacian sandstones as bar and storm deposits laid down in a shallow epicontinental sea (mainly the foreshore-upper shoreface; up to the middle shoreface) under normal oxygenation and salinity, in soft substrate, above fair-weather wave base. The deposition of the Żerkowice Member sandstones is linked to a regression that started after uplift of the southeastern part of the North Sudetic Synclinorium.
Trace-fossil assemblages with a new ichnogenus in "spotted"
NASA Astrophysics Data System (ADS)
Šimo, Vladimír; Tomašových, Adam
2013-10-01
Highly-bioturbated "spotted" limestones and marls (Fleckenmergel-Fleckenkalk facies) of the Early Jurassic, which were deposited in broad and recurrent deep-shelf habitats of the Northern Tethys, are characterized by rare benthic carbonate-producing macroinvertebrates. To address this paradox, we analyse trace-fossil assemblages in a ~85 m-thick succession of Pliensbachian spotted deposits (Zliechov Basin, Western Carpathians). They are dominated by infaunal and semi-infaunal deposit-feeders, with 9 ichnogenera and pyritized tubes of the semi-infaunal foraminifer Bathysiphon, being dominated by Chondrites, Lamellaeichnus (new ichnogenus), and Teichichnus. Lamellaeichnus, represented by a horizontal basal cylindrical burrow and an upper row of stacked convex-up gutters, was produced by a mobile deposit-feeder inhabiting shallow tiers because it is crossed by most other trace fossils. We show that the spotty appearance of the deposits is generated by a mixture of (1) dark, organic-rich shallow- and deep-tier traces (TOC = 0.16-0.36), and (2) light grey, organic-poor mottled or structurless sediment (TOC = 0.09-0.22). The higher TOC in shallow-tier burrows of Lamellaeichnus demonstrates that uppermost sediment layers were affected by poor redox cycling. Such conditions imply a limited mixed-layer depth and inefficient nutrient recycling conditioned by hypoxic bottom-waters, allowed by poor circulation and high sedimentation rates in depocenters of the Zliechov Basin. Hypoxic conditions are further supported by (1) dominance of trace-fossils produced by infaunal deposit feeders, (2) high abundance of hypoxiatolerant agglutinated foraminifer Bathysiphon, and (3) high abundance of Chondrites with ~0.5 mm-sized branches. Oxygen-deficient bottom-conditions can thus simultaneously explain the rarity of benthic carbonate-producing macroinvertebrates and high standing abundance of tolerant soft-shell and agglutinated organisms in spotted deposits.
Trace fossil assemblages in the tide-dominated estuarine system: Ameki Group, south-eastern Nigeria
NASA Astrophysics Data System (ADS)
Ekwenye, O. C.; Nichols, G.; Okogbue, C. O.; Mode, A. W.
2016-06-01
A systematic ichnological analysis with sedimentological study of the Eocene Ameki Group in south-eastern Nigeria, was conducted to infer depositional and biogenic processes operating during basin fill, identify discontinuities using substrate controlled ichnofacies, and identify the paleocological conditions that affected the diversity of the trace fossils. The Ameki Group represents a tide-dominated estuarine system characterised by a range of trace fossils assemblages. Eighteen individual ichnogenera and nineteen ichnospecies observed in the study area, were grouped into six recurring ichnofacies namely Scoyenia, Psilonichnus, Skolithos, Cruziana, Glossifungites and Teredolites. Skolithos and Cruziana ichnofacies are predominant in the estuarine deposits indicating that the sedimentary successions of the Eocene are dominantly of moderate to high energy marginal marine environments. The estuarine deposits (senus stricto) were controlled by low to fluctuating salinity levels, high sedimentation rate and fluctuating hydrodynamic energy. These resulted in the occurrence of low diversity of Scoyenia and Teredolites ichnofacies and low to moderate ichnodiversity of mixed Skolithos and depauperate Cruziana ichnofacies. Low levels of dissolved oxygen in quiescent water-embayment (open estuarine) resulted in low diversity of impoverished Cruziana ichnofacies. Glossifungites ichnofacies marked an amalgamated sequence boundary/marine flooding and an initial flooding surface at the base of the tidally influenced fluvial deposits.
Kooyman, Robert M; Wilf, Peter; Barreda, Viviana D; Carpenter, Raymond J; Jordan, Gregory J; Sniderman, J M Kale; Allen, Andrew; Brodribb, Timothy J; Crayn, Darren; Feild, Taylor S; Laffan, Shawn W; Lusk, Christopher H; Rossetto, Maurizio; Weston, Peter H
2014-12-01
• Have Gondwanan rainforest floral associations survived? Where do they occur today? Have they survived continuously in particular locations? How significant is their living floristic signal? We revisit these classic questions in light of significant recent increases in relevant paleobotanical data.• We traced the extinction and persistence of lineages and associations through the past across four now separated regions-Australia, New Zealand, Patagonia, and Antarctica-using fossil occurrence data from 63 well-dated Gondwanan rainforest sites and 396 constituent taxa. Fossil sites were allocated to four age groups: Cretaceous, Paleocene-Eocene, Neogene plus Oligocene, and Pleistocene. We compared the modern and ancient distributions of lineages represented in the fossil record to see if dissimilarity increased with time. We quantified similarity-dissimilarity of composition and taxonomic structure among fossil assemblages, and between fossil and modern assemblages.• Strong similarities between ancient Patagonia and Australia confirmed shared Gondwanan rainforest history, but more of the lineages persisted in Australia. Samples of ancient Australia grouped with the extant floras of Australia, New Guinea, New Caledonia, Fiji, and Mt. Kinabalu. Decreasing similarity through time among the regional floras of Antarctica, Patagonia, New Zealand, and southern Australia reflects multiple extinction events.• Gondwanan rainforest lineages contribute significantly to modern rainforest community assembly and often co-occur in widely separated assemblages far from their early fossil records. Understanding how and where lineages from ancient Gondwanan assemblages co-occur today has implications for the conservation of global rainforest vegetation, including in the Old World tropics. © 2014 Botanical Society of America, Inc.
Bown, T.M.; Kraus, M.J.
1983-01-01
The ichnofossil assemblage of the lower Eocene Willwood Formation consists of at least nine distinct endichnia that are preserved in full relief. Four forms (three ichnogenera and four ichnospecies) are new and represent fodinichnia and domichnia of oligochaete worms, an insect or spider, an unknown vertebrate (probably a mammal), and domichnia of an unidentified organism. Other potential trace makers of the ichnofauna include insects, mollusks, and decapods. In contrast to an Egyptian Oligocene fluvial ichnofauna produced largely by animals that burrowed in stream channel deposits, the Willwood assemblage is principally of flood-plain origin. Though the ichnofauna occurs in a variety of paleosol types, most of the fossils are restricted in distribution to specific sediment and soil types and, within paleosols, to specific identifiable horizons. This attribute will make them valuable indiced of paleoenvironment once they are better known in other ancient alluvial sequences. The environment suggested by the Willwood trace fossils (damp, but not wet soils with fluctuating water tables) is consistent with the warm temperate to subtropical (possibly monsoonal) conditions that are interpreted for the Willwood Formation by independent evidence of body fossils and paleopedology. ?? 1983.
NASA Astrophysics Data System (ADS)
Szrek, P.; Niedźwiedzki, G.; Dec, M.
2012-04-01
Despite of more than 100 years of study, the Lower Devonian deposits of the Holy Cross Mountains (central Poland) are still not well understood from the biostratigraphical, environmental and also paleontological point of views. During field works and excavations conducted in 2011 numerous fossils (body and trace fossils) were discovered in a few Lower Devonian outcrops of the region. The siliciclastic sequence of the Lower Devonian of the southern part of the Holy Cross Mountains, is renowned for abundant vertebrate fossils, including mainly the jawless fish and placoderm remains. During the first detailed taphonomic study of the vertebrate assemblage from the so-called "Placoderm Sandstones" cropping out at the Podłazie near Daleszyce, abundant vertebrate remains have been collected (more than 600 specimens). Their analysis (that is in progress) will be the first description of so rich and numerous vertebrates association from the Central Europe that contains placoderms, sharks, acathodians and sarcopterygians. The degree of fragmentation of the bones and disarticulation of the skeletons suggest that the carcasses were reworked and transported before burial. Sedimentological data suggest deposition in a shallow marine environment. Numerous invertebrate ichnofossils (Phycodes isp. Skolithos isp., Diplichnites isp., Monomorphichnus isp., Lockeia cf. siliquaria, Corophioides isp. and Teichinus isp.) particularly well preserved were ascertained in another Lower Devonian site near Iwaniska. Moreover a very interesting assemblage of trace fossils corresponding to traces of feeding fishes were discovered. They are very similar to those found in much younger deposits (e.g. from the Eocene of Turkey). Its interpretation found them as made by placoderms is taken into consideration recently, because of its fiting to whole morphology of small coccosteids. They are also important that they could be the first imprints of soft body of the placoderm as a life animal according to good preservation of particular specimens. The occurrence of characteristic trace fossils is taken as strong evidence of marine influences of the studied section, where sedimentological features are not so clear, with exceptions of very few surfaces covered with symmetrical wave marks. The distribution of the most common trace fossils recognized in the field allowed for different interpretation than was proposed in the past which set up the river influence in the Lower Dewonian of the eastern part of the Holy Cross Mountains, but it is not confirmed by mentioned above invertebrate ichnofossils. Instead of this the development of Skolithos and Cruziana ichnofacies in Iwaniska profile, indicate high energy conditions in foreshore zone, respectively. All the Lower Devonian sites with trace fossils and vertebrate bonebeds from the Holy Cross Mountains are associated with sandy deposits and have been formed in a sea-coastal zone during rather rapid sedimentation episodes, but differ in fossil abundance and degree of preservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tellez-Duarte, M.A.; Ferman-Almada, J.L.
In contrast to previous interpretations of the Rosario Formation in other parts of Baja California, a stratigraphic section 6 km north of Ensenada, Baja California, Mexico, contains evidences for deposition in shallow waters during a regressive event in a steep slope basin. Among the sedimentary evidence, the section shows a coarse, shoaling-upward sequence, with high-angle cross-stratification and planar bed lamination. Load structures with a westward orientation were found only at the base. The fossils assemblages support the same shoaling-upward interpretation as the sedimentary evidence, with ammonoids and deposit feeder trace fossils (such as Chondrites) at the bottom to mollusks andmore » suspension feeder trace fossils (such as Scolicia and Ophiomorpha, characteristic of shallower waters) at the top. This sedimentologic and paleontologic evidence suggests nearshore to beach coastal deposits. The contact between the section and a discontinuous thin limestone bed at the top of the section shows an unconformity. The absence of well-preserved fossils makes this limestone difficult to date, but the lithology is similar to that of Paleocene Sepultura Formation limestones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, A.J.; Simones, G.C.
Ichnology, the study of modern and ancient traces left by organisms, has provided supplemental information to geologic subdisciplines such as sedimentology and stratigraphy. The major objective of the authors paper is to emphasize the valuable information that can be conveyed by trace fossils in the investigation of hydrogeologic units. Bioturbation has a net effect of mixing different types and layers of sediments, such as introducing clays into sands and vice versa. This mixing can decrease porosity and permeability of sandy units, thus changing potential aquifers into confining units. For example, a sandy fluvial deposit will contain distinctive nonmarine trace fossils,more » thus defining channel sands that may serve as permeable conduits for ground-water flow. In contrast, a sandy shelf deposit will contain marine trace fossils in a sand body geometry that will be markedly different from aquifers produced in nonmarine environments. Bioturbation also causes geochemical and diagenetic changes in sediments, causing irrigation of previously anoxic sediments and precipitation of ion oxides. The Cretaceous Cape Fear Formation of the Atlantic Coastal Plain, in the subsurface of South Carolina, is presented as an example of a hydrogeologic unit that has been reinterpreted using ichnologic data. Extensive bioturbation caused mixing of clays and sands in Cape Fear sediments, which resulted in the Cape Fear becoming a regional confining system. Trace fossil assemblages indicate a brackish water environment, perhaps estuarine, for the Cape Fear, as opposed to previous interpretations of fluvial and deltaic environments. Bioturbated zones also have significantly more oxidized iron than unbioturbated zones, highlighting potential effects on ground-water quality.« less
Trace fossil evidence for late Permian shallow water condition in Guryul ravine, Kashmir, India
NASA Astrophysics Data System (ADS)
Parcha, Suraj; Horacek, Micha; Krystyn, Leopold; Pandey, Shivani
2015-04-01
The present study is focused on the Late Permian (Changhsingian) succession, present in the Guryul ravine, Kashmir Basin. The basin has a complete Cambro-Triassic sequence and thus contains a unique position in the geology of Himalaya. The Guryul Ravine Permian mainly comprises of mixed siliciclastic-carbonate sediments deposited in a shallow-shelf or ramp setting. The present assemblage of Ichnofossils is the first significant report of trace fossils in the Guryul ravine since early reports in the 1970s. The Ichnofossils reported from this section include: Diplichnites, Dimorphichnus, Monomorphichnus, Planolites, Skolithos along with burrow, scratch marks and annelid worm traces?. The ichnofossils are mainly preserved in medium grain sandstone-mudstone facies. The Ichnofossils are widely distributed throughout the section and are mostly belonging to arthropods and annelid origin, showing behavioral activity, mainly dwelling and feeding, and evidence the dominant presence of deposit feeders. The vertical to slightly inclined biogenic structures are commonly recognized from semi-consolidated substrate which are characteristic features of the near shore/foreshore marine environment, with moderate to high energy conditions. The topmost layer of silty shale contains trace fossils like Skolithos and poorly preserved burrows. The burrow material filled is same as that of host rock. The studied Zewan C and D sequence represents the early to late part of the Changhsingian stage, from 40 to 5 m below the top of Zewan D member with bioturbation still evident in some limestone layers till 2 metres above. No trace fossils could be recognized in the topmost 3 m beds of Zewan D due to their gliding related amalgamated structure. The widespread distribution of traces and their in situ nature will be useful for interpretation of the paleoecological and paleoenvironmental conditions during the late Permian in the Guryul ravine of Kashmir.
NASA Astrophysics Data System (ADS)
Rodríguez-Tovar, F. J.; Uchman, A.; Orue-Etxebarria, X.; Apellaniz, E.
2013-02-01
Ichnological analysis was conducted in the Danian-Selandian (D-S) boundary interval from the Sopelana section (Basque Basin, northern Spain) to improve characterization of the recently defined Global Stratotype Section and Point of the base of the Selandian Stage (Middle Paleocene) in the nearby Zumaia section, and to interpret the Danian-Selandian boundary event with its associated palaeoenvironmental changes. The trace fossil assemblage of the boundary interval is relatively scarce and shows low diversity, consisting of Chondrites, Planolites, Thalassinoides, Trichichnus and Zoophycos, which cross-cut a diffuse, burrow-mottled background, typical of a normal burrowing tiered community. Distribution of trace fossils shows local drops in abundance and diversity just above the D-S boundary and about half a metre upwards into the succeeding Selandian. Generally, the Selandian part of the section has slightly lower trace fossil diversity and abundance. This is interpreted as due to a higher detrital food supply, corresponding to a sea-level fall, in contrast to a decreased food supply during the Selandian sea-level rise. Smaller-scale fluctuations of trace fossil diversity and abundance are also interpreted as due more to food content fluctuations in the sediment than to oxygenation of pore waters. Results reveal the minor influence of an extreme warming event (hyperthermal conditions) at the D-S boundary which affected the whole benthic habitat. Contrarily, a probable major effect of sea-level fluctuations can be envisaged, which determined variations in siliciclastic input and food content.
Is most of the Tommotian missing in the White-Inyo region eastern California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corsetti, F.A.
Integration of carbon-isotope chemostratigraphic data with trace fossil assemblages suggests that a significant hiatus may be present within the Lower Member of the Deep Spring Formation, potentially impacting the placement of the Neoproterozoic-Cambrian boundary in eastern California and western Nevada. A positive carbon-isotopic excursion of 4% PDB is present in the lowermost Lower Deep Spring, and is associated with Zone 1 trace fossils (latest Vendian) and small shelly fossils of disputed age (latest Proterozoic or Tommotian). A negative isotopic excursion is observed throughout the remaining Deep Spring Formation, and is associated with Zone 3 trace fossils (latest Tommotian-Atdabanian in age).more » The positive excursion in the lowermost Deep Spring is tentatively correlated with the pronounced isotopic maximum in the latest Vendian (possibly Nemakit-Daldyn) of the Siberian Platform (cycle 1 of Kirshvink et al., 1991). The negative excursion is correlated with a similar trend in the latest Tommotian-Atdabanian of the Siberian Platform (cycle 4 of Kirshvink et al., 1991). Thus, a hiatus, potentially encompassing most of the Tommotian, is postulated to be present within the Lower Member of the Deep Spring Formation. Although the fossil and isotopic data are consistent with the presence of a break in the section, sedimentological field evidence for the hiatus is somewhat cryptic. The recognition of this hiatus may impact the global significance of the presumed Tommotian small shelly fossils of the White-Inyo region, as well as the placement of the Neoproterozoic-Cambrian boundary in this sequence.« less
Parry, Luke A; Boggiani, Paulo C; Condon, Daniel J; Garwood, Russell J; Leme, Juliana de M; McIlroy, Duncan; Brasier, Martin D; Trindade, Ricardo; Campanha, Ginaldo A C; Pacheco, Mírian L A F; Diniz, Cleber Q C; Liu, Alexander G
2017-10-01
The evolutionary events during the Ediacaran-Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran-Cambrian siltstones in Brazil, alongside U-Pb radioisotopic dates that constrain the age of the oldest specimens to 555-542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 μm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal-sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran.
Buatois, L.A.; Mangano, M.G.; Alissa, A.; Carr, T.R.
2002-01-01
Integrated ichnologic, sedimentologic, and stratigraphic studies of cores and well logs from Lower Pennsylvanian oil and gas reservoirs (lower Morrow Sandstone, southwest Kansas) allow distinction between fluvio-estuarine and open marine deposits in the Gentzler and Arroyo fields. The fluvio-estuarine facies assemblage is composed of both interfluve and valley-fill deposits, encompassing a variety of depositional environments such as fluvial channel, interfluve paleosol, bay head delta, estuary bay, restricted tidal flat, intertidal channel, and estuary mouth. Deposition in a brackish-water estuarine valley is supported by the presence of a low diversity, opportunistic, impoverished marine ichnofaunal assemblage dominated by infaunal structures, representing an example of a mixed, depauperate Cruziana and Skolithos ichnofacies. Overall distribution of ichnofossils along the estuarine valley was mainly controlled by the salinity gradient, with other parameters, such as oxygenation, substrate and energy, acting at a more local scale. The lower Morrow estuarine system displays the classical tripartite division of wave-dominated estuaries (i.e. seaward-marine sand plug, fine-grained central bay, and sandy landward zone), but tidal action is also recorded. The estuarine valley displays a northwest-southeast trend, draining to the open sea in the southeast. Recognition of valley-fill sandstones in the lower Morrow has implications for reservoir characterization. While the open marine model predicts a "layer-cake" style of facies distribution as a consequence of strandline shoreline progradation, identification of valley-fill sequences points to more compartmentalized reservoirs, due to the heterogeneity created by valley incision and subsequent infill. The open-marine facies assemblage comprises upper, middle, and lower shoreface; offshore transition; offshore; and shelf deposits. In contrast to the estuarine assemblage, open marine ichnofaunas are characterized by a high diversity of biogenic structures representing the activity of a benthic fauna developed under normal salinity conditions. Trace fossil and facies analyses allow environmental subdivision of the shoreface-offshore successions and suggest deposition in a weakly storm-affected nearshore area. An onshore-offshore replacement of the Skolithos ichnofacies by the Cruziana ichnofacies is clearly displayed. The lower Morrow fluvio-estuarine valley was incised during a drop of sea level coincident with the Mississippian-Pennsylvanian transition, but was mostly filled during a subsequent transgression. The transgressive nature of the estuarine infill is further indicated by the upward replacement of depauperate brackish-water trace fossil assemblages by the open-marine Cruziana ichnofacies. Additional stratal surfaces of allostratigraphic significance identified within the estuary include the bayline surface, the tidal ravinement surface, the wave ravinement surface, and a basinwide flooding surface recording inundation of the valley interfluves. A younger sequence boundary within the lower Morrow is also recorded in the Gentzler field at the base of a forced regression shoreface, demarcated by the firmground Glossifungites ichnofacies, indicating a rapid basinward facies migration during a sea-level drop. Trace fossil models derived from the analysis of Mesozoic and Cenozoic reservoirs are generally applicable to the study of these late Paleozoic reservoirs. Pennsylvanian brackish-water facies differ ichnologically from their post-Paleozoic counterparts, however, in that they have: (1) lower trace fossil diversity, (2) lower degree of bioturbation, (3) scarcity of crustacean burrows, (4) absence of firmground suites, and (5) absence of ichnotaxa displaying specific architectures designed to protect the tracemaker from salinity fluctuations. Morrow open-marine ichnofaunas closely resemble their post-Paleozoic equivalents. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rodríguez-Tovar, Francisco J.; Dorador, Javier; Grunert, Patrick; Hodell, David
2015-10-01
Numerous studies focused on the transitions between glacial and interglacial periods, the so-called terminations, due to the associated significant reorganizations of the ocean-atmosphere system. However, analyses combining macro- and micropaleontological information are near absent. In this research, an integrative study of trace fossils and benthic foraminiferal assemblages is conducted in order to improve the characterization of Terminations 1, 2 and 4, as revealing the response of the macro-and microbenthic habitats to the involved paleoenvironmental changes. For this purpose, selected cores from Site U1385 (IODP Expedition 339) located off the western Iberian Margin, have been studied. Changes in trace fossils and benthic foraminifera related to both long-term variations at the glacial/interglacial scale, and short-term millennial-scale climatic events. Food and oxygen availability have been identified as the main factors determining variations in the macro- and microbenthic community structure across glacial terminations in the context of changes in water mass distribution and productivity in the NE Atlantic. A deep-sea multi-tiered tracemaker community, consisting of biodeformational structures, Chondrites, ?Nereites, Palaeophycus, Planolites, Thalassinoides, and Zoophycos, suggest generally well-oxygenated bottom and pore-water conditions during interglacial as well as glacial intervals, with punctual decreases in oxygenation. Short-climatic events registered during Terminations 1, 2, and 4 induce a similar response of trace fossil and benthic foraminifera communities to the variable incidence of food and oxygen availability. Termination 1 shows a severe deterioration of oxic conditions and increasing food availability during the YD and HS 1, favoring appearance/dominance of Zoophycos, together with the lowest miliolid and the highest deep infaunal taxa abundances. Short-term climatic events (HS 11, IRE 10.1) associated with Terminations 2 and 4 are characterized by a major incidence of export productivity and accumulation of organic matter respect to depletion oxygenation, especially affecting the microbenthic habitat. Dark sediment intervals of HS 11 and IRE 10.1 are characterized by higher abundances of Zoophycos, together with strong peaks in hBFAR values, significant lows in miliolids and lower abundance of deep infaunal taxa. The presence of Chondrites during IRE 10.1 also indicates the impoverishment in pore-water conditions deep within the sediment.
Smith, E F; Nelson, L L; Tweedt, S M; Zeng, H; Workman, J B
2017-07-12
Owing to the lack of temporally well-constrained Ediacaran fossil localities containing overlapping biotic assemblages, it has remained uncertain if the latest Ediacaran ( ca 550-541 Ma) assemblages reflect systematic biological turnover or environmental, taphonomic or biogeographic biases. Here, we report new latest Ediacaran fossil discoveries from the lower member of the Wood Canyon Formation in Nye County, Nevada, including the first figured reports of erniettomorphs, Gaojiashania , Conotubus and other problematic fossils. The fossils are spectacularly preserved in three taphonomic windows and occur in greater than 11 stratigraphic horizons, all of which are below the first appearance of Treptichnus pedum and the nadir of a large negative δ 13 C excursion that is a chemostratigraphic marker of the Ediacaran-Cambrian boundary. The co-occurrence of morphologically diverse tubular fossils and erniettomorphs in Nevada provides a biostratigraphic link among latest Ediacaran fossil localities globally. Integrated with a new report of Gaojiashania from Namibia, previous fossil reports and existing age constraints, these finds demonstrate a distinctive late Ediacaran fossil assemblage comprising at least two groups of macroscopic organisms with dissimilar body plans that ecologically and temporally overlapped for at least 6 Myr at the close of the Ediacaran Period. This cosmopolitan biotic assemblage disappeared from the fossil record at the end of the Ediacaran Period, prior to the Cambrian radiation. © 2017 The Author(s).
Smith, E. F.; Nelson, L. L.; Tweedt, S. M.; Zeng, H.; Workman, Jeremiah B.
2017-01-01
Owing to the lack of temporally well-constrained Ediacaran fossil localities containing overlapping biotic assemblages, it has remained uncertain if the latest Ediacaran (ca 550–541 Ma) assemblages reflect systematic biological turnover or environmental, taphonomic or biogeographic biases. Here, we report new latest Ediacaran fossil discoveries from the lower member of the Wood Canyon Formation in Nye County, Nevada, including the first figured reports of erniettomorphs, Gaojiashania, Conotubus and other problematic fossils. The fossils are spectacularly preserved in three taphonomic windows and occur in greater than 11 stratigraphic horizons, all of which are below the first appearance of Treptichnus pedum and the nadir of a large negative δ13C excursion that is a chemostratigraphic marker of the Ediacaran–Cambrian boundary. The co-occurrence of morphologically diverse tubular fossils and erniettomorphs in Nevada provides a biostratigraphic link among latest Ediacaran fossil localities globally. Integrated with a new report of Gaojiashania from Namibia, previous fossil reports and existing age constraints, these finds demonstrate a distinctive late Ediacaran fossil assemblage comprising at least two groups of macroscopic organisms with dissimilar body plans that ecologically and temporally overlapped for at least 6 Myr at the close of the Ediacaran Period. This cosmopolitan biotic assemblage disappeared from the fossil record at the end of the Ediacaran Period, prior to the Cambrian radiation.
NASA Astrophysics Data System (ADS)
Dominici, Stefano; Benvenuti, Marco; Garilli, Vittorio; Uchman, Alfred; Pollina, Francesco
2017-04-01
The Pliocene-Pleistocene around Altavilla Milicia, near Palermo (Sicily), includes a thick siliciclastic succession rich with shell beds, dominated by molluscs, brachiopods and annelids in fine-grained, totally bioturbated sandstones. Taphonomy of fossil assemblages indicates the importance of taphonomic feedback and within-habitat time-averaging in proximity of maximum flooding intervals. The trace fossil suite is characterized by the abundance of Thalassinoides paradoxicus boxworks and by local occurence of Scalichnus, Piscichnus, ?Scolicia, ?Bichordites, Ophiomorpha, ?Gyrolithes, Palaeophycus, Diopatrichnus and ?Taenidium. These trace fossils are typical of the archetypal Cruziana ichnofacies, with local elements of the proximal Cruziana ichnofacies, which point to deposition mainly below the fairweather wave base. Three depositional sequences, characterized by geometries driven by the interplay of eustatism and regional tectonics, were recognized through sedimentary facies analysis. Biostratigraphic data frame the oldest sequence in the upper Pliocene, whereas the thickest part of the succession, occupied by the second sedimentary sequence, includes biozone NN16b/17 of calcareous nannoplankton stratigraphy, thereby comprising the base of the Pleistocene. Transgressive deposits of the third and uppermost sequence are marked by encrusted and bioeroded pebbles with sparse oyster shells. The whole time interval is characterized by glacio-eustatic fluctuations in the 50-100 m range and with 100 ky-periodicity. We performed a multivariate analysis of 22 samples yielding 92 species of mollusks collected in the first and second sequences. Clustering and ordination analysis allowed to recognize a gradient controlled by depth-related environmental variables. At one end of the continuum we have a very-shallow water assemblage dominated by the bivalve Loripes orbiculatus, indicating an organic-rich seagrass bottom. Opposite in the continuum is an offshore assemblage dominated by Corbula gibba and the extinct gastropod Petaloconchus intortus. Both the shallowest and the deepest assemblages are from the first (Piacenzian) sequence. The gradient at intermediate depths is better characterized by restricting the analysis to 17 collections from the second sequence (Piacenzian-Gelasian). The shallowest assemblage is here dominated by upper shoreface species, such as Tellina spp. and Spisula subtruncata, and the deepest by muddy bottom, offshore transition species, such as Venus nux, the extinct gastropod Nassarius semistriatus and deposit-feeding nuculanoid bivalves. Plotting samples along the composite section allows to recognize two deepening-upward trends and two intervals of maximum flooding, in accordance with the sequence-stratigraphic interpretation. Stratigraphic palaeobiology proves to be a powerful tool to understand factors that control the geologic record during an interval of intense climate change.
Buatois, L.A.; Mangano, M.G.; Maples, C.G.; Lanier, Wendy E.
1997-01-01
The occurrence of trace fossil assemblages dominated by arthropod trackways and surface grazing trails within Carboniferous tidal rhythmites has puzzled sedimentologists and ichnologists, who interpreted them either as marine or nonmarine. The Virgilian (Stephanian) Tonganoxie Sandstone Member (Stranger Formation) at Buildex Quarry (eastern Kansas) consists, for the most part, of planar-laminated coarse-grained siltstones deposited on an upper tidal flat, close to or at the fluvial-estuarine transition of a macrotidal estuarine paleovalley. Recurrent thickness fluctuations demonstrate the strong influence of tidal processes and provide evidence that these deposits are tidal rhythmites, with thicker strata representing spring tides and thinner ones recording neap tides. The Buildex sequence hosts a moderately diverse ichnofauna composed of arthropod trackways (Dendroidichnites irregulare, Diplichnites gouldi, Diplopodichnus bifurcus, Kouphichnium isp., Mirandaichnium famatinense, Stiallia pilosa, Stiaria intermedia), grazing traces (Gordia indianaensis, Helminthoidichnites tenuis, Helminthopsis hieroglyphica), subsurface feeding traces (Treptichnus bifurcus, T. pollardi, irregular networks), apterygote insect resting and feeding traces (Tonganoxichnus buildexensis, T. ottawensis), fish traces (Undichna britannica, U. simplicitas), and tetrapod trackways. In contrast to trace fossil assemblages from brackish-water estuarine settings, the Buildex ichnofauna is characterized by moderate to relatively high ichnodiversity, ichnotaxa commonly present in terrestrial/freshwater environments, dominance of surface trails and absence of burrows, dominance of temporary structures produced by a mobile deposit-feeder fauna, a mixture of traces belonging to the Scoyenia and Mermia ichnofacies, moderate density of individual ichnotaxa, and absence of monospecific suites. This ichnofauna is thought to record the activity of a typical freshwater/terrestrial benthos. The presence of this mixed freshwater/terrestrial ichnofauna in tidal rhythmites is regarded as indicative of tidal flats that were developed in the most proximal zone of the inner estuary under freshwater conditions, more precisely in a zone between the maximum limit of landward tidal currents and the salinity limit further towards the sea. Although lithofacies distribution in estuarine valleys is mainly salinity-independent, the distribution of benthos is not. Accordingly, ichnologic studies have the potential to provide a high-resolution delineation of fluvio-estuarine transitions.
Mangano, M.G.; Buatois, L.A.
1996-01-01
The Loma del Kilome??tro Member of the Lower Ordovician Suri Formation records arc-related shelf sedimentation in the Famatina Basin of northwest Argentina. Nine facies, grouped into three facies assemblages, are recognized. Facies assemblage 1 [massive and parallel-laminated mudstones (facies A) locally punctuated by normally graded or parallel-laminated silty sandstones (facies B] records deposition from suspension fall-out and episodic storm-induced turbidity currents in an outer shelf setting. Facies assemblage 2 [massive and parallel-laminated mudstones (facies A) interbedded with rippled-top very fine-grained sandstones (facies D)] is interpreted as the product of background sedimentation alternating with distal storm events in a middle shelf environment. Facies assemblage 3 [normally graded coarse to fine-grained sandstones (facies C); parallel-laminated to low angle cross-stratified sandstones (facies E); hummocky cross-stratified sandstones and siltstones (facies F); interstratified fine-grained sandstones and mudstones (facies G); massive muddy siltstones and sandstones (facies H); tuffaceous sandstones (facies I); and interbedded thin units of massive and parallel-laminated mudstones (facies A)] is thought to represent volcaniclastic mass flow and storm deposition coupled with subordinated suspension fall-out in an inner-shelf to lower-shoreface setting. The Loma del Kilo??metro Member records regressive-transgressive sedimentation in a storm- and mass flow-dominated high-gradient shelf. Volcano-tectonic activity was the important control on shelf morphology, while relative sea-level change influenced sedimentation. The lower part of the succession is attributed to mud blanketing during high stand and volcanic quiescence. Progradation of the inner shelf to lower shoreface facies assemblage in the middle part represents an abrupt basinward shoreline migration. An erosive-based, non-volcaniclastic, turbidite unit at the base of this package suggests a sea level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.
Xing, Lida; Buckley, Lisa G.; McCrea, Richard T.; Lockley, Martin G.; Zhang, Jianping; Piñuela, Laura; Klein, Hendrik; Wang, Fengping
2015-01-01
Trace fossils provide the only records of Early Cretaceous birds from many parts of the world. The identification of traces from large avian track-makers is made difficult given their overall similarity in size and tridactyly in comparison with traces of small non-avian theropods. Reanalysis of Wupus agilis from the Early Cretaceous (Aptian-Albian) Jiaguan Formation, one of a small but growing number of known avian-pterosaur track assemblages, of southeast China determines that these are the traces of a large avian track-maker, analogous to extant herons. Wupus, originally identified as the trace of a small non-avian theropod track-maker, is therefore similar in both footprint and trackway characteristics to the Early Cretaceous (Albian) large avian trace Limiavipes curriei from western Canada, and Wupus is reassigned to the ichnofamily Limiavipedidae. The reanalysis of Wupus reveals that it and Limiavipes are distinct from similar traces of small to medium-sized non-avian theropods (Irenichnites, Columbosauripus, Magnoavipes) based on their relatively large footprint length to pace length ratio and higher mean footprint splay, and that Wupus shares enough characters with Limiavipes to be reassigned to the ichnofamily Limiavipedidae. The ability to discern traces of large avians from those of small non-avian theropods provides more data on the diversity of Early Cretaceous birds. This analysis reveals that, despite the current lack of body fossils, large wading birds were globally distributed in both Laurasia and Gondwana during the Early Cretaceous. PMID:25993285
NASA Astrophysics Data System (ADS)
Vasiļkova, J.; Lukševičs, E.; Stinkulis, Ä.¢.; Zupinš, I.
2012-04-01
The deposits of the Tervete Formation, Famennian Stage of Latvia, comprising weakly cemented sandstone and sand intercalated with dolomitic marls, siltstone and clay, have been traditionally interpreted as having formed in a shallow, rather restricted sea with lowered salinity. During seven field seasons the excavations took place in the south-western part of Latvia, at the Klunas site, and resulted in extensive palaeontological and sedimentological data. The taphonomical analysis has been performed, having evaluated the size, sorting, orientation of the fossils, articulation and skeletal preservation as well as the degree of fragmentation and abrasion. The sedimentological analysis involved interpretation of sedimentary structures, palaeocurrent direction reconstruction, grain-size analysis and approximate water depth calculations. The vertebrate assemblage of the Klunas site represents all known taxa of the Sparnene Regional Stage of the Baltic Devonian, comprising placoderms Bothriolepis ornata Eichwald, B. jani Lukševičs, Phyllolepis tolli Vasiliauskas, Dunkleosteus sp. and Chelyophorus sp., sarcopterygians Holoptychius nobilissimus Agassiz, Platycephalichthys skuenicus Vorobyeva, Cryptolepis sp., Conchodus sp., Glyptopomus ? sp., "Strunius" ? sp., and Dipterus sp., as well as an undetermined actinopterygian. Placoderms Bothriolepis ornata and B. jani dominate the assemblage. The fossils are represented in the main by fully disarticulated placoderm plates and plate fragments, sarcopterygian scales and teeth, rarely bones of the head and shoulder girdle, and acanthodian spines and scales. The characteristic feature is the great amount of fragmentary remains several times exceeding the number of intact bones. The horizontal distribution of the bones over the studied area is not homogenous, distinct zones of increased or decreased density of fossils can be traced. Zones of the increased density usually contain many elements of various sizes, whereas zones of the decreased density might be subdivided into two types: 1, with limited number of large bones; 2, with scattered relatively small scales or fragments. The shape and size of zones of increased density of fossils slightly resemble that of subaqueous dunes. Within the Klunas fossil site three taphonomically distinct oryctocoenoses can be traced, differing in the compactness of accumulation, size, disarticulation and fragmentation of bones and showing various degree of mixing of repeatedly buried and very fresh, partially articulated material. Analysis of similarities and differences between these oryctocoenoses demonstrates that all are sedimentary concentrations and have to be assessed as allochtonous assemblages. However, despite these differences, the 1st and the 3rd oryctocoenoses, which have been formed as vertebrate bone accumulations on the bottom of an erosional channel, have much in common contrary to the 2nd oryctocoenosis, which exemplifies the lens of fossil bearing cross-stratified sandstone formed in subaqueous dunes. The concentrations of vertebrate remains have been formed under the influence of fluvial and tidal processes in the shallow water environment, most probably deltaic or estuarine settings. It has been found also that elongated placoderm and sarcopterygian bones might be better indicators of the palaeoflow direction in comparison with very elongated, but dense acanthodian spines or sarcopterygian teeth.
Faunas of Mississippian oolitic limestones: Evidence from Salem Limestone, southern Indiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, H.R.
In the Salem Limestone of southern Indiana, a correlation exists between the faunal assemblage and abundance of grains with superficial oolitic coatings in grainstones. Coarse, poorly sorted fossiliferous grainstones are dominated by an echinoderm-bryozoan-brachiopod assemblage of fossils with few mollusks. The presence of large whole fossils, such as articulated crinoid calyces, suggest limited transport of skeletal components. Grainstones, dominated by grains with superficial coatings, and foraminifers tend to contain a diverse mollusk-dominated assemblage of gastropods, bivalves, rostroconchs, chitins, and scaphopods. These fossils are disarticulated, but generally are not fragmented even though many of them are thin and delicate. Echinoderms, brachiopods,more » and bryozoans are repsented in the mollusk-domdinated assemblage almost exclusively by well-rounded and coated fragments, suggesting that they are not in situ. The presence of similar molluscan assemblages in other Mississippian coated-grain grainstones from Alabama (the Monteagle Limestone) and Oklahoma (an unnamed limestone) indicates that the assemblage may have been wide-spread. Mississippian grainstones dominated by oolites (which are not prominent in the Salem) generally have very few fossils.« less
Zinovyev, Evgeniy
2011-01-01
The distribution of beetles at the end of the Middle Pleninglacial (=terminal Quaternary) was examined based on sub-fossil material from the Ural Mountains and Western Siberia, Russia. All relevant localities of fossil insects have similar radiocarbon dates, ranging between 33,000 and 22,000 C14 years ago. Being situated across the vast territory from the southern Ural Mountains in the South to the middle Yamal Peninsula in the North, they allow latitudinal changes in beetle assemblages of that time to be traced. These beetles lived simultaneously with mammals of the so-called "mammoth fauna" with mammoth, bison, and wooly rhinoceros, the often co-occurring mega-mammalian bones at some of the sites being evidence of this. The beetle assemblages found between 59° and 57°N appear to be the most interesting. Their bulk is referred to as a "mixed" type, one which includes a characteristic combination of arcto-boreal, boreal, steppe and polyzonal species showing no analogues among recent insect complexes. These peculiar faunas seem to have represented a particular zonal type, which disappeared since the end of the Last Glaciation to arrive here with the extinction of the mammoth biota. In contrast, on the sites lying north of 60°N, the beetle communities were similar to modern sub-arctic and arctic faunas, yet with the participation of some sub-boreal steppe components, such as Poecilus ravus Lutshnik and Carabus sibiricus Fischer-Waldheim. This information, when compared with our knowledge of synchronous insect faunas from other regions of northern Eurasia, suggests that the former distribution of beetles in this region could be accounted for both by palaeo-environmental conditions and the impact of grazing by large ruminant mammals across the so-called "mammoth savannas".
Conidae and Terebridae (Gastropoda: Neogastropoda) from the Plio-Pleistocene of the Philippines.
Helwerda, Enate A
2017-01-20
Six species of Conidae and seven species of Terebridae are reported from the Plio-Pleistocene "Cabarruyan" fauna of Pangasinan, the Philippines. Eleven species are identified; these species all occur in the Recent Indo-Pacific fauna and seven of these are previously known from the fossil record as well. The species composition of this fauna shows little overlap with other fossil assemblages, except with the Fijian fossil assemblage. This is attributed to a lack of knowledge on Indo-pacific fossil faunas as well as to the relatively deep water setting (200-300 m) of this fauna. More research is needed to determine why the Fijian assemblage is relatively similar.
Shelf gradients of echinoid assemblages from the Miocene of Sardinia
NASA Astrophysics Data System (ADS)
Nebelsick, James; Andrea, Mancosu
2017-04-01
Well exposed Miocene echinoid assemblages from Sardinia representing various environmental settings including both siliciclastics and carbonates have been studied with respect to reconstructing palaeoenvironmental conditions along a shelf gradient. The basis of this study includes 1) detailed logging of sedimentary facies in the field, 2) interpreting their behavior and life habits of the preserved echinoids by applying functional morphological reconstructions of the echinoid skeletons and comparing them to related Recent echinoid taxa, 3) quantifying taphonomic features of test preservation including predation, abrasion, fragmentation, encrustation and bioerosion, and finally 4) analyzing accompanying fauna and flora as well as trace fossils. The assemblages included clypeasteroid dominated assemblages in shallow water settings where often mass accumulations of sand dollars are present. Spatangoid dominated assemblages are found in more offshore settings where diversity is determined by varying burrowing depths, feeding strategies and resource partitioning accompanied by varying rates of bioturbation and episodes of sediment deposition by storms. Mixed assemblages also occur ranging from shallow to deeper water with varying substrates including sea grass, as well as coarser and finer sediments. Finally, deeper water monotypic assemblages are present in storm-dominated siliciclastic shelf environments including both regular and irregular echinoids. In general, echinoid presence is determined by the ecological preferences of the taxa involved, their propensities for gregarious behavior, the differential preservation potentials of the varied skeletal architectures present as well as sedimentary environment in which they occur.
Plant taphonomy in incised valleys: Implications for interpreting paleoclimate from fossil plants
Demko, T.M.; Dubiel, R.F.; Parrish, Judith T.
1998-01-01
Paleoclimatic interpretations of the Upper Triassic Chinle Formation (Colorado Plateau) based on plants conflict with those based on the sedimentary rocks. The plants are suggestive of a humid, equable climate, whereas the rocks are more consistent with deposition under highly seasonal precipitation and ground-water conditions. Fossil plant assemblages are limited to the lower members of the Chinle Formation, which were deposited within incised valleys that were cut into underlying Lower to Middle Triassic and older rocks. In contrast, the upper members of the formation, which were deposited across the fluvial plain after the incised valleys were filled, have few preserved fossil plants. The taphonomic characteristics of the plant fossil assemblages, within the stratigraphic and hydrologic context of the incised valley-fill sequence, explain the vertical and lateral distribution of these assemblages. The depositional, hydrological, and near-surface geochemical conditions were more conducive to preservation of the plants. Fossil plant assemblages in fully terrestrial incised-valley fills should be taphonomically biased toward riparian wetland environments. If those assemblages are used to interpret paleoclimate, the paleoclimatic interpretations will also be biased. The bias may be particularly strong in climates such as those during deposition of the Chinle Formation, when the riparian wetlands may reflect local hydrologic conditions rather than regional climate, and should be taken into account when using these types of plant assemblages in paleoclimatic interpretations.
Organically preserved microbial endoliths from the late Proterozoic of East Greenland
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Golubic, S.; Green, J.; Swett, K.
1986-01-01
Diverse microorganisms ranging from cyanobacteria to eukaryotic algae and fungi live endolithically within ooids, hardgrounds and invertebrate shells on the present-day sea floor. These organisms are involved in the mechanical destruction of carbonates, and are useful ecological indicators of water depth and pollution. The Phanerozoic history of microbial endoliths has been elucidated through the study of microborings (the trace fossils of endolithic microorganisms) and rare cellularly preserved individuals, but nothing was known of the possible Precambrian evolution of comparable microorganisms until Campbell documented the occurrence of microborings in late Proterozoic ooids from central East Greenland. We now report the discovery of large populations of organically preserved endolithic microorganisms in silicified pisolites from 700-800-Myr-old Limestone-Dolomite Series of East Greenland. This fossil assemblage is significant for three reasons: (1) It confirms the prediction that oolites, pisolites and hardgrounds--the substrates for pre-Phanerozoic endoliths--provide a hitherto poorly explored but rewarding set of environments into which the search for early microfossils must be broadened; (2) the assemblage is diverse, containing about 12 taxa of morphologically distinct and previously unknown endolithic cyanobacteria, plus associated epilithic and interstitial populations; and (3) at least six of the fossil populations are indistinguishable in morphology, pattern of development, reproductive biology and inferred ecology from distinctive cyanobacterial species that bore ooids today in the Bahama Banks.
Broad-Scale Patterns of Late Jurassic Dinosaur Paleoecology
Noto, Christopher R.; Grossman, Ari
2010-01-01
Background There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure. Methodology/Principal Findings This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident. Conclusions/Significance This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which reflects the prevailing climatic and environmental conditions present during fossil deposition, may therefore be used to differentiate Late Jurassic dinosaur fossil assemblages. This method is broadly applicable to different taxa and times, allowing one to address questions of evolutionary, biogeographic, and climatic importance. PMID:20838442
Broad-scale patterns of late jurassic dinosaur paleoecology.
Noto, Christopher R; Grossman, Ari
2010-09-03
There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure. This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident. This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which reflects the prevailing climatic and environmental conditions present during fossil deposition, may therefore be used to differentiate Late Jurassic dinosaur fossil assemblages. This method is broadly applicable to different taxa and times, allowing one to address questions of evolutionary, biogeographic, and climatic importance.
Mangano, M.G.; Buatois, L.A.; West, R.R.; Maples, C.G.
1998-01-01
Upper Carboniferous tidal-flat deposits near Waverly, eastern Kansas (Stull Shale Member, Kanwaka Shale Formation), host abundant and very well-preserved trace fossils attributed to the activity of burrowing bivalves. Thin shell lenses with an abundant bivalve fauna area associated with the ichnofossil-bearing beds and afford an unusual opportunity to relate trace fossils to their makers. Two distinctive life and feeding strategies can be reconstructed on the basis of trace fossil analysis and functional morphology. Lockeria siliquaria hyporeliefs commonly are connected with vertical to inclined, truncated endichnial shafts in the absence of horizontal locomotion traces. These structures record vertical and oblique displacement through the sediment, and suggest relatively stable domiciles rather than temporary resting traces as typically considered. Crowded bedding surfaces displaying cross-cutting relationships between specimens of L. siliquaria and differential preservation at the top (concave versus convex epireliefs) record a complex history of successive events of colonization, erosion, deposition, and recolonization (time-averaged assemblages). Irregujlar contours of some large hypichnia indicate the cast of the foot, while other outlines closely match the anterior area of Wilkingia, its suggested tracemaker. Relatively stable, vertical to inclined life positions and dominanit vertical mobility suggest a filter-feeding strategy. Moreover, the elongate shell and pallial sinus of Wilkingia providfe a strong independent line of evidence for an opisthosiphonate, moderately deep-tier inhabitant. Wilingia may represent a pioneer attempt at siphon-feeding in the late Paleozoic, preceding the outcome of the Mesozoic infaunal radiation. A second strategy is represented by Lockeia ornata and association locomotionm and locomotion/feding structures. Lockeia ornata is commonly connected with chevron locomotion traces that record the bifurcated foot of a protobranch bivalve. Lockeia ornata exhibits distinctive, fine, parallel lines that mimic the ornamentation of Phestia, a nuculanid protobranch bivalve. Rosary and radial structures give evidence of a patterned search for food. Lockeia ornata and associated Protovirgularia record dominant horizontal locomoton and suggest the activity of deposit-feeding bivalves. Morphologic variability of Protovirgularia was controlled by substrate fluidity, which was dependent on sediment heterogeneity and tidal-cycle dynamics. This study demonstrates that detailed analysis of bivalve traces provides valuable information on bivalve ethology and paleoecology, evolutionary innovations, environmental dynamics, and substrate fluidity.
Origin of an Assemblage Massively Dominated by Carnivorans from the Miocene of Spain
Domingo, M. Soledad; Alberdi, M. Teresa; Azanza, Beatriz; Silva, Pablo G.; Morales, Jorge
2013-01-01
Carnivoran-dominated fossil sites provide precious insights into the diversity and ecology of species rarely recovered in the fossil record. The lower level assemblage of Batallones-1 fossil site (Late Miocene; Madrid Basin, Spain) has yielded one of the most abundant and diversified carnivoran assemblage ever known from the Cenozoic record of mammals. A comprehensive taphonomic study is carried out here in order to constrain the concentration mode of this remarkable assemblage. Another distinctive feature of Batallones-1 is that the accumulation of carnivoran remains took place in the context of a geomorphological landform (cavity formation through a piping process) practically unknown in the generation of fossil sites. Two characteristics of the assemblage highly restrict the probable causes for the accumulation of the remains: (1) the overwhelming number of carnivorans individuals; and (2) the mortality profiles estimated for the four most abundant taxa do not correspond to the classic mortality types but rather were the consequence of the behavior of the taxa. This evidence together with other taphonomic data supports the hypothesis that carnivoran individuals actively entered the cavity searching for resources (food or water) and were unable to exit. The scarcity of herbivores implies that the shaft was well visible and avoided by these taxa. Fossil bones exhibit a very good preservation state as a consequence of their deposition in the restricted and protective environment of the chamber. Batallones-1 had another assemblage (upper level assemblage) that was dominated by herbivore remains and that potentially corresponded to the final stages of the cavity filling. PMID:23650542
Late Cretaceous Extreme Polar Warmth recorded by Vertebrate Fossils from the High Canadian Arctic
NASA Astrophysics Data System (ADS)
Vandermark, D.; Tarduno, J. A.; Brinkman, D.
2006-12-01
A vertebrate fossil assemblage from Late Cretaceous (Coniacian-Turonian, ~92 to 86 Ma) rocks on Axel Heiberg Island in the High Canadian Arctic reflects what was once a diverse community of freshwater fishes and reptiles. Paleomagnetic data indicate a paleolatitude of ~71° N for the site; the fossils are from non-migratory fauna, so they can provide insight into Late Cretaceous polar climate. The fossil assemblage includes large (> 2.4 m long) champsosaurs (extinct crocodilelike reptiles). The presence of large champsosaurs suggests a mean annual temperature > 14 °C (and perhaps as great as 25 °C). Here we summarize findings and analyses following the discovery of the fossil-bearing strata in 1996. Examination of larger fish elements, isolated teeth and SEM studies of microstructures indicates the presence of lepisosteids, amiids and teleosts (Friedman et al., 2003) Interestingly, the only other known occurrence of amiids and lepisosteids, fossil or recent, are from intervals of extreme warmth during the Tertiary. Turtles present in the assemblage include Boreralochelys axelheibergensis, a generically indeterminate eucryptodire and a trioychid (Brinkman and Tarduno, 2005). The level of turtle diversity is also comparable to mid-latitude assemblages with a mean annual paleotemperature of at least 14 °C. A large portion of the champsosaur fossil assemblage is comprised of elements from subadults. This dominance of subadults is similar to that seen from low latitude sites. Because of the sensitivity of juveniles to ice formation, the make-up of the Arctic champsosaur population further indicates that the Late Cretaceous saw an interval of extreme warmth and low seasonality. We note the temporal coincidence of these fossils with volcanism at large igneous provinces (including high Arctic volcanism) and suggest that a pulse in volcanic carbon dioxide emissions helped cause the global warmth.
Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic.
Brusatte, Stephen L; Niedźwiedzki, Grzegorz; Butler, Richard J
2011-04-07
The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.
The late Barremian Halimedides horizon of the Dolomites (Southern Alps, Italy).
Lukeneder, Alexander; Uchman, Alfred; Gaillard, Christian; Olivero, Davide
2012-06-01
A new trace fossil marker level, the Halimedides horizon, is proposed for the Lower Cretaceous pelagic to hemipelagic succession of the Puez area (Southern Alps, Italy). The horizon occurs in the middle part of the late Barremian Gerhardtia sartousiana Zone ( Gerhardtia sartousiana Subzone). It is approximately 20 cm thick and restricted to the uppermost part of the Puez Limestone Member (marly limestones; Hauterivian-Barremian; Puez Formation). It is fixed to the top 20 cm of bed P1/204. The grey-whitish limestone bed of the G. sartousiana Zone is penetrated by Aptian red marls-siltstones of the Redbed Member. The horizon is documented for the first time from the Southern Alps, including the Dolomites, and can be correlated with other Mediterranean localities. The trace fossil assemblage of this marker bed with the co-occurrence of Halimedides , Spongeliomorpha and Zoophycos sheds light on the Lower Cretaceous sedimentological history and current system of the Puez area within the Dolomites. It also highlights the palaeoenvironmental evolution of basins and plateaus and provides insights into the late Barremian interval.
The late Barremian Halimedides horizon of the Dolomites (Southern Alps, Italy)
Lukeneder, Alexander; Uchman, Alfred; Gaillard, Christian; Olivero, Davide
2012-01-01
A new trace fossil marker level, the Halimedides horizon, is proposed for the Lower Cretaceous pelagic to hemipelagic succession of the Puez area (Southern Alps, Italy). The horizon occurs in the middle part of the late Barremian Gerhardtia sartousiana Zone (Gerhardtia sartousiana Subzone). It is approximately 20 cm thick and restricted to the uppermost part of the Puez Limestone Member (marly limestones; Hauterivian–Barremian; Puez Formation). It is fixed to the top 20 cm of bed P1/204. The grey–whitish limestone bed of the G. sartousiana Zone is penetrated by Aptian red marls–siltstones of the Redbed Member. The horizon is documented for the first time from the Southern Alps, including the Dolomites, and can be correlated with other Mediterranean localities. The trace fossil assemblage of this marker bed with the co-occurrence of Halimedides, Spongeliomorpha and Zoophycos sheds light on the Lower Cretaceous sedimentological history and current system of the Puez area within the Dolomites. It also highlights the palaeoenvironmental evolution of basins and plateaus and provides insights into the late Barremian interval. PMID:27087717
NASA Astrophysics Data System (ADS)
Checconi, Alessio; Bassi, Davide; Carannante, Gabriele; Monaco, Paolo
2010-03-01
An integrated analysis of rhodolith assemblages and associated trace fossils (borings) found in hemipelagic Middle Miocene Orbulina marls (Vitulano area, Taburno-Camposauro area, Southern Apennines, Italy) has revealed that both the biodiversity of the constituent components and taphonomic signatures represent important aspects which allow a detailed palaeoecological and palaeoenvironmental interpretation. On the basis of shape, inner arrangement, growth forms and taxonomic coralline algal composition, two rhodolith growth stages were distinguished: (1) nucleation and growth of the rhodoliths, and (2) a final growth stage before burial. Nucleation is characterized by melobesioids and subordinately mastophoroids, with rare sporolithaceans and lithophylloids. The rhodolith growth (main increase in size) is represented by abundant melobesioids and rare to common mastophoroids; very rare sporolithaceans are also present. The final growth stage is dominated by melobesioids with rare mastophoroids and very rare sporolithaceans. Each rhodolith growth stage is characterized by a distinct suite of inner arrangement and growth form successions. Well diversified ichnocoenoeses ( Gastrochaenolites, Trypanites, Meandropolydora and/or Caulostrepsis, Entobia, Uniglobites, micro-borings) related to bivalves, sponges, polychaetes, barnacles, algae, fungi, and bacteria are distinguished in the inner/intermediate rhodolith growth stage, while mainly algal, fungal and bacterial micro-borings are present in the outer final growth stage. Rhodolith growth stages and associated ichnocoenoeses indicate significant change in the depositional setting during the rhodolith growth. In the Vitulano area, the Middle Miocene rhodolith assemblages formed in a shallow-water open-shelf carbonate platform, were susceptible to exportation from their production area and then to sedimentation down to deeper-water hemipelagic settings, where the rhodoliths shortly kept growth and were finally buried. Such re-deposition of unlithified or only weakly lithified (i.e. rhodoliths and intraclasts) shallow-water carbonates into deeper-water settings was likely favoured by storm-generated offshore return currents rather than sediment gravity flows.
Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores).
Wisshak, M; Tribollet, A; Golubic, S; Jakobsen, J; Freiwald, A
2011-11-01
In the temperate Azores carbonate factory, a substantial fraction of the calcareous skeletal components is recycled by a remarkable biodiversity of biota producing bioerosion traces (incipient trace fossils). To study this biodiversity, experimental carbonate substrates were exposed to colonisation by epilithic and endolithic organisms along a bathymetrical gradient from 0 to 500 m depth, during 1 and 2 years of exposure. The overall bioerosion ichnodiversity is very high and comprises 56 ichnotaxa and ichnoforms attributed to cyanobacteria, chlorophytes, fungi, other micro-chemotrophs, macroborers, grazers and epilithic attachment scars. In the intertidal, hydrodynamic force, partial emersion and strong temperature fluctuations lead to the lowest ichnospecies richness. This contrasts with the highest ichnodiversity found at 15 m under the most favourable environmental conditions. Towards aphotic depths, a gradual depletion in ichnodiversity is observed, most probably because of the restricted light availability and a slowdown in ichnocoenosis development. Analysis of similarity (ANOSIM), in combination with non-metrical multidimensional scaling (NMDS), was used to highlight variability in the relative abundance of traces among depths, substrate orientations and exposure times. Ichnodiversity and abundance of traces decrease significantly with depth and are higher on up-facing versus down-facing substrates, whereas differences between years were not as pronounced. This study demonstrates that statistical methods of biodiversity analysis are not per se restricted to biotaxa but may well be applied also to ichnotaxa. In the analysis of trace fossil assemblages, this approach supports the recognition of diversity patterns and their relation to environmental gradients. © 2011 Blackwell Publishing Ltd.
The bat community of Haiti and evidence for its long-term persistence at high elevations
Simmons, Nancy B.; Steadman, David W.
2017-01-01
Accurate accounts of both living and fossil mammal communities are critical for creating biodiversity inventories and understanding patterns of changing species diversity through time. We combined data from from14 new fossil localities with literature accounts and museum records to document the bat biodiversity of Haiti through time. We also report an assemblage of late-Holocene (1600–600 Cal BP) bat fossils from a montane cave (Trouing Jean Paul, ~1825m) in southern Haiti. The nearly 3000 chiropteran fossils from Trouing Jean Paul represent 15 species of bats including nine species endemic to the Caribbean islands. The fossil bat assemblage from Trouing Jean Paul is dominated by species still found on Hispaniola (15 of 15 species), much as with the fossil bird assemblage from the same locality (22 of 23 species). Thus, both groups of volant vertebrates demonstrate long-term resilience, at least at high elevations, to the past 16 centuries of human presence on the island. PMID:28574990
Age and Date for Early Arrival of the Acheulian in Europe (Barranc de la Boella, la Canonja, Spain)
Vallverdú, Josep; Saladié, Palmira; Rosas, Antonio; Huguet, Rosa; Cáceres, Isabel; Mosquera, Marina; Garcia-Tabernero, Antonio; Estalrrich, Almudena; Lozano-Fernández, Iván; Pineda-Alcalá, Antonio; Carrancho, Ángel; Villalaín, Juan José; Bourlès, Didier; Braucher, Régis; Lebatard, Anne; Vilalta, Jaume; Esteban-Nadal, Montserrat; Bennàsar, Maria Lluc; Bastir, Marcus; López-Polín, Lucía; Ollé, Andreu; Vergés, Josep Maria; Ros-Montoya, Sergio; Martínez-Navarro, Bienvenido; García, Ana; Martinell, Jordi; Expósito, Isabel; Burjachs, Francesc; Agustí, Jordi; Carbonell, Eudald
2014-01-01
The first arrivals of hominin populations into Eurasia during the Early Pleistocene are currently considered to have occurred as short and poorly dated biological dispersions. Questions as to the tempo and mode of these early prehistoric settlements have given rise to debates concerning the taxonomic significance of the lithic assemblages, as trace fossils, and the geographical distribution of the technological traditions found in the Lower Palaeolithic record. Here, we report on the Barranc de la Boella site which has yielded a lithic assemblage dating to ∼1 million years ago that includes large cutting tools (LCT). We argue that distinct technological traditions coexisted in the Iberian archaeological repertoires of the late Early Pleistocene age in a similar way to the earliest sub-Saharan African artefact assemblages. These differences between stone tool assemblages may be attributed to the different chronologies of hominin dispersal events. The archaeological record of Barranc de la Boella completes the geographical distribution of LCT assemblages across southern Eurasia during the EMPT (Early-Middle Pleistocene Transition, circa 942 to 641 kyr). Up to now, chronology of the earliest European LCT assemblages is based on the abundant Palaeolithic record found in terrace river sequences which have been dated to the end of the EMPT and later. However, the findings at Barranc de la Boella suggest that early LCT lithic assemblages appeared in the SW of Europe during earlier hominin dispersal episodes before the definitive colonization of temperate Eurasia took place. PMID:25076416
Age and date for early arrival of the Acheulian in Europe (Barranc de la Boella, la Canonja, Spain).
Vallverdú, Josep; Saladié, Palmira; Rosas, Antonio; Huguet, Rosa; Cáceres, Isabel; Mosquera, Marina; Garcia-Tabernero, Antonio; Estalrrich, Almudena; Lozano-Fernández, Iván; Pineda-Alcalá, Antonio; Carrancho, Ángel; Villalaín, Juan José; Bourlès, Didier; Braucher, Régis; Lebatard, Anne; Vilalta, Jaume; Esteban-Nadal, Montserrat; Bennàsar, Maria Lluc; Bastir, Marcus; López-Polín, Lucía; Ollé, Andreu; Vergés, Josep Maria; Ros-Montoya, Sergio; Martínez-Navarro, Bienvenido; García, Ana; Martinell, Jordi; Expósito, Isabel; Burjachs, Francesc; Agustí, Jordi; Carbonell, Eudald
2014-01-01
The first arrivals of hominin populations into Eurasia during the Early Pleistocene are currently considered to have occurred as short and poorly dated biological dispersions. Questions as to the tempo and mode of these early prehistoric settlements have given rise to debates concerning the taxonomic significance of the lithic assemblages, as trace fossils, and the geographical distribution of the technological traditions found in the Lower Palaeolithic record. Here, we report on the Barranc de la Boella site which has yielded a lithic assemblage dating to ∼1 million years ago that includes large cutting tools (LCT). We argue that distinct technological traditions coexisted in the Iberian archaeological repertoires of the late Early Pleistocene age in a similar way to the earliest sub-Saharan African artefact assemblages. These differences between stone tool assemblages may be attributed to the different chronologies of hominin dispersal events. The archaeological record of Barranc de la Boella completes the geographical distribution of LCT assemblages across southern Eurasia during the EMPT (Early-Middle Pleistocene Transition, circa 942 to 641 kyr). Up to now, chronology of the earliest European LCT assemblages is based on the abundant Palaeolithic record found in terrace river sequences which have been dated to the end of the EMPT and later. However, the findings at Barranc de la Boella suggest that early LCT lithic assemblages appeared in the SW of Europe during earlier hominin dispersal episodes before the definitive colonization of temperate Eurasia took place.
Deep-sea Lebensspuren of the Australian continental margins
NASA Astrophysics Data System (ADS)
Przeslawski, Rachel; Dundas, Kate; Radke, Lynda; Anderson, Tara J.
Much of the deep sea comprises soft-sediment habitats dominated by comparatively low abundances of species-rich macrofauna and meiofauna. Although often not observed, these animals bioturbate the sediment during feeding and burrowing, leaving signs of their activities called Lebensspuren ('life traces'). In this study, we use still images to quantify Lebensspuren from the eastern (1921 images, 13 stations, 1300-2200 m depth) and western (1008 images, 11 stations, 1500-4400 m depth) Australian margins using a univariate measure of trace richness and a multivariate measure of Lebensspuren assemblages. A total of 46 Lebensspuren types were identified, including those matching named trace fossils and modern Lebensspuren found elsewhere in the world. Most traces could be associated with waste, crawling, dwellings, organism tests, feeding, or resting, but the origin of 15% of trace types remains unknown. Assemblages were significantly different between the two regions and depth profiles, with five Lebensspuren types accounting for over 95% of the differentiation (ovoid pinnate trace, crater row, spider trace, matchstick trace, mesh trace). Lebensspuren richness showed no strong relationships with depth, total organic carbon, or mud, although there was a positive correlation to chlorin index (i.e., organic freshness) in the eastern margin, with richness increasing with organic freshness. Lebensspuren richness was not related to epifauna either, indicating that epifauna may not be the primary source of Lebensspuren. Despite the abundance and distinctiveness of several traces both in the current and previous studies (e.g., ovoid pinnate, mesh, spider), their origin and distribution remains a mystery. We discuss this and several other considerations in the identification and quantification of Lebensspuren. This study represents the first comprehensive catalogue of deep-sea Lebensspuren in Australian waters and highlights the potential of Lebensspuren as valuable and often untapped deep-sea datasets that can be used for biogeographical, evolutionary, behavioural, and ecological studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, R.W.
In Coal Creek Canyon, Utah the Spring Canyon Member of the Blackhawk Formation is divisible into four regressive hemicycles of deposition each representing the downdip part of a nearshore-to-offshore sequence punctuated locally by hummocky cross-stratification. Bedding units span middle shoreface to lower offshore shelf lithofacies, the latter corresponding to a transgressive intertongue of the Mancos Shale. Trace fossil assemblage include 21 ichnospecies distributed among 17 ichnogenera: Ancorichnus, Aulichnites, Chondrites, Cylindrichnus, Ophiomorpha, Palaeophycus, Phoebichnus, Planolites, Rosselia, Schaubcylindrichnus, Scolicia, Skolithos, Taenidium, Teichichnus, Terebellina, Thalassinoides, and Uchirites. Distal deposits are typified by bioturbate textures; Cylindrichnus concentricus, Palaeophycus heberti, and Rosselia socialis otherwise aremore » prevalent throughout the lithofacies suite. Ophiomorpha irregulaire and Schaubcylindrichnus are most common in middle shoreface beds and Chondrites sp. in upper offshore beds; O. nodosa and O. annulata also are common in this part of the sequence. Planolites-type feeding burrows must have been predominant in many depositional settings but now remain inconspicuous and poorly preserved. Despite gradients in environmental distributions of trace fossils, all resident ichnofaunas are referable to the archetypical Cruziana ichnocoenose. Ichnofaunas in hummocky beds mainly represent either an archetypical Skolithos ichnocoenose or mixed Skolithos-Cruziana ichnocoenose. These post-storm ichnocoenoses correspond primarily to a sere of opportunistic pioneers and secondarily to ensuing seres of resilient resident populations. Differences in ichnofacies also are related to differences in post-storm rates of deposition: the slower the rate of sediment accumulation, the greater the degree of overprinting by burrows from subsequent seres or equilibrium communities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, B.R.; Link, P.K.
1991-06-01
In south-central Idaho, the Wood River Formation (Pennsylvanian-Permian) contains a stratigraphic megacycle over 2,000 m thick that is composed of fine-grained mixed carbonate-siliciclastic turbidites. Complete and partial (Bouma) turbidite structural sequences in these rocks are arranged in upward thinning cycles 15 to 30 m thick in which top-cut-out (Ta-c) turbidite facies in the lower part grade vertically into base-cut-out (Td-f) turbidites in the upper part. These cycles are interpreted to represent the autocyclic lateral migration of turbidite lobes. A mixed trace fossil assemblage of pascichnia and fordinichnia are present in these rocks and can be separated into pre-depositional and post-turbiditemore » ichnocoenoses. Quiet-water, pre-turbidite deposits are dark-colored, laminated, and carbonaceous, and represent anoxic to dysoxic inter-turbidite basinal conditions; they contain only Chondrites traces. Turbidity currents introduced oxygenated bottom water which fostered the temporary development of a post-turbidite ichnocoenose of pascichnia which is best developed in the medial portion of turbidite beds and lobes. Trace fossil tiering shows that a post-turbidite ichnocoenose of fodinichnia also developed, and persisted after the disappearance of pascichnia. Animals that produced the fodinichnial traces probably were part of an autochthonous benthic fauna rather than a short-lived allochthonous fauna. They may have migrated with the slowly avulsing turbidite lobes and exploited allochthonous oxygen and the carbonaceous food supply.« less
NASA Astrophysics Data System (ADS)
Lima, João Henrique Dobler; Netto, Renata Guimarães; Corrêa, Camila Graziele; Lavina, Ernesto Luiz Corrêa
2015-11-01
Trace fossil assemblages dominated by arthropod trackways are common in sediments deposited during the Late Paleozoic Ice Age. Ichnofaunas preserved in glacially-influenced sedimentary successions were previously reported from Paraná Basin in southern Brazil. The ichnofauna of the Rio do Sul Formation preserved in the rhythmites exposed in Trombudo Central quarries (Santa Catarina State, southern Brazil) is revised in this paper. Cruziana problematica, Diplichnites gouldi, Diplopodichnus biformis, Glaciichnium liebegastensis, Gluckstadtella elongata isp. nov., Helminthoidichnites tenuis, Mermia carickensis, Protovirgularia dichotoma, Treptichnus pollardi and Umfolozia sinuosa were recorded. Two trace fossil suites were recognized. The undermat miners suite is dominated by H. tenuis, indicating the presence of surface grazers (insect larvae, isopods and amphipods). C. problematica, D. gouldi and U. sinuosa dominate the overmat grazers suite, as result of displacement of terrestrial and aquatic arthropods. The integrated sedimentological and ichnological data from Trombudo Central region suggests colonization of ephemeral, shallow water bodies filled by freshwater from glacier melting. The deposition of the rhythmites took place in a glaciolacustrine context represented by shallow ponds in marginal marine settings.
Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic margin
NASA Astrophysics Data System (ADS)
Loubere, Paul; Rayray, Shan
2016-09-01
We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.
Benthic foraminiferal assemblage formation: Theory and observation for the European Arctic Margin
NASA Astrophysics Data System (ADS)
Loubere, Paul; Rayray, Shan
2016-07-01
We use theory and observation to determine how benthic foraminiferal populations living in a range of sedimentary microenvironments are translated into fossil assemblages along the continental margin of the European Arctic. We examine downcore stained (cell tracker green and rose Bengal) and total species shell abundances through the sediment mixing (bioturbation) zone. This, in combination with porewater geochemical measurements, allows us to establish zones of production and destruction for species' shells, and deduce how the fossil record is being generated by the living community. For many taxa, shell production is high in the upper, oxic, sedimentary layer, but destruction in this zone is also high. Hence, contribution to the fossil record is biased to more infaunal populations and species. Taxa producing near, or below, the anoxic boundary of the sediments are particularly important to the developing fossil record of the fjord environment. We find that taxon relative and absolute abundances change continuously through the biologically active sediment profile. This has implications for reconstructing paleoenvironments using benthic foraminiferal assemblages, and potentially for the geochemistry of individual fossil taxa.
Perry, Linda; Dickau, Ruth; Zarrillo, Sonia; Holst, Irene; Pearsall, Deborah M; Piperno, Dolores R; Berman, Mary Jane; Cooke, Richard G; Rademaker, Kurt; Ranere, Anthony J; Raymond, J Scott; Sandweiss, Daniel H; Scaramelli, Franz; Tarble, Kay; Zeidler, James A
2007-02-16
Chili peppers (Capsicum spp.) are widely cultivated food plants that arose in the Americas and are now incorporated into cuisines worldwide. Here, we report a genus-specific starch morphotype that provides a means to identify chili peppers from archaeological contexts and trace both their domestication and dispersal. These starch microfossils have been found at seven sites dating from 6000 years before present to European contact and ranging from the Bahamas to southern Peru. The starch grain assemblages demonstrate that maize and chilies occurred together as an ancient and widespread Neotropical plant food complex that predates pottery in some regions.
Exceptional preservation of fossils in an Upper Proterozoic shale
NASA Technical Reports Server (NTRS)
Butterfield, N. J.; Knoll, A. H.; Swett, K.
1988-01-01
An exceptionally well-preserved and distinctive assemblage of Late Proterozoic fossils from subtidal marine shales is reported. In addition to the spheromorphic acritarchs and cyanobacteria sheaths routinely preserved in Proterozoic rocks, this assemblage includes multicellular algae, a diverse assortment of morphologically complex protistan vesicles, and probable heterotrophic bacteria. Thus, it provides one of the clearest and most taxonomically varied views of Proterozoic life yet reported.
Holocene melt-water variations recorded in Antarctic coastal marine benthic assemblages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkman, P.A.
Climate changes can influence the input of meltwater from the polar ice sheets. In Antarctica, signatures of meltwater input during the Holocene may be recorded in the benthic fossils which exist at similar altitudes above sea level in emerged beaches around the continent Interpreting the fossils as meltwater proxy records would be enhanced by understanding the modern ecology of the species in adjacent marine environments. Characteristics of an extant scallop assemblage in West McMurdo Sound, Antarctica, have been evaluated across a summer meltwater gradient to provide examples of meltwater records that may be contained in proximal scallop fossils. Integrating environmentalmore » proxies from coastal benthic assemblages around Antarctica, over ecological and geological time scales, is a necessary step in evaluating the marginal responses of the ice sheets to climate changes during the Holocene.« less
NASA Astrophysics Data System (ADS)
Williams, J. W.; Blois, J.; Ferrier, S.; Manion, G.; Fitzpatrick, M.; Veloz, S.; He, F.; Liu, Z.; Otto-Bliesner, B. L.
2011-12-01
In Quaternary paleoecology and paleoclimatology, compositionally dissimilar fossil assemblages usually indicate dissimilar environments; this relationship underpins assemblage-level techniques for paleoenvironmental reconstruction such as mutual climatic ranges or the modern analog technique. However, there has been relatively little investigation into the form of the relationship between compositional dissimilarity and climatic dissimilarity. Here we apply generalized dissimilarity modeling (GDM; Ferrier et al. 2007) as a tool for modeling the expected non-linear relationships between compositional and climatic dissimilarity. We use the CCSM3.0 transient paleoclimatic simulations from the SynTrace working group (Liu et al. 2009) and a new generation of fossil pollen maps from eastern North America (Blois et al. 2011) to 1) assess the spatial relationships between compositional dissimilarity and climatic dissimilarity and 2) whether these spatial relationships change over time. We used a taxonomic list of 106 genus-level pollen types, six climatic variables (winter precipitation and mean temperature, summer precipitation and temperature, seasonality of precipitation, and seasonality of temperature) that were chosen to minimize collinearity, and a cross-referenced pollen and climate dataset mapped for time slices spaced 1000 years apart. When GDM was trained for one time slice, the correlation between predicted and observed spatial patterns of community dissimilarity for other times ranged between 0.3 and 0.73. The selection of climatic predictor variables changed over time, as did the form of the relationship between compositional turnover and climatic predictors. Summer temperature was the only variable selected for all time periods. These results thus suggest that the relationship between compositional dissimilarity in pollen assemblages (and, by implication, beta diversity in plant communities) and climatic dissimilarity can change over time, for reasons to be further studied.
Tracing the microbial biosphere into the Messinian Salinity Crisis
NASA Astrophysics Data System (ADS)
Natalicchio, Marcello; Dela Pierre, Francesco; Birgel, Daniel; Lozar, Francesca; Peckmann, Jörn
2016-04-01
The Messinian salinity crisis (MSC), one of the largest environmental crises in Earth history, occurred in the Mediterranean Basin about 6 Ma ago. The isolation of the Mediterranean from the Atlantic Ocean caused the transformation of the Mediterranean sea into a giant salina. The establishment of harsh conditions (hypersalinity and anoxia) in the water mass had a strong impact on the aquatic biosphere, resulting in the apparent disappearance of many marine biota. This aspect is however controversial, mostly because of the finding of fossils of biota that actually survived the onset of the MSC. To trace the response of life to this catastrophic event, we studied the microbial biosphere (both body fossils and molecular fossils) archived in the sediments straddling the MSC onset (shales, carbonates and sulphates) from marginal subbasins (Piedmont Basin, northern Italy, and Nijar Basin, southern Spain). Despite the significant reduction of calcareous plankton, the progressive rise of other microorganisms (prokaryotes and eukaryotes) is documented in the studied sediments at the MSC onset. These microorganisms include remains of euryhaline and stenohaline diatoms and filamentous microfossils interpreted as vacuolated sulphide-oxidizing bacteria. This fossil assemblage, which typifies both marginal (gypsum) and more distal (carbonates and shale) deposits, indicates conditions of high primary productivity in the surface waters, favoured by increased nutrient influx in the course of high riverine runoff. Molecular fossils allow tracing of the microbial biosphere into the geological past. The rise of algal compounds (e.g. dinosterol) in the basal MSC deposits (gypsum, carbonate and shales), accompanied by the simultaneous increase of terrigenous organic material (n-alkanes), agree with the eutrophication of the basin. In addition, the MSC deposits show an instant and significant increase of archaeal biomarkers, including the archaeal membrane lipids archaeol and extended archaeol, mostly produced by halophilic archaea, documenting a change toward harsh conditions. The co-occurrence of crenarchaeol, a compound mostly sourced by marine planktic Thaumarchaeota, above the MSC onset indicates that normal marine conditions were still present, probably in the upper water column, which was apparently underlain by a lower hypersaline layer. The local presence of tetrahymanol, a biomarker of ciliates or anoxygenic phototrophic bacteria, confirms water mass stratification, since this compound is predominantly found in stratified water bodies. In conclusion, the comprehensive study of body fossils and molecular fossils from different peripheral Mediterranean subbasins reveals that the onset of the MSC was typified by an expansion of microorganisms. The microbial biosphere archived in the basal MSC sediments agrees with a stratified basin characterized by locally persistent marine conditions.
Stanford, Ray; Lockley, Martin G; Tucker, Compton; Godfrey, Stephen; Stanford, Sheila M
2018-01-31
A newly discovered assemblage of predominantly small tracks from the Cretaceous Patuxent Formation at NASA's Goddard Space Flight Center, Maryland, reveals one of the highest track densities and diversities ever reported (~70 tracks, representing at least eight morphotypes from an area of only ~2 m 2 ). The assemblage is dominated by small mammal tracks including the new ichnotxon Sederipes goddardensis, indicating sitting postures. Small crow-sized theropod trackways, the first from this unit, indicate social trackmakers and suggest slow-paced foraging behavior. Tracks of pterosaurs, and other small vertebrates suggest activity on an organic-rich substrate. Large well-preserved sauropod and nodosaurs tracks indicate the presence of large dinosaurs. The Patuxent Formation together with the recently reported Angolan assemblage comprise the world's two largest Mesozoic mammal footprint assemblages. The high density of footprint registration at the NASA site indicates special preservational and taphonomic conditions. These include early, penecontemporaneous deposition of siderite in organic rich, reducing wetland settings where even the flesh of body fossils can be mummified. Thus, the track-rich ironstone substrates of the Patuxent Formation, appear to preserve a unique vertebrate ichnofacies, with associated, exceptionally-preserved body fossil remains for which there are currently no other similar examples preserved in the fossil record.
Oji, Tatsuo; Dornbos, Stephen Q; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the 'agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum . These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-01-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the ‘agronomic revolution’. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered. PMID:29515908
NASA Astrophysics Data System (ADS)
Oji, Tatsuo; Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the `agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
NASA Astrophysics Data System (ADS)
Luo, M.; George, A. D.; Chen, Z.; Zhang, Y.
2013-12-01
New Early Triassic trace fossil assemblages are documented from the Susong and Tianshengqiao areas in South China to evaluate the mode and tempo of biotic recovery of epifaunal and infaunal organisms following the end-Permian mass extinction. The Susong succession is exposed in Anhui area of the Lower Yangtze region and comprises mudstone and carbonate facies that record overall shallowing from offshore to supratidal settings. The Tianshengqiao succession crops out in the Luoping area, Yuannan Province of the Upper Yangtze region, and consists of mixed carbonate and siliciclastic facies which were deposited in shallow marine to offshore settings. Bivalve and conodont biostratigraphy helps constrain the chronostratigraphic framework of the Lower Triassic successions in these two sections. Griesbachian to Dieneria ichnological records in both successions are characterized by low ichnodiversity, low ichnofabric indices (ii=1-2) and low bedding plane bioturbation indices (bpbi=1-2). Higher ii (ii= 3 and 4) corresponding to densely populated diminutive Skolithos in the Tianshengqiao succession suggest an opportunistic strategy during earliest Triassic deposition. Ichnological data from the Susong succession show an increase in ichnodiversity during the Smithian. A total of 12 ichnogenera including Arenicolites, Chondrites, Gyrochorte, Laevicyclus, Monocraterion, Palaeophycus, Phycodes, Plaolites, Thalassinoides, Treptichnus, Trichichnus and one problematic trace are identified. Ichnofabric indices (ii) and bpbi increase to moderate to high levels (ii = 4-5, bpbi= 3-5). Although complex traces such as Rhizocorallium are in Spathian strata in this section, the low levels of ichnodiversity, ichnofabric indices and diminutive Planolites suggest a decline in recovery. In the Tianshengqiao succession, ichnofabric indices exhibit a moderate to high value (ii= 3 to 5), however, only six ichnogenera are found and Planolites burrows are consistently small (average diameter at 3.7 mm) in the Smithian strata. These stressed ichnological parameters remain unchanged during the Spathian. Complex traces such as large Rhizocorallium and Thalassinoides and large sized Planolites (average diameter is 6.9 mm) did not appear until the Anisian. Ichnological results from both successions record the response of organisms to prolonged unfavorable environmental conditions although trace fossils from the Susong succession show evidences for recovery during the Smithian followed by a decline. This maybe resulted from a recognised temperature spike at the Smithian/Spathian boundary in South China and elsewhere. Ichnological data from the Tianshengqiao succession suggests a protracted recovery throughout the Early Triassic.
Publications - PIR 2004-3 | Alaska Division of Geological & Geophysical
) Keywords Alaska, State of; Alluvial Deposits; Amy Creek Assemblage; Amy Dolomite; Ar-Ar; Bison Fossils ; Cambrian; Caribou Fossils; Cascaden Ridge Unit; Cenozoic; Colluvial Deposits; Cretaceous; Devonian ; Engineering Geology; Eolian; Fox Fossils; Geochemistry; Geochronology; Geologic Hazards; Geologic Materials
Fossil Scenedesmus (Chlorococcales) from the Raton Formation, Colorado and New Mexico, U.S.A.
Farley, Fleming R.
1989-01-01
Fossilized coenobia of the alga Scenedesmus (Chlorococcales) were recovered in palynomorph assemblages from a lower Paleocene mudstone in the Upper Cretaceous and Paleocene Raton Formation of Colorado and New Mexico. This is the first description of fossil Scenedesmus from Tertiary rocks. Two species, Scenedesmus tschudyi sp. nov. and Scenedesmus hanleyi sp. nov., are present in the assemblages. Coenobia of S. tschudyi sp. nov. are characterized by lunate terminal cells and fusiform median cells. As in species of modern Scenedesmus, coenobia of S. tschudyi sp. nov. occur with four or eight cells. Coenobia of S. hanleyi sp. nov. have four oval cells and are smaller than coenobia of S. tschudyi sp. nov. Fossil coenobia of Scenedesmus co-occur with the fossil alga Pediastrum in Raton Formation mudstones. Because these genera co-occur in modern lakes and ponds, the co-occurrence of fossil Scenedesmus and Pediastrum in ancient nonmarine rocks is interpreted to indicate deposition of sediment in freshwater lakes and ponds. ?? 1989.
NASA Astrophysics Data System (ADS)
Yun, Suk Min; Lee, Taehee; Jung, Seung Won; Park, Joon Sang; Lee, Jin Hwan
2017-09-01
The fossil diatom assemblage record from two sediment cores obtained from the Ulleung Basin, East Sea, Republic of Korea, revealed changes in the diatom assemblage zones in PG1 and PD3 core samples. The two sediment cores were δC14 dated and approximately represented the late Pleistocene-Holocene. The analysis of age zones in the PG1 core and PD3 core was assessed based on the frequency of variations, and occurrences of biostratigraphical fossil diatom species. During the Last Glacial Maximum (LGM), the sea level was lower than that at present and the Ulleung Basin became isolated from the Pacific Ocean. As a result, there would have been a limited Tsushima Warm Current (TWC) influence, and salinity would have decreased resulting in increased freshwater and coastal diatoms. The distribution pattern of diatoms presented in the cores was associated with changes in water temperature and salinity and the adding of terrigenous material brought about by the input of freshwater. Changes in the abundance of a tychopelagic diatom, Paralia sulcata, reflected the effect of the water currents. Diatom temperature (Td) values and the ratio of centric/pennate diatoms provided evidence of limited influences of the TWC and freshwater inflow. It is thought that all assemblage zones were influenced by the TWC, which had an important effect on the distribution and composition of fossil diatoms.
Deep faunistic turnovers preceded the rise of dinosaurs in southwestern Pangaea.
Ezcurra, Martín D; Fiorelli, Lucas E; Martinelli, Agustín G; Rocher, Sebastián; von Baczko, M Belén; Ezpeleta, Miguel; Taborda, Jeremías R A; Hechenleitner, E Martín; Trotteyn, M Jimena; Desojo, Julia B
2017-10-01
The Triassic period documents the origin and diversification of modern amniote lineages and the Late Triassic fossil record of South America has been crucial to shed light on these early evolutionary histories. However, the faunistic changes that led to the establishment of Late Triassic ecosystems are largely ignored because of the global scarcity of fossils from assemblages a few million years older. Here we contribute to fill this gap with the description of a new tetrapod assemblage from the lowermost levels of the Chañares Formation (uppermost Middle-lower Late Triassic epochs) of Argentina, which is older than the other vertebrate assemblages of the same basin. The new assemblage is composed of therapsids, rhynchosaurids and archosaurs, and clearly differs from that of the immediately overlying and well-known historical Chañares vertebrate assemblage. The new tetrapod association is part of a phase of relatively rapidly changing vertebrate assemblage compositions, in a time span shorter than 6 million years, before the diversification of dinosaurs and other common Late Triassic tetrapods in southwestern Pangaea.
Trace fossils of microbial colonization on Mars: Criteria for search and for sample return
NASA Technical Reports Server (NTRS)
Friedmann, E. I.
1988-01-01
The recent discovery of microbial trace-fossil formation in the frigid Ross Desert of Antarctica suggests that early primitive life on Mars may have left behind similar signatures. These trace fossils are apparent as chemical or physical changes in rock (or sediment) structure (or chemistry) caused by the activity of organisms. Life on Mars, if it ever existed, almost certainly did not evolve above the level of microorganisms, and this should be considered in search for fossil life. For the reasons detailed here, microbial trace fossils seem to be a better and more realistic target for search than would be true microbial fossils (remnants of cellular structures).
Taphonomic bias in pollen and spore record: a review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisk, L.H.
The high dispersibility and ease of pollen and spore transport have led researchers to conclude erroneously that fossil pollen and spore floras are relatively complete and record unbiased representations of the regional vegetation extant at the time of sediment deposition. That such conclusions are unjustified is obvious when the authors remember that polynomorphs are merely organic sedimentary particles and undergo hydraulic sorting not unlike clastic sedimentary particles. Prior to deposition in the fossil record, pollen and spores can be hydraulically sorted by size, shape, and weight, subtly biasing relative frequencies in fossil assemblages. Sorting during transport results in palynofloras whosemore » composition is environmentally dependent. Therefore, depositional environment is an important consideration to make correct inferences on the source vegetation. Sediment particle size of original rock samples may contain important information on the probability of a taphonomically biased pollen and spore assemblage. In addition, a reasonable test of hydraulic sorting is the distribution of pollen grain sizes and shapes in each assemblage. Any assemblage containing a wide spectrum of grain sizes and shapes has obviously not undergone significant sorting. If unrecognized, taphonomic bias can lead to paleoecologic, paleoclimatic, and even biostratigraphic misinterpretations.« less
Paleobotany of Livingston Island: The first report of a Cretaceous fossil flora from Hannah Point
Leppe, M.; Michea, W.; Muñoz, C.; Palma-Heldt, S.; Fernandoy, F.
2007-01-01
This is the first report of a fossil flora from Hannah Point, Livingston Island, South Shetland Islands, Antarctica. The fossiliferous content of an outcrop, located between two igneous rock units of Cretaceous age are mainly composed of leaf imprints and some fossil trunks. The leaf assemblage consists of 18 taxa of Pteridophyta, Pinophyta and one angiosperm. The plant assemblage can be compared to other Early Cretaceous floras from the South Shetland Islands, but several taxa have an evidently Late Cretaceous affinity. A Coniacian-Santonian age is the most probable age for the outcrops, supported by previous K/Ar isotopic studies of the basalts over and underlying the fossiliferous sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whidden, K.J.; Bottjer, D.J.
Silicification in carbonates, particularly silicified trace fossils, has received relatively little previous study. Chert comprises a significant percentage of the upper Fossil Mountain Member of the Kaibab Formation, a Permian epicontinental limestone. Distribution and origin of this chert were studied from outcrops in southwestern Utah. The origin of much of this chert is believed to be as silicified Thalassinoides burrows. Field evidence for trace fossil silicification includes (1) silicified cylindrical tubes with Y-shaped branching patterns as well as hollow tubes, and (2) polygonal box-work patterns of tubes. In addition, brachiopods, bryozoans, and abundant specimens of the sponge Actinocelia maendrina Finksmore » are also silicified. Recognition of silicified trace fossils in carbonates provides a different approach to the study of early diagenetic silica precipitation. These silicified trace fossils also represent new information on bioturbation in ancient carbonates, a subject that has, until recently, been relatively unstudied.« less
Farlow, J.O.; Sunderman, J.A.; Havens, J.J.; Swinehart, A.L.; Holman, J.A.; Richards, R.L.; Miller, N.G.; Martin, R.A.; Hunt, R.M.; Storrs, G.W.; Curry, B. Brandon; Fluegeman, R.H.; Dawson, M.; Flint, M.E.T.
2001-01-01
Quarrying in east-central Indiana has uncovered richly fossiliferous unconsolidated sediment buried beneath Pleistocene glacial till. The fossiliferous layer is part of a sedimentary deposit that accumulated in a sinkhole developed in the limestone flank beds of a Paleozoic reef. Plant and animal (mostly vertebrate) remains are abundant in the fossil assemblage. Plants are represented by a diversity of terrestrial and wetland forms, all of extant species. The vertebrate assemblage (here designated the Pipe Creek Sinkhole local fauna) is dominated by frogs and pond turtles, but fishes, birds; snakes and small and large mammals are also present; both extinct and extant taxa are represented. The mammalian assemblage indicates an early Pliocene age (latest Hemphillian or earliest Blancan North American Land Mammal Age). This is the first Tertiary continental biota discovered in the interior of the eastern half of North America.
Chondrites isp. Indicating Late Paleozoic Atmospheric Anoxia in Eastern Peninsular India
Bhattacharya, Biplab; Banerjee, Sudipto
2014-01-01
Rhythmic sandstone-mudstone-coal succession of the Barakar Formation (early Permian) manifests a transition from lower braided-fluvial to upper tide-wave influenced, estuarine setting. Monospecific assemblage of marine trace fossil Chondrites isp. in contemporaneous claystone beds in the upper Barakar succession from two Gondwana basins (namely, the Raniganj Basin and the Talchir Basin) in eastern peninsular India signifies predominant marine incursion during end early Permian. Monospecific Chondrites ichnoassemblage in different sedimentary horizons in geographically wide apart (~400 km) areas demarcates multiple short-spanned phases of anoxia in eastern India. Such anoxia is interpreted as intermittent falls in oxygen level in an overall decreasing atmospheric oxygenation within the late Paleozoic global oxygen-carbon dioxide fluctuations. PMID:24616628
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormack, J.
1994-09-01
The downdip Queen City sandstone interval in the Mestena Grande field area of the south Texas Gulf Coast basin comprises two sandstone depositional units, referred to in this paper as A Lobe and B Lobe. A total of 583 ft (179 m) of conventional core from 11 wells containing predominantly B Lobe deposits were examined macroscopically. The A Lobe is a thin (6-34 ft; 1.8-10.4 m) fine- to very fine-grained, mostly bioturbated, well-sorted sandstone. The B Lobe is composed of fine to very fine, well-sorted sandstone interbedded with siltstone and mudstone. The trace fossil assemblage of the B Lobe indicatesmore » that sediments were deposited in the cruziana ichnofacies. Trace fossils and authigenic minerals also suggest oxygen stratification during deposition. B Lobe contains five subunits, each up to 13.5 ft (4 m) net sand thickness. These units were deposited as part of a highstands systems tract during the early Lutetian Stage (lower middle Eocene). B Lobe is a primarily aggradational unit composed of storm-generated sandstone and heterolithic deposits of the lower shoreface to inner shelf environment. A Lobe is a coarsening upward unit and represents progradation of the shoreface during late highstand systems tract development. An interlobal mudstone, which separates the units, marks the transition from early to late highstand systems tract development.« less
Permian scorpions from the Petrified Forest of Chemnitz, Germany.
Dunlop, Jason A; Legg, David A; Selden, Paul A; Fet, Victor; Schneider, Joerg W; Rößler, Ronny
2016-04-07
Paleozoic scorpions (Arachnida: Scorpiones) have been widely documented from the Carboniferous Period; which hosts a remarkable assemblage of more than sixty species including both putative stem- and crown-group fossils. By contrast the succeeding Permian Period is almost completely devoid of records, which are currently restricted to a trace fossil from the early Permian of New Mexico, USA and some limb fragments from the late Permian of the Vologda Region, Russia. ?Opsieobuthus tungeri sp. nov. from the Petrified Forest of Chemnitz, Germany represents the first complete body fossils of scorpions from the Permian. Explosive volcanism preserved these remarkable specimens in situ as part of the palaeosol horizon and bedrock of the Petrified Forest, immediately beneath the Zeisigwald tuff horizon. This dates to the early Permian (Sakmarian) or ca. 291 Ma. Intriguingly, the specimens were obtained from a palaeosol horizon with a compacted network of different-sized woody roots and thus have been preserved in situ in their likely life position, even within their original burrows. Differences in the structure of the comb-like pectines in the two fossils offer evidence for sexual dimorphism, and permit further inferences about the ecology and perhaps even the reproductive biology of these animals. As putative members of a Coal Measures genus, these fossils suggest that at least some Carboniferous scorpion lineages extended their range further into the Permian. This contributes towards a picture of scorpion evolution in which both basal and derived (orthostern) forms coexisted for quite some time; probably from the end of the Carboniferous through to at least the mid Triassic.
Cunningham, John A; Thomas, Ceri-Wyn; Bengtson, Stefan; Kearns, Stuart L; Xiao, Shuhai; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C J
2012-06-22
The Ediacaran Doushantuo biota has yielded fossils that include the oldest widely accepted record of the animal evolutionary lineage, as well as specimens with alleged bilaterian affinity. However, these systematic interpretations are contingent on the presence of key biological structures that have been reinterpreted by some workers as artefacts of diagenetic mineralization. On the basis of chemistry and crystallographic fabric, we characterize and discriminate phases of mineralization that reflect: (i) replication of original biological structure, and (ii) void-filling diagenetic mineralization. The results indicate that all fossils from the Doushantuo assemblage preserve a complex mélange of mineral phases, even where subcellular anatomy appears to be preserved. The findings allow these phases to be distinguished in more controversial fossils, facilitating a critical re-evaluation of the Doushantuo fossil assemblage and its implications as an archive of Ediacaran animal diversity. We find that putative subcellular structures exhibit fabrics consistent with preservation of original morphology. Cells in later developmental stages are not in original configuration and are therefore uninformative concerning gastrulation. Key structures used to identify Doushantuo bilaterians can be dismissed as late diagenetic artefacts. Therefore, when diagenetic mineralization is considered, there is no convincing evidence for bilaterians in the Doushantuo assemblage.
Top 10 Lines of Evidence for Human Evolution.
ERIC Educational Resources Information Center
Nickels, Martin
2001-01-01
Provides 10 lines of evidence that support the theory of human evolution. The evidence relates to hierarchical taxonomic classification, comparative anatomy, comparative embryology and development, comparative biochemistry, adaptive compromises, vestigial structures, biogeography, the fossil sequence, ecological coherence of fossil assemblages,…
Late Holocene environmental changes in a mesotidal estuary from Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Espinosa, Marcela; Escandell, Alejandra; Velez Agudelo, Camilo
2016-04-01
Two sediment records from the lower valley of Negro River, Patagonia, Argentina (41°01´S; 62°47'W) spanning for the last 2000 cal yrs BP were analyzed according to diatoms and sediments contents. The river originates at the junction of the Neuquén and the Limay Rivers, Northern Patagonia, and discharges more than 1000 m3/s to the South Atlantic Ocean. Mesotidal conditions dominate at the inlet (2.95 m) affecting the lower valley (about 20 km) where salinity decreases drastically in the last 2 km. Fossil diatom assemblages and grain size were studied from two cores located at 1.5 km (Villarino site) and 12 km (Criadero site) from the inlet. Samples for modern diatom analyses were collected from the littoral zone at eleven sites along the river. Physical and chemical variables were quantified representing the maximum heterogeneity along the aquatic environment. Turbidity, salinity, conductivity, pH and temperature data were obtained in situ during summer and winter. In addition, a surface sediment sample was taken for grain size analysis and organic matter content, and water samples were taken to analyze nutrients and major ions following standard methods. The diatom content of modern sediment samples were studied in order to achieve ecological information useful as modern analogous for Patagonian rivers. Diatom zones were characterized by constrained incremental sum of squares cluster analysis (single linkage, Euclidean distance) in the fossil sequences. Fossil and modern diatom assemblages were compared with Detrended Correspondence Analysis (DCA). A total of 77 samples (modern and fossils) were analyzed and more than 200 taxa were identified. Diatom assemblages showed distinct abundance patterns in relation to salinity with a shift from communities dominated by marine/brackish taxa in lower sites to communities dominated by freshwater taxa in the middle and upper course of the river. The record of Criadero core (12 km from the inlet) began 2000 cal yrs BP with a shallow vegetated brackish/freshwater environment represented by Surirella brebissonii, Epithemia adnata and Rhopalodia gibba. The environment evolved gradually into marine conditions with dominance of Paralia sulcata, Delphineis surirella, Raphoneis amphiceros and Cymatosira belgica (tidal channel). Finally, marine brackish aerophilous taxa indicate the development of a saltmarsh. Villarino core (1.5 km from the inlet) represents the infilling of the estuary during the last 1300 cal yrs BP with the dominance of the marine/brackish tychoplankton taxa Paralia sulcata. The fossil assemblages of the two studied sequences showed similarity with modern assemblages of the lower valley of the river. Considering the strong influence of salinity changes on diatom assemblages, tidal effects are the main controlling factor for the composition and distribution of diatoms along mesotidal estuaries from Patagonia. The knowledge of palaeoenvironmental conditions derived from fossil diatom assemblages is very important to infer man-made changes in coastal areas and can be used as reference for the assessment of recent coastal changes (dredging, harbour construction, flood control improvements, pollution).
2015-01-01
The Urumaco stratigraphic sequence, western Venezuela, preserves a variety of paleoenvironments that include terrestrial, riverine, lacustrine and marine facies. A wide range of fossil vertebrates associated with these facies supports the hypothesis of an estuary in that geographic area connected with a hydrographic system that flowed from western Amazonia up to the Proto-Caribbean Sea during the Miocene. Here the elasmobranch assemblages of the middle Miocene to middle Pliocene section of the Urumaco sequence (Socorro, Urumaco and Codore formations) are described. Based on new findings, we document at least 21 taxa of the Lamniformes, Carcharhiniformes, Myliobatiformes and Rajiformes, and describe a new carcharhiniform species (†Carcharhinus caquetius sp. nov.). Moreover, the Urumaco Formation has a high number of well-preserved fossil Pristis rostra, for which we provide a detailed taxonomic revision, and referral in the context of the global Miocene record of Pristis as well as extant species. Using the habitat preference of the living representatives, we hypothesize that the fossil chondrichthyan assemblages from the Urumaco sequence are evidence for marine shallow waters and estuarine habitats. PMID:26488163
NASA Astrophysics Data System (ADS)
Xi, Dangpeng; Qu, Haiying; Shi, Zhongye; Wan, Xiaoqiao
2017-04-01
Songliao Basin is one of the biggest lacustrine systems in Asia during Cretaceous age. Widespread deposits in the basin are mainly composed of clastic sediments which contain abundant fossils including gastropod, bivalves, ostracods, vertebrates and others. These well preserved ostracod fossils provide us valuable information about past climate changes and biotic responses in a greenhouse environment.The Cretaceous Continental Scientific Drilling in the Songliao Basin (SK1) offers a rare opportunity to study Late Cretaceous non-marine ostracod. The SK1 was drilled separately in two boreholes: the lower 959.55-meter-thick south core (SK1(s)), and the upper 1636.72-meter-thick north core (SK1 (n)), containing the Upper Quantou, Qingshankou, Yaojia, Nenjiang Formation, Sifangtai, Mingshui and lower Taikang formations. Here we establish high-resolution non-marine ostracod biostratigraphy based on SK1. 80 species belonging to 12 genera in the SK1(S) and 45 species assigned to 20 genera in the SK1(n) have been recovered. Nineteen ostracod assemblage zones have been recognized: 1. Mongolocypris longicaudata-Cypridea Assemblage Zone, 2.Triangulicypris torsuosus-Triangulicypris torsuosus. nota Assemblage Zone, 3. Cypridea dekhoinensis-Cypridea gibbosa Assemblage Zone, 4.Cypridea nota-Sunliavia tumida Assemblage Zone, 5.Cypridea edentula-Lycopterocypris grandis Assemblage Zone, 6.Cypridea fuyuensis-Triangulicypris symmetrica Assemblage Zone, 7.Triangulicypris vestilus-Triangulicypris fusiformis-Triangulicypris pumilis Assemblage Zone, 8.Cypridea panda-Mongolocypris obscura Assemblage Zone, 9. Cypridea exornata-Cypridea dongfangensis Assemblage Zone, 10.Cypridea favosa-Mongolocypris tabulata Assemblage Zone, 11.Cypridea formosa-Cypridea sunghuajiangensis Assemblage Zone, 12. Cypridea anonyma-Candona fabiforma Assemblage Zone, 13.Cypridea gracila-Cypridea gunsulinensis Assemblage Zone, 14.Mongolocypris magna-Mongolocypris heiluntszianensis Assemblage Zone, 15.Cypridea liaukhenensis-Cypridea stellata Assemblage Zone, 16. Ilyocyprimorpha-Limnocypridea sunliaonensis-Periacanthella Assemblage Zone, 17. Strumosia inandita Asemblage-Zone, 18.Talicypridea amoena-Metacypris kaitunensis-Ziziphocypris simakovi Assemblage Zone, 19.Ilyocypris Assemblage Zone. Assemblage Zone 1 to 18 are belong to late Cretaceous, but 19 might constrained to the Latest Maastrichtian to the Earliset Danian.
Thompson, Robert S.; Anderson, Katherine H.; Pelltier, Richard T.; Strickland, Laura E.; Shafer, Sarah L.; Bartlein, Patrick J.
2012-01-01
Vegetation inventories (plant taxa present in a vegetation assemblage at a given site) can be used to estimate climatic parameters based on the identification of the range of a given parameter where all taxa in an assemblage overlap ("Mutual Climatic Range"). For the reconstruction of past climates from fossil or subfossil plant assemblages, we assembled the data necessary for such analyses for 530 woody plant taxa and eight climatic parameters in North America. Here we present examples of how these data can be used to obtain paleoclimatic estimates from botanical data in a straightforward, simple, and robust fashion. We also include matrices of climate parameter versus occurrence or nonoccurrence of the individual taxa. These relations are depicted graphically as histograms of the population distributions of the occurrences of a given taxon plotted against a given climatic parameter. This provides a new method for quantification of paleoclimatic parameters from fossil plant assemblages.
Surface modifications of the Sima de los Huesos fossil humans.
Andrews, P; Fernandez Jalvo, Y
1997-01-01
The sample of fossil human bones from the Sima de los Huesos, Atapuerca, has been analysed to trace parts of its taphonomic history. The work reported here is restricted to analysis of the skeletal elements preserved and their surface modifications. Preliminary plans of specimen distribution published 6 years ago indicate that the skeletal elements are dispersed within the cave, but more recent data are not yet available. Most of the fossils are broken, with some breakage when the bone was fresh and some when already partly mineralized, both types showing some rounding. There are few longitudinal breaks on shafts of long bones and so very few bone splinters. All skeletal elements are preserved but in unequal proportions, with elements like femora, humeri and mandibles and teeth with greater structural density being best represented. There is no evidence of weathering or of human damage such as cut marks on any of the human assemblage, but trampling damage is present on most bones. Carnivore damage is also common, with some present on more than half the sample, but it is mostly superficial, either on the surfaces of shafts and articular ends or on the edges of spiral breaks. The sizes and distribution of the carnivore pits indicate extensive canid activity, and this is interpreted as scavenging of the bones in place in the cave. Indications of tooth marks from a larger carnivore indicate the activity possibly of a large felid: the marks are too large to be produced by small canids, with the larger marks concentrated on spiral breaks on the more robust bones, and there is no evidence of bone crushing and splintering in the manner of hyaenas. The nature of the SH human assemblage is also consistent with accumulation by humans, the evidence for this being the lack of other animals, especially the lack of herbivorous animals, associated with the humans, and the high number of individuals preserved.
NASA Astrophysics Data System (ADS)
Lukens, William E.; Lehmann, Thomas; Peppe, Daniel J.; Fox, David L.; Driese, Steven G.; McNulty, Kieran P.
2017-10-01
Early Miocene outcrops near Karungu, Western Kenya, preserve a range of fluvio-lacustrine, lowland landscapes that contain abundant fossils of terrestrial and aquatic vertebrates. Primates are notably rare among these remains, although nearby early Miocene strata on Rusinga Island contain a rich assemblage of fossilized catarrhines and strepsirrhines. To explore possible environmental controls on the occurrence of early Miocene primates, we performed a deep-time Critical Zone (DTCZ) reconstruction focused on floodplain paleosols at the Ngira locality in Karungu. We specifically focused on a single stratigraphic unit (NG15), which preserves moderately developed paleosols that contain a microvertebrate fossil assemblage. Although similarities between deposits at Karungu and Rusinga Island are commonly assumed, physical sedimentary processes, vegetative cover, soil hydrology, and some aspects of climate state are notably different between the two areas. Estimates of paleoclimate parameters using paleosol B horizon elemental chemistry and morphologic properties are consistent with seasonal, dry subhumid conditions, occasional waterlogging, and herbaceous vegetation. The reconstructed small mammal community indicates periodic waterlogging and open-canopy conditions. Based on the presence of herbaceous root traces, abundant microcharcoal, and pedogenic carbonates with high stable carbon isotope ratios, we interpret NG15 to have formed under a warm, seasonally dry, open riparian woodland to wooded grassland, in which at least a subset of the vegetation was likely C4 biomass. Our results, coupled with previous paleoenvironmental interpretations for deposits on Rusinga Island, demonstrate that there was considerable environmental heterogeneity ranging from open to closed habitats in the early Miocene. We hypothesize that the relative paucity of primates at Karungu was driven by their environmental preference for locally abundant closed canopy vegetation, which was likely absent at Karungu, at least during the NG15 interval if not also earlier and later intervals that have not yet been studied in as much detail.
Carlson, Kristian J; Pickering, Travis Rayne
2003-04-01
Plio-Pleistocene faunal assemblages from Swartkrans Cave (South Africa) preserve large numbers of primate remains. Brain, C.K., 1981. The Hunters or the Hunted? An Introduction to African Cave Taphonomy. University of Chicago Press, Chicago suggested that these primate subassemblages might have resulted from a focus by carnivores on primate predation and bone accumulation. Brain's hypothesis prompted us to investigate, in a previous study, this taphonomic issue as it relates to density-mediated destruction of primate bones (J. Archaeol. Sci. 29, 2002, 883). Here we extend our investigation of Brain's hypothesis by examining additional intrinsic qualities of baboon bones and their role as mediators of skeletal element representation in carnivore-created assemblages. Using three modern adult baboon skeletons, we collected data on four intrinsic bone qualities (bulk bone mineral density, maximum length, volume, and cross-sectional area) for approximately 81 bones per baboon skeleton. We investigated the relationship between these intrinsic bone qualities and a measure of skeletal part representation (the percentage minimum animal unit) for baboon bones in carnivore refuse and scat assemblages. Refuse assemblages consist of baboon bones not ingested during ten separate experimental feeding episodes in which individual baboon carcasses were fed to individual captive leopards and a spotted hyena. Scat assemblages consist of those baboon bones recovered in carnivore regurgitations and feces resulting from the feeding episodes. In refuse assemblages, volume (i.e., size) was consistently the best predictor of element representation, while cross-sectional area was the poorest predictor in the leopard refuse assemblage and bulk bone mineral density (i.e., a measure of the proportion of cortical to trabecular bone) was the poorest predictor in the hyena refuse assemblage. In light of previous documentation of carnivore-induced density-mediated destruction to bone assemblages, we interpret the current findings as suggestive of the secondary importance of bulk bone mineral density to other intrinsic qualities of skeletal elements (e.g., size, maximum dimension, and average cross-sectional area). It is only when skeletal elements are too large for consumption (e.g., many long bones) that they are fragmented following intra-element patterns of density-mediated carnivore destruction. There appears to be a size threshold beneath which bulk bone mineral density contributes little to mediating carnivore destruction of carcasses. Thus, depending on body size of the predator, body size of the prey, and specific size of the element, bulk bone mineral density may play little or no role of primary importance in mediating the destruction of skeletal elements. We compare patterns in modern comparative assemblages to patterns in primate fossil assemblages from Swartkrans. One of the fossil assemblages, Swartkrans Member 1, Hanging Remnant, most closely approximates a hyena (possibly refuse) assemblage pattern, while the Swartkrans Member 2 assemblage most closely approximates a leopard (possibly scat) assemblage pattern. The Swartkrans Member 1, Lower Bank, assemblage does not closely approximate any of our modern comparative assemblage patterns.
Buatois, L.A.; Mangano, M.G.; Genise, Jorge F.; Taylor, T.N.
1998-01-01
The combined study of continental trace fossils and associated sedimentary facies provides valuable evidence of colonization trends and events throughout the Phanerozoic. Colonization of continental environments was linked to the exploitation of empty or under-utilized ecospace. Although the nonmarine trace fossil record probably begins during the Late Ordovician, significant invasion of nonmarine biotopes began close to the Silurian-Devonian transition with the establishment of a mobile arthropod epifauna (Diplichnites ichnoguild) in coastal marine to alluvial plain settings. Additionally, the presence of vertical burrows in Devonian high-energy fluvial deposits reflects the establishment of a stationary, deep suspension-feeding infauna of the Skolithos ichnoguild. The earliest evidence of plant-arthropod interaction occurred close to the Silurian-Devonian boundary, but widespread and varied feeding patterns are known from the Carboniferous. During the Carboniferous, permanent subaqueous lacustrine settings were colonized by a diverse, mobile detritus-feeding epifauna of the Mermia ichnoguild, which reflects a significant palaeoenvironmental expansion of trace fossils. Paleozoic ichnologic evidence supports direct routes to the land from marginal marine environments, and migration to lakes from land settings. All nonmarine sedimentary environments were colonized by the Carboniferous, and subsequent patterns indicate an increase in ecospace utilization within already colonized depositional settings. During the Permian, back-filled traces of the Scoyenia ichnoguild record the establishment of a mobile, intermediate-depth, deposit-feeding in-fauna in alluvial and transitional alluvial-lacustrine sediment. Diversification of land plants and the establishment of ecologically diverse plant communities through time provided new niches to be exploited by arthropods. Nevertheless, most ot the evolutionary feeding innovations took place relatively early, during the Late Palaeozoic or early Mesozoic. A stationary deep unfauna, the Camborygma ichnoguild, was developed in Triassic transitional alluvial-lacustrinbe deposits. Terrestrial environments hosted the rise of complex social behavioral patterns, as suggested by the probable presence of hymenopteran and isopteran nests in Triassic paleosols. An increase in diversity of trace fossils is detected in Triassic-Jurassic eolian deposits, where the ichnofauna displays more varied behavioral patterns than their Paleozoic counterparts. Also, a mobile, intermediate-depth, deposit-feeding infauna, the Vagorichnus ichnoguild, was established in deep lake environments during the Jurassic. In contrast to Paleozoic permanent subaqueous assemblages typified by surface trails, Jurassic ichnocoenoses are dominated by infaunal burrows. High density of infaunal deposit-feeding traces of the Planolites ichnoguild caused major disruption of lacustrine sedimentary fabrics during the Cretaceous. Most insect mouthpart classes, functional feeding groups, and dietary guilds were established by the end of the Cretaceous. Diversification of modern insects is recorded by the abundance and complexity of structures produced by wasps, bees, dung-beetles, and termites in Cretaceous-Tertiary paleosols. The increase in bioturbation migrated from fluvial and lake-margin settings to permanent subaqueous lacustrine environments through time.
Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction
NASA Astrophysics Data System (ADS)
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-11-01
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.
Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-01-01
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China. PMID:26538179
Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.
Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim
2015-11-05
There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.
ERIC Educational Resources Information Center
Naturescope, 1987
1987-01-01
Provides background information on how scientists have learned about the history of the Earth, including studying fossils, dating rocks, and tracing geological movements. Included are teaching activities about prehistoric animals, state fossils, tracing animal movement and evolution, and discovering fossils. Contains reproducible handouts and…
NASA Astrophysics Data System (ADS)
Irmis, R. B.; Olsen, P. E.; Parker, W.; Rasmussen, C.; Mundil, R.; Whiteside, J. H.
2017-12-01
The Chinle Formation of southwestern North America is a key paleontological archive of low paleolatitude non-marine ecosystems that existed during the Late Triassic hothouse world. These strata were deposited at 5-15°N latitude, and preserve extensive plant, invertebrate, and vertebrate fossil assemblages, including early dinosaurs; these organisms lived in an unpredictably fluctuating semi-arid to arid environment with very high atmospheric pCO2. Despite this well-studied fossil record, a full understanding of these ecosystems and their integration with other fossil assemblages globally has been hindered by a poor understanding of the Chinle Formation's age, duration, and sedimentation rates. Recently, the CPCP recovered a 520m continuous core through this formation from the northern portion of Petrified Forest National Park (PEFO) in northern Arizona, USA. This core has provided a plethora of new radioisotopic and magnetostratigraphic data from fresh, unweathered samples in unambiguous stratigraphic superposition. These constraints confirm that virtually all fossil-bearing horizons in Chinle outcrops in the vicinity of PEFO are Norian in age. Furthermore, they indicate that the palynomorph zone II and Adamanian vertebrate biozone are at least six million years long, whereas the overlying palynomorph zone III and Revueltian vertebrate biozone persisted for at least five million years, with the boundary between 216-214 Ma. This confirms that the rich late Adamanian-early Revueltian vertebrate fossil assemblages, where dinosaurs are exclusively rare, small-bodied carnivorous theropods, are contemporaneous with higher latitude assemblages in Europe, South America, and Africa where large-bodied herbivorous sauropodomorph dinosaurs are common. The age constraints also confirm that several palynomorph biostratigraphic ranges in the Chinle Formation differ from those of the same taxa in eastern North American (Newark Supergroup) and Europe. These data are consistent with the hypothesis that latitudinal differences in climate sorted the biota found across Pangaea during the Late Triassic Period.
Trace fossil analysis of lacustrine facies and basins
Buatois, L.A.; Mangano, M.G.
1998-01-01
Two ichnofacies are typical of lacustrine depositional systems. The Scoyenia ichnofacies characterizes transitional terrestrial/nonmarine aquatic substrates, periodically inundated or desiccated, and therefore is commonly present in lake margin facies. The Mermia ichnofacies is associated with well oxygenated, permanent subaqueous, fine-grained substrates of hydrologically open, perennial lakes. Bathymetric zonations within the Mermia ichnofacies are complicated by the wide variability of lacustrine systems. Detected proximal-distal trends are useful within particular lake basins, but commonly difficult to extrapolate to other lakes. Other potential ichnofacies include the typically marine Skolithos ichnofacies for high-energy zones of lakes and substrate-controlled, still unnamed ichnofacies, associated to lake margin deposits. Trace fossils are useful for sedimentologic analysis of event beds. Lacustrine turbidites are characterized by low-diversity suites, reflecting colonization by opportunistic organisms after the turbidite event. Underflow current beds record animal activity contemporaneous with nearly continuous sedimentation. Ichnologic studies may also help to distinguish between marine and lacustrine turbidites. Deep-marine turbidites host the Nereites ichnofacies that consists of high diversity of ornate grazing traces and graphoglyptids, recording highly specialized feeding strategies developed to solve the problem of the scarcity of food in the deep sea. Deep lacustrine environments contain the Mermia ichnofacies, which is dominated by unspecialized grazing and feeding traces probably related to the abundance and accessibility of food in lacustrine systems. The lower diversity of lacustrine ichnofaunas in comparison with deep-sea assemblages more likely reflects lower species diversity as a consequence of less stable conditions. Increase of depth and extent of bioturbation through geologic time produced a clear signature in the ichnofabric record of lacustrine facies. Paleozoic lacustrine ichnofaunas are typically dominated by surface trails with little associated bioturbation. During the Mesozoic, bioturbation depth was higher in lake margin facies than in fully lacustrine deposits. While significant degrees of bioturbation were attained in lake margin facies during the Triassic, major biogenic disruption of primary bedding in subaqueous lacustrine deposits did not occur until the Cretaceous.
Fossilized bioelectric wire - the trace fossil Trichichnus
NASA Astrophysics Data System (ADS)
Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.
2014-12-01
The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the interface oxic - anoxic zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that produced by modern large, mat-forming, sulphide-oxidizing bacteria, belonging mostly to Trichichnus-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".
Fossilized bioelectric wire - the trace fossil Trichichnus
NASA Astrophysics Data System (ADS)
Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.
2015-04-01
The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic-anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".
Fossilized bioelectric wire – the trace fossil Trichichnus
Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.
2015-01-01
The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”. PMID:26290671
Optical dating of the anastasia formation, northeastern florida, USA
Burdette, K.E.; Rink, J.W.; Means, G.H.; Portell, R.W.
2009-01-01
The single-aliquot regenerative-dose (SAR) procedure was used to obtain optically stimulated luminescence ages to determine the depositional age of the upper part of the Anastasia Formation. This unit, which crops out along the east coast of Florida, is one of the most culturally and economically important coquina deposits in North America. Rock samples from the upper three meters of exposure at three locations were collected. Additional materials for paleontological analysis were also taken. Based on our samples, the luminescence ages of the Anastasia Formation are well within marine isotope stage 5, which is supported by the results of Osmond et al. (1970) based on U/Th ages. The associated fossil assemblages support our luminescence age determinations. Associated fossils fall within the Rancholabrean North American Land Mammal Age (300 10 ka) and the fossil mollusk assemblage consists entirely of modern species.
Microbial trace-fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert
NASA Technical Reports Server (NTRS)
Friedmann, E. Imre; Weed, Rebecca
1987-01-01
In the Antarctic cold desert (Ross Desert), the survival of the cryptoendolithic microorganisms that colonize the near-surface layer of porous sandstone rocks depends on a precarious equilibrium of biological and geological factors. An unfavorable shift of this equilibrium results in death, and this may be followed by formation of trace fossils that preserve the characteristic iron-leaching pattern caused by microbial activity. Similar microbial trace fossils may exist in the geological record. If life ever arose on early Mars, similar processes may have occurred there and left recognizable traces.
Origin of the Bear Gulch Beds (Namurian, Montana, USA)
Feldman, H.R.; Lund, R.; Maples, C.G.; Archer, A.W.
1994-01-01
The Bear Gulch Beds of the Heath Formation are well known for their diverse and well-preserved assemblage offish, arthropods, and soft-bodied animals (they constitute a Lagersta??tte). The Bear Gulch is a lens of lithographic limestone (approximately 12 km in lateral extent and up to 30 m thick) surrounded by black, platy shale. The lens is composed primarily of alternating massive beds (up to 25 cm thick) and argillaceous platy beds (up to 30 cm thick). Platy and massive beds are both composed primarily of normally graded laminations (1-15 mm thick). Laminations typically have sharp bases and grade upward from microspar to micrite. Lateral continuity of individual beds (at least 1 km) and laminations (at least 500 m), lack of evidence of bottom currents, and paucity of erosional features all suggest a quiet-water environment. Fossils are generally rare in the Bear Gulch Beds. The most common fossils in most beds are cephalopods, shrimp, fish, and soft-bodied organisms. Rare beds contain abundant benthic fossils including brachiopods, sponges, bivalves, conulariids, and crinoids. Fish preservation ranges from completely articulated with traces of internal organs and preserved color patterns to completely disarticulated, however most fish are well preserved. Fish and shrimp occur at the boundaries between laminations. Preservational quality of fossils and presence of abundant dewatering structures suggest rapid deposition. Lack of normal-marine shelly fossils in most beds may indicate stressful conditions at the seafloor, however some fish and shrimp were apparently well adapted for a benthic habitat. No evidence of current-modified fish debris has been observed and only rarely are fish aligned on a single bedding plane. Conditions at the seafloor were calm, possibly inhospitable, but frequently disturbed by rapid depositional events. The mechanism of deposition of the laminations remains enigmatic. ?? 1994.
NASA Astrophysics Data System (ADS)
Wesolowski, Lindsey J. N.; Buatois, Luis A.; Mángano, M. Gabriela; Ponce, Juan José; Carmona, Noelia B.
2018-05-01
Shorefaces can display strong facies variability and integration of sedimentology and ichnology provides a high-resolution model to identify variations among strongly storm-dominated (high energy), moderately storm-affected (intermediate energy), and weakly storm-affected (low energy) shoreface deposits. In addition, ichnology has proved to be of help to delineate parasequences as trace-fossil associations are excellent indicators of environmental conditions which typically change along the depositional profile. Shallow-marine deposits and associated ichnofaunas from the Mulichinco Formation (Valanginian, Lower Cretaceous) in Puerta Curaco, Neuquén Basin, western Argentina, were analyzed to evaluate stress factors on shoreface benthos and parasequence architecture. During storm-dominated conditions, the Skolithos Ichnofacies prevails within the offshore transition and lower shoreface represented by assemblages dominated by Thalassinoides isp. and Ophiomorpha irregulaire. Under weakly storm-affected conditions, the Cruziana Ichnofacies is recognized, characterized by assemblages dominated by Thalassinoides isp. and Gyrochorte comosa in the offshore transition, and by Gyrochorte comosa within the lower shoreface. Storm-influenced conditions yield wider ichnologic variability, showing elements of both ichnofacies. Storm influence on sedimentation is affected by both allogenic (e.g. tectonic subsidence, sea-level, and sediment influx) and autogenic (e.g. hydrodynamic) controls at both parasequence and intra-parasequence scales. Four distinct types of parasequences were recognized, strongly storm-dominated, moderately storm-affected, moderately storm-affected - strongly fair-weather reworked, and weakly storm-affected, categorized based on parasequence architectural variability derived from varying degrees of storm and fair-weather wave influence. The new type of shoreface described here, the moderately storm-affected - strongly fair-weather reworked shoreface, features storm deposits reworked thoroughly by fair-weather waves. During fair-weather wave reworking, elements of the Cruziana Ichnofacies are overprinted upon relict elements of the Skolithos Ichnofacies from previous storm induced deposition. This type of shoreface, commonly overlooked in past literature, expands our understanding of the sedimentary dynamics and stratigraphic architecture in a shoreface susceptible to various parasequence and intra-parasequence scale degrees of storm and fair-weather wave influence.
NASA Astrophysics Data System (ADS)
Handler, Sabine M.; Albano, Paolo G.; Bentlage, Rudolf; Drummond, Hannah; García-Ramos, Diego A.; Zuschin, Martin
2016-04-01
Intensities of drilling predation of molluscan assemblages in intertidal and subtidal soft substrates in the Persian (Arabian) Gulf Sabine Maria Handler1, Paolo G. Albano1, Rudolf Bentlage2, Hannah Drummond2, D.A. García-Ramos1, Martin Zuschin1 1 Department of Paleontology, University of Vienna, Austria 2 St. Lawrence University, Canton, New York 13617, USA Trace fossils left by predators in the skeleton of their prey are arguably one of the most powerful sources of direct data on predator-prey interactions available in the fossil record. Drill holes, especially those attributed to naticid and muricid gastropods, are unambiguous marks of predation and allow discriminating between successful and unsuccessful predation attempts (complete and incomplete holes, respectively). Latitude and water depth influence drilling frequency. We inspected death assemblages of an intertidal flat and of two subtidal (water depth between 6 and 20 m) sandy sites in the Persian (Arabian) Gulf, off the coast of the United Arab Emirates, to determine the patterns of predation on shelled molluscs along the depth gradient. The study is based on ~7,000 and ~60,000 shells from the intertidal and subtidal, respectively. Drilling Frequency (DF, the number of drilled individuals), Incomplete Drilling Frequency (IDF, number of incomplete drill holes), and Prey Effectiveness (ratio between the number of incomplete drill holes and the total number of drilling attempts) were used as metrics of drilling intensity. We observed major differences between the intertidal and subtidal study areas. Drilling frequencies were generally remarkably low and intertidal flats showed a much lower drilling frequency than the subtidal (1.4% and 6.7%, respectively). In the subtidal, we observed significant differences of drilling intensity among bivalve species and between the two sites. However, predation metrics did not correlate with environmental factors such as substrate type and depth, nor with species life habits such as infaunal vs. epifaunal and death assemblage indices such as diversity, abundance and evenness. The abundance of naticid and muricid predators in the living and death assemblage also did not correlate with predation intensities, with the single exception of muricid abundance in the LA at one of the two subtidal sites. The study shows that bivalve predation intensity in the studied area is highly variable among prey species and depth zones (intertidal vs subtidal), but poorly dependant upon other environmental and community structure factors. Results for gastropods are currently being analysed.
Sedimentary facies and environmental ichnology of a ?Permian playa-lake complex in western Argentina
Zhang, G.; Buatois, L.A.; Mangano, M.G.; Acenolaza, F.G.
1998-01-01
A moderately diverse arthropod icnofauna occurs in ?Permian ephemeral lacustrine deposits of the Paganzo Basin that crop out at Bordo Atravesado, Cuesta de Miranda, western Argentina. Sedimentary successions are interpreted as having accumulated in a playa-lake complex. Deposits include three sedimentary facies: (A) laminated siltstone and mudstone: (B) current-rippled cross-laminated very fine grained sandstone: and (C) climbing and wave-rippled cross-laminated fine-grained sandstone deposited by sheet floods under wave influence in the playa-lake complex. Analysis of facies sequences suggests that repeated vertical facies associations result from transgressive regressive episodes of variable time spans. The Bordo Atravesado ichnofauna includes Cruziana problematica, Diplocraterion isp., cf. Diplopadichnus biformis, Kouphichnium? isp., Merostomichnites aicunai, Mirandaichnium famatinense, Monomorphichnus lineatus, Palaeophyeus tubularis, Umfolozia sinuosa and Umfolozia ef. U. longula. The assemblage is largely dominated by arthropod trackways and represents an example of the Scoyenia ichnofacies. Trace fossils are mostly preserved as hypichnial ridges on the soles of facies C beds, being comparatively rare in facies A and B. Ichnofossil preservation was linked to rapid influx of sand via sheet floods entering into the lake. Four taphonomic variants (types 1-4) are recognized, each determined by substrate consistency and time averaging. Type 1 is recorded by the presence of low density assemblages consisting of poorly defined trackways, which suggests that arthropods crawled in soft, probably slightly subaqueous substrates. Type 2 is represented by low to moderate density suites that include sharply defined trackways commonly associated with mud cracks, suggesting that the tracemakers inhabited a firm, desiccated lacustrine substrate. Type 3 displays features of types 1 and 2 and represents palimpsestic bedding surfaces, resulting from the overprint of terrestrial ichnocoenoses over previously formed softground suites. Type 4 differs from type 2 only in that assemblages display a high density of traces, recorded by numerous superimposed trackways, which suggests a major time gap of subaerial exposure before sheet flood entrance. Therefore, type 4 surfaces are mostly interpreted as track imprinted omission surfaces.
Long-Term Recovery of Life in the Chicxulub Crater
NASA Astrophysics Data System (ADS)
Lowery, C.; Jones, H.; Bralower, T. J.; Smit, J.; Rodriguez-Tovar, F. J.; Whalen, M. T.; Owens, J. D.; Expedition 364 Science Party, I. I.
2017-12-01
The Chicxulub Crater on the Yucatán Peninsula of Mexico was formed by the impact of an asteroid 66 Ma that caused the extinction of 75% of genera on Earth. Immediately following the impact, the decimated ecosystem began the long process of recovery, both in terms of primary productivity and species diversity. This well-documented process was heterogeneous across the world ocean, but until the present time it has been inaccessible at ground zero of the impact. IODP/ICDP Exp. 364 recovered 9.5 m of pelagic limestone spanning the entire Paleocene, including a continuous section spanning the first 5 myr following the impact. The Chicxulub Crater is the largest known marine impact crater on Earth, and the recovery of the ecosystem presented here is the first such record of long-term primary succession in the sterile zone of a large impact crater. Planktic and benthic foraminifera, calcareous nannoplankton, calcispheres, bioturbation, and geochemical proxies all indicate that export productivity in the Chicxulub Crater recovered rapidly (within 30 kyr) following the impact. Recovery in terms of diversity and species abundance took much longer, and varied between groups. Planktic foraminifera quickly diversified, with all common Paleocene tropical/subtropical species appearing roughly when expected. Trace fossils appear rapidly after the event, with a progressive recovery through the lowermost Paleocene. Calcareous nannoplankton took much longer to recover, and disaster taxa like Braarudosphaera dominated the assemblage well into the late Paleocene. Paleoecology and geochemistry relate these trends to oceanographic conditions within the Chicxulub Crater. Planktic foraminifera from known depth habitats, including Morozovellids, Acarininids, Chiloguembelinids, and Subbotinids, track changes in the water column structure and paleoredox conditions within the crater. Diverse and abundant macro- and microbenthic organisms indicate food availability and good oxygen conditions on the seafloor. The latest Paleocene, just prior to the onset of the PETM, is characterized by a typical and diverse assemblage of foraminifera and calcareous nannoplankton; a normal open-marine assemblage with no trace of long-term negative effects from the impact.
NASA Astrophysics Data System (ADS)
Sharon, S.; Belanger, C. L.; Du, J.; Mix, A. C.; Asahi, H.
2016-12-01
During the last ice age, millennial-scale episodes of expanded low-oxygen conditions occurred around the margins of the North Pacific, however the drivers of these events are not well understood. Differences in the timing of dysoxic events in the shallow and deep Pacific have been proposed, which imply changes in ocean circulation may play a role. Here we combine faunal and geochemical analyses to investigate the timing and severity of low-oxygen events in the North Pacific at a slope (682 m) and a deeper-water (3680 m) site from a transect cored by IODP Expedition 341 in the Gulf of Alaska. At the slope site, multivariate faunal analyses based on the relative abundances of benthic foraminiferal species reveal a distinct fauna characterized by high abundances of taxa associated with dysoxic to suboxic conditions including Buliminella tenuata, Bolivia pacifica, and Epistominella pacifica. These assemblages occur during the most recent deglacial ( 12,000 kyr) and during MIS 3 from 45,000-55,000 years ago. These fossil assemblages have no faunal analog within the modern Gulf of Alaska, although they are most similar to faunas from the modern oxygen minimum zone (OMZ). Thus, these faunas may represent a more intense OMZ. Sedimentary trace element analyses show enrichment in Re, Mo, and U where these faunas are found, supporting them as low-oxygen indicators. Similarly, a distinct fauna occurs at the deeper site, which has high relative abundances of Nonionella sp., Stainforthia fusiformis, and small-bodied taxa common in suboxic settings with high phytodetritus. Ongoing age-model improvements and increased sampling resolution will allow us to better test whether faunal changes are offset at the two sites and assess the abruptness of the onset of extreme low-oxygen events in the North Pacific.
Camens, Aaron Bruce; Carey, Stephen Paul
2013-01-01
The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones.
Camens, Aaron Bruce; Carey, Stephen Paul
2013-01-01
The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones. PMID:23301008
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Strother, P. K.; Rossi, S.
1988-01-01
Two distinct generations of microfossils occur in silicified carbonates from a previously undescribed locality of the Lower Proterozoic Duck Creek Dolomite, Western Australia. The earlier generation occurs in discrete organic-rich clasts and clots characterized by microquartz anhedra; it contains a variety of filamentous and coccoidal fossils in varying states of preservation. Second generation microfossils consist almost exclusively of well-preserved Gunflintia minuta filaments that drape clasts or appear to float in clear chalcedony. These filaments appear to represent an ecologically distinct assemblage that colonized a substrate containing the partially degraded remains of the first generation community. The two assemblages differ significantly in taxonomic frequency distribution from previously described Duck Creek florules. Taken together, Duck Creek microfossils exhibit a range of assemblage variability comparable to that found in other Lower Proterozoic iron formations and ferruginous carbonates. With increasing severity of post-mortem alteration, Duck Creek microfossils appear to converge morphologically on assemblages of simple microstructures described from early Archean cherts. Two new species are described: Oscillatoriopsis majuscula and O. cuboides; the former is among the largest septate filamentous fossils described from any Proterozoic formation.
Droser, Mary L.; Jensen, Sören; Gehling, James G.
2002-01-01
The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at ≈555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sediments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. PMID:12271130
Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington
NASA Astrophysics Data System (ADS)
Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce
2007-09-01
An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.
Origin of bonebeds in Quaternary tank deposits
NASA Astrophysics Data System (ADS)
Araújo-Júnior, Hermínio Ismael de; Porpino, Kleberson de Oliveira; Bergqvist, Lílian Paglarelli
2017-07-01
Tank deposits are an exceptional type of fossiliferous deposit and bear a remarkably fossil record of the Pleistocene megafauna of South America, particularly of Brazil. The taphonomy of vertebrate remains preserved in this type of environmental context was clearly driven by climate, similarly to most of the Quaternary continental fossil record. The formation of the vertebrates fossil record in tank deposits was influenced by the climate seasonality typical of arid climate. The taphonomic history of most tank deposits is a consequence of this seasonality and, as a result, the paleoecological data preserved in their fossil assemblages is reliable with respect to paleobiological and paleoenvironmental settings of the Quaternary ecosystems of the Brazilian Intertropical Region (BIR). Other tank deposits experienced an unusual taphonomic history that, besides climate, was affected by recurrent events of reworking produced by the depositional agents dominant in the surrounding alluvial plains. The conclusions obtained here concerning the main taphonomic settings and formative processes that characterize fossil vertebrate assemblages of tank deposits will help further studies aimed to recover information on the paleoecology of Quaternary fauna collected in such deposits by allowing a better understanding of their time and spatial resolutions and other potential biases.
The Antarctic cold desert and the search for traces of life on Mars.
Friedmann, E I
1986-01-01
The cryptoendolithic microorganisms that live inside rocks in the frigid Ross Desert of Antarctica can serve as a terrestrial model for what may have happened to life forms on Mars when the planet became dry and cold. Trace fossils of microbial rock colonization exist in Antarctica, and similar structures could have formed on Mars. In some respects, such trace fossils could be an easier target for life-detection systems than fossils of cellular structures.
The Antarctic cold desert and the search for traces of life on Mars
NASA Technical Reports Server (NTRS)
Friedmann, E. I.
1986-01-01
The cryptoendolithic microoganisms that live inside rocks in the frigid Ross Desert of Antarctica can serve as a terrestrial model for what may have happened to life forms on Mars when the planet became dry and cold. Trace fossils of microbial rock colonization exist in Antarctica, and similar structures could have formed on Mars. In some respects, such trace fossils could be an easier target for life-detection systems than fossils of cellular structures.
McDowell, R.R.; Avary, K.L.; Matchen, D.L.; Britton, J.Q.
2007-01-01
Similar lithologies and lithofacies are present in two Upper Devonian siliciclastic units, the Brallier and Foreknobs formations, in eastern West Virginia and western Virginia, USA. Specimens of an unusual trace fossil, Pteridichnites biseriatus, occur in variable numbers throughout both stratigraphic units. P. biseriatus is present in abundance in the lowermost Brallier and this abundance-zone serves as a local stratigraphic marker for the Brallier. The trace fossil, originally suggested as an indication of polychaete or arthropod locomotion, is herein proposed as the locomotion trace of an unidentified ophiuroid.
Microbial trace fossils in Antarctica and the search for evidence of early life on Mars
NASA Technical Reports Server (NTRS)
Friedmann, E. Imre; Friedmann, Roseli O.
1989-01-01
It is possible to hypothesize that, if microbial life evolved on early Mars, fossil remnants of these organisms may be preserved on the surface. However, the cooling and drying of Mars probably resembled a cold desert and such an environment is not suitable for the process of fossilization. The frigid Ross Desert of Antarctica is probably the closest terrestrial analog to conditions that may have prevailed on the surface of the cooling and drying Mars. In this desert, cryptoendolithic microbial communities live in the airspaces of porous rocks, the last habitable niche in a hostile outside environment. The organisms produce characteristic chemical and physical changes in the rock substrate. Environmental changes (deterioration of conditions) may result in the death of the community. Although no cellular structures are fossilized, the conspicuous changes in the rock substrate are preserved as trace fossils. Likewise, microbial trace fossils (without cellular structures) may also be preserved on Mars: Discontinuities in structure or chemistry of the rock that are independent of physical or chemical gradients may be of biological origin. Ross Desert trace fossils can be used as a model for planning search strategies and for instrument design to find evidence of past Martian life.
Neandertal and Denisovan DNA from Pleistocene sediments.
Slon, Viviane; Hopfe, Charlotte; Weiß, Clemens L; Mafessoni, Fabrizio; de la Rasilla, Marco; Lalueza-Fox, Carles; Rosas, Antonio; Soressi, Marie; Knul, Monika V; Miller, Rebecca; Stewart, John R; Derevianko, Anatoly P; Jacobs, Zenobia; Li, Bo; Roberts, Richard G; Shunkov, Michael V; de Lumley, Henry; Perrenoud, Christian; Gušić, Ivan; Kućan, Željko; Rudan, Pavao; Aximu-Petri, Ayinuer; Essel, Elena; Nagel, Sarah; Nickel, Birgit; Schmidt, Anna; Prüfer, Kay; Kelso, Janet; Burbano, Hernán A; Pääbo, Svante; Meyer, Matthias
2017-05-12
Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found. Copyright © 2017, American Association for the Advancement of Science.
Silurian trace fossils in carbonate turbidites from the Alexander Arc of southeastern Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soja, C.M.
Early to Late Silurian (Wenlock-Ludlow) body and trace fossils from the Heceta Formation are preserved in the oldest widespread carbonates in the Alexander terrane of southeastern Alaska. They represent the earliest shelly benthos to inhabit a diversity of marine environments and are important indicators of the early stages in benthic community development within this ancient island arc. The trace fossils are significant because they add to a small but growing body of knowledge about ichnofaunas in deep-water Paleozoic carbonates. Proximal to medial carbonate turbidites yield a low-diversity suite of trace fossils that comprises five distinct types of biogenic structures. Beddingmore » planes reveal simple epichnial burrows (Planolites), cross-cutting burrows (Fucusopsis), and tiny cylindrical burrows. These and other casts, including chondrites( )-like burrow clusters, represent the feeding activities (fodinichnia) of preturbidite animals. Hypichnial burrows and rare endichnial traces reflect the activities of postturbidite animals. Broken and offset traces indicate that infaunal biota commenced burrowing before slumping and subsequent soft-sediment deformation. The abundance and density of trace fossils increases offshore in the medial turbidites associated with a decrease in the size and amount of coarse particles and with an increase in mud and preserved organic material. Although diversity levels are similar in the proximal and medial turbidite facies, they are much lower than in Paleozoic siliciclastic turbidites. This may reflect unfavorable environmental conditions for infaunal biota or paleobiogeographic isolation of the Alexander terrane during the Silurian. A greater use of trace fossils in terrane analysis will help to resolve this issue and should provide new data for reconstructing the paleogeography of circum-Pacific terranes.« less
Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma
NASA Astrophysics Data System (ADS)
Cerling, Thure E.; Andanje, Samuel A.; Blumenthal, Scott A.; Brown, Francis H.; Chritz, Kendra L.; Harris, John M.; Hart, John A.; Kirera, Francis M.; Kaleme, Prince; Leakey, Louise N.; Leakey, Meave G.; Levin, Naomi E.; Kyalo Manthi, Fredrick; Passey, Benjamin H.; Uno, Kevin T.
2015-09-01
A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1-2.35 Ma in the Turkana Basin had a greater diversity of C3-C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3-C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa.
Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma
Cerling, Thure E.; Andanje, Samuel A.; Blumenthal, Scott A.; Brown, Francis H.; Chritz, Kendra L.; Harris, John M.; Hart, John A.; Kirera, Francis M.; Kaleme, Prince; Leakey, Louise N.; Leakey, Meave G.; Levin, Naomi E.; Manthi, Fredrick Kyalo; Passey, Benjamin H.; Uno, Kevin T.
2015-01-01
A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1–2.35 Ma in the Turkana Basin had a greater diversity of C3–C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3–C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa. PMID:26240344
NASA Astrophysics Data System (ADS)
Lelièvre, Peter G.; Grey, Melissa
2017-08-01
Quantitative morphometric analyses of form are widely used in palaeontology, especially for taxonomic and evolutionary research. These analyses can involve several measurements performed on hundreds or even thousands of samples. Performing measurements of size and shape on large assemblages of macro- or microfossil samples is generally infeasible or impossible with traditional instruments such as vernier calipers. Instead, digital image processing software is required to perform measurements via suitable digital images of samples. Many software packages exist for morphometric analyses but there is not much available for the integral stage of data collection, particularly for the measurement of the outlines of samples. Some software exists to automatically detect the outline of a fossil sample from a digital image. However, automatic outline detection methods may perform inadequately when samples have incomplete outlines or images contain poor contrast between the sample and staging background. Hence, a manual digitization approach may be the only option. We are not aware of any software packages that are designed specifically for efficient digital measurement of fossil assemblages with numerous samples, especially for the purposes of manual outline analysis. Throughout several previous studies, we have developed a new software tool, JMorph, that is custom-built for that task. JMorph provides the means to perform many different types of measurements, which we describe in this manuscript. We focus on JMorph's ability to rapidly and accurately digitize the outlines of fossils. JMorph is freely available from the authors.
In situ dating of the oldest morphological traces of life on Earth
NASA Astrophysics Data System (ADS)
Fliegel, D.; McLoughlin, N.; Simonetti, A.; de Wit, M.; Furnes, H.
2008-12-01
Sea floor pillow basalts contain tubular and granular bioalteration micro textures in their glassy margins1,2 created by microbes etching the rock3,4, hypothetically to get access to nutrients and electrons donors5. The etched pits in the rock can be regarded as trace fossils6 that later become mineralized by titanite (CaTiSiO5). Such trace fossils are known from recent oceanic crust to some of the oldest preserved Archean ocean floor, in the Barberton greenstone belt (BGB), in S-Africa7. However, the antiquity of BGB trace fossils has been questioned by some since only the host rock was dated until now8. Here, we report for the first time in situ U-Pb radiometric dating of titanite mineralizing the BGB trace fossils using LA-MC-ICPMS. An U-Pb date of of approx. 3.15 ± 0.05 Ga (95.4 % confidence) for the titanite demonstrates the antiquity of the BGB trace fossils. This result confirms the BGB trace fossils as the oldest directly dated morphological trace of life on Earth. We will present addition data to reveal the mineralization of trace fossils by titanite, comparing the BGB trace fossils to other similar tubular titanite mineralized textures from different locations and younger ages. Our data confirms that a sub-oceanic biosphere was already established in the early Archean by at least 3.2 Ga. Further the results highlight the importance of the sub-ocean habitats for the development and possibly refuge for life on (early) Earth. 1. Furnes, H. et al. Bioalteration of basaltic glass in the oceanic crust. Geochemistry Geophysics Geosystems 2, (2001). 2. Staudigel, H. et al. 3.5 billion years of glass bioalteration: vulcanic rocks as a basis for microbial life. Earth-Science Reviews 89, 156-176 (2008). 3. Furnes, H. et al. Links Between Geological Processes, Microbial Activeties and Evolution of Life. Dilek, Y., Furnes, H. and Muehlenbachs, K. (eds.), pp. 1-68 (Springer,2008). 4. McLoughlin, N. et al. Current Developments in Bioerosion (Erlangen Earth Conference). Wisshak, M. and Tapinla, L. (eds.), pp. 372-396 (Springer, Berlin,2008). 5. Santelli, C. M. et al. Abundance and diversity of microbial life in ocean crust. Nature 453, 653-6U7 (2008). 6. Bertling, M. et al. Names for trace fossils: a uniform approach. Lethaia 39, 265-286 (2006). 7. Furnes, H., Banerjee, N. R., Muehlenbachs, K., Staudigel, H. and De Wit, M. Early life recorded in archean pillow lavas. Science 304, 578-581 (2004). 8. Rincon, P. Early life thrived in lava flows. BBC News Channel . 4-22-2004.
Brown, T.M.; Ratcliffe, B.C.
1988-01-01
The distinctive trace fossil Chubutolithes gaimanensis n. ichnosp. occurs in Casamayoran (early Eocene) and Colhuehaupian (late Oligocene) alluvial rocks of the Sarmiento Formation in eastern Chubut Province, Argentina. Though known for nearly 70 years, its origin has remained obscure. Examination of new specimens and comparisons with modern analogs demonstrate that specimens of Chubutolithes represent the fossil nests of a mud-dauber (Hymenoptera: Sphecidae). Virtually identical nests are constructed today by mud-daubers in areas as disparate as southern Santa Cruz Province, Argentina, and Nebraska, confirming that quite similar trace fossils can be produced by several different taxa in a higher taxonomic clade. No satisfactory ethological term exists for trace fossils that, like Chubutolithes, were constructed by organisms above, rather than within, a substrate or medium. The new term aedificichnia is proposed. Chubutolithes occurs in alluvial paleosols and is associated with a large terrestrial ichnofauna. These trace fossils include the nests of scarab beetles, compound nests of social insects, and burrows of earthworms. -Authors
Grellet-Tinner, Gerald; Murelaga, Xabier; Larrasoaña, Juan C.; Silveira, Luis F.; Olivares, Maitane; Ortega, Luis A.; Trimby, Patrick W.; Pascual, Ana
2012-01-01
Background We describe the first occurrence in the fossil record of an aquatic avian twig-nest with five eggs in situ (Early Miocene Tudela Formation, Ebro Basin, Spain). Extensive outcrops of this formation reveal autochthonous avian osteological and oological fossils that represent a single taxon identified as a basal phoenicopterid. Although the eggshell structure is definitively phoenicopterid, the characteristics of both the nest and the eggs are similar to those of modern grebes. These observations allow us to address the origin of the disparities between the sister taxa Podicipedidae and Phoenicopteridae crown clades, and traces the evolution of the nesting and reproductive environments for phoenicopteriforms. Methodology/Principal Findings Multi-disciplinary analyses performed on fossilized vegetation and eggshells from the eggs in the nest and its embedding sediments indicate that this new phoenicopterid thrived under a semi-arid climate in an oligohaline (seasonally mesohaline) shallow endorheic lacustine environment. High-end microcharacterizations including SEM, TEM, and EBSD techniques were pivotal to identifying these phoenicopterid eggshells. Anatomical comparisons of the fossil bones with those of Phoenicopteriformes and Podicipediformes crown clades and extinct palaelodids confirm that this avian fossil assemblage belongs to a new and basal phoenicopterid. Conclusions/Significance Although the Podicipediformes-Phoenicopteriformes sister group relationship is now well supported, flamingos and grebes exhibit feeding, reproductive, and nesting strategies that diverge significantly. Our multi-disciplinary study is the first to reveal that the phoenicopteriform reproductive behaviour, nesting ecology and nest characteristics derived from grebe-like type strategies to reach the extremely specialized conditions observed in modern flamingo crown groups. Furthermore, our study enables us to map ecological and reproductive characters on the Phoenicopteriformes evolutionary lineage. Our results demonstrate that the nesting paleoenvironments of flamingos were closely linked to the unique ecology of this locality, which is a direct result of special climatic (high evaporitic regime) and geological (fault system) conditions. PMID:23082136
NASA Astrophysics Data System (ADS)
Barbieri, Giulia; Vaiani, Stefano Claudio
2018-01-01
Integrated analyses of multiple groups of microfossils are frequently performed to unravel the palaeoenvironmental evolution of subsurface coastal successions, where the complex interaction among several palaeoecological factors can be detected with benthic assemblages. This work investigates the palaeoenvironmental resolution potential provided by benthic foraminifera and ostracoda within a Pleistocene lagoonal succession of the Romagna coastal plain (northern Italy). Quantitative approaches and statistical techniques have been applied to both groups in order to understand the main factors that controlled the composition of assemblages and compare the palaeoecological record provided by single fossil groups. The two faunal groups are characterized by the high dominance of opportunistic species (Ammonia tepida-Ammonia parkinsoniana and Cyprideis torosa); however, detailed palaeoecological information is inferred from less common taxa. Benthic foraminiferal assemblages are mainly determined by the frequencies of abnormal individuals and species related to high concentrations of organic matter, showing two assemblages: a stressed assemblage, consistent with a brackish-water environment subject to salinity and oxygen fluctuations, and an unstressed assemblage, which indicates more stable conditions. Despite the lower number of species, ostracoda show more significant differences in terms of species composition and ecological structure between their three assemblages, formed in response to a salinity gradient and indicative of inner, central, and outer lagoon conditions. The stratigraphic distribution of ostracod assemblages shows a general transgressive-regressive trend with minor fluctuations, whereas benthic foraminifera highlight the presence of a significant palaeoenvironmental stress. In this case, the higher abundance along the stratigraphic succession, the higher differentiation of the assemblages, and the well-defined relationship between taxa and ecological parameters determine Ostracoda as the most reliable fossil group for precise palaeoenvironmental reconstructions. Nevertheless, benthic foraminifera indicate palaeoenvironmental stress and can be used to refine the environmental interpretation in the presence of monospecific ostracod assemblages.
Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F
2017-04-01
Diverse in modern ecosystems, mosses are dramatically underrepresented in the fossil record. Furthermore, most pre-Cenozoic mosses are known only from compression fossils, lacking detailed anatomical information. When preserved, anatomy vastly improves resolution in the systematic placement of fossils. Lower Cretaceous deposits at Apple Bay (Vancouver Island, British Columbia, Canada) contain a diverse anatomically preserved flora that includes numerous bryophytes, many of which have yet to be characterized. Among them is a polytrichaceous moss that is described here. Fossil moss gametophytes preserved in four carbonate concretions were studied in serial sections prepared using the cellulose acetate peel technique. We describe Meantoinea alophosioides gen. et sp. nov., a polytrichaceous moss with terminal gemma cups containing stalked, lenticular gemmae. Leaves with characteristic costal anatomy, differentiated into sheathing base and free lamina and bearing photosynthetic lamellae, along with a conducting strand in the stem, place Meantoinea in family Polytrichaceae. The bistratose leaf lamina with an adaxial layer of mamillose cells, short photosynthetic lamellae restricted to the costa, and presence of gemma cups indicate affinities with basal members of the Polytrichaceae, such as Lyellia , Bartramiopsis , and Alophosia . Meantoinea alophosioides enriches the documented moss diversity of an already-diverse Early Cretaceous plant fossil assemblage. This is the third moss described from the Apple Bay plant fossil assemblage and represents the first occurrence of gemma cups in a fossil moss. It is also the oldest unequivocal record of Polytrichaceae, providing a hard minimum age for the group of 136 million years. © 2017 Botanical Society of America.
Arthrophycus in the Silurian of Alabama (USA) and the problem of compound trace fossils
Rindsberg, Andrew K.; Martin, A.J.
2003-01-01
Arthrophycus brongniartii (Harlan, 1832) is common in marginal-marine deposits in the Silurian Red Mountain Formation of Alabama. The ichnospecies, the second to be named in North America, is revived and emended after long disuse. Transitional forms to Rusophycus isp. and other morphologic evidence indicate that the maker of Arthrophycus was an arthropod, perhaps a trinucleine (raphiophorid?) trilobite. Interconnection of Arthrophycus and Nereites biserialis, as well as intergradation of Arthrophycus with Cruziana aff. quadrata, Phycodes flabellum, and Asterosoma ludwigae, indicate that these Red Mountain trace fossils were made by the same species of arthropod. Possible relationships with Arthrophycus alleghaniensis (Harlan, 1831) in the Silurian belt from Ontario to Tennessee are also explored. Ichnofamily Arthrophycidae Schimper, 1879 is emended. The ichnofamily is interpreted as chiefly the work of arthropods. Arthrophycus and other trace fossils from the Silurian of Alabama constitute a test case to build criteria for recognizing the members of complexes of trace fossils. In general, criteria such as interconnection of different forms, intergradation among unconnected forms, similarity of size, similarity of morphologic elements, and co-occurrence should be examined in order to determine the biologic and ethologic interrelationships of trace fossils. ?? 2003 Elsevier Science B.V. All rights reserved.
Taphonomy of fossils from the hominin-bearing deposits at Dikika, Ethiopia.
Thompson, Jessica C; McPherron, Shannon P; Bobe, René; Reed, Denné; Barr, W Andrew; Wynn, Jonathan G; Marean, Curtis W; Geraads, Denis; Alemseged, Zeresenay
2015-09-01
Two fossil specimens from the DIK-55 locality in the Hadar Formation at Dikika, Ethiopia, are contemporaneous with the earliest documented stone tools, and they collectively bear twelve marks interpreted to be characteristic of stone tool butchery damage. An alternative interpretation of the marks has been that they were caused by trampling animals and do not provide evidence of stone tool use or large ungulate exploitation by Australopithecus-grade hominins. Thus, resolving which agents created marks on fossils in deposits from Dikika is an essential step in understanding the ecological and taphonomic contexts of the hominin-bearing deposits in this region and establishing their relevance for investigations of the earliest stone tool use. This paper presents results of microscopic scrutiny of all non-hominin fossils collected from the Hadar Formation at Dikika, including additional fossils from DIK-55, and describes in detail seven assemblages from sieved surface sediment samples. The study is the first taphonomic description of Pliocene fossil assemblages from open-air deposits in Africa that were collected without using only methods that emphasize the selective retention of taxonomically-informative specimens. The sieved assemblages show distinctive differences in faunal representation and taphonomic modifications that suggest they sample a range of depositional environments in the Pliocene Hadar Lake Basin, and have implications for how landscape-based taphonomy can be used to infer past microhabitats. The surface modification data show that no marks on any other fossils resemble in size or shape those on the two specimens from DIK-55 that were interpreted to bear stone tool inflicted damage. A large sample of marks from the sieved collections has characteristics that match modern trampling damage, but these marks are significantly smaller than those on the DIK-55 specimens and have different suites of characteristics. Most are not visible without magnification. The data show that the DIK-55 marks are outliers amongst bone surface damage in the Dikika area, and that trampling is not the most parsimonious interpretation of their origin. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bonnie F. Jacobs; Neil Tabor; Mulugeta Feseha; Aaron Pan; John Kappelman; Tab Rasmussen; William Sanders; Michael Wiemann; Jeff Crabaugh; Juan Leandro Garcia Massini
2005-01-01
The Paleogene record of Afro-Arabia is represented by few fossil localities, most of which are coastal. Here we report sedimentological and paleontological data from continental Oligocene strata in northwestern Ethiopia. These have produced abundant plant fossils and unique assemblages of vertebrates, thus filling a gap in what is known of Paleogene interior Afro-...
The Evolution of Seabirds in the Humboldt Current: New Clues from the Pliocene of Central Chile
Chávez Hoffmeister, Martín; Carrillo Briceño, Jorge D.; Nielsen, Sven N.
2014-01-01
Background During the last decade, new Neogene fossil assemblages from South America have revealed important clues about the evolution of seabird faunas in one of the major upwelling systems of the world: the Humboldt Current. However, most of this record comes from arid Northern Chile and Southern Peru and, in consequence, our knowledge of the evolutionary history of seabirds in the temperate transitional zone is negligible. A new Late Pliocene assemblage of fossil birds from the coastal locality of Horcon in Central Chile offers a unique opportunity to fill this gap. Principal Findings Isolated bones of a medium-sized penguin are the most abundant bird remains. Morphological and cladistic analyses reveal that these specimens represent a new species of crested penguin, Eudyptes calauina sp. nov. Eudyptes is a penguin genus that inhabit temperate and subantarctic regions and currently absent in central Chile. Additionally, a partial skeleton of a small species of cormorant and a partial tarsometatarsus of a sooty shearwater have been identified. Conclusion/Significance The Horcon fossils suggest the existence of a mixed avifauna in central Chile during the Pliocene in concordance with the latitudinal thermal gradient. This resembles the current assemblages from the transitional zone, with the presence of species shared with Northern Chile and Southern Peru and a previously unrecorded penguin currently absent from the Humboldt System but present in the Magellanic region. Comparison of Pliocene seabird diversity across the Pacific coast of South America shows that the Horcon avifauna represents a distinctive assemblage linking the living faunas with the Late Miocene ones. A comparison with the fossil record near the Benguela Current (west coast of southern Africa) suggests that the thermic gradient could play an important role in the preservation of a higher diversity of cold/temperate seabirds in the Humboldt Current. PMID:24621560
Late Oligocene and Early Miocene Muroidea of the Zinda Pir Dome.
Lindsay, Everett H; Flynn, Lawrence J
2016-02-17
A series of Oligocene through Early Miocene terrestrial deposits preserved in the foothills of the Zinda Pir Dome of western Pakistan produce multiple, superposed fossil mammal localities. These include small mammal assemblages that shed light on the evolution of rodent lineages, especially Muroidea, in South Asia. Nine small mammal localities span approximately 28-19 Ma, an interval encompassing the Oligocene-Miocene boundary. The Early Miocene rodent fossil assemblages are dominated by muroid rodents, but muroids are uncommon and archaic in earlier Oligocene horizons. The Zinda Pir sequence includes the evolutionary transition to modern Muroidea at about the Oligocene-Miocene boundary. We review the muroid record for the Zinda Pir Dome, which includes the early radiation of primitive bamboo rats (Rhizomyinae) and early members of the modern muroid radiation, which lie near crown Cricetidae and Muridae. The Zinda Pir record dates diversification of modern muroids in the Indian Subcontintent and establishment by 19 Ma of muroid assemblages characteristic of the later Siwaliks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Droser, M.L.; O'Connell, S.
The ichnofabric index method of ranking amount of bioturbation was used for the first time in conjunction with discrete trace fossils to examine shallow-water marine cores. Previous ichnological studies on cores have focused primarily on outer shelf and deep-sea discrete trace fossils. Upper Triassic cores examined in this study were recovered off northwest Australia during ODP Leg 122. These sediments were deposited in a shallow-water and continental shelf setting, which included swamp and prodelta environments. The most common lithology is siltstone with interbedded mudstone and sandstone. Sediments deposited in a swamp setting have rootlets and coal beds with an ichnologicalmore » record consisting primarily of mottled bedding rather than discrete trace fossils. Ichnofabric indices 1 through 5 were recorded. Marginal marine/lagoonal facies have a low trace fossil diversity with common Chondrites, Planolites, and Teichichnus. Recorded ichnofabric indices include 1, 2, and 3. Laminated mudstones and siltstones (ii1) are most common. Fully marine open shelf strata are thoroughly bioturbated (ii5 and ii6) with Thalassinoides, Zoophycos, Teichichnus, and Planolites. Wackestone and packstone occur in discrete uppermost Triassic intervals and have ii1 through ii6 represented. In part due to the drilling process, sandstones and reefal limestones were poorly recovered and ichnofabric is not well preserved. Physical sedimentary structures and lateral facies relationships can be difficult to discern in core. In shallow marine deposits, the distribution of ichnofabric indices and discrete trace fossils within these strata provide an additional important data base to evaluate depositional environments.« less
Hatala, Kevin G; Roach, Neil T; Ostrofsky, Kelly R; Wunderlich, Roshna E; Dingwall, Heather L; Villmoare, Brian A; Green, David J; Braun, David R; Harris, John W K; Behrensmeyer, Anna K; Richmond, Brian G
2017-11-01
Tracks can provide unique, direct records of behaviors of fossil organisms moving across their landscapes millions of years ago. While track discoveries have been rare in the human fossil record, over the last decade our team has uncovered multiple sediment surfaces within the Okote Member of the Koobi Fora Formation near Ileret, Kenya that contain large assemblages of ∼1.5 Ma fossil hominin tracks. Here, we provide detailed information on the context and nature of each of these discoveries, and we outline the specific data that are preserved on the Ileret hominin track surfaces. We analyze previously unpublished data to refine and expand upon earlier hypotheses regarding implications for hominin anatomy and social behavior. While each of the track surfaces discovered at Ileret preserves a different amount of data that must be handled in particular ways, general patterns are evident. Overall, the analyses presented here support earlier interpretations of the ∼1.5 Ma Ileret track assemblages, providing further evidence of large, human-like body sizes and possibly evidence of a group composition that could support the emergence of certain human-like patterns of social behavior. These data, used in concert with other forms of paleontological and archaeological evidence that are deposited on different temporal scales, offer unique windows through which we can broaden our understanding of the paleobiology of hominins living in East Africa at ∼1.5 Ma. Copyright © 2017 Elsevier Ltd. All rights reserved.
180,000 years of climate change in Europe: avifaunal responses and vegetation implications.
Holm, Sandra Ravnsbæk; Svenning, Jens-Christian
2014-01-01
Providing an underutilized source of information for paleoenvironmental reconstructions, birds are rarely used to infer paleoenvironments despite their well-known ecology and extensive Quaternary fossil record. Here, we use the avian fossil record to investigate how Western Palearctic bird assemblages and species ranges have changed across the latter part of the Pleistocene, with focus on the links to climate and the implications for vegetation structure. As a key issue we address the full-glacial presence of trees in Europe north of the Mediterranean region, a widely debated issue with evidence for and against emerging from several research fields and data sources. We compiled and analyzed a database of bird fossil occurrences from archaeological sites throughout the Western Palearctic and spanning the Saalian-Eemian-Weichselian stages, i.e. 190,000-10,000 years BP. In general, cold and dry-adapted species dominated these late Middle Pleistocene and Late Pleistocene fossil assemblages, with clear shifts of northern species southwards during glacials, as well as northwards and westwards shifts of open-vegetation species from the south and east, respectively and downwards shifts of alpine species. A direct link to climate was clear in Northwestern Europe. However, in general, bird assemblages more strongly reflected vegetation changes, underscoring their usefulness for inferring the vegetation structure of past landscapes. Forest-adapted birds were found in continuous high proportions throughout the study period, providing support for the presence of trees north of the Alps, even during full-glacial stages. Furthermore, the results suggest forest-dominated but partially open Eemian landscapes in the Western Palearctic, including the Northwestern European subregion.
NASA Technical Reports Server (NTRS)
Bartley, J. K.; Pope, M.; Knoll, A. H.; Semikhatov, M. A.; Grotzinger, J. (Principal Investigator)
1998-01-01
Siberia contains several key reference sections for studies of biological and environmental evolution across the Proterozoic-Phanerozoic transition. The Platonovskaya Formation, exposed in the Turukhansk region of western Siberia, is an uppermost Proterozoic to Cambrian succession whose trace and body fossils place broad limits on the age of deposition, but do not permit detailed correlation with boundary successions elsewhere. In contrast, a striking negative carbon isotopic excursion in the lower part of the Platonovskaya Formation permits precise chemostratigraphic correlation with upper-most Yudomian successions in Siberia, and possibly worldwide. In addition to providing a tool for correlation, the isotopic excursion preserved in the Platonovskaya and contemporaneous successions documents a major biogeochemical event, likely involving the world ocean. The excursion coincides with the palaeontological breakpoint between Ediacaran- and Cambrian-style assemblages, suggesting a role for biogeochemical change in evolutionary events near the Proterozoic Cambrian boundary.
Bartley, J K; Pope, M; Knoll, A H; Semikhatov, M A; Petrov PYu
1998-07-01
Siberia contains several key reference sections for studies of biological and environmental evolution across the Proterozoic-Phanerozoic transition. The Platonovskaya Formation, exposed in the Turukhansk region of western Siberia, is an uppermost Proterozoic to Cambrian succession whose trace and body fossils place broad limits on the age of deposition, but do not permit detailed correlation with boundary successions elsewhere. In contrast, a striking negative carbon isotopic excursion in the lower part of the Platonovskaya Formation permits precise chemostratigraphic correlation with upper-most Yudomian successions in Siberia, and possibly worldwide. In addition to providing a tool for correlation, the isotopic excursion preserved in the Platonovskaya and contemporaneous successions documents a major biogeochemical event, likely involving the world ocean. The excursion coincides with the palaeontological breakpoint between Ediacaran- and Cambrian-style assemblages, suggesting a role for biogeochemical change in evolutionary events near the Proterozoic Cambrian boundary.
NASA Astrophysics Data System (ADS)
Lopatina, D. A.; Zanina, O. G.
2006-10-01
The comparative analysis of palynomorphs and plant megafossils (fruits, seeds, twigs, leaves) in the Upper Pleistocene host sediments and materials filling in fossil burrows of gophers, their coprolites included, at the Duvannyi Yar, Stanchikovskii Yar and Zelenyi Mys sites of the Kolyma Lowland is carried out. Genera Salix, Lychnis, Silene, Draba, Potentilla, Larix, and families Poaceae, Polygonaceae, Cyperaceae, Compositae, and Leguminosae are determined among palynological remains and megafossils. Factors responsible for qualitative and quantitative differences in taxonomic compositions of palynological and megafossil assemblages are biological peculiarities of plants, different character of fossilization of palynomorphs and large plant remains, geographic conditions, different genesis of assemblages (allochthonous for microfossils and autochthonous for megafossils), and inadequately known morphology of certain spore and pollen taxa. The comprehensive paleobotanical analysis leads to the conclusion that the study region was occupied in the Late Pleistocene by plant communities of humid to somewhat dryer tundra with separate areas of pioneering and steppe vegetation.
David L. Dilcher; Elizabeth A. Kowalski; Michael C. Wiemann; Luis Felipe Hinojosa; Terry A. Lott
2009-01-01
One method to determine past climate has been the use of leaf morphological characteristics of fossil leaves quantified using modern climate and canopy leaf characteristics. Fossil assemblages are composed of abscised leaves, and climate may be more accurately determined by using leaves from leaf litter instead of the canopy. To better understand whether taphonomic...
NASA Astrophysics Data System (ADS)
Hansen, Larissa; Callow, Richard; Kane, Ian; Kneller, Ben
2017-08-01
Thin-bedded turbidites deposited by sediment gravity flows that spill from submarine channels often contain significant volumes of sand in laterally continuous beds. These can make up over 50% of the channel-belt fill volume, and can thus form commercially important hydrocarbon reservoirs. Thin-bedded turbidites can be deposited in environments that include levees and depositional terraces, which are distinguished on the basis of their external morphology and internal architecture. Levees have a distinctive wedge shaped morphology, thinning away from the channel, and confine both channels (internal levees) and channel-belts (external levees). Terraces are flat-lying features that are elevated above the active channel within a broad channel-belt. Despite the ubiquity of terraces and levees in modern submarine channel systems, the recognition of these environments in outcrop and in the subsurface is challenging. In this outcrop study of the Upper Cretaceous Rosario Formation (Baja California, Mexico), lateral transects based on multiple logged sections of thin-bedded turbidites reveal systematic differences in sandstone layer thicknesses, sandstone proportion, palaeocurrents, sedimentary structures and ichnology between channel-belt and external levee thin-bedded turbidites. Depositional terrace deposits have a larger standard deviation in sandstone layer thicknesses than external levees because they are topographically lower, and experience a wider range of turbidity current sizes overspilling from different parts of the channel-belt. The thickness of sandstone layers within external levees decreases away from the channel-belt while those in depositional terraces are less laterally variable. Depositional terrace environments of the channel-belt are characterized by high bioturbation intensities, and contain distinctive trace fossil assemblages, often dominated by ichnofabrics of the echinoid trace fossil Scolicia. These assemblages contrast with the lower bioturbation intensities that are recorded from external levee environments where Scolicia is typically absent. Multiple blocks of external levee material are observed in the depositional terrace area where the proximal part of the external levee has collapsed into the channel-belt; their presence characterizes the channel-belt boundary zone. The development of recognition criteria for different types of channel-related thin-bedded turbidites is critical for the interpretation of sedimentary environments both at outcrop and in the subsurface, which can reduce uncertainty during hydrocarbon field appraisal and development.
Hode, Tomas; von Dalwigk, Ilka; Broman, Curt
2003-01-01
The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.
Assessing trace element diffusion models in fossil and sub-fossil bone
NASA Astrophysics Data System (ADS)
Suarez, C. A.; Kohn, M. J.
2012-12-01
Three different diffusion models have been proposed to explain trace element uptake during fossilization of bone: diffusion-adsorption (DA), diffusion-recrystallization (DR), and double-medium diffusion (DMD). Theoretically, differences in trace element profiles, particularly the rare earth elements (REE) and U, can discriminate among these possibilities. In this study, we tested which model best explains natural samples by analyzing trace element profiles in natural bone using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Fossil bones ranging in age from a few ka to over 100 Ma were analyzed along traverses from the outer cortical edge to the inner marrow cavity margin. Forty major, minor and trace elements were analyzed, notably Ca, P, transition metals, Sr, Ba, REE, U, Th and Pb. Spatial and analytical resolutions were ~10 μm and ~100 ppb respectively. Many specimens show commonly observed exponential decreases in REE from the outer edge and marrow cavity, with relatively homogeneous U distributions. Yet, most significantly, specimens from American Falls (last interglacial) and Duck Point (last glacial maximum) show distinctive U plateaus adjacent to the outer and inner cortical bone margins. Whereas exponential profiles can be produced by different uptake processes, such plateaus are diagnostic of a DR mechanism. Our work is consistent with recent investigation of trace element diffusivities in modern fresh and deproteinated bone. These studies show similar diffusion rates for REE and U, so the profound disparity in U vs. REE profiles in most fossils cannot result solely from differences in volume diffusion within the context of DA and DMD. Rather, as a recrystallization front propagates into bone, the bone appears to encode changing soil water compositions with earlier vs. later compositions reflected in the bone margin vs. interior. Soil water U concentrations apparently remain nearly fixed during fossilization, whereas REE are rapidly stripped from the surrounding matrix, leading to nearly homogeneous U vs. steep REE profiles. However in our Pleistocene bones (American Falls and Duck Point), changes to U concentrations on the bone margin reveal more complex changes to boundary compositions, and eliminate both DA and DMD (alone) as the dominant mechanisms of trace element uptake. Our work reconciles disparate zoning patterns observed in fossil bone, and simplifies interpretations of soil or sediment water chemistry, but complicates U-series dating of fossils.
Revised age of deglaciation of Lake Emma based on new radiocarbon and macrofossil analyses
Elias, S.A.; Carrara, P.E.; Toolin, L.J.; Jull, A.J.T.
1991-01-01
Previous radiocarbon ages of detrital moss fragments in basal organic sediments of Lake Emma indicated that extensive deglaciation of the San Juan Mountains occurred prior to 14,900 yr B.P. (Carrara et al., 1984). Paleoecological analyses of insect and plant macrofossils from these basal sediments cast doubt on the reliability of the radiocarbon ages. Subsequent accelerator radiocarbon dates of insect fossils and wood fragments indicate an early Holocene age, rather than a late Pleistocene age, for the basal sediments of Lake Emma. These new radiocarbon ages suggest that by at least 10,000 yr B.P. deglaciation of the San Juan Mountains was complete. The insect and plant macrofossils from the basal organic sediments indicate a higher-than-present treeline during the early Holocene. The insect assemblages consisted of about 30% bark beetles, which contrasts markedly with the composition of insects from modern lake sediments and modern specimens collected in the Lake Emma cirque, in which bark beetles comprise only about 3% of the assemblages. In addition, in the fossil assemblages there were a number of flightless insect species (not subject to upslope transport by wind) indicative of coniferous forest environments. These insects were likewise absent in the modern assemblage. ?? 1991.
Pleistocene plant fossils in and near La Selva Biological Station, Costa Rica
Sally P. Horn; Robert L. Sanford; David Dilcher; Terry A. Lott; Paul R. Renne; Michael C. Wiemann; Duane Cozadd; Orlando Vargas
2003-01-01
Radiocarbon dating and 40 Ar/39Ar analysis of overlying tephra indicate that plant fossil assemblages exposed by stream erosion and well construction in and near La Selva Biological Station in eastern lowland Costa Rica are Pleistocene in age. We identified plant taxa based on wood, leaves, fruits, seeds, pollen, and spores examined from three sites at ca 30 m...
Late Carboniferous paleoichnology reveals the oldest full-body impression of a flying insect.
Knecht, Richard J; Engel, Michael S; Benner, Jacob S
2011-04-19
Insects were the first animals to evolve powered flight and did so perhaps 90 million years before the first flight among vertebrates. However, the earliest fossil record of flying insect lineages (Pterygota) is poor, with scant indirect evidence from the Devonian and a nearly complete dearth of material from the Early Carboniferous. By the Late Carboniferous a diversity of flying lineages is known, mostly from isolated wings but without true insights into the paleoethology of these taxa. Here, we report evidence of a full-body impression of a flying insect from the Late Carboniferous Wamsutta Formation of Massachusetts, representing the oldest trace fossil of Pterygota. Through ethological and morphological analysis, the trace fossil provides evidence that its maker was a flying insect and probably was representative of a stem-group lineage of mayflies. The nature of this current full-body impression somewhat blurs distinctions between the systematics of traces and trace makers, thus adding to the debate surrounding ichnotaxonomy for traces with well-associated trace makers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, R.A.; Castleman, S.P.; King, D.T. Jr.
X-radiography has been useful in studying biogenic sedimentary structures in unconsolidated sediments but the technique has not been applied often to the study of hard carbonate rock. The authors have applied x-radiography to the study of the lower part of the Smackover to enhance the complete petrologic description of the rock. The lower Smackover has many dense micrite intervals and intervals of monotonous, thin graded beds. Parts of the lower Smackover is also dolomitized. None of the above rocks contains significant amount of skeletal debris and trace fossils are not generally obvious in an etched slab of core. In limestone,more » they have detected well-preserved trace fossils by x-radiography, however. The dolostones show no traces using our method. In limestones, the traces are marked by minute amounts of finely divided iron sulfides. This causes a slight density difference resulting in greater x-ray absorption. They recognize two main trace-fossil types: a Thalassinoides best seen in slabs cut parallel to bedding and a Zoophycos best seen in slabs cut perpendicular to bedding. The technique requires a slab cut 8 mm thick with parallel flat surfaces and a medical x-ray unit using accelerating voltages of 66 kV and 10 mas. Traces are most successfully imaged on industrial-quality films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, T.D.; Pemberton, A.G.; Ranger, M.J.
A well-exposed example of a regressive barrier island succession crops out in the Alberta badlands along the Red Deer River Valley. In the most landward (northwestern) corner of the study area, only shallow-water and subaerial deposits are represented and are dominated by tidal inlet related facies. Seaward (southeast), water depth increases and the succession is typified by open-marine beach to offshore-related facies arranged in coarsening-upward progradational sequence. Detailed sedimentologic and ichnologic analyses of this sequence have allowed for its division into three distinct environmental zones (lower, middle, and upper). The lower zone comprises a laterally diverse assemblage of storm-influenced, lowermore » shoreface through offshore deposits. Outcrop in the northeast is dominated by thick beds of hummocky and/or swaley cross-stratified storm sand. In the southeast, storm events have only minor influence. This lower zone contains a wide diversity of well-preserved trace fossils whose distribution appears to have been influenced by gradients in wave energy, bottom stagnation, and the interplay of storm and fair-weather processes. The middle zone records deposition across an upper shoreface environment. Here, horizontal to low-angle bedding predominates, with interspersed sets of small- and large-scale cross-bedding increasing toward the top. A characteristic feature of the upper part of this zone is the lack of biogenic structures suggesting deposition in an exposed high-energy surf zone. The upper zone records intertidal to supratidal progradation of the shoreline complex. Planar-laminated sandstone forms a distinct foreshore interval above which rhizoliths and organic material become increasingly abundant, marking transition to the backshore. A significant feature of this zone is the occurrence of an intensely bioturbated interval toward the top of the foreshore.« less
Stone, Jeffery R.; Cronin, T. M.; Brewster-Wingard, G. L.; Ishman, S.E.; Wardlaw, B.R.; Holmes, C.W.
2000-01-01
Using multiple-proxy biological indicators, a paleoecological history of the past 550 years of Featherbed Bank, Biscayne Bay, has been reconstructed from a short (2.26 m) sediment core. Paleoecological changes in ostracode, mollusc, and foraminifer assemblages show that core SEI297-FB-1 can be divided into three distinctly different zones, which together provide evidence for distinct changes in historical environmental conditions at Featherbed Bank. Assemblages from fossil biotic communities within zone 1, representing approximately 1440 to 1550 AD, are characterized by open-marine biota with relatively limited numbers of epiphytic biota. Molluscan faunal indicators suggest the sediment was capable of supporting infaunal organisms and that faunal richness was relatively limited during this time period. A change in the biotic community occurred around 1550 AD and continued until the late 1800's distinguishing zone 2. Fossil biotic indicators from zone 2 show a strong dominance of epiphytic organisms within all of the biotic communities examined. Foraminifers, molluscs, and ostracodes capable of subsisting in salinities slightly lower than normal marine begin to flourish in this time period, and there is a marked decline in infaunal molluscs. Zone 2 assemblages are replaced around 1900 AD by increased numbers of organisms that typify open-marine conditions and a return to decreased epiphytic assemblages, similar to zone 1. Zone 3 assemblages, however, show some strong dissimilarities from zone 1, including limited infaunal molluscs, increased abundances of the ostracode Malzella floridana, and a significant increase in molluscan faunal richness.
NASA Astrophysics Data System (ADS)
Santodomingo, Nadiezhda; Renema, Willem; Johnson, Kenneth G.
2016-09-01
Studies on ancient coral communities living in marginal conditions, including low light, high turbidity, extreme temperatures, or high nutrients, are important to understand the current structure of reefs and how they could potentially respond to global changes. The main goal of this study was to document the rich and well-preserved fossil coral fauna preserved in Miocene exposures of the Kutai Basin in East Kalimantan, Indonesia. Our collections include almost forty thousand specimens collected from 47 outcrops. Seventy-nine genera and 234 species have been identified. Three different coral assemblages were found corresponding to small patch reefs that developed under the influence of high siliciclastic inputs from the Mahakam Delta. Coral assemblages vary in richness, structure, and composition. Platy coral assemblages were common until the Serravallian (Middle Miocene), while branching coral assemblages became dominant in the Tortonian (Late Miocene). By the late Tortonian massive coral assemblages dominated, similar to modern-style coral framework. Our results suggest that challenging habitats, such as the Miocene turbid habitats of East Kalimantan, might have played an important role during the early diversification of the Coral Triangle by hosting a pool of resilient species more likely to survive the environmental changes that have affected this region since the Cenozoic. Further research that integrates fossil and recent turbid habitats may provide a glimpse into the dynamics and future of coral reefs as "typical" clear-water reefs continue to decline in most regions.
Fossil traces of the bone-eating worm Osedax in early Oligocene whale bones
Kiel, Steffen; Goedert, James L.; Kahl, Wolf-Achim; Rouse, Greg W.
2010-01-01
Osedax is a recently discovered group of siboglinid annelids that consume bones on the seafloor and whose evolutionary origins have been linked with Cretaceous marine reptiles or to the post-Cretaceous rise of whales. Here we present whale bones from early Oligocene bathyal sediments exposed in Washington State, which show traces similar to those made by Osedax today. The geologic age of these trace fossils (∼30 million years) coincides with the first major radiation of whales, consistent with the hypothesis of an evolutionary link between Osedax and its main food source, although older fossils should certainly be studied. Osedax has been destroying bones for most of the evolutionary history of whales and the possible significance of this “Osedax effect” in relation to the quality and quantity of their fossils is only now recognized. PMID:20424110
Springer, Kathleen B.
2016-01-01
Late Pleistocene groundwater discharge deposits (paleowetlands) in the upper Las Vegas Wash north of Las Vegas, Nevada, have yielded an abundant and diverse vertebrate fossil assemblage, the Tule Springs local fauna (TSLF). The TSLF is the largest open-site vertebrate fossil assemblage dating to the Rancholabrean North American Land Mammal Age in the southern Great Basin and Mojave Desert. Over 600 discrete body fossil localities have been recorded from the wash, including an area that now encompasses Tule Springs Fossil Beds National Monument (TUSK). Paleowetland sediments exposed in TUSK named the Las Vegas Formation span the last 250 ka, with fossiliferous sediments spanning ∼100–13 ka. The recovered fauna is dominated by remains of Camelopsand Mammuthus, and also includes relatively common remains of extinct Equusand Bisonas well as abundant vertebrate microfaunal fossils. Large carnivorans are rare, with only Puma concolor and Panthera atrox documented previously. Postcranial remains assigned to the species Canis dirus (dire wolf) and Smilodon fatalis (sabre-toothed cat) represent the first confirmed records of these species from the TSLF, as well as the first documentation of Canis dirus in Nevada and the only known occurrence of Smilodonin southern Nevada. The size of the recovered canid fossil precludes assignment to other Pleistocene species of Canis. The morphology of the felid elements differentiates them from other large predators such as Panthera, Homotherium, and Xenosmilus, and the size of the fossils prevents assignment to other species of Smilodon. The confirmed presence of S. fatalis in the TSLF is of particular interest, indicating that this species inhabited open habitats. In turn, this suggests that the presumed preference of S. fatalis for closed-habitat environments hunting requires further elucidation. PMID:27366649
Scott, Eric; Springer, Kathleen
2016-01-01
Late Pleistocene groundwater discharge deposits (paleowetlands) in the upper Las Vegas Wash north of Las Vegas, Nevada, have yielded an abundant and diverse vertebrate fossil assemblage, the Tule Springs local fauna (TSLF). The TSLF is the largest open-site vertebrate fossil assemblage dating to the Rancholabrean North American Land Mammal Age in the southern Great Basin and Mojave Desert. Over 600 discrete body fossil localities have been recorded from the wash, including an area that now encompasses Tule Springs Fossil Beds National Monument (TUSK). Paleowetland sediments exposed in TUSK named the Las Vegas Formation span the last 250 ka, with fossiliferous sediments spanning ∼100–13 ka. The recovered fauna is dominated by remains of Camelopsand Mammuthus, and also includes relatively common remains of extinct Equusand Bisonas well as abundant vertebrate microfaunal fossils. Large carnivorans are rare, with only Puma concolor and Panthera atrox documented previously. Postcranial remains assigned to the species Canis dirus (dire wolf) and Smilodon fatalis(sabre-toothed cat) represent the first confirmed records of these species from the TSLF, as well as the first documentation of Canis dirus in Nevada and the only known occurrence of Smilodonin southern Nevada. The size of the recovered canid fossil precludes assignment to other Pleistocene species of Canis. The morphology of the felid elements differentiates them from other large predators such as Panthera, Homotherium, and Xenosmilus, and the size of the fossils prevents assignment to other species of Smilodon. The confirmed presence of S. fatalis in the TSLF is of particular interest, indicating that this species inhabited open habitats. In turn, this suggests that the presumed preference of S. fatalis for closed-habitat environments hunting requires further elucidation.
NASA Astrophysics Data System (ADS)
White, L. D.; Brooks, K.; Chen, R.; Chen, T.; James, T.; Gonzales, J.; Schumaker, D.; Williams, D.
2005-12-01
Fossil samples from the Pliocene Purisima Formation at Capitola Beach in Santa Cruz County, CA were collected in July-August 2005. The Purisima Formation composes the bulk of the cliffs exposed at Capitola Beach and a rich assemblage of well-preserved fossils occur in gray to brown sandstone and siltstone. Erosion of the cliff face averages 0.3 meter/year and fresh cliff falls in the winter and spring months of 2005 provided an excellent opportunity to resample the Capitola Beach section of the Purisima Formation previously documented by Perry (1988). Organisms were identified from information in Perry (1988) and were compared with collections at the California Academy of Sciences. The most abundant fossils found are from the phylum Mollusca, classes Bivalvia and Gastropoda. Abundant bivalve taxa are: Anadara trilineata, Clinocardium meekianum, Macoma sp., Protothaca staleyi, and Tresus pajaroanus. Also common are the gastropods, Calyptraea fastigata, Crepdiula princeps, Mitrella gausapata, Nassarius grammatus, Nassarius californianus, Natica clausa, and Olivella pedroana. Less common invertebrate fossils are from the phylum Echinodermata ( Dendraster sp., the extinct fossil sand dollar) and from the phylum Arthropoda ( Crustacea), crab fragments ( Cancer) and barnacles ( Balanus). Because numerous fossils are concentrated as fragments in shell beds, Norris (1986) and Perry (1988) believe many were redeposited as storm beds during strong current events that promoted rapid burial. In contrast, whale and other vertebrate bones are common in certain horizons and their presence may be related to the conditions that promoted phosphate mineralization, such as episodes of low sedimentation rates and prolonged exposure on the seafloor (Föllmi and Garrison, 1991). The bone beds, together with the rich infaunal and epifaunal invertebrate assemblages, represent a community of invertebrate organisms that thrived in a shallow marine sea during the Pliocene epoch, approximately 3-5 million years ago.
Trace fossils as environment indicators in the Rocky Mountains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, B.
Throughout time, organisms have left various types of traces while engaged in different activities. The two major types of lebensspuren were made by suspension feeders found in turbulent water where organic matter is held in suspension, and by deposit feeders whose habitat is found in quiet, deeper waters where large quantities of organic matter settle from suspension. The different activities which occur in these two environments are the cause of the traces found in sediments. These include escape structures resulting from degradation or aggradation of sediments, feeding structures, dwelling structures, grazing traces, crawling traces, and resting traces. The use ofmore » trace fossils in hydrocarbon exploration is especially helpful in the Cretaceous sandstones of the Rocky Mountains because of the relative abundance of outcrops and the scarcity of body fossils. By combining the interpretation of physical processes with the biological traces, one more tool is made available in the determination of rock environments as an aid in hydrocarbon exploration. Materials exhibited include 8 x 10 color prints of different Cretaceous lebensspuren, hand-drawn cartoons of the six different trace activities, and a regional cross section of the Eagle sandstone illustrated by photographs of different traces near each location, as well as a variety of rock samples.« less
NASA Astrophysics Data System (ADS)
Heiri, O.; Birks, H. J. B.; Brooks, S. J.; Velle, G.; Willassen, E.
An important aspect when applying organism-based palaeolimnological methods to sediment cores is the inherent variability of fossil assemblages within a lake basin. Subfossil chironomids in lake sediments have been used extensively to quantify past summer air and water temperatures. However, little is known on how heterogeneous fossil distribution affects these estimates. In an effort to assess this variability we took a total of 20 surface sediment samples each in three small and shallow (7-9 m wa- ter depth) Norwegian lakes. In every lake two transects of seven samples were taken from the centre of the lake towards the littoral and six samples in the deepest part of the lake basin. Although the fossil assemblages were generally very similar within a lake basin, there was - in all three lakes - a distinct shift in the abundances of chi- ronomid taxa towards the littoral (water depth explaining 10-18% of the total variance in the percentage data as assessed by a Detrended Canonical Correspondence Anal- ysis). When we applied to our data a quantitative chironomid-July air temperature transfer-function based on surface sediments from the deepest parts of 153 Norwegian lakes, the variability of reconstructed temperatures in our three study lakes was only slightly smaller in the 6 deep-water samples (standard deviations (SD) of 0.48, 0.52 and 0.58C) than in all the 20 samples (SD of 0.55, 0.56 and 0.59 C). Our results suggest that within-lake variability of subfossil chironomid assemblages can account for a significant part of the overall prediction error of the chironomid-July air tempera- ture model of 1.03C. Furthermore, the lack of a clear trend in inferred values towards the littoral and the similar standard deviation of the total samples as compared to the deep-water samples suggest that the Norwegian transfer-function, though calibrated on samples from the deepest part of the lake, may also be applicable to sediment cores from closer to the lake shore. It remains to be tested, however, if this holds true in deeper lakes than the ones sampled in our study.
NASA Astrophysics Data System (ADS)
Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.
1999-10-01
Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.
NASA Astrophysics Data System (ADS)
Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.
2003-01-01
Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.
Racheboeuf, Patrick R.; Moore, Thomas E.; Blodgett, Robert B.
2004-01-01
Newly discovered fossil localities in coarse-grained deposits of the Pennsylvanian and Permian Antler overlap assemblage in the southern Shoshone Range, north-central Nevada have yielded a low-diversity assemblage consisting chiefly of a new species of chonetoidean brachiopod: Dyoros (Lissosia) nevadaensis nov. sp. The subgenus Dyoros (Lissosia), is known from Leonardian and lower Guadalupian strata in North America, mainly in Texas. The coarse-grained lithology of the host strata, their unconformable relation on deformed lower Paleozoic rocks, and the Leonardian and(or) lower Guadalupian age indicated by Dyoros (Lissosia) provide evidence that host strata are younger than strata of the Antler overlap assemblage in nearby areas of the southern Shoshone Range and suggest that an unconformity of local extent may be present within the overlap assemblage. The fossil age ranges and lithologic data suggest that the host strata may be correlative with the Guadalupian Edna Mountain Formation, an unconformity-bounded unit that forms the upper part of the Antler sequence in the Battle Mountain area to the north. This correlation suggests that the unconformity beneath these strata may have regional extent in north-central Nevada. The origin of the inferred regional unconformity is unknown and may have resulted from relative changes of sea level or regional extensional or contractional tectonism in the area of the former Antler highlands, which forms the substrate for the Antler overlap assemblage. ?? 2004 Elsevier SAS. All rights reserved.
New geological and palaeontological age constraint for the gorilla-human lineage split.
Katoh, Shigehiro; Beyene, Yonas; Itaya, Tetsumaru; Hyodo, Hironobu; Hyodo, Masayuki; Yagi, Koshi; Gouzu, Chitaro; WoldeGabriel, Giday; Hart, William K; Ambrose, Stanley H; Nakaya, Hideo; Bernor, Raymond L; Boisserie, Jean-Renaud; Bibi, Faysal; Saegusa, Haruo; Sasaki, Tomohiko; Sano, Katsuhiro; Asfaw, Berhane; Suwa, Gen
2016-02-11
The palaeobiological record of 12 million to 7 million years ago (Ma) is crucial to the elucidation of African ape and human origins, but few fossil assemblages of this period have been reported from sub-Saharan Africa. Since the 1970s, the Chorora Formation, Ethiopia, has been widely considered to contain ~10.5 million year (Myr) old mammalian fossils. More recently, Chororapithecus abyssinicus, a probable primitive member of the gorilla clade, was discovered from the formation. Here we report new field observations and geochemical, magnetostratigraphic and radioisotopic results that securely place the Chorora Formation sediments to between ~9 and ~7 Ma. The C. abyssinicus fossils are ~8.0 Myr old, forming a revised age constraint of the human-gorilla split. Other Chorora fossils range in age from ~8.5 to 7 Ma and comprise the first sub-Saharan mammalian assemblage that spans this period. These fossils suggest indigenous African evolution of multiple mammalian lineages/groups between 10 and 7 Ma, including a possible ancestral-descendent relationship between the ~9.8 Myr old Nakalipithecus nakayamai and C. abyssinicus. The new chronology and fossils suggest that faunal provinciality between eastern Africa and Eurasia had intensified by ~9 Ma, with decreased faunal interchange thereafter. The Chorora evidence supports the hypothesis of in situ African evolution of the Gorilla-Pan-human clade, and is concordant with the deeper divergence estimates of humans and great apes based on lower mutation rates of ~0.5 × 10(-9) per site per year (refs 13 - 15).
Val, Aurore; Dirks, Paul H. G. M.; Backwell, Lucinda R.; d’Errico, Francesco; Berger, Lee R.
2015-01-01
Here we present the results of a taphonomic study of the faunal assemblage associated with the hominin fossils (Australopithecus sediba) from the Malapa site. Results include estimation of body part representation, mortality profiles, type of fragmentation, identification of breakage patterns, and microscopic analysis of bone surfaces. The diversity of the faunal spectrum, presence of animals with climbing proclivities, abundance of complete and/or articulated specimens, occurrence of antimeric sets of elements, and lack of carnivore-modified bones, indicate that animals accumulated via a natural death trap leading to an area of the cave system with no access to mammalian scavengers. The co-occurrence of well preserved fossils, carnivore coprolites, deciduous teeth of brown hyaena, and some highly fragmented and poorly preserved remains supports the hypothesis of a mixing of sediments coming from distinct chambers, which collected at the bottom of the cave system through the action of periodic water flow. This combination of taphonomic features explains the remarkable state of preservation of the hominin fossils as well as some of the associated faunal material. PMID:26061082
Trace fossils of Marnoso-Arenacea Formation (Miocene), northern Italy: preliminary data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, E.F.; Picard, M.D.
Many horizons in the Marnoso-arenacea Formation contain rare to abundant trace fossils at numerous localities. Slope, fan, and basin-plain deposits have trace fossils dominated by the Nereites ichnofacies but include taxa from the Zoophycos ichnofacies plus Ohphiomorpha and Thalassinoides. Slope deposits contain Chondrites, Cosmorhaphe, Desmograpton, Helminthoida, Neonereites, Paleodictyon, Pelecypodichnus, Planolites, Punctorhaphe, and Scolicia; fan-channel deposits contain Chondrites and Planolites; fan-lobe deposits contain Chondrites, Ophiomorpha, Thalassinoides, Scolicia, and Zoophycos; and basin-plain deposits contain Chondrites, Helminthoida, Planolites, and Zoophycos. The distribution of hypichnial taxa may be in part the result of selective preservation (i.e., dependent on the depth of erosion by turbiditymore » currents).« less
Cohen, Andrew S.; Van Bocxlaer, Bert; Todd, Jonathan A.; McGlue, Michael; Michel, Ellinor; Nkotagu, Hudson H.; Grove, A.T.; Delvaux, Damien
2013-01-01
Much of the spectacular biodiversity of the African Great Lakes is endemic to single lake basins so that the margins of these basins or their lakes coincide with biogeographic boundaries. Longstanding debate surrounds the evolution of these endemic species, the stability of bioprovinces, and the exchange of faunas between them over geologic time as the rift developed. Because these debates are currently unsettled, we are uncertain of how much existing distribution patterns are determined by modern hydrological barriers versus reflecting past history. This study reports on late Quaternary fossils from the Rukwa Basin and integrates geological and paleoecological data to explore faunal exchange between freshwater bioprovinces, in particular with Lake Tanganyika. Lake Rukwa's water level showed large fluctuations over the last 25 ky, and for most of this period the lake contained large habitat diversity, with different species assemblages and taphonomic controls along its northern and southern shores. Comparison of fossil and modern invertebrate assemblages suggests faunal persistence through the Last Glacial Maximum, but with an extirpation event that occurred in the last 5 ky. Some of the molluscs and ostracodes studied here are closely related to taxa (or part of clades) that are currently endemic to Lake Tanganyika, but others testify to wider and perhaps older faunal exchanges between the Rukwa bioprovince and those of Lake Malawi and the Upper Congo (in particular Lake Mweru). The Rukwa Basin has a long history of rifting and lacustrine conditions and, at least temporarily, its ecosystems appear to have functioned as satellites to Lake Tanganyika in which intralacustrine speciation occurred. Paleontological studies of the Rukwa faunas are particularly relevant because of the basin's important role in the late Cenozoic biogeography of tropical Africa, and because many of the molecular traces potentially revealing this history would have been erased in the late Holocene extirpation.
The Middle Miocene of the Fore-Carpathian Basin (Poland, Ukraine and Moldova)
NASA Astrophysics Data System (ADS)
Wysocka, Anna; Radwański, Andrzej; Górka, Marcin; Bąbel, Maciej; Radwańska, Urszula; Złotnik, Michał
2016-09-01
Studies of Miocene sediments in the Fore-Carpathian Basin, conducted by geologists from the University of Warsaw have provided new insights on the distribution of the facies infilling the basin, particularly in the forebulge and back-bulge zones. The origin of the large-scale sand bodies, evaporitic deposits and large-scale organic buildups is discussed, described and verified. These deposits originated in variable, shallow marine settings, differing in their water chemistry and the dynamics of sedimentary processes, and are unique with regard to the fossil assemblages they yield. Many years of taxonomic, biostratigraphic, palaeoecologic and ecotaphonomic investigations have resulted in the identification of the fossil assemblages of these sediments, their age, sedimentary settings and post-mortem conditions. Detailed studies were focused on corals, polychaetes, most classes of molluscs, crustaceans, echinoderms, and fishes.
NASA Astrophysics Data System (ADS)
Flynn, John J.; Novacek, Michael J.; Dodson, Holly E.; Frassinetti, Daniel; McKenna, Malcolm C.; Norell, Mark A.; Sears, Karen E.; Swisher, Carl C.; Wyss, André R.
2002-07-01
A diverse (36 taxa), new fossil terrestrial mammal assemblage has been recovered from the Santacrucian South American Land Mammal 'Age' (SALMA; latest Early Miocene) in the southern Andes of Chile. This is the westernmost high latitude mammal fauna known in South America and the first in a string of new mammal assemblages discovered in Chile after a lapse of nearly a century. The terrestrial mammal-bearing sequence conformably overlies a marine section of Late Oligocene to Early Miocene age. The combined marine-terrestrial sequence, as well as a locality with fossil whales and bracketing basalts, bear significantly on theories regarding the extent of the late Tertiary Patagonian epicontinental seaway and the onset of later Cenozoic phases of uplift in the southern Andes. Uplift in this region likely began by Santacrucian SALMA (˜16-17.5 Ma) time, but it remains uncertain whether this occurred in two phases (Pehuenchic and Quechuic) or one. These discoveries substantiate propositions of sharp geologic contrasts north and south of the Lago General Carrera/Lago Buenos Aires area (Magellanes basin to the south and Río Mayo embayment to the north). Minimum estimates of uplift rate are approximately 0.05-0.07 mm/yr (but as high as 0.22 mm/yr), comparable to or slightly lower than those from other parts of the Andes (e.g. Bolivia). The timing and location of uplift may be correlated with major plate tectonic events associated with the Chile Margin Triple Junction.
Hsiang, Allison Y.; Elder, Leanne E.; Hull, Pincelli M.
2016-01-01
With a glance, even the novice naturalist can tell you something about the ecology of a given ecosystem. This is because the morphology of individuals reflects their evolutionary history and ecology, and imparts a distinct ‘look’ to communities—making it possible to immediately discern between deserts and forests, or coral reefs and abyssal plains. Once quantified, morphology can provide a common metric for characterizing communities across space and time and, if measured rapidly, serve as a powerful tool for quantifying biotic dynamics. Here, we present and test a new high-throughput approach for analysing community shape in the fossil record using semi-three-dimensional (3D) morphometrics from vertically stacked images (light microscopic or photogrammetric). We assess the potential informativeness of community morphology in a first analysis of the relationship between 3D morphology, ecology and phylogeny in 16 extant species of planktonic foraminifera—an abundant group in the marine fossil record—and in a preliminary comparison of four assemblages from the North Atlantic. In the species examined, phylogenetic relatedness was most closely correlated with ecology, with all three ecological traits examined (depth habitat, symbiont ecology and biogeography) showing significant phylogenetic signal. By contrast, morphological trees (based on 3D shape similarity) were relatively distantly related to both ecology and phylogeny. Although improvements are needed to realize the full utility of community morphometrics, our approach already provides robust volumetric measurements of assemblage size, a key ecological characteristic. PMID:26977067
Hsiang, Allison Y; Elder, Leanne E; Hull, Pincelli M
2016-04-05
With a glance, even the novice naturalist can tell you something about the ecology of a given ecosystem. This is because the morphology of individuals reflects their evolutionary history and ecology, and imparts a distinct 'look' to communities--making it possible to immediately discern between deserts and forests, or coral reefs and abyssal plains. Once quantified, morphology can provide a common metric for characterizing communities across space and time and, if measured rapidly, serve as a powerful tool for quantifying biotic dynamics. Here, we present and test a new high-throughput approach for analysing community shape in the fossil record using semi-three-dimensional (3D) morphometrics from vertically stacked images (light microscopic or photogrammetric). We assess the potential informativeness of community morphology in a first analysis of the relationship between 3D morphology, ecology and phylogeny in 16 extant species of planktonic foraminifera--an abundant group in the marine fossil record--and in a preliminary comparison of four assemblages from the North Atlantic. In the species examined, phylogenetic relatedness was most closely correlated with ecology, with all three ecological traits examined (depth habitat, symbiont ecology and biogeography) showing significant phylogenetic signal. By contrast, morphological trees (based on 3D shape similarity) were relatively distantly related to both ecology and phylogeny. Although improvements are needed to realize the full utility of community morphometrics, our approach already provides robust volumetric measurements of assemblage size, a key ecological characteristic. © 2016 The Authors.
NASA Astrophysics Data System (ADS)
Luciano do Nascimento, Diego; Batezelli, Alessandro; Bernardes Ladeira, Francisco Sérgio
2017-11-01
This is the first report of trace fossils potentially associated with insect social behavior in sandy and well-drained paleosols of the Upper Cretaceous continental sequence of Brazil. The trace fossils consist of dozens of lobed and vertical structures cemented by CaCO3 and preserved mainly in full relief in paleosols of the Marilia Formation (Bauru Basin) in the state of Minas Gerais. The described ichnofossils are predominantly vertical, up to 2 m long, and are composed of horizontal lobed structures connected by vertical tunnel-like structures that intersect in the center and at the edges. The lobed structures range from 3 to 15 cm long and 2-6 cm thick. Two different hypotheses are analyzed to explain the origin of the trace fossils; the less probable one is that the structures are laminar calcretes associated with rhizoliths and rhizoconcretions. The hypothesis involving social insects was considered because the trace fossils described herein partially resemble a modern ant nest and the ichnofossil Daimoniobarax. The micromorphological analysis of the lobed and tunnel-like structures indicates modifications of the walls, such as the presence of inorganic fluidized linings, dark linings and oriented grains, supporting the hypothesis that they are chambers and shafts. The architecture and size of the reported nests suggest the possibility that social insect colonies existed during the Maastrichtian and are direct evidence of the social behavior and reproductive strategies of the Cretaceous pedofauna.
Gilbert, Christopher C; Grine, Frederick E
2010-03-01
Papionin monkeys are widespread, relatively common members of Plio-Pleistocene faunal assemblages across Africa. For these reasons, papionin taxa have been used as biochronological indicators by which to infer the ages of the South African karst cave deposits. A recent morphometric study of South African fossil papionin muzzle shape concluded that its variation attests to a substantial and greater time depth for these sites than is generally estimated. This inference is significant, because accurate dating of the South African cave sites is critical to our knowledge of hominin evolution and mammalian biogeographic history. We here report the results of a comparative analysis of extant papionin monkeys by which variability of the South African fossil papionins may be assessed. The muzzles of 106 specimens representing six extant papionin genera were digitized and interlandmark distances were calculated. Results demonstrate that the overall amount of morphological variation present within the fossil assemblage fits comfortably within the range exhibited by the extant sample. We also performed a statistical experiment to assess the limitations imposed by small sample sizes, such as typically encountered in the fossil record. Results suggest that 15 specimens are sufficient to accurately represent the population mean for a given phenotype, but small sample sizes are insufficient to permit the accurate estimation of the population standard deviation, variance, and range. The suggestion that the muzzle morphology of fossil papionins attests to a considerable and previously unrecognized temporal depth of the South African karst cave sites is unwarranted.
Mechanism for Burgess Shale-type preservation
Gaines, Robert R.; Hammarlund, Emma U.; Hou, Xianguang; Qi, Changshi; Gabbott, Sarah E.; Zhao, Yuanlong; Peng, Jin; Canfield, Donald E.
2012-01-01
Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted soft-bodied fossil assemblages has remained enigmatic since Walcott’s initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits. Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier, provided by bed-capping cements that were emplaced at the seafloor, is a feature that is shared among Burgess Shale-type deposits, and resulted from the unusually high alkalinity of Cambrian oceans. Thus, Burgess Shale-type preservation of soft-bodied fossil assemblages worldwide was promoted by unique aspects of early Paleozoic seawater chemistry that strongly impacted sediment diagenesis, providing a fundamentally unique record of the immediate aftermath of the “Cambrian explosion.” PMID:22392974
NASA Astrophysics Data System (ADS)
Myhre, S. E.; Pak, D. K.; Borreggine, M. J.; Hill, T. M.; Kennett, J.; Nicholson, C.; Deutsch, C. A.
2017-12-01
One of the most interesting problems for 21st Century marine ecology is understanding the potential physical, chemical, and biological scale of future climate-forced oceanographic changes. These fundamental questions can be informed through the examination of micro- and macrofauna from Quaternary sedimentary sequences, combined with modern observations of continental margin ecosystems. Here we examine Remotely Operated Vehicle (ROV) exploratory videos and sedimentary push cores, to identify biological assemblages, including mollusc, echinoderm, ostracod, and foraminifera density, diversity, and community structure from Santa Barbara Basin in the California Borderland. ROV explorations, from 380-500 meters below sea level (mbsl), describe the zonation of benthic fauna and the distribution of chemosynthetic trophic webs, which are consequences of gradations in the oxygen minimum zone and the ventilating sill depth (475 mbsl). Such observations reveal the modern vertical distribution of chemosynthetic bacterial communities and shallower, diverse communities associated with detrital food webs. Biological assemblages from 16.1-3.4 ka (from core MV0811-15JC, collected at 418 mbsl) produce a suite of paleoceanographic indicators, such as dissolved oxygen concentrations (foraminifera), chemosynthetic trophic webs (molluscs), and water masses (ostracods). These assemblages demonstrate how continental margin ecosystems reorganize vertically (through the water column) and geographically through climate events, for example through the loss of cryophilic species, the ephemeral occurrence of chemosynthetic communities, and the trace fossil evidence (through predation scarring on mollusc shells) of higher trophic web interactions. Together with ROV seafloor observations, these communities can reconstruct step-by-step vertical changes in the zonation of the continental margin, and can identify intervals of zonation change in relation to both Santa Barbara Basin ventilation and the regional California Borderland oxygen minimum zone.
Implications of the avian fauna for paleoecology in the Early Pleistocene of the Iberian Peninsula.
Sánchez-Marco, A
1999-01-01
The aim of this paper is to reconstruct the landscape and climate during the formation of the Lower Pleistocene TD6 layer at Gran Dolina, Atapuerca. Habitat preferences and phenetic behavioural spectra of fossil birds are reconstructed using comparisons of fossil bird assemblages with modern avian communities. This method is based upon the phenology (seasonality and breeding status) of each species for both the fossil association and modern communities. The results indicate that more open country and wetter conditions prevailed during the early Pleistocene than were previously inferred. Copyright 1999 Academic Press.
The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil.
Gomes, Luiz Eduardo de Oliveira; Correa, Lucas Barreto; Sá, Fabian; Neto, Renato Rodrigues; Bernardino, Angelo Fraga
2017-07-15
Over 50 million cubic meters of mining tailings were released in the Rio Doce basin after the collapse of the Fundão dam (Samarco) in November 2015. Predicting significant impacts on the Rio Doce estuary, we sampled sediments to investigate short-term impacts on the benthic assemblages and trace metal accumulation on estuarine sediments. With the arrival of the tailing plumes in the estuary, we detected a predominance of clay particles and increased trace metal concentrations of up to 5 times in some areas. The rapid sedimentation after the impact also impacted estuarine macrofaunal assemblages through loss surface-dwelling taxa. As expected, the impacts on benthic assemblages observed up to 3days after the arrival of tailings were not clearly associated with trace metal concentrations, but long-term effects need to be studied. We recommend that the high spatial variability within the estuary be considered in future impact assessment studies. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wershow, H.; Janssen, R.; Vonhof, H.; Lubbe, J. V. D.; Joordens, J. J.; Koutamanis, D. S.; Puspaningrum, M. R.; de Vos, J.; Reijmer, J.
2015-12-01
Climate plays a prominent role in ecosystem development in the biodiversity hotspot Sundaland (Malaysia and western Indonesia) throughout the Quaternary. Recurrent isolation and connection of the islands to mainland Asia due to sea level fluctuations has enabled repeated biotic migrations and encouraged genetic speciation. These migration waves also brought Homo erectus to Java. Together with extensive and well-documented collections of other terrestrial species, these hominin fossils form faunal assemblages of which the paleoenvironmental and paleogeographical background is poorly known. Using carbon, oxygen and strontium isotopes, we have reconstructed the paleoenvironmental and paleoecological conditions of several Holocene and Pleistocene fossil sites on Sumatra and Java, Indonesia. Carbon (∂13C) and oxygen (∂18O) isotope analysis of well-preserved herbivore teeth enamel reveals a marked contrast between C3-dominated diets in warmer periods, and C4-dominated diets in cooler periods, reflecting the distinct changes in Sundaland vegetation cover between glacials and interglacials. These isotope patterns allow us to assign the appropriate climatic background to some of the older fossil assemblages from Java, for which dating uncertainty does not allow direct assignment to glacial or interglacial conditions. The stable isotope signatures of herbivores from Trinil and Sangiran, sites well-known for the fossil occurrence of Homo erectus, indicate glacial conditions. The isotope data of several H. erectus fossils from these sites seem to be in line with such an interpretation. Furthermore, we applied strontium (87Sr/86Sr) isotope analyses to a sample subset. The preliminary data show distinct Sr-isotope ratios for different sites, providing clues for the applicability of this isotope technique in detecting climate-related mobility of Sundaland fossil faunas.
Stratigraphy, age and environments of the late Miocene Mpesida Beds, Tugen Hills, Kenya.
Kingston, John D; Fine Jacobs, Bonnie; Hill, Andrew; Deino, Alan
2002-01-01
Interpretations of faunal assemblages from the late Miocene Mpesida Beds in the Tugen Hills of the Central Kenyan Rift Valley have figured prominently in discussions of faunal turnover and establishment of the modern East African communities. These faunal changes have important implications for the divergence of the human lineage from the African apes ca. 8-5 Ma. While fossil material recovered from the Mpesida Beds has traditionally been analyzed collectively, accumulating evidence indicates that Mpesida facies span the 7-6 Ma interval and are scattered more than 25 km along the eastern flanks of the Tugen Hills. Stratigraphic distinctions between Mpesida facies and younger sediments in the sequence, such as the Lukeino Formation, are not yet fully resolved, further complicating temporal assessments and stratigraphic context of Mpesida facies. These issues are discussed with specific reference to exposures of Mpesida facies at Rurmoch, where large fossil tree fragments were swept up in an ancient ash flow. Preserved anatomical features of the fossil wood as well as estimated tree heights suggest a wet, lowland rainforest in this portion of the rift valley. Stable isotopic analyses of fossil enamel and paleosol components indicate the presence of more open habitats locally. Overlying air-fall tuffs and epiclastic debris, possibly associated with the ash flow, have yielded an assemblage of vertebrate fossils including two teeth belonging to one of the earliest colombines of typical body size known from Africa, after the rather small Microcolobus. Single-crystal, laser-fusion,(40)Ar/(39)Ar dates from a capping trachyte flow as well as tuffs just below the lava contact indicate an age of greater than 6.37 Ma for the fossil material. Copyright 2002 Academic Press.
NASA Astrophysics Data System (ADS)
Gasiński, M. Adam; Olshtynska, Alexandra; Uchman, Alfred
2013-12-01
Gasiński, M.A., Olshtynska, A. and Uchman, A. 2013. Late Maastrichtian foraminiferids and diatoms from the Polish Carpathians (Ropianka Formation, Skole Nappe): a case study from the Chmielnik-Grabowka composite section. Acta Geologica Polonica, 63
Buatois, Luis A.; Mángano, M. Gabriela; Wu, Xiantao; Zhang, Guocheng
1996-01-01
The Lower Jurassic Anyao Formation crops out near Jiyuan city, western Henan Province, central China. It is part of the infill of the nonmarine early Mesozoic Jiyuan‐Yima Basin. In the Jiyuan section, this unit is about 100 m thick and consists of laterally persistent, thin and thick‐bedded turbidite sandstones and mudstones displaying complete and base‐or top‐absent Bouma sequences, and thick‐bedded massive sandstones. The Anyao Formation records sedimentation within a lacustrine turbidite system developed in a pull‐apart basin. Processes involved include high and low density turbidity currents, sometimes affected by liquefaction or fluidization. Facies analysis suggests that this succession is formed by stacked aggradational turbidite lobes. The absence of thick mudstone packages indicates that background sedimentation was subordinate to high frequency turbidite deposition.The Anyao Formation hosts a moderately diverse ichnofauna preserved as hypichnial casts on the soles of thin‐bedded turbidite sandstones. The ichnofauna consists of Cochlichnus anguineus, Hel‐minthoidichnites tenuis, Helminthopsis abeli, H. hieroglyphica, Mono‐morphichnus lineatus, Paracanthorhaphe togwunia, Tuberculichnus vagans, Vagorichnus anyao, tiny grazing trails, and irregularly branching burrows. Vagorichnus anyao occurs not only as a discrete trace, but also as a compound ichnotaxon intergrading with Gordia marina and Tuberculichnus vagans. Both predepositional and post‐depositional traces are present on the soles of turbidites.This ichnofauna comprises both feeding and grazing traces produced by a deposit‐feeding lacustrine benthic biota. Crawling traces are rare. Although certain ichnofossils (e.g. V. anyao, P. togwunia) show overall similarities with deep‐sea agrichnia, they differ in reflecting remarkably less specialized feeding strategies, displaying overcrossing between specimens (and to a lesser extent, self‐crossing), and in the case of V’ anyaorecording post‐turbidite burrowing activity. The development of less specialized strategies than those displayed by deep‐marine ichnofaunas may be related to less stable conditions, typical of lake settings. Oxyenation, energy, sedimentation rate (both event and background), food supply, soft‐sediment deformation and erosion rate have mainly influenced trace‐fossil distribution. Turbidity currents would have ensured oxygen (as well as food) supply to deep lake settings, thus allowing the establishment of a moderately diverse biota. Biogenic structures were mostly confined to the outer, low energy areas. High sedimentation rates and strong erosion precluded preservation of ichnofossils in inner lobe settings.The Anyao ichnofauna is of significance in furthering knowledge of the colonization of deep lakes throughout the stratigraphie record and in identification of additional nonmarine ichnofacies. The ana‐lyzed ichnofauna resembles late Paleozoic lacustrine assemblages described from different localities around the world and is regarded as a Mesozoic example of the Mermia ichnofacies. However, when compared with Paleozoic assemblages, the Anyao ichnofauna shows a clear dominance of burrows over surface trails, deeper burrowing penetration, larger size, and presence of relatively more complex structures. The high burrow/surface trail ratio may be indicative of lower preservation potential in the latter, thus reflecting a tap‐honomic overprint. In contrast to the Paleozoic examples, the establishment of a relatively well‐developed lacustrine infauna may have precluded preservation of surface trails. Burrower activity probably obliterated biogenic structures formed close to the sediment‐water interface.
The advent of animals: The view from the Ediacaran
NASA Astrophysics Data System (ADS)
Droser, Mary L.; Gehling, James G.
2015-04-01
Patterns of origination and evolution of early complex life on this planet are largely interpreted from the fossils of the Precambrian soft-bodied Ediacara Biota. These fossils occur globally and represent a diverse suite of organisms living in marine environments. Although these exceptionally preserved fossil assemblages are typically difficult to reconcile with modern phyla, examination of the morphology, ecology, and taphonomy of these taxa provides keys to their relationships with modern taxa. Within the more than 30 million y range of the Ediacara Biota, fossils of these multicellular organisms demonstrate the advent of mobility, heterotrophy by multicellular animals, skeletonization, sexual reproduction, and the assembly of complex ecosystems, all of which are attributes of modern animals. This approach to these fossils, without the constraint of attempting phylogenetic reconstructions, provides a mechanism for comparing these taxa with both living and extinct animals.
The advent of animals: The view from the Ediacaran
Droser, Mary L.; Gehling, James G.
2015-01-01
Patterns of origination and evolution of early complex life on this planet are largely interpreted from the fossils of the Precambrian soft-bodied Ediacara Biota. These fossils occur globally and represent a diverse suite of organisms living in marine environments. Although these exceptionally preserved fossil assemblages are typically difficult to reconcile with modern phyla, examination of the morphology, ecology, and taphonomy of these taxa provides keys to their relationships with modern taxa. Within the more than 30 million y range of the Ediacara Biota, fossils of these multicellular organisms demonstrate the advent of mobility, heterotrophy by multicellular animals, skeletonization, sexual reproduction, and the assembly of complex ecosystems, all of which are attributes of modern animals. This approach to these fossils, without the constraint of attempting phylogenetic reconstructions, provides a mechanism for comparing these taxa with both living and extinct animals. PMID:25901306
Homo naledi pelvic remains from the Dinaledi Chamber, South Africa.
VanSickle, Caroline; Cofran, Zachary; García-Martínez, Daniel; Williams, Scott A; Churchill, Steven E; Berger, Lee R; Hawks, John
2017-11-20
In the hominin fossil record, pelvic remains are sparse and are difficult to attribute taxonomically when they are not directly associated with craniodental material. Here we describe the pelvic remains from the Dinaledi Chamber in the Rising Star cave system, Cradle of Humankind, South Africa, which has produced hominin fossils of a new species, Homo naledi. Though this species has been attributed to Homo based on cranial and lower limb morphology, the morphology of some of the fragmentary pelvic remains recovered align more closely with specimens attributed to the species Australopithecus afarensis and Australopithecus africanus than they do with those of most (but not all) known species of the genus Homo. As with A. afarensis and A. africanus, H. naledi appears to have had marked lateral iliac flare and either a weakly developed or non-existent acetabulocristal buttress or a distinct, albeit weakly developed, acetabulospinous buttress. At the same time, H. naledi has robust superior pubic and ischiopubic rami and a short ischium with a narrow tuberoacetabular sulcus, similar to those found in modern humans. The fragmentary nature of the Dinaledi pelvic assemblage makes the attribution of sex and developmental age to individual specimens difficult, which in turn diminishes our ability to identify the number of individuals represented in the assemblage. At present, we can only confidently say that the pelvic fossils from Rising Star represent at least four individuals based on the presence of four overlapping right ischial fossils (whereas a minimum of 15 individuals can be identified from the Dinaledi dental assemblage). A primitive, early Australopithecus-like false pelvis combined with a derived Homo-like true pelvis is morphologically consistent with evidence from the lower ribcage and proximal femur of H. naledi. The overall similarity of H. naledi ilia to those of australopiths supports the inference, drawn from the observation of primitive pelvic morphology in the extinct species Homo floresiensis, that there is substantial variation in pelvic form within the genus Homo. In the light of these findings, we urge caution in making taxonomic attributions-even at the genus level-of isolated fossil ossa coxae. Copyright © 2017 Elsevier Ltd. All rights reserved.
Coral Reef Response to Marine Isotope Stage (MIS) 5e Sea Level Changes in the Granitic Seychelles
NASA Astrophysics Data System (ADS)
Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.
2015-12-01
Sea-level position has a direct control on coral reef morphology and composition. Examining changes in these parameters in fossil reefs can inform reconstructions of past sea-level behavior and, indirectly, ice sheet dynamics. Here we provide a detailed examination of fossil reefs from Marine Isotope Stage (MIS) 5e. These fossil reefs are located in the granitic Seychelles, which is tectonically stable site and far-field from the former margins of Northern Hemisphere ice sheets. To reconstruct relative sea level (RSL), we combine RTK and Total Station elevation surveys with sedimentary and taxonomic evaluations of eight fossil reef sites. Carbonate coralgal reef buildups of the shallowest portion of the reef are preserved in limestone outcrops that are protected by granite boulder overhangs. Two primary outcrop morphologies were observed at these sites: plastering and massive. Plastering outcrops manifest as thin (~ 1 m height x 1 m width x 0.5 m depth) vertical successions of reef framework and detritus, while massive outcrops are larger (~ 2-6 m height x 2-6 m width x 1-2 m depth). The base of these limestone outcrops consistently record a period of reef growth, characterized by corals or coralline algae colonizing the surface or face of a granite boulder and building upwards. This lower reefal unit is capped by a disconformity that is commonly overlain by coral rubble or a ~10 cm thick layer of micrite. Rubble units contain coarse fragments of the coralgal reef buildups while micrite layers consist of a relatively homogeneous fine-grained carbonate, bearing coral-dwelling, Pyrgomatid barnacles. In many of the outcrops, this succession is repeated upsection with another unit of coralgal reef framework capped by a disconformity that is recognized by the sharp transition to coral rubble or micrite with barnacles. We identified four distinct fossil coralgal assemblages in the limestone outcrops. These assemblages are consistent with modern assemblages which constrain the paleo-water depth histories at each site. The combination of reef taxonomy as well as accretion hiatuses provides robust control on the reef, and thus sea-level, history of this region, and by extension, global mean sea level, during MIS 5e.
Mineralogical constraints on the paleoenvironments of the Ediacaran Doushantuo Formation
Bristow, Thomas F.; Kennedy, Martin J.; Derkowski, Arkadiusz; Droser, Mary L.; Jiang, Ganqing; Creaser, Robert A.
2009-01-01
Assemblages of clay minerals are routinely used as proxies for paleoclimatic change and paleoenvironmental conditions in Phanerozoic rocks. However, this tool is rarely applied in older sedimentary units. In this paper, the clay mineralogy of the Doushantuo Formation in South China is documented, providing constraints on depositional conditions of the Ediacaran Yangtze platform that host the earliest animal fossils in the geological record. In multiple sections from the Yangtze Gorges area, trioctahedral smectite (saponite) and its diagenetic products (mixed-layer chlorite/smectite, corrensite, and chlorite) are the dominant clays through the lower 80 m of the formation and constitute up to 30 wt% of the bulk rock. Saponite is interpreted as an in situ early diagenetic phase that formed in alkaline conditions (pH ≥ 9). The absence of saponite in stratigraphically equivalent basin sections, 200–400 km to the south, indicates that alkaline conditions were localized in a nonmarine basin near the Yangtze Gorges region. This interpretation is consistent with crustal abundances of redox-sensitive trace elements in saponitic mudstones deposited under anoxic conditions, as well as a 10‰ difference in the carbon isotope record between Yangtze Gorges and basin sections. Our findings suggest that nonmarine environments may have been hospitable for the fauna preserved in the Yangtze Gorges, which includes the oldest examples of animal embryo fossils and acanthomorphic acritarchs. PMID:19666508
Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards.
Daza, Juan D; Stanley, Edward L; Wagner, Philipp; Bauer, Aaron M; Grimaldi, David A
2016-03-01
Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships.
Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards
Daza, Juan D.; Stanley, Edward L.; Wagner, Philipp; Bauer, Aaron M.; Grimaldi, David A.
2016-01-01
Modern tropical forests harbor an enormous diversity of squamates, but fossilization in such environments is uncommon and little is known about tropical lizard assemblages of the Mesozoic. We report the oldest lizard assemblage preserved in amber, providing insight into the poorly preserved but potentially diverse mid-Cretaceous paleotropics. Twelve specimens from the Albian-Cenomanian boundary of Myanmar (99 Ma) preserve fine details of soft tissue and osteology, and high-resolution x-ray computed tomography permits detailed comparisons to extant and extinct lizards. The extraordinary preservation allows several specimens to be confidently assigned to groups including stem Gekkota and stem Chamaleonidae. Other taxa are assignable to crown clades on the basis of similar traits. The detailed preservation of osteological and soft tissue characters in these specimens may facilitate their precise phylogenetic placement, making them useful calibration points for molecular divergence time estimates and potential keys for resolving conflicts in higher-order squamate relationships. PMID:26973870
A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles
2018-01-01
The Pleistocene vertebrate assemblage of Aldabra Atoll has been comparatively well studied. Three Upper Pleistocene fossil localities have been described yielding birds, reptiles and terrestrial molluscs. Those of Bassin Cabri and Bassin Lebine on Ile Picard are undated but must be in excess of 136,000 YBP, whereas Point Hodoul on Malabar Island is circa 100,000 YBP. Aldabra was seemingly completely submerged between deposition of the Ile Picard and Point Hodoul deposits, resulting in local faunal extinctions. Here we present the results of an ongoing study of fossil material collected on Ile Picard in 1987, which reveals a more diverse assemblage than previously realised. Notable discoveries are an Ardeola heron, three Procellariformes, tropic-bird Phaethon, gull Larus, rail Dryolimnas, harrier Circus and owl Tyto, plus evidence of recolonisation of the atoll by some seabirds, rail, harrier, owl, giant tortoises and lizards after the Ile Picard/Point Hodoul submergence event. PMID:29590117
Hedfi, Amor; Boufahja, Fehmi; Ben Ali, Manel; Aïssa, Patricia; Mahmoudi, Ezzeddine; Beyrem, Hamouda
2013-06-01
The objective of this study was to test the hypotheses that (1) free-living marine nematodes respond in a differential way to diesel fuel if it is combined with three trace metals (chromium, copper, and nickel) used as smoke suppressants and that (2) the magnitude of toxicity of diesel fuel differs according to the level of trace metal mixture added. Nematodes from Sidi Salem beach (Tunisia) were subjected separately for 30 days to three doses of diesel fuel and three others of a trace metals mixture. Simultaneously, low-dose diesel was combined with three amounts of a trace metal mixture. Results from univariate and multivariate methods of data evaluation generally support our initial hypothesis that nematode assemblages exhibit various characteristic changes when exposed to different types of disturbances; the low dose of diesel fuel, discernibly non-toxic alone, became toxic when trace metals were added. For all types of treatments, biological disturbance caused severe specific changes in assemblage structure. For diesel fuel-treated microcosms, Marylynnia bellula and Chromaspirinia pontica were the best positive indicative species; their remarkable presence in given ecosystem may predict unsafe seafood. The powerful toxicity of the combination between diesel fuel and trace metals was expressed with only negative bioindicators, namely Trichotheristus mirabilis, Pomponema multipapillatum, Ditlevsenella murmanica, Desmodora longiseta, and Bathylaimus capacosus. Assemblages with high abundances of these species should be an index of healthy seafood. When nematodes were exposed to only trace metals, their response looks special with a distinction of a different list of indicative species; the high presence of seven species (T. mirabilis, P. multipapillatum, Leptonemella aphanothecae, D. murmanica, Viscosia cobbi, Gammanema conicauda, and Viscosia glabra) could indicate a good quality of seafood and that of another species (Oncholaimellus mediterraneus) appeared an index of the opposite situation.
Hashim, Rohasliney; Jackson, Donald C
2009-01-01
A three-year study (July 2000 – June 2003) of fish assemblages was conducted in four tributaries of the Big Black River: Big Bywy, Little Bywy, Middle Bywy and McCurtain creeks that cross the Natchez Trace Parkway, Choctaw County, Mississippi, USA. Little Bywy and Middle Bywy creeks were within watersheds influenced by the lignite mining. Big Bywy and Middle Bywy creeks were historically impacted by channelisation. McCurtain Creek was chosen as a reference (control) stream. Fish were collected using a portable backpack electrofishing unit (Smith-Root Inc., Washington, USA). Insectivorous fish dominated all of the streams. There were no pronounced differences in relative abundances of fishes among the streams (P > 0.05) but fish assemblages fluctuated seasonally. Although there were some differences among streams with regard to individual species, channelisation and lignite mining had no discernable adverse effects on functional components of fish assemblages suggesting that fishes in these systems are euryceous fluvial generalist species adapted to the variable environments of small stream ecosystems. PMID:24575177
Clark, J D; de Heinzelin, J; Schick, K D; Hart, W K; White, T D; WoldeGabriel, G; Walter, R C; Suwa, G; Asfaw, B; Vrba, E
1994-06-24
Fossils and artifacts recovered from the middle Awash Valley of Ethiopia's Afar depression sample the Middle Pleistocene transition from Homo erectus to Homo sapiens. Ar/Ar ages, biostratigraphy, and tephrachronology from this area indicate that the Pleistocene Bodo hominid cranium and newer specimens are approximately 0.6 million years old. Only Oldowan chopper and flake assemblages are present in the lower stratigraphic units, but Acheulean bifacial artifacts are consistently prevalent and widespread in directly overlying deposits. This technological transition is related to a shift in sedimentary regime, supporting the hypothesis that Middle Pleistocene Oldowan assemblages represent a behavioral facies of the Acheulean industrial complex.
The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age.
Richter, Daniel; Grün, Rainer; Joannes-Boyau, Renaud; Steele, Teresa E; Amani, Fethi; Rué, Mathieu; Fernandes, Paul; Raynal, Jean-Paul; Geraads, Denis; Ben-Ncer, Abdelouahed; Hublin, Jean-Jacques; McPherron, Shannon P
2017-06-07
The timing and location of the emergence of our species and of associated behavioural changes are crucial for our understanding of human evolution. The earliest fossil attributed to a modern form of Homo sapiens comes from eastern Africa and is approximately 195 thousand years old, therefore the emergence of modern human biology is commonly placed at around 200 thousand years ago. The earliest Middle Stone Age assemblages come from eastern and southern Africa but date much earlier. Here we report the ages, determined by thermoluminescence dating, of fire-heated flint artefacts obtained from new excavations at the Middle Stone Age site of Jebel Irhoud, Morocco, which are directly associated with newly discovered remains of H. sapiens. A weighted average age places these Middle Stone Age artefacts and fossils at 315 ± 34 thousand years ago. Support is obtained through the recalculated uranium series with electron spin resonance date of 286 ± 32 thousand years ago for a tooth from the Irhoud 3 hominin mandible. These ages are also consistent with the faunal and microfaunal assemblages and almost double the previous age estimates for the lower part of the deposits. The north African site of Jebel Irhoud contains one of the earliest directly dated Middle Stone Age assemblages, and its associated human remains are the oldest reported for H. sapiens. The emergence of our species and of the Middle Stone Age appear to be close in time, and these data suggest a larger scale, potentially pan-African, origin for both.
NASA Astrophysics Data System (ADS)
Olóriz, Federico; Reolid, Matías; Rodríguez-Tovar, Francisco J.
2006-11-01
The palaeoenvironmental conditions and trophic structure of a mid-outer neritic biota (microfossils, mainly forams, and macroinvertebrate assemblages) have been approached in middle Oxfordian-lowermost Kimmeridgian deposits from the Prebetic Zone (Betic Cordillera) in south-eastern Spain. According to relationships between fossil assemblages and lithofacies, a general seaward trend is identified which displays decreasing sedimentation rates and nutrient inputs, but increasing substrate consistency and presumably depth. Midshelf, terrigenous-rich deposits in the External Prebetic relate to the highest sedimentation rates and nutrient availability. These two parameters correlate with the highest content in vagile-benthic, calcareous perforate, epifaunal forams, as well as with potentially deep infaunal forams and infaunal macroinvertebrates. Outer-shelf lumpy deposits in the Internal Prebetic show the lowest sedimentation rates and nutrient availability and the highest records for macro-micro nektonics and planktics. In contrast, vagile-benthic, calcareous perforate epifaunal and potentially deep infaunal forams are scarcer in the midshelf environments. Colonial encrusting forams, benthic microbial communities and sessile benthic macro-invertebrates increase from the middle to outer shelf. Trophic-analysis structuring through the integration of benthic microbial communities, foraminiferal and macroinvertebrate fossil assemblages makes it possible to interpret: (a) a trophic-level frame composed of producers and primary and secondary consumers; (b) a main trophic-group differentiation in suspension-feeders, detritus-feeders, browsers, grazers, carnivores and scavengers; (c) a preliminary approach to food-chain structure supported by suspension-feeders, deposit-feeders and predators (active prey-selection carnivores); and (d) a food-pyramid model, which takes into account both recorded fossils and envisaged —i.e., ecologically inferred-organisms.
Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities.
Solórzano Kraemer, Mónica M; Delclòs, Xavier; Clapham, Matthew E; Arillo, Antonio; Peris, David; Jäger, Peter; Stebner, Frauke; Peñalver, Enrique
2018-05-07
Amber is an organic multicompound derivative from the polymerization of resin of diverse higher plants. Compared with other modes of fossil preservation, amber records the anatomy of and ecological interactions between ancient soft-bodied organisms with exceptional fidelity. However, it is currently suggested that ambers do not accurately record the composition of arthropod forest paleocommunities, due to crucial taphonomic biases. We evaluated the effects of taphonomic processes on arthropod entrapment by resin from the plant Hymenaea , one of the most important resin-producing trees and a producer of tropical Cenozoic ambers and Anthropocene (or subfossil) resins. We statistically compared natural entrapment by Hymenaea verrucosa tree resin with the ensemble of arthropods trapped by standardized entomological traps around the same tree species. Our results demonstrate that assemblages in resin are more similar to those from sticky traps than from malaise traps, providing an accurate representation of the arthropod fauna living in or near the resiniferous tree, but not of entire arthropod forest communities. Particularly, arthropod groups such as Lepidoptera, Collembola, and some Diptera are underrepresented in resins. However, resin assemblages differed slightly from sticky traps, perhaps because chemical compounds in the resins attract or repel specific insect groups. Ground-dwelling or flying arthropods that use the tree-trunk habitat for feeding or reproduction are also well represented in the resin assemblages, implying that fossil inclusions in amber can reveal fundamental information about biology of the past. These biases have implications for the paleoecological interpretation of the fossil record, principally of Cenozoic amber with angiosperm origin.
The vegetation and climate of a Neogene petrified wood forest of Mizoram, India
NASA Astrophysics Data System (ADS)
Tiwari, R. P.; Mehrotra, R. C.; Srivastava, Gaurav; Shukla, Anumeha
2012-11-01
Eleven fossil woods belonging to seven families are described from a petrified wood forest of Mizoram. This fossil assemblage is derived from sediments belonging to the Tipam Group considered to be Late Miocene-Early Pliocene in age. The modern counterparts of the identified taxa are: Gluta L., Mangifera L. (Anacardiaceae), Bursera Jacq. ex L. (Burseraceae), Terminalia L. (Combretaceae), Shorea Roxb. (Dipterocarpaceae), Cynometra Linn., Dalbergia L. f., Millettia Wight et Arn.-Pongamia Vent, Ormosia Jacks. (Fabaceae), Artocarpus Forst. (Moraceae) and Madhuca Gmelin. (Sapotaceae). The genus Dalbergia is described for the first time from India. The modern environmental tolerances of the above taxa indicate the existence of a tropical warm and humid climate in Mizoram during the depositional period. The reconstructed climate data using Coexistence Approach (CoA) based on palaeoflora database of Mosbrugger and Utescher, along with other published data sets indicates an MAT (mean annual temperature) of 26.1-27.7 °C, a mean temperature of the warmest month (WMT) of 25.4-28.1 °C, a mean temperature of the coldest month (CMT) of 25.6-26 °C, and a mean annual precipitation (MAP) of 3180-3263 mm. These climatic interpretations are congruent with the data obtained from the anatomical features of all the fossil taxa. As all the fossil taxa possess diffuse porous wood, they further indicate a tropical climate with little seasonality. The majority of the taxa in the fossil assemblage generally have large vessels and simple perforation plates which indicate high precipitation. The present study provides vital evidence of floral exchange or migration between India and southeast Asia.
Organic Chemostratigraphic Markers Characteristic of the (Informally Designated) Anthropocene Epoch
NASA Astrophysics Data System (ADS)
Kruge, M. A.
2008-12-01
Recognizing the tremendous collective impact of humans on the environment in the industrial age, the proposed designation of the current time period as the Anthropocene Epoch has considerable merit. One of the signature activities during this time continues to be the intensive extraction, processing, and combustion of fossil fuels. While fossil fuels themselves are naturally-occurring, they are most often millions of years old and associated with deeply buried strata. They may be found at the surface, for example, as natural oil seeps or coal seam outcrops, but these are relatively rare occurrences. Fossil fuels and their myriad by- products become the source of distinctive organic chemostratigraphic marker compounds for the Anthropocene when they occur out of their original geological context, i.e., as widespread contaminants in sediments and soils. These persistent compounds have high long-term preservation potential, particularly when deposited under low oxygen conditions. Fossil fuels can occur as environmental contaminants in raw form (e.g., crude petroleum spilled during transport) or as manufactured products (e.g., diesel oil from a leaking storage facility, coal tar from a manufactured gas plant, plastic waste in a landfill, pesticides from petroleum feedstock in agricultural soils). Distinctive assemblages of hydrocarbon marker compounds including acyclic isoprenoids, hopanes, and steranes can be readily detected by gas chromatography/mass spectrometric analysis of surface sediments and soils. Polycyclic aromatic hydrocarbons (PAHs), along with sulfur-, oxygen-, and nitrogen-containing aromatic compounds, are also characteristic of fossil fuels and are readily detectable as well. More widespread is the airfall deposition of fossil fuel combustion products from vehicular, domestic and industrial sources. These occur in higher concentrations in large urban centers, but are also detected in remote areas. Parent (nonmethylated) PAHs such as phenanthrene, fluoranthene and pyrene are the most abundant organic marker compounds in these combustion-derived deposits, distinguishable in their types and proportions from the combustion products of natural vegetation fires. The occurrence of specific fossil fuel combustion-derived PAH assemblages serves as a stratigraphic signature for Anthropocene deposits.
NASA Astrophysics Data System (ADS)
Viglietti, Pia A.; Smith, Roger M. H.; Angielczyk, Kenneth D.; Kammerer, Christian F.; Fröbisch, Jörg; Rubidge, Bruce S.
2016-01-01
The Dicynodon Assemblage Zone (DiAZ) of South Africa's Karoo Basin is one of the eight biostratigraphic zones of the Beaufort Group. It spans the uppermost Permian strata (Balfour, Teekloof, and Normandien formations) and traditionally has been considered to terminate with the disappearance of Dicynodon lacerticeps at the Permo-Triassic Boundary. We demonstrate that the three index fossils currently used to define the Dicynodon Assemblage Zone (Dicynodon lacerticeps, Theriognathus microps, and Procynosuchus delaharpeae) have first appearance datums (FADs) below its traditionally recognized lower boundary and have ranges mostly restricted to the lower portion of the biozone, well below the Permo-Triassic Boundary. We propose re-establishing Daptocephalus leoniceps as an index fossil for this stratigraphic interval, and reinstating the name Daptocephalus Assemblage Zone (DaAZ) for this unit. Furthermore, the FAD of Lystrosaurus maccaigi in the uppermost reaches of the biozone calls for the establishment of a two-fold subdivision of the current Dicynodon Assemblage Zone. The biostratigraphic utility of Da. leoniceps and other South African dicynodontoids outside of the Karoo Basin is limited due to basinal endemism at the species level and varying temporal ranges of dicynodontoids globally. Therefore, we recommend their use only for correlation within the Karoo Basin at this time. Revision of the stratigraphic ranges of all late Permian tetrapods does not reveal a significant change in faunal diversity between the lower and upper DaAZ. However, the last appearance datums of the abundant taxa Di. lacerticeps, T. microps, P. delaharpeae, and Diictodon feliceps occur below the three extinction phases associated with the end-Permian mass extinction event. Due to northward attenuation of the strata, however, the stratigraphic position of the extinction phases may need to be reconsidered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bar-Matthews, M.; Wasserburg, G.J.; Chen, J.H.
1993-01-01
A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographic and trace element analyses on a suite of Pleistocene samples that had previously been studied from [sup 234]U, [sup 230]Th, and U-[sup 230]Th ages (Chen et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles aremore » highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial [delta][sup 234]U, are generally correlated (Chen et al., 1991). As all these diagenetic changes involve the recystallization and deposition of aragonite, the authors infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the [sup 234]U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U-[sup 230]Th dating. The basic problem of identifying a priori unaltered coral skeletons for [sup 230]Th dating is not yet resolved. 64 refs., 16 figs., 5 tabs.« less
Early and middle(?) Cambrian metazoan and protistan fossils from West Africa
Culver, S.J.; Repetski, J.E.; Pojeta, J.; Hunt, D.
1996-01-01
Supposed Upper Proterozoic strata in the southwest Taoudeni Basin, Guinea and Senegal, and from the Mauritanide fold belt, Mauritania, have yielded mostly poorly preserved small skeletal fossils of metazoan and protistan origin. Problematic, but possible echinoderm material and spicules of the heteractinid sponge Eiffelia dominate the Taoudeni Basin assemblage. The age of the material is not certain but the paleontologic data suggest an Early Cambrian age for the stratigraphically lowest faunas, and a Middle Cambrian age is possible for the stratigraphically highest collections.
The effect of tissue structure and soil chemistry on trace element uptake in fossils
NASA Astrophysics Data System (ADS)
Hinz, Emily A.; Kohn, Matthew J.
2010-06-01
Trace element profiles for common divalent cations (Sr, Zn, Ba), rare-earth elements (REE), Y, U, and Th were measured in fossil bones and teeth from the c. 25 ka Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Multiple traverses in teeth were transformed into 2-D trace element maps for visualizing structural influences on trace element uptake. Trace element compositions of different soils from the fossil site were also analyzed by solution ICP-MS, employing progressive leaches that included distilled H 2O, 0.1 M acetic acid, and microwave digestion in concentrated HCl-HNO 3. In teeth, trace element uptake in enamel is 2-4 orders of magnitude slower than in dentine, forming an effective trace element barrier. Uptake in dentine parallel to the dentine-enamel interface is enhanced by at least 2 orders of magnitude compared to transverse, causing trace element "plumes" down the tooth core. In bone, U, Ba and Sr are nearly homogeneous, implying diffusivities ˜5 orders of magnitude faster than in enamel and virtually complete equilibration with host soils. In contrast all REE show strong depletions inward, with stepwise linear segments in log-normal or inverse complementary error function plots; these data require a multi-medium diffusion model, with about 2 orders of magnitude difference in slowest vs. fastest diffusivities. Differences in REE diffusivities in bone (slow) vs. dentine (fast) reflect different partition coefficients ( Kd's). Although acid leaches and bulk digestion of soils yield comparable fossil-soil Kd's among different elements, natural solutions are expected to be neutral to slightly basic. Distilled H 2O leachates instead reveal radically different Kd's in bone for REE than for U-Sr-Ba, suggest orders of magnitude lower effective diffusivities for REE, and readily explain steep vs. flat profiles for REE vs. U-Sr-Ba, respectively. Differences among REE Kd's and diffusivities may explain inward changes in Ce anomalies. Acid washes and bulk soil compositions yield misleading Kd's for many trace elements, especially the REE, and H 2O-leaches are preferred. Patterns of trace element distributions indicate diagenetic alteration at all scales, including enamel, and challenge the use of trace elements in paleodietary studies.
NASA Astrophysics Data System (ADS)
Little, Crispin T. S.; Herrington, Richard J.; Haymon, Rachel M.; Danelian, Taniel
1999-02-01
The Figueroa massive sulfide deposit, located in Franciscan Complex rocks in the San Rafael Mountains of California, preserves the only known Jurassic hydrothermal vent fossils. The Figueroa fossil assemblage is specimen rich but of low diversity and comprises, in order of decreasing abundance, vestimentiferan worm tubes, the rhynchonellid brachiopod Anarhynchia cf. gabbi and a species of ?nododelphinulid gastropod. The Figueroa fossil organisms lived at a deep-water, high-temperature vent site located on a mid-ocean ridge or seamount at an equatorial latitude. The fossil vent site was then translated northwestward by the motion of the Farallon plate and was subsequently accreted to its present location. An iron-silica exhalite bed, the probable lateral equivalent of the Figueroa deposit, contains abundant filamentous microfossils with two distinct morphologies and probably represents a lower-temperature, diffuse-flow environment. The Figueroa fossil community was subject to the same environmental conditions as modern vent communities, but it is unique among modern and other fossil vent communities in having rhynchonellid brachiopods.
Publications - RI 2000-1A | Alaska Division of Geological & Geophysical
; Folding; Formations; Fossils; Generalized; Geologic; Geologic Map; Geology; Geomorphology; Glacial ; Silt; Structure; Surficial; Surficial Geology; Tectonics; Tertiary; Thaw Lakes; Trace Fossils
Soares, Leticia; Latta, Steven C.; Ricklefs, Robert E.
2017-01-01
Although introduced hemosporidian (malaria) parasites (Apicomplexa: Haemosporida) have hastened the extinction of endemic bird species in the Hawaiian Islands and perhaps elsewhere, little is known about the temporal dynamics of endemic malaria parasite populations. Haemosporidian parasites do not leave informative fossils, and records of population change are lacking beyond a few decades. Here, we take advantage of the isolation of West Indian land-bridge islands by rising postglacial sea levels to estimate rates of change in hemosporidian parasite assemblages over a millennial time frame. Several pairs of West Indian islands have been connected and separated by falling and rising sea levels associated with the advance and retreat of Pleistocene continental glaciers. We use island isolation following postglacial sea-level rise, ca. 2.5 ka, to characterize long-term change in insular assemblages of hemosporidian parasites. We find that assemblages on formerly connected islands are as differentiated as assemblages on islands that have never been connected, and both are more differentiated than local assemblages sampled up to two decades apart. Differentiation of parasite assemblages between formerly connected islands reflects variation in the prevalence of shared hemosporidian lineages, whereas differentiation between islands isolated by millions of years reflects replacement of hemosporidian lineages infecting similar assemblages of avian host species. PMID:28607060
Soares, Leticia; Latta, Steven C; Ricklefs, Robert E
2017-06-20
Although introduced hemosporidian (malaria) parasites (Apicomplexa: Haemosporida) have hastened the extinction of endemic bird species in the Hawaiian Islands and perhaps elsewhere, little is known about the temporal dynamics of endemic malaria parasite populations. Haemosporidian parasites do not leave informative fossils, and records of population change are lacking beyond a few decades. Here, we take advantage of the isolation of West Indian land-bridge islands by rising postglacial sea levels to estimate rates of change in hemosporidian parasite assemblages over a millennial time frame. Several pairs of West Indian islands have been connected and separated by falling and rising sea levels associated with the advance and retreat of Pleistocene continental glaciers. We use island isolation following postglacial sea-level rise, ca. 2.5 ka, to characterize long-term change in insular assemblages of hemosporidian parasites. We find that assemblages on formerly connected islands are as differentiated as assemblages on islands that have never been connected, and both are more differentiated than local assemblages sampled up to two decades apart. Differentiation of parasite assemblages between formerly connected islands reflects variation in the prevalence of shared hemosporidian lineages, whereas differentiation between islands isolated by millions of years reflects replacement of hemosporidian lineages infecting similar assemblages of avian host species.
The 'North American shale composite' - Its compilation, major and trace element characteristics
NASA Technical Reports Server (NTRS)
Gromet, L. P.; Dymek, R. F.; Haskin, L. A.; Korotev, R. L.
1984-01-01
North American shale composite (NASC) major element composition and compilation are presented, together with rare earth element (REE) redeterminations obtained by high precision analytical methods. The major element composition of the NASC compares closely with other average shale compositions, and significant portions of the REE and some other trace elements are contained in minor phases. The uneven REE distribution in NASC powder appears to yield the heterogeneity in analyzed aliquants. REE distributions of detrital sediments may to some extent be dependent on their minor mineral assemblages and the sedimentological factors controlling these assemblages.
NASA Astrophysics Data System (ADS)
Golubkova, E. Yu.; Kushim, E. A.; Kuznetsov, A. B.; Yanovskii, A. S.; Maslov, A. V.; Shvedov, S. D.; Plotkina, Yu. V.
2018-03-01
The stratigraphic distribution of microfossils and macroscopic fossil biota in Vendian deposits of the South Ladoga region (northwestern East European Platform) is analyzed. In the sequence of the Shotkusa- 1 well, three taxonomically heterogeneous microfossil assemblages are distinguished: two of them refer to the Redkinian age (Starorusskaya Fm.) and one to the Kotlinian age (Vasileostrovskaya Fm.). Deposits of the Starorusskaya Fm. contain Redkinian biota of macroscopic fossils, of which the most characteristic representatives are Chuaria circularis, Doushantuophyton lineare, Morania zinkovi, Orbisiana simplex, and Redkinia spinosa. These new findings expand the paleontological characteristics of Upper Vendian deposits, also providing additional criteria for distinguishing the Redkinian horizon in the northwestern East European Platform.
NASA Astrophysics Data System (ADS)
Srivastava, Gaurav; Mehrotra, R. C.; Srikarni, C.
2018-02-01
The plant fossil records from the Siwalik Group of Arunachal Pradesh, India are far from satisfactory due to remoteness and dense vegetation of the area. We report seven fossil woods of which three belong to the Middle Siwalik (Subansiri Formation), while the rest are from the Upper Siwalik (Kimin Formation). The modern analogues of the fossils from the Middle Siwalik are Lophopetalum littorale (Celastraceae), Afzelia-Intsia and Sindora siamensis (Fabaceae) and from the Upper Siwalik are Miliusa velutina (Annonaceae), Calophyllum tomentosum and Kayea (Calophyllaceae) and Diospyros melanoxylon (Ebenaceae). The dominance of diffuse porosity in the fossil woods indicates a tropical climate with low seasonality (little variation) in temperature, while a high proportion of large vessels and simple perforation plates in the assemblage infer high precipitation during the deposition of the sediments. The aforesaid inference is in strong agreement with the previous quantitative reconstruction based on fossil leaves. Several modern analogues of the fossil taxa are now growing in low latitudes possibly due to an increase in seasonality (increased variation) in temperature caused by the rising Himalaya.
A Pleistocene (MIS 5e) mollusk assemblage from Ezeiza (Buenos Aires Province, Argentina)
NASA Astrophysics Data System (ADS)
Martínez, Sergio; Julia del Río, Claudia; Rojas, Alejandra
2016-10-01
A fossil assemblage collected around 3.5 m amsl from Ezeiza, Buenos Aires province, have AMS 14C ages of ca. 33,000 to ca. 40,000 yr BP, whereas in the literature is a report of a conventional 14C age of >43,000 yr BP. An OSL age from the overlying deposit corresponds to ca. 22,000 yr. The samples contain marine fossils: mollusks, balanids and corals (Astrangia). La Coronilla (Uruguay, attributed to MIS 5e) is the locality most related to Ezeiza faunistically, despite is not the nearest one. In consequence, the relationship should be addressed to a more similar age and environment than others. The fauna indicates a higher water temperature than today. In Ezeiza exclusively cold water taxa are absent, and we found seven warm taxa with their southern distribution limit displaced northwards today, plus other six at their southern distribution limit. Around 60% of all the species and more than 70% of the individuals are of warm-temperate waters. In sum, although prima facie the numerical ages would locate the deposit in MIS3, faunistic, temperature, and height evidences show that the Ezeiza mollusk assemblage belong to MIS5e. A stronger than presently Brazil warm current, reaching Southern latitudes, may explain the changes in geographical ranges.
The Tule Springs local fauna: Rancholabrean vertebrates from the Las Vegas Formation, Nevada
Scott, Eric; Springer, Kathleen; Sagebiel, James C.
2017-01-01
A middle to late Pleistocene sedimentary sequence in the upper Las Vegas Wash, north of Las Vegas, Nevada, has yielded the largest open-site Rancholabrean vertebrate fossil assemblage in the southern Great Basin and Mojave Deserts. Recent paleontologic field studies have led to the discovery of hundreds of fossil localities and specimens, greatly extending the geographic and temporal footprint of original investigations in the early 1960s. The significance of the deposits and their entombed fossils led to the preservation of 22,650 acres of the upper Las Vegas Wash as Tule Springs Fossil Beds National Monument. These discoveries also warrant designation of the assemblage as a local fauna, named for the site of the original paleontologic studies at Tule Springs.The large mammal component of the Tule Springs local fauna is dominated by remains of Mammuthus columbi as well as Camelops hesternus, along with less common remains of Equus (including E. scotti) and Bison. Large carnivorans including Canis dirus, Smilodon fatalis, and Panthera atrox are also recorded. Micromammals, amphibians, lizards, snakes, birds, invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. The fauna occurs within the Las Vegas Formation, an extensive and stratigraphically complex sequence of groundwater discharge deposits that represent a mosaic of desert wetland environments. Radiometric and luminescence dating indicates the sequence spans the last ∼570 ka, and records hydrologic changes in a dynamic and temporally congruent response to northern hemispheric abrupt climatic oscillations. The vertebrate fauna occurs in multiple stratigraphic horizons in this sequence, with ages of the fossils spanning from ∼100 to ∼12.5 ka.
NASA Astrophysics Data System (ADS)
Jeong, Eun Kyoung; Kim, Hyun Joo; Uemura, Kazuhiko; Kim, Kyungsik
2016-04-01
The Tertiary sedimentary basins are distributed along the eastern coast of Korean Peninsula. The northernmost Bukpyeong Basin is located in Donghae City, Gangwon-do Province, Korea. The Bukpyeong Basin consists of Bukpyeong Formation and Dogyeongri Conglomerate in ascending order. The geologic age of Bukpyeong Formation has been suggested as from Early Miocene to Pliocene, In particular, Lee & Jacobs (2010) suggested the age of the Bukpyeong Formation as late Early Miocene to early Middle Miocene based on the fossils of rodent teeth. Sedimentary environment has been thought as mainly fresh water lake and/or swamp partly influenced by marine water. Lately, new outcrops of Bukpyeong Formation were exposed during the road construction and abundant fossil plants were yielded from the newly exposed outcrops. As a result of palaeobotanical studies 47 genera of 23 families have been found. This fossil plant assemblage is composed of gymnosperms and dicotyledons. Gymnosperms were Pinaceae (e.g., Pinus, Tsuga), Sciadopityaceae (e.g., Sciadopitys) and Cupressaceae with well-preserved Metasequoia cones. Dicotyledons were deciduous trees such as Betulaceae (e.g., Alnus, Carpinus) and Sapindaceae (e.g., Acer, Aesculus, Sapindus), and evergreen trees such as evergreen Fagaceae (e.g., Castanopsis, Cyclobalanopsis, Pasania) and Lauraceae (e.g., Cinnamomum, Machilus). In addition, fresh water plants such as Hemitrapa (Lytraceae) and Ceratophyllum (Ceratophyllaceae) were also found. The fossil plant assemblage of the Bukpyeong Formation supported the freshwater environment implied by previous studies. It can be suggested that the palaeoflora of Bukpyeong Formation was oak-laurel forest with broad-leaved evergreen and deciduous trees accompanying commonly by conifers of Pinaceae and Cupressaceae under warm-temperate climate.
Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in Central Europe
Knitlová, Markéta; Horáček, Ivan
2017-01-01
Wood mice of the genus Apodemus are an essential component of small mammal communities throughout Europe. Molecular data suggest the postglacial colonization of current ranges from south European glacial refugia, different in particular species. Yet, details on the course of colonization and Holocene history of particular species are not available, partly because of a lack of reliable criteria for species identification in the fossil record. Using a sample of extant species, we analyzed variation patterns and between-species overlaps for a large set of metric and non-metric dental variables and established the criteria enabling the reliable species identification of fragmentary fossil material. The corresponding biometrical analyses were undertaken with fossil material of the genus (2528 items, 747 MNI) from 22 continuous sedimentary series in the Czech Republic and Slovakia, from LGM to Recent. In Central Europe, the genus is invariantly absent in LGM assemblages but regularly appears during the Late Vistulian. All the earliest records belong to A. flavicollis, the species clearly predominating in the fossil record until the Late Holocene. A. uralensis accompanied it in all regions until the late Boreal when disappeared from the fossil record (except for Pannonia). A few items identified as A. sylvaticus had already appeared in the early Holocene assemblages, first in the western part of the region, yet the regular appearance of the species is mostly in the post-Neolithic age. A. agrarius appeared sparsely from the Boreal with a maximum frequency during the post-Neolithic period. The results conform well to the picture suggested by molecular phylogeography but demonstrate considerable differences among particular species in dynamic of the range colonization. Further details concerning Holocene paleobiogeography of individual species in the medium latitude Europe are discussed. PMID:28282422
Publications - RI 2000-5 | Alaska Division of Geological & Geophysical
; Fossils; Gastropods; Geochronology; Geology; Halobia; Kahiltna Terrane; Late Silurian; Late Triassic Project; Trace Fossils Top of Page Department of Natural Resources, Division of Geological &
Tonganoxichnus, a new insect trace from the Upper Carboniferous of eastern Kansas
Mangano, M.G.; Buatois, L.A.; Maples, C.G.; Lanier, Wendy E.
1997-01-01
Upper Carboniferous tidal rhythmites of the Tonganoxie Sandstone Member (Stranger Formation) at Buildex Quarry, eastern Kansas, USA, host a relatively diverse arthropod-dominated ichnofauna. Bilaterally symmetrical traces displaying unique anterior and posterior sets of morphological features are well represented within the assemblage. A new ichnogenus, Tonganoxichnus, is proposed for these traces. T. buildexensis, the type ichnospecies, has an anterior region characterized by the presence of a frontal pair of maxillary palp impressions, followed by a head impression and three pairs of conspicuous thoracic appendage imprints symmetrically opposite along a median axis. The posterior region commonly exhibits numerous delicate chevron-like markings, recording the abdominal appendages, and a thin, straight, terminal extension. T. buildexensis is interpreted as a resting trace. A second ichnospecies, T. ottawensis, is characterized by a fan-like arrangement of mostly bifid scratch marks at the anterior area that records the head- and thoracic-appendage backstrokes against the substrate. The posterior area shows chevron-like markings or small subcircular impressions that record the abdominal appendages of the animal, also ending in a thin, straight, terminal extension. Specimens display lateral repetition, and are commonly grouped into twos or threes with a fix point at the posteriormost tail-like structure. T. ottawensis is interpreted as a jumping structure, probably in connection with feeding purposes. The two ichnospecies occur in close association, and share sufficient morphologic features to support the same type of arthropod producer. T. buildexensis closely mimics the ventral anatomy of the tracemaker, whereas T. ottawensis records the jumping abilities of the animal providing significant ethologic and paleoecologic information. The presence of well-differentiated cephalic, thoracic, and abdominal features, particularly in T. buildexensis, resembles the diagnostic tagmosis and segmentation of insects. Detailed analysis of trace morphology and comparison with described Paleozoic insect fossils and extant related forms suggest a monuran as the most likely tracemaker.
NASA Astrophysics Data System (ADS)
Mehrotra, R. C.; Bera, S. K.; Basumatary, S. K.; Srivastava, G.
2011-08-01
In order to reconstruct the palaeoclimate, a number of fossil wood pieces were collected and investigated from two new fossil localities situated in the Dhemaji and Lakhimpur districts of Assam. They belong to the Tipam Group considered to be of Middle-Late Miocene in age and show affinities with Gluta (Anacardiaceae), Bischofia (Euphorbiaceae), Bauhinia, Cynometra, Copaifera-Detarium-Sindora, Millettia-Pongamia, and Afzelia-Intsia (Fabaceae). The flora also records a new species of Bauhinia named Bauhinia miocenica sp. nov. The assemblage indicates a warm and humid climate in the region during the deposition of the sediments. The occurrence of some southeast Asian elements in the fossil flora indicates that an exchange of floral elements took place between India and southeast Asia during the Miocene.
Multi-proxies Approach of Climatic Records In Terrestrial Mollusks Shells
NASA Astrophysics Data System (ADS)
Labonne, M.; Rousseau, D. D.; Ben Othman, D.; Luck, J. M.; Metref, S.
Fossil land snails shells constitute a valuable source of information for the study of Quaternary deposits as they are commonly preserved in many regions and notably in loess sequences. The use of stable isotope composition of the carbonate in the shells was previously applied to reconstruct past climate or environnements but the technic was not widely exploited and compared with other proxies from the same sequence. In this study, we have analysed stables isotopes, trace elements and Sr isotopes from both shells of land snails Vertigo modesta and the sediment from the Eustis upper Pleistocene loess sequence (Nebraska, USA). This serie developed during the last glaciation and records the last deglaciation between 18,000 and 12,000 B.P. years. We compare the paleoclimatic information obtained by different proxies, such as mag- netic susceptibility, temperature and moisture estimated by land snails assemblage with geochemical data measured on land snails shells in order to validate the climatic information obtained with this proxy. Our study demonstrates that shell carbonate reflects environmental conditions estimated by other proxies. Carbon and oxygen iso- topes show cyclic variations (millenial cycles) along the profile which correlate with stratigraphic units and could be link with the retreat of the Laurentide ice sheet. Trace element and Sr isotopes in the shells indicate various origins for the eolian dusts in the two main loess units along the sequence.
Foraminifera and the ecology of sea grass communities since the late Cretaceous
NASA Astrophysics Data System (ADS)
Hart, Malcolm; Smart, Christopher; Jagt, John
2016-04-01
Sea grasses are marine angiosperms (plants) that, in the late Cretaceous, migrated from the land into shallow-water marine environments. They represent a distinct, but fragile, marine habitat and sea grass meadows are often regarded as biodiversity hot-spots with a range of species (including fish, sea horses and cuttlefish) using them as nurseries for their young. Foraminifera are often found associated with sea grass meadows, with the associated taxa reflecting both the environment and palaeolatitude. In the tropics and sub-tropics, miliolid foraminifera dominate (e.g., Peneroplis spp.) as do large discoidal taxa such as Marginopora and Calcarina. In temperate to cool latitudes the assemblage changes to one dominated by smaller benthic taxa, including Elphidium spp. One taxon, Elphidium crispum, is geotropic and is often found - in the summer months - to crowd the fronds of the sea grass. In the Gulpen and Maastricht formations of the Maastricht area (The Netherlands and Belgium) sea grass fossils (both fronds and rhizomes) have been recorded in association with assemblages of both larger and smaller benthic foraminifera (Hart et al., 2016). Some of the large discoidal forms (e.g., Omphalocyclus and Orbitoides/Lepidorbitoides) and the distinctive Siderolites are associated with these sea grass fossils and are suggestive of the modern sea grass communities of sub-tropical areas. While earlier records were of relatively isolated sea grasses, in September/October 2015 surfaces with abundant sea grasses were found that are suggestive of complete 'meadows'. Preservation of some silicified rhizomes indicates that silicification must have been very rapid, before any degradation or compaction of the delicate tissues. The presence of sea grass fossils and their associated benthic foraminifera is indicative of a clear, shallow-water seaway, with a maximum depth of 15-20 m. The reported variations in sea level during the latest Cretaceous cannot, therefore, have been very large as such a change in water depth would have been disastrous to such a fragile ecosystem. The fossil record of sea grasses in the Cenozoic is relatively limited, though there are some assemblages of benthic foraminifera that are suggestive of their presence, despite the lack of plant fossils. Hart, M.B., FitzPatrick, M.E.J. & Smart, C.W. 2016. The Cretaceous/Paleogene boundary: Foraminifera, sea grasses, sea level change and sequence stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 420-429.
Publications - RI 2000-1B | Alaska Division of Geological & Geophysical
; Formations; Fossils; Geologic; Geologic Map; Geology; Glacial Processes; Kemik Sandstone; Marine; Marine ; Tectonics; Tertiary; Trace Fossils; Turbidites; Volcanic Ash Top of Page Department of Natural Resources
Vegetation response to climate change in Alaska: examples from the fossil record
Ager, Thomas A.
2007-01-01
Preface: This report was presented as an invited paper at the Fish & Wildlife Service Climate Forum held in Anchorage, Alaska on February 21-23, 2007. The purpose of the talk was to provide some examples of past climate changes that appear to have caused significant responses in Alaskan vegetation. These examples are based on interpretations of dated fossil assemblages (pollen, spores and plant macrofossils) collected and interpreted by U.S. Geological Survey and collaborating scientists from other scientific organizations during the past several decades.
Borne, P.F.; Cronin, T. M.; Hazel, J.E.
1999-01-01
Tropical marine ostracodes from Neogene and Quaternary sediments of the Central American Caribbean region have been the subject of biostratigraphic, ecological, taxonomic, and evolutionary studies. As part of the Panama Paleontology Project (PPP), Neogene and Quaternary ostracodes are being studied from the Central American region. The overall goal of this research is to evaluate the impact of the emergence of the Central American Isthmus as a land barrier between the Caribbean/tropical Atlantic and the Pacific oceans on marine ostracode biodiversity and the oceanic environments in which extant ostracodes evolved. Due to the ecological specificity of many living tropical ostracode species, they are ideally suited for reconstructing paleoenvironments on the basis of their occurrence in fossil assemblages, which in turn can lead to a better understanding of the tropical climatic and tectonic history of Central America. The principal aims of this chapter are: (a) to document the composition of the ostracode assemblages from the Limón Basin of Costa Rica and the Bocas del Toro Basin of Panama, two areas yielding extensive ma rine ostracode assemblages; (b) to describe the environments of deposition within these basins; and (c) to document the stratigraphic distribution of potentially agediagnostic ostracode species in the Limón and Bocas del Toro basins in order to enhance their use in Central American biostratigraphy. A secondary, but none-the-less important goal is to assemble a database on the distribution of modem ostracode species in the Caribbean and adjacent areas as a basis for comparison with fossil assemblages. Although the ecological, biostratigraphic and paleoenvironmental conclusions presented here will improve as additional material is studied, these fossil and modem ostracode databases constitute the foundation for future evolutionary and geochernical studies of tropical Caribbean and eastern Pacific Ocean ostracodes. Moreover, we present here evidence that major faunal and oceanic changes occurred in the westem Caribbean over the last 4 million years, probably related to changes in ocean circulation due to the emergence of the Isthmus as well as other climatic events.
Fossil Chironomidae (Insecta: Diptera) as Paleothermometers in the African Tropics
NASA Astrophysics Data System (ADS)
Eggermont, H.; Heiri, O.; Russell, J.; Vuille, M.; Audenaert, L.; Klaassen, G.; Verschuren, D.
2008-12-01
Reconstruction of Africa's temperature history from natural climate archives such as lake sediments is essential to amend the current scarcity of information on natural tropical climate and ecosystem variability. Chironomids are well-established paleothermometers in north-temperate/boreal regions, but their potential in tropical lakes has never before been assessed. We surveyed sub-fossil chironomid assemblages in surface sediments from 65 lakes and permanent pools in southwestern Uganda and central/southern Kenya, spanning elevations between 489 and 4575 m asl. Using various subsets of lakes and corresponding Surface-Water Temperatures (SWTemp) and Mean Annual Air Temperatures (MATemp), we developed a series of inference models for quantitative paleotemperature reconstruction. Models using both low-, mid- and high-elevation sites suffer to some extent from the small number of samples between 2500 and 3500 m asl, and from the presence of ecologically distinct but morphologically indistinguishable taxa. Models confined to mountain sites produce poorer error statistics, but are less prone to the biogeographical and taxonomic complexities associated with long climatic gradients. Overall, error statistics compare favourably with those of inference models developed for temperate regions, indicating that fossil assemblages of African Chironomidae can be valuable indicators of past temperature change. We subsequently used these models to evaluate whether high-elevation lakes in the Rwenzori Mountains (>3000 m asl) have been impacted by climate warming in recent centuries by comparing temperatures inferred from chironomid assemblages in modern sediments with those derived from chironomid assemblages in sediments deposited within or briefly after the Little Ice Age (1270-1850 AD). Depending on the model used, between 44 and 63% of the 16 lakes studied indicate significantly warmer temperatures in recent times (corresponding with an average MATemp rise of 0.88 ° C, and average SWTemp rise of 1.33 ° C), while all but one of the other lakes show temperature changes that are statistically insignificant. We conclude that chironomid communities in Rwenzori lakes adequately record past temperature changes, with potential for evaluating the impacts of past air temperature variation on the long-term dynamics of the Rwenzori glaciers.
NASA Astrophysics Data System (ADS)
Grunert, Patrick; Skinner, Luke; Hodell, David A.; Piller, Werner E.
2015-08-01
Census counts of benthic foraminifera were studied from the SW Iberian Margin to reconstruct past changes in deep-water hydrography across Terminations I and II. Detailed benthic faunal data (> 125 μm size-fraction) allow us to evaluate the limitations imposed by taphonomic processes and restricted size-fractions. The comparison of recent (mudline) and fossil assemblages at IODP Site U1385 indicates the quick post-mortem disintegration of shells of astrorhizoid taxa (~ 80% of the present-day fauna), resulting in impoverished fossil assemblages. While the application of quantitative proxy methods is problematic under these circumstances, the fossil assemblages can still provide a qualitative palaeoenvironmental signal that, while most fully expressed in the 125-212 μm size-fraction, is nonetheless also expressed to some degree in the > 212 μm size-fraction. Variations in the benthic foraminiferal assemblages reveal information about changing organic matter supply, deep-water oxygenation and temperature. MIS 2 is generally characterized by an elevated trophic state and variable oxic conditions, with oxygenation minima culminating in the Younger Dryas (YD) and Heinrich Stadials (HS) 1, 2 and 3. Low oxic conditions coincide with decreased water-temperature and lower benthic δ13C, pointing to the strong influence of a southern sourced water-mass during these periods. HS 1 is the most extreme of these intervals, providing further evidence for a severe temporary reduction or even shutdown of AMOC. With the inception of MIS 1, organic matter supply reduced and a better ventilated deep-water environment bathed by NEADW is established. For Termination II, clear indications of southern-sourced water are limited to the early phase of HS 11. During the latter part of HS 11, the deep-water environment seems to be determined by strongly increased supply of organic matter, potentially explaining the decoupling of benthic δ13C and Mg/Ca records of earlier studies as a phytodetritus effect on the carbon isotope signal. However, the presence of a warm, nutrient-rich and poorly oxygenated water-mass cannot be ruled out. With the inception of interglacial MIS 5e trophic conditions are reduced and ventilation by NEADW increases.
Assessing Data Accuracy When Involving Students in Authentic Paleontological Research.
ERIC Educational Resources Information Center
Harnik, Paul G.; Ross, Robert M.
2003-01-01
Regards Student-Scientist Partnerships (SSPs) as beneficial collaborations for both students and researchers. Introduces the Paleontological Research Institution (PRI), which developed and pilot tested an SSP that involved grade 4-9 students in paleontological research on Devonian marine fossil assemblages. Reports formative data assessment and…
The Quaternary fossil-pollen record and global change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, E.C.
Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less
Absence of preserved glucosamine and amino acids in fossil crustacean exoskeletons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimmelmann, A.; Krause, R.G.F.; DeNiro, M.J.
1988-01-01
No glucosamine and only traces of amino acids were detected in kerogen prepared from fossil crustacean exoskeletons. The elemental C/N ratios of the kerogen samples were above 20, indicating that most of the organic nitrogen was eliminated from the chitin biopolymer during diagenesis. The results contradict earlier reports of the stability of chitin during fossilization.
NASA Astrophysics Data System (ADS)
Mangano, M. G.; Buatois, L. A.
The paleoecologic and paleoenvironmental significance of trace fossils related to discontinuity surfaces in the Lower Cretaceous marine deposits of the Aconcagua area are analysed here. Carbonate-evaporite shoaling-upward cycles, developed by high organic production in a shallow hypersaline restricted environment, make up the section. Two types of cycles are defined, being mainly distinguished by their subtidal unit. Cycle I begins with a highly dolomitized lower subtidal unit (Facies A), followed upward by an intensely bioturbated upper subtidal unit (Facies B). The nodular packstone facies (B 1) is capped by a discontinuity surface (firmground or hardground) and occasionally overlain by an oystreid bed (Facies C). Cycle II is characterized by a pelletoidal subtidal unit (Facies B 2) with an abnormal salinity impoverished fauna. Both cycles end with intertidal to supratidal evaporite deposits (Facies D and E, respectively). Attention is particularly focused on cycle I due to its ichologic content. The mode of preservation and the distribution of trace fossils in nodular packstone facies are controlled by original substrate consolidation. Thalassinoides paradoxicus (pre-omission suite) represents colonization in a soft bottom, while Thalassinoides suevicus (omission suite pre-lithification) is apparently restricted to firm substrates. When consolidation processes are interrupted early, only an embryonic hard-ground that represents a minor halt in sedimentation was developed. Sometimes, consolidation processes continued leading to an intraformational hardground. Colonization by Trypanites solitarius (omission suite post-lithification) and Exogyra-like oystreids possibly characterizes hard substrate stage. When two discontinuity surfaces follow closely, a post-omission suite may be defined in relation to the lower cemented surface. As trace fossils are so closely related to changes in the degree of bottom lithification, they prove to be very useful as indicators of substrate evolution. The presence of discontinuity surfaces, evidenced by trace fossil association, suggests changes of sedimentary rate and environmental conditions that should be taken into account in future studies seeking to erect depositional models for these Cretaceous deposits.
A Gunflint-type microbiota from the Duck Creek dolomite, Western Australia
NASA Technical Reports Server (NTRS)
Knoll, A. H.; Barghoorn, E. S.
1976-01-01
Two-billion-year-old black chert lenses from the Duck Creek formation, northwestern Western Australia, contain abundant organically preserved microorganisms which are morphologically similar to fossils of approximately the same age from the Gunflint formation, Ontario. Entities include a relatively small (5-15 micron) coccoid taxon morphologically comparable to Huroniospora Barghoorn, a larger coccoid form comparable to an apparently planktonic alga from the Gunflint, Gunflintia Barghoorn, and Eoastrion Barghoorn (Metallogenium Perfil'ev). Gunflint-type assemblages had a wide geographic distribution in middle Precambrian times, and these assemblages may eventually prove useful as biostratigraphic indices.
Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos.
Harvey, Thomas H P; Butterfield, Nicholas J
2017-01-30
Microscopic animals that live among and between sediment grains (meiobenthic metazoans) are key constituents of modern aquatic ecosystems, but are effectively absent from the fossil record. We describe an assemblage of microscopic fossil loriciferans (Ecdysozoa, Loricifera) from the late Cambrian Deadwood Formation of western Canada. The fossils share a characteristic head structure and minute adult body size (~300 μm) with modern loriciferans, indicating the early evolution and subsequent conservation of an obligate, permanently meiobenthic lifestyle. The unsuspected fossilization potential of such small animals in marine mudstones offers a new search image for the earliest ecdysozoans and other animals, although the anatomical complexity of loriciferans points to their evolutionary miniaturization from a larger-bodied ancestor. The invasion of animals into ecospace that was previously monopolized by protists will have contributed considerably to the revolutionary geobiological feedbacks of the Proterozoic/Phanerozoic transition.
Molecular preservation of the pigment melanin in fossil melanosomes.
Lindgren, Johan; Uvdal, Per; Sjövall, Peter; Nilsson, Dan E; Engdahl, Anders; Schultz, Bo Pagh; Thiel, Volker
2012-05-08
Fossil feathers, hairs and eyes are regularly preserved as carbonized traces comprised of masses of micrometre-sized bodies that are spherical, oblate or elongate in shape. For a long time, these minute structures were regarded as the remains of biofilms of keratinophilic bacteria, but recently they have been reinterpreted as melanosomes; that is, colour-bearing organelles. Resolving this fundamental difference in interpretation is crucial: if endogenous then the fossil microbodies would represent a significant advancement in the fields of palaeontology and evolutionary biology given, for example, the possibility to reconstruct integumentary colours and plumage colour patterns. It has previously been shown that certain trace elements occur in fossils as organometallic compounds, and hence may be used as biomarkers for melanin pigments. Here we expand this knowledge by demonstrating the presence of molecularly preserved melanin in intimate association with melanosome-like microbodies isolated from an argentinoid fish eye from the early Eocene of Denmark.
NASA Astrophysics Data System (ADS)
Mineiro, Adriano Santos; Santucci, Rodrigo Miloni; da Rocha, Dulce Maria Sucena; de Andrade, Marco Brandalise; Nava, William Roberto
2017-12-01
The Marília Formation (Bauru Group, Upper Cretaceous, Brazil) has furnished a large array of vertebrate fossils. However, its ichnological and botanical contents are poorly explored to date. Here we report findings of invertebrate trace fossils (Beaconites isp., Skolithos isp., and Taenidium barretti), rhizoliths associated with rhizomorphs with preserved hyphae, and fossil roots from the Echaporã Member, Marília Formation, São Paulo State, Brazil. The association of trace fossils suggest they can be regarded to the Scoyenia Ichnofacies. The rhizoliths indicate that at least two types of herbaceous/arbustive plants inhabited the area, one of them living in the vadose zone and the other one with roots closer to the water table, under arid/semiarid conditions. Sedimentological analyses suggest the studied outcrop comprises fluvial deposits, with predominance of sand bars that underwent different and relatively long periods of subaerial exposure.
NASA Astrophysics Data System (ADS)
Métais, Grégoire; Sen, Sevket; Sözeri, Koray; Peigné, Stéphane; Varol, Baki
2015-08-01
In Eastern Turkey, relatively little work has been undertaken to characterize the sedimentologic and stratigraphical context of the Kağızman-Tuzluca Basin until now. Extending across the Turkey-Armenian border, this basin documents the syn- and post-collisional evolution of Eastern Anatolia, resulting from the closure of the Neotethyan Seaways and the final collision of the Afro-Arabian and Eurasian plates. From detailed sedimentological and paleontological studies, we propose an interpretation of the lithology and depositional environment of the Late Paleogene Alhan Formation located on the western bank of the Aras River. This sequence of terrestrial clastics rests directly and unconformably onto the ophiolitic mélange, and it documents several depositional sequences deposited in alluvial plain and lacustrine environments. At this stage, the age of the Alhan Formation can only be calibrated by fossil evidence. Several stratigraphic levels yielding fossil data along the section have been identified, but these poor assemblages of fauna and flora hamper extensive comparisons with roughly contemporaneous localities of Central and Southern Asia. Carnivorous and ruminant mammal remains are reported for the first time from the supposed Late Oligocene Güngörmez Formation. The identified fossil mammal taxa reveal biogeographic affinities between Central Anatolia and southern Asia, thus suggesting dispersal between these areas during the Oligocene or earlier. Further studies of the fossil assemblages from the Kağızman-Tuzluca Basin and other basins of Eastern Anatolia and lesser Caucasus regions are needed to better constrain the paleobiogeographic models.
New petrified forest in Maranhão, Permian (Cisuralian) of the Parnaíba Basin, Brazil
NASA Astrophysics Data System (ADS)
da Conceição, Domingas Maria; de Andrade, Luiz Saturnino; Cisneros, Juan Carlos; Iannuzzi, Roberto; Pereira, Agostinha Araújo; Machado, Francisco Carlos
2016-10-01
This work presents a new fossil plant-bearing area located in the municipalities of Duque Bacelar and Coelho Neto, Maranhão State, Brazil, recovered from lower Permian (Cisuralian) strata of the Pedra de Fogo Formation, northeastern portion of the Parnaíba Basin. The area comprises more than five exposures with assemblages formed mostly of large gymnosperm woods, a number of them in life-position (reaching up to ∼2.30 m in height and 1.15 m in diameter) and, in lesser degree, of horizontal tree-fern stems (up to 5 m in length), some of them being referable to Psaronius sp. The fossils are recorded in sedimentary beds of continental origin that accumulated in shallow, nearshore areas of large lakes, which eventually were affected by rapid burial episodes generated by non-channelized, high energy fluvial systems. The new fossil assemblages are included within lacustrine rocks placed at the base of the Pedra de Fogo Formation, i.e., Sílex Basal Member, near the contact with the underlying Piauí Formation (Pennsylvanian). This observation contrasts with previous studies at the southwestern portion of the basin, where the stratigraphic position of plant fossils is referred to the upper Pedra de Fogo Formation (Trisidela Member) or even to the overlying Motuca Formation. The new sites currently suffer damage from human activities and require urgent actions in order to protect them. Based on the current laws, some measures of protection for these sites are discussed and proposed herein. xml:lang="pt"
Petrology of enstatite chondrites and anomalous enstatite achondrites
NASA Astrophysics Data System (ADS)
van Niekerk, Deon
2012-01-01
Chondrites are meteorites that represent unmelted portions of asteroids. The enstatite chondrites are one class of chondrites. They consist of reduced mineral assemblages that formed under low oxygen fugacity in the solar nebula, prior to accretion into asteroids. There are two groups of enstatite chondrites---EH and EL. I studied EL3 meteorites, which are understood to be unmetamorphosed and thus to only preserve primitive nebular products. I show in a petrographic study that the EL3s are in fact melt--breccias in which impact-melting produced new mineral assemblages and textures in portions of the host chondrites, after accretion. I document meta- land sulfide assemblages that are intergrown with silicate minerals (which are often euhedral), and occur outside chondrules; these assemblages probably represent impact-melting products, and are different from those in EH3 chondrites that probably represent nebular products. In situ siderophile trace element compositions of the metal in EL3s, obtained by laser ablation inductively coupled plasma mass spectrometry, are consistent with an impact-melting hypothesis. The trace element concentrations show no clear volatility trend, and are thus probably not the result of volatile-driven petrogenetic processes that operated in the solar nebula. Trace element modeling suggests that the character of the trace element patterns together with deviations from the mean bulk EL metal pattern is consistent with metal that crystallized in a coexisting liquid-solid metal system in which dissolved carbon influenced element partitioning. I also conducted a petrographic and mineral-chemistry study of several anomalous enstatite meteorites. These have igneous textures, but unfractionated mineralogy similar to unmelted chondrites. I show that with the exception of one, the meteorites are related to each other, and probably formed by crystallization from an impact melt instead of metamorphism through the decay of short lived radionuclides. The broad importance of these studies lies in documenting the petrology of extraterrestrial materials that reveal the geological history of the young solar system prior to the existence of planets. Furthermore, they serve to identify which mineral assemblages record nebular processes and which record processes on asteroids, so that future studies may select the correct material to address particular questions.
"Urban Fossils": a project enabling reflections concerning human impact on planet Earth.
NASA Astrophysics Data System (ADS)
Lozar, Francesca; Delfino, Massimo; Magagna, Alessandra; Ferrero, Elena; Cirilli, Francesca; Bernardi, Massimo; Giardino, Marco
2016-04-01
Paleontology is taught in schools and is often the subject of documentaries and newspaper articles, mainly dealing with exceptional findings or exotic localities. As such, most students and adults have no opportunity to find real fossils in their daily lives, which is usually spent in urban environments. On the other hand, the projects of active dissemination of paleontology have to take into account the rules governing the collection of fossils and the fact that these are generally rare and not easily accessible. As geologists it is important to involve people in understanding the implications of this subject, by stimulating their involvement in current research. This is an occasion for us to be in touch with society and therefore to reflect on the values upon which we base our research projects. In this framework, we agree that nowadays a geoethical approach to the geosphere-society relationship is necessary also to improve public awareness of the interactions between human activities and the geosphere. "Urban Fossils" offers this opportunity: by actively reflecting on the processes enabling fossilization, nowadays and in the geological past, and by experiencing "fossil hunting" as an amusing search in urban environments, the project improves the awareness that mankind is an active "geological" agent impacting on our planet. The idea of questing and registering traces of "past actions" recorded in asphalt and concrete pavements and roads (bottle caps and bolts, but also traces of humans and other animals, load left by scaffoldings etc.) stimulate the participants to reflect on fossilization processes, on the amount of information that fossils provide us, and on the huge impact of human traces on urban "soils". "Urban Fossils" started as a photographic project by Francesca Cirilli, and developed into a photo contest, a travelling exhibition, and a book. The exhibition is composed of selected pictures and has been organized in collaboration with the project PROGEO-Piemonte and the Regional Museum of Natural History of Torino; starting from autumn 2015, it is hosted by several Italian museums of Natural History. Since many of the "urban fossils" are ephemeral and doomed to destruction at "catastrophic" events (eg. maintenance of roads and sidewalks), a virtual collection (www.progeopiemonte.it) will preserve in time their photographs, allowing and promoting continue discussion on aspects of paleontology generally neglected outside the academia, such as ichnology and taphonomy, and on the traces that we, humans, will leave on planet Earth and will ultimately be buried in the Anthropocene rocks. "Urban Fossils" is therefore an ongoing project, with a great interdisciplinary value, that represents an opportunity for both geoscientists and society to become more conscious of their role and responsibility in everyday life activities.
Terlizzi, Antonio; Bevilacqua, Stanislao; Scuderi, Danilo; Fiorentino, Dario; Guarnieri, Giuseppe; Giangrande, Adriana; Licciano, Margherita; Felline, Serena; Fraschetti, Simonetta
2008-07-01
The exploitation of fossil fuels in the Mediterranean Sea will likely lead to an increase in the number of offshore platforms, a recognized threat for marine biodiversity. To date, in this basin, few attempts have been made to assess the impact of offshore gas and oil platforms on the biodiversity of benthic assemblages. Here, we adopted a structured experimental design coupled with high taxonomic resolution to outline putative effects of gas platforms on soft-bottom macrofauna assemblages in the North Ionian Sea. The analysis was based on a total of 20,295 specimens of 405 taxa, almost entirely identified at species level. Multivariate and univariate analyses showed idiosyncratic patterns of assemblage change with increasing distance from the platforms. Potential reasons underlying such inconsistency are analyzed and the view that structured experimental monitoring is a crucial tool to quantify the extent and magnitude of potential threats and to provide sound baseline information on biodiversity patterns is supported.
Detection of environmental impacts of shrimp farming through multiple lines of evidence.
Hatje, Vanessa; de Souza, Manuel M; Ribeiro, Luisa F; Eça, Gilmara F; Barros, Francisco
2016-12-01
In order to evaluate the impact of semi-intensive shrimp farming, comparisons between Control and Impact areas were made based on multiple lines of evidence using an asymmetrical design. Water and sediment samples were collected in four shrimp farms located in Todos os Santos Bay, Bahia, Brazil. Nutrients, trace elements and macrobenthic assemblages were evaluated using uni- and multivariate analyzes. Significant differences were observed between Impact and Control areas for the water column dataset (i.e., ancillary variables, SPM, dissolved nutrients and major and trace elements in SPM), whereas no significant differences were observed for the chemistry of sediments. Macrobenthic assemblages were negatively affected by shrimp farm activities. Impacted sites presented the lowest abundance, richness and different structure of macrofaunal benthic assemblages. Farms clearly produced negative impacts in the Todos os Santos Bay. This conclusion was only possible to be reached through the use of multiple lines of evidence. Chemistry and benthic assemblages data combined produced a better description of the quality and impacts of the evaluated environments. Different conclusions would have been reached if chemistry and ecology results were studied separately vs. together. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anderson, Katherine H.; Bartlein, Patrick J.; Strickland, Laura E.; Pelltier, Richard T.; Thompson, Robert S.; Shafer, Sarah L.
2012-01-01
The mutual climatic range (MCR) technique is perhaps the most widely used method for estimating past climatic parameters from fossil assemblages, largely because it can be conducted on a simple list of the taxa present in an assemblage. When applied to plant macrofossil data, this unweighted approach (MCRun) will frequently identify a large range for a given climatic parameter where the species in an assemblage can theoretically live together. To narrow this range, we devised a new weighted approach (MCRwt) that employs information from the modern relations between climatic parameters and plant distributions to lessen the influence of the "tails" of the distributions of the climatic data associated with the taxa in an assemblage. To assess the performance of the MCR approaches, we applied them to a set of modern climatic data and plant distributions on a 25-km grid for North America, and compared observed and estimated climatic values for each grid point. In general, MCRwt was superior to MCRun in providing smaller anomalies, less bias, and better correlations between observed and estimated values. However, by the same measures, the results of Modern Analog Technique (MAT) approaches were superior to MCRwt. Although this might be reason to favor MAT approaches, they are based on assumptions that may not be valid for paleoclimatic reconstructions, including that: 1) the absence of a taxon from a fossil sample is meaningful, 2) plant associations were largely unaffected by past changes in either levels of atmospheric carbon dioxide or in the seasonal distributions of solar radiation, and 3) plant associations of the past are adequately represented on the modern landscape. To illustrate the application of these MCR and MAT approaches to paleoclimatic reconstructions, we applied them to a Pleistocene paleobotanical assemblage from the western United States. From our examinations of the estimates of modern and past climates from vegetation assemblages, we conclude that the MCRun technique provides reliable and unbiased estimates of the ranges of possible climatic conditions that can reasonably be associated with these assemblages. The application of MCRwt and MAT approaches can further constrain these estimates and may provide a systematic way to assess uncertainty. The data sets required for MCR analyses in North America are provided in a parallel publication.
Specialised emission pattern of leaf trace in a late Permian (253 million-years old) conifer
Wei, Hai-Bo; Feng, Zhuo; Yang, Ji-Yuan; Chen, Yu-Xuan; Shen, Jia-Jia; He, Xiao-Yuan
2015-01-01
Leaf traces are important structures in higher plants that connect leaves and the stem vascular system. The anatomy and emission pattern of leaf traces are well studied in extant vascular plants, but remain poorly understood in fossil lineages. We quantitatively analysed the leaf traces in the late Permian conifer Ningxiaites specialis from Northwest China based on serial sections through pith, primary and secondary xylems. A complete leaf traces emission pattern of a conifer is presented for the first time from the late Palaeozoic. Three to five monarch leaf traces are grouped in clusters, arranged in a helical phyllotaxis. The leaf traces in each cluster can be divided into upper, middle and lower portions, and initiate at the pith periphery and cross the wood horizontally. The upper leaf trace increases its diameter during the first growth increment and then diminishes completely, which indicates leaf abscission at the end of the first year. The middle trace immediately bifurcates once or twice to form two or three vascular bundles. The lower trace persists as a single bundle during its entire length. The intricate leaf trace dynamics indicates this fossil plant had a novel evolutionary habit by promoting photosynthetic capability for the matured plant. PMID:26198410
NASA Astrophysics Data System (ADS)
Wu, Naiqin; Li, Fengjiang; Rousseau, Denis-Didier
2018-04-01
The terrestrial mollusk fossils found in Chinese loess strata have been studied for over one hundred years. However, the greatest progress in these studies has been made only in the last two decades. In this paper, we review the advancements, advantages and limitations of terrestrial mollusk studies in Chinese loess deposits. Improvements in research methods and approaches have allowed the extraction of more detailed paleoenvironmental and paleoclimatic information from mollusk assemblages. The broadened research scope and content have yielded many new findings and results. The mollusk record has thus become one of the most important proxies in the paleoenvironmental and paleoclimatic reconstruction of loess-paleosol sequences in China. The greatest progress in the studies of terrestrial mollusks in Chinese loess sequences can be summarized as follows: (1) modern mollusk assemblages can be classified into four ecotypes, based on their temperature and humidity requirements, including eurytopic, semi-aridiphilous and sub-humidiphilous, cold-aridiphilous, and thermo-humidiphilous types; (2) Quaternary mollusk assemblages can be modified into the following three ecological types: glacial loess, interglacial paleosol, and interstadial weakly-developed paleosol assemblages; (3) mollusk records successfully reveal long-term climatic and environmental changes reflective of the history of East Asian monsoonal variations since the Late Cenozoic, and the succession of mollusk species also indicate short-term environmental changes such as millennial climate variability during Last Glacial Maximum and unstable climatic fluctuations during glacial and interglacial periods; and (4) more recently, new analytical approaches have offered increased research potential in areas such as paleotemperature reconstruction using the isotopic compositions of modern and fossil mollusk shells, combined with higher accuracy 14C dating of Quaternary loess deposits, which will greatly improve future loess paleoenvironmental research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagoe, M.B.; Layman, T.B.
Traditional industrial approaches to biostratigraphy and paleoenvironmental analysis largely use only a small portion of the available microfossil assemblage, concentrating on various marker taxa({open_quotes}tops{close_quotes} of index fossils and paleoenvironmental guide fossils). Sequence-stratigraphic approaches may place more emphasis on the entire assemblage, but efficient analytical strategies still need to be developed to extract maximum information from micropaleontological data. Microfossil assemblages are produced by three types of processes: (1) in-situ accumulation of taxa living at the sample site; (2) postmortem transport of specimens into and out of the sample site ({open_quotes}down-slope transport{close_quotes}), and (3) taphonomic/diagenetic processes such as dissolution, which can altermore » taxon proportions. Recognizing and evaluating the effects of these processes on the microfossil assemblage can lead to a better geological interpretation. We propose an analytical strategy to address these issues, consisting of (1) bulk faunal descriptors (faunal abundance, preservation, diversity, planktic microfossil abundance) combined with lithologic information (e.g., abundance of glauconite) to identify broad paleoenvironmental patterns; (2) biofacies definition based on cluster analysis and factor analysis of the entire microfossil data set to refine these patterns; (3) interpretation and modeling of biofacies trends using detrended reciprocal averaging, and (4) analysis of faunal mixing patterns using polytopic vector analysis. We apply this analytical strategy to foraminiferal data from the middle Eocene Yegua Formation of southeast Texas. Seven biofacies are recognized along a short, three-well, dip transect, representing paleoenvironments ranging from marginal marine delta plain to outer neritic muddy shelf.« less
Ancient origin of the modern deep-sea fauna.
Thuy, Ben; Gale, Andy S; Kroh, Andreas; Kucera, Michal; Numberger-Thuy, Lea D; Reich, Mike; Stöhr, Sabine
2012-01-01
The origin and possible antiquity of the spectacularly diverse modern deep-sea fauna has been debated since the beginning of deep-sea research in the mid-nineteenth century. Recent hypotheses, based on biogeographic patterns and molecular clock estimates, support a latest Mesozoic or early Cenozoic date for the origin of key groups of the present deep-sea fauna (echinoids, octopods). This relatively young age is consistent with hypotheses that argue for extensive extinction during Jurassic and Cretaceous Oceanic Anoxic Events (OAEs) and the mid-Cenozoic cooling of deep-water masses, implying repeated re-colonization by immigration of taxa from shallow-water habitats. Here we report on a well-preserved echinoderm assemblage from deep-sea (1000-1500 m paleodepth) sediments of the NE-Atlantic of Early Cretaceous age (114 Ma). The assemblage is strikingly similar to that of extant bathyal echinoderm communities in composition, including families and genera found exclusively in modern deep-sea habitats. A number of taxa found in the assemblage have no fossil record at shelf depths postdating the assemblage, which precludes the possibility of deep-sea recolonization from shallow habitats following episodic extinction at least for those groups. Our discovery provides the first key fossil evidence that a significant part of the modern deep-sea fauna is considerably older than previously assumed. As a consequence, most major paleoceanographic events had far less impact on the diversity of deep-sea faunas than has been implied. It also suggests that deep-sea biota are more resilient to extinction events than shallow-water forms, and that the unusual deep-sea environment, indeed, provides evolutionary stability which is very rarely punctuated on macroevolutionary time scales.
NASA Astrophysics Data System (ADS)
Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Ulianov, A.; Chiaradia, M.
2013-12-01
At the northwest corner of Africa excellent conditions existed for phosphate formation (i.e., stable upwelling system) during the late Cretaceous-early Eocene. This is probably in relation to stable tectonic evolution of shallow epicontinental basins at a passive continental margin and to their paleogeographic situation between the Atlantic and Tethys marine realms. To better comprehend paleoceanic conditions in this area, radiogenic isotope ratios (87Sr/86Sr and 143Nd/144Nd) and trace element compositions of fossil biogenic apatite are investigated from Maastrichtian to Ypresian shallow marine phosphorite deposits in Morocco (Ouled Abdoun and Ganntour Basins). Rare earth elements (REE) distributions in the fossils are compatible with early diagenetic marine pore fluid represented by negative Ce-anomaly and heavy REE enrichment. An overall shift in Ce-anomaly is apparent with gradually lower values in younger fossils along three distinct assemblages that correspond to Maastrichtian, Danian-Thanetian and Ypresian periods. The temporal change can be interpreted as presence of gradually more oxygenated seawater in the basins. Strontium isotopic ratios of the fossils follow the global Sr-evolution curve. However, the latest Cretaceous and the oldest Paleocene fossils yielded slightly higher ratios than the global ocean, which could reflect minor diagenetic alteration. Neodymium isotopic ratios are quite even along the phosphate series with ɛNd(t) values ranges from -6.8 to -5.8. These values are higher than those reported for average North Atlantic deep water and Tethyan seawater (e.g., Stille et al., 1996; Thomas et al., 2003). For the origin of the stable, high 143Nd/144Nd we propose three main hypotheses: (1) contribution of continental Nd-source, (2) locally controlled deep water Nd-isotope ratios near the coast from where upwelling originated in the area and (3) possible surface marine water contribution from the Pacific across the Atlantic. Stille, P., Steinmann, M., Riggs, R.S., 1996. Nd isotope evidence for the evolution of the paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth Planet. Sci. Lett. 144, 9-19. Thomas, J.D., Bralower, T.J., Jones, E.C., 2003. Neodymium isotopic reconstruction of late Paleocene-early Eocene thermohaline circulation. Earth Planet. Sci. Lett. 209, 309-322.
Developing a Trace Element Biosignature for Early Earth and Mars
NASA Astrophysics Data System (ADS)
Gangidine, A.; Czaja, A. D.; Havig, J.
2018-04-01
Due to metamorphism and diagenesis, determining the biogenicity of ancient fossils is difficult and often contentious. Using trace element concentrations, we propose a novel biosignature independent from organic and morphological preservation.
Crees, Jennifer J.; Hansford, James; Jeffree, Timothy E.; Crumpton, Nick; Kurniawan, Iwan; Setiyabudi, Erick; Paranggarimu, Umbu; Dosseto, Anthony; van den Bergh, Gerrit D.
2017-01-01
Historical patterns of diversity, biogeography and faunal turnover remain poorly understood for Wallacea, the biologically and geologically complex island region between the Asian and Australian continental shelves. A distinctive Quaternary vertebrate fauna containing the small-bodied hominin Homo floresiensis, pygmy Stegodon proboscideans, varanids and giant murids has been described from Flores, but Quaternary faunas are poorly known from most other Lesser Sunda Islands. We report the discovery of extensive new fossil vertebrate collections from Pleistocene and Holocene deposits on Sumba, a large Wallacean island situated less than 50 km south of Flores. A fossil assemblage recovered from a Pleistocene deposit at Lewapaku in the interior highlands of Sumba, which may be close to 1 million years old, contains a series of skeletal elements of a very small Stegodon referable to S. sumbaensis, a tooth attributable to Varanus komodoensis, and fragmentary remains of unidentified giant murids. Holocene cave deposits at Mahaniwa dated to approximately 2000–3500 BP yielded extensive material of two new genera of endemic large-bodied murids, as well as fossils of an extinct frugivorous varanid. This new baseline for reconstructing Wallacean faunal histories reveals that Sumba's Quaternary vertebrate fauna, although phylogenetically distinctive, was comparable in diversity and composition to the Quaternary fauna of Flores, suggesting that similar assemblages may have characterized Quaternary terrestrial ecosystems on many or all of the larger Lesser Sunda Islands. PMID:28855367
Paleobiology, community ecology, and scales of ecological pattern.
Jablonski, D; Sepkoski, J J
1996-07-01
The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.
Paleobiology, community ecology, and scales of ecological pattern
NASA Technical Reports Server (NTRS)
Jablonski, D.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1996-01-01
The fossil record provides a wealth of data on the role of regional processes and historical events in shaping biological communities over a variety of time scales. The Quaternary record with its evidence of repeated climatic change shows that both terrestrial and marine species shifted independently rather than as cohesive assemblages over scales of thousands of years. Larger scale patterns also show a strong individualistic component to taxon dynamics; assemblage stability, when it occurs, is difficult to separate from shared responses to low rates of environmental change. Nevertheless, the fossil record does suggest that some biotic interactions influence large-scale ecological and evolutionary patterns, albeit in more diffuse and protracted fashions than those generally studied by community ecologists. These include: (1) the resistance by incumbents to the establishment of new or invading taxa, with episodes of explosive diversification often appearing contingent on the removal of incumbents at extinction events; (2) steady states of within-habitat and global diversity at longer time scales (10(7)-l0(8) yr), despite enormous turnover of taxa; and (3) morphological and biogeographic responses to increased intensities of predation and substratum disturbance over similarly long time scales. The behavior of species and communities over the array of temporal and spatial scales in the fossil record takes on additional significance for framing conservation strategies, and for understanding recovery of species, lineages, and communities from environmental changes.
Fossil Crustaceans as Parasites and Hosts.
Klompmaker, Adiël A; Boxshall, Geoff A
2015-01-01
Numerous crustacean lineages have independently moved into parasitism as a mode of life. In modern marine ecosystems, parasitic crustaceans use representatives from many metazoan phyla as hosts. Crustaceans also serve as hosts to a rich diversity of parasites, including other crustaceans. Here, we show that the fossil record of such parasitic interactions is sparse, with only 11 examples, one dating back to the Cambrian. This may be due to the limited preservation potential and small size of parasites, as well as to problems with ascribing traces to parasitism with certainty, and to a lack of targeted research. Although the confirmed stratigraphic ranges are limited for nearly every example, evidence of parasitism related to crustaceans has become increasingly more complete for isopod-induced swellings in decapods so that quantitative analyses can be carried out. Little attention has yet been paid to the origin of parasitism in deep time, but insight can be generated by integrating data on fossils with molecular studies on modern parasites. In addition, there are other traces left by parasites that could fossilize, but have not yet been recognized in the fossil record. Copyright © 2015 Elsevier Ltd. All rights reserved.
Diagenesis of fossil coral skeletons: Correlation between trace elements, textures, and 234U /238U
NASA Astrophysics Data System (ADS)
Bar-Matthews, M.; Wasserburg, G. J.; Chen, J. H.
1993-01-01
A comparative study of Pleistocene fossil coral skeletons and of modern coral skeletons was carried out using petrographie and trace element analyses on a suite of Pleistocene samples that had previously been studied for 234U, 230Th, and U- 230Th ages ( CHEN et al. 1991). Evidence of a range of diagenetic changes can be recognized by optical (OM) and scanning electron microscopy (SEM). The normal texture exhibited by modern corals under OM consists of fine needles of aragonite forming a radial-fibrous pattern around a central dark line (center of calcification). This pattern can also be seen in many fossil corals. In most cases, the central dark line partially disappears during diagenesis, the radialfibrous pattern is obscured, and there is a distinct coarsening of the radial fabric of aragonite to unoriented platy or equant aragonite crystals. SEM images show diagenetic textures ranging from dense structureless images of the coralline matrix, with sharp boundaries at the septa walls, to the development of (1) a patchy distribution of dissolution micropores partially filled with aragonite fibers in the matrix, (2)aragonite needles coming from selvages in the septa walls which radiate into the septa voids. Using an electron microprobe and SEM, concentrations of Na, S, Sr, and Mg were measured. No other trace elements were detected. Na, S, and Mg contents of the matrix, the fibrous micropores, and radiating needles are highly variable and well correlated. High concentrations of Na, S, and Mg were found in modern living corals with lower concentrations in fossil corals and fibrous micropores, and the lowest value in the radiating needles. The reason for the correlations of Na, S, and Mg and crystal chemistry and the response to diagenesis of these trace elements is not understood. The average concentrations of Na, S, and Mg for each sample, when plotted against the whole coral initial δ 234U, are generally correlated ( CHEN et al., 1991). As all these diagenetic changes involve the recrystallization and deposition of aragonite, we infer that the geologic site of diagenesis both for forming the secondary aragonitic phases and for the enhancement of the 234U content in the fossil corals was the marine environment. It is possible that the textural and Na, S, and Mg trace element contents of fossil corals be used to ascertain the reliability of fossil coral skeletons for U- 230Th dating. The basic problem of identifying a priori unaltered coral skeletons for 230Th dating is not yet resolved.
Miocene vertebrates and North Florida shorelines
Olsen, S.J.
1968-01-01
Vertebrate fossils from ten localities, spread across northern Florida, give evidence of shorelines and deltas that have previously been established on geologic evidence or invertebrates alone. Terrestrial mammal remains, in association with shallow-water forms, indicate a deltaic assemblage and in several instances specific animals suggest restricted water depths at the time of sediment deposition. Fortunately diagnostic fragments of Miocene horses, Merychippus and Parahippus, are present in these beds, allowing for a rather close age evaluation of these sediments. Adequate fossil material has been collected from these localities to suggest the past environment and ecological conditions for the forms represented. By utilizing a suggested course of experiments with stream table apparatus it is possible to use the orientation of the fossil vertebrate remains as aids in determining past conditions of sediment accumulation. ?? 1968.
Occurrence modes of As, Sb, Te, Bi, Ag in sulfide assemblages of gold deposits of the Urals
NASA Astrophysics Data System (ADS)
Vikent'eva, O.; Vikentev, I.
2016-04-01
Review of occurrence modes of trace toxic elements ("potential pollutants") in ores from large gold deposits (the Urals) of different genetic types is presented. Mineral forms of these elements as well as their presence in main minerals from gold-bearing sulfide assemblages according to SEM, EPMA, INAA, ICP-MS and LA-ICP-MS are demonstrated.
Vendrasco, Michael J.; Eernisse, Douglas J.; Powell, Charles L.; Fernandez, Christine Z.
2012-01-01
taphonomic factors bias valve ratios long after valves are disarticulated. New foraminiferan and molluscan data indicate a middle or late Pliocene age of deposition for these beds, between 3.3 to 2.5 million years ago (Ma), and possibly about 3.0 Ma.
O'Brien, Haley D; Faith, J Tyler; Jenkins, Kirsten E; Peppe, Daniel J; Plummer, Thomas W; Jacobs, Zenobia L; Li, Bo; Joannes-Boyau, Renaud; Price, Gilbert; Feng, Yue-Xing; Tryon, Christian A
2016-02-22
The fossil record provides tangible, historical evidence for the mode and operation of evolution across deep time. Striking patterns of convergence are some of the strongest examples of these operations, whereby, over time, similar environmental and/or behavioral pressures precipitate similarity in form and function between disparately related taxa. Here we present fossil evidence for an unexpected convergence between gregarious plant-eating mammals and dinosaurs. Recent excavations of Late Pleistocene deposits on Rusinga Island, Kenya, have uncovered a catastrophic assemblage of the wildebeest-like bovid Rusingoryx atopocranion. Previously known from fragmentary material, these new specimens reveal large, hollow, osseous nasal crests: a craniofacial novelty for mammals that is remarkably comparable to the nasal crests of lambeosaurine hadrosaur dinosaurs. Using adult and juvenile material from this assemblage, as well as computed tomographic imaging, we investigate this convergence from morphological, developmental, functional, and paleoenvironmental perspectives. Our detailed analyses reveal broad parallels between R. atopocranion and basal Lambeosaurinae, suggesting that osseous nasal crests may require a highly specific combination of ontogeny, evolution, and environmental pressures in order to develop. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Altermann, W.; Schopf, J. W.
1995-01-01
The oldest filament- and colonial coccoid-containing microbial fossil assemblage now known is described here from drill core samples of stromatolitic cherty limestones of the Neoarchean, approximately 2600-Ma-old Campbell Group (Ghaap Plateau Dolomite, Lime Acres Member) obtained at Lime Acres, northern Cape Province, South Africa. The assemblage is biologically diverse, including entophysalidacean (Eoentophysalis sp.), probable chroococcacean (unnamed colonial coccoids), and oscillatoriacean cyanobacteria (Eomycetopsis cf. filiformis, and Siphonophycus transvaalensis), as well as filamentous fossil bacteria (Archaeotrichion sp.); filamentous possible microfossils (unnamed hematitic filaments) also occur. The Campbell Group microorganisms contributed to the formation of stratiform and domical to columnar stromatolitic reefs in shallow subtidal to intertidal environments of the Transvaal intracratonic sea. Although only moderately to poorly preserved, they provide new evidence regarding the paleoenvironmental setting of the Campbell Group sediments, extend the known time-range of entophysalidacean cyanobacteria by more than 400 million years, substantiate the antiquity and role in stromatolite formation of Archean oscillatoriacean cyanobacteria, and document the exceedingly slow (hypobradytelic) evolutionary rate characteristic of this early evolving prokaryotic lineage.
Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.; Looy, C.V.; Ames, P.R.; DiMichele, W.A.
2009-01-01
The idea that the Pennsylvanian tropical lowlands were temporally dominated by rainforest (i.e., the Coal Forest) is deeply ingrained in the literature. Here we challenge two centuries of research by suggesting that this concept is based on a taphonomic artifact, and that seasonally dry vegetation dominated instead. This controversial finding arises from the discovery of a new middle Pennsylvanian (Moscovian) fossil plant assemblage in southeast Illinois, United States. The assemblage, which contains xerophytic walchian conifers, occurs in channels incised into a calcic Vertisol below the Baker Coal. These plants grew on seasonally dry tropical lowlands inferred to have developed during a glacial phase. This xerophytic flora differs markedly from that of the typical clubmoss-dominated Coal Forest developed during deglaciation events. Although preserved only very rarely, we argue that such xerophytic floras were temporally as dominant, and perhaps more dominant, than the iconic Coal Forests, which are overrepresented in the fossil record due to taphonomic megabias. These findings require the iconography of Pennsylvanian tropical lowlands to be redrawn. ?? 2009 Geological Society of America.
Buatois, L.A.; Mangano, M.G.; Maples, C.G.; Lanier, Wendy E.
1998-01-01
Tidal rhythmites of the Tonganoxie Sandstone Member (Stranger Formation, Douglas Group) at Buildex Quarry, eastern Kansas, contain a relatively diverse ichnofauna. The assemblage includes arthropod locomotion (Dendroidichnites irregulare, Diplichnites gouldi type A and B, Diplopodichnus biformis, Kouphichnium isp., Mirandaichnium famatinense, and Stiaria intermedia), resting (Tonganoxichnus buildexensis) and feeding traces (Stiallia pilosa, Tonganoxichnus ottawensis); grazing traces (Gordia indianaensis, Helminthoidichnites tenuis, Helminthopsis hieroglyphica); feeding structures (Circulichnis montanus, Treptichnus bifurcus, Treptichnus pollardi, irregular networks), fish traces (Undichna britannica, Undichna simplicitas), tetrapod trackways, and root traces. The taxonomy of some of these ichnotaxa is briefly reviewed and emended diagnoses for Gordia indianaensis and Helminthoidichnites tenuis are proposed. Additionally, the combined name Dendroidichnites irregulare is proposed for nested chevron trackways. Traces previously regarded as produced by isopods are reinterpreted as myriapod trackways (D. gouldi type B). Trackways formerly interpreted as limulid crawling and swimming traces are assigned herein to Kouphichnium isp and Dendroidichnites irregulare, respectively. Taphonomic analysis suggests that most grazing and feeding traces were formed before the arthropod trackways and resting traces. Grazing/feeding traces were formed in a soft, probably submerged substrate. Conversely, the majority of trackways and resting traces probably were produced subaerially in a firmer, dewatered and desiccated sediment. The Buildex Quarry ichnofauna records the activity of a terrestrial and freshwater biota. The presence of this assemblage in tidal rhythmites is consistent with deposition on tidal flats in the most proximal zone of the inner estuary, between the maximum landward limit of tidal currents and the salinity limit further towards the sea.
NASA Astrophysics Data System (ADS)
Nawrot, Rafal; Zuschin, Martin; Harzhauser, Mathias; Kroh, Andreas; Mandic, Oleg
2015-04-01
Species richness captured by historical fossil inventories is a complex function of true local diversity, degree of outcrop-scale heterogeneity in species composition and sampling intensity. Disentangling these factors is hindered by the fact that the 'systematists follow the fossils' (Raup, 1977) and thus non-uniform research effort may both drive apparent diversity patterns and follow the actual presence of highly fossiliferous strata. The molluscan fauna of Lapugiu de Sus (Hunedoara District, Romania) constitutes one of the most diverse Early Badenian (Langhian) assemblages of the Paratethys Sea, with almost one thousand species reported during 170 years of extensive studies. We evaluate whether this exceptional richness reflects the actual diversity hot spot or just a long history of fossil-collecting by comparing the fauna of Lapugiu with other Paratethyan molluscan lagerstätten of similar age. The literature-derived species lists for each section were contrasted with independent abundance data based on a standardized sampling protocol (42 samples, 24,000 specimens, and 530 species from six localities). Although individual samples from other localities can exhibit comparable diversity levels, richness estimates for samples from Lapugiu are all consistently high, reflecting increasing evenness in more offshore depositional settings. This translates to the highest diversity at the outcrop scale when all samples are pooled. In contrast to other localities, however, for which data from historical inventories corresponds well to our quantitative estimates of total richness, the number of species described from Lapugiu is much higher than expected. This excessive richness likely reflects the 'Bonanza Effect' (sensu Dunhill et al., 2012), where uniformly species-rich deposits were attracting intensive taxonomic studies. The strong positive feedback between palaeontological sampling effort and fossil diversity may thus greatly overestimate the true differences in species richness between the most diverse faunas and more typical, background, fossil assemblages. References Raup, D.M., 1977. Paleobiology, 3: 328-329. Dunhill, A.M. et al., 2012. Palaeontology, 55: 1155-1175.
Smith, Selena Y.; Collinson, Margaret E.; Rudall, Paula J.; Simpson, David A.; Marone, Federica; Stampanoni, Marco
2009-01-01
While more commonly applied in zoology, synchrotron radiation X-ray tomographic microscopy (SRXTM) is well-suited to nondestructive study of the morphology and anatomy of both fossil and modern plants. SRXTM uses hard X-rays and a monochromatic light source to provide high-resolution data with little beam-hardening, resulting in slice data with clear boundaries between materials. Anatomy is readily visualized, including various planes of section from a single specimen, as clear as in traditional histological sectioning at low magnifications. Thus, digital sectioning of rare or difficult material is possible. Differential X-ray attenuation allows visualization of different layers or chemistries to enable virtual 3-dimensional (3D) dissections of material. Virtual potential fossils can be visualized and digital tissue removal reveals cryptic underlying morphology. This is essential for fossil identification and for comparisons between assemblages where fossils are preserved by different means. SRXTM is a powerful approach for botanical studies using morphology and anatomy. The ability to gain search images in both 2D and 3D for potential fossils gives paleobotanists a tool—virtual taphonomy—to improve our understanding of plant evolution and paleobiogeography. PMID:19574457
NASA Astrophysics Data System (ADS)
Kustatscher, Evelyn; Bernardi, Massimo; Petti, Fabio Massimo; Franz, Matthias; van Konijnenburg-van Cittert, Johanna H. A.; Kerp, Hans
2017-01-01
The Lopingian is characterised by an aridisation trend and substantial sea-level changes. Hence, the fossil record of this time interval is strongly affected by ecological and taphonomic factors inherent to these long-term processes. Integrated sedimentological and palaeontological studies in the Bletterbach Gorge (Dolomites, N-Italy) allow discrimination between biological signals and preservational bias, shedding light on the effect of sea-level changes on the preservation potential of terrestrial associations of plant remains and tetrapod footprints. Flora A, composed of more humid elements with larger leaf/shoot fragments, appears close to a sea-level highstand and is interpreted as a (par-)autochthonous assemblage of an intrazonal riparian vegetation. Flora B, dominated by xerophytic elements documented by smaller fragments, corresponds to an allochthonous assemblage of an azonal vegetation preserved in floodplain fines of a progradational fluvial plain associated with a sea-level lowstand. The distribution of vertebrate footprints mirrors that of the plant-bearing horizons and their abundance and morphological diversity strongly increases in correspondence with marine transgressions. This could be related to a more diverse fauna (more complex food-web related to more humid conditions) or more favourable taphonomic conditions. However, the most diversified fauna, recorded during the early phases of the regressive phase, is in our interpretation best explained by the rapid burial of footprints due to the increasing energy. Our study provides an explanation for the change in distribution and preservation of plant and animal fossils in the Bletterbach section and shows how the fossil content of continental successions is deeply influenced by sea-level changes.
Estimating past precipitation and temperature from fossil ostracodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, A.J.; Forester, R.M.
1994-12-31
The fossil records of certain aquatic organisms provide a way of obtaining meaningful estimates of past temperature and precipitation. These estimates of past environmental conditions are derived from multivariate statistical methods that are in turn based on the modern biogeographic distributions and environmental tolerances of the biota of interest. These estimates are helpful in conducting slimate studies as part of the Yucca Mountain site characterization. Ostracodes are microscopic crustaceans that produce bivalved calcite shells which are easily fossilized in the sediments of the lakes and wetlands in which the animals lived. The modern biogeographic distribution and environmental conditions of livingmore » ostracodes are the basis for the interpretation of the past environmental conditions of the fossil ostracodes. The major assumption in this method of interpretation is that the environmental tolerances of ostracodes have not changed substantially over thousands of years. Two methods using these modern analogs to determine past environmental conditions are the modern analog method and the range method. The range method also considers the information provided by fossil ostracode assemblages that have no modern analog in today`s world.« less
EVALUATION OF SIGNIFICANT ANTHROPOGENIC SOURCES OF RADIATIVELY IMPORTANT TRACE GASES
The report is an initial evaluation of significant anthropogenic sources of radiatively important trace gases. missions of greenhouse gases from human activities--including fossil fuel combustion, industrial/agricultural activities, and transportation--contribute to the increasin...
Biogeographic distribution and metric dental variation of fossil and living orangutans (Pongo spp.).
Tshen, Lim Tze
2016-01-01
The genus Pongo has a relatively richer Quaternary fossil record than those of the African great apes. Fossil materials are patchy in terms of anatomical parts represented, limited almost exclusively to isolated teeth, jaw and bone fragments. Fossil evidence indicates that the genus Pongo had a broadly continuous distribution across the southern part of the Indomalayan biogeographic region, ranging in time from Early Pleistocene to Holocene: southern China (77 fossil sites), Vietnam (15), Laos (6), Cambodia (2), Thailand (4), Peninsular Malaysia (6), Sumatra (4), Borneo (6) and Java (4). Within this distribution range, there are major geographical gaps with no known orangutan fossils, notably central and southern Indochina, central and southern Thailand, eastern Peninsular Malaysia, northern and southern Sumatra, and Kalimantan. The geological time and place of origin of the genus remain unresolved. Fossil orangutan assemblages usually show greater extent of dental metrical variation than those of modern-day populations. Such variability shown in prehistoric populations has partially contributed to confusion regarding past taxonomic diversity and systematic relationships among extinct and living forms. To date, no fewer than 14 distinct taxa have been identified and named for Pleistocene orangutans. Clear cases suggestive of predation by prehistoric human are few in number, and limited to terminal Pleistocene-Early Holocene sites in Borneo and a Late Pleistocene site in Vietnam.
ANALOG: a program for estimating paleoclimate parameters using the method of modern analogs
Schweitzer, Peter N.
1994-01-01
Beginning in the 1970s with CLIMAP, paleoclimatologists have been trying to derive quantitative estimates of climatic parameters from the sedimentary record. In general the procedure is to observe the modern distribution of some component of surface sediment that depends on climate, find an empirical relationship between climate and the character of sediments, then extrapolate past climate by studying older sediments in the same way. Initially the empirical relationship between climate and components of the sediment was determined using a multiple regression technique (Imbrie and Kipp, 1971). In these studies sea-floor sediments were examined to determine the percentage of various species of planktonic foraminifera present in them. Supposing that the distribution of foraminiferal assemblages depended strongly on the extremes of annual sea-surface temperature (SST), the foraminiferal assemblages (refined through use of varimax factor analysis) were regressed against the average SST during the coolest and warmest months of the year. The result was a set of transfer functions, equations that could be used to estimate cool and warm SST from the faunal composition of a sediment sample. Assuming that the ecological preference of the species had remained constant throughout the last several hundred thousand years, these transfer functions could be used to estimate SSTs during much of the late Pleistocene. Hutson (1980) and Overpeck, Webb, and Prentice (1985) proposed an alternative approach to estimating paleoclimatic parameters. Their 'method of modern analogs' revolved not around the existence of a few climatically-sensitive faunal assemblages but rather on the expectation that similar climatic regimes should foster similar faunal and floral assemblages. From a large pool of modern samples, those few are selected whose faunal compositions are most similar to a given fossil sample. Paleoclimate estimates are derived using the climatic character of only the most similar modern samples, the modern analogs of the fossil sample. This report describes how to use the program ANALOG to carry out the method of modern analogs. It is assumed that the user has faunal census estimates of one or more fossil samples, and one or more sets of faunal data from modern samples. Furthermore, the user must understand the taxonomic categories represented in the data sets, and be able to recognize taxa that are or may be considered equivalent in the analysis. ANALOG provides the user with flexibility in input data format, output data content, and choice of distance measure, and allows the user to determine which taxa from each modern and fossil data file are compared. Most of the memory required by the program is allocated dynamically, so that, on systems that permit program segments to grow, the program consumes only as many system resources as are needed to accomplish its task.
NASA Astrophysics Data System (ADS)
Klompmaker, Adiël A.; Portell, Roger W.; van der Meij, Sancia E. T.
2016-03-01
Members of the Cryptochiridae are small, fragile, symbiotic crabs that live in domiciles in modern corals. Despite their worldwide occurrence with over 50 species known today, their fossil record is unknown. We provide the first unambiguous evidence of cryptochirids in the fossil record through their crescentic pits, typical for certain cryptochirids, in Western Atlantic fossil corals, while the Eocene genus Montemagrechirus is excluded from the Cryptochiridae and referred to Montemagrechiridae fam. nov. Nine Pleistocene corals with crescentic pits originate from Florida (USA), and single specimens with pits come from the late Pleistocene of Cuba and the late Pliocene of Florida, all of which are measured for growth analyses. These pits represent trace fossils named Galacticus duerri igen. nov., isp. nov. A study of modern cryptochirid domicile shape (crescentic pit, circular-oval pit, or a true gall) shows that species within crab genera tend to inhabit the same pit shape. Crescentic pits in corals occur not only in the Western Atlantic today, but also in the Indo-West Pacific and in the Eastern Pacific. Thus, examination of Cenozoic fossil coral collections from these regions should yield further examples of cryptochirid pits, which would help to constrain the antiquity of this cryptic crab family.
The ‘Goldilocks’ effect: preservation bias in vertebrate track assemblages
Falkingham, P. L.; Bates, K. T.; Margetts, L.; Manning, P. L.
2011-01-01
Finite-element analysis was used to investigate the extent of bias in the ichnological fossil record attributable to body mass. Virtual tracks were simulated for four dinosaur taxa of different sizes (Struthiomimus, Tyrannosaurus, Brachiosaurus and Edmontosaurus), in a range of substrate conditions. Outlines of autopodia were generated based upon osteology and published soft-tissue reconstructions. Loads were applied vertically to the feet equivalent to the weight of the animal, and distributed accordingly to fore- and hindlimbs where relevant. Ideal, semi-infinite elastic–plastic substrates displayed a ‘Goldilocks’ quality where only a narrow range of loads could produce tracks, given that small animals failed to indent the substrate, and larger animals would be unable to traverse the area without becoming mired. If a firm subsurface layer is assumed, a more complete assemblage is possible, though there is a strong bias towards larger, heavier animals. The depths of fossil tracks within an assemblage may indicate thicknesses of mechanically distinct substrate layers at the time of track formation, even when the lithified strata appear compositionally homogeneous. This work increases the effectiveness of using vertebrate tracks as palaeoenvironmental indicators in terms of inferring substrate conditions at the time of track formation. Additionally, simulated undertracks are examined, and it is shown that complex deformation beneath the foot may not be indicative of limb kinematics as has been previously interpreted, but instead ridges and undulations at the base of a track may be a function of sediment displacement vectors and pedal morphology. PMID:21233145
Springer, Kathleen; Pigati, Jeffery S.; Scott, Eric
2017-01-01
Tule Springs Fossil Beds National Monument (TUSK) preserves 22,650 acres of the upper Las Vegas Wash in the northern Las Vegas Valley (Nevada, USA). TUSK is home to extensive and stratigraphically complex groundwater discharge (GWD) deposits, called the Las Vegas Formation, which represent springs and desert wetlands that covered much of the valley during the late Quaternary. The GWD deposits record hydrologic changes that occurred here in a dynamic and temporally congruent response to abrupt climatic oscillations over the last ~300 ka (thousands of years). The deposits also entomb the Tule Springs Local Fauna (TSLF), one of the most significant late Pleistocene (Rancholabrean) vertebrate assemblages in the American Southwest. The TSLF is both prolific and diverse, and includes a large mammal assemblage dominated by Mammuthus columbi and Camelops hesternus. Two (and possibly three) distinct species of Equus, two species of Bison, Panthera atrox, Smilodon fatalis, Canis dirus, Megalonyx jeffersonii, and Nothrotheriops shastensis are also present, and newly recognized faunal components include micromammals, amphibians, snakes, and birds. Invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. This field compendium highlights the faunal assemblage in the classic stratigraphic sequences of the Las Vegas Formation within TUSK, emphasizes the significant hydrologic changes that occurred in the area during the recent geologic past, and examines the subsequent and repeated effect of rapid climate change on the local desert wetland ecosystem.
Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna.
Brayard, Arnaud; Krumenacker, L J; Botting, Joseph P; Jenks, James F; Bylund, Kevin G; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A; Thomazo, Christophe; Escarguel, Gilles
2017-02-01
In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.
Smith, J.J.; Hasiotis, S.T.
2008-01-01
This study documents the traces and burrowing behaviors of nymphs of the prairie cicada Cicadetta calliope (Hemiptera: Cicadidae), as observed in neoichnological experiments. Cicada nymphs were collected from the C horizons of sandy Fluvents along the Kansas River east of Lawrence, Kansas. The nymphs appeared to be fifth instars, 13-17 mm long and 6-7 mm wide. Nymphs were placed in plastic enclosures containing layers of colored, moist, very fine-grained sand. They burrowed immediately, excavating air-filled, sediment-enclosed cells between 20 mm and 40 mm long and averaging 9 mm wide. Burrowing was completed in three stages: (1) sediment in the forward portion of the cell was excavated and rolled into a ball with the forelimbs; (2) the nymph turned 180?? using a forward roll, and moved to the back of the cell; and (3) the sediment ball was pushed up against the back wall of the cell and kneaded with the forelimbs into a thin layer. Resulting burrow traces are sinuous and distinctly meniscate and demonstrate that insect larvae construct meniscate, backfilled burrows in well-drained terrestrial settings. Cicadetta calliope nymphs and their traces are excellent analogs for meniscate trace fossils commonly found in late Paleozoic-Cenozoic alluvial deposits and paleosols. Such meniscate trace fossils are useful for interpreting the paleoenvironment and paleohydrogeology of the units in which they are found. In addition, such backfilled burrows can be used to supplement the fossil record of cicada-like hemipterans, currently known only from the latest Permian to the Early Triassic. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).
Burial preservation of trace fossils as indicator of storm deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, A.J.
Positive semirelief epichnia (ridgelike trace fossils on the top surface of a bed) commonly represent burrow structures, perhaps originally supported by a mucoidal matrix, that have been infilled by sediment. The preservation of these structures, in addition to other trace fossils on a bed superface, suggests an instantaneous burial event and a minimum of concomitant erosion. This supposition can be verified by an absence of paucity of biogenic sedimentary structures accompanied by certain physical sedimentary structures (laminated shell hashes, graded bedding, fissile shales) in strata directly overlying bioturbated surfaces. The main process involved in this burial preservation (the rapid burialmore » of biogenic sedimentary structures with minimum erosion) are probably storm-generated in most instances. Sediments would be deposited primarily in the suspension mode, and mean storm wave base would be slightly above the sediment-water interface. This burial preservation model is most applicable to relatively small stratigraphic intervals (several centimeters or decimeters) representing deposition on an open-marine shelf. Positive semirelief epichnia, interpreted as burrow system infilling, from the Cincinnatian Series (Upper Ordovician) of Ohio and Indiana are used to illustrate these concepts.« less
Amber from western Amazonia reveals Neotropical diversity during the middle Miocene
Antoine, Pierre-Olivier; De Franceschi, Dario; Flynn, John J.; Nel, André; Baby, Patrice; Benammi, Mouloud; Calderón, Ysabel; Espurt, Nicolas; Goswami, Anjali; Salas-Gismondi, Rodolfo
2006-01-01
Tertiary insects and arachnids have been virtually unknown from the vast western Amazonian basin. We report here the discovery of amber from this region containing a diverse fossil arthropod fauna (13 hexapod families and 3 arachnid species) and abundant microfossil inclusions (pollen, spores, algae, and cyanophyceae). This unique fossil assemblage, recovered from middle Miocene deposits of northeastern Peru, greatly increases the known diversity of Cenozoic tropical–equatorial arthropods and microorganisms and provides insights into the biogeography and evolutionary history of modern Neotropical biota. It also strengthens evidence for the presence of more modern, high-diversity tropical rainforest ecosystems during the middle Miocene in western Amazonia. PMID:16950875
A Coprolite Mystery: Who Dung It?
ERIC Educational Resources Information Center
Clary, Renee; Wandersee, James
2011-01-01
Discover the secrets contained in fossilized feces. Few topics in middle school classrooms capture students' enthusiasm and interest as do coprolites. These trace fossils offer classroom opportunities for integrated life and Earth sciences study, a stranger-than-fiction history of science, and an opportunity to solve mysteries. (Contains 8…
NASA Astrophysics Data System (ADS)
Rigual-Hernández, Andrés.
2010-05-01
This study is presented in the context of the Spanish research project "The development of an Arctic ice stream-dominated sedimentary system: The southern Svalbard continental margin" (SVAIS), developed within the framework of the International Polar Year (IPY) Activity N. 367 (NICE STREAMS). Its main goal is to understand the evolution of glacial continental margins and their relationship with the changes in ice sheet dynamics induced by natural climatic changes, combining the geophysical data with the sediment record both collected during an oceanographic cruise in the Storfjorden area (SW Svalbard margin) in August 2007. This marine depositional system, dominated by an ice stream during the last glacial period, was selected due to its small size inducing a rapid response to climatic changes, and for the oceanographic relevance of the area for global ocean circulation. The results obtained aim to define the sedimentary architecture and morphology, and to provide more insight into the paleoceanographic and paleoclimatic evolution of the region. We specifically report on new micropaleontological and geochemical data obtained from the sediment cores. A preliminary age model indicates that the sediment sequences cover approximately the Last Deglaciation and the Holocene. Microfossils are generally well preserved, although the abundances of the different groups show marked shifts along the record. Low concentrations of coccolithophores, diatoms, planktic foraminifers and cysts of organic-walled dinoflagellates (dinocysts) are found at the lower half of the sequence (IRD-rich, coarser-grained sediments), and increase towards the Late Holocene (fine-grained bioturbated sediments). The Climatic Optimum is characterized by the warmest sea surface temperatures as estimated from the fossil assemblage, diverse transfer functions and biogeochemical proxies, and by high nutrient contents in the bottom waters shown by light carbon isotope values and high Cd/Ca ratios in benthic foraminifers. Dilution by terrigenous material, related to the retreat of the Barents Sea Ice Sheet in response to changes in the strength of the Atlantic-sourced, warm Western Spitsbergen Current, seems to be important in driving the abundances of microfossils and of organic compounds. The different stages of the Deglaciation and the Holocene and the associated modifications in the surface oceanic environment are documented by changes in the fossil assemblage composition of the different microfossil groups, while synchronous changes in the bottom water masses are registered by stable isotope and trace element analyses of benthic foraminifers.
Dakota sandstone facies, western Oklahoma panhandle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atalik, E.; Mansfield, C.F.
The Cretaceous Dakota Sandstone in Cimarron County comprised three sandstone units and intervening mudrocks; it overlies the Kiowa Shale Member of the Purgatoire Formation. Deposits include shoreface, beach (foreshore) and dune, estuarine and tidal channel, marine marginal bay and swamp/marsh in a generally progradational sequences associated with marine regression in the Western Interior. The shoreface sand, characterized by ripple lamination, bioturbation and the trace fossils Teichichnus and Thalassinoides, is fine-grained, 5-10 m (15-30 ft) thick and grades into the underlying Kiowa Shale. Beach and associated dune deposits are 2-5 m (6-16 ft) thick, medium to fine-grained, medium to thick-bedded, tabular-planarmore » cross-bedded, and lenticular; cross-bed paleocurrent headings are northeasterly and northwesterly. Estuarine channel deposits are 3-5 m (10 to 16 ft) thick, trough to tabular-planar cross-bedded, and medium to coarse-grained with local conglomerate overlying the scoured base which commonly cuts into the Kiowa Shale or overlying shoreface sandstone; rip-up clasts and wood pieces are common but trace fossils are rare; southeasterly and southwesterly paleocurrents predominate. Tidal channel deposits are thinner (up to 2 m of 6 ft) and finer grained (medium to fine-grained) that the estuarine channel deposits; they occur within fine-grained sandstone and mudrock sequences, are trough cross-bedded, and commonly contain trace fossils (e.g., Skolithos) and wood fragments. Marine marginal (tidal flat or bay.) deposits comprise fine-grained sandstone, siltstone and interbedded shale, that are 1-3m (3-10 ft) thick with abundant burrows, small ripple marks, and parallel lamination. These grade into the fine to very fine-grained sandstones, siltstones, shales, and coals of the swamp/marsh deposits that are 1-5m (3-16 ft) thick and contain ripple marks, burrows, other trace fossils, and parallel lamination.« less
NASA Astrophysics Data System (ADS)
Courty, M.-A.
2012-04-01
The rare occurrence of organic-rich surface horizons in soil archives is widely accepted to resulting from their rapid degradation. We intend here to further elucidate how pedogenic signatures that initially formed at the soil surface could resist over long timescales to burial processes. We focus on the structural evolution of the biogenic soil aggregates that is controlled by the complex interaction of bioturbation, root colonization, microbial decomposition, chemical weathering and physical processes. The nature and origin of carbonaceous components that could possibly contribute to the long term preservation of biogenic soil-aggregates is particularly examined. The study is based on the comparison of pedogenic aggregated microfacies from present-day situations and the ones encountered in soil archives from contrasting edaphic conditions: Arctic Holocene soils from Spitsbergen, hyper-arid soils from the Moche valley (Peru), Holocene semi-arid Mediterranean soils from Northern Syria, late Pleistocene paleosols from lake Mungo (South Wales Australia) and late Pleistocene paleosols from the Ardeche valley (France). The assemblage and composition of biogenic soil-aggregated horizons has been characterized under the binocular microscope and in thin sections. The basic components have been separated by water sieving. A typology of carbonaceous polymorphs and associated composite materials has been established under the binocular. They have been characterized by SEM-EDS, Raman spectrometry, X-ray diffraction and TEM. The comparative study shows that all the biogenic soil-aggregates from the soil archives contain a high amount of similar exotic components that contrast from the parent materials by their fresh aspect and their hydrophobic properties. This exotic assemblage comprises various types of aliphatic carbonaceous polymorphs (filaments, agglutinates, spherules) and aromatic ones (vitrous char, graphite), carbon cenospheres, fine grained sandstones and rock clasts which are all finely imbricated with phosphides, phosphates, sulphides, sulphates and native metals (Fe-Cr-Ni and Fe-Cr alloys, Ni, Al, Cu, Zn, Pb, As, Sn, Ag, Au, Bi). The 3D observations show that the carbonaceous filaments play a major role in the cohesion of the fine fraction. The carbonaceous components only start to decompose under HF attack and from 400°C heating. They do not display evidence of microbial degradation. The biogenic aggregates with high amount of carbonaceous polymorphs appear to have resisted to cryoturbation and to hard setting under water saturation. Biogenic micro-aggregates from present-day top soils only contain rare exotic components. In contrast to the ones of the soil archives, they display highly variable structural stability depending upon local edaphic conditions. The exotic assemblage of the stable biogenic micro-aggregates from the soil archives is shown to be similar to the range of terrestrial aerosols that are associated to meteor explosion (Courty et al., this volume). This suggests that the fossilized organic-rich surface horizons in soil archives would trace singular situations possibly marked by recurrent meteor explosion with high stratospheric aerosol production. Mechanisms explaining how the dual stratospheric/cosmic processes formed resistant carbon species from fossil combustible precursors yet remain to be investigated. Courty, Benoît and Vaillant (2012). Possible interaction of meteor explosion with stratospheric aerosols on cloud nucleation based on 2011 observations. Geophysical Research Abstracts Vol. 14, EGU2012.
Influences of travertine dam formation on leaf litter decomposition and algal accrual
Codey D. Carter; Jane C. Marks
2007-01-01
At the time of this study Fossil Creek was being considered as a site for the restoration of a native fish assemblage, however there was concern amongst fisheries managers about the stream being food limited due to calcium carbonate (travertine) deposition. To evaluate the effects of travertine deposition on the aquatic food base we used leaf litterbags to compare...
Carrillo, Juan D.; Forasiepi, Analía; Jaramillo, Carlos; Sánchez-Villagra, Marcelo R.
2015-01-01
The vast mammal diversity of the Neotropics is the result of a long evolutionary history. During most of the Cenozoic, South America was an island continent with an endemic mammalian fauna. This isolation ceased during the late Neogene after the formation of the Isthmus of Panama, resulting in an event known as the Great American Biotic Interchange (GABI). In this study, we investigate biogeographic patterns in South America, just before or when the first immigrants are recorded and we review the temporal and geographical distribution of fossil mammals during the GABI. We performed a dissimilarity analysis which grouped the faunal assemblages according to their age and their geographic distribution. Our data support the differentiation between tropical and temperate assemblages in South America during the middle and late Miocene. The GABI begins during the late Miocene (~10–7 Ma) and the putative oldest migrations are recorded in the temperate region, where the number of GABI participants rapidly increases after ~5 Ma and this trend continues during the Pleistocene. A sampling bias toward higher latitudes and younger records challenges the study of the temporal and geographic patterns of the GABI. PMID:25601879
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Cortese, G.; Yu, P.-S.; Chen, M.-T.; Kucera, M.
2017-08-01
Radiolarians are a very diverse microzooplanktonic group, often distributed in regionally restricted assemblages and responding to specific environmental factors. These properties of radiolarian assemblages make the group more conducive for the development and application of basin-wide ecological models. Here we use a new surface sediment data set from the western Pacific to demonstrate that ecological patterns derived from basin-wide open-ocean data sets cannot be transferred on semirestricted marginal seas. The data set consists of 160 surface sediment samples from three tropical-subtropical regions (East China Sea, South China Sea, and western Pacific), combining 54 new assemblage counts with taxonomically harmonized data from previous studies. Multivariate statistical analyses indicate that winter sea surface temperature at 10 m depth (SSTw) was the most significant environmental variable affecting the composition of radiolarian assemblages, allowing the development of an optimal calibration model (Locally Weighted-Weighted Averaging regression inverse deshrinking, R2cv = 0.88, root-mean-square error of prediction = 1.6°C). The dominant effect of SSTw on radiolarian assemblage composition in the western Pacific is attributed to the East Asian Winter Monsoon (EAWM), which is particularly strong in the marginal seas. To test the applicability of the calibration model on fossil radiolarian assemblages from the marginal seas, the calibration model was applied to two downcore records from the Okinawa Trough, covering the last 18 ka. We observe that these assemblages find most appropriate analogs among modern samples from the marginal basins (East China Sea and South China Sea). Downcore temperature reconstructions at both sites show similarities to known regional SST reconstructions, providing proof of concept for the new radiolarian-based SSTw calibration model.
A mitochondrial genome sequence of a hominin from Sima de los Huesos.
Meyer, Matthias; Fu, Qiaomei; Aximu-Petri, Ayinuer; Glocke, Isabelle; Nickel, Birgit; Arsuaga, Juan-Luis; Martínez, Ignacio; Gracia, Ana; de Castro, José María Bermúdez; Carbonell, Eudald; Pääbo, Svante
2014-01-16
Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene. One of these sites, the 'Sima de los Huesos' ('pit of bones'), has yielded the world's largest assemblage of Middle Pleistocene hominin fossils, consisting of at least 28 individuals dated to over 300,000 years ago. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.
Extreme adaptations for probable visual courtship behaviour in a Cretaceous dancing damselfly.
Zheng, Daran; Nel, André; Jarzembowski, Edmund A; Chang, Su-Chin; Zhang, Haichun; Xia, Fangyuan; Liu, Haoying; Wang, Bo
2017-03-20
Courtship behaviours, frequent among modern insects, have left extremely rare fossil traces. None are known previously for fossil odonatans. Fossil traces of such behaviours are better known among the vertebrates, e.g. the hypertelic antlers of the Pleistocene giant deer Megaloceros giganteus. Here we describe spectacular extremely expanded, pod-like tibiae in males of a platycnemidid damselfly from mid-Cretaceous Burmese amber. Such structures in modern damselflies, help to fend off other suitors as well as attract mating females, increasing the chances of successful mating. Modern Platycnemidinae and Chlorocyphidae convergently acquired similar but less developed structures. The new findings provide suggestive evidence of damselfly courtship behaviour as far back as the mid-Cretaceous. These data show an unexpected morphological disparity in dancing damselfly leg structure, and shed new light on mechanisms of sexual selection involving intra- and intersex reproductive competition during the Cretaceous.
Relationship between 'live' and dead benthic foraminiferal assemblages in the abyssal NE Atlantic
NASA Astrophysics Data System (ADS)
Stefanoudis, Paris V.; Bett, Brian J.; Gooday, Andrew J.
2017-03-01
Dead foraminiferal assemblages within the sediment mixed layer provide an integrated, time-averaged view of the foraminiferal fauna, while the relationship between dead and live assemblages reflects the population dynamics of different species together with taphonomic processes operating over the last few hundred years. Here, we analysed four samples for 'live' (Rose-Bengal-stained) and dead benthic foraminifera (0-1 cm sediment layer, >150 μm) from four sites in the area of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO; NE Atlantic, 4850 m water depth). Two sites were located on abyssal hills and two on the adjacent abyssal plain. Our results indicate that the transition from live to dead benthic foraminiferal assemblages involved a dramatic loss of delicate agglutinated and organic-walled tests (e.g. Lagenammina, Nodellum, Reophax) with poor preservation potential, and to a lesser extent that of some relatively fragile calcareous tests (mostly miliolids), possibly a result of dissolution. Other processes, such as the transport of tests by bottom currents and predation, are unlikely to have substantially altered the composition of dead faunas. Positive live to dead ratios suggest that some species (notably Epistominella exigua and Bolivina spathulata) may have responded to recent phytodetritus input. Although the composition of live assemblages seemed to be influenced by seafloor topography (abyssal hills vs. plain), no such relation was found for dead assemblages. We suggest that PAP-SO fossil assemblages are likely to be comparable across topographically contrasting sites, and dominated by calcareous and some robust agglutinated forms with calcitic cement (e.g. Eggerella).
NASA Astrophysics Data System (ADS)
Schneider, Simon; Jager, Manfred; Kroh, Andreas; Mitterer, Agnes; Niebuhr, Birgit; Vodrazka, Radek; Wilmsen, Markus; Wood, Christopher J.; Zagorsk, Kamil
2013-12-01
Schneider, S., Jager, M., Kroh, A., Mitterer, A., Niebuhr, B., Vodražka, R., Wilmsen, M., Wood, C.J. and Zagoršek, K. 2013. Silicified sea life - Macrofauna and palaeoecology of the Neuburg Kieselerde Member (Cenomanian to Lower Turonian Wellheim Formation, Bavaria, southern Germany). Acta Geologica Polonica, 63
NASA Astrophysics Data System (ADS)
Stimpson, Christopher M.; Lister, Adrian; Parton, Ash; Clark-Balzan, Laine; Breeze, Paul S.; Drake, Nick A.; Groucutt, Huw S.; Jennings, Richard; Scerri, Eleanor M. L.; White, Tom S.; Zahir, Muhammad; Duval, Mathieu; Grün, Rainer; Al-Omari, Abdulaziz; Al Murayyi, Khalid Sultan M.; Zalmout, Iyaed S.; Mufarreh, Yahya A.; Memesh, Abdullah M.; Petraglia, Michael D.
2016-07-01
The current paucity of Pleistocene vertebrate records from the Arabian Peninsula - a landmass of over 3 million km2 - is a significant gap in our knowledge of the Quaternary. Such data are critical lines of contextual evidence for considering animal and hominin dispersals between Africa and Eurasia generally, and hominin palaeoecology in the Pleistocene landscapes of the Arabian interior specifically. Here, we describe an important contribution to the record and report stratigraphically-constrained fossils of mammals, birds and reptiles from recent excavations at Ti's al Ghadah in the southwestern Nefud Desert. Combined U-series and ESR analyses of Oryx sp. teeth indicate that the assemblage is Middle Pleistocene in age and dates to ca. 500 ka. The identified fauna is a biogeographical admixture that consists of likely endemics and taxa of African and Eurasian affinity and includes extinct and extant (or related Pleistocene forms of) mammals (Palaeoloxodon cf. recki, Panthera cf. gombaszogenis, Equus hemionus, cf. Crocuta crocuta, Vulpes sp., Canis anthus, Oryx sp.), the first Pleistocene records of birds from the Arabian Peninsula (Struthio sp., Neophron percnopterus, Milvus cf. migrans, Tachybaptus sp. Anas sp., Pterocles orientalis, Motacilla cf. alba) and reptiles (Varanidae/Uromastyx sp.). We infer that the assemblage reflects mortality in populations of herbivorous animals and their predators and scavengers that were attracted to freshwater and plant resources in the inter-dune basin. At present, there is no evidence to suggest hominin agency in the accumulation of the bone assemblages. The inferred ecological characteristics of the taxa recovered indicate the presence, at least periodically, of substantial water-bodies and open grassland habitats.
Hyžný, Matúš; Šimo, Vladimír; Starek, Dušan
2015-01-01
Numerous trace fossils are described from the Late Miocene sediments of the Bzenec Formation exposed at the Gbely section (the Vienna Basin, Slovakia). During deposition of the sediments the area was part of the large, long-lived brackish to freshwater Lake Pannon. Most of the trace fossils are attributed herein to Egbellichnus jordidegiberti igen et ispec. nov. and are interpreted as burrows produced by decapod crustaceans, specifically by a ghost shrimp of the family Callianassidae. This interpretation is based on two independent lines of evidence: environmental requirements of large bioturbators and the burrow morphology itself. The new ichnotaxon is distinguished from other related ichnotaxa by a combination of typically inclined (roughly at an angle of 45°) cylindrical burrows, absence of lining, and tunnels making loops or bends at approximately right angles. The burrow systems at Gbely document the survival of ghost shrimp long after the closure of all seaways and the origin of Lake Pannon. As today, no ghost shrimp are known from long-lived brackish lakes. Egbellichnus from Gbely is the only, although indirect, record of ghost shrimp from a brackish lake environment reported so far. PMID:26089575
NASA Astrophysics Data System (ADS)
Roslim, Amajida; Briguglio, Antonino; Kocsis, László; Ćorić, Stjepan; Razak, Hazirah
2016-04-01
The geology of Brunei Darussalam is fascinating but difficult to approach: rainforests and heavy precipitation tend to erode and smoothen the landscape limiting rocks exposure, whereas abundant constructions sites and active quarries allow the creation of short time available outcrop, which have to be immediately sampled. The stratigraphy of Brunei Darussalam comprises mainly Neogene sediments deposited in a wave to tide dominated shallow marine environment in a pure siliciclastic system. Thick and heavily bioturbated sandstone layers alternate to claystone beds which occasionally yield an extraordinary abundance and diversity of fossils. The sandstones, when not bioturbated, are commonly characterized by a large variety of sedimentary structures (e.g., ripple marks, planar laminations and cross beddings). In this study, we investigate the sediments and the fossil assemblages to record the palaeoenvironmental evolution of the shallow marine environment during the late Miocene, in terms of sea level change, chemostratigraphy and sedimentation rate. The study area is one of the best in terms of accessibility, extension, abundance and preservation of fossils; it is located in the region -'Bukit Ambug' (Ambug Hill), Tutong District. The fossils fauna collected encompasses mollusks, decapods, otoliths, shark and ray teeth, amber, foraminifera and coccolithophorids. In this investigation, sediment samples were taken along a section which measures 62.5 meters. A thick clay layer of 9 meters was sampled each 30 cm to investigate microfossils occurrences. Each sample was treated in peroxide and then sieved trough 63 μm, 150μm, 250μm, 450μm, 600μm, 1mm and 2mm sieves. Results point on the changes in biodiversity of foraminifera along the different horizons collected reflecting sea level changes and sediment production. The most abundant taxa identified are Pseoudorotalia schroeteriana, Ampistegina lessonii, Elphidium advenum, Quinqueloculina sp., Bolivina sp., Globigerina sp. Coccolithophorids assemblage recovered from one horizon dates the sediment to the biozone NN11a due to the presence of Discoaster berggrenii and D. quinqueramus, which are both also warm water indicators. The absence of Amaurolithus primus reduces the stratigraphic range to the uppermost Tortonian only (˜7.5-8 Ma).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, B.
A unique assemblage of silicified invertebrate and algal fresh-water lake fossils has been discovered in the Scots Bay Formation at the top of the Triassic-Jurassic Fundy Group of the Fundy Basin in Nova Scotia. This is important because the basins of the eastern North American Triassic-Jurassic rift system have not yielded many invertebrate and algal fossils. These new finds will contribute significantly to evolutionary, paleoecological and biostratigraphic studies of fresh-water Mesozoic deposits. Silicified fossils have been extracted from chert-bearing, mixed carbonate and siliciclastic lithologies. They include ostracodes, gastropods, rare bivalves, charaphytes (algae), stromatolites, and chert nodules cored with well-preserved woodymore » tissues of tree trunks. Possible algal filaments occur in the silicified stromatolites. This association of charaphytes, ostracodes, microscopic gastropods and stromatolites is found in carbonate lakes today. The Scots Bay Formation is probably a near-shore carbonate facies of the more widespread silicilastic lacustrine McCoy Brook Formation. The gastropods and ostracodes, studied by SEM, indicate a Jurassic age for the Scots bay Formation, confirming speculations based on other data.« less
High richness of insect herbivory from the early Miocene Hindon Maar crater, Otago, New Zealand
Lee, Daphne E.; Wappler, Torsten
2017-01-01
Plants and insects are key components of terrestrial ecosystems and insect herbivory is the most important type of interaction in these ecosystems. This study presents the first analysis of associations between plants and insects for the early Miocene Hindon Maar fossil lagerstätte, Otago, New Zealand. A total of 584 fossil angiosperm leaves representing 24 morphotypes were examined to determine the presence or absence of insect damage types. Of these leaves, 73% show signs of insect damage; they comprise 821 occurrences of damage from 87 damage types representing all eight functional feeding groups. In comparison to other fossil localities, the Hindon leaves display a high abundance of insect damage and a high diversity of damage types. Leaves of Nothofagus(southern beech), the dominant angiosperm in the fossil assemblage, exhibit a similar leaf damage pattern to leaves from the nearby mid to late Miocene Dunedin Volcano Group sites but display a more diverse spectrum and much higher percentage of herbivory damage than a comparable dataset of leaves from Palaeocene and Eocene sites in the Antarctic Peninsula. PMID:28224051
Footprints reveal direct evidence of group behavior and locomotion in Homo erectus
Hatala, Kevin G.; Roach, Neil T.; Ostrofsky, Kelly R.; Wunderlich, Roshna E.; Dingwall, Heather L.; Villmoare, Brian A.; Green, David J.; Harris, John W. K.; Braun, David R.; Richmond, Brian G.
2016-01-01
Bipedalism is a defining feature of the human lineage. Despite evidence that walking on two feet dates back 6–7 Ma, reconstructing hominin gait evolution is complicated by a sparse fossil record and challenges in inferring biomechanical patterns from isolated and fragmentary bones. Similarly, patterns of social behavior that distinguish modern humans from other living primates likely played significant roles in our evolution, but it is exceedingly difficult to understand the social behaviors of fossil hominins directly from fossil data. Footprints preserve direct records of gait biomechanics and behavior but they have been rare in the early human fossil record. Here we present analyses of an unprecedented discovery of 1.5-million-year-old footprint assemblages, produced by 20+ Homo erectus individuals. These footprints provide the oldest direct evidence for modern human-like weight transfer and confirm the presence of an energy-saving longitudinally arched foot in H. erectus. Further, print size analyses suggest that these H. erectus individuals lived and moved in cooperative multi-male groups, offering direct evidence consistent with human-like social behaviors in H. erectus. PMID:27403790
Gómez E, Catalina; Buitrón S, Blanca; Vachard, Daniel
2010-03-01
Gastropods are an important component in most of the fossil record; however, investigations have focused mainly on the characterization of the tafofacies and signatures in determined environments. We present qualitative and quantitative taphonomic data for the gastropod cf. Donaldina robusta assemblages from the La Joya Formation of the Sierra Agua Verde, Sonora State, (NW) Mexico. We analyzed 176 shells. Good preservation received ahigh taphonomic grade (A) and poor preservation a D. The shells were complete in 72% of cases (taphonomic grade B). Less than 10% are corroded or are parallel to the layer (grade A). This rock is petrographycally classified as wackestone, sedimentologically it is characterized by middle sorting (grade B) and low grading (grade A). The fossiliferous assemblage grades as A and B. Biostratinomic features of the skeletal assemblage are characteristic of sedimentologic concentrations of autochthonous-parautochthonous elements at the accumulation site. There was minimal reworking and transport in an environment of low energy, locally produced during a short period of accumulation.
The late Miocene elasmobranch assemblage from Cerro Colorado (Pisco Formation, Peru)
NASA Astrophysics Data System (ADS)
Landini, Walter; Altamirano-Sierra, Alì; Collareta, Alberto; Di Celma, Claudio; Urbina, Mario; Bianucci, Giovanni
2017-01-01
The new late Miocene elasmobranch assemblage from Cerro Colorado (Pisco Formation) described herein provides a first comprehensive view on the composition and structure of this community in the Pisco Basin (Peru), one of the most important Neogene Konservat-Lagerstätten of the world. The studied assemblage includes at least 21 species attributed to 10 families and 5 orders: 7 taxa are recorded for the first time in the Pisco Formation and 3 for the first time in the fossil record of Peru. Three shark-tooth bearing intervals have been recognized at Cerro Colorado. Changes in the taxonomic composition of these three fossiliferous deposits allowed us to reconstruct ecological, trophic and environmental dynamics over the stratigraphic succession of Cerro Colorado. In particular, the environmental scenario of the most diversified shark tooth-bearing interval (ST-low1) is consistent with a shallow marine coastal area, influenced by both brackish and open sea waters, dominated by a community of small mesopredator sharks that used this ecospace as reproductive ground (nursery) and recruitment area.
NASA Astrophysics Data System (ADS)
Schopf, J. William; Kitajima, Kouki; Spicuzza, Michael J.; Kudryavtsev, Anatoliy B.; Valley, John W.
2018-01-01
Analyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ˜3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δ13C compositions to vary systematically taxon to taxon from ‑31‰ to ‑39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δ13C values of each of the five taxa are lower than those of bulk samples of Apex kerogen (‑27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (‑27.6‰), and those typical of modern prokaryotic phototrophs (‑25 ± 10‰). The SIMS data for the two highest δ13C Apex taxa are consistent with those of extant phototrophic bacteria; those for a somewhat lower δ13C taxon, with nonbacterial methane-producing Archaea; and those for the two lowest δ13C taxa, with methane-metabolizing γ-proteobacteria. Although the existence of both methanogens and methanotrophs has been inferred from bulk analyses of the carbon isotopic compositions of pre-2,500 Ma kerogens, these in situ SIMS analyses of individual microfossils present data interpretable as evidencing the cellular preservation of such microorganisms and are consistent with the near-basal position of the Archaea in rRNA phylogenies.
Schopf, J William; Kitajima, Kouki; Spicuzza, Michael J; Kudryavtsev, Anatoliy B; Valley, John W
2018-01-02
Analyses by secondary ion mass spectroscopy (SIMS) of 11 specimens of five taxa of prokaryotic filamentous kerogenous cellular microfossils permineralized in a petrographic thin section of the ∼3,465 Ma Apex chert of northwestern Western Australia, prepared from the same rock sample from which this earliest known assemblage of cellular fossils was described more than two decades ago, show their δ 13 C compositions to vary systematically taxon to taxon from -31‰ to -39‰. These morphospecies-correlated carbon isotope compositions confirm the biogenicity of the Apex fossils and validate their morphology-based taxonomic assignments. Perhaps most significantly, the δ 13 C values of each of the five taxa are lower than those of bulk samples of Apex kerogen (-27‰), those of SIMS-measured fossil-associated dispersed particulate kerogen (-27.6‰), and those typical of modern prokaryotic phototrophs (-25 ± 10‰). The SIMS data for the two highest δ 13 C Apex taxa are consistent with those of extant phototrophic bacteria; those for a somewhat lower δ 13 C taxon, with nonbacterial methane-producing Archaea; and those for the two lowest δ 13 C taxa, with methane-metabolizing γ-proteobacteria. Although the existence of both methanogens and methanotrophs has been inferred from bulk analyses of the carbon isotopic compositions of pre-2,500 Ma kerogens, these in situ SIMS analyses of individual microfossils present data interpretable as evidencing the cellular preservation of such microorganisms and are consistent with the near-basal position of the Archaea in rRNA phylogenies.
Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.
2013-01-01
We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.
Fassett, J.E.
2009-01-01
Dinosaur fossils are present in the Paleocene Ojo Alamo Sandstone and Animas Formation in the San Juan Basin, New Mexico, and Colorado. Evidence for the Paleo-cene age of the Ojo Alamo Sandstone includes palynologic and paleomagnetic data. Palynologic data indicate that the entire Ojo Alamo Sandstone, including the lower dinosaur-bearing part, is Paleocene in age. All of the palynomorph-productive rock samples collected from the Ojo Alamo Sandstone at multiple localities lacked Creta-ceous index palynomorphs (except for rare, reworked specimens) and produced Paleocene index palynomorphs. Paleocene palynomorphs have been identified strati-graphically below dinosaur fossils at two separate localities in the Ojo Alamo Sand-stone in the central and southern parts of the basin. The Animas Formation in the Colorado part of the basin also contains dinosaur fossils, and its Paleocene age has been established based on fossil leaves and palynology. Magnetostratigraphy provides independent evidence for the Paleocene age of the Ojo Alamo Sandstone and its dinosaur-bearing beds. Normal-polarity magnetochron C29n (early Paleocene) has been identified in the Ojo Alamo Sandstone at six localities in the southern part of the San Juan Basin. An assemblage of 34 skeletal elements from a single hadrosaur, found in the Ojo Alamo Sandstone in the southern San Juan Basin, provided conclusive evidence that this assemblage could not have been reworked from underlying Cretaceous strata. In addition, geochemical studies of 15 vertebrate bones from the Paleocene Ojo Alamo Sandstone and 15 bone samples from the underlying Kirtland Formation of Late Creta-ceous (Campanian) age show that each sample suite contained distinctly different abundances of uranium and rare-earth elements, indicating that the bones were miner-alized in place soon after burial, and that none of the Paleocene dinosaur bones ana-lyzed had been reworked. ?? U.S. Geological Survey, Public Domain April 2009.
Magnetic resonance spectroscopy and imaging for the study of fossils.
Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A
2016-07-01
Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Drill Holes and Predation Traces versus Abrasion-Induced Artifacts Revealed by Tumbling Experiments
Gorzelak, Przemysław; Salamon, Mariusz A.; Trzęsiok, Dawid; Niedźwiedzki, Robert
2013-01-01
Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces. PMID:23505530
Palaeoclimate reconstruction within the upper Eocene in central Germany using fossil plants
NASA Astrophysics Data System (ADS)
Moraweck, Karolin; Kunzmann, Lutz; Uhl, Dieter; Kleber, Arno
2013-04-01
The Eocene has been commonly called "The world`s last greenhouse period" covering the Paleocene-Eocene Thermal Maximum (PETM) as well as the Eocene-Oligocene turnover. In the mid-latitudes of Europe this turnover was characterized by pronounced climatic changes from subtropical towards temperate conditions that were accompanied by significant vegetational changes on land. Fossil plants are regarded as excellent palaeoenvironmental proxies, because leaf physiognomy often reflects climate conditions. The study site, the Paleogene Weißelster basin in central Germany, including fluvial, estuarine and lacustrine deposits, provides several excellently preserved megafloras for reconstructions of terrestrial palaeoclimate. For our case study we used material from different stratigraphic horizons within the late Eocene Zeitz megafloral assemblage recovered from the open-cast mines of Profen and Schleenhain. These horizons cover a time interval of ca. 3 Ma. The Zeitz megafloral assemblage ("Florenkomplex") was characterized by mainly evergreen, notophyllous vegetation, consisting of warm-temperate to subtropical elements. Tropical species are present but very rare. To infer the regional climatic conditions and putative climate changes from these fossil plants we compare proxy data obtained by the application of standard methods for quantitative reconstruction of palaeoclimate data: the coexistence approach (CA), leaf margin analysis (LMA) and Climate Leaf Analysis Multivariate Program (CLAMP).Before the CA was applied to the material the list of putative nearest living relative species (NLR) was carefully revisited and partly revised. In case of the LMA approach information of so-called "silent taxa" (fossil species preserved by diaspores, leaf margin state is inferred from NLR data) were partly included in the data set. The four floras from the Zeitz megafloral assemblage show slightly different floral compositions caused by various taphonomic processes. An aim of the investigations was to test whether these differences lead to differences in calculated mean annual temperatures (MAT) or not. The MAT, calculated by LMA for the four sites, remarkably differ in dependency on the incorporation of "silent taxa" whenever present. MAT based on leaf remains only is often higher, because of the overrepresentation of laurophyllous entire-margined leaves in the respective taphocoenoses. Inclusion of "silent taxa" that often represents species with un-toothed leaves significantly decreases calculated MAT. It is expected that CLAMP and CA will render more reliable results, which will be part of the discussion. The contribution will also focus on problems in the use of leaf physiognomy as palaeoclimatic proxies and on the comparison of results obtained from a single plant taphocoenosis using different methods for quantitative reconstructions of MAT.
Protolith relations of the Gravina belt and Yukon-Tanana terrane in central southeastern Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClelland, W.C.; Gehrels, G.E.; Patchett, P.J.
1992-01-01
Metamorphic rocks west of the Coast Mountains batholith in central southeastern Alaska are divided into the Gravina belt, Taku terrane, and newly defined Ruth assemblage. The Ruth assemblage comprises metapelite, quartzose metaclastic strata, quartzite, marble, felsic metatuff, mafic metavolcanic rocks, and orthogneiss. Depositional and emplacement ages of 367 {plus minus} 10 Ma and 345 {plus minus} 13 Ma inferred from discordant U/Pb zircon analyses on felsic metatuff and granodioritic orthogneiss, respectively, require that at least portions of the Ruth assemblage be Late Devonian and early Mississippian in age. The assemblage is similar in age and protolith to, and thus correlatedmore » with, the Yukon-Tanana terrane. The Gravina belt is characterized by upper Jurassic and lower Cretaceous mafic volcanic rocks and tuffaceous turbiditic clastic strata that unconformably overlie the Alexander terrane. Metamorphic rocks that structurally underlie the Taku terrane and Rugh assemblage are included in this assemblage. Trace element geochemistry and the abundance of pyroclastic flows associated with tuffaceous turbidites suggest that the Gravina belt evolved in an intra-arc basinal setting. In central southeastern Alaska, the mid-Cretaceous structure that currently separates the Ruth assemblage (Yukon-Tanana correlative) from the Gravina belt marks the fundamental boundary between the Alexander-Wrangellia terrane and inboard Yukon-Tanana and Stikine terranes.« less
Derivatives of Black Knight Technology
NASA Astrophysics Data System (ADS)
Hill, N.; Wright, D.
This paper traces the line of descent from Black Knight to Black Arrow, and at the same time looks at various proposed projects, both civil and military, which were to be Black Knight derivatives, but which for one reason or another never saw the light of day. Research in this area is rather akin to anthropological work, tracing fossils from Homo erectus (Black Knight) to Homo sapiens (Black Arrow), knowing that a lot of the fossils found will not be on the direct line of descent, but represent branches that became extinct. This article attempts to cover designs, which, although they never made it to hardware, are none the less interesting technically, or shine light on the evolution of design philosophy.
Koenig, A.E.; Rogers, R.R.; Trueman, C.N.
2009-01-01
Elemental maps generated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) provide a previously unavailable high-resolution visualization of the complex physicochemical conditions operating within individual bones during the early stages of diagenesis and fossilization. A selection of LA-ICP-MS maps of bones collected from the Late Cretaceous of Montana (United States) and Madagascar graphically illustrate diverse paths to recrystallization, and reveal unique insights into geochemical aspects of taphonomic history. Some bones show distinct gradients in concentrations of rare earth elements and uranium, with highest concentrations at external bone margins. Others exhibit more intricate patterns of trace element uptake related to bone histology and its control on the flow paths of pore waters. Patterns of element uptake as revealed by LA-ICP-MS maps can be used to guide sampling strategies, and call into question previous studies that hinge upon localized bulk samples of fossilized bone tissue. LA-ICP-MS maps also allow for comparison of recrystallization rates among fossil bones, and afford a novel approach to identifying bones or regions of bones potentially suitable for extracting intact biogeochemical signals. ?? 2009 Geological Society of America.
Microanalysis of vitrous char and associated polymers: reference and ancient assemblages
NASA Astrophysics Data System (ADS)
Allue, E.; Bonnamy, S.; Courty, M. M.; Gispert I Guirado, F.
2012-12-01
Formation of vitrous char that occur in ancient charcoal assemblages have remained unsolved. Laboratory experiments refuted vitrification to resulting from high temperature charring of green or resinous wood. This puzzling problem has been refreshed by showing the association to the charcoal and vitrous char of plastics that were originally supposed to only be produced by petroleum industry. Extraction of similar polymers within geological glassy products from cosmic airbursts has suggested impact processes to possibly forming the carbonaceous polymorphs. The pulverisation at the ground in the Angles village (French Eastern Pyrenees) following the 2011 August 2nd high altitude meteor explosion of exotic debris with vitrous char and polymers, just alike the puzzling ones of the geological and archaeological records, has provided potential reference materials. We present here their microanalysis by Environmental SEM with EDS, Raman micro-spectrometry and FTIR, XRD, TEM, ICP-MS and isotope analyses. The characterization helps elucidating how the carbonaceous polymorphs formed by transient heating and transient high pressure of atmospheric aerosols. Under TEM the vesicular, dense, vitrous char show high structural organization with a dense pattern of nano-sized graphitized domains, metals and mineral inclusions. The coupled Raman-ESEM has allowed identifying a complex pattern at micro scales of ordered "D" peak at 1320-1350 cm-1 and the graphitic, ordered peak at 1576-1590 cm-1, in association to amorphous and poorly graphitic ordered carbon. The later occurs within plant cells that have been extracted from the dense vitrous char by performing controlled combustion under nitrogen up to 1000°C. In contrast, the brittle, vesicular vitrous char and the polymers encountered at the rear of the pulverised airburst debris reveal to be formed of agglutinated micro spherules of amorphous carbon with rare crystallized carbon nano-domains and scattered mineral inclusions. They completely vaporised at 300°C under stepped-heating without leaving extractable residues. The link established between the structure of these exceptional carbon polymorphs and their forming processes provide diagnostic keys for interpreting vitrous carbon in ancient charcoal assemblage. The hardest ones offer reliable impact markers with their distinctive nanostructure produced by the transient high pressure and heating of carbonaceous aerosols by cosmic airbursts. In contrast, the weakly graphitised ones with distinctive plant structures would possibly express moderate effects of the airburst shock wave on vegetation at the ground. Thus micro-structural characterization of charcoal in archaeological assemblages would help tracing possible exploitation of blasted wood forest and related fossil fuel produced by ancient cosmic airbursts.
Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles.
Lindgren, Johan; Sjövall, Peter; Carney, Ryan M; Uvdal, Per; Gren, Johan A; Dyke, Gareth; Schultz, Bo Pagh; Shawkey, Matthew D; Barnes, Kenneth R; Polcyn, Michael J
2014-02-27
Throughout the animal kingdom, adaptive colouration serves critical functions ranging from inconspicuous camouflage to ostentatious sexual display, and can provide important information about the environment and biology of a particular organism. The most ubiquitous and abundant pigment, melanin, also has a diverse range of non-visual roles, including thermoregulation in ectotherms. However, little is known about the functional evolution of this important biochrome through deep time, owing to our limited ability to unambiguously identify traces of it in the fossil record. Here we present direct chemical evidence of pigmentation in fossilized skin, from three distantly related marine reptiles: a leatherback turtle, a mosasaur and an ichthyosaur. We demonstrate that dark traces of soft tissue in these fossils are dominated by molecularly preserved eumelanin, in intimate association with fossilized melanosomes. In addition, we suggest that contrary to the countershading of many pelagic animals, at least some ichthyosaurs were uniformly dark-coloured in life. Our analyses expand current knowledge of pigmentation in fossil integument beyond that of feathers, allowing for the reconstruction of colour over much greater ranges of extinct taxa and anatomy. In turn, our results provide evidence of convergent melanism in three disparate lineages of secondarily aquatic tetrapods. Based on extant marine analogues, we propose that the benefits of thermoregulation and/or crypsis are likely to have contributed to this melanisation, with the former having implications for the ability of each group to exploit cold environments.
Implications of a fossil stickleback assemblage for Darwinian gradualism.
Bell, M A
2009-11-01
Darwin postulated that a complete fossil record would contain numerous gradual transitions between ancestral and descendant species, but 150 years after publication of The Origin of Species, few such transitions have materialized. The fossil stickleback Gasterosteus doryssus and the deposit in which it occurs provide excellent conditions to detect such transitions. Abundant, well-preserved fossils occur in a stratigraphic setting with fine temporal resolution. The paleoecology of G. doryssus resembles the ecology of modern lakes that harbour the phenotypically similar three-spined stickleback Gasterosteus aculeatus. Gasterosteus aculeatus are primitively highly armoured, but G. doryssus comprised two contemporaneous biological species with relatively weak armour, including a near-shore, benthic feeder (benthic) and an offshore planktivore (limnetic). The benthic species expanded its range into the limnetic zone of the lake, where it apparently switched to planktivory and evolved reduced armour within c. 5000 years in response to directional selection. Although gradual evolution of mean phenotypes occurred, a single major gene caused much of evolutionary change of the pelvic skeleton. Thus, Darwin's expectation that transitions between species in the fossil record would be gradual was met at a fine time scale, but for pelvic structure, a well-studied trait, his expectation that gradual change would depend entirely on numerous, small, heritable differences among individuals was incorrect.
Gypsum-permineralized microfossils and their relevance to the search for life on Mars.
Schopf, J William; Farmer, Jack D; Foster, Ian S; Kudryavtsev, Anatoliy B; Gallardo, Victor A; Espinoza, Carola
2012-07-01
Orbital and in situ analyses establish that aerially extensive deposits of evaporitic sulfates, including gypsum, are present on the surface of Mars. Although comparable gypsiferous sediments on Earth have been largely ignored by paleontologists, we here report the finding of diverse fossil microscopic organisms permineralized in bottom-nucleated gypsums of seven deposits: two from the Permian (∼260 Ma) of New Mexico, USA; one from the Miocene (∼6 Ma) of Italy; and four from Recent lacustrine and saltern deposits of Australia, Mexico, and Peru. In addition to presenting the first report of the widespread occurrence of microscopic fossils in bottom-nucleated primary gypsum, we show the striking morphological similarity of the majority of the benthic filamentous fossils of these units to the microorganisms of a modern sulfuretum biocoenose. Based on such similarity, in morphology as well as habitat, these findings suggest that anaerobic sulfur-metabolizing microbial assemblages have changed relatively little over hundreds of millions of years. Their discovery as fossilized components of the seven gypsiferous units reported suggests that primary bottom-nucleated gypsum represents a promising target in the search for evidence of past life on Mars. Key Words: Confocal laser scanning microscopy-Gypsum fossils-Mars sample return missions-Raman spectroscopy-Sample Analysis at Mars (SAM) instrument-Sulfuretum.
Pollen spectrum, a cornerstone for tracing the evolution of the eastern Central Asian desert
NASA Astrophysics Data System (ADS)
Lu, Kai-Qing; Xie, Gan; Li, Min; Li, Jin-Feng; Trivedi, Anjali; Ferguson, David K.; Yao, Yi-Feng; Wang, Yu-Fei
2018-04-01
The temperate desert in arid Central Asia (ACA) has acted as a thoroughfare for the ancient Silk Road and today's Belt and Road, linking economic and cultural exchanges between East and West. The interaction between human sustainable development and the dynamic change in the desert ecosystem in this region is an area of concern for governments and scientific communities. Nevertheless, the lack of a pollen spectrum of the dominant taxa within the temperate desert vegetation and a corresponding relation between pollen assemblages and specific desert vegetation types is an obstacle to further understanding the formation and maintenance of this desert ecosystem. In this work, we link pollen assemblages to specific desert vegetation types with a new pollen spectrum with specific pollen grains, specific plant taxa and related habitats, providing a solid foundation for further tracing the evolution of the desert ecosystem in eastern arid Central Asia.
Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia?
NASA Astrophysics Data System (ADS)
Magyari, Enikő Katalin; Kuneš, Petr; Jakab, Gusztáv; Sümegi, Pál; Pelánková, Barbora; Schäbitz, Frank; Braun, Mihály; Chytrý, Milan
2014-07-01
To characterize Late Pleniglacial (LPG: 26.5-15 ka cal BP) and particularly Last Glacial Maximum (LGM: 21 ± 2 ka cal BP) vegetation and climate, fossil pollen assemblages are often compared with modern pollen assemblages. Given the non-analogue climate of the LPG, a key question is how glacial pollen assemblages and thereby vegetation compare with modern vegetation. In this paper we present three LPG pollen records from the Carpathian Basin and the adjoining Carpathian Mountains to address this question and provide a concise compositional characterization of the LPG vegetation. Fossil pollen assemblages were compared with surface pollen spectra from the Altai-Sayan Mountains in southern Siberia. This area shows many similarities with the LPG vegetation of eastern-central Europe, and has long been considered as its best modern analogue. Ordination and analogue matching were used to characterize vegetation composition and find the best analogues. Our results show that few LPG pollen assemblages have statistically significant analogues in southern Siberia. When analogue pairings occur they suggest the predominance of wet and mesic grasslands and dry steppe in the studied region. Wooded vegetation types (continental and suboceanic hemiboreal forest, continental taiga) appear as significant analogues only in a few cases during the LGM and more frequently after 16 ka cal BP. These results suggest that the LPG landscape of the Carpathian Basin was dominated by dry steppe that occurred outside the river floodplains, while wet and mesic grasslands occurred in the floodplains and on other sites influenced by ground water. Woody vegetation mainly occurred in river valleys, on wet north-facing hillsides, and scattered trees were likely also present on the loess plateaus. The dominant woody species were Larix, Pinus sylvestris, Pinus mugo, Pinus cembra, Picea abies, Betula pendula/pubescens, Betula nana, Juniperus, Hippophaë rhamnoides, Populus, Salix and Alnus. The pollen records suggest uninterrupted presence of mesophilous temperate trees (Quercus, Ulmus, Corylus, Fagus and Fraxinus excelsior) in the Eastern Carpathian Mountains throughout the LPG. We demonstrate that the LPG vegetation in this area was characterized by increasing grass cover and high frequency of wildfires. We conclude that pollen spectra over represent trees in the forest-steppe landscape of the LPG, furthermore pollen-based quantitative climate reconstructions for the LPG are challenging in this area due to the scarcity of modern analogues.
Triassic tetrapods from antarctica: evidence for continental drift.
Elliot, D H; Colbert, E H; Breed, W J; Jensen, J A; Powell, J S
1970-09-18
During the austral summer of 1969-1970 bones of Lower Triassic vertebrates were excavated from coarse quartzose sandstones forming stream channel deposits of the Fremouw Formation at Coalsack Bluff, in the Transantarctic Mountains of Antarctica. This is the first assemblage of fossil tetrapods of significant geologic age to be found on the Antarctic Continent. The fossils include labyrinthodont amphibians, presumed thecodont reptiles, and therapsid reptiles, including the definitive genus, Lystrosaurus. This genus is typical of the Lower Triassic of southern Africa, and is also found in India and China. Lystrosaurus and associated vertebrates found in Antarctica were land-living animals: therefore their presence on the South Polar Continent would seem to indicate the contiguity of Antarctica, Africa, and India in Early Triassic times.
Faith, J Tyler; Tryon, Christian A; Peppe, Daniel J; Beverly, Emily J; Blegen, Nick; Blumenthal, Scott; Chritz, Kendra L; Driese, Steven G; Patterson, David
2015-06-01
The opening and closing of the equatorial East African forest belt during the Quaternary is thought to have influenced the biogeographic histories of early modern humans and fauna, although precise details are scarce due to a lack of archaeological and paleontological records associated with paleoenvironmental data. With this in mind, we provide a description and paleoenvironmental reconstruction of the Late Pleistocene Middle Stone Age (MSA) artifact- and fossil-bearing sediments from Karungu, located along the shores of Lake Victoria in western Kenya. Artifacts recovered from surveys and controlled excavations are typologically MSA and include points, blades, and Levallois flakes and cores, as well as obsidian flakes similar in geochemical composition to documented sources near Lake Naivasha (250 km east). A combination of sedimentological, paleontological, and stable isotopic evidence indicates a semi-arid environment characterized by seasonal precipitation and the dominance of C4 grasslands, likely associated with a substantial reduction in Lake Victoria. The well-preserved fossil assemblage indicates that these conditions are associated with the convergence of historically allopatric ungulates from north and south of the equator, in agreement with predictions from genetic observations. Analysis of the East African MSA record reveals previously unrecognized north-south variation in assemblage composition that is consistent with episodes of population fragmentation during phases of limited dispersal potential. The grassland-associated MSA assemblages from Karungu and nearby Rusinga Island are characterized by a combination of artifact types that is more typical of northern sites. This may reflect the dispersal of behavioral repertoires-and perhaps human populations-during a paleoenvironmental phase dominated by grasslands. Copyright © 2015 Elsevier Ltd. All rights reserved.
Benthic Foraminifera, Food in the Deep Sea, and Limits to Bentho-Pelagic Coupling
NASA Astrophysics Data System (ADS)
Thomas, E.; Boscolo-Galazzo, F.; Arreguin-Rodrigu, G. J.; Ortiz, S.; Alegret, L.
2015-12-01
The deep-sea is the largest habitat on Earth, contains highly diverse biota, but is very little known. Many of its abundant benthic biota (e.g., nematodes) are not preserved in the fossil record. Calcareous and agglutinated benthic foraminifera (unicellular eukaryotes, Rhizaria; efficient dispersers) and ostracodes (Animalia, Crustacea; non-efficient dispersers) are the most common organisms providing a fossil record of deep-sea environments. Very little food is supplied to the deep-sea, because organic matter produced by photosynthesis is largely degraded before it arrives at the seafloor. Only a few % of organic matter is carried to the ocean bottom by 'marine snow', with its particle size and behavior in the water column controlled by surface ecosystem structure, including type of dominant primary producers (diatoms, cyanobacteria). Food supply and its seasonality are generally seen as the dominant control on benthic assemblages (combined with oxygenation), providing bentho-pelagic coupling between primary and benthic productivity. Benthic foraminiferal assemblages (composition and density) thus are used widely to estimate past productivity, especially during episodes of global climate change, ocean acidification, and mass extinction of primary producers. We show that some environmental circumstances may result in interrupting bentho-pelagic coupling, e.g. through lateral supply of organic matter along continental margins (adding more refractory organic matter), through trophic focusing and/or fine particle winnowing on seamounts (giving an advantage to suspension feeders), and through carbonate undersaturation (giving advantage to infaunal over epifaunal calcifyers). In addition, increased remineralization of organic matter combined with increased metabolic rates may cause assemblages to reflect more oligotrophic conditions at stable primary productivity during periods of global warming. As a result, benthic foraminiferal accumulation rates must be carefully evaluated before use as proxies for primary productivity.
Microfossils in Conophyton from the Soviet Union and their bearing on Precambrian biostratigraphy
NASA Technical Reports Server (NTRS)
Schopf, J. W.; Sovetov, Iu. K.
1976-01-01
Silicified specimens of the Vendian (late Precambrian) 'index fossil' Conophyton gaubitza from South Kazakstan contain a diverse assemblage of well-preserved cyanophytic and apparently eukaryotic algae, the first stromatolitic microbiota to be reported from the Soviet Union. Unlike the stromatolites in which they occur, the microorganisms that apparently built this form of Conophyton did not become extinct at the end of the Precambrian.
Early human occupation of Western Europe: Paleomagnetic dates for two paleolithic sites in Spain
Oms, O.; Parés, J. M.; Martínez-Navarro, B.; Agustí, J.; Toro, I.; Martínez-Fernández, G.; Turq, A.
2000-01-01
The lacustrine deposits infilling the intramontane Guadix-Baza Basin, in the Betic Range of Southern Spain, have yielded abundant well-preserved lithic artifacts. In addition, the lake beds contain a wide range of micromammals including Mimomys savini and Allophaiomys burgondiae and large mammals such as Mammuthus and Hippopotamus together with the African saber-toothed felid Megantereon. The association of the lithic artifacts along with the fossil assemblages, themselves of prime significance in the Eurasian mammal biochronology, is providing new insight into the controversy of the human settlement in Southern Europe. Despite the importance of the artifacts and fossil assemblage, estimates of the geological age of the site are still in conflict. Some attempts at dating the sediments have included biochronology, uranium series, amino acid racemization, and stratigraphic correlation with other well-dated sections in the basin, but so far have failed to yield unambiguous ages. Here we present paleomagnetic age dating at the relevant localities and thus provide useful age constraints for this critical paleoanthropological and mammal site. Our data provide firm evidence for human occupation in Southern Europe in the Lower Pleistocene, around 1 mega-annum ago. The current view of when and how hominids first dispersed into Europe needs to be reevaluated. PMID:10973485
Ikeya, Noriyuki; Cronin, Thomas M.
1993-01-01
An ostracode data base consisting of 273 samples from coretops and comprising 226 species was developed for the seas around the Japanese Islands to determine zoogeographic patterns and for application to Pliocene and Pleistocene paleoceanography in the area. Quantitative analyses of the 59 most common taxa between 0 and 300m water depth indicate that ostracode associations are controlled by the main oceanic water masses around Japan and that bottom water temperature is a key factor influencing species distributions. Ostracodes from the following water masses were studied: warm Kuroshio Current, Tsushima Current (Tsugaru Current and Soya Current), Japan Sea intermediate water, Japan Sea proper water and cold Oyashio Current. In order to apply the modem coretop data base to fossil ostracode assemblages, the modem analog technique (MAT) using a squared chord distance (SCD) measure of dissimilarity was tested as a means of comparing fossil and modem assemblages. SCD values of 0.25 or less adequately identify modem analogs from the coretop data set at the local ecological level (i.e. within the same modern bay), while values of 0.25-0.5 identify modem analogs at the level of the zoogeographic province. The MAT method was tested against 3 Pliocene and 11 Pleistocene formations in Japan to examine the use of the MAT in paleoceanographic reconstruction.
[Infrared spectroscopy and XRD studies of coral fossils].
Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei
2012-08-01
Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.
Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life
Foucher, Frédéric; Bost, Nicolas; Bertrand, Marylène; Loizeau, Damien; Vago, Jorge L.; Kminek, Gerhard; Gaboyer, Frédéric; Campbell, Kathleen A.; Bréhéret, Jean-Gabriel; Gautret, Pascale; Cockell, Charles S.
2015-01-01
Abstract The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This “punctuated” scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5–3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. Key Words: Mars—Early Earth—Anaerobic chemotrophs—Biosignatures—Astrobiology missions to Mars. Astrobiology 15, 998–1029. PMID:26575218
Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life.
Westall, Frances; Foucher, Frédéric; Bost, Nicolas; Bertrand, Marylène; Loizeau, Damien; Vago, Jorge L; Kminek, Gerhard; Gaboyer, Frédéric; Campbell, Kathleen A; Bréhéret, Jean-Gabriel; Gautret, Pascale; Cockell, Charles S
2015-11-01
The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This "punctuated" scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5-3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. Mars-Early Earth-Anaerobic chemotrophs-Biosignatures-Astrobiology missions to Mars.
Lacerda, Marcel B; Schultz, Cesar L; Bertoni-Machado, Cristina
2015-01-01
The 'Rauisuchia' are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis.
Lacerda, Marcel B.; Schultz, Cesar L.; Bertoni-Machado, Cristina
2015-01-01
The ‘Rauisuchia’ are a group of Triassic pseudosuchian archosaurs that displayed a near worldwide distribution. In Brazil, their fossils are found only in the Santa Maria Formation (Paraná Basin) of the Rio Grande do Sul State, specifically in the Middle Triassic Dinodontosaurus assemblage zone (AZ) and the Late Triassic Hyperodapedon AZ (Rauisuchus tiradentes). Between these two cenozones is the Santacruzodon AZ (Middle Triassic), whose record was, until now, restricted to non-mammalian cynodonts and the proterochampsian Chanaresuchus bonapartei. Here we present the first occurrence of a rauisuchian archosaur for this cenozone, from the Schoenstatt outcrop, located near the city of Santa Cruz do Sul and propose a new species, based on biostratigraphical evidence and a comparative osteological analysis. PMID:25714091
Transmission electron microscope studies of extraterrestrial materials
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.
1995-01-01
Transmission Electron Microscopy, X-Ray spectrometry and electron-energy-loss spectroscopy are used to analyse carbon in interplanetary dust particles. Optical micrographs are shown depicting cross sections of the dust particles embedded in sulphur. Selected-area electron diffraction patterns are shown. Transmission Electron Microscope specimens of lunar soil were prepared using two methods: ion-milling and ultramicrotomy. A combination of high resolution TEM imaging and electron diffraction is used to characterize the opaque assemblages. The opaque assemblages analyzed in this study are dominated by ilmenite with lesser rutile and spinel exsolutions, and traces of Fe metal.
DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago
NASA Astrophysics Data System (ADS)
Seersholm, Frederik Valeur; Pedersen, Mikkel Winther; Søe, Martin Jensen; Shokry, Hussein; Mak, Sarah Siu Tze; Ruter, Anthony; Raghavan, Maanasa; Fitzhugh, William; Kjær, Kurt H.; Willerslev, Eske; Meldgaard, Morten; Kapel, Christian M. O.; Hansen, Anders Johannes
2016-11-01
The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago.
DNA evidence of bowhead whale exploitation by Greenlandic Paleo-Inuit 4,000 years ago
Seersholm, Frederik Valeur; Pedersen, Mikkel Winther; Søe, Martin Jensen; Shokry, Hussein; Mak, Sarah Siu Tze; Ruter, Anthony; Raghavan, Maanasa; Fitzhugh, William; Kjær, Kurt H.; Willerslev, Eske; Meldgaard, Morten; Kapel, Christian M.O.; Hansen, Anders Johannes
2016-01-01
The demographic history of Greenland is characterized by recurrent migrations and extinctions since the first humans arrived 4,500 years ago. Our current understanding of these extinct cultures relies primarily on preserved fossils found in their archaeological deposits, which hold valuable information on past subsistence practices. However, some exploited taxa, though economically important, comprise only a small fraction of these sub-fossil assemblages. Here we reconstruct a comprehensive record of past subsistence economies in Greenland by sequencing ancient DNA from four well-described midden deposits. Our results confirm that the species found in the fossil record, like harp seal and ringed seal, were a vital part of Inuit subsistence, but also add a new dimension with evidence that caribou, walrus and whale species played a more prominent role for the survival of Paleo-Inuit cultures than previously reported. Most notably, we report evidence of bowhead whale exploitation by the Saqqaq culture 4,000 years ago. PMID:27824339
Fossil Microorganisms and Formation of Early Precambrian Weathering Profiles
NASA Technical Reports Server (NTRS)
Rozanov, A. Yu; Astafieva, M. M.; Vrevsky, A. B.; Alfimova, N. A.; Matrenichev, V. A.; Hoover, R. B.
2009-01-01
Weathering crusts are the only reliable evidences of the existence of continental conditions. Often they are the only source of information about exogenous processes and subsequently about conditions under which the development of the biosphere occurred. A complex of diverse fossil microorganisms was discovered as a result of Scanning Electron Microscope investigations. The chemical composition of the discovered fossils is identical to that of the host rocks and is represented by Si, Al, Fe, Ca and Mg. Probably, the microorganisms fixed in rocks played the role of catalyst. The decomposition of minerals comprising the rocks and their transformation into clayey (argillaceous) minerals, most likely occurred under the influence of microorganisms. And may be unique weathering crusts of Early Precambrian were formed due to interaction between specific composition of microorganism assemblage and conditions of hypergene transformations. So it is possible to speak about colonization of land by microbes already at that time and about existence of single raw from weathering crusts (Primitive soils) to real soils.
Ma, Fu-Jun; Sun, Bai-Nian; Wang, Qiu-Jun; Dong, Jun-Ling; Yang, Guo-Lin; Yang, Yi
2015-01-01
A new species of Meliolinites (fossil Meliolaceae), M. buxi sp. nov., is reported from the Oligocene Ningming Formation of Guangxi, South China. The fungus has hyphopodia characteristics of extant Meliolaceae, such as thick-walled, branching hyphae with appressoria and phialides. However, these fossils entirely lack mycelial or perithecial setae and have only a few phialides, thereby distinguishing the new species from most known species. The fungus was discovered on the adaxial and abaxial cuticles of several fossilized Buxus leaves. Thickening and twisting of cell walls in the Buxus leaf cuticle, along with the parasitic feeding strategy of the extant Meliolaceae, suggest that a parasitic interaction between Buxus and M. buxi seems feasible. The distribution of modern Meliolaceae suggests that they live in warm, humid subtropical-tropical climates. It is possible that the presence of M. buxi indicates a similar climatic condition. The co-occurrence of large-leaf Buxus and floristic comparisons of the Ningming assemblage also corroborate this conclusion. © 2015 by The Mycological Society of America.
Stickleback fishes: Bridging the gap between population biology and paleobiology.
Bell, M A
1988-12-01
Integration of evolutionary mechanisms and phylogeny requires study of phenotypes that change in the fossil record and continue to evolve in extant populations. Pelvic reduction in the three-spined stickle-back has evolved rapidly in a Miocene fossil assemblage and in numerous extant isolated lake populations throughout its distribution. Although pelvic reduction is caused by selection, expression of reduced pelvic phenotypes is constrained by development and other factors. However, lineages with pelvis reduction rapidly go extinct while lineages that retain the fully formed pelvic girdle tend to persist. Existence of pelvic reduction since the Miocene has depended on an equilibrium between divergence and extinction. The phylogenetic topology resulting from this process differs greatly from the conventional view of evolutionary history, and could only be recognized by analysis of both extant populations and fossil material. If this phylogenetic topology is common, it may help to account for the different perceptions that population biologists and paleobiologists have of evolutionary tempo. Copyright © 1988. Published by Elsevier Ltd.
Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma
Ferring, Reid; Oms, Oriol; Agustí, Jordi; Berna, Francesco; Nioradze, Medea; Shelia, Teona; Tappen, Martha; Vekua, Abesalom; Zhvania, David; Lordkipanidze, David
2011-01-01
The early Pleistocene colonization of temperate Eurasia by Homo erectus was not only a significant biogeographic event but also a major evolutionary threshold. Dmanisi's rich collection of hominin fossils, revealing a population that was small-brained with both primitive and derived skeletal traits, has been dated to the earliest Upper Matuyama chron (ca. 1.77 Ma). Here we present archaeological and geologic evidence that push back Dmanisi's first occupations to shortly after 1.85 Ma and document repeated use of the site over the last half of the Olduvai subchron, 1.85–1.78 Ma. These discoveries show that the southern Caucasus was occupied repeatedly before Dmanisi's hominin fossil assemblage accumulated, strengthening the probability that this was part of a core area for the colonization of Eurasia. The secure age for Dmanisi's first occupations reveals that Eurasia was probably occupied before Homo erectus appears in the East African fossil record. PMID:21646521
Fossil diatoms and neogene paleolimnology
Platt, Bradbury J.
1988-01-01
Diatoms have played an important role in the development of Neogene continental biostratigraphy and paleolimnology since the mid-19th Century. The history of progress in Quaternary diatom biostratigraphy has developed as a result of improved coring techniques that enable sampling sediments beneath existing lakes coupled with improved chronological control (including radiometric dating and varve enumeration), improved statistical treatment of fossil diatom assemblages (from qualitative description to influx calculations of diatom numbers or volumes), and improved ecological information about analogous living diatom associations. The last factor, diatom ecology, is the most critical in many ways, but progresses slowly. Fortunately, statistical comparison of modern diatom assemblages and insightful studies of the nutrient requirements of some common freshwater species are enabling diatom paleolimnologists to make more detailed interpretations of the Quaternary record than had been possible earlier, and progress in the field of diatom biology and ecology will continue to refine paleolimnological studies. The greater age and geologic setting of Tertiary diatomaceous deposits has prompted their study in the contexts of geologic history, biochronology and evolution. The distribution of diatoms of marine affinities in continental deposits has given geologists insights about tectonism and sea-level change, and the distribution of distinctive (extinct?) diatoms has found utilization both in making stratigraphic correlations between outcrops of diatomaceous deposits and in various types of biochronological studies that involve dating deposits in different areas. A continental diatom biochronologic scheme will rely upon evolution, such as the appearance of new genera within a family, in combination with regional environmental changes that are responsible for the wide distribution of distinctive diatom species. The increased use of the scanning electron microscope for the detailed descriptions of fossil diatoms will provide the basis for making more accurate correlations and identifications, and the micromorphological detail for speculations about evolutionary relationships. ?? 1988.
Butler, Richard J; Brusatte, Stephen L; Reich, Mike; Nesbitt, Sterling J; Schoch, Rainer R; Hornung, Jahn J
2011-01-01
Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3-247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the 'sail' of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian-Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs.
The diversity and biogeography of late Pleistocene birds from the lowland Neotropics
NASA Astrophysics Data System (ADS)
Steadman, David W.; Oswald, Jessica A.; Rincón, Ascanio D.
2015-05-01
The Neotropical lowlands sustain the world's richest bird communities, yet little that we know about their history is based on paleontology. Fossils afford a way to investigate distributional shifts in individual species, and thus improve our understanding of long-term change in Neotropical bird communities. We report a species-rich avian fossil sample from a late Pleistocene tar seep (Mene de Inciarte) in northwestern Venezuela. A mere 175 identified fossils from Mene de Inciarte represent 73 species of birds, among which six are extinct, and eight others no longer occur within 100 km. These 14 species consist mainly of ducks (Anatidae), snipe (Scolopacidae), vultures/condors (Vulturidae), hawks/eagles (Accipitridae), and blackbirds (Icteridae). Neotropical bird communities were richer in the late Pleistocene than today; their considerable extinction may be related to collapse of the large mammal fauna at that time. The species assemblage at Mene de Inciarte suggests that biogeographic patterns, even at continental scales, have been remarkably labile over short geological time frames. Mene de Inciarte is but one of 300 + tar seeps in Venezuela, only two of which have been explored for fossils. We may be on the cusp of an exciting new era of avian paleontology in the Neotropics.
Mapping trace element distribution in fossil teeth and bone with LA-ICP-MS
NASA Astrophysics Data System (ADS)
Hinz, E. A.; Kohn, M. J.
2009-12-01
Trace element profiles were measured in fossil bones and teeth from the late Pleistocene (c. 25 ka) Merrell locality, Montana, USA, by using laser-ablation ICP-MS. Laser-ablation ICP-MS can collect element counts along predefined tracks on a sample’s surface using a constant ablation speed allowing for rapid spatial sampling of element distribution. Key elements analyzed included common divalent cations (e.g. Sr, Zn, Ba), a suite of REE (La, Ce, Nd, Sm, Eu, Yb), and U, in addition to Ca for composition normalization and standardization. In teeth, characteristic diffusion penetration distances for all trace elements are at least a factor of 4 greater in traverses parallel to the dentine-enamel interface (parallel to the growth axis of the tooth) than perpendicular to the interface. Multiple parallel traverses in sections parallel and perpendicular to the tooth growth axis were transformed into trace element maps, and illustrate greater uptake of all trace elements along the central axis of dentine compared to areas closer to enamel, or within the enamel itself. Traverses in bone extending from the external surface, through the thickness of cortical bone and several mm into trabecular bone show major differences in trace element uptake compared to teeth: U and Sr are homogeneous, whereas all REE show a kinked profile with high concentrations on outer surfaces that decrease by several orders of magnitude within a few mm inward. The Eu anomaly increases uniformly from the outer edge of bone inward, whereas the Ce anomaly decreases slightly. These observations point to major structural anisotropies in trace element transport and uptake during fossilization, yet transport and uptake of U and REE are not resolvably different. In contrast, transport and uptake of U in bone must proceed orders of magnitude faster than REE as U is homogeneous whereas REE exhibit strong gradients. The kinked REE profiles in bone unequivocally indicate differential transport rates, consistent with a double-medium diffusion model in which microdomains with slow diffusivities are bounded by fast-diffusing pathways.
NASA Astrophysics Data System (ADS)
Gangidine, A.; Czaja, A. D.; Havig, J. R.
2017-12-01
Positively identifying fossil microorganisms is often a challenge due to poor preservation. Thermal and geological alteration can lead to extreme distortion in ancient microbial fossils to the point that they may be morphologically unrecognizable, making it crucial to have a biosignature that can be used regardless of such conditions to help establish biogenicity. Through analysis of trace element sequestration by silicified microorganisms of various ages, a new biosignature may be developed with the potential to be robust and yield paleobiological information, even in the absence of morphological preservation. Biological materials preserved in modern silica-depositing hot springs from Yellowstone National Park have been shown to contain a higher concentration of certain trace elements relative to the surrounding non-biological material. BIO-SIMS analyses also have shown apparent co-localization of certain trace elements relative to recently silicified microbes (Figure 1). By measuring the abundances, ratios, and spatial distributions of major and trace elements (e.g., Si, C, N, Fe, Mn, Ga, As) in modern and ancient microorganisms, it will be possible to deduce what elements are preferentially concentrated by life, and if this signature is preserved in the rock record during and after the fossilization process. By evaluating trace element abundances and distributions in a suite of hot spring deposit samples of ages ranging from modern (Yellowstone National Park) to 3.5 Ga (Dresser Formation), this biosignature may be calibrated across all timescales. Such a biosignature would provide a strong tool for determining biogenicity by itself, or strengthen any argument for or against biogenicity when used in unison with other detection methods. As hydrothermal silica deposits are thought to be widespread on the Martian surface, the use of this trace element biosignature for the upcoming Mars 2020 mission would allow a robust analysis to aid in the determination of the biogenicity of collected samples. For a mission such as Mars 2020, with a primary mission objective of finding ancient life, the burden of proof for identifying putative life will be unprecedented.
NASA Astrophysics Data System (ADS)
Walkup, L. C.; Prassack, K. A.; Hart, W. K.; Wan, E.
2016-12-01
Hagerman Fossil Beds National Monument (HAFO) is home to a diverse early-middle Pliocene ( 4.2-3.0 Ma) faunal assemblage. The Glenns Ferry Formation, exposed within the Monument and in surrounding areas, preserves lacustrine and fluvial deposits interbedded with tephra and lava flows establishing a broad chronostratigraphic context for the fossils. Despite multiple attempts by previous studies to date several volcanic horizons within the Glenns Ferry Formation, the precise chronostratigraphy of specific key fossil localities within the Monument remains poorly constrained. HAFO contains many type specimens, including that of the newly described river otter Lontra weiri (Prassack, 2016). The chronologies of type specimens are especially important because they establish the first and, in some cases, only known occurrence of a species in the fossil record. Refined chronology also allows for community-level reconstructions of fauna across ancient landscapes. Thus, multiple silicic and basaltic tephra distributions were mapped, sampled, petrographically characterized, analyzed by electron microprobe (EMP), and correlated across the Monument to provide a refined spatial and temporal framework for specific fossil localities. Previous tephrochronologic studies focused on the Fossil Gulch and Peters Gulch areas. This investigation extends the mapped distribution extent of the tephra layers identified by other workers. To further support the updated tephrochronologic framework, several tephra samples from type localities were also analyzed using EMP and correlated with samples collected during this study. We also present a new age of 3.07± 0.23 Ma for an upper tephra horizon, measured via ITPFT and DCFT glass fission track methods. This age is in agreement with a previously suggested age of 3.15 Ma for this horizon based on regional tephra correlation and more precisely constrains the age of an important underlying fossil site.
Wulff, Marissa L.; May, Jason T.; Brown, Larry R.
2012-01-01
The U.S. Geological Survey, in cooperation with the National Park Service and Whiskeytown National Recreation Area, performed a comprehensive aquatic biota survey of the upper Clear Creek watershed, Shasta County, California, during 2004-5. Data collected in this study can provide resource managers with information regarding aquatic resources, watershed degradation, and regional biodiversity within Whiskeytown National Recreation Area. Surveys of water chemistry, bed-sediment chemistry, algae assemblages, benthic macroinvertebrate assemblages, aquatic vertebrate assemblages, in-stream habitat characteristics, and sediment heterogeneity were conducted at 17 stream sites during both 2004 and 2005, with an additional 4 sites surveyed in 2005. A total of 67 bed-sediment samples were analyzed for major and trace inorganic element concentrations. Forty-six water samples were analyzed for trace metals and nutrients. A total of 224 taxa of invertebrates were collected during these surveys. Eleven fish species, seven of which were native, and two species of larval amphibians, were collected. A total of 24 genera of soft algae and 159 taxa of diatoms were identified. To date, this survey represents the most comprehensive inventory of aquatic resources within Whiskeytown National Recreation Area, and this information can serve as a baseline for future monitoring efforts and to inform management decisions.
Wilson, Paige K; Moore, Jason R
2016-01-01
Comparisons of paleofaunas from different facies are often hampered by the uncertainty in the variation of taphonomic processes biasing the paleoecological parameters of interest. By examining the taphonomic patterns exhibited by different facies in the same stratigraphic interval and area, it is possible to quantify this variation, and assess inter-facies comparability. The fossil assemblages preserved in Badlands National Park (BNP), South Dakota, have long been a rich source for mammalian faunas of the White River Group. To investigate the influence of the variation of taphonomic bias with lithology whilst controlling for the influence of changes in patterns of taphonomic modification with time, taphonomic and paleoecological data were collected from four mammal-dominated fossil assemblages (two siltstone hosted and two sandstone hosted) from a narrow stratigraphic interval within the Oligocene Poleslide Member of the Brule Formation, in the Palmer Creek Unit of BNP. Previous work in the region confirmed that the two major lithologies represent primarily aeolian- and primarily fluvial-dominated depositional environments, respectively. A suite of quantifiable taphonomic and ecological variables was recorded for each of the more than 800 vertebrate specimens studied here (857 specimens were studied in the field, 9 specimens were collected and are reposited at BNP). Distinctly different patterns of taphonomic biasing were observed between the aeolian and fluvial samples, albeit with some variability between all four sites. Fluvial samples were more heavily weathered and abraded, but also contained fewer large taxa and fewer tooth-bearing elements. No quantifiable paleofaunal differences in generic richness or evenness were observed between the respective facies. This suggests that while large vertebrate taxonomic composition in the region did vary with paleodepositional environment, there is no evidence of confounding variation in faunal structure, and therefore differences between the assemblages are attributed to differing preservational environments producing a taphonomic overprint on the assemblages. The lack of apparent taphonomic bias on paleofaunal structure suggests that such paleoecological data can be compared throughout the Poleslide Member, irrespective of lithology.
NASA Astrophysics Data System (ADS)
Jenisch, Alan Gregory; Lehn, Ilana; Gallego, Oscar Florencio; Monferran, Mateo Daniel; Horodyski, Rodrigo Scalise; Faccini, Ubiratan Ferrucio
2017-12-01
Due to the chitino-phosphatic nature of Spinicaudata conchostracan exoskeletons, their carapaces exhibit a low preservational potential compared to other bivalve groups. However, the recent studies point towards the increased tolerance of the carapace against the physical processes. Due to this peculiar characteristic, conchostracan carapace have been utilized as precise temporal markers in estimating stratigraphic and taphonomic parameters. The same characteristic also makes the spinicaudatans useful in evaluating the depositional processes and environments. The present work aims at providing a paleoenvironmental and stratigraphic analysis of conchostracans (Spinicaudata) from the Triassic-Jurassic of the Paraná Basin (Santa Maria and Caturrita formations) in terms of the sedimentary facies analysis, depositional system characterization, and analysis of the taphonomic signatures of the fossiliferous horizons within these formations. The results from the taphonomic study delineates the presence of 4 distinct fossil assemblages based on the causative mechanism and fundamental characteristics of the fossil concentrations: two taphonomic assemblages in the laminated mudstone beds deposited from the decanting fine-grained sediments in floodplains; the sandstone beds with plane parallel laminations and dune- and ripple-cross-stratifications deposited from the flooding-related overflow in the floodplains; and the association of laminated mudstone and massive sandstone beds deposited as the river mouth bars. The results show that the taphonomic signatures, e.g., closed valves, may indicate the various patterns of autochthony and allochthony. In the fine-grained floodplain assemblages, the high degree of preservation can be attributed to autochthony in the conchostracans, whereas the preservational condition of floodplain sandstone sheet and mouth bar assemblages point toward parautochthony and even allochthony. Therefore, the preservational quality of conchostracan exoskeletons is likely a function of parameters, e.g., the transport duration, the distance from life position, and the magnitude of events causing their final burial. Within the observed species, the recognition of Eustheria minuta in the stratigraphic level of the Passo das Tropas creek corroborates an age for these deposits between the late Middle Triassic and early Upper Triassic. The presence of a new form, likely related to the family Fushunograptidae in sediments from the Caturrita Formation, suggests a Jurassic age for these deposits.
Pollen preservation and Quaternary environmental history in the southeastern United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delcourt, P.A.; Delcourt, H.R.
Reconstructions of Quaternary environmental history based upon modern pollen/vegetation/climate calibrations are more tenable if the factors responsible for variation in pollen assemblages are evaluated. Examination of the state of preservation of Quaternary palynomorphs provides quantitative data concerning the degree of information loss due to alteration of pollen assemblages by syndepositional and post-depositional deterioration. The percentage, concentration, and influx values for total indeterminable pollen are useful criteria in providing an objective and quantitative basis for evaluating the comparability of pollen spectra within and between sites. Supporting data concerning sediment particle-size distribution, organic matter content, and concentration, influx, and taxonomic composition ofmore » both determinable pollen and plant macrofossils aid in reconstructing past depositional environments. The potential is high for deterioration of pollen in sediments from the southeastern United States, although considerable variation is found in both kind and degree of deterioration between lacustrine and alluvial sites of different ages and in different latitudes. Modern analogs are a basis for late Quaternary environmental reconstructions when pollen deterioration has not significantly biased the information content of fossil pollen assemblages.« less
Musco, Marianna; Cuttitta, Angela; Bicchi, Erica; Quinci, Enza Maria; Sprovieri, Mario; Tranchida, Giorgio; Giaramita, Luigi; Traina, Anna; Salvagio Manta, Daniela; Gherardi, Serena; Mercurio, Pietro; Siragusa, Angelo; Mazzola, Salvatore
2017-04-15
This study investigates living benthic foraminiferal assemblages as bio-indicators of anthropogenic activities in a coastal area within the Gulf of Palermo (Sicily, Italy), affected by industrial and urban activities, and evaluates the environmental quality through the calibration of a Tolerant Species index (%TS std ). Sediments from 6 stations were sampled along a bathymetric transect from the coast to offshore. Sediment grain size, TOC, major, minor and trace elements and polycyclic aromatic hydrocarbons (PAHs) were compared to benthic foraminiferal assemblages and species at each station. Diversity and density of benthic foraminiferal assemblages were not affected by the presence of pollutants, while tolerant species increased with organic (TOC and PAHs) or chemical (As and Pb) concentrations. Moreover, the calibration of the %TS std formula to >125μm foraminiferal assemblage, gives a detailed description of environmental quality along the transect, representing a good and sensitive tool to evaluate marine coastal environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, Paul G.; Briggs, Derek E. G.
1995-09-01
Scanning electron microscopy of feathers has revealed evidence that a bacterial glycocalyx (a network of exocellular polysaccharide fibers) played a role in promoting their fossilization in some cases. This mode of preservation has not been reported in other soft tissues. The majority of fossil feathers are preserved as carbonized traces. More rarely, bacteria on the surface are replicated by authigenic minerals (bacterial autolithification). The feathers of Archaeopteryx are preserved mainly by imprintation following early lithification of the substrate and decay of the feather. Lacustrine settings provide the most important taphonomic window for feather preservation. Preservation in terrestrial and normal-marine settings involves very different processes (in amber and in authigenically mineralized coprolites, respectively). Therefore, there may be a significant bias in the avian fossil record in favor of inland water habitats.
Sr Isotopes at the Onset of the Ice Ages at the Northern Apennines
NASA Astrophysics Data System (ADS)
Fuchs, Rita; Lazar, Boaz; Angiolini, Lucia; Crippa, Gaia; Stein, Mordechai
2017-04-01
Sr isotopes can be used to constrain the marine Sr budget. The temporal variations in the 87Sr/86Sr ratios (radiogenic Sr) have been reconstructed over the past few decades based on marine macro and micro fossils data (e.g. brachiopods and foraminifera). It is used to constrain the sources and amounts of strontium that dictate the temporal variations in oceanic Sr throughout the Phanerozoic. On the other hand, the study of processes controlling the composition stable Sr isotopes (δ88/86Sr) is very new and only limited research was conducted on this topic during the past few years. Up to date, no δ88/86Sr data are available for considerable parts of Earth's history and the contribution of the potential Sr sources to the oceans is poorly constrained. Here, we set to examine the behavior of radiogenic and stable Sr isotopes in the marine environment of the northern Apennines (Italy) during the time interval of the late Pliocene to early-Middle Pleistocene - upon the onset of ice ages in the northern latitudes. We collected fossil mollusks from outcrops of the Arda and Stirone Rivers that are rich in bivalves, brachiopods, foraminifera (that were used for establishing the chronostratigraphy of the sections) and other genera. Ecological and sedimentological analysis of the section suggest a normal marine environment of depth range of several tens of meters that existed on the southern flanks of the large Po embayment. In order to evaluate the potential of the fossil assemblages in the Arda and Stirone sections to serve as reliable recorders of the marine δ88/86Sr of seawater during the desired period, we examined mineralogical and chemical properties of the fossils (e.g. distribution of trace elements like Sr and Mg in the skeletons, microstructures like secondary fillings of punctate shells in brachiopod) and measured the 87Sr/86Sr ratios. Among the species analyzed, Aequipecten opercularis (bivalve) and Glycymeris inflata (bivalve) have aragonite skeletons that show normal late Pliocene - early Pleistocene marine values of 87Sr/86Sr ratios (˜ 0.709). On the other hand, the calcite skeleton organisms from the same bed, Ostrea edulis (bivalve) and Terebratula scillae (brachiopod), show continental effect on the 87Sr/86Sr isotopes (values ranging from 0.7084 to 0.7089). It should be noted that these two groups of organisms have also different life styles and metabolic rates. Measuring the δ88/86Sr values on the fossils with "normal" marine radiogenic Sr composition and those with continental radiogenic Sr signal may provide additional constraints on the sources and processes that affected the geochemistry of these species and yield a reliable marine δ88/86Sr value for that period.
Isotopic characteristics of canopies in simulated leaf assemblages
NASA Astrophysics Data System (ADS)
Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.
2014-11-01
The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the ;canopy effect; could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the site where leaves were sampled. The model predicts a persistent ∼1‰ difference in δ13Clitter for the two sites which is consistent with higher water availability in the tropical forests. This work provides a new framework for linking contemporary ecological observations to the geochemical record using flux-weighted isotope data and lends insights to the effect of forest architecture on organic and isotopic records of ancient terrestrial ecosystems. How many leaves from a litter assemblage are necessary to distinguish the isotopic gradient characteristics of canopy closure? Are mean δ13Cleaf values for a litter assemblage diagnostic of a forest biome? Can we predict the δ13C values of cumulative litter, soil organic matter, and organic carbon in sedimentary archives using litter flux and isotope patterns in canopies? We determined the δ13C range and mean for different sized assemblages of leaves sampled from data for each forest. We re-sampled very high numbers of leaves in order to estimate the isotopic composition of cumulative carbon delivered to soils as litter, and compared these results to available data from forest soils. Modeled leaf and soil organic carbon isotope patterns in this study offer insights to how forest structure can be derived from carbon isotope measurements of fossil leaves, as well as secondary material - such as teeth, hair, paleosol carbonates, or organic soil carbon (van der Merwe and Medina, 1989; Koch, 1998; Secord et al., 2008; Levin et al., 2011).Distinct climate and seasonal difference in the Panamá and Maryland, USA forests are reflected in their canopy isotope gradients. In the tropical forest of Panamá, leaves are produced throughout the year within a canopy that is both extensively and persistently closed (Leigh, 1975; Lowman and Wittman, 1996). In the temperate forest of Maryland leaves are produced during the spring when canopy conditions are relatively open (Korner and Basler, 2010).
Znaczenie analizy minerałów ciężkich w badaniach osadów czwartorzędowych Polski
NASA Astrophysics Data System (ADS)
Racinowski, Roman
2008-01-01
In most regions of Poland the composition of heavy minerals assemblage permits to distinguish the Quaternary deposits from the older ones. The pre-Quaternary deposits are characterized by high content of glauconite, carbonate-ferruginous-manganese concretions, muscovite and chlorites. In their transparent heavy minerals spectrum the following minerals predominate: zircon, tourmaline, rutile, staurolite, disthene. However, the Tertiary deposits in the Carpathians and their foreland contain a significant amount of garnet, and sometimes also amphiboles, pyroxenes and biotite. Pyroxenes and sillimanite are found in the Sudetes foreland. In many Tertiary deposits of the northwestern and western Poland there are rather high contents of amphiboles, biotite, pyroxenes, garnets, rutile. In all Quaternary deposits in Poland the qualitative composition of heavy minerals assemblage is similar but the contents of particular minerals are different depending on the examined grain fraction. In tills (Table 1) and glaciofluvial deposits (Table 2), with the decreasing grain diameter the contents of zircon, rutile, and partly epidote increase, and those of amphiboles and garnets decrease. In rubble of coastal zone in the Polish Baltic Sea, with the decreasing grain diameter the contents of zircon, rutile and epidote increase, and those of amphibole, biotite and pyroxenes decrease (Tables 3-7). In Poland, glacial, glaciofluvial and glaciolacustrine deposits are characterized by quantitatively similar composition of heavy minerals assemblage. Amphiboles, biotite, epidotes, garnets and pyroxenes are typical transparent minerals (Tables 8 and 9). Young Pleistocene and Holocene sands of river terraces and dune fields in the upland zone of Poland differ from glacial deposits in low contents of amphiboles, biotite and pyroxenes, and higher contents of garnets and epidotes (Tables 8 and 9). Fossil river and lacustrine deposits of Polish Lowlands have very similar assemblage of heavy minerals to that found in glacial deposits. Both glacial and glaciofluvial deposits have similar composition of heavy minerals assemblage irrespective of their age (Tables 10, 11 and 12). This principle concerns also loesses (Table 13a, b) but the youngest ones are characterized by higher contents of amphiboles and epidotes. The composition of heavy minerals assemblage is useful for determining the source of material forming the Quaternary deposits. In the case of glacial deposits, the enrichment in glauconite, chlorites, and even zircon, rutile, tourmaline, staurolite indicates that material from local older substratum was supplied to the Quaternary deposits. Heavy minerals spectrum of non-glacial deposits can directly indicate the source material that formed a deposit. Conversely, it is difficult to draw the conclusions about fossil and modern weathering-soil horizons in loesses from the composition of heavy minerals assemblage (Tables 14 and 15). The results of heavy minerals analysis are useful for lithodynamic and lithofacial interpretation of flowing water environments, e.g. river (Table 16), glaciofluvial (Table 17) and sea coastal (Table 18).
Hierarchical random walks in trace fossils and the origin of optimal search behavior
Sims, David W.; Reynolds, Andrew M.; Humphries, Nicolas E.; Southall, Emily J.; Wearmouth, Victoria J.; Metcalfe, Brett; Twitchett, Richard J.
2014-01-01
Efficient searching is crucial for timely location of food and other resources. Recent studies show that diverse living animals use a theoretically optimal scale-free random search for sparse resources known as a Lévy walk, but little is known of the origins and evolution of foraging behavior and the search strategies of extinct organisms. Here, using simulations of self-avoiding trace fossil trails, we show that randomly introduced strophotaxis (U-turns)—initiated by obstructions such as self-trail avoidance or innate cueing—leads to random looping patterns with clustering across increasing scales that is consistent with the presence of Lévy walks. This predicts that optimal Lévy searches may emerge from simple behaviors observed in fossil trails. We then analyzed fossilized trails of benthic marine organisms by using a novel path analysis technique and find the first evidence, to our knowledge, of Lévy-like search strategies in extinct animals. Our results show that simple search behaviors of extinct animals in heterogeneous environments give rise to hierarchically nested Brownian walk clusters that converge to optimal Lévy patterns. Primary productivity collapse and large-scale food scarcity characterizing mass extinctions evident in the fossil record may have triggered adaptation of optimal Lévy-like searches. The findings suggest that Lévy-like behavior has been used by foragers since at least the Eocene but may have a more ancient origin, which might explain recent widespread observations of such patterns among modern taxa. PMID:25024221
NASA Astrophysics Data System (ADS)
Schöning, Meike; Bandel, Klaus
2004-09-01
Silicified woods of 10 dicotyledonous tree families of probably Miocene age from the Arauco Peninsula, central Chile are described and classified according to their anatomy. The diversity is surprisingly high, in that of the 19 samples analyzed, virtually every one could belong to a different species of tree or shrub. Almost all species document a damp climate, and most have related species living in the central zone of modern Chile. The samples were collected in a narrow zone on Punta El Fraile, west of the town of Arauco. The following families are based on woods from the Arauco Peninsula: Anacardiaceae, Boraginaceae, Euphorbiaceae, Fagaceae, Lauraceae, Leguminosae, Monimiaceae, the first report of fossil Myristicaceae, Myrtaceae, and Proteaceae. Their diagenetic history is connected to tuffaceous material and calcareous concretions.
NASA Astrophysics Data System (ADS)
Kocsis, László; Briguglio, Antonino; Roslim, Amajida; Razak, Hazirah; Ćorić, Stjepan; Frijia, Gianluca
2018-06-01
The Ambug Hill in Brunei is an exceptional geological site where a series of siliciclastic rocks crops out with some layers extremely rich in marine fossils. Such fossiliferous outcrops are extremely rare in the northern part of Borneo and their description is of primary importance as their fossil content can be used to correlate the regional depositional sequences with global biostratigraphic zonations. In this work we present for the first time a detailed sedimentary profile completed with Sr-isotopes and biostratigraphic dating. The succession is divided into four sedimentary units. The first unit comprises bioturbated sandstone followed by a second unit of clay-silt rich levels whose first 9.5 m contain rich marine fossil assemblages. Calcareous nannoplankton data indicate a Late Tortonian - Early Messinian (NN11) age, which is confirmed by Sr-isotope dating derived from bivalves giving a numerical age range from 8.3 to 6.2 My. After a major emersion surface, the third sedimentary unit of sand- and siltstone lacks suitable fossils for bio- and isotope stratigraphy. The age of emersion and the related sedimentary gap can be either correlated with the Me1 (7.25 My) or the Me2 (5.73 My) sequence boundary. A fourth, thin sedimentary unit is recognized on the top of the profile with silt- and claystone beds without age diagnostic remains and calcareous fossils.
NASA Astrophysics Data System (ADS)
Boudadi-Maligne, Myriam; Bailon, Salvador; Bochaton, Corentin; Casagrande, Fabrice; Grouard, Sandrine; Serrand, Nathalie; Lenoble, Arnaud
2016-01-01
Pit cave 6 on Pointe Gros Rempart (Baie-Mahault, La Désirade, French West Indies) is a stratified fossil-bearing site. While the archaeological material and faunal remains from the oldest assemblage demonstrate it to have formed during the Amerindian period, the second assemblage dates to the first one-hundred years of the island's colonial period (mid-18th to mid-19th centuries). Faunal analysis revealed the presence of 4 now locally extinct or extinct species, three of which have never before been documented on La Désirade (Ameiva sp., Leiocephalus cf. cuneus and Alsophis sp.). Changing faunal spectrums (invertebrates and vertebrates) due to environmental destabilisation combined with aspects of the island's colonial economy demonstrate habitat degradation and over-grazing to be the principal causes of extinctions and or extirpations.
Zazhigin, Vladimir S.
2017-01-01
Background The present-day amphibian and reptile fauna of Western Siberia are the least diverse of the Palaearctic Realm, as a consequence of the unfavourable climatic conditions that predominate in this region. The origin and emergence of these herpetofaunal groups are poorly understood. Aside from the better-explored European Neogene localities yielding amphibian and reptile fossil remains, the Neogene herpetofauna of Western Asia is understudied. The few available data need critical reviews and new interpretations, taking into account the more recent records of the European herpetofauna. The comparison of this previous data with that of European fossil records would provide data on palaeobiogeographic affiliations of the region as well as on the origin and emergence of the present-day fauna of Western Siberia. An overview of the earliest occurrences of certain amphibian lineages is still needed. In addition, studies that address such knowledge gaps can be useful for molecular biologists in their calibration of molecular clocks. Methods and Results In this study, we considered critically reviewed available data from amphibian and reptile fauna from over 40 Western Siberian, Russian and Northeastern Kazakhstan localities, ranging from the Middle Miocene to Early Pleistocene. Herein, we provided new interpretations that arose from our assessment of the previously published and new data. More than 50 amphibians and reptile taxa were identified belonging to families Hynobiidae, Cryptobranchidae, Salamandridae, Palaeobatrachidae, Bombinatoridae, Pelobatidae, Hylidae, Bufonidae, Ranidae, Gekkonidae, Lacertidae, and Emydidae. Palaeobiogeographic analyses were performed for these groups and palaeoprecipitation values were estimated for 12 localities, using the bioclimatic analysis of herpetofaunal assemblages. Conclusion The Neogene assemblage of Western Siberia was found to be dominated by groups of European affinities, such as Palaeobatrachidae, Bombina, Hyla, Bufo bufo, and a small part of this assemblage included Eastern Palaearctic taxa (e.g. Salamandrella, Tylototriton, Bufotes viridis). For several taxa (e.g. Mioproteus, Hyla, Bombina, Rana temporaria), the Western Siberian occurrences represented their most eastern Eurasian records. The most diverse collection of fossil remains was found in the Middle Miocene. Less diversity has been registered towards the Early Pleistocene, potentially due to the progressive cooling of the climate in the Northern Hemisphere. The results of our study showed higher-amplitude changes of precipitation development in Western Siberia from the Early Miocene to the Pliocene, than previously assumed. PMID:28348925
Vasilyan, Davit; Zazhigin, Vladimir S; Böhme, Madelaine
2017-01-01
The present-day amphibian and reptile fauna of Western Siberia are the least diverse of the Palaearctic Realm, as a consequence of the unfavourable climatic conditions that predominate in this region. The origin and emergence of these herpetofaunal groups are poorly understood. Aside from the better-explored European Neogene localities yielding amphibian and reptile fossil remains, the Neogene herpetofauna of Western Asia is understudied. The few available data need critical reviews and new interpretations, taking into account the more recent records of the European herpetofauna. The comparison of this previous data with that of European fossil records would provide data on palaeobiogeographic affiliations of the region as well as on the origin and emergence of the present-day fauna of Western Siberia. An overview of the earliest occurrences of certain amphibian lineages is still needed. In addition, studies that address such knowledge gaps can be useful for molecular biologists in their calibration of molecular clocks. In this study, we considered critically reviewed available data from amphibian and reptile fauna from over 40 Western Siberian, Russian and Northeastern Kazakhstan localities, ranging from the Middle Miocene to Early Pleistocene. Herein, we provided new interpretations that arose from our assessment of the previously published and new data. More than 50 amphibians and reptile taxa were identified belonging to families Hynobiidae, Cryptobranchidae, Salamandridae, Palaeobatrachidae, Bombinatoridae, Pelobatidae, Hylidae, Bufonidae, Ranidae, Gekkonidae, Lacertidae, and Emydidae. Palaeobiogeographic analyses were performed for these groups and palaeoprecipitation values were estimated for 12 localities, using the bioclimatic analysis of herpetofaunal assemblages. The Neogene assemblage of Western Siberia was found to be dominated by groups of European affinities, such as Palaeobatrachidae, Bombina, Hyla , Bufo bufo , and a small part of this assemblage included Eastern Palaearctic taxa (e.g. Salamandrella , Tylototriton , Bufotes viridis ). For several taxa (e.g. Mioproteus, Hyla, Bombina , Rana temporaria ), the Western Siberian occurrences represented their most eastern Eurasian records. The most diverse collection of fossil remains was found in the Middle Miocene. Less diversity has been registered towards the Early Pleistocene, potentially due to the progressive cooling of the climate in the Northern Hemisphere. The results of our study showed higher-amplitude changes of precipitation development in Western Siberia from the Early Miocene to the Pliocene, than previously assumed.
Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?
Leung, Tommy L F
2017-02-01
Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have specific life cycles and transmission modes which reflect certain aspects of the host's ecology. The study of fossil parasites can be conducted using existing techniques in palaeontology and palaeoecology, and microscopic examination of potential material such as coprolites may uncover more fossil evidence of parasitism. However, I also urge caution when interpreting fossils as examples of parasites or parasitism-induced traces. I point out a number of cases where parasitism has been spuriously attributed to some fossil specimens which, upon re-examination, display traits which are just as (if not more) likely to be found in free-living taxa. The study of parasite fossils can provide a more complete picture of the ecosystems and evolution of life throughout Earth's history. © 2015 Cambridge Philosophical Society.
NASA Astrophysics Data System (ADS)
Vidović, Jelena; Nawrot, Rafał; Gallmetzer, Ivo; Haselmair, Alexandra; Tomašových, Adam; Stachowitsch, Michael; Ćosović, Vlasta; Zuschin, Martin
2016-11-01
Shallow and sheltered marine embayments in urbanized areas are prone to the accumulation of pollutants, but little is known about the historical baselines of such marine ecosystems. Here we study foraminiferal assemblages, geochemical proxies and sedimentological data from 1.6 m long sediment cores to uncover ˜ 500 years of anthropogenic pressure from mining, port and industrial activities in the Gulf of Trieste, Italy. From 1600 to 1900 AD, normalized element concentrations and foraminiferal assemblages point to negligible effects of agricultural activities. The only significant anthropogenic activity during this period was mercury mining in the hinterlands of the gulf, releasing high amounts of mercury into the bay and significantly exceeding the standards on the effects of trace elements on benthic organisms. Nonetheless, the fluctuations in the concentrations of mercury do not correlate with changes in the composition and diversity of foraminiferal assemblages due to its non-bioavailability. Intensified agricultural and maricultural activities in the first half of the 20th century caused slight nutrient enrichment and a minor increase in foraminiferal diversity. Intensified port and industrial activities in the second half of 20th century increased the normalized trace element concentrations and persistent organic pollutants (PAH, PCB) in the topmost part of the core. This increase caused only minor changes in the foraminiferal community because foraminifera in Panzano Bay have a long history of adaptation to elevated trace element concentrations. Our study underlines the importance of using an integrated, multidisciplinary approach in reconstructing the history of environmental and anthropogenic changes in marine systems. Given the prolonged human impacts in coastal areas like the Gulf of Trieste, such long-term baseline data are crucial for interpreting the present state of marine ecosystems.
Microfossils in the Antarctic cold desert: Possible implications for Mars
NASA Technical Reports Server (NTRS)
Friedmann, E. I.; Ocampo-Friedmann, R.
1986-01-01
In the Ross Desert of Antarctica, the principal life form is the cryptoendolithic microbial community in the near-surface layers of porous sandstone rocks. Biological, geological, and climatic factors interact in a complex and precarious balance, making life possible in an otherwise hostile environment. Once this balance is tipped, fossilization sets in. In the reverse case, new colonization of the rock surface may be initiated. As a result, fossilization is contemporary with modern life and both may be simultaneously present in a mosaic pattern. Also, different stages of fossilization are present. The process of fossilization takes place in a nonaquatic environment. If primitive life ever appeared on Mars, it is possible that with increasing aridity, life withdrew into an endolithic niche similar to that in the Antarctic desert. Fossilization in a nonaquatic environment may have set in with the result that traces of past life could be preserved. If such was the case, the study of the fossilization process in Antarctica may hold useful information for the analysis of Martian samples for microfossils.
Natural Product Molecular Fossils.
Falk, Heinz; Wolkenstein, Klaus
The natural products synthesized by organisms that were living a long time ago gave rise to their molecular fossils. These can consist of either the original unchanged compounds or they may undergo peripheral transformations in which their skeletons remain intact. In cases when molecular fossils can be traced to their organismic source, they are termed "geological biomarkers".This contribution describes apolar and polar molecular fossils and, in particular biomarkers, along the lines usually followed in organic chemistry textbooks, and points to their bioprecursors when available. Thus, the apolar compounds are divided in linear and branched alkanes followed by alicyclic compounds and aromatic and heterocyclic molecules, and, in particular, the geoporphyrins. The polar molecular fossils contain as functional groups or constituent units ethers, alcohols, phenols, carbonyl groups, flavonoids, quinones, and acids, or are polymers like kerogen, amber, melanin, proteins, or nucleic acids. The final sections discuss the methodology used and the fundamental processes encountered by the biomolecules described, including diagenesis, catagenesis, and metagenesis.
Sharma, M; Shukla, Y
2009-11-01
The discovery of Precambrian microfossils in 1954 opened a new vista of investigations in the field of evolution of life. Although the Precambrian encompasses 87% of the earth's history, the pace of organismal evolution was quite slow. The life forms as categorised today in the three principal domains viz. the Bacteria, the Archaea and the Eucarya evolved during this period. In this paper, we review the advancements made in the Precambrian palaeontology and its contribution in understanding the evolution of life forms on earth. These studies have enriched the data base on the Precambrian life. Most of the direct evidence includes fossil prokaryotes, protists, advanced algal fossils, acritarchs, and the indirect evidence is represented by the stromatolites, trace fossils and geochemical fossils signatures. The Precambrian fossils are preserved in the form of compressions, impressions, and permineralized and biomineralized remains.
Sohn, Jae-Cheon; Labandeira, Conrad C; Davis, Donald R
2015-02-04
It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts. We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages. Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.
Einstein-Podolsky-Rosen steering: Its geometric quantification and witness
NASA Astrophysics Data System (ADS)
Ku, Huan-Yu; Chen, Shin-Liang; Budroni, Costantino; Miranowicz, Adam; Chen, Yueh-Nan; Nori, Franco
2018-02-01
We propose a measure of quantum steerability, namely, a convex steering monotone, based on the trace distance between a given assemblage and its corresponding closest assemblage admitting a local-hidden-state (LHS) model. We provide methods to estimate such a quantity, via lower and upper bounds, based on semidefinite programming. One of these upper bounds has a clear geometrical interpretation as a linear function of rescaled Euclidean distances in the Bloch sphere between the normalized quantum states of (i) a given assemblage and (ii) an LHS assemblage. For a qubit-qubit quantum state, these ideas also allow us to visualize various steerability properties of the state in the Bloch sphere via the so-called LHS surface. In particular, some steerability properties can be obtained by comparing such an LHS surface with a corresponding quantum steering ellipsoid. Thus, we propose a witness of steerability corresponding to the difference of the volumes enclosed by these two surfaces. This witness (which reveals the steerability of a quantum state) enables one to find an optimal measurement basis, which can then be used to determine the proposed steering monotone (which describes the steerability of an assemblage) optimized over all mutually unbiased bases.
Interpreting melanin-based coloration through deep time: a critical review
Lindgren, Johan; Moyer, Alison; Schweitzer, Mary H.; Sjövall, Peter; Uvdal, Per; Nilsson, Dan E.; Heimdal, Jimmy; Engdahl, Anders; Gren, Johan A.; Schultz, Bo Pagh; Kear, Benjamin P.
2015-01-01
Colour, derived primarily from melanin and/or carotenoid pigments, is integral to many aspects of behaviour in living vertebrates, including social signalling, sexual display and crypsis. Thus, identifying biochromes in extinct animals can shed light on the acquisition and evolution of these biological traits. Both eumelanin and melanin-containing cellular organelles (melanosomes) are preserved in fossils, but recognizing traces of ancient melanin-based coloration is fraught with interpretative ambiguity, especially when observations are based on morphological evidence alone. Assigning microbodies (or, more often reported, their ‘mouldic impressions’) as melanosome traces without adequately excluding a bacterial origin is also problematic because microbes are pervasive and intimately involved in organismal degradation. Additionally, some forms synthesize melanin. In this review, we survey both vertebrate and microbial melanization, and explore the conflicts influencing assessment of microbodies preserved in association with ancient animal soft tissues. We discuss the types of data used to interpret fossil melanosomes and evaluate whether these are sufficient for definitive diagnosis. Finally, we outline an integrated morphological and geochemical approach for detecting endogenous pigment remains and associated microstructures in multimillion-year-old fossils. PMID:26290071
OAE2 and the Platycopid Signal
NASA Astrophysics Data System (ADS)
Horne, David
2010-05-01
More than 20 years ago the first detailed multi-proxy investigation of the Cenomanian-Turonian Boundary Event (CTBE) in SE England revealed a distinctive pattern of changes in ostracod assemblages. Coincident with a major global positive carbon stable-isotope excursion during Oceanic Anoxic Event 2 (OAE 2), a marked reduction in floral and faunal diversity was attributed to decreasing levels of dissolved oxygen, consequent on an intensification and expansion of the oceanic Oxygen Minimum Zone into shelf seas. As podocopid ostracod taxa became locally extinct, platycopid ostracods became dominant; from this observation was developed the "Platycopid Signal" hypothesis which claimed that dominance of platycopids in ostracod assemblages signalled dysaerobic conditions on the sea floor. Subsequently this interpretation was widely accepted and applied to the recognition of other dysaerobic intervals in the geological record. However, the modern biological and ecological support claimed for the Platycopid Signal has been challenged and found wanting. In the case of the much-studied CTBE sections in SE England this effectively removes the only remaining pillar of support for the notion of bottom-water dysaerobia in the Anglo-Paris Basin during OAE2, which has already been contradicted by macrofossil, trace fossil and geochemical evidence. A new interpretation of the Platycopid Signal as indicative of oligotrophy is supported by other palaeontological proxy evidence in the CTBE and by observations that living platycopids appear to be adapted to filter-feed on nano- and picoplankton phytodetritus which predominates in oligotrophic conditions. Brandão, S.N. & Horne, D.J., 2009. The Platycopid Signal of oxygen depletion in the ocean: a critical evaluation of the evidence from modern ostracod biology, ecology and depth distribution. Palaeogeography, Palaeoclimatology, Palaeoecology, 286, 126-133. Horne, D.J., Brandão, S.N. & Slipper, I.J. The Platycopid Signal deciphered: responses of ostracod taxa to environmental change during the Cenomanian-Turonian Boundary Event (Late Cretaceous) in SE England. Submitted to Cretaceous Research…
Miklius, Asta; Flower, M.F.J.; Huijsmans, J.P.P.; Mukasa, S.B.; Castillo, P.
1991-01-01
Taal lava series can be distinguished from each other by differences in major and trace element trends and trace element ratios, indicating multiple magmatic systems associated with discrete centers in time and space. On Volcano Island, contemporaneous lava series range from typically calc-alkaline to iron-enriched. Major and trace element variation in these series can be modelled by fractionation of similar assemblages, with early fractionation of titano-magnetite in less iron-enriched series. However, phase compositional and petrographic evidence of mineral-liquid disequilibrium suggests that magma mixing played an important role in the evolution of these series. -from Authors
Variability of intertidal foraminferal assemblages in a salt marsh, Oregon, USA
Milker, Yvonne; Horton, Benjamin P.; Nelson, Alan R.; Engelhart, Simon E.; Witter, Robert C.
2015-01-01
We studied 18 sampling stations along a transect to investigate the similarity between live (rose Bengal stained) foraminiferal populations and dead assemblages, their small-scale spatial variations and the distribution of infaunal foraminifera in a salt marsh (Toms Creek marsh) at the upper end of the South Slough arm of the Coos Bay estuary, Oregon, USA. We aimed to test to what extent taphonomic processes, small-scale variability and infaunal distribution influence the accuracy of sea-level reconstructions based on intertidal foraminifera. Cluster analyses have shown that dead assemblages occur in distinct zones with respect to elevation, a prerequisite for using foraminifera as sea-level indicators. Our nonparametric multivariate analysis of variance showed that small-scale spatial variability has only a small influence on live (rose Bengal stained) populations and dead assemblages. The dissimilarity was higher, however, between live (rose Bengal stained) populations in the middle marsh. We observed early diagenetic dissolution of calcareous tests in the dead assemblages. If comparable post-depositional processes and similar minor spatial variability also characterize fossil assemblages, then dead assemblage are the best modern analogs for paleoenvironmental reconstructions. The Toms Creek tidal flat and low marsh vascular plant zones are dominated by Miliammina fusca, the middle marsh is dominated by Balticammina pseudomacrescens and Trochammina inflata, and the high marsh and upland–marsh transition zone are dominated by Trochamminita irregularis. Analysis of infaunal foraminifera showed that most living specimens are found in the surface sediments and the majority of live (rose Bengal stained) infaunal specimens are restricted to the upper 10 cm, but living individuals are found to depths of 50 cm. The dominant infaunal specimens are similar to those in the corresponding surface samples and no species have been found living solely infaunally. The total numbers of infaunal foraminifera are small compared to the total numbers of dead specimens in the surface samples. This suggests that surface samples adequately represent the modern intertidal environment in Toms Creek.
NASA Astrophysics Data System (ADS)
Faucher, Giulia; Hoffmann, Linn; Bach, Lennart T.; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf
2017-07-01
The Cretaceous ocean witnessed intervals of profound perturbations such as volcanic input of large amounts of CO2, anoxia, eutrophication and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a few calcareous nannofossil species. The correspondence between intervals of high trace metal concentrations and coccolith dwarfism suggests a negative effect of these elements on nannoplankton biocalcification processes in past oceans. In order to test this hypothesis, we explored the potential effect of a mixture of trace metals on growth and morphology of four living coccolithophore species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The phylogenetic history of coccolithophores shows that the selected living species are linked to Mesozoic species showing dwarfism under excess metal concentrations. The trace metals tested were chosen to simulate the environmental stress identified in the geological record and upon known trace metal interactions with living coccolithophore algae.Our laboratory experiments demonstrated that elevated trace metal concentrations, similarly to the fossil record, affect coccolithophore algae size and/or weight. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccoliths of G. oceanica showed a decrease in size only at the highest trace metal concentrations. P. carterae coccolith size was unresponsive to changing trace metal concentrations. These differences among species allow discriminating the most- (P. carterae), intermediate- (E. huxleyi and G. oceanica) and least-tolerant (C. pelagicus) taxa. The fossil record and the experimental results converge on a selective response of coccolithophores to metal availability.These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions.
A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana, USA
NASA Astrophysics Data System (ADS)
Aird, Hannah M.; Ferguson, Katherine M.; Lehrer, Malia L.; Boudreau, Alan E.
2017-03-01
The sulfide assemblages of the Stillwater Complex away from the well-studied ore zones are composed mainly of variable proportions of pyrrhotite, chalcopyrite, pentlandite, and ±pyrite. Excluding vein assemblages and those affected by greenschist and lower temperature alteration, the majority can be classified into two broad assemblages, defined here as pristine (multiphase, often globular in shape) or volatile-bearing (multiphase, high-temperature, volatile-rich minerals such as biotite, hornblende, or an unmixed calcite-dolomite assemblage). The volatile-bearing assemblages are mainly found within and below the J-M reef, where native copper and sphalerite are also locally present. Pristine sulfides are found throughout the stratigraphy. Both groups can be affected by apparent S loss in the form of pyrite being converted to magnetite and chalcopyrite to a Cu-Fe-oxide (delafossite), with little to no silicate alteration. An upward trend from pentlandite-rich to pyrrhotite-rich to pyrite-rich assemblages is observed in the footwall rocks in upper GN-I, and the same trend repeats from just below the reef and continues into the overlying N-II and GN-II. Modeling suggests that the sulfide Ni in the Peridotite Zone is largely controlled by silicate Ni. When taken together, observations are most readily explained by the remobilization of selected elements by a high-temperature fluid with the apparent loss of S > Cu > Ni. This could concentrate ore metals by vapor refining, eventually producing a platinum group element-enriched sulfide ore zone, such as the J-M reef.
Grosch, Eugene G.; McLoughlin, Nicola
2014-01-01
Microtextures in metavolcanic pillow lavas from the Barberton greenstone belt of South Africa have been argued to represent Earth’s oldest trace fossil, preserving evidence for microbial life in the Paleoarchean subseafloor. In this study we present new in situ U–Pb age, metamorphic, and morphological data on these titanite microtextures from fresh drill cores intercepting the type locality. A filamentous microtexture representing a candidate biosignature yields a U–Pb titanite age of 2.819 ± 0.2 Ga. In the same drill core hornfelsic-textured titanite discovered adjacent to a local mafic sill records an indistinguishable U–Pb age of 2.913 ± 0.31 Ga, overlapping with the estimated age of intrusion. Quantitative microscale compositional mapping, combined with chlorite thermodynamic modeling, reveals that the titanite filaments are best developed in relatively low-temperature microdomains of the chlorite matrix. We find that the microtextures exhibit a morphological continuum that bears no similarity to candidate biotextures found in the modern oceanic crust. These new findings indicate that the titanite formed during late Archean ca. 2.9 Ga thermal contact metamorphism and not in an early ca. 3.45 Ga subseafloor environment. We therefore question the syngenicity and biogenicity of these purported trace fossils. It is argued herein that the titanite microtextures are more likely abiotic porphyroblasts of thermal contact metamorphic origin that record late-stage retrograde cooling in the pillow lava country rock. A full characterization of low-temperature metamorphic events and alternative biosignatures in greenstone belt pillow lavas is thus required before candidate traces of life can be confirmed in Archean subseafloor environments. PMID:24912193
Grosch, Eugene G; McLoughlin, Nicola
2014-06-10
Microtextures in metavolcanic pillow lavas from the Barberton greenstone belt of South Africa have been argued to represent Earth's oldest trace fossil, preserving evidence for microbial life in the Paleoarchean subseafloor. In this study we present new in situ U-Pb age, metamorphic, and morphological data on these titanite microtextures from fresh drill cores intercepting the type locality. A filamentous microtexture representing a candidate biosignature yields a U-Pb titanite age of 2.819 ± 0.2 Ga. In the same drill core hornfelsic-textured titanite discovered adjacent to a local mafic sill records an indistinguishable U-Pb age of 2.913 ± 0.31 Ga, overlapping with the estimated age of intrusion. Quantitative microscale compositional mapping, combined with chlorite thermodynamic modeling, reveals that the titanite filaments are best developed in relatively low-temperature microdomains of the chlorite matrix. We find that the microtextures exhibit a morphological continuum that bears no similarity to candidate biotextures found in the modern oceanic crust. These new findings indicate that the titanite formed during late Archean ca. 2.9 Ga thermal contact metamorphism and not in an early ca. 3.45 Ga subseafloor environment. We therefore question the syngenicity and biogenicity of these purported trace fossils. It is argued herein that the titanite microtextures are more likely abiotic porphyroblasts of thermal contact metamorphic origin that record late-stage retrograde cooling in the pillow lava country rock. A full characterization of low-temperature metamorphic events and alternative biosignatures in greenstone belt pillow lavas is thus required before candidate traces of life can be confirmed in Archean subseafloor environments.
Stevenson, Robert A.; Van Hoof, Thomas B.; Mander, Luke
2014-01-01
The Moscovian plant macroflora at Cottage Grove southeastern Illinois, USA, is a key example of Pennsylvanian (323–299 Million years ago) dryland vegetation. There is currently no palynological data from the same stratigraphic horizons as the plant macrofossils, leaves and other vegetative and reproductive structures, at this locality. Consequently, reconstructions of the standing vegetation at Cottage Grove from these sediments lack the complementary information and a more regional perspective that can be provided by sporomorphs (prepollen, pollen, megaspores and spores). In order to provide this, we have analysed the composition of fossil sporomorph assemblages in two rock samples taken from macrofossil-bearing inter-coal shale at Cottage Grove. Our palynological data differ considerably in composition and in the dominance-diversity profile from the macrofossil vegetation at this locality. Walchian conifers and pteridosperms are common elements in the macroflora, but are absent in the sporomorph assemblages. Reversely, the sporomorph assemblages at Cottage Grove comprise 17 spore taxa (∼16% and ∼63% of the total assemblages) that are known from the lycopsid orders Isoetales, Lepidodendrales and Selaginallales, while Cottage Grove’s macrofloral record fails to capture evidence of a considerable population of coal forest lycopsids. We interpret our results as evidence that the Pennsylvanian dryland glacial landscape at Cottage Grove included fragmented populations of wetland plants living in refugia. PMID:25392752
NASA Astrophysics Data System (ADS)
Horn, B. L. D.; Melo, T. M.; Schultz, C. L.; Philipp, R. P.; Kloss, H. P.; Goldberg, K.
2014-11-01
The Santacruzodon assemblage zone was originally defined as a vertebrate fossil assemblage composed basically of non-mammalian cynodonts found in Santa Cruz do Sul and Venâncio Aires municipalities in Southern Brazil. This assemblage zone was positioned at the top of the Sequence I, in the Triassic Santa Maria Supersequence, Paraná Basin. However, the Santacruzodon assemblage zone does not occur across the entire area of the Santa Maria Supersequence. Based on new paleontological, structural and sedimentological data, we propose the existence of a new third-order sequence (Santa Cruz Sequence) between Sequences I and II in the Santa Maria Supersequence. Satellite image analysis was used to identify regional, NW- and NE-oriented lineaments that limit the occurrence zone. Outcrop data allowed the identification of a regional, angular unconformity that bounds the new sequence. The faunal content allowed the correlation of the new Santa Cruz Sequence with Madagascar's Isalo II fauna, corresponding to the Ladinian (Middle Triassic). New names were suggested for the sequences in the Santa Maria Supersequence, since the Santa Cruz Sequence was deposited between the former Sequences I and II. This unit was deposited or preserved exclusively on the hanging wall of normal faults, being absent from the adjacent structural blocks.
Otero, Olga; Pinton, Aurélie; Cappetta, Henri; Adnet, Sylvain; Valentin, Xavier; Salem, Mustapha; Jaeger, Jean-Jacques
2015-01-01
In the early nineteen sixties, Arambourg and Magnier found some freshwater fish (i.e., Polypterus sp., Siluriformes indet. and Lates sp.) mixed with marine members in an Eocene vertebrate assemblage at Gebel Coquin, in the southern Libyan Desert. This locality, aged ca 37–39Ma and now known under the name of Dur At-Talah, has been recently excavated. A new fish assemblage, mostly composed of teeth, was collected by the Mission Paléontologique Franco-Libyenne. In this paper, we describe freshwater fish members including a dipnoan (Protopterus sp.), and several actinopterygians: bichir (Polypterus sp.), aba fish (Gymnarchus sp.), several catfishes (Chrysichthys sp. and a mochokid indet.), several characiforms (including the tiger fish Hydrocynus sp., and one or two alestin-like fish), and perciforms (including the snake-head fish Parachanna sp. and at least one cichlid). Together with the fossiliferous outcrops at Birket Qarun in Egypt, the Libyan site at Dur At-Talah reduces a 10-Ma chronological gap in the fossil record of African freshwater fish. Their fish assemblages overlap in their composition and thus constitute a rather homogenous, original and significant amount of new elements regarding the Paleogene African ichthyofauna. This supports the establishment of the modern African freshwater fish fauna during this time period because these sites mostly contain the earliest members known in modern genera. PMID:26674637
Otero, Olga; Pinton, Aurélie; Cappetta, Henri; Adnet, Sylvain; Valentin, Xavier; Salem, Mustapha; Jaeger, Jean-Jacques
2015-01-01
In the early nineteen sixties, Arambourg and Magnier found some freshwater fish (i.e., Polypterus sp., Siluriformes indet. and Lates sp.) mixed with marine members in an Eocene vertebrate assemblage at Gebel Coquin, in the southern Libyan Desert. This locality, aged ca 37-39Ma and now known under the name of Dur At-Talah, has been recently excavated. A new fish assemblage, mostly composed of teeth, was collected by the Mission Paléontologique Franco-Libyenne. In this paper, we describe freshwater fish members including a dipnoan (Protopterus sp.), and several actinopterygians: bichir (Polypterus sp.), aba fish (Gymnarchus sp.), several catfishes (Chrysichthys sp. and a mochokid indet.), several characiforms (including the tiger fish Hydrocynus sp., and one or two alestin-like fish), and perciforms (including the snake-head fish Parachanna sp. and at least one cichlid). Together with the fossiliferous outcrops at Birket Qarun in Egypt, the Libyan site at Dur At-Talah reduces a 10-Ma chronological gap in the fossil record of African freshwater fish. Their fish assemblages overlap in their composition and thus constitute a rather homogenous, original and significant amount of new elements regarding the Paleogene African ichthyofauna. This supports the establishment of the modern African freshwater fish fauna during this time period because these sites mostly contain the earliest members known in modern genera.
NASA Astrophysics Data System (ADS)
Suarez, C. A.; Kohn, M. J.
2013-12-01
Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.
Emergent Bilinguals: Framing Students as Statistical Data?
ERIC Educational Resources Information Center
Koyama, Jill; Menken, Kate
2013-01-01
Immigrant youth who are designated as English language learners in American schools--whom we refer to as "emergent bilinguals"--are increasingly framed by numerical calculations. Utilizing the notion of assemblage from actor-network theory (ANT), we trace how emergent bilinguals are discursively constructed by officials, administrators,…
Klymiuk, Ashley A
2016-09-01
This study builds on previous investigations of paleomycological diversity within permineralized plants of a significant Eocene paleobotanical locality, the Princeton Chert. The fungal body fossils described here occur in decayed rhizomes of the extinct semi-aquatic fern Dennstaedtiopsis aerenchymata Fungi include vegetative hyphae throughout the plant tissue, as well as a dense assemblage of >100 dematiaceous spores. The spores occur in a discrete zone surrounding two extraneous rootlets of other plants, which penetrated the fern tissue post-mortem. Spores are obovoid and muriform, composed of 8-12 cells with constricted septa and produced from hyaline or slightly pigmented hyphae. The spores are morphologically similar to both asexual reproductive dictyospores of phylogenetically disparate microfungi attributed to the morphogenus Monodictys and perennating dictyochlamydospores that occur in the anamorph genus Phoma In addition to expanding the early Eocene fossil record for Ascomycota, these specimens also provide new insight into the rapidity of initial phases of the fossilization process in this important paleobotanical locality. © 2016 by The Mycological Society of America.
NASA Astrophysics Data System (ADS)
Bono, Richard K.; Clarke, Julia; Tarduno, John A.; Brinkman, Donald
2016-12-01
Bird fossils from Turonian (ca. 90 Ma) sediments of Axel Heiberg Island (High Canadian Arctic) are among the earliest North American records. The morphology of a large well-preserved humerus supports identification of a new volant, possibly diving, ornithurine species (Tingmiatornis arctica). The new bird fossils are part of a freshwater vertebrate fossil assemblage that documents a period of extreme climatic warmth without seasonal ice, with minimum mean annual temperatures of 14 °C. The extreme warmth allowed species expansion and establishment of an ecosystem more easily able to support large birds, especially in fresh water bodies such as those present in the Turonian High Arctic. Review of the high latitude distribution of Northern Hemisphere Mesozoic birds shows only ornithurine birds are known to have occupied these regions. We propose physiological differences in ornithurines such as growth rate may explain their latitudinal distribution especially as temperatures decline later in the Cretaceous. Distribution and physiology merit consideration as factors in their preferential survival of parts of one ornithurine lineage, Aves, through the K/Pg boundary.
Life cycle and morphology of a cambrian stem-lineage loriciferan.
Peel, John S; Stein, Martin; Kristensen, Reinhardt Møbjerg
2013-01-01
Cycloneuralians form a rich and diverse element within Cambrian assemblages of exceptionally preserved fossils. Most resemble priapulid worms whereas other Cycloneuralia (Nematoda, Nematomorpha, Kinorhyncha, Loricifera), well known at the present day, have little or no fossil record. First reports of Sirilorica Peel, 2010 from the lower Cambrian Sirius Passet fauna of North Greenland described a tubular lorica covering the abdomen and part of a well developed introvert with a circlet of 6 grasping denticles near the lorica. The introvert is now known to terminate in a narrow mouth tube, while a conical anal field is also developed. Broad muscular bands between the plates in the lorica indicate that it was capable of movement by rhythmic expansion and contraction of the lorica. Sirilorica is regarded as a macrobenthic member of the stem-lineage of the miniaturised, interstitial, present day Loricifera. Like loriciferans, Sirilorica is now known to have grown by moulting. Evidence of the life cycle of Sirilorica is described, including a large post-larval stage and probably an initial larva similar to that of the middle Cambrian fossil Orstenoloricusshergoldii.
Life Cycle and Morphology of a Cambrian Stem-Lineage Loriciferan
Peel, John S.; Stein, Martin; Kristensen, Reinhardt Møbjerg
2013-01-01
Cycloneuralians form a rich and diverse element within Cambrian assemblages of exceptionally preserved fossils. Most resemble priapulid worms whereas other Cycloneuralia (Nematoda, Nematomorpha, Kinorhyncha, Loricifera), well known at the present day, have little or no fossil record. First reports of Sirilorica Peel, 2010 from the lower Cambrian Sirius Passet fauna of North Greenland described a tubular lorica covering the abdomen and part of a well developed introvert with a circlet of 6 grasping denticles near the lorica. The introvert is now known to terminate in a narrow mouth tube, while a conical anal field is also developed. Broad muscular bands between the plates in the lorica indicate that it was capable of movement by rhythmic expansion and contraction of the lorica. Sirilorica is regarded as a macrobenthic member of the stem-lineage of the miniaturised, interstitial, present day Loricifera. Like loriciferans, Sirilorica is now known to have grown by moulting. Evidence of the life cycle of Sirilorica is described, including a large post-larval stage and probably an initial larva similar to that of the middle Cambrian fossil Orstenoloricusshergoldii . PMID:23991198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unrug, R.; Unrug, S.; Ausich, W.I.
The stratigraphic continuity of the Ocoee Supergroup established recently allows one to extrapolate the Paleozoic age of the Walden Creek Group determined on paleontological evidence to the entire Ocoee succession. The Walden Creek Group rocks contain a fossil assemblage of fenestrate bryozoan, algal, trilobite, ostracod, brachiopod and echinozoan fragments and agglutinated foraminifer tests that indicate Silurian or younger Paleozoic age. The fossils occur in carbonate clasts in polymict conglomerates, and debris-flow breccia beds, and in olistoliths of bedded carbonate and shale, and calcarenite turbidite beds. These carbonate lithologies form a minor, but characteristic constituent of the Walden Creek Group. Fossilmore » have been found also in shale and mudstone siliciclastic lithologies of the Walden Creek Group. The fossils are fragmented and poorly preserved because of several cycles of cementation and solution in the carbonate rocks and a pervasive cleavage in the fine-grained siliciclastic rocks. Recently reported Mississippian plant fossils from the Talladega belt indicate widespread occurrence of Middle Paleozoic basins in the Western Blue Ridge. These pull-apart basins formed in the stress field generated by northward movement of Laurentia past the western margin of Gondwana after the Taconian-Famatinian collision in the Ordovician.« less
Campaña, I.; Pérez-González, A.; Benito-Calvo, A.; Rosell, J.; Blasco, R.; de Castro, J. M. Bermúdez; Carbonell, E.; Arsuaga, J. L.
2016-01-01
Gran Dolina is a cavity infilled by at least 25 m of Pleistocene sediments. This sequence contains the TD6 stratigraphic unit, whose records include around 170 hominin bones that have allowed the definition of a new species, Homo antecessor. This fossil accumulation was studied as a single assemblage and interpreted as a succession of several human home bases. We propose a complete stratigraphic context and sedimentological interpretation for TD6, analyzing the relationships between the sedimentary facies, the clasts and archaeo-palaeontological remains. The TD6 unit has been divided into three sub-units and 13 layers. Nine sedimentary facies have been defined. Hominin remains appear related to three different sedimentary facies: debris flow facies, channel facies and floodplain facies. They show three kinds of distribution: first a group of scattered fossils, then a group with layers of fossils in fluvial facies, and third a group with a layer of fossils in mixed fluvial and gravity flow facies. The results of this work suggest that some of these hominin remains accumulated in the cave by geological processes, coming from the adjacent slope above the cave or the cave entry, as the palaeogeography and sedimentary characteristics of these allochthonous facies suggest. PMID:27713562
A solution to the worn tooth conundrum in primate functional anatomy
Ungar, Peter S.; M'Kirera, Francis
2003-01-01
Worn teeth are a bane to paleobiologists interested in the diets of human ancestors and other fossil primates. Although worn teeth dominate fossil assemblages, their shapes are usually not used to reconstruct the diets of extinct species. The problem is that traditional studies of primate dental functional anatomy have focused on unworn morphology. This has limited most functional analyses to only a few well-represented fossil species. This paper introduces a method to characterize and compare worn occlusal morphology in primates using laser scanning and geographic information systems technologies. A study of variably worn chimpanzee and gorilla molars indicates that differences between these species in tooth shape remain consistent at given stages of wear. Although cusp slope decreases with wear in both taxa, angularity values remain unchanged. These results indicate that African ape teeth wear in a manner that keeps them mechanically efficient for fracturing specific foods. Studies of changes in tooth shape with wear add a new dimension to dental functional anatomy, and offer a more complete picture of dental-dietary adaptations. Also, given how rare unworn teeth are in the fossil record, the ability to include worn specimens in analyses opens the door to reconstructing the diets of many more extinct primate groups, allowing us to better understand the adaptive radiation of our order. PMID:12634426
The Middle Eocene flora of Csordakút (N Hungary)
NASA Astrophysics Data System (ADS)
Erdei, Boglárka; Rákosi, László
2009-02-01
The Middle Eocene fossil plant assemblage from Csordakút (N Hungary) comprises plant remains preserved exclusively as impressions. Algae are represented by abundant remains of Characeae, including both vegetative fragments and gyrogonites. Remains of angiosperms comprise Lauraceae (
Managing CO{sub 2} emissions in Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obioh, I.B.; Oluwole, A.F.; Akeredolu, F.A.
The energy resources in Nigeria are nearly equally divided between fossil fuels and biofuels. The increasing pressure on them, following expected increased population growth, may lead to substantial emissions of carbon into the atmosphere. Additionally agricultural and forestry management practices in vogue are those related to savannah burning and rotational bush fallow systems, which have been clearly implicated as important sources of CO{sub 2} and trace gases. An integrated model for the prediction of future CO{sub 2} emissions based on fossil fuels and biomass fuels requirements, rates of deforestation and other land-use indices is presented. This is further based onmore » trends in population and economic growth up to the year 2025, with a base year in 1988. A coupled carbon cycle-climate model based on the contribution of CO{sub 2} and other trace gases is established from the proportions of integrated global warming effects for a 20-year averaging time using the product of global warming potential (GWP) and total emissions. An energy-technology inventory approach to optimal resources management is used as a tool for establishing the future scope of reducing the CO{sub 2} emissions through improved fossil fuel energy efficiencies. Scenarios for reduction based on gradual to swift shifts from biomass to fossil and renewable fuels are presented together with expected policy options required to effect them.« less
Late Mississippian gastropods of the Chainman Shale, west-central Utah
Gordon, Mackenzie; Yochelson, Ellis L.
1987-01-01
The Chainman Shale of Mississippian (Osagean to late Chesterian) age, well exposed in the Confusion Range of western Utah, has yielded a profusion of fossils during investigations conducted by the U.S. Geological Survey in the past 30 years. Conspicuous among these fossils are gastropods, which range in age from latest Meramecian to late Chesterian. In west-central Utah, not far from the State boundary, the Chainman outcrop belt stretches from Granite Mountain south to the northern part of the Needle Range, a distance of69 miles (110 km). The Chainman thickens from north to south; the section at Granite Mountain is 1,315 feet (401 m) thick and that at Jensen Wash in the Burbank Hills, 2,203 feet (671 m). The rocks of the Chainman Shale record a general though irregular shallowing of the area from moderate depths of 330 feet (100 m) or so to quite shallow depths of perhaps locally little more than 3-6 feet (1-2 m). Most of the gastropods occur with ammonoids in a facies of shale or shale containing phosphatic limestone concretions, In this lutaceous facies, Glabrocingulum is predominant and Lunulazona and Retispira are common; these genera are represented by a succession of species. A thick limestone unit is present in some areas in the upper part of the formation, particularly in the vicinity of Skunk Spring, where it is 318 feet (97 m) thick. This limestone unit represents a calcareous shoal facies having an entirely different gastropod fauna, characterized by Catazona and species of Naticopsis. The Chainman Shale could be easily zoned by gastropods, but we are not proposing such azonation. A framework of ammonoid and foraminiferal zones already is available, and we prefer to regard the gastropod assemblages as part of this framework. The assemblages are confined to the major ammonoid and foraminiferal zones, and only three of the gastropod species seem to range across major zonal boundaries. These species are Bellerophon (Bellerophon vespertinus Gordon and Yochelson and Straparollus (Euomphalus intermedius Gordon and Yochelson, both of which are present in Mamet Foraminifer Zones 17 and 18, and Bellazona polita n. sp., which locally seems to range from Mamet Foraminifer Zone 16s into the basal part of Zone 17. Eight assemblages, seven of them in ascending stratigraphic order, are recognized within the gastropod fauna of the Chainman Shale; the eighth assemblage is a facies equivalent of the sixth highest. The seven mud-dwelling assemblages are characterized mainly by species of Glabrocingulum and Lunulazona, which together account for 80 percent of the gastropod specimens in our Chainman collections. The eighth assemblage, that in the shallow-water carbonate facies, is the one characterized by Catazona and species of Naticopsis. The lowermost gastropod assemblage, that of Lunulazona nodomarginata (McChesney), includes 10 species and is restricted to the northern end of the study area, where it occurs in the upper part of the Goniatites americanus Ammonoid Zone, in beds equivalent to the lower part of Mamet's Foraminifer Zone 16i. We regard the entire G. americanus Zone as late Meramecian in age. All the zones higher in the Chainman are Chesterian in age. The second assemblage is that of Lunulazona costata Sadlick and Neilsen, which includes six gastropod species; it occurs in the Goniatites granos us Ammonoid Zone, equivalent to Mamet's Foraminifer Zone 16s. Three gastropod assemblages are recognized within the Paracravenoceras barnettense Ammonoid Zone, equivalent to Mamet's Foraminifer Zone 17. The earliest, that of Lunulazona sadlicki, includes five species; the intermediate, that of Glabrocingulum hosei n. sp., four species; and the highest, that of Glabrocingulum confusionense n, sp., two species (the second being G. hosei). Two laterally equivalent facies-controlled assemblages are present within the Cravenoceras hesperium Ammonoid Zone, most of which is equivalent to Mamet's Foraminifer Zone 18
Milankovitch Modulation of the Ecosystem Dynamics of Fossil Great Lakes
NASA Astrophysics Data System (ADS)
Whiteside, J. H.; Olsen, P. E.; Eglinton, T. I.; Cornet, B.; Huber, P.; McDonald, N. G.
2008-12-01
Triassic and Early Jurassic lacustrine deposits of eastern North American rift basins preserve a spectacular record of precession-related Milankovitch forcing in the Pangean tropics. The abundant and well-preserved fossil fish assemblages from these great lakes demonstrate a sequence of cyclical changes that track the permeating hierarchy of climatic cycles. To detail ecosystem processes correlating with succession of fish communities, we measured bulk δ13Corg through a 100 ky series of Early Jurassic climatic precession-forced lake level cycles in the lower Shuttle Meadow Formation of the Hartford rift basin, CT. The deep-water phase of one of these cycles, the Bluff Head bed, has produced thousands of articulated fish. We observe fluctuations in the bulk δ13Corg of the cyclical strata that reflect differing degrees of lake water stratification, nutrient levels, and relative proportion of algal vs. plant derived organic matter that trace fish community changes. We can exclude extrinsic changes in the global exchangeable reservoirs as an origin of this variability because molecule-level δ13C of n-alkanes of plant leaf waxes from the same strata show no such variability. While at higher taxonomic levels the fish communities responded largely by sorting of taxa by environmental forcing, at the species level the holostean genus Semionotus responded by in situ evolution, and ultimately extinction, of a species flock. Fluctuations at the higher frequency, climatic precessional scale are mirrored at lower frequency, eccentricity modulated, scales, all following the lake-level hierarchical pattern. Thus, lacustrine isotopic ratios amplify the Milankovitch climate signal that was already intensified by sequelae of the end-Triassic extinctions. The degree to which the ecological structure of modern lakes responds to similar environmental cyclicity is largely unknown, but we suspect similar patterns and processes within the Neogene history of the East African great lakes, which may be modified in the future by anthropogenic CO2-driven intensification of the hydrological cycle.
Microfossils of the Early Archean Apex chert - New evidence of the antiquity of life
NASA Technical Reports Server (NTRS)
Schopf, J. W.
1993-01-01
Eleven taxa (including eight heretofore undescribed species) of cellularly preserved filamentous microbes, among the oldest fossils known, have been discovered in a bedded chert unit of the Early Archean Apex Basalt of northwestern Western Australia. This prokaryotic assemblage establishes that trichomic cyanobacteriumlike microorganisms were extant and morphologically diverse at least as early as about 3465 million years ago and suggests that oxygen-producing photoautotrophy may have already evolved by this early stage in biotic history.
Morphology and systematics of cordaites of Pennsylvanian coal swamps of Euramerica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costanza, S.H.
1984-01-01
Cordaites are extinct coniferophytic shrubs and trees of the Late Paleozoic. They were most prominent in tropical coal swamps existing from the Westphalian A-B boundary of Western Europe to the middle Desmoinesian (Westphalian D) of midcontinental United States. Structurally preserved coal-ball cordaites from Pennsylvanian Euramerican coals were analyzed for whole plant understanding, morphological variation, and indications of ecological tolerances. Organ assemblages for individual species were established from coals where coal balls contain single cordaitean seed species. Cordaitean organ assemblages were stratigraphically compiled, compared, and cross-correlated. Cordaitean assemblage comparisons of most known coals with coal balls confirm organ assemblages established formore » Pennsylvanioxylon, and indicate that Mesoxylon bore Mitrospermum ovules. Mesoxylon and Pennsylvanioxylon are the only coal-swamp Pennsylvanian cordaitean genera recognized herein. They are consistently different in stem xylem development, leaf and branch trace formation, in amount of cortical sclerenchyma and associated organs. Morphology of coal-swamp cordaites, especially cortical aerenchyma in Pennsylvanioxylon, indicates semi-aquatic ecological adaptation. Coal-swamp cordaitean lineages may demonstrate both gradualistic and punctuational evolutionary changes.« less
NASA Astrophysics Data System (ADS)
Barboni, Ronaldo; Dutra, Tânia Lindner
2015-11-01
This paper describes new ginkgophytes recently discovered in a new exposure of the original type section of the Passo das Tropas Member, Santa Maria Formation, linked to Paraná Basin succession. The well-preserved fossils come from a very fine red laminated mudstone representing a lacustrine interval, within a broader low-sinuosity fluvial succession. The material occurs in a Dicroidium-dominated assemblage and is represented by the leaves Baiera and Sphenobaiera, accompanied by the fertile structures Hamshawvia and Stachyopytis. Cuticle fragments preserved on leaf impressions of Sphenobaiera schenkii show xeromorphic features. The geology, paleogeography and paleoclimate of the Passo das Tropas Member (PTM), Santa Maria Formation, is discussed. By comparing these ginkgophytes with those from other Gondwanan assemblages, the Brazilian deposits earlier assigned to Anisian-Ladinian age can now be extended to the Carnian age.
NASA Astrophysics Data System (ADS)
Ekwurzel, B.; Frumhoff, P. C.; Allen, M. R.; Boneham, J.; Heede, R.; Dalton, M. W.; Licker, R.
2017-12-01
Given the progress in climate change attribution research over the last decade, attribution studies can inform policymakers guided by the UNFCCC principle of "common but differentiated responsibilities." Historically this has primarily focused on nations, yet requests for information on the relative role of the fossil energy sector are growing. We present an approach that relies on annual CH4 and CO2 emissions from production through to the sale of products from the largest industrial fossil fuel and cement production company records from the mid-nineteenth century to present (Heede 2014). Analysis of the global trends with all the natural and human drivers compared with a scenario without the emissions traced to major carbon producers over full historical versus select periods of recent history can be policy relevant. This approach can be applied with simple climate models and earth system models depending on the type of climate impacts being investigated. For example, results from a simple climate model, using best estimate parameters and emissions traced to 90 largest carbon producers, illustrate the relative difference in global mean surface temperature increase over 1880-2010 after removing these emissions from 1980-2010 (29-35%) compared with removing these emissions over 1880-2010 (42-50%). The changing relative contributions from the largest climate drivers can be important to help assess the changing risks for stakeholders adapting to and reducing exposure and vulnerability to regional climate change impacts.
NASA Astrophysics Data System (ADS)
Sousa Filho, F. E.; da Silva, J. H.; Saraiva, G. D.; Abagaro, B. T. O.; Barros, O. A.; Saraiva, A. A. F.; Viana, B. C.; Freire, P. T. C.
2016-03-01
Fossils are mineralized remains or traces from animals, plants and other organisms aged to about 108 years. The chemical processes of fossilization are dated back from old geological periods on Earth. The understanding of these processes and the structure of the fossils are one of the goals of paleontology and geology in the sedimentary environments. Many researches have tried to unveil details about special kinds of biological samples; however, a lack of data is noticed for various other specimens. This study reports the investigations through infrared spectroscopy, X-ray fluorescence and X-ray diffraction measurements for two types of fish fossils from the Cretaceous Period. The sample of Cladocyclus gardneri and Vinctifer comptoni fossils were collected from the Ipubi Formation, being one of the less studied, among the formations that constitute the important Santana group in the Araripe Basin, Brazil. The results obtained through different techniques, showed that the C. gardneri fish fossil contains hydroxyapatite and calcite as constituents whereas its rock matrix was formed by calcite, quartz and pyrite. Regarding the V. comptoni, the measurements confirmed the presence of hydroxyapatite in the fossil and its rock matrix gypsum, pyrite, quartz and calcite. The above scientific data contributed to the understanding the fossil formation in the Ipubi Formation, an important environment of the Cretaceous Period, which is rich in well-preserved fossils from different species.
Frontalini, Fabrizio; Buosi, Carla; Da Pelo, Stefania; Coccioni, Rodolfo; Cherchi, Antonietta; Bucci, Carla
2009-06-01
In order to assess the response of benthic foraminifera to trace element pollution, a study of benthic foraminiferal assemblages was carried out into sediment samples collected from the Santa Gilla lagoon (Sardinia, Italy). The lagoon has been contaminated by industrial waste, mainly trace elements, as well as by agricultural and domestic effluent. The analysis of surficial sediment shows enrichment in trace elements, including Cr, Cu, Hg, Ni, Pb and Zn. Biotic and abiotic data, analyzed with multivariate techniques of statistical analysis, reveal a distinct separation of both the highly polluted and less polluted sampling sites. The innermost part of the lagoon, comprising the industrial complex at Macchiareddu, is exposed to a high load of trace elements which are probably enhanced by their accumulation in the finer sediment fraction. This area reveals lower diversity and higher percentages of abnormalities when compared to the outermost part of the lagoon.
The Joy of Learning: Feminist Materialist Pedagogies and the Freedom of Education
ERIC Educational Resources Information Center
Tamboukou, Maria
2018-01-01
In this article, I trace lines of materialist pedagogies in the history of women workers' education following feminist interpretations of Spinoza's assemblage of joyful affects. More particularly, I focus on the notions of "laetitia" [joy], "gaudium" [gladness] and "hilaritas" [cheerfulness] as entanglements of joy…
Martill, David M.; Andres, Brian
2018-01-01
Pterosaurs were the first vertebrates to evolve powered flight and the largest animals to ever take wing. The pterosaurs persisted for over 150 million years before disappearing at the end of the Cretaceous, but the patterns of and processes driving their extinction remain unclear. Only a single family, Azhdarchidae, is definitively known from the late Maastrichtian, suggesting a gradual decline in diversity in the Late Cretaceous, with the Cretaceous–Paleogene (K-Pg) extinction eliminating a few late-surviving species. However, this apparent pattern may simply reflect poor sampling of fossils. Here, we describe a diverse pterosaur assemblage from the late Maastrichtian of Morocco that includes not only Azhdarchidae but the youngest known Pteranodontidae and Nyctosauridae. With 3 families and at least 7 species present, the assemblage represents the most diverse known Late Cretaceous pterosaur assemblage and dramatically increases the diversity of Maastrichtian pterosaurs. At least 3 families—Pteranodontidae, Nyctosauridae, and Azhdarchidae—persisted into the late Maastrichtian. Late Maastrichtian pterosaurs show increased niche occupation relative to earlier, Santonian-Campanian faunas and successfully outcompeted birds at large sizes. These patterns suggest an abrupt mass extinction of pterosaurs at the K-Pg boundary. PMID:29534059
Middle Miocene vertebrates from the Amazonian Madre de Dios Subandean Zone, Perú
NASA Astrophysics Data System (ADS)
Antoine, Pierre-Olivier; Roddaz, Martin; Brichau, Stéphanie; Tejada-Lara, Julia; Salas-Gismondi, Rodolfo; Altamirano, Ali; Louterbach, Mélanie; Lambs, Luc; Otto, Thierry; Brusset, Stéphane
2013-03-01
A new middle Miocene vertebrate fauna from Peruvian Amazonia is described. It yields the marsupials Sipalocyon sp. (Hathliacynidae) and Marmosa (Micoureus) cf. laventica (Didelphidae), as well as an unidentified glyptodontine xenarthran and the rodents Guiomys sp. (Caviidae), “Scleromys” sp., cf. quadrangulatus-schurmanni-colombianus (Dinomyidae), an unidentified acaremyid, and cf. Microsteiromys sp. (Erethizontidae). Apatite Fission Track provides a detrital age (17.1 ± 2.4 Ma) for the locality, slightly older than its inferred biochronological age (Colloncuran-early Laventan South American Land Mammal Ages: ˜15.6-13.0 Ma). Put together, both the mammalian assemblage and lithology of the fossil-bearing level point to a mixture of tropical rainforest environment and more open habitats under a monsoonal-like tropical climate. The fully fluvial origin of the concerned sedimentary sequence suggests that the Amazonian Madre de Dios Subandean Zone was not part of the Pebas mega-wetland System by middle Miocene times. This new assemblage seems to reveal a previously undocumented “spatiotemporal transition” between the late early Miocene assemblages from high latitudes (Patagonia and Southern Chile) and the late middle Miocene faunas of low latitudes (Colombia, Perú, Venezuela, and ?Brazil).
NASA Astrophysics Data System (ADS)
Cupper, Matthew L.; Duncan, Jacqui
2006-09-01
The Tedford subfossil locality at Lake Menindee preserves a diverse assemblage of marsupials, monotremes and placental rodents. Of the 38 mammal taxa recorded at the site, almost a third are of extinct megafauna. Some of the bones are articulated or semi-articulated and include almost complete skeletons, indicating that aeolian sediments rapidly buried the animals following death. New optical ages show the site dates to the early part of the last glacial (55,700 ± 1300 yr weighted mean age). This is close to the 51,200-39,800 yr Australia-wide extinction age for megafauna suggested by Roberts et al. [2001, Science 292:1888-1892], but like all previous researchers, we cannot conclusively determine whether humans were implicated in the deaths of the animals. Although an intrusive hearth at the site dating to 45,100 ± 1400 yr ago is the oldest evidence of human occupation of the Darling River, no artifacts were identified in situ within the sub-fossil-bearing unit. Non-anthropogenic causes, such as natural senescence or ecosystem stress due to climatic aridity, probably explain the mortality of the faunal assemblage at Lake Menindee.
NASA Astrophysics Data System (ADS)
Métais, Grégoire; Mennecart, Bastien; Roohi, Ghazala
2017-04-01
A new assemblage of stem pecoran ruminants from the Oligocene Chitarwata Formation (lower Bugti Member), Bugti Hills (Pakistan), consists of three identified genera and another indeterminate ruminant. Although limited, the dental and postcranial material is sufficient to identify the genera Amphitragulus and Mosaicomeryx, two common forms known from middle to late Oligocene deposits of Europe, thus reinforcing the 'middle' Oligocene age of the lowermost Chitarwata Formation. Mosaicomeryx is reported for the first time from the Indian Subcontinent and this occurrence considerably expands its geographical distribution. A new genus and species, Paalitherium gurki, is erected on the basis of an unusual and unique association of characters on its lower molars. The unclear definition and occurrences of? Gelocus gajensis Pilgrim, 1912 are re-examined in the light of new data from the Bugti and Zinda Pir areas (Pakistan). The new ruminant fauna from Paali is clearly distinctive from the early Miocene assemblage known from Bugti. In accordance with other fossil evidence, the ruminant fauna described here suggests the existence of a tropical forested environment under monsoonal regime with soft food supplies during the time of deposition of the lowermost Chitarwata Formation.
Zilhão, João; Banks, William E.; d’Errico, Francesco; Gioia, Patrizia
2015-01-01
Based on the morphology of two deciduous molars and radiocarbon ages from layers D and E of the Grotta del Cavallo (Lecce, Italy), assigned to the Uluzzian, it has been proposed that modern humans were the makers of this Early Upper Paleolithic culture and that this finding considerably weakens the case for an independent emergence of symbolism among western European Neandertals. Reappraisal of the new dating evidence, of the finds curated in the Taranto Antiquities depot, and of coeval publications detailing the site’s 1963–66 excavations shows that (a) Protoaurignacian, Aurignacian and Early Epigravettian lithics exist in the assemblages from layers D and E, (b) even though it contains both inherited and intrusive items, the formation of layer D began during Protoaurignacian times, and (c) the composition of the extant Cavallo assemblages is influenced in a non-negligible manner by the post-hoc assignment of items to stratigraphic units distinct from that of original discovery. In addition, a major disturbance feature affected the 1960s excavation trench down to Mousterian layer F, this feature went unrecognized until 1964, the human remains assigned to the Uluzzian were discovered that year and/or the previous year, and there are contradictions between field reports and the primary anthropological description of the remains as to their morphology and level of provenience. Given these major contextual uncertainties, the Cavallo teeth cannot be used to establish the authorship of the Uluzzian. Since this technocomplex’s start date is ca. 45,000 calendar years ago, a number of Neandertal fossils are dated to this period, and the oldest diagnostic European modern human fossil is the <41,400 year-old Oase 1 mandible, Neandertal authorship of the Uluzzian remains the parsimonious reading of the evidence. PMID:26154139
Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview
NASA Astrophysics Data System (ADS)
Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.
2010-07-01
Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the OT1 assemblage, possibly corresponds to a specific, localised ecosystem within the Kem Kem beds compound assemblage. Microfossils and facies from the Aoufous Formation, corresponding to the top of the compound assemblage, provide evidence of extremely abiotic conditions (hypersalinity), and thus of great environmental instability. At the base of the Akrabou Formation the first ammonite bioevent, Neolobites, corresponds to the onset of the marine transgression in the early Late Cenomanian while the Agoult assemblage (Late Cenomanian?) contains a variety of small fish species that have Central Tethyan affinities. Finally, the youngest Mammites bioevent in the late Early Turonian corresponds to a deepening of the marine environment: this sequence is isochronous with the Goulmima assemblage, a diverse collection of fish and other marine taxa, and shows affinities with taxa from the South Atlantic, the Central Tethys and the Western Interior seaway of North America, and further highlights the biogeographical importance of these North African Late Cretaceous assemblages.
The Best Modern Analog for Eocene Arctic Forests is within Today's Korean Peninsula
NASA Astrophysics Data System (ADS)
Schubert, B.; Jahren, H.; Eberle, J.; Sternberg, L. O.; Ellsworth, P.; Eberth, D.; Sweet, A.
2011-12-01
In the 25 years that have passed since the first extensive descriptions of the Fossil Forests that persisted above the Arctic Circle during the Eocene (~45-54 Ma), no less than four locations have been suggested as modern analogs. These locations represent a diverse collection of biomes and temperature/precipitation environments, and include the southeastern Unites States and southeastern Asia (based on flora and fauna assemblages), southern Chile and the U.S. Pacific Northwest (based on biomass and productivity estimates), and Pacific Northwestern U.S. and Canada (based on mean annual temperature and mean annual precipitation). Here we report on new isotope datasets that allow for a prediction of best modern analog based on a quantitative characterization of paleoseasonality. First, we report high-resolution carbon isotope data from fossil tree rings that record the ratio of summer to winter precipitation. Second, we report analyses of the oxygen isotope composition of phenylglucosazone, a compound isolated from fossil cellulose that straightforwardly records the oxygen isotope composition of meteoric water available to the tree. Together, our analyses indicate that the fossil forests of the Eocene Arctic thrived under a summer-dominated, high-intensity, seasonal precipitation regime, with at least 279 mm of rainfall during the wettest month. A quantitative comparison of mean-annual temperature and precipitation, fossil and modern plant communities, and the seasonality indices, highlights the Korean peninsula as the most appropriate modern analog for the Arctic Eocene forests, in preference to the North and South American analogs previously proposed.
Restoration of marine ecosystems following the end-Permian mass extinction: pattern and dynamics
NASA Astrophysics Data System (ADS)
Chen, Z.
2013-12-01
Life came closest to complete annihilation during the end-Permian mass extinction (EPME). Pattern and cause of this great dying have long been disputed. Similarly, there is also some debate on the recovery rate and pattern of marine organisms in the aftermath of the EPME. Some clades recovered rapidly, within the first 1-3 Myr of the Triassic. For instance, foraminiferal recovery began 1 Myr into the Triassic and was not much affected by Early Triassic crises. Further, some earliest Triassic body and trace fossil assemblages are also more diverse than predicted. Others, ie. Brachiopods, corals etc., however, did not rebound until the Middle Triassic. In addition, although ammonoids recovered fast, reaching a higher diversity by the Smithian than in the Late Permian, much of this Early Triassic radiation was within a single group, the Ceratitina, and their morphological disparity did not expand until the end-Spathian. Here, I like to broaden the modern ecologic network model to explore the complete trophic structure of fossilized ecosystems during the Permian-Triassic transition as a means of assessing the recovery. During the Late Permian and Early Triassic, primary producers, forming the lowest trophic level, were microbes. The middle part of the food web comprises primary and meso-consumer trophic levels, the former dominated by microorganisms such as foraminifers, the latter by opportunistic communities (i.e. disaster taxa), benthic shelly communities, and reef-builders. They were often consumed by invertebrate and vertebrate predators, the top trophic level. Fossil record from South China shows that the post-extinction ecosystems were degraded to a low level and typified by primary producers or opportunistic consumers, which are represented by widespread microbialites or high-abundance, low-diversity communities. Except for some opportunists, primary consumers, namely foraminifers, rebounded in Smithian. Trace-makers recovered in Spathian, which also saw biodiversity increases of some clades. However, benthic communities were still of low diversity and high abundance and did not recover until middle-late Anisian when reef ecosystems have also constructed. The mid-Anisian ecosystems were characterized by the diverse reptile and fish faunas such as the Luoping biota from Yunnan, Southwest China, in which marine reptiles diversified as top predators. Thus, ecosystems were constructed step by step from low level to top trophic level through the Griesbachian to late Anisian, some 8-9 Myr after the crisis. Moreover, although some top predators also rebounded spoarically in Early Triassic, they constructed incomplete and unstable ecosystems, which could not develop sustainably and thus did not occur repetitedly in younger strata. The contrast between the extrinsic and intrinsic models exemplifies a wider debate about macroevolution -- whether the key driver is the physical environment or biotic interactions. Case studies on microbe-metazoan interactions in matground ecosystems reveal that microbial bloom seems to have set an agenda for metazoan diversification in Early Triassic, implying that intrinsic dynamics may have played a crucial role driving ecosystem's restoration following the EPME.
Frese, Michael; Gloy, Gerda; Oberprieler, Rolf G; Gore, Damian B
2017-01-01
The Talbragar Fish Bed is one of Australia's most important Jurassic deposits for freshwater fishes, land plants and aquatic and terrestrial insects. The site has yielded many well preserved fossils, which has led to the formal description of numerous new species and higher taxa. The excellent preservation of many fossils has allowed detailed anatomical studies, e.g. of the early teleost fish Cavenderichthys talbragarensis (Woodward, 1895). Here we report on the fluorescent characteristics and mineral composition of a range of Talbragar fossils. Most specimens fluoresce under ultraviolet, blue and green light. Elemental and mineralogical analyses revealed that the Talbragar fossils consist predominantly of quartz (SiO2), a mineral that is likely to account for the observed fluorescence, with trace kaolinite (Al2Si2O5(OH)4) in some of the fish fossils. Rock matrices are predominantly composed of quartz and goethite (FeO(OH)). Closer inspection of a plant leaf (Pentoxylon australicum White, 1981) establishes fluorescence as a useful tool for the visualisation of anatomical details that are difficult to see under normal light conditions.
Gloy, Gerda; Oberprieler, Rolf G.; Gore, Damian B.
2017-01-01
The Talbragar Fish Bed is one of Australia’s most important Jurassic deposits for freshwater fishes, land plants and aquatic and terrestrial insects. The site has yielded many well preserved fossils, which has led to the formal description of numerous new species and higher taxa. The excellent preservation of many fossils has allowed detailed anatomical studies, e.g. of the early teleost fish Cavenderichthys talbragarensis (Woodward, 1895). Here we report on the fluorescent characteristics and mineral composition of a range of Talbragar fossils. Most specimens fluoresce under ultraviolet, blue and green light. Elemental and mineralogical analyses revealed that the Talbragar fossils consist predominantly of quartz (SiO2), a mineral that is likely to account for the observed fluorescence, with trace kaolinite (Al2Si2O5(OH)4) in some of the fish fossils. Rock matrices are predominantly composed of quartz and goethite (FeO(OH)). Closer inspection of a plant leaf (Pentoxylon australicum White, 1981) establishes fluorescence as a useful tool for the visualisation of anatomical details that are difficult to see under normal light conditions. PMID:28582427
A fossil brain from the Cretaceous of European Russia and avian sensory evolution.
Kurochkin, Evgeny N; Dyke, Gareth J; Saveliev, Sergei V; Pervushov, Evgeny M; Popov, Evgeny V
2007-06-22
Fossils preserving traces of soft anatomy are rare in the fossil record; even rarer is evidence bearing on the size and shape of sense organs that provide us with insights into mode of life. Here, we describe unique fossil preservation of an avian brain from the Volgograd region of European Russia. The brain of this Melovatka bird is similar in shape and morphology to those of known fossil ornithurines (the lineage that includes living birds), such as the marine diving birds Hesperornis and Enaliornis, but documents a new stage in avian sensory evolution: acute nocturnal vision coupled with well-developed hearing and smell, developed by the Late Cretaceous (ca 90Myr ago). This fossil also provides insights into previous 'bird-like' brain reconstructions for the most basal avian Archaeopteryx--reduction of olfactory lobes (sense of smell) and enlargement of the hindbrain (cerebellum) occurred subsequent to Archaeopteryx in avian evolution, closer to the ornithurine lineage that comprises living birds. The Melovatka bird also suggests that brain enlargement in early avians was not correlated with the evolution of powered flight.
Pinton, Aurélie; Le Fur, Soizic; Otero, Olga
2016-11-01
In the fossil record, the quantification of continuous morphological variation has become a central issue when dealing with species identification and speciation. In this context, fossil taxa with living representatives hold great promise, because of the potential to characterise patterns of intraspecific morphological variation in extant species prior to any interpretation in the fossil record. The vast majority of catfish families fulfil this prerequisite, as most of them are represented by extant genera. However, although they constitute a major fish group in terms of distribution, and ecological and taxonomic diversity, the quantitative study of their past morphological variation has been neglected, as fossil specimens are generally identified based on the scarcest remains, that is, complete neurocrania that bear discrete characters. Consequently, a part of freshwater catfish history is unprospected and unknown. In this study, we explored the morphological continuous variation of the humeral plate shape in Synodontis catfishes using Elliptic Fourier Analysis (EFA), and compared extant members and fossil counterparts. We analysed 153 extant specimens of 11 Synodontis species present in the Chad basin, in addition to 23 fossil specimens from the Chadian fossiliferous area of Toros Menalla which is dated around 7 Ma. This highly speciose genus, which is one of the most diversified in Africa, exhibits a rich fossil record with several hundred remains mostly identified as Synodontis sp. The analysis of the outline of the humeral plate reveals that some living morphological types were already represented in the Chad Basin 7 My ago, and allows for the discovery of extinct species. Beside illuminating the complex Neogene evolutionary history of Synodontis, these results underline the interest in the ability of isolated remains to reconstruct a past dynamic history and to validate the relevance of EFA as a tool to explore specific diversity through time. J. Morphol. 277:1486-1496, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Stoetzel, Emmanuelle; Marion, Lucile; Nespoulet, Roland; El Hajraoui, Mohammed Abdeljalil; Denys, Christiane
2011-01-01
The relationship between local and global climatic variations and the origin and dispersal of Homo sapiens in Africa is complex, and North Africa may have played a major role in these events. In Morocco, very few studies are specifically dedicated to small fossil vertebrates, and neither taphonomic nor palaeoecological studies have been undertaken on these taxa, particularly in archaeological contexts. The late Pleistocene to middle Holocene succession of El Harhoura 2 cave, situated in the region of Témara, yields an exceptionally rich small vertebrate assemblage. We present the results of a first systematic, taphonomic, and palaeoecological study of the small mammals from Levels 1 to 8 of El Harhoura 2. The absence of bone sorting and polishing, as well as the presence of significant traces of digestion indicate that the small mammal bones were accumulated in the cave by predators and that no water transport occurred. Other traces observed on the surface of bones consist mainly of root marks and black traces (micro-organisms or more probably manganese) which affected the majority of the material. The percentage of fragmentation is very high in all stratigraphic levels, and the post-depositional breakage (geologic and anthropogenic phenomena) obscure the original breakage patterns of bones by predators. According to the ecology of the different species present in the levels of El Harhoura 2, and by taking into account possible biases highlighted by the taphonomic analysis, we reconstruct the palaeoenvironmental evolution in the region. For quantitative reconstructions we used two indices: the Taxonomic Habitat Index (THI) and the Gerbillinae/Murinae ratio. Late Pleistocene accumulations were characterised by a succession of humid (Levels 3, 4a, 6, and 8) and arid (Levels 2?, 5, and 7) periods, with more or less open landscapes, ending in an ultimate humid and wooded period during the middle Holocene (Level 1). We discuss particular limits of our results and interpretations, due to an important lack of taxonomic, ecological, and taphonomic knowledge in North Africa. Copyright © 2010 Elsevier Ltd. All rights reserved.
Weber, Kristina; Zuschin, Martin
2013-01-15
Life-death (LD) studies of shelly macrofauna are important to evaluate how well a fossil assemblage can reflect the original living community, but can also serve as a proxy for recent ecological shifts in marine habitats and in practice this has to be distinguished using taphonomic preservation pattern and estimates of time-averaging. It remains to be rigorously evaluated, however, how to distinguish between sources of LD disagreement. In addition, death assemblages (DAs) also preserve important information on regional diversity which is not available from single censuses of the life assemblages (LAs). The northern Adriatic Sea is an ecosystem under anthropogenic pressure, and we studied the distribution and abundance of living and dead bivalve and gastropod species in the physically stressful environments (tidal flat and shallow sublittoral soft bottoms) associated with the delta of the Isonzo River (Gulf of Trieste). Specifically we evaluated the fidelity of richness, evenness, abundance, habitat discrimination and beta diversity. A total of 10,740 molluscs from fifteen tidal flat and fourteen sublittoral sites were analyzed for species composition and distribution of living and dead molluscs. Of 78 recorded species, only eleven were numerically abundant. There were many more dead than living individuals and rarefied species richness in the DA was higher at all spatial scales, but the differences are lower in habitats and in the region than at individual stations. Evenness was always higher in death assemblages, and probably due to temporally more variable LAs the differences are stronger in the sublittoral habitats. Distinct assemblages characterized intertidal and sublittoral habitats, and the distribution and abundance of empty shells generally corresponded to that of the living species. Death assemblages have lower beta diversity than life assemblages, but empty shells capture compositional differences between habitats to a higher degree than living shells. More samples would be necessary to account for the diversity of living molluscs in the study area, which is, however, well recorded in the death assemblages. There is no indication of a major environmental change over the last decades in this area, but due to the long history of anthropogenic pressure here, such a potential impact might be preserved in historical layers of the deeper sedimentary record.
Trace Elemental Imaging of Rare Earth Elements Discriminates Tissues at Microscale in Flat Fossils
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B.; Cohen, Serge X.; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies. PMID:24489809
Trace elemental imaging of rare earth elements discriminates tissues at microscale in flat fossils.
Gueriau, Pierre; Mocuta, Cristian; Dutheil, Didier B; Cohen, Serge X; Thiaudière, Dominique; Charbonnier, Sylvain; Clément, Gaël; Bertrand, Loïc
2014-01-01
The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.
Zoophycos macroevolution since 541 Ma.
Zhang, Li-Jun; Fan, Ruo-Ying; Gong, Yi-Ming
2015-10-09
Zoophycos is one of the most complex and enigmatic trace fossils recorded in marine strata from Cambrian to Quaternary worldwide, which is invaluable for the study of Phanerozoic development of organism-environment interactions. Here we address and demonstrate the macroevolution of Phanerozoic Zoophycos by assembling 448 points in constructing the Phanerozoic Zoophycos database based on 291 papers from 1821 to 2015 and 180 specimens from Cambrian to Palaeogene. The comprehensive dataset reveals, for the first time, five peaks and six depressions in Phanerozoic Zoophycos occurrence frequency. Secondly, the palaeogeographical distribution of Zoophycos is closely associated with the supercontinent Pangaea shifting, independent of the latitude. Our data also attest that the bathymetrical shift of Zoophycos from the littoral-neritic to bathyal environments is synchronized with the tiering shift from shallow to deep. By detailed comparison with body fossils, geochemical and palaeogeographical records, we conclude that the macroevolution of Phanerozoic Zoophycos is multi-affected by the global biodiversity expansion, benthic nutrient enhancement, and the biotic macroevolution of the Zoophycos-producers. The macroevolution of development evidenced by the morphological changes of Zoophycos and other trace fossils, may have great implications on the behavioural and physiological adaptation of ancient animals to the environments.
Zoophycos macroevolution since 541 Ma
Zhang, Li-Jun; Fan, Ruo-Ying; Gong, Yi-Ming
2015-01-01
Zoophycos is one of the most complex and enigmatic trace fossils recorded in marine strata from Cambrian to Quaternary worldwide, which is invaluable for the study of Phanerozoic development of organism–environment interactions. Here we address and demonstrate the macroevolution of Phanerozoic Zoophycos by assembling 448 points in constructing the Phanerozoic Zoophycos database based on 291 papers from 1821 to 2015 and 180 specimens from Cambrian to Palaeogene. The comprehensive dataset reveals, for the first time, five peaks and six depressions in Phanerozoic Zoophycos occurrence frequency. Secondly, the palaeogeographical distribution of Zoophycos is closely associated with the supercontinent Pangaea shifting, independent of the latitude. Our data also attest that the bathymetrical shift of Zoophycos from the littoral–neritic to bathyal environments is synchronized with the tiering shift from shallow to deep. By detailed comparison with body fossils, geochemical and palaeogeographical records, we conclude that the macroevolution of Phanerozoic Zoophycos is multi-affected by the global biodiversity expansion, benthic nutrient enhancement, and the biotic macroevolution of the Zoophycos-producers. The macroevolution of development evidenced by the morphological changes of Zoophycos and other trace fossils, may have great implications on the behavioural and physiological adaptation of ancient animals to the environments. PMID:26449543
Zoophycos macroevolution since 541 Ma
NASA Astrophysics Data System (ADS)
Zhang, Li-Jun; Fan, Ruo-Ying; Gong, Yi-Ming
2015-10-01
Zoophycos is one of the most complex and enigmatic trace fossils recorded in marine strata from Cambrian to Quaternary worldwide, which is invaluable for the study of Phanerozoic development of organism-environment interactions. Here we address and demonstrate the macroevolution of Phanerozoic Zoophycos by assembling 448 points in constructing the Phanerozoic Zoophycos database based on 291 papers from 1821 to 2015 and 180 specimens from Cambrian to Palaeogene. The comprehensive dataset reveals, for the first time, five peaks and six depressions in Phanerozoic Zoophycos occurrence frequency. Secondly, the palaeogeographical distribution of Zoophycos is closely associated with the supercontinent Pangaea shifting, independent of the latitude. Our data also attest that the bathymetrical shift of Zoophycos from the littoral-neritic to bathyal environments is synchronized with the tiering shift from shallow to deep. By detailed comparison with body fossils, geochemical and palaeogeographical records, we conclude that the macroevolution of Phanerozoic Zoophycos is multi-affected by the global biodiversity expansion, benthic nutrient enhancement, and the biotic macroevolution of the Zoophycos-producers. The macroevolution of development evidenced by the morphological changes of Zoophycos and other trace fossils, may have great implications on the behavioural and physiological adaptation of ancient animals to the environments.
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated.
Butler, Richard J.; Brusatte, Stephen L.; Reich, Mike; Nesbitt, Sterling J.; Schoch, Rainer R.; Hornung, Jahn J.
2011-01-01
Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs. PMID:22022431
Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An
2013-01-01
A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan’ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan’ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is postulated. PMID:24376585
Gérard, Emmanuelle; Moreira, David; Philippot, Pascal; Van Kranendonk, Martin J.; López-García, Purificación
2009-01-01
Background Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible. Methodology/Principal Findings In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper “fresh” samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth. Conclusions/Significance The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale. PMID:19396360
NASA Astrophysics Data System (ADS)
Tian, L.; Castillo, P. R.; Hilton, D. R.
2010-12-01
The Mathematician Ridge, located west of the northern end of the EPR at about 10-20°N, 110°W, was abandoned during the Pliocene when the Pacific plate captured the Mathematician microplate. The Galapagos Rise, located east of the southern segment of the EPR at about 10-18°S, 95°W, ceased spreading after the Late Miocene capture of the Bauer microplate by the Nazca plate. Here we report new major and trace element and Sr, Nd and Pb isotope data for lavas dredged from seamounts and volcanic ridges along the crest of Mathematician Ridge [Batiza and Vanko, J. Petrol. 26, 1985] and from narrow volcanic ridges built along extinct segments of the Galapagos Rise [Batiza et al., Mar. Geol. 49, 1982]. These lavas consist predominantly of alkalic basalts and their differentiates, similar to the post-spreading alkalic lava series in other fossil spreading axes (e.g., Davidson Seamount, Guide Seamount, Socorro Island, and fossil spreading axes off Baja California Sur) and alkalic lavas from near-ridge seamounts in the eastern Pacific [Castillo et al., G3 11, 2010; Tian et al., sub. to G3]. Collectively, the alkalic lavas have higher incompatible trace element contents and highly/moderately incompatible trace element ratios (e.g., Ba/Zr >1.3, La/Sm >2.7 and Nb/Zr >0.14) than EPR basalts, and are similar to average alkalic OIB. They also have similar 87Sr/86Sr (0.7027 - 0.7037), 143Nd/144Nd (0.51289 - 0.51306) and 206Pb/204Pb (18.70 - 19.84) compositions, which overlap with geochemically enriched (E-) MORB and ~depleted OIB from major hotspot volcanic chains such as Galapagos, Hawaii and Iceland. The new data suggest that intraplate lavas from fossil spreading axes and non-hotspot seamounts in the eastern Pacific share a common enriched source which is geographically dispersed in the upper mantle.
Early organisms in the fossil record: paleontological aspects, evolutionary and ecological impacts
NASA Astrophysics Data System (ADS)
Sabbatini, Anna; Negri, Alessandra; Morigi, Caterina; Bartolini, Annachiara; Lipps, Jere
2017-04-01
With this abstract we introduce our session whose aim is twofold: 1) to gather information on the earliest foraminifera (single- organic and agglutinated taxa) which so far are sparse and uncoordinated in order to understand their evolution and their relationship with modern single-chambered taxa, contextualizing scientific current results in the geo-biological field. 2) to explore also every other early organism trace fossils or so far overlooked organisms coated with fine sediment (i.e., bacteria, testate amoebae) to understand how and if this coating might help these creatures to fossilize. For this reason, this session will integrate many disciplines, from genomics to palaeo-environmental modelling to palaeontology and geochemistry. Our experience starts from Foraminifera which are an ecologically important group of modern heterotrophic amoeboid eukaryotes whose naked and testate ancestors are thought to have evolved 1 Ga ago. However, the single-chambered agglutinated test of these protists is hypothesized to appear in the fossil record in the Neoproterozoic, before the rise of complex animals. In addition, the difficulty of recognizing unambiguously ancestral monothalamous foraminifera in the fossil record represents the main challenge and might be related to a combination of factors, such as preservation in the sediments, adverse palaeo-environmental conditions and the absence of clear morphological characters distinguishing them from other morphologically simple testate organisms. However, recent publications have evidenced the finding of such organisms in several sedimentary successions tracing back to the Neoproterozoic. An integrate approach will result in profound insights about life—past, present, future— representing a new frontier in the palaeobiological studies. Therefore, aim of this session is to bring together specialists across all these disciplines to provide a uniquely rich and fertile intellectual environment for the pursuit of this intrinsically interdisciplinary topic.
Calder, W John; Shuman, Bryan
2017-10-01
Ecosystems may shift abruptly when the effects of climate change and disturbance interact, and landscapes with regularly patterned vegetation may be especially vulnerable to abrupt shifts. Here we use a fossil pollen record from a regularly patterned ribbon forest (alternating bands of forests and meadows) in Colorado to examine whether past changes in wildfire and climate produced abrupt vegetation shifts. Comparing the percentages of conifer pollen with sedimentary δ 18 O data (interpreted as an indicator of temperature or snow accumulation) indicates a first-order linear relationship between vegetation composition and climate change with no detectable lags over the past 2,500 yr (r = 0.55, P < 0.001). Additionally, however, we find that the vegetation changed abruptly within a century of extensive wildfires, which were recognized in a previous study to have burned approximately 80% of the surrounding 1,000 km 2 landscape 1,000 yr ago when temperatures rose ~0.5°C. The vegetation change was larger than expected from the effects of climate change alone. Pollen assemblages changed from a composition associated with closed subalpine forests to one similar to modern ribbon forests. Fossil pollen assemblages then remained like those from modern ribbon forests for the following ~1,000 yr, providing a clear example of how extensive disturbances can trigger persistent new vegetation states and alter how vegetation responds to climate. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Grimm, G. W.; Potts, A. J.
2015-12-01
The Coexistence Approach has been used infer palaeoclimates for many Eurasian fossil plant assemblage. However, the theory that underpins the method has never been examined in detail. Here we discuss acknowledged and implicit assumptions, and assess the statistical nature and pseudo-logic of the method. We also compare the Coexistence Approach theory with the active field of species distribution modelling. We argue that the assumptions will inevitably be violated to some degree and that the method has no means to identify and quantify these violations. The lack of a statistical framework makes the method highly vulnerable to the vagaries of statistical outliers and exotic elements. In addition, we find numerous logical inconsistencies, such as how climate shifts are quantified (the use of a "center value" of a coexistence interval) and the ability to reconstruct "extinct" climates from modern plant distributions. Given the problems that have surfaced in species distribution modelling, accurate and precise quantitative reconstructions of palaeoclimates (or even climate shifts) using the nearest-living-relative principle and rectilinear niches (the basis of the method) will not be possible. The Coexistence Approach can be summarised as an exercise that shoe-horns a plant fossil assemblages into coexistence and then naively assumes that this must be the climate. Given the theoretical issues, and methodological issues highlighted elsewhere, we suggest that the method be discontinued and that all past reconstructions be disregarded and revisited using less fallacious methods.
NASA Astrophysics Data System (ADS)
Ghezzo, Elena; Palchetti, Alessandro; Rook, Lorenzo
2014-07-01
Equi Terme is a hamlet located in northern Tuscany, in Apuan Alps regional Park. An outstanding fossil vertebrate collection housed in Florence is the result of excavations in the Equi cave and shelter during the period 1911-1919. This faunal assemblage (associated with Mousterian artefacts) may be correlated with the middle of MIS 3. All of the specimens recovered at Equi early in the last century were collected with attention to their stratigraphical positions. Detailed field annotation for nearly every specimen allowed us to organize them and attempt a stratigraphical and spatial reconstruction of the fossiliferous deposits. We present the results of the study of the spatial and stratigraphic distribution of the carnivoran species in the Equi cave and shelter, and re-evaluate the taphonomic agents of accumulation and the fossil distribution within the stratigraphic record. In particular, we evaluated the distribution of Panthera pardus, which, unusually for Europe, is abundant in the Equi cave assemblage. This analysis highlights the importance of the re-evaluation of historical collections and allows for future comparisons with data from more recent excavations at the Equi site. The analysis also provides an account of the distribution of carnivorans throughout the stratigraphic record. The constant presence and the predominance of leopards and wolves over lions and smaller carnivorans, allow for evaluations of their ethology and may be related to a short period of sediment accumulation.
NASA Astrophysics Data System (ADS)
García-Ramos, Diego A.; Albano, Paolo G.; Harzhauser, Mathias; Piller, Werner E.; Zuschin, Martin
2016-04-01
Live-dead (LD) studies aim to help understand how faithfully fossil assemblages can be used to quantitatively infer the structure of the original living communities that generated them. To this purpose, LD comparisons have been conducted in different terrestrial and aquatic environments to assess how environment-specific differences in quality and intensity of taphonomic factors affect LD fidelity. In sub-tropical and tropical settings, most LD studies have focused on hard substrates or seagrass bottoms. Here we present results on molluscan assemblages from soft carbonate sediments in tidal flats of the Persian (Arabian) Gulf (Indo-West Pacific biogeographic province). We analyzed a total of 7193 mollusks collected from six sites comprising time-averaged death assemblages (DAs) and snapshot living assemblages (LAs). All analyses were performed at site and at habitat scales after correcting for sample-size differences. We found a good match in proportional abundance and a notable mismatch in species composition. In fact, species richness in DAs is 6 times larger than in LAs at site scale, and 4 times at habitat scale. Additionally, we found a good fidelity of evenness, and rank abundance of feeding guilds. Other studies have shown that molluscan DAs from subtidal carbonate environments can display lower time-averaging than those from siliciclastic environments due to high rates of shell loss to bioerosion and dissolution. For our case study of tidal flat carbonate settings, we interpret that despite temporal autocorrelation (good fidelity of proportional abundance), substantial differences in species richness and composition can be explained by early cementation, lateral mixing, intense bioturbation and moderate sedimentation rates. Our results suggest that tidal flat carbonate environments can potentially lead to a wider window of time-averaging in comparison with subtidal carbonate settings.
Egeland, Charles P; Pickering, Travis Rayne; Domínguez-Rodrigo, Manuel; Brain, C K
2004-11-01
Determining the extent to which hominid- and carnivore-derived components of fossil bone palimpsests formed independently of each other can provide valuable information to paleoanthropologists interested in reconstructing the foraging adaptations of hominids. Because stone tool cutmarks, hammerstone percussion marks, and carnivore tooth marks are usually only imparted on bone during nutrient extraction from a carcass, these bone surface modifications are particularly amenable to the types of analyses that might meet this goal. This study compares the percentage of limb bone specimens that preserve evidence of both hominid- and carnivore-imparted bone damage from actualistic control samples and several Plio-Pleistocene archaeofaunas, including new data from Swartkrans Member 3 (South Africa). We argue that this procedure, which elucidates the degree of hominid-carnivore independence in assemblage formation, will allow researchers to extract for focused analyses high integrity components (hominid and carnivore) from presumably low integrity sites. Comparisons suggest that the hominid- and carnivore-derived components from sites in Olduvai Gorge Bed II (Tanzania), the ST Site Complex at Peninj (Tanzania), and Swartkrans Member 3 formed largely independent of each other, while data from the FLK 22 Zinjanthropus (FLK Zinj) site (Olduvai Gorge Bed I) indicate significant interdependence in assemblage formation. This contrast suggests that some Early Stone Age assemblages (e.g., the Olduvai Gorge Bed II sites, the Peninj ST Site Complex, and Swartkrans Member 3) are probably more useful than others (e.g., FLK Zinj) for assessing the maximal carcass-acquiring abilities of early hominids; in such assemblages as those in the former set, sole hominid-contribution is more confidently discerned and isolated for analysis than in assemblages such as FLK Zinj.
NASA Astrophysics Data System (ADS)
Smeulders, G. G. B.; Koho, K. A.; de Stigter, H. C.; Mienis, F.; de Haas, H.; van Weering, T. C. E.
2014-01-01
The extent of the cold-water coral mounds in the modern ocean basins has been recently revealed by new state-of-the-art equipment. However, not much is known about their geological extent or development through time. In the facies model presented here seven different types of seabed substrate are distinguished, which may be used for reconstruction of fossil coral habitats. The studied substrates include: off-mound settings, (foram) sands, hardgrounds, dead coral debris, and substrates characterized by a variable density of living coral framework. Whereas sediment characteristics only provide a basis for distinguishing on- and off-mound habitats and the loci of most prolific coral growth, benthic foraminiferal assemblages are the key to identifying different mound substrates in more detail. Specific foraminiferal assemblages are distinguished that are characteristic of these specific environments. Assemblages from off-mound settings are dominated by (attached) epifaunal species such as Cibicides refulgens and Cibicides variabilis. The attached epibenthic species Discanomalina coronata is also common in off-mound sediments, but it is most abundant where hardgrounds have formed. In contrast, the settings with coral debris or living corals attract shallow infaunal species that are associated with more fine-grained soft sediments. The typical ‘living coral assemblage' is composed of Cassidulina obtusa, Bulimina marginata, and Cassidulina laevigata. The abundance of these species shows an almost linear increase with the density of the living coral cover. The benthic foraminifera encountered from off-mound to top-mound settings appear to represent a gradient of decreasing current intensity and availability of suspended food particles, and increasing availability of organic matter associated with fine-grained sediment trapped in between coral framework.
Zhang, Jian-Wei; D'Rozario, Ashalata; Adams, Jonathan M; Li, Ya; Liang, Xiao-Qing; Jacques, Frédéric M; Su, Tao; Zhou, Zhe-Kun
2015-01-01
• The paleogeographical origin of the relict North American Sequoia sempervirens is controversial. Fossil records indicate a Neogene origin for its foliage characteristics. Although several fossils from the Miocene sediments in eastern Asia have been considered to have close affinities with the modern S. sempervirens, they lack the typical features of a leafy twig bearing linear as well as scale leaves, and the fertile shoots terminating by a cone. The taxonomic status of these fossils has remained unclear.• New better-preserved fossils from the upper Miocene of China indicate a new species of Sequoia. This finding not only confirms the former presence of this genus in eastern Asia, but it also confirms the affinity of this Asian form to the modern relict S. sempervirens.• The principal foliage characteristics of S. sempervirens had already originated by the late Miocene. The eastern Asian records probably imply a Beringian biogeographic track of the ancestor of S. sempervirens in the early Neogene, at a time when the land bridge was not too cool for this thermophilic conifer to spread between Asia and North America.• The climatic context of the new fossil Sequoia in Southeast Yunnan, based on other floristic elements of the fossil assemblage in which it is found, is presumed to be warm and humid. Following the uplift of the Qinghai-Tibet Plateau, this warm, humid climate was replaced by the present monsoonal climate with dry winter and spring. This change may have led to the disappearance of this hygrophilous conifer from eastern Asia. © 2015 Botanical Society of America, Inc.
NASA Astrophysics Data System (ADS)
Génio, Luciana; Kiel, Steffen; Cunha, Marina R.; Grahame, John; Little, Crispin T. S.
2012-06-01
The increasing number of bathymodiolin mussel species being described from deep-sea chemosynthetic environments worldwide has raised many questions about their evolutionary history, and their systematics is still being debated. Mussels are also abundant in fossil chemosynthetic assemblages, but their identification is problematic due to conservative shell morphology within the group and preservation issues. Potential resolution of bathymodiolin taxonomy requires new character sets, including morphological features that are likely to be preserved in fossil specimens. To investigate the phylogenetic significance of shell microstructural features, we studied the shell microstructure and mineralogy of 10 mussel species from hydrothermal vents and hydrocarbon seeps, and 15 taxa from sunken wood and bone habitats, and compared these observations with current molecular phylogenies of the sub-family Bathymodiolinae. In addition, we analyzed the shell microstructure in Adipicola chickubetsuensis from fossil whale carcasses, and in Bathymodiolus cf. willapaensis and “Modiola exbrocchii” from fossil cold seeps, and discussed the usefulness of these characters for identification of fossil chemosymbiotic mussels. Microstructural shell features are quite uniform among vent, seep, wood and bone mussel taxa, and therefore established bathymodiolin lineages cannot be discriminated, nor can the relations between fossil and modern species be determined with these characters. Nevertheless, the uniformity of shell microstructures observed among chemosymbiotic mussels and the similarity with its closest relative, Modiolus modiolus, does not challenge the monophyly of the group. Slight differences are found between the large vent and seep mussels and the small mytilids commonly found in habitats enriched in organic matter. Together with previous data, these results indicate that a repeated pattern of paedomorphism characterizes the evolutionary history of deep-sea mussels, and the occurrence of neotenous features should be considered in the taxonomic revision of this group.
Mancini, E.A.; Tew, B.H.
1997-01-01
The maximum flooding event within a depositional sequence is an important datum for correlation because it represents a virtually synchronous horizon. This event is typically recognized by a distinctive physical surface and/or a significant change in microfossil assemblages (relative fossil abundance peaks) in siliciclastic deposits from shoreline to continental slope environments in a passive margin setting. Recognition of maximum flooding events in mixed siliciclastic-carbonate sediments is more complicated because the entire section usually represents deposition in continental shelf environments with varying rates of biologic and carbonate productivity versus siliciclastic influx. Hence, this event cannot be consistently identified simply by relative fossil abundance peaks. Factors such as siliciclastic input, carbonate productivity, sediment accumulation rates, and paleoenvironmental conditions dramatically affect the relative abundances of microfossils. Failure to recognize these complications can lead to a sequence stratigraphic interpretation that substantially overestimates the number of depositional sequences of 1 to 10 m.y. duration.
Sima de los Huesos (Sierra de Atapuerca, Spain). The site.
Arsuaga, J L; Martínez, I; Gracia, A; Carretero, J M; Lorenzo, C; García, N
1997-01-01
In this article a topographical description of the Cueva Mayor Cueva de Silo cave system is provided, including a more detailed topography of the Sala de los Ciclopes Sala de las Oseras-Sima de los Huesos sector. The history of the excavations and discoveries of human and carnivore fossils in Sima de los Huesos and adjacent passages is briefly reported, as well as the increase, throughout the succeeding field seasons, of the human collection and changes in the relative representation of the different skeletal elements and major biases. The carnivore assemblage structure is also considered. Examining the characteristics of the bone breccia, and the current and ancient karst topography, different alternative accesses are discussed for the accumulation of carnivores and humans in the Sima de los Huesos. Taking into account all the available information, an anthropic origin for the accumulation of human fossils seems to us to be the most likely explanation.
Miocene Shark and Batoid Fauna from Nosy Makamby (Mahajanga Basin, Northwestern Madagascar)
Andrianavalona, Tsiory H.; Ramihangihajason, Tolotra N.; Rasoamiaramanana, Armand; Ward, David J.; Ali, Jason R.; Samonds, Karen E.
2015-01-01
Madagascar is well known for producing exceptional fossils. However, the record for selachians remains relatively poorly known. Paleontological reconnaissance on the island of Nosy Makamby, off northwest Madagascar, has produced a previously undescribed assemblage of Miocene fossils. Based on isolated teeth, ten taxonomic groups are identified: Otodus, Carcharhinus, Galeocerdo, Rhizoprionodon, Sphyrna, Hemipristis, Squatina, Rostroraja, Himantura and Myliobatidae. Six are newly described from Madagascar for the Cenozoic (Galeocerdo, Rhizoprionodon, Sphyrna, Squatina, Rostroraja and Himantura). In association with these specimens, remains of both invertebrates (e.g., corals, gastropods, bivalves) and vertebrates (e.g., bony fish, turtles, crocodylians, and sirenian mammals) were also recovered. The sedimentary facies are highly suggestive of a near-shore/coastal plain depositional environment. This faunal association shares similarities to contemporaneous sites reported from North America and Europe and gives a glimpse into the paleoenvironment of Madagascar’s Miocene, suggesting that this region was warm, tropical shallow-water marine. PMID:26075723
Pleistocene survival of an archaic dwarf baleen whale (Mysticeti: Cetotheriidae)
NASA Astrophysics Data System (ADS)
Boessenecker, Robert W.
2013-04-01
Pliocene baleen whale assemblages are characterized by a mix of early records of extant mysticetes, extinct genera within modern families, and late surviving members of the extinct family Cetotheriidae. Although Pleistocene baleen whales are poorly known, thus far they include only fossils of extant genera, indicating Late Pliocene extinctions of numerous mysticetes alongside other marine mammals. Here a new fossil of the Late Neogene cetotheriid mysticete Herpetocetus is reported from the Lower to Middle Pleistocene Falor Formation of Northern California. This find demonstrates that at least one archaic mysticete survived well into the Quaternary Period, indicating a recent loss of a unique niche and a more complex pattern of Plio-Pleistocene faunal overturn for marine mammals than has been previously acknowledged. This discovery also lends indirect support to the hypothesis that the pygmy right whale ( Caperea marginata) is an extant cetotheriid, as it documents another cetotheriid nearly surviving to modern times.
Vélez-Juarbe, Jorge; Brochu, Christopher A; Santos, Hernán
2007-01-01
The Indian gharial (Gavialis gangeticus) is not found in saltwater, but the geographical distribution of fossil relatives suggests a derivation from ancestors that lived in, or were at least able to withstand, saline conditions. Here, we describe a new Oligocene gharial, Aktiogavialis puertoricensis, from deltaic–coastal deposits of northern Puerto Rico. It is related to a clade of Neogene gharials otherwise restricted to South America. Its geological and geographical settings, along with its phylogenetic relationships, are consistent with two scenarios: (i) that a single trans-Atlantic dispersal event during the Tertiary explains the South American Neogene gharial assemblage and (ii) that stem gharials were coastal animals and their current restriction to freshwater settings is a comparatively recent environmental shift for the group. This discovery highlights the importance of including fossil information in a phylogenetic context when assessing the ecological history of modern organisms. PMID:17341454
Vendian microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, Svalbard
NASA Technical Reports Server (NTRS)
Knoll, A. H.
1992-01-01
Sedimentary rocks of the Scotia Group, Prins Karls Forland, Svalbard, have been metamorphosed to lower greenschist facies. Yet Scotia chert nodules contain abundant organic-walled microfossils belonging to at least seventeen taxa. Their black colour indicates that the fossils underwent substantial thermal alteration. However, it is suggested that preservation in a matrix of early diagenetic silica shielded them from the most destructive mechanical and chemical effects of metamorphism. Microbial mats and large acanthomorphic acritarchs suggest a coastal marine depositional environment; the acritarchs further indicate an early Vendian age for the sediments. The Scotia fossils bear a close resemblance to assemblages described from the Doushantuo Formation, China and elsewhere, demonstrating the broad geographical distribution of biostratigraphically important Vendian taxa. Briareus and Echinosphaeridium are described as new genera; Briareus borealis is described as a new species, while Echinosphaeridium maximum is proposed as a new combination.
Darwin's dilemma: the realities of the Cambrian ‘explosion’
Conway Morris, Simon
2006-01-01
The Cambrian ‘explosion’ is widely regarded as one of the fulcrum points in the history of life, yet its origins and causes remain deeply controversial. New data from the fossil record, especially of Burgess Shale-type Lagerstätten, indicate, however, that the assembly of bodyplans is not only largely a Cambrian phenomenon, but can already be documented in fair detail. This speaks against a much more ancient origin of the metazoans, and current work is doing much to reconcile the apparent discrepancies between the fossil record, including the Ediacaran assemblages of latest Neoproterozoic age and molecular ‘clocks’. Hypotheses to explain the Cambrian ‘explosion’ continue to be generated, but the recurrent confusion of cause and effect suggests that the wrong sort of question is being asked. Here I propose that despite its step-like function this evolutionary event is the inevitable consequence of Earth and biospheric change. PMID:16754615
Paleoarchean trace fossils in altered volcanic glass.
Staudigel, Hubert; Furnes, Harald; DeWit, Maarten
2015-06-02
Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas.
Paleoarchean trace fossils in altered volcanic glass
Staudigel, Hubert; Furnes, Harald; DeWit, Maarten
2015-01-01
Microbial corrosion textures in volcanic glass from Cenozoic seafloor basalts and the corresponding titanite replacement microtextures in metamorphosed Paleoarchean pillow lavas have been interpreted as evidence for a deep biosphere dating back in time through the earliest periods of preserved life on earth. This interpretation has been recently challenged for Paleoarchean titanite replacement textures based on textural and geochronological data from pillow lavas in the Hooggenoeg Complex of the Barberton Greenstone Belt in South Africa. We use this controversy to explore the strengths and weaknesses of arguments made in support or rejection of the biogenicity interpretation of bioalteration trace fossils in Cenozoic basalt glasses and their putative equivalents in Paleoarchean greenstones. Our analysis suggests that biogenicity cannot be taken for granted for all titanite-based textures in metamorphosed basalt glass, but a cautious and critical evaluation of evidence suggests that biogenicity remains the most likely interpretation for previously described titanite microtextures in Paleoarchean pillow lavas. PMID:26038543
Bown, T.M.
1982-01-01
The ichnofossils and rhizoliths of the Oligocene Jebel Qatrani Formation of Egypt are among the best preserved, most diverse in form, and most abundant of such structures yet recognized in fluvial rocks. Twenty-one forms are described. The ichnofauna contains traces (domichnia, fodinichnia, cubichnia) of probable annelid, insect, crustacean, and vertebrate origin. These include the first described fossil nest structures and gallery systems of subterranean termites (Isoptera), the first examples of Ophiomorpha from wholly fluvial rocks, and the first fossil vertebrate burrows from the African Tertiary. Rhizoliths associated with the ichnofauna and those occurring elsewhere document a variety of small, wetland plants, coastal mangroves, and much larger trees. The environment suggested by these traces is consistent with the coastal, tropical to subtropical, monsoonal rain forest, with adjacent more open areas, that is indicated by independent evidence of sedimentology, paleontology, and paleopedology. ?? 1982.
Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery
Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL
2011-10-18
A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.
Wormholes record species history in space and time.
Hedges, S Blair
2013-02-23
Genetic and fossil data often lack the spatial and temporal precision for tracing the recent biogeographic history of species. Data with finer resolution are needed for studying distributional changes during modern human history. Here, I show that printed wormholes in rare books and artwork are trace fossils of wood-boring species with unusually accurate locations and dates. Analyses of wormholes printed in western Europe since the fifteenth century document the detailed biogeographic history of two putative species of invasive wood-boring beetles. Their distributions now overlap broadly, as an outcome of twentieth century globalization. However, the wormhole record revealed, unexpectedly, that their original ranges were contiguous and formed a stable line across central Europe, apparently a result of competition. Extension of the wormhole record, globally, will probably reveal other species and evolutionary insights. These data also provide evidence for historians in determining the place of origin or movement of a woodblock, book, document or art print.
Thompson, R.S.; Anderson, K.H.; Bartlein, P.J.
2008-01-01
The method of modern analogs is widely used to obtain estimates of past climatic conditions from paleobiological assemblages, and despite its frequent use, this method involved so-far untested assumptions. We applied four analog approaches to a continental-scale set of bioclimatic and plant-distribution presence/absence data for North America to assess how well this method works under near-optimal modern conditions. For each point on the grid, we calculated the similarity between its vegetation assemblage and those of all other points on the grid (excluding nearby points). The climate of the points with the most similar vegetation was used to estimate the climate at the target grid point. Estimates based the use of the Jaccard similarity coefficient had smaller errors than those based on the use of a new similarity coefficient, although the latter may be more robust because it does not assume that the "fossil" assemblage is complete. The results of these analyses indicate that presence/absence vegetation assemblages provide a valid basis for estimating bioclimates on the continental scale. However, the accuracy of the estimates is strongly tied to the number of species in the target assemblage, and the analog method is necessarily constrained to produce estimates that fall within the range of observed values. We applied the four modern analog approaches and the mutual overlap (or "mutual climatic range") method to estimate bioclimatic conditions represented by the plant macrofossil assemblage from a packrat midden of Last Glacial Maximum age from southern Nevada. In general, the estimation approaches produced similar results in regard to moisture conditions, but there was a greater range of estimates for growing-degree days. Despite its limitations, the modern analog technique can provide paleoclimatic reconstructions that serve as the starting point to the interpretation of past climatic conditions.
Sousa Filho, F E; da Silva, J H; Saraiva, G D; Abagaro, B T O; Barros, O A; Saraiva, A A F; Viana, B C; Freire, P T C
2016-03-15
Fossils are mineralized remains or traces from animals, plants and other organisms aged to about 10(8)years. The chemical processes of fossilization are dated back from old geological periods on Earth. The understanding of these processes and the structure of the fossils are one of the goals of paleontology and geology in the sedimentary environments. Many researches have tried to unveil details about special kinds of biological samples; however, a lack of data is noticed for various other specimens. This study reports the investigations through infrared spectroscopy, X-ray fluorescence and X-ray diffraction measurements for two types of fish fossils from the Cretaceous Period. The sample of Cladocyclus gardneri and Vinctifer comptoni fossils were collected from the Ipubi Formation, being one of the less studied, among the formations that constitute the important Santana group in the Araripe Basin, Brazil. The results obtained through different techniques, showed that the C. gardneri fish fossil contains hydroxyapatite and calcite as constituents whereas its rock matrix was formed by calcite, quartz and pyrite. Regarding the V. comptoni, the measurements confirmed the presence of hydroxyapatite in the fossil and its rock matrix gypsum, pyrite, quartz and calcite. The above scientific data contributed to the understanding the fossil formation in the Ipubi Formation, an important environment of the Cretaceous Period, which is rich in well-preserved fossils from different species. Copyright © 2015 Elsevier B.V. All rights reserved.
Channel-fill coal beds along the western margin of the Eastern Kentucky Coal Field
Eble, C.F.; Greb, S.F.
1997-01-01
Four channel-filling coal beds from the lower part of the Breathitt Formation (lower Middle Pennsylvanian, late Westphalian A) were examined palynologically, petrographically and geochemically to determine the paleoenvironmental conditions under which these peats accumulated. These results were then compared with detailed sedimentological analyses of the strata overlying the coal in the channels to see if any genetic relationship between coal composition and the origin of the overburden could be drawn. All four of the coal beds used in this study are located in the western-most part of the Eastern Kentucky Coal Field and occur at, or near, the Early Pennsylvanian unconformity (0-30 m). Lycospora and Densosporites (and related crassicingulate taxa, e.g. Cristatisporites, Cingulizonates and Radiizonates) dominate the studied assemblages, with Granulatisporites (and related trilete, sphaerotriangular genera, e.g. Leiotriletes and Lophotriletes), Laevigatosporites and Schulzospora being common accessory genera. Petrographically, all four coals contain high percentages of vitrinite macerals (avg. 78.6% mineral matter free), moderate amounts of liptinite (or exinite) macerals (avg. 14.9%, mmf) and low percentages of inertinite macerals (avg. 6.5%, mmf). Strata above the coals consist of dark, carbonaceous shales, and heterolithic strata that exhibit varying degrees of bioturbation. Commonly occurring trace fossils include Arenicolites, Monocraterion, Planolites and Skolithos. Although marine-influenced strata, as determined from detailed sedimentology and ichnology (the study of trace fossils), covers all four coal beds, they are not uniformly high in total total sulfur content as might be expected. Rather they are extremely variable, ranging from 1-9% (dry basis) total sulfur. Ash yields are also variable ranging from 6.2-54.3% (dry basis). It is probable that the origin of the very first sediments covering the peat, as well as the amount of brackish water influence during peat accumulation, were important factors in determining the total sulfur content of the resultant coal. Initial sedimentation of fresh water clays and silts may have acted as a barrier to downward percolation/diffusion of sulfate bearing waters, or may have served as a site for sulfide formation, thereby keeping the total sulfur content of the underlying coal low. If initial sedimentation was of brackish or marine origin, as indicated by bioturbated laminae directly above the coal, or if the peat was subject to frequent brackish or marine water influence during accumulation, then sulfide generation might proceed unchecked, resulting in high sulfur coal.
Niu, Zhenchuan; Zhou, Weijian; Feng, Xue; Feng, Tian; Wu, Shugang; Cheng, Peng; Lu, Xuefeng; Du, Hua; Xiong, Xiaohu; Fu, Yunchong
2018-06-01
Radiocarbon ( 14 C) is the most accurate tracer available for quantifying atmospheric CO 2 derived from fossil fuel (CO 2ff ), but it is expensive and time-consuming to measure. Here, we used common hourly Air Quality Index (AQI) pollutants (AQI, PM 2.5 , PM 10 , and CO) to indirectly trace diurnal CO 2ff variations during certain days at the urban sites in Beijing and Xiamen, China, based on linear relationships between AQI pollutants and CO 2ff traced by 14 C ([Formula: see text]) for semimonthly samples obtained in 2014. We validated these indirectly traced CO 2ff (CO 2ff-in ) concentrations against [Formula: see text] concentrations traced by simultaneous diurnal 14 CO 2 observations. Significant (p < 0.05) strong correlations were observed between each of the separate AQI pollutants and [Formula: see text] for the semimonthly samples. Diurnal variations in CO 2ff traced by each of the AQI pollutants generally showed similar trends to those of [Formula: see text], with high agreement at the sampling site in Beijing and relatively poor agreement at the sampling site in Xiamen. AQI pollutant tracers showed high normalized root-mean-square (NRMS) errors for the summer diurnal samples due to low [Formula: see text] concentrations. After the removal of these summer samples, the NRMS errors for AQI pollutant tracers were in the range of 31.6-64.2%. CO generally showed a high agreement and low NRMS errors among these indirect tracers. Based on these linear relationships, monthly CO 2ff averages at the sampling sites in Beijing and Xiamen were traced using CO concentration as a tracer. The monthly CO 2ff averages at the Beijing site showed a shallow U-type variation. These results indicate that CO can be used to trace CO 2ff variations in Chinese cities with CO 2ff concentrations above 5 ppm.
NASA Astrophysics Data System (ADS)
Barrett, K.; Kim, S. H.; Hotchkiss, S.
2015-12-01
Around AD 800, Polynesians arrived on the Hawaiian Islands where they expanded and intensified distinct agricultural practices in the islands' wet and dry regions. Dryland farming productivity in particular would have been sensitive to atmospheric rearrangements of the ENSO and PDO systems that affect rainfall in Hawaii. The few detailed terrestrial paleoclimate records in Hawaii are mainly derived from vegetation proxies (e.g. pollen, seeds, fruits, and plant biomarkers) which are heavily influenced by widespread landscape modification following human arrival. Here we present initial results of an independent paleomoisture proxy: fossil remains of moisture-sensitive testate amoebae (Protozoa: Rhizopoda) and cladocera (water fleas) preserved in continuous bog sediments on Kohala Volcano uplsope of the ancient Kohala agricultural field system, one of the largest dryland field systems in Hawaii. Hydrologic conditions inferred from testate amoebae and cladoceran fossil assemblages correlate with observed decadal moisture regimes in Hawaii and state changes of the PDO system during the last century. Testate ameoabe and cladoceran fossils in older sediments reveal an alternating history of very wet, lake-forming conditions on the bog surface to periods when bog soils were much drier than today's, demonstrating that this method can be paired with vegetation proxies to provide a better understanding of hydroclimate variability in prehistoric Hawaii.
NASA Astrophysics Data System (ADS)
Marks, Jane C.; Parnell, Roderic; Carter, Cody; Dinger, Eric C.; Haden, G. Allen
2006-07-01
Travertine deposits of calcium carbonate can dominate channel geomorphology in streams where travertine deposition creates a distinct morphology characterized by travertine terraces, steep waterfalls, and large pools. Algae and microorganisms can facilitate travertine deposition, but how travertine affects material and energy flow in stream ecosystems is less well understood. Nearly a century of flow diversion for hydropower production has decimated the natural travertine formations in Fossil Creek, Arizona. The dam will be decommissioned in 2005. Returning carbonate-rich spring water to the natural stream channel should promote travertine deposition. How will the recovery of travertine affect the ecology of the creek? To address this question, we compared primary production, decomposition, and the abundance and diversity of invertebrates and fish in travertine and riffle/run reaches of Fossil Creek, Arizona. We found that travertine supports higher primary productivity, faster rates of leaf litter decomposition, and higher species richness of the native invertebrate assemblage. Observations from snorkeling in the stream indicate that fish density is also higher in the travertine reach. We postulate that restoring travertine to Fossil Creek will increase stream productivity, rates of litter processing, and energy flow up the food web. Higher aquatic productivity could fundamentally shift the nature of the stream from a sink to a source of energy for the surrounding terrestrial landscape.
Matsukawa, M.; Ito, M.; Nishida, N.; Koarai, K.; Lockley, M.G.; Nichols, D.J.
2006-01-01
Cretaceous nonmarine deposits are widely distributed on the Asian continent and include various kinds of zoo- and phyto-assemblages. The Tetori Group is one of the most important Mesozoic terrestrial deposits in East Asia, and for this reason its geology, stratigraphy, and biota have been studied intensively by our group for more than a decade. We present the main results herein. We confirm that formations as lithostratigraphic units are the best geological correlation tools for the Tetori Group and the best tools for a geological mapping of the group. Although subgroups have previously been used for correlation, proper designation and evaluation of subgroups is required if they are to be used effectively, and we show that previous geological correlation of the Tetori Group has been confused by inappropriate definition of these subgroups. We located fossil localities including reported zoo- and phyto-assemblages in the framework of formations correlated by our stratigraphy. The occurrence of zoo-assemblages was probably controlled by environments (i.e., most are in situ), but phyto-assemblages were mostly transported and rapidly buried by high-energy river systems. Although two distinct dinosaur faunas and four floras have been named for the zoo- and phyto-assemblages in the Tetori Group, in reality there is only one Tetori Dinosaur Fauna and one Tetori Flora, as proved by careful correlation. Two types of zoo-assemblages co-occur in the Tetori Group: vertebrate species whose ancestors flourished in the Jurassic (as found in China), and their descendants from the Late Cretaceous. As the latter modern type of assemblage is more abundant than the former, changeable environments at the continental margin probably accelerated evolution of more modern species. We can employ nonmarine molluscan species as geological correlation tools in some cases, i.e., when their taxon ranges are well-confirmed by independent evidence. However, because freshwater molluscan species and terrestrial vertebrate species had many opportunities to move to optimum habitat as environments changed through time on the Cretaceous Asian continent, their correlation potential is uncertain. Many nonmarine molluscan species from the Japanese and Chinese Cretaceous had their stratigraphic occurrences controlled by changing environments. ?? 2005 Elsevier Ltd. All rights reserved.
Transient deep-water oxygenation in the early Cambrian Nanhua Basin, South China
NASA Astrophysics Data System (ADS)
Cheng, Meng; Li, Chao; Zhou, Lian; Feng, LianJun; Algeo, Thomas J.; Zhang, FeiFei; Romaniello, Stephen; Jin, ChengSheng; Ling, HongFei; Jiang, ShaoYong
2017-08-01
Many late Neoproterozoic to early Cambrian fossils of multicellular eukaryotes, including those of benthic animals, are found preserved under anoxic and even euxinic bottom-water conditions, which is contradictory to the consensus that oxygen is essential to eukaryotes. To investigate this conundrum, we conducted an integrated study of iron speciation, redox-sensitive trace elements, and Mo isotopes (δ98Mo) on the black shale interval of the lower Cambrian Hetang Formation (∼535-521 Ma) at Lantian, South China, in which benthic sponge fossils are abundant in the lower member (LM) but absent in the upper member (UM). Iron speciation data point to uniformly anoxic-ferruginous conditions in the LM and euxinic conditions in the UM, whereas the trace-element and δ98Mo data show greater secular variation in redox conditions. The LM shows higher mean trace element concentrations (Mo: 108 ppm, U: 36 ppm, V: 791 ppm) and lower and more variable δ98Mo (+0.13 to +1.76‰) relative to the UM (Mo: 45 ppm, U: 18 ppm, V: 265 ppm, δ98Mo: +1.59 to +1.67‰), and ratios of redox-sensitive trace element concentrations to total organic carbon are significantly more variable and higher on average in the LM relative to the UM. The appearance of sponge fossils and lower δ98Mo values correlate strongly with gray (i.e., lighter-colored) layers in the LM. These patterns can best be interpreted as recording mainly euxinic conditions throughout deposition of the study units, with more intense background euxinia in the LM relative to the UM, but also with frequent transient oxygenation events in the LM that do not appear in the UM. The transient oxygenation events of the LM led to the initial colonization of the deep Nanhua Basin by sponges, and the termination of these events in the UM caused sponge faunas to disappear until a general rise in O2 levels later in the Cambrian permitted their return to deeper-water habitats. Our study also illustrates that multiple geochemical and paleobiological proxies exhibit different responses in 'poikiloredox' environments (i.e., characterized by small-scale spatial and high-frequency temporal variations), which can lead to apparent contradictions between metazoan fossil occurrences and their inferred watermass redox conditions.
New early Pleistocene hominin teeth from the Swartkrans Formation, South Africa.
Pickering, Travis Rayne; Heaton, Jason L; Sutton, Morris B; Clarke, Ron J; Kuman, Kathleen; Senjem, Jess Hutton; Brain, C K
2016-11-01
We describe 14 hominin teeth and tooth fragments excavated recently from Swartkrans Cave (South Africa). The fossils derive from Members 1 (Lower Bank) and 3, from the Member 2/3 interface and from two deposits not yet assigned to member (the "Talus Cone Deposit" and the "Underground North Excavation" [UNE]) of the Swartkrans Formation, and include the first hominin fossil from the UNE, the two smallest Paranthropus robustus deciduous maxillary second molars in the entire hominin fossil record, and one of the smallest P. robustus permanent maxillary second molars from Swartkrans. The small permanent molar is accompanied by another tooth from a different individual but from the same stratigraphic level of the Swartkrans Formation; this second tooth is among, if not, the largest P. robustus permanent maxillary first molars known from anywhere-lending credence to assertions that degrees of body size sexual dimorphism previously ascribed to this species may be underestimated. It is more equivocal whether this evidence also supports hypotheses proposing that P. robustus assemblages from Swartkrans (as well as those from other South African cave sites) formed through the taphonomically biasing actions of large carnivores. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new U-Pb zircon age and a volcanogenic model for the early Permian Chemnitz Fossil Forest
NASA Astrophysics Data System (ADS)
Luthardt, Ludwig; Hofmann, Mandy; Linnemann, Ulf; Gerdes, Axel; Marko, Linda; Rößler, Ronny
2018-04-01
The Chemnitz Fossil Forest depicts one of the most completely preserved forest ecosystems in late Paleozoic Northern Hemisphere of tropical Pangaea. Fossil biota was preserved as a T0 taphocoenosis resulting from the instantaneous entombment by volcanic ashes of the Zeisigwald Tuff. The eruption depicts one of the late magmatic events of post-variscan rhyolitic volcanism in Central Europe. This study represents a multi-method evaluation of the pyroclastic ejecta encompassing sedimentological and (isotope) geochemical approaches to shed light on magmatic and volcanic processes, and their role in preserving the fossil assemblage. The Zeisigwald Tuff pyroclastics (ZTP) reveal a radiometric age of 291 ± 2 Ma, pointing to a late Sakmarian/early Artinskian (early Permian) stratigraphic position for the Chemnitz Fossil Forest. The initial eruption was of phreatomagmatic style producing deposits of cool, wet ashes, which deposited from pyroclastic fall out and density currents. Culmination of the eruption is reflected by massive hot and dry ignimbrites. Whole-rock geochemistry and zircon grain analysis show that pyroclastic deposits originated from a felsic, highly specialised magma, which underwent advanced fractionation, and is probably related to post-Carboniferous magmatism in the Western Erzgebirge. The ascending magma recycled old cadomic crust of the Saxo-thuringian zone, likely induced by a mantle-derived heat flow during a phase of post-variscan crustal delamination. Geochemical trends within the succession of the basal pyroclastic horizons reflect inverse zonation of the magma chamber and provide evidence for the continuous eruption and thus a simultaneous burial of the diverse ecosystem.
Spider crabs of the Western Atlantic with special reference to fossil and some modern Mithracidae
Portell, Roger W.; Klier, Aaron T.; Prueter, Vanessa; Tucker, Alyssa L.
2015-01-01
Spider crabs (Majoidea) are well-known from modern oceans and are also common in the western part of the Atlantic Ocean. When spider crabs appeared in the Western Atlantic in deep time, and when they became diverse, hinges on their fossil record. By reviewing their fossil record, we show that (1) spider crabs first appeared in the Western Atlantic in the Late Cretaceous, (2) they became common since the Miocene, and (3) most species and genera are found in the Caribbean region from the Miocene onwards. Furthermore, taxonomic work on some modern and fossil Mithracidae, a family that might have originated in the Western Atlantic, was conducted. Specifically, Maguimithrax gen. nov. is erected to accommodate the extant species Damithrax spinosissimus, while Damithrax cf. pleuracanthus is recognized for the first time from the fossil record (late Pliocene–early Pleistocene, Florida, USA). Furthermore, two new species are described from the lower Miocene coral-associated limestones of Jamaica (Mithrax arawakum sp. nov. and Nemausa windsorae sp. nov.). Spurred by a recent revision of the subfamily, two known species from the same deposits are refigured and transferred to new genera: Mithrax donovani to Nemausa, and Mithrax unguis to Damithrax. The diverse assemblage of decapods from these coral-associated limestones underlines the importance of reefs for the abundance and diversity of decapods in deep time. Finally, we quantitatively show that these crabs possess allometric growth in that length/width ratios drop as specimens grow, a factor that is not always taken into account while describing and comparing among taxa. PMID:26557432
Bracken-Grissom, Heather D; Ahyong, Shane T; Wilkinson, Richard D; Feldmann, Rodney M; Schweitzer, Carrie E; Breinholt, Jesse W; Bendall, Matthew; Palero, Ferran; Chan, Tin-Yam; Felder, Darryl L; Robles, Rafael; Chu, Ka-Hou; Tsang, Ling-Ming; Kim, Dohyup; Martin, Joel W; Crandall, Keith A
2014-07-01
Lobsters are a ubiquitous and economically important group of decapod crustaceans that include the infraorders Polychelida, Glypheidea, Astacidea and Achelata. They include familiar forms such as the spiny, slipper, clawed lobsters and crayfish and unfamiliar forms such as the deep-sea and "living fossil" species. The high degree of morphological diversity among these infraorders has led to a dynamic classification and conflicting hypotheses of evolutionary relationships. In this study, we estimated phylogenetic relationships among the major groups of all lobster families and 94% of the genera using six genes (mitochondrial and nuclear) and 195 morphological characters across 173 species of lobsters for the most comprehensive sampling to date. Lobsters were recovered as a non-monophyletic assemblage in the combined (molecular + morphology) analysis. All families were monophyletic, with the exception of Cambaridae, and 7 of 79 genera were recovered as poly- or paraphyletic. A rich fossil history coupled with dense taxon coverage allowed us to estimate and compare divergence times and origins of major lineages using two drastically different approaches. Age priors were constructed and/or included based on fossil age information or fossil discovery, age, and extant species count data. Results from the two approaches were largely congruent across deep to shallow taxonomic divergences across major lineages. The origin of the first lobster-like decapod (Polychelida) was estimated in the Devonian (∼409-372 Ma) with all infraorders present in the Carboniferous (∼353-318 Ma). Fossil calibration subsampling studies examined the influence of sampling density (number of fossils) and placement (deep, middle, and shallow) on divergence time estimates. Results from our study suggest including at least 1 fossil per 10 operational taxonomic units (OTUs) in divergence dating analyses. [Dating; decapods; divergence; lobsters; molecular; morphology; phylogenetics.]. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.For Permissions, please email: journals.permissions@oup.com.
Pérez, María Encarnación; Pol, Diego
2012-01-01
Background Caviidae is a diverse group of caviomorph rodents that is broadly distributed in South America and is divided into three highly divergent extant lineages: Caviinae (cavies), Dolichotinae (maras), and Hydrochoerinae (capybaras). The fossil record of Caviidae is only abundant and diverse since the late Miocene. Caviids belongs to Cavioidea sensu stricto (Cavioidea s.s.) that also includes a diverse assemblage of extinct taxa recorded from the late Oligocene to the middle Miocene of South America (“eocardiids”). Results A phylogenetic analysis combining morphological and molecular data is presented here, evaluating the time of diversification of selected nodes based on the calibration of phylogenetic trees with fossil taxa and the use of relaxed molecular clocks. This analysis reveals three major phases of diversification in the evolutionary history of Cavioidea s.s. The first two phases involve two successive radiations of extinct lineages that occurred during the late Oligocene and the early Miocene. The third phase consists of the diversification of Caviidae. The initial split of caviids is dated as middle Miocene by the fossil record. This date falls within the 95% higher probability distribution estimated by the relaxed Bayesian molecular clock, although the mean age estimate ages are 3.5 to 7 Myr older. The initial split of caviids is followed by an obscure period of poor fossil record (refered here as the Mayoan gap) and then by the appearance of highly differentiated modern lineages of caviids, which evidentially occurred at the late Miocene as indicated by both the fossil record and molecular clock estimates. Conclusions The integrated approach used here allowed us identifying the agreements and discrepancies of the fossil record and molecular clock estimates on the timing of the major events in cavioid evolution, revealing evolutionary patterns that would not have been possible to gather using only molecular or paleontological data alone. PMID:23144757
NASA Astrophysics Data System (ADS)
Villegas-Martín, Jorge; Netto, Renata Guimarães
2017-12-01
The trace fossil Bichordites monastiriensis is found in early Eocene turbiditic sandstones of the upper-slope deposits from the Capdevila Formation in Los Palacios Basin, Pinar del Río region, western Cuba. The potential tracemakers of B. monastiriensis include fossil spatangoids from the family Eupatagidae. The record of Bichordites in the deposits from Cuba allows to suppose that Eupatagidae echinoids were the oldest potential tracemakers of Bichordites isp. and reinforce the hypothesis that the ichnological record are relevant in envisaging the evolutionary history of the spatangoids.
Tyler, Carrie L; Kowalewski, Michał
2017-03-15
Rigorous documentation of spatial heterogeneity (β-diversity) in present-day and preindustrial ecosystems is required to assess how marine communities respond to environmental and anthropogenic drivers. However, the overwhelming majority of contemporary and palaeontological assessments have centred on single higher taxa. To evaluate the validity of single taxa as community surrogates and palaeontological proxies, we compared macrobenthic communities and sympatric death assemblages at 52 localities in Onslow Bay (NC, USA). Compositional heterogeneity did not differ significantly across datasets based on live molluscs, live non-molluscs, and all live organisms. Death assemblages were less heterogeneous spatially, likely reflecting homogenization by time-averaging. Nevertheless, live and dead datasets were greater than 80% congruent in pairwise comparisons to the literature estimates of β-diversity in other marine ecosystems, yielded concordant bathymetric gradients, and produced nearly identical ordinations consistently delineating habitats. Congruent estimates from molluscs and non-molluscs suggest that single groups can serve as reliable community proxies. High spatial fidelity of death assemblages supports the emerging paradigm of Conservation Palaeobiology. Integrated analyses of ecological and palaeontological data based on surrogate taxa can quantify anthropogenic changes in marine ecosystems and advance our understanding of spatial and temporal aspects of biodiversity. © 2017 The Author(s).
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera
Pearson, Paul N.; Dunkley Jones, Tom; Farnsworth, Alexander; Lunt, Daniel J.; Markwick, Paul; Purvis, Andy
2016-01-01
The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)—one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56–34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment–diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG—lower richness towards the poles—developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity—e.g. richness, evenness, functional diversity—have changed over geological time. By the Late Eocene, environment–diversity relationships were much more similar to those found today. PMID:26977064
Thuy, Ben; Kiel, Steffen; Dulai, Alfréd; Gale, Andy S.; Kroh, Andreas; Lord, Alan R.; Numberger-Thuy, Lea D.; Stöhr, Sabine; Wisshak, Max
2014-01-01
Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic. PMID:24850917
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.; ...
2016-10-13
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
NASA Astrophysics Data System (ADS)
Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui
2016-07-01
The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.
Dusel-Bacon, C.; Cooper, K.M.
1999-01-01
We present major- and trace- element geochemical data for 27 amphibolites and six greenstones from three structural packages in the Yukon-Tanana Upland of east-central Alaska: the Lake George assemblage (LG) of Devono-Mississippian augen gneiss, quartz-mica schist, quartzite, and amphibolite; the Taylor Mountain assemblage (TM) of mafic schist and gneiss, marble, quartzite, and metachert; and the Seventymile terrane of greenstone, serpentinized peridotite, and Mississippian to Late Triassic metasedimentary rocks. Most LG amphibolites have relatively high Nb, TiO2, Zr, and light rare earth element contents, indicative of an alkalic to tholeiitic, within-plate basalt origin. The within-plate affinities of the LG amphibolites suggest that their basaltic parent magmas developed in an extensional setting and support a correlation of these metamorphosed continental-margin rocks with less metamorphosed counterparts across the Tintina fault in the Selwyn Basin of the Canadian Cordillera. TM amphibolites have a tholeiitic or calc-alkalic composition, low normalized abundances of Nb and Ta relative to Th and La, and Ti/V values of <20, all indicative of a volcanic-arc origin. Limited results from Seventymile greenstones indicate a tholeiitic or calc-alkalic composition and intermediate to high Ti/V values (27-48), consistent with either a within-plate or an ocean-floor basalt origin. Y-La-Nb proportions in both TM and Seventymile metabasalts indicate the proximity of the arc and marginal basin to continental crust. The arc geochemistry of TM amphibolites is consistent with a model in which the TM assemblage includes arc rocks generated above a west-dipping subduction zone outboard of the North American continental margin in mid-Paleozoic through Triassic time. The ocean-floor or within-plate basalt geochemistry of the Seventymile greenstones supports the correlation of the Seventymile terrane with the Slide Mountain terrane in Canada and the hypothesis that these oceanic rocks originated in a basin between the continental margin and an arc to the west.
Eocene Loranthaceae pollen pushes back divergence ages for major splits in the family.
Grímsson, Friðgeir; Kapli, Paschalia; Hofmann, Christa-Charlotte; Zetter, Reinhard; Grimm, Guido W
2017-01-01
We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.
Chaboo, Caroline S; Engel, Michael S; Chamorro-Lacayo, Maria Lourdes
2009-09-01
Complex ethological adaptations and intraspecific interactions leave few fossil traces. We document three Dominican (20 million years old [myo]) and Baltic (45 myo) amber fossils that exhibit firm evidence of highly integrated interactions between mothers and offspring in the diverse camptosomate lineage of beetles (Chrysomelidae, leaf beetles). As in contemporary species, these hard cases were initially constructed by mothers, then inherited and retained by offspring, which then elaborate this protective domicile with an unusual but economical building material, their feces. The three fossils are classified in the Subfamily Cryptocephalinae; two are classified in the tribe Chlamisini based on morphological evidence-the flattened head lacking a sharp keel and long legs with simple recurved untoothed claws. These diagnostic features are not clearly visible in the third specimen to permit more refined identification. These fossils provide more precise paleontological dating of tribal nodes within the cryptocephaline radiation of leaf beetles. These fossils are the first and earliest evidence of mother-offspring interaction, building behavior, and fecal recycling in Camptosomata beetles and of inheritance of architectural structures in beetles.
NASA Astrophysics Data System (ADS)
Chaboo, Caroline S.; Engel, Michael S.; Chamorro-Lacayo, Maria Lourdes
2009-09-01
Complex ethological adaptations and intraspecific interactions leave few fossil traces. We document three Dominican (20 million years old [myo]) and Baltic (45 myo) amber fossils that exhibit firm evidence of highly integrated interactions between mothers and offspring in the diverse camptosomate lineage of beetles (Chrysomelidae, leaf beetles). As in contemporary species, these hard cases were initially constructed by mothers, then inherited and retained by offspring, which then elaborate this protective domicile with an unusual but economical building material, their feces. The three fossils are classified in the Subfamily Cryptocephalinae; two are classified in the tribe Chlamisini based on morphological evidence—the flattened head lacking a sharp keel and long legs with simple recurved untoothed claws. These diagnostic features are not clearly visible in the third specimen to permit more refined identification. These fossils provide more precise paleontological dating of tribal nodes within the cryptocephaline radiation of leaf beetles. These fossils are the first and earliest evidence of mother-offspring interaction, building behavior, and fecal recycling in Camptosomata beetles and of inheritance of architectural structures in beetles.
Lockley, Martin G; McCrea, Richard T; Buckley, Lisa G; Lim, Jong Deock; Matthews, Neffra A; Breithaupt, Brent H; Houck, Karen J; Gierliński, Gerard D; Surmik, Dawid; Kim, Kyung Soo; Xing, Lida; Kong, Dal Yong; Cart, Ken; Martin, Jason; Hadden, Glade
2016-01-07
Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of "display arenas" or leks, and consistent with "nest scrape display" behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.
NASA Astrophysics Data System (ADS)
Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade
2016-01-01
Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.
Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade
2016-01-01
Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred. PMID:26741567
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages
Lartaud, Franck; Little, Crispin T. S.; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine
2011-01-01
Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed. PMID:21518892
Fossil evidence for serpentinization fluids fueling chemosynthetic assemblages.
Lartaud, Franck; Little, Crispin T S; de Rafelis, Marc; Bayon, Germain; Dyment, Jerome; Ildefonse, Benoit; Gressier, Vincent; Fouquet, Yves; Gaill, Françoise; Le Bris, Nadine
2011-05-10
Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.
NASA Astrophysics Data System (ADS)
Huck, Claire E.; van de Flierdt, Tina; Jiménez-Espejo, Francisco J.; Bohaty, Steven M.; Röhl, Ursula; Hammond, Samantha J.
2016-03-01
Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources.
NASA Astrophysics Data System (ADS)
Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang
2017-12-01
Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.
Climate Science and the Responsibilities of Fossil Fuel Companies for Climate Damages and Adaptation
NASA Astrophysics Data System (ADS)
Frumhoff, P. C.; Ekwurzel, B.
2017-12-01
Policymakers in several jurisdictions are now considering whether fossil fuel companies might bear some legal responsibility for climate damages and the costs of adaptation to climate change potentially traceable to the emissions from their marketed products. Here, we explore how scientific research, outreach and direct engagement with industry leaders and shareholders have informed and may continue to inform such developments. We present the results of new climate model research quantifying the contribution of carbon dioxide and methane emissions traced to individual fossil fuel companies to changes in global temperature and sea level; explore the impact of such research and outreach on both legal and broader societal consideration of company responsibility; and discuss the opportunities and challenges for scientists to engage in further work in this area.
Sirkin, L.; Owens, J.P.
1998-01-01
Palynology of Miocene and Pliocene formations in the Delmarva Peninsula of Maryland and Virginia reveals a significant representation of exotic pollen interspersed in pollen assemblages that are otherwise comparable to those from the modern vegetation of the Mid-Alantic coastal plain region. The late Tertiary arboreal pollen (AP) assemblages are dominated by oak, hickory, pine, birch and alder with minor amounts of mid- and southern coastal tree taxa, as well as minor spruce and hemlock and a trace of fir. Nonarboreal pollen (NAP) include grass, sedge, composite and aquatic taxa. Exotic pollen in these assemblages represent plants now foreign to this region. They may be placed in three categories. First, there are extinct forms, such as Labrapollis, Plicatopollis, and Multiporopollenites, that can be traced from the Cretaceous or Early Tertiary into the Late Tertiary. The second group includes forms, such as Podocarpus, Engelhardtia, Pterocarya, Ephedra, Eucommia, Ulmus-Zelkova, Glyptostrobus, Palmae, and Cyathea, that are not found in this region today and not found in early Pleistocene sediments in the eastern United States. Many of these taxa are subtropical or greatly restricted in geographic range. A third group of exotics, mainly Cyrilla, Planera, Gordonia, Jussiaea, and Sapotacaea, including Minusops, are generally found south of the study area or have their northern limit here at this time. The lack of the extinct or distant exotics in early to mid-Pleistocene sediments in the mid-Atlantic coastal plain and the last appearance of Pterocarya, as the last exotic taxon in the early Pleistocene of western Europe, support the stratigraphic assignment of the Pliocene units. The number of exotic taxa diminish markedly between the Miocene pollen assemblages and those of the Late Pliocene. Climatic fluctuations characterize the Late Tertiary environments. The Miocene, for example, incorporates a warming trend between the upper, middle Miocene and the Manokin beds and the late Miocene of the Pokomoke beds. The late Miocene was probably somewhat warner than the present climate in the Delmarva region. This trend is based on the presence of colder climate indicators, mainly spruce and hemlock, in the Manokin pollen record. The two distinct pollen assemblages constitute two pollen zones. Similarly, the Pliocene pollen record also shows a warming trend. The pollen zone of the Yorktown Formation of the early Pliocene age contains the colder climate indicators spruce and hemlock. The Beaverdam and Walston formation of late Pliocene age contain pollen assemblages that reflect climatic conditions warmer than the present time.
Two waves of colonization straddling the K-Pg boundary formed the modern reef fish fauna.
Price, S A; Schmitz, L; Oufiero, C E; Eytan, R I; Dornburg, A; Smith, W L; Friedman, M; Near, T J; Wainwright, P C
2014-05-22
Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous-Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction.
Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna
Brayard, Arnaud; Krumenacker, L. J.; Botting, Joseph P.; Jenks, James F.; Bylund, Kevin G.; Fara, Emmanuel; Vennin, Emmanuelle; Olivier, Nicolas; Goudemand, Nicolas; Saucède, Thomas; Charbonnier, Sylvain; Romano, Carlo; Doguzhaeva, Larisa; Thuy, Ben; Hautmann, Michael; Stephen, Daniel A.; Thomazo, Christophe; Escarguel, Gilles
2017-01-01
In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage—the Paris Biota—from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200–million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era. PMID:28246643
NASA Astrophysics Data System (ADS)
Grimm, Guido W.; Potts, Alastair J.
2016-03-01
The Coexistence Approach has been used to infer palaeoclimates for many Eurasian fossil plant assemblages. However, the theory that underpins the method has never been examined in detail. Here we discuss acknowledged and implicit assumptions and assess the statistical nature and pseudo-logic of the method. We also compare the Coexistence Approach theory with the active field of species distribution modelling. We argue that the assumptions will inevitably be violated to some degree and that the method lacks any substantive means to identify or quantify these violations. The absence of a statistical framework makes the method highly vulnerable to the vagaries of statistical outliers and exotic elements. In addition, we find numerous logical inconsistencies, such as how climate shifts are quantified (the use of a "centre value" of a coexistence interval) and the ability to reconstruct "extinct" climates from modern plant distributions. Given the problems that have surfaced in species distribution modelling, accurate and precise quantitative reconstructions of palaeoclimates (or even climate shifts) using the nearest-living-relative principle and rectilinear niches (the basis of the method) will not be possible. The Coexistence Approach can be summarised as an exercise that shoehorns a plant fossil assemblage into coexistence and then assumes that this must be the climate. Given the theoretical issues and methodological issues highlighted elsewhere, we suggest that the method be discontinued and that all past reconstructions be disregarded and revisited using less fallacious methods. We outline six steps for (further) validation of available and future taxon-based methods and advocate developing (semi-quantitative) methods that prioritise robustness over precision.
Two waves of colonization straddling the K–Pg boundary formed the modern reef fish fauna
Price, S. A.; Schmitz, L.; Oufiero, C. E.; Eytan, R. I.; Dornburg, A.; Smith, W. L.; Friedman, M.; Near, T. J.; Wainwright, P. C.
2014-01-01
Living reef fishes are one of the most diverse vertebrate assemblages on Earth. Despite its prominence and ecological importance, the origins and assembly of the reef fish fauna is poorly described. A patchy fossil record suggests that the major colonization of reef habitats must have occurred in the Late Cretaceous and early Palaeogene, with the earliest known modern fossil coral reef fish assemblage dated to 50 Ma. Using a phylogenetic approach, we analysed the early evolutionary dynamics of modern reef fishes. We find that reef lineages successively colonized reef habitats throughout the Late Cretaceous and early Palaeogene. Two waves of invasion were accompanied by increasing morphological convergence: one in the Late Cretaceous from 90 to 72 Ma and the other immediately following the end-Cretaceous mass extinction. The surge in reef invasions after the Cretaceous–Palaeogene boundary continued for 10 Myr, after which the pace of transitions to reef habitats slowed. Combined, these patterns match a classic niche-filling scenario: early transitions to reefs were made rapidly by morphologically distinct lineages and were followed by a decrease in the rate of invasions and eventual saturation of morphospace. Major alterations in reef composition, distribution and abundance, along with shifts in climate and oceanic currents, occurred during the Late Cretaceous and early Palaeogene interval. A causal mechanism between these changes and concurrent episodes of reef invasion remains obscure, but what is clear is that the broad framework of the modern reef fish fauna was in place within 10 Myr of the end-Cretaceous extinction. PMID:24695431
Palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin
Eble, C.F.
2002-01-01
Fossil spores and pollen have long been recognized as valuable tools for identifying and correlating coal beds. This paper describes the palynology of late Middle Pennsylvanian coal beds in the Appalachian Basin with emphasis on forms that assist both intra- and interbasinal coal bed correlation. Stratigraphically important palynomorphs that originate in late Middle Pennsylvanian strata include Torispora securis, Murospora kosankei, Triquitrites minutus, Cadiospora magna, Mooreisporites inusitatus, and Schopfites dimorphus. Taxa that terminate in the late Middle Pennsylvanian include Radiizonates difformis, Densosporites annulatus, Dictyotriletes bireticulatus, Vestispora magna, and Savitrisporites nux. Species of Lycospora, Cirratriradites, Vestispora, and Thymospora, as well as Granasporites medius, Triquitrites sculptilis, and T. securis and their respective ranges slightly higher, in earliest Late Pennsylvanian age strata. Late Middle Pennsylvanian and earliest Late Pennsylvanian strata in the Appalachian Basin correlate with the Radiizonates difformis (RD), Mooreisporites inusitatus (MI), Schopfites colchesterensis-S. dimorphus (CP), and Lycospora granulata-Granasporites medius (GM) spore assemblage zones of the Eastern Interior, or Illinois Basin. In the Western Interior Basin, these strata correlate with the middle-upper portion of the Torispora securis-Laevigatosporites globosus (SG) and lower half of the Thymospora pseudothiessenii-Schopfites dimorphus (PD) assemblage zones. In western Europe, late Middle Pennsylvanian and earliest Late Pennsylvanian strata correlate with the middle-upper portion of the Torispora securis-T. laevigata (SL) and the middle part of the Thymospora obscura-T. thiessenii (OT) spore assemblage zones. Allegheny Formation coal beds also correlate with the Torispora securis (X) and Thymospora obscura (XI) spore assemblages, which were developed for coal beds in Great Britain. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Costa, K.; Faith, E. S.; McManus, J. F.
2017-12-01
Deep-sea sediment mixing by bioturbation is ubiquitous on the seafloor, and it can be an important influence on the fidelity of paleoceanographic records. Bioturbation can be difficult to quantify, especially in the past, but diffusive models based on radioactive tracer profiles have provided a relatively successful approach. Stable isotope and radiocarbon data from five different foraminiferal species from sediment on the Juan de Fuca Ridge, Northeast Pacific, have previously identified age plateaus that correspond to peak foraminiferal abundances, related to assemblage shifts and carbonate preservation changes since the last glacial period. Here we present size-specific foraminiferal assemblages and over 100 radiocarbon dates to better constrain the effects of bioturbation on fossil chronometers. N. pachyderma is the dominant species in the 150-212µm while G. bulloides is the dominant species in all other size fractions (212-250 µm, 250-300 µm, 300-355 µm). The foraminiferal assemblage of 212-300 µm is found to be representative of the entire adult foraminiferal population >150 µm. Size-specific radiocarbon analyses on G. bulloides demonstrate that larger specimens are generally younger than smaller specimens, but all sizes are susceptible to abundance peak age plateaus. The young bias towards larger specimens may reflect their greater susceptibility to fragmentation during prolonged bioturbation, so that the influence of abundance peaks is shorter-lived in these size fractions. When foraminiferal abundance peaks are unavoidable, e.g. due to large shifts in carbonate preservation, we suggest that larger foraminiferal may provide a more accurate chronometer for sediment age.
Petrochemistry of Mafic Rocks Within the Northern Cache Creek Terrane, NW British Columbia, Canada
NASA Astrophysics Data System (ADS)
English, J. M.; Johnston, S. T.; Mihalynuk, M. G.
2002-12-01
The Cache Creek terrane is a belt of oceanic rocks that extend the length of the Cordillera in British Columbia. Fossil fauna in this belt are exotic with respect to the remainder of the Canadian Cordillera, as they are of equatorial Tethyan affinity, contrasting with coeval faunas in adjacent terranes that show closer linkages with ancestral North America. Preliminary results reported here from geochemical studies of mafic rocks within the Nakina area of NW British Columbia further constrain the origin of this enigmatic terrane. The terrane is typified by tectonically imbricated slices of chert, argillite, limestone, wacke and volcaniclastic rocks, as well as mafic and ultramafic rocks. These lithologies are believed to represent two separate lithotectonic elements: Upper Triassic to Lower Jurassic, subduction-related accretionary complexes, and dismembered basement assemblages emplaced during the closure of the Cache Creek ocean in the Middle Jurassic. Petrochemical analysis revealed four distinct mafic igneous assemblages that include: magmatic 'knockers' of the Nimbus serpentinite mélange, metabasalts of 'Blackcaps' Mountain, augite-phyric breccias of 'Laughing Moose' Creek, and volcanic pediments to the reef-forming carbonates of the Horsefeed Formation. Major and trace element analysis classifies the 'Laughing Moose' breccias and the carbonate-associated volcanics as alkaline in nature, whereas the rest are subalkaline. Tectonic discrimination diagrams show that the alkaline rocks are of within-plate affinity, while the 'Blackcaps' basalts and 'knockers' from within the mélange typically straddle the island-arc tholeiite and the mid-ocean ridge boundaries. However, primitive mantle normalized multi-element plots indicate that these subalkaline rocks have pronounced negative Nb anomalies, a characteristic arc signature. The spatial association of alkaline volcanic rocks with extensive carbonate domains points to the existence of seamounts within the Cache Creek ocean. However, the precise origin of the 'Laughing Moose' breccias remains somewhat uncertain and may be related to a subsequent rifting event. To conclude, preliminary data from the Nakina region show it to be dominated by two different petrogenetic components: alkaline volcanic rocks of within-plate affinity, and primitive arc-related, subalkaline mafic rocks. An accretionary complex/ oceanic arc origin may provide a mechanism to explain the lithological diversity within the Nakina area.
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Linkermann, Sean; Prevec, Rose
2011-10-01
Ichnological and sedimentological analyses in the Eastern Cape allowed the first description of a Cochlichnus-dominated ichnofossil site from the mid- to Upper Permian Middleton Formation (Karoo Supergroup) in South Africa. The locality is within the uppermost Pristerognathus Assemblage Zone, a biostratigraphic interval characterized by a low vertebrate biodiversity at the turn of the mid- to Late Permian. Our field data indicates that the surficial bioturbation of very fine to fine-grained sand layers resulted from life activities of shallow infaunal and epifaunal invertebrates (possibly annelids, aquatic oligochaetes, nematodes, insect larvae) and fish. The morphology of the trails, their relationship to the substrate and the behaviour inferred from them indicate that the tracemakers developed a strategy that facilitated the optimization of low food resources in a permanently submerged freshwater setting. Combined ichnological and sedimentological evidence suggests a low-energy, freshwater lacustrine depositional environment, where occasional higher energy currents brought nutrients. Data also imply that colonization of these erratic event beds by opportunistic sediment-feeders was short-lived and followed by longer intervals of lower energy deposition under possibly poorly oxygenated conditions. We propose that these event beds as well as the sporadic red mudstones of the Middleton Formation may have formed during short-term, higher storm-frequency and dryer periods, signalling changes in the otherwise humid climate in this part of the main Karoo Basin during the mid- to Late Permian.
NASA Astrophysics Data System (ADS)
Habibi, Tahereh; Nielsen, Jan K.; Ponedelnik, Alena A.; Ruban, Dmitry A.
2017-11-01
Unique palaeogeographical peculiarities of sedimentary formations are important for geological heritage conservation and use for the purposes of tourism. The heritage value of the Pabdeh Formation (Paleocene-Oligocene) of the Zagros Fold-Thrust Belt in Iran has been investigated. The uniqueness of its palaeogeographical peculiarities has been assessed on the basis of the literature, field studies of three representative sections in the Fars Province (Kavar, Zanjiran, and Shahneshin sections), and comparison with the similar features known in Iran and globally. The Pabdeh Formation reflects the process of mixed siliciclastic-carbonate ramp progradation and the onset of a typical carbonate platform. The other unique features include representation of mesopelagic palaeohabitat, specific trace fossil assemblages, prehistoric bituminous artefacts (production of which was linked to the Pabdeh deposits), etc. It is established that the palaeogeographical type of geological heritage of the Pabdeh Formation is represented by all known subtypes, namely facies, palaeoecosystem, ichnological, taphonomical, event, and geoarchaeological subtypes. Their rank varies between regional and global. The very fact of co-occurrence of these subtypes determines the global importance of the entire palaeogeographical type in the case of this formation. The establishment of geopark in the Zagros Fold-Thrust Belt will facilitate adequate use of the Pabdeh Formation for the purpose of geotourism development. The aesthetic properties (rocks of different colour and striped patterns of outcrops) increase the attractiveness of this geological body to visitors.
Earth Observations taken by the Expedition 15 Crew
2007-09-12
ISS015-E-28002 (12 Sept. 2007) --- A section of Dinosaur National Monument along the Yampa River in Colorado, which straddles the Colorado/Utah border, is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Dinosaur National Monument is perhaps best known for the abundant fossils found in the approximately 145 Ma (mega-annum, or millions of years old) Morrison Formation exposed in valleys and low ridges, according to scientists. The fossil assemblage is a unique record of terrestrial life of the period (dinosaurs, plants, and other animal species). Remains accumulated in streams and shallow lakes and were swiftly buried (and preserved) by sediments associated with those environments. Scientists believe these sediments in turn were lithified over many millions of years as they were buried under younger deposits -- forming the distinctive stratigraphy of the Monument. The generally flat-laying "layer cake" geology of the region -- similar to the Colorado Plateau to the south - is expressed in the image by parallel beds of tan, reddish-brown, and gray-brown sedimentary rocks cut by the Yampa River at the northern end of the Monument (top). Erosion by the Yampa River exposed the Morrison layer and its trove of fossil material. Together with other fossils found in both older and younger rock layers in the area, the Dinosaur National Monument remains an important scientific resource that continues to provide new insights into the geologic history and paleoecology of the region.
Earth Observations taken by the Expedition 15 Crew
2007-09-12
ISS015-E-28001 (12 Sept. 2007) --- A section of Dinosaur National Monument along the Yampa River in Colorado, which straddles the Colorado/Utah border, is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Dinosaur National Monument is perhaps best known for the abundant fossils found in the approximately 145 Ma (mega-annum, or millions of years old) Morrison Formation exposed in valleys and low ridges, according to scientists. The fossil assemblage is a unique record of terrestrial life of the period (dinosaurs, plants, and other animal species). Remains accumulated in streams and shallow lakes and were swiftly buried (and preserved) by sediments associated with those environments. Scientists believe these sediments in turn were lithified over many millions of years as they were buried under younger deposits -- forming the distinctive stratigraphy of the Monument. The generally flat-laying "layer cake" geology of the region -- similar to the Colorado Plateau to the south - is expressed in the image by parallel beds of tan, reddish-brown, and gray-brown sedimentary rocks cut by the Yampa River at the northern end of the Monument (top). Erosion by the Yampa River exposed the Morrison layer and its trove of fossil material. Together with other fossils found in both older and younger rock layers in the area, the Dinosaur National Monument remains an important scientific resource that continues to provide new insights into the geologic history and paleoecology of the region.
Earth Observations taken by the Expedition 15 Crew
2007-09-12
ISS015-E-28004 (12 Sept. 2007) --- A section of Dinosaur National Monument along the Yampa River in Colorado, which straddles the Colorado/Utah border, is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Dinosaur National Monument is perhaps best known for the abundant fossils found in the approximately 145 Ma (mega-annum, or millions of years old) Morrison Formation exposed in valleys and low ridges, according to scientists. The fossil assemblage is a unique record of terrestrial life of the period (dinosaurs, plants, and other animal species). Remains accumulated in streams and shallow lakes and were swiftly buried (and preserved) by sediments associated with those environments. Scientists believe these sediments in turn were lithified over many millions of years as they were buried under younger deposits -- forming the distinctive stratigraphy of the Monument. The generally flat-laying "layer cake" geology of the region -- similar to the Colorado Plateau to the south - is expressed in the image by parallel beds of tan, reddish-brown, and gray-brown sedimentary rocks cut by the Yampa River at the northern end of the Monument (top). Erosion by the Yampa River exposed the Morrison layer and its trove of fossil material. Together with other fossils found in both older and younger rock layers in the area, the Dinosaur National Monument remains an important scientific resource that continues to provide new insights into the geologic history and paleoecology of the region.
Earth Observations taken by the Expedition 15 Crew
2007-09-12
ISS015-E-28003 (12 Sept. 2007) --- A section of Dinosaur National Monument along the Yampa River in Colorado, which straddles the Colorado/Utah border, is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Dinosaur National Monument is perhaps best known for the abundant fossils found in the approximately 145 Ma (mega-annum, or millions of years old) Morrison Formation exposed in valleys and low ridges, according to scientists. The fossil assemblage is a unique record of terrestrial life of the period (dinosaurs, plants, and other animal species). Remains accumulated in streams and shallow lakes and were swiftly buried (and preserved) by sediments associated with those environments. Scientists believe these sediments in turn were lithified over many millions of years as they were buried under younger deposits -- forming the distinctive stratigraphy of the Monument. The generally flat-laying "layer cake" geology of the region -- similar to the Colorado Plateau to the south - is expressed in the image by parallel beds of tan, reddish-brown, and gray-brown sedimentary rocks cut by the Yampa River at the northern end of the Monument (top). Erosion by the Yampa River exposed the Morrison layer and its trove of fossil material. Together with other fossils found in both older and younger rock layers in the area, the Dinosaur National Monument remains an important scientific resource that continues to provide new insights into the geologic history and paleoecology of the region.
Precambrian animal life: probable developmental and adult cnidarian forms from Southwest China
NASA Technical Reports Server (NTRS)
Chen, Jun-Yuan; Oliveri, Paola; Gao, Feng; Dornbos, Stephen Q.; Li, Chia-Wei; Bottjer, David J.; Davidson, Eric H.
2002-01-01
The evolutionary divergence of cnidarian and bilaterian lineages from their remote metazoan ancestor occurred at an unknown depth in time before the Cambrian, since crown group representatives of each are found in Lower Cambrian fossil assemblages. We report here a variety of putative embryonic, larval, and adult microfossils deriving from Precambrian phosphorite deposits of Southwest China, which may predate the Cambrian radiation by 25-45 million years. These are most probably of cnidarian affinity. Large numbers of fossilized early planula-like larvae were observed under the microscope in sections. Though several forms are represented, the majority display remarkable conformity, which is inconsistent with the alternative that they are artifactual mineral inclusions. Some of these fossils are preserved in such high resolution that individual cells can be discerned. We confirm in detail an earlier report of the presence in the same deposits of tabulates, an extinct crown group anthozoan form. Other sections reveal structures that most closely resemble sections of basal modern corals. A large number of fossils similar to modern hydrozoan gastrulae were also observed. These again displayed great morphological consistency. Though only a single example is available, a microscopic animal remarkably similar to a modern adult hydrozoan is also presented. Taken together, the new observations reported in this paper indicate the existence of a diverse and already differentiated cnidarian fauna, long before the Cambrian evolutionary event. It follows that at least stem group bilaterians must also have been present at this time.
NASA Astrophysics Data System (ADS)
Matthews, Jack
2017-04-01
The late Ediacaran rocks of the Mistaken Point Ecological Reserve, Newfoundland, record the oldest known assemblage of large, complex fossils anywhere. These fossils represent the transition in the history of life on earth to large, architecturally complex organisms, following nearly three billion years of a microbially-dominated world. In July 2016, the Reserve was inscribed on World Heritage List. Inscription has led to increased geotourism demands on the locality, a consequence welcomed by the local community who wish to develop the economy. This is potentially at odds with the interests of Government and Researchers whose inclination is often to prohibit all activity that may adversely impact a site. This presentation will outline several approaches being used to quantitatively measure potential historic and current damage to the Mistaken Point Ecological Reserve from geotourism activity, as well as natural events. Technologies such as LiDAR scanning, photogrammetry, and time lapse cameras are compared and contrasted for their suitability to monitor the integrity of fossil sites. Footwear erosion of fossil surfaces remains a concern of policy makers at the Reserve; experimental work to test the benefits of various footwear erosion reduction protocols is discussed. The legislative and management framework for the Reserve is reviewed, and the importance of building academic-community-government relationships examined. The benefits of geoconservation are shared by all in society - as such the importance of presenting geoconservation research outcomes in ways specifically tailored to local communities and policy makes is highlighted.
A >400 kyrs archive of sedimentation in Scladina cave (Belgium)
NASA Astrophysics Data System (ADS)
Vonhof, Hubert; Bonjean, Dominique; Pirson, Stéphane; van der Lubbe, Jeroen; Hellstrom, John; Scholz, Denis; Verheyden, Sophie
2017-04-01
Scladina Cave, near the Meuse River in Belgium, is well-known for its well preserved Neanderthal fossils and stone tools. Cave research started in the 1970's, when archeological findings near the entrance of the cave initiated a long-running excavation programme in the -at that time- almost completely sediment-infilled cave. Over the past decades, a wealth of mammal fossils, stone tools, and a mandible of a Neanderthal child were found, and the complex sedimentary context of the cave strata was reconstructed in high detail. Crucial to understanding the cave stratigraphy is the construction of an absolutely dated age model. Until recently, this age model was based on a number of OSL ages, pollen stratigraphy and a few U-series ages on flowstone and stalagmite calcite. These U-series ages, however, had much lower precision than can be obtained by modern MC-ICP-MS techniques. In this study, we present new and more precise U-series ages for the major flow stone levels in Scladina Cave (upper stratigraphical sequence), and two flowstone levels from Sous-Saint-Paul Cave (lower stratigraphical sequence). The oldest flow stone layer dates back to > 400 ka, and the youngest represents the Holocene. The age model shows that flow stone formation typically occurred during warm climate conditions. These findings help to improve the existing age model for Scladina Cave significantly, and place better constraints on the age of individual fossils, and fossil assemblages in the cave.
NASA Astrophysics Data System (ADS)
Tucker, Ryan T.; Roberts, Eric M.; Darlington, Vikie; Salisbury, Steven W.
2017-08-01
The Winton Formation of central Queensland is recognized as a quintessential source of mid-Cretaceous terrestrial faunas and floras in Australia. However, sedimentological investigations linking fossil assemblages and palaeoenvironments across this unit remain limited. The intent of this study was to interpret depositional environments and improve stratigraphic correlations between multiple fossil localities within the preserved Winton Formation in the Eromanga Basin, including Isisford, Lark Quarry, and Bladensburg National Park. Twenty-three facies and six repeated facies associations were documented, indicating a mosaic of marginal marine to inland alluvial depositional environments. These developed synchronously with the final regression of the Eromanga Seaway from central Australia during the late Albian-early Turonian. Investigations of regional- and local-scale structural features and outcrop, core and well analysis were combined with detrital zircon provenance signatures to help correlate stratigraphy and vertebrate faunas across the basin. Significant palaeoenvironmental differences exist between the lower and upper portions of the preserved Winton Formation, warranting informal subdivisions; a lower tidally influenced fluvial-deltaic member and an upper inland alluvial member. This work further demonstrates that the Isisford fauna is part of the lower member of the preserved Winton Formation; whereas, fossil localities around Winton, including Lark Quarry and Bladensburg National Park, are part of the upper member of the Winton Formation. These results permit a more meaningful framework for both regional and global comparisons of the Winton flora and fauna.
Lucy's back: Reassessment of fossils associated with the A.L. 288-1 vertebral column.
Meyer, Marc R; Williams, Scott A; Smith, Michael P; Sawyer, Gary J
2015-08-01
The Australopithecus afarensis partial skeleton A.L. 288-1, popularly known as "Lucy" is associated with nine vertebrae. The vertebrae were given provisional level assignments to locations within the vertebral column by their discoverers and later workers. The continuity of the thoracic series differs in these assessments, which has implications for functional interpretations and comparative studies with other fossil hominins. Johanson and colleagues described one vertebral element (A.L. 288-1am) as uniquely worn amongst the A.L. 288-1 fossil assemblage, a condition unobservable on casts of the fossils. Here, we reassess the species attribution and serial position of this vertebral fragment and other vertebrae in the A.L. 288-1 series. When compared to the other vertebrae, A.L. 288-1am falls well below the expected size within a given spinal column. Furthermore, we demonstrate this vertebra exhibits non-metric characters absent in hominoids but common in large-bodied papionins. Quantitative analyses situate this vertebra within the genus Theropithecus, which today is solely represented by the gelada baboon but was the most abundant cercopithecoid in the KH-1s deposit at Hadar where Lucy was discovered. Our additional analyses confirm that the remainder of the A.L. 288-1 vertebral material belongs to A. afarensis, and we provide new level assignments for some of the other vertebrae, resulting in a continuous articular series of thoracic vertebrae, from T6 to T11. This work does not refute previous work on Lucy or its importance for human evolution, but rather highlights the importance of studying original fossils, as well as the efficacy of the scientific method. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baghai, N.L.; Jorstad, R.B.
The Musselshell Creek flora (12.0-10.5 Ma) of northern Idaho is used to reconstruct paleoclimatic and paleoecologic parameters of the Pacific Northwest during the late Middle Miocene. Other megafossil and microfossil floral records spanning 12.0-6.4 Ma are unknown from this region. The Musselshell Creek fossil flora, previously undescribed, is preserved in lacustrine clays and sediments that accumulated in a narrow valley surrounded by rugged terrain. Dominant taxa include dicotyledons and conifers. Most of the leaves are preserved as impressions or compressions. Some fossil leaves retained their original pigmentation, cellular anatomy, and organic constituents. Other fossils include excellent remains of pollen andmore » spores, dispersed leaf cuticle, pyritized wood, and disarticulated fish bones. A destructive statistical analysis of one block of sediment, approximately 30 cm x 45 cm (1.5 sq. ft) recovered 14 orders, 23 families, and 34 genera of spermatophyte plant fossils. These floral elements are compared with two other earlier Miocene floras which were similarly sampled. Common megafossil genera include Quercus, Zizy-phoides, Taxodium, Alnus, Castanea, Magnolia, Acer, Ex-bucklandia, Sequoia, Populus, and Betula. The rare occurrence of Ginkgo leaves is a first record of this taxon in the Idaho Miocene. Additional plant taxa, are represented by palynomorphs. Common pollen taxa are Pinus, Abies, Carya, Quercus, and Tilia. Most of the megafossil and microfossil flora assemblage is characteristic of a streambank to floodplain environment that existed in a warm to cool temperate climate similar to the modern Mid-Atlantic coast of the United States. 47 refs., 5 figs., 4 tabs.« less
Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen
2005-04-01
In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.
Along-strike Translation of a Fossil Slab Beneath California (Invited)
NASA Astrophysics Data System (ADS)
Forsyth, D. W.
2013-12-01
There are three places where subduction ceased before a spreading ridge was consumed at a trench, leaving behind remnant microplates that were incorporated into the non-subducting oceanic plate. In the cases of the Phoenix plate off the Antarctic peninsula and the Guadalupe and Magdalena microplates off Baja California, fossil slabs still attached to the microplates have been traced into the asthenosphere using seismological techniques. Apparently deep subducting plates can tear off from the surface plate leaving behind fossil pieces of young oceanic lithosphere extending 100 km or more into the asthenosphere. The young slab fragments may be close to neutral buoyancy with their asthenospheric surroundings. In the case of the Monterey microplate off central California, now part of the Pacific plate, oceanic crust has been traced beneath the continental margin using active source seismology. Nicholson et al. (1994) suggested that the translation of the Monterey microplate under North America dragged bits of the overriding plate with it, causing the rotation of the Transverse Ranges in southern California. They also suggested that the San Andreas initiated as a low angle fault between the overriding North American plate and the subducted Monterey plate. There is a gap in coastal, post-subduction volcanic activity opposite the microplate, perhaps because a slab window never formed. A steeply dipping seismic anomaly, the Isabella anomaly, also lies opposite the microplate, probably indicating the continuation of the Monterey slab deep into the asthenosphere. Between the Isabella anomaly and the surface remnants of the Monterey microplate lies the aseismic, creeping section of the San Andreas fault, which we speculate may be caused by the migration of fluids from the subducted plate. The Monterey case differs from the Phoenix and Guadalupe cases in that the hypothesized fossil slab lies beneath the North American plate, which is translating relative to the Pacific/Monterey plate. We have shown that the fossil slab could translate with the Monterey plate with reasonable viscosity contrast with the surrounding asthenosphere.
Ditchfield, P; Hicks, J; Plummer, T; Bishop, L C; Potts, R
1999-02-01
The late Pliocene and Pleistocene sediments of the Homa Peninsula in southwestern Kenya are richly fossiliferous, preserve Early Stone Age archaeological traces and provide one of the few paleoanthropological data sets for the region between the branches of the East African Rift Valley. This paper presents preliminary results of our ongoing investigation of late Pliocene and Pleistocene deposits at the localities of Rawi, Kanam East, Kanam Central and Kanjera. While fossils have been collected from the peninsula since 1911, little systematic effort has been made to place them into a broader litho-and chronostratigraphic framework. This project has conclusively demonstrated that fossils occur in good stratigraphic context at all of the study localities and that claims of sediment slumping (Boswell, 1935) have been greatly overstated (Behrensmeyer et al., 1995; Plummer & Potts, 1989). A provisional chronostratigraphic framework based on magneto- and biostratigraphy is presented here. We have revised the Plio-Pleistocene stratigraphy of the Rawi and Kanam gullies to include three formations: the Rawi, Abundu and Kasibos Formations. Based on magneto- and biostratigraphy, these formations are dated between approximately three and one m.y.a. (Gauss Chron-Jaramillo Subchron) (Cande & Kent, 1995). The Apoko Formation unconformably overlies the others and may be middle to late Pleistocene in age. All formations contain rich patches of fossils, and Acheulean artifacts have been surface collected from the Abundu and Kasibos Formations. Deposition of the fossil- and artefact-bearing sediments at Kanjera North began in the early Pleistocene and continued into the middle Pleistocene. Deposition at Kanjera South began over one million years earlier than previously thought, at approximately 2.2 m.y.a., and continued into the Olduvai Subchron (1.770-1.950 m.y.a.; Cande & Kent, 1995). Excavations have recovered Oldowan artefacts in association with well-preserved fossil fauna near the base of the sequence, the oldest archaeological traces yet known from southwestern Kenya.
NASA Astrophysics Data System (ADS)
van Hardenbroek, M.; Heiri, O. M.; Grey, J.; Bodelier, P. L. E.; Lotter, A. F.
2009-04-01
Lake sediments are an important source of atmospheric methane. Methanogenic archaea in lake sediments produce 13C-depleted methane that is partly released to the water column and the atmosphere. Another part is utilized by methane oxidizing bacteria (MOB) that are an important food source for deposit-feeding chironomid larvae (Diptera: Chironomidae). If methane-derived carbon is a significant component of the chironomid diet this will lead to strongly negative d13C in the tissue and exoskeleton of chironomid larvae. Chironomid cuticles, especially the strongly sclerotized head capsules, are well preserved as fossils in lake sediments. If the relationship between modern methane fluxes in lakes and chironomid d13C can be established this would therefore provide an approach for estimating past methane fluxes based on d13C of fossil chironomid remains. Using culturing experiments we show that the stable carbon isotope signature of MOB and other food sources can be traced in chironomid muscle tissue as well as in the fossilizing exoskeleton. In addition we measured d13C in chironomid larval head capsules and other invertebrate remains from a range of surface and downcore sediment samples. Small intra-specific variability (-27.1 ± 0.08 permille) was measured in replicate samples of chironomid head capsules of Corynocera ambigua (n=7). d13C of chironomid head capsules from a several different taxa ranged from -28.0 to -25.8 permille, but in some instances we observed d13C values as low as -36.9 to -31.5 permille, suggesting that carbon from MOB can be successfully traced in fossil and subfossil chironomid remains. Our results demonstrate that the stable carbon isotope signature of MOB is incorporated into chironomid head capsules. Future research will focus on quantifying the relationship between methane fluxes, MOB, and head capsule d13C in order to reconstruct past methane fluxes based on the lake sediment record.
NASA Astrophysics Data System (ADS)
Suwanich, Parkorn
Clay-mineral assemblages in Middle Clastic, Middle Salt, Lower Clastic, Potash Zone, and Lower Salt, totalling 13 samples from K-118 drill core, in the Maha Sarakham Formation, Khorat Basin, northeastern Thailand were studied. The clay-size particles were separated from the water-soluble salt by water leaching. Then the samples were leached again in the EDTA solution and separated into clay-size particles by using the timing sedimentation. The EDTA-clay residues were divided and analyzed by using the XRD and XRF method. The XRD peaks show that the major-clay minerals are chlorite, illite, and mixed-layer corrensite including traces of rectorite? and paragonite? The other clay-size particles are quartz and potassium feldspar. The XRF results indicate Mg-rich values and moderate MgAl atom ratio values in those clay minerals. The variable Fe, Na, and K contents in the clay-mineral assemblages can explain the environment of deposition compared to the positions of the samples from the core. Hypothetically, mineralogy and the chemistry of the residual assemblages strongly indicate that severe alteration and Mg-enrichment of normal clay detritus occurred in the evaporite environment through brine-sediment interaction. The various Mg-enrichment varies along the various members reflecting whether sedimentation is near or far from the hypersaline brine.
Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota
Leland, H.V.; Berkas, W.R.
1998-01-01
Seasonal and annual variation in biomass and structure of algal assemblages of hyposaline Devils Lake were examined in relation to turbidity, ambient concentrations of major ions, trace elements and nutrients, and the standing crop of herbivores. Lake level declined during the early years of study, but rose markedly in subsequent years as historically large volumes of water flowed into this hydrologically-closed basin. Winter algal assemblages were dominated (in biomass) most years by small, non-motile chlorophytes ( Choricystis minor, Kirchneriella lunaris or Dunaliella sp.), or Euglena sp. in the most saline sub-basin. Spring assemblages were dominated by diatoms (Stephanodiscus cf. minutulus, Surirella peisonis, Cyclotella meneghiniana and Entomoneis paludosa were especially prominent) or chlorophytes ( C. minor) until the lake level rose. C. minor abundances then declined in spring assemblages and diatoms ( Stephanodiscus cf. agassizensis and S. niagarae; E. paludosa in the more saline sub-basins) dominated. The potential for nitrogen-deficient conditions for phytoplankton growth was evidenced most summers and early autumns by consistently high concentrations of reactive-P relative to inorganic-N and blooms of the N-fixing cyanophyte Aphanizomenon flos-aquae; Microcystis aeruginosa typically was a co-dominant (>30% of biomass) in these assemblages. Pulses of diatoms ( S. cf. agassizensis and C. meneghiniana) occurred in summers following unusually prolonged periods of calm weather or large water inflows. Physical (irradiance, turbulence) and chemical (major nutrients) variables were the primary factors associated with phytoplankton growth. Transparency and major nutrient concentrations accounted for more of the annual variation in phytoplankton structure than did salinity. Seasonal abundance patterns of the dominant zooplankton (the copepod Diaptomus sicilis; the cladocerans Ceriodaphnia quadrangula, Chydorus sphaericus, Daphnia pulex and Diaphanosoma birgei; and the rotifers Brachionus spp., Filinia longiseta, Keratella cochlearis and K. quadrata) also indicated variation in algal populations related to grazing.
NASA Astrophysics Data System (ADS)
Westgate, James W.
1988-11-01
A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Candelaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan. The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone I6 and allow correlation with European beds of late Lutetian to early Bartonian age.
Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction
Vandenbroucke, Thijs R. A.; Emsbo, Poul; Munnecke, Axel; Nuns, Nicolas; Duponchel, Ludovic; Lepot, Kevin; Quijada, Melesio; Paris, Florentin; Servais, Thomas; Kiessling, Wolfgang
2015-01-01
Glacial episodes have been linked to Ordovician–Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging ‘oceanic anoxic event' models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician–Silurian palaeobiological events. PMID:26305681
Metal-induced malformations in early Palaeozoic plankton are harbingers of mass extinction
NASA Astrophysics Data System (ADS)
Vandenbroucke, Thijs R. A.; Emsbo, Poul; Munnecke, Axel; Nuns, Nicolas; Duponchel, Ludovic; Lepot, Kevin; Quijada, Melesio; Paris, Florentin; Servais, Thomas; Kiessling, Wolfgang
2015-08-01
Glacial episodes have been linked to Ordovician-Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event. Malformations coincide with a dramatic increase of metals (Fe, Mo, Pb, Mn and As) in the fossils and their host rocks. Metallic toxins are known to cause a teratological response in modern organisms, which is now routinely used as a proxy to assess oceanic metal contamination. Similarly, our study identifies metal-induced teratology as a deep-time, palaeobiological monitor of palaeo-ocean chemistry. The redox-sensitive character of enriched metals supports emerging `oceanic anoxic event' models. Our data suggest that spreading anoxia and redox cycling of harmful metals was a contributing kill mechanism during these devastating Ordovician-Silurian palaeobiological events.
NASA Astrophysics Data System (ADS)
Wake, Thomas A.; Roeder, Mark A.
2009-11-01
Analysis of late Pleistocene fossils recovered from near the Huntington Beach, California (USA), pier (site LACM 7679) has revealed a diverse fauna dating to approximately 40 14C ka BP. Extinct megafauna (three genera) are present; however, a microfauna including three genera of fish, five genera of amphibians, twelve genera of reptiles, two genera of birds, and ten genera of small mammals dominates the assemblage in terms of diversity. Additional identification of seven genera of non-marine mollusks and various macro- and microscopic plant remains including grasses, three families of herbs, and seven genera of trees provides a wealth of information concerning the past ecology of what is currently a coastal dune field complex. During the Rancholabrean Period, the LACM 7679 locality was approximately 10 km inland from the Pleistocene coastline and contained lush riparian zones interspersed with coastal sage scrub, a few trees, and grasslands teeming with a variety of small and large animals.
The origin of modern agglutinated foraminiferal assemblages: evidence from a stratified fjord
NASA Astrophysics Data System (ADS)
Murray, John W.; Alve, Elisabeth; Cundy, Andrew
2003-11-01
Loch Etive, a silled 145 m deep fjord on the Scottish west coast, provides an example of modern benthic foraminiferal assemblages at intermediate depths (i.e., below the intertidal zone and above the CCD) consisting almost exclusively of organic-cemented agglutinated forms. Since such faunas from intermediate depths are rare in modern oceans but relatively common in the fossil record, the present study allows new insights into one kind of ancient environment for which there are few modern analogues. The strong dominance of agglutinated forms (both living and in some dead assemblages of foraminifera to the exclusion of calcareous taxa) is attributed to the unusual oceanographic conditions. These include a combination of restricted deep-water renewals and strong influence of freshwater which drains through large areas (relative to the size of the loch) of vegetated land. The result is calm bottom water conditions with commonly occurring oxygen depletion (although not anoxic), brackish water throughout the water column (salinity 28 in the deeper parts), and organic-rich (mostly terrestrially derived) sediments with geochemical properties, which, to a much larger degree than open marine ones, are controlled by local input. This environment supports low abundance and low diversity live assemblages, mainly restricted to the surface 1 cm of sediment. The dead assemblages show similar faunal characteristics, but the calcareous components are, due to carbonate dissolution, even more reduced. One of the calcareous species in Loch Etive is Elphidium albiumbilicatum. Its occurrence is the first record in British waters and it matches the previously suggested southern limit of its distribution. Analysis of a 90 cm long core representing sediments deposited over the past two centuries shows the presence of a calcareous dominated assemblage, including more marine species, with a higher diversity, in the lower part. This suggests that Loch Etive is in the process of going from a marine, to a more terrestrial dominated environment. The relatively high sedimentation rate (0.5 cm per yr), the apparent lack of smearing through bioturbation, and the presence of faunal changes in response to reduced marine influence over the past centuries, shows that Loch Etive has a good potential for performing high-resolution climatic studies.
NASA Astrophysics Data System (ADS)
Singh, Kamal Jeet; Murthy, Srikanta; Saxena, Anju; Shabbar, Husain
2017-03-01
The coal-bearing sequences of Barakar and Raniganj formations exposed in Bina and Jhingurdah open-cast collieries, respectively, are analysed for their macro- and miofloral content. The sediment successions primarily comprise of sandstones, shales, claystones and coal seams. In addition to the diverse glossopterid assemblage, four palynoassemblage zones, namely Zones I and II in Bina Colliery and Zones III and IV in Jhingurdah Colliery, have also been recorded in the present study. The megafossil assemblage from the Barakar strata of Bina Colliery comprises of three genera, namely Gangamopteris, Glossopteris and cf. Noeggerathiopsis. Palynoassemblage-I is characterised by the dominance of non-striate bisaccate pollen genus Scheuringipollenites and subdominance of striate bisaccate Faunipollenites and infers these strata to be of Early Permian (Artinskian) age (Lower Barakar Formation). The palynoassemblage has also yielded a large number of naked fossil spore tetrads, which is the first record of spore tetrads from any Artinskian strata in the world and has a significant bearing on the climatic conditions. The palynoassemblage-II is characterised with the dominance of Faunipollenites over Scheuringipollenites and is indicative of Kungurian age (Upper Barakar Formation). The megafossil assemblage from the Raniganj Formation of Jhingurdah Colliery comprises of five genera with 26 species representing four orders, viz., Equisetales, Cordaitales, Cycadales and Glossopteridales. The order Glossopteridales is highly diversified with 23 taxa and the genus Glossopteris, with 22 species, dominates the flora. The mioflora of this colliery is represented by two distinct palynoassemblages. The palynoassemblage-III is correlatable with the palynoflora of Early Permian (Artinskian) Lower Barakar Formation. The assemblage suggests the continuity of older biozones into the younger ones. The palynoassemblage-IV equates the beds with composition V: Striatopodocarpites-Faunipollenites-Gondisporites assemblage zone of Tiwari and Tripathi (1992) of Late Permian (Lopingian) Raniganj Formation in Damodar Basin. The FAD's of Alisporites, Klausipollenites, Falcisporites, Arcuatipollenites pellucidus and Playfordiaspora cancellosa palynotaxa in this assemblage enhance the end Permian level of the Jhingurdah Top seam, as these elements are the key species to mark the transition of Permian into the Lower Triassic.
NASA Astrophysics Data System (ADS)
Salles, Tristan; Pall, Jodie; Webster, Jody M.; Dechnik, Belinda
2018-06-01
Assemblages of corals characterise specific reef biozones and the environmental conditions that change spatially across a reef and with depth. Drill cores through fossil reefs record the time and depth distribution of assemblages, which captures a partial history of the vertical growth response of reefs to changing palaeoenvironmental conditions. The effects of environmental factors on reef growth are well understood on ecological timescales but are poorly constrained at centennial to geological timescales. pyReef-Core is a stratigraphic forward model designed to solve the problem of unobservable environmental processes controlling vertical reef development by simulating the physical, biological and sedimentological processes that determine vertical assemblage changes in drill cores. It models the stratigraphic development of coral reefs at centennial to millennial timescales under environmental forcing conditions including accommodation (relative sea-level upward growth), oceanic variability (flow speed, nutrients, pH and temperature), sediment input and tectonics. It also simulates competitive coral assemblage interactions using the generalised Lotka-Volterra system of equations (GLVEs) and can be used to infer the influence of environmental conditions on the zonation and vertical accretion and stratigraphic succession of coral assemblages over decadal timescales and greater. The tool can quantitatively test carbonate platform development under the influence of ecological and environmental processes and efficiently interpret vertical growth and karstification patterns observed in drill cores. We provide two realistic case studies illustrating the basic capabilities of the model and use it to reconstruct (1) the Holocene history (from 8500 years to present) of coral community responses to environmental changes and (2) the evolution of an idealised coral reef core since the last interglacial (from 140 000 years to present) under the influence of sea-level change, subsidence and karstification. We find that the model reproduces the details of the formation of existing coral reef stratigraphic sequences both in terms of assemblages succession, accretion rates and depositional thicknesses. It can be applied to estimate the impact of changing environmental conditions on growth rates and patterns under many different settings and initial conditions.
First early Mesozoic amber in the Western Hemisphere
Litwin, R.J.; Ash, S.R.
1991-01-01
Detrital amber pebbles and granules have been discovered in Upper Triassic strata on the Colorado Plateau. Although amber previously has been reported from Pennsylvanian, Jurassic, Cretaceous, and Tertiary strata, we know of no other reported Triassic occurrence in North America or the Western Hemisphere. The new discovered occurrences of amber are at two localities in the lower part of the Petrified Forest Member of the Upper Triassic Chinle Formation in Petrified Forest National Park, Arizona. The paper coals and carbonaceous paper shales containing the amber also contain fossil palynomorph assemblages that indicate a late Carnian age for these occurrences. -Authors
A nearly modern amphibious bird from the Early Cretaceous of northwestern China.
You, Hai-Lu; Lamanna, Matthew C; Harris, Jerald D; Chiappe, Luis M; O'connor, Jingmai; Ji, Shu-An; Lü, Jun-Chang; Yuan, Chong-Xi; Li, Da-Qing; Zhang, Xing; Lacovara, Kenneth J; Dodson, Peter; Ji, Qiang
2006-06-16
Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.
Age profiles in elephant and mammoth bone assemblages
NASA Astrophysics Data System (ADS)
Haynes, Gary
1985-11-01
Age profiles of modern African elephant ( Loxodonta africana) populations are significantly affected by drought conditions that cause local die-offs. Subadult animals die in proportions that may be nearly twice what is recorded in live populations. Such biasing of death sample age profiles might also have occurred during late Pleistocene die-offs of Mammuthus. This comparative study of modern and fossil proboscidean age structures supports a tentative interpretation that late Pleistocene extinction of Mammuthus (at least in the southwestern United States) resulted from severe drought conditions, at which Clovis hunters were witnesses, but not necessarily frequent participants.
The Case for the Large Scale Development of Solar Energy
ERIC Educational Resources Information Center
O'Reilly, S. A.
1977-01-01
Traces the history of solar energy development. Discusses global effects (temperature, particle and other pollution) of burning fossil fuels. Provides energy balance equations for solar energy distribution and discusses flat plate collectors, solar cells, photochemical and photobiological conversion of solar energy, heat pumps. (CS)
Sedimentary features of the Blackhawk formation (Cretaceous) at Sunnyside, Carbon County, Utah
Maberry, John O.
1968-01-01
The Blackhawk Formation at Sunnyside, Utah, was deposited along the western margin of the Western Interior Cretaceous sea during southeastward withdrawal of the sea. Sand was the dominant type of land-derived sediment deposited in the Sunnyside district during the regressive phases. Sand bodies prograded seaward in response to changing sediment supply from a source west of Sunnyside. Where conditions were favorable for the accumulation of vegetable material, peat deposits formed and were later changed to bituminous Coal by diagenesis. Studies of the coal bed show that the coals were formed from accumulation of small, low-growing plants and plant debris that was transported into the area of accumulation. Remains of large plants in the coals are rare. Trace fossils, which are tracks, trails and burrows formed by organisms and preserved in the rock, are extremely abundant in the Blackhawk rocks. These biogenic sedimentary structures are common in Cretaceous deposits throughout the western United States. Trace fossil distribution in the rocks is controlled by the depositional environment preferred by their creators. A study of the trace fossils of a. locality allows a more precise determination of the conditions during deposition of the sediments. Water depth, bottom conditions, salinity, current velocity and amount of suspended nutrients in the water are some of the environmental factors that may be reconstructed by studying trace fossils. The Blackhawk Formation at Sunnyside comprises the members, the Kenilworth Member and the Sunnyside Member. Field studies show that the formation may be further subdivided in the Sunnyside district., according to the precepts of units of mappable thickness and similar lithologic characteristics. The Blackhawk pinches out eastward and north. ward into the Mancos Shale, and names for submembers become meaningless. Names are of value in the region of interest, however, because of the prominence of the named units. Coal mining is the main industry of the Book Cliffs region. Mines of the Sunnyside district are plagued by coal mine bumps, which are sudden, catastrophic releases of stress in the coal. Bumps cause loss of life, property age, and loss of profit to mining companies. Bumps occur when shear stress built up in the coal exceeds the shear Strength of the coal. Differential overburden pressure, faulting and tectonic activity, and lithology and structure of roof rocks are factors which influence bumps. Petroleum and natural gas (methane), which occur locally in pockets in the roof rocks above coal beds, may be diagenetic products of organic-rich sediments.
Klompmaker, Adiël A.
2016-01-01
Ghost shrimps of Callianassidae and Ctenochelidae are soft-bodied, usually heterochelous decapods representing major bioturbators of muddy and sandy (sub)marine substrates. Ghost shrimps have a robust fossil record spanning from the Early Cretaceous (~ 133 Ma) to the Holocene and their remains are present in most assemblages of Cenozoic decapod crustaceans. Their taxonomic interpretation is in flux, mainly because the generic assignment is hindered by their insufficient preservation and disagreement in the biological classification. Furthermore, numerous taxa are incorrectly classified within the catch-all taxon Callianassa. To show the historical patterns in describing fossil ghost shrimps and to evaluate taphonomic aspects influencing the attribution of ghost shrimp remains to higher level taxa, a database of all fossil species treated at some time as belonging to the group has been compiled: 250 / 274 species are considered valid ghost shrimp taxa herein. More than half of these taxa (160 species, 58.4%) are known only from distal cheliped elements, i.e., dactylus and / or propodus, due to the more calcified cuticle locally. Rarely, ghost shrimps are preserved in situ in burrows or in direct association with them, and several previously unpublished occurrences are reported herein. For generic assignment, fossil material should be compared to living species because many of them have modern relatives. Heterochely, intraspecific variation, ontogenetic changes and sexual dimorphism are all factors that have to be taken into account when working with fossil ghost shrimps. Distal elements are usually more variable than proximal ones. Preliminary results suggest that the ghost shrimp clade emerged not before the Hauterivian (~ 133 Ma). The divergence of Ctenochelidae and Paracalliacinae is estimated to occur within the interval of Hauterivian to Albian (133–100 Ma). Callichirinae and Eucalliacinae likely diverged later during the Late Cretaceous (100–66 Ma), whereas Callianassinae did not appear before the Eocene (56 Ma). PMID:27499814
Savoretti, Adolfina; Bippus, Alexander C; Stockey, Ruth A; Rothwell, Gar W; Tomescu, Alexandru M F
2018-06-08
Widespread and diverse in modern ecosystems, mosses are rare in the fossil record, especially in pre-Cenozoic rocks. Furthermore, most pre-Cenozoic mosses are known from compression fossils, which lack detailed anatomical information. When preserved, anatomy significantly improves resolution in the systematic placement of fossils. Lower Cretaceous (Valanginian) deposits on Vancouver Island (British Columbia, Canada) contain a diverse anatomically preserved flora including numerous bryophytes, many of which have yet to be characterized. Among them is the grimmiaceous moss described here. One fossil moss gametophyte preserved in a carbonate concretion was studied in serial sections prepared using the cellulose acetate peel technique. Tricarinella crassiphylla gen. et sp. nov. is a moss with tristichous phyllotaxis and strongly keeled leaves. The combination of an acrocarpous condition (inferred based on a series of morphological features), a central conducting strand, a homogeneous leaf costa and a lamina with bistratose portions and sinuous cells, and multicellular gemmae, supports placement of Tricarinella in family Grimmiaceae. Tricarinella is similar to Grimmia, a genus that exhibits broad morphological variability. However, tristichous phyllotaxis and especially the lamina, bistratose at the base but not in distal portions of the leaf, set Tricarinella apart as a distinct genus. Tricarinella crassiphylla marks the oldest record for both family Grimmiaceae and sub-class Dicranidae, providing a hard minimum age (136 million years) for these groups. The fact that this fossil could be placed in an extant family, despite a diminutive size, emphasizes the considerable resolving power of anatomically preserved bryophyte fossils, even when recovered from allochthonous assemblages of marine sediments, such as the Apple Bay flora. Discovery of Tricarinella re-emphasizes the importance of paleobotanical studies as the only approach allowing access to a significant segment of biodiversity, the extinct biodiversity, which is unattainable by other means of investigation.
Antarctotrechus balli sp. n. (Carabidae, Trechini): the first ground beetle from Antarctica
Ashworth, Allan C; Erwin, Terry L.
2016-01-01
Abstract Fossil elytra of a small trechine carabid are reported from the Oliver Bluffs on the Beardmore Glacier at lat. 85°S. They were compared with counterparts from the extant genera Trechisibus, Tasmanorites, Oxytrechus and Pseudocnides. The fossils share some characters but are sufficiently different to be described as a new genus and species. We named the new species Antarctotrechus balli in honour of George E. Ball who made major contributions to the study of carabids through his own research and the training of students while at the University of Alberta, Edmonton, Alberta, Canada. The closest extant relatives to the extinct Antarctotrechus balli are species of Trechisibus, which inhabit South America, the Falkland Islands and South Georgia, and Tasmanorites, which inhabit Tasmania, Australia. Plant fossils associated with Antarctotrechus balli included Nothofagus (southern beech), Ranunculus (buttercup), moss mats and cushion plants that were part of a tundra biome. Collectively, the stratigraphic relationships and the growth characteristics of the fossil plants indicate that Antarctotrechus balli inhabited the sparsely-vegetated banks of a stream that was part of an outwash plain at the head of a fjord in the Transantarctic Mountains. Other insects represented by fossils in the tundra biome include a listroderine weevil and a cyclorrhaphan fly. The age of the fossils, based on comparison of associated pollen with 40Ar/39Ar dated pollen assemblages from the McMurdo Dry Valleys, is probably Early to Mid-Miocene in the range 14–20 Ma. The tundra biome, including Antarctotrechus balli, became extinct in the interior of Antarctica about 14 Ma and on the margins of the continent by 10–13 Ma. Antarctotrechus balli confirms that trechines were once widely distributed in Gondwana. For Antarctotrechus balli and other elements of the tundra biome it appears they continued to inhabit a warmer Antarctica for many millions of years after rifting of Tasmania (45 Ma) and southern South America (31 Ma). PMID:27917060
Brain and eyes of Kerygmachela reveal protocerebral ancestry of the panarthropod head.
Park, Tae-Yoon S; Kihm, Ji-Hoon; Woo, Jusun; Park, Changkun; Lee, Won Young; Smith, M Paul; Harper, David A T; Young, Fletcher; Nielsen, Arne T; Vinther, Jakob
2018-03-09
Recent discoveries of fossil nervous tissue in Cambrian fossils have allowed researchers to trace the origin and evolution of the complex arthropod head and brain based on stem groups close to the origin of the clade, rather than on extant, highly derived members. Here we show that Kerygmachela from Sirius Passet, North Greenland, a primitive stem-group euarthropod, exhibits a diminutive (protocerebral) brain that innervates both the eyes and frontal appendages. It has been surmised, based on developmental evidence, that the ancestor of vertebrates and arthropods had a tripartite brain, which is refuted by the fossil evidence presented here. Furthermore, based on the discovery of eyes in Kerygmachela, we suggest that the complex compound eyes in arthropods evolved from simple ocelli, present in onychophorans and tardigrades, rather than through the incorporation of a set of modified limbs.
New genetic and morphological evidence suggests a single hoaxer created `Piltdown man'
NASA Astrophysics Data System (ADS)
De Groote, Isabelle; Flink, Linus Girdland; Abbas, Rizwaan; Bello, Silvia M.; Burgia, Lucia; Buck, Laura Tabitha; Dean, Christopher; Freyne, Alison; Higham, Thomas; Jones, Chris G.; Kruszynski, Robert; Lister, Adrian; Parfitt, Simon A.; Skinner, Matthew M.; Shindler, Karolyn; Stringer, Chris B.
2016-08-01
In 1912, palaeontologist Arthur Smith Woodward and amateur antiquarian and solicitor Charles Dawson announced the discovery of a fossil that supposedly provided a link between apes and humans: Eoanthropus dawsoni (Dawson's dawn man). The publication generated huge interest from scientists and the general public. However, `Piltdown man's' initial celebrity has long been overshadowed by its subsequent infamy as one of the most famous scientific frauds in history. Our re-evaluation of the Piltdown fossils using the latest scientific methods (DNA analyses, high-precision measurements, spectroscopy and virtual anthropology) shows that it is highly likely that a single orang-utan specimen and at least two human specimens were used to create the fake fossils. The modus operandi was found consistent throughout the assemblage (specimens are stained brown, loaded with gravel fragments and restored using filling materials), linking all specimens from the Piltdown I and Piltdown II sites to a single forger-Charles Dawson. Whether Dawson acted alone is uncertain, but his hunger for acclaim may have driven him to risk his reputation and misdirect the course of anthropology for decades. The Piltdown hoax stands as a cautionary tale to scientists not to be led by preconceived ideas, but to use scientific integrity and rigour in the face of novel discoveries.
Linking Fossil Fish Cyclicity and Paleoenvironmental Proxies in the mid-Devonian
NASA Astrophysics Data System (ADS)
Grogan, D.; Whiteside, J. H.; Trewin, N. H.; Johnson, J. E.
2009-12-01
The significant radiation of fishes throughout the Devonian, combined with the abundance of well-preserved fossil fish assemblages from this period, provides for a high-resolution record of prevalent fish taxa in the Orcadian basin of North Scotland. In addition to their ability to serve as a lake-level and lake-chemistry proxy, the waxing and waning of dominant fish taxa exhibit a pronounced cyclicity, suggesting they respond to broader climate rhythms. Recent studies of mid-Devonian lacustrine sedimentary sequences have quantitatively demonstrated the presence of Milankovitch cyclicity in geochemical and gamma ray proxy records. Spectral analysis of gamma ray data show a strong obliquity peak usually associated with ice-house conditions; this obliquity signal is unexpected as tropical latitudes in the mid-Devonian are traditionally thought to have been in a greenhouse climate. Geochemical data include the measurement of bulk carbon and nitrogen stable isotopes, molecule-specific carbon isotopes of plant biomarkers, and depth ranks from eight sections of the Caithness Flagstone Group of the Orcadian Basin. Evidence for orbital forcing of climate change paired with the fossil fish record provides a unique opportunity to establish an astronomically calibrated timescale for the mid-Devonian, as well as to make a quantitative assessment of the validity of a greenhouse climate existing in the mid-Devonian.
Earth’s oldest ‘Bobbit worm’ – gigantism in a Devonian eunicidan polychaete
Eriksson, Mats E.; Parry, Luke A.; Rudkin, David M.
2017-01-01
Whilst the fossil record of polychaete worms extends to the early Cambrian, much data on this group derive from microfossils known as scolecodonts. These are sclerotized jaw elements, which generally range from 0.1–2 mm in size, and which, in contrast to the soft-body anatomy, have good preservation potential and a continuous fossil record. Here we describe a new eunicidan polychaete, Websteroprion armstrongi gen. et sp. nov., based primarily on monospecific bedding plane assemblages from the Lower-Middle Devonian Kwataboahegan Formation of Ontario, Canada. The specimens are preserved mainly as three-dimensional moulds in the calcareous host rock, with only parts of the original sclerotized jaw walls occasionally present. This new taxon has a unique morphology and is characterized by an unexpected combination of features seen in several different Palaeozoic polychaete families. Websteroprion armstrongi was a raptorial feeder and possessed the largest jaws recorded in polychaetes from the fossil record, with maxillae reaching over one centimetre in length. Total body length of the species is estimated to have reached over one metre, which is comparable to that of extant ‘giant eunicid’ species colloquially referred to as ‘Bobbit worms’. This demonstrates that polychaete gigantism was already a phenomenon in the Palaeozoic, some 400 million years ago. PMID:28220886