Sample records for trace impurity analysis

  1. Batch methods for enriching trace impurities in hydrogen gas for their further analysis

    DOEpatents

    Ahmed, Shabbir; Lee, Sheldon H.D.; Kumar, Romesh; Papdias, Dionissios D.

    2014-07-15

    Provided herein are batch methods and devices for enriching trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentrating impurities using hydrogen transport membranes wherein the time period for concentrating the sample is calculated on the basis of optimized membrane characteristics, comprising its thickness and permeance, with optimization of temperature, and wherein the enrichment of trace impurities is proportional to the pressure ratio P.sub.hi/P.sub.lo and the volume ratio V.sub.1/V.sub.2, with following detection of the impurities using commonly-available detection methods.

  2. Gas chromatographic analysis of trace impurities in chlorine trifluoride.

    PubMed

    Laurens, J B; Swinley, J M; de Coning, J P

    2000-03-24

    The gas chromatographic determination of trace gaseous impurities in highly reactive fluorinated gaseous matrices presents unique requirements to both equipment and techniques. Especially problematic are the gases normally present in ambient air namely oxygen and nitrogen. Analysing these gases at the low microl/l (ppm) level requires special equipment and this publication describes a custom-designed system utilising backflush column switching to protect the columns and detectors. A thermal conductivity detector with nickel filaments was used to determine ppm levels of impurities in ClF3.

  3. Identification of process related trace level impurities in the actinide decorporation agent 3,4,3-LI(1,2-HOPO): Nozzle–skimmer fragmentation via ESI LC–QTOFMS

    DOE PAGES

    Panyala, Nagender R.; Sturzbecher-Hoehne, Manuel; Abergel, Rebecca J.

    2014-08-12

    We report that 3,4,3-LI(1,2-HOPO) is a chelating ligand and decorporation agent that can remove radioactive lanthanides and actinides from the body. Identification of trace impurities in drug samples is gaining much interest due to their significant influence on drug activity. In this study, trace impurities were detected in manufactured lots of 3,4,3-LI(1,2-HOPO) by a developed method of Liquid Chromatography coupled with photo-diode array UV detection and Electrospray Ionization-Quadrupole Time of Flight Mass spectrometry (LC-QTOFMS), via induced-in-source or collision-induced mass fragmentation (Nozzle-Skimmer Fragmentation). Molecular ions were fragmented within the nozzle-skimmer region of electrospray ionization (ESI) mass spectrometer equipped with a Timemore » of Flight detector. Eight major (detected at levels higher than a 0.1% threshold) and seven minor trace impurities were identified. The respective structures of these impurities were elucidated via analysis of the generated fragment ions using mass fragmentation and elemental composition software. Proposed structures of impurities were further confirmed via isotopic modeling.« less

  4. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien

    The characterization of trace elements in nanomaterials using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities or dopants affect the properties of the host phase. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic contaminants. The reductive transformation of ferrihydrite (Fe(OH)3) to nano-particulate iron oxyhydroxide minerals in the presencemore » of uranyl (UO2)2+(aq) resulted in the preferential incorporation of U into goethite (a-FeOOH) over lepidocrocite (g-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. Using this model system, we demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations of traditional shell-by-shell EXAFS modeling, enabling the detailed analysis of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multi-phase nano-systems.« less

  5. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System.

    PubMed

    McBriarty, Martin E; Soltis, Jennifer A; Kerisit, Sebastien; Qafoku, Odeta; Bowden, Mark E; Bylaska, Eric J; De Yoreo, James J; Ilton, Eugene S

    2017-05-02

    The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH) 3 ] to nanoparticulate iron oxyhydroxide minerals in the presence of uranyl (UO 2 ) 2+ (aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.

  6. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBriarty, Martin E.; Soltis, Jennifer A.; Kerisit, Sebastien

    The characterization of trace elements in minerals using extended X-ray absorption fine structure (EXAFS) spectroscopy constitutes a first step toward understanding how impurities and contaminants interact with the host phase and the environment. However, limitations to EXAFS interpretation complicate the analysis of trace concentrations of impurities that are distributed across multiple phases in a heterogeneous system. Ab initio molecular dynamics (AIMD)-informed EXAFS analysis was employed to investigate the immobilization of trace uranium associated with nanophase iron (oxyhydr)oxides, a model system for the geochemical sequestration of radiotoxic actinides. The reductive transformation of ferrihydrite [Fe(OH)3] to nanoparticulate iron oxyhydroxide minerals in themore » presence of uranyl (UO 2) 2+(aq) resulted in the preferential incorporation of U into goethite (α-FeOOH) over lepidocrocite (γ-FeOOH), even though reaction conditions favored the formation of excess lepidocrocite. This unexpected result is supported by atomically resolved transmission electron microscopy. We demonstrate how AIMD-informed EXAFS analysis lifts the strict statistical limitations and uncertainty of traditional shell-by-shell EXAFS fitting, enabling the detailed characterization of the local bonding environment, charge compensation mechanisms, and oxidation states of polyvalent impurities in complex multiphase mineral systems.« less

  7. Bragg x-ray survey spectrometer for ITER.

    PubMed

    Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S

    2012-10-01

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  8. Trace Impurity Analysis in Ta Films Using Glow Discharge Mass Spectrometry: Concentration Change of Impurities by Applying Negative Substrate Bias Voltage

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Won; Mimura, Kouji; Isshiki, Minoru

    2004-12-01

    Glow discharge mass spectrometry (GDMS) was used to analyze a Ta target and Ta films for trace impurities. The Ta films were deposited on Si (100) substrate at substrate bias voltages of 0 V and -125 V using a non-mass separated ion beam deposition system. Although both Ta films were contaminated by impurities during the deposition, the Ta film deposited at a substrate bias voltage of -125 V showed lower impurity content than the Ta film deposited without the substrate bias voltage, which means that applying a negative bias voltage to the substrate decreased the total concentration of impurities. Furthermore, the concentration change of individual impurities in the Ta film is related to their ionization ratio in the argon discharge plasma. Considering the effect of the ionization potential of an individual impurity on the ionization ratio, purification by applying a negative bias voltage to the substrate results from Penning ionization and an ionization mechanism proposed in this study, as well as from the difference between the kinetic energies of Ta neutral atoms and Ta+ ions accelerated toward the substrate with/without a negative substrate bias voltage.

  9. Gaseous trace impurity analyzer and method

    DOEpatents

    Edwards, Jr., David; Schneider, William

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  10. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE PAGES

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam; ...

    2017-10-07

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  11. Integrated approaches for reducing sample size for measurements of trace elemental impurities in plutonium by ICP-OES and ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ning; Chamberlin, Rebecca M.; Thompson, Pam

    This study has demonstrated that bulk plutonium chemical analysis can be performed at small scales (\\50 mg material) through three case studies. Analytical methods were developed for ICP-OES and ICP-MS instruments to measure trace impurities and gallium content in plutonium metals with comparable or improved detection limits, measurement accuracy and precision. In two case studies, the sample size has been reduced by 109, and in the third case study, by as much as 50009, so that the plutonium chemical analysis can be performed in a facility rated for lower-hazard and lower-security operations.

  12. Separation and analysis of trace degradants in a pharmaceutical formulation using on-line capillary isotachophoresis-NMR.

    PubMed

    Eldridge, Stacie L; Almeida, Valentino K; Korir, Albert K; Larive, Cynthia K

    2007-11-15

    NMR spectroscopy is widely used in the pharmaceutical industry for the structure elucidation of pharmaceutical impurities, especially when coupled to a separation method, such as HPLC. However, NMR has relatively poor sensitivity compared with other techniques such as mass spectrometry, limiting its applicability in impurity analyses. This limitation is addressed here through the on-line coupling of microcoil NMR with capillary isotachophoresis (cITP), a separation method that can concentrate dilute components by 2-3 orders of magnitude. With this approach, 1H NMR spectra can be acquired for microgram (nanomole) quantities of trace impurities in a complex sample matrix. cITP-NMR was used in this work to isolate and detect 4-aminophenol (PAP) in an acetaminophen sample spiked at the 0.1% level, with no interference from the parent compound. Analysis of an acetaminophen thermal degradation sample revealed resonances of several degradation products in addition to PAP, confirming the effectiveness of on-line cITP-NMR for trace analyses of pharmaceutical formulations. Subsequent LC-MS/MS analysis provided complementary information for the structure elucidation of the unknown degradation products, which were dimers formed during the degradation process.

  13. Trace impurities analysis determined by neutron activation in the PbI 2 crystal semiconductor

    NASA Astrophysics Data System (ADS)

    Hamada, M. M.; Oliveira, I. B.; Armelin, M. J.; Mesquita, C. H.

    2003-06-01

    In this work, a methodology for impurity analysis of PbI 2 was studied to investigate the effectiveness of the purification. Commercial salts were purified by the multi passes zone refining and grown by the Bridgman method. To evaluate the purification efficiency, samples from the bottom, middle and upper sections of the ZR ingot were analyzed after 200, 300 and 500 purification passes, by measurements of the impurity concentrations, using the neutron activation analysis (NAA) technique. There was a significant reduction of the impurities according to the purification numbers. The reduction efficiency was different for each element, namely: Au>Mn>Co˜Ag>K˜Br. The impurity concentration of the crystals grown after 200, 300 and 500 passes and the PbI 2 starting material were analyzed by NAA and plasma optical emission spectroscopy.

  14. Trace elements in natural azurite pigments found in illuminated manuscript leaves investigated by synchrotron x-ray fluorescence and diffraction mapping

    NASA Astrophysics Data System (ADS)

    Smieska, Louisa M.; Mullett, Ruth; Ferri, Laurent; Woll, Arthur R.

    2017-07-01

    We present trace-element and composition analysis of azurite pigments in six illuminated manuscript leaves, dating from the thirteenth to sixteenth century, using synchrotron-based, large-area x-ray fluorescence (SR-XRF) and diffraction (SR-XRD) mapping. SR-XRF mapping reveals several trace elements correlated with azurite, including arsenic, zirconium, antimony, barium, and bismuth, that appear in multiple manuscripts but were not always detected by point XRF. Within some manuscript leaves, variations in the concentration of trace elements associated with azurite coincide with distinct regions of the illuminations, suggesting systematic differences in azurite preparation or purification. Variations of the trace element concentrations in azurite are greater among different manuscript leaves than the variations within each individual leaf, suggesting the possibility that such impurities reflect distinct mineralogical/geologic sources. SR-XRD maps collected simultaneously with the SR-XRF maps confirm the identification of azurite regions and are consistent with impurities found in natural mineral sources of azurite. In general, our results suggest the feasibility of using azurite trace element analysis for provenance studies of illuminated manuscript fragments, and demonstrate the value of XRF mapping in non-destructive determination of trace element concentrations within a single pigment.

  15. Analysis of trace impurities in neon by a customized gas chromatography.

    PubMed

    Yin, Min Kyo; Lim, Jeong Sik; Moon, Dong Min; Lee, Gae Ho; Lee, Jeongsoon

    2016-09-09

    Excimer lasers, widely used in the semiconductor industry, are crucial for analyzing the purity of premix laser gases for the purpose of controlling stable laser output power. In this study, we designed a system for analyzing impurities in pure neon (Ne) base gas by customized GC. Impurities in pure neon (H2 and He), which cannot be analyzed at the sub-μmol/mol level using commercial GC detectors, were analyzed by a customized pulsed-discharge Ne ionization detector (PDNeD) and a pressurized injection thermal conductivity detector using Ne as the carrier gas (Pres. Inj. Ne-TCD). From the results, trace species in Ne were identified with the following detection limits: H2, 0.378μmol/mol; O2, 0.119μmol/mol; CH4, 0.880μmol/mol; CO, 0.263μmol/mol; CO2, 0.162μmol/mol (PDNeD); and He, 0.190μmol/mol (Pres. Inj. Ne-TCD). This PDNeD and pressurized injection Ne-TCD technique thus developed permit the quantification of trace impurities present in high-purity Ne. Copyright © 2016. Published by Elsevier B.V.

  16. Neutron-activation analysis applied to copper ores and artifacts

    NASA Technical Reports Server (NTRS)

    Linder, N. F.

    1970-01-01

    Neutron activation analysis is used for quantitative identification of trace metals in copper. Establishing a unique fingerprint of impurities in Michigan copper would enable identification of artifacts made from this copper.

  17. Measurement of trace impurities in ultra pure hydrogen and deuterium at the parts-per-billion level using gas chromatography

    NASA Astrophysics Data System (ADS)

    Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.

    2018-02-01

    A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.

  18. Method for detecting trace impurities in gases

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1981-01-01

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (.about.2 ppm) present in commercial Xe and ppm levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  19. Method for detecting trace impurities in gases

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  20. Classification of illicit heroin by UPLC-Q-TOF analysis of acidic and neutral manufacturing impurities.

    PubMed

    Liu, Cuimei; Hua, Zhendong; Bai, Yanping

    2015-12-01

    The illicit manufacture of heroin results in the formation of trace levels of acidic and neutral manufacturing impurities that provide valuable information about the manufacturing process used. In this work, a new ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF) method; that features high resolution, mass accuracy and sensitivity for profiling neutral and acidic heroin manufacturing impurities was developed. After the UPLC-Q-TOF analysis, the retention times and m/z data pairs of acidic and neutral manufacturing impurities were detected, and 19 peaks were found to be evidently different between heroin samples from "Golden Triangle" and "Golden Crescent". Based on the data set of these 19 impurities in 150 authentic heroin samples, classification of heroin geographic origins was successfully achieved utilizing partial least squares discriminant analysis (PLS-DA). By analyzing another data set of 267 authentic heroin samples, the developed discrimiant model was validated and proved to be accurate and reliable. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Trace analysis of impurities in bulk gases by gas chromatography-pulsed discharge helium ionization detection with "heart-cutting" technique.

    PubMed

    Weijun, Yao

    2007-10-12

    A method has been developed for the detection of low-nL/L-level impurities in bulk gases such as H(2), O(2), Ar, N(2), He, methane, ethylene and propylene, respectively. The solution presented here is based upon gas chromatography-pulsed discharge helium ionization detection (GC-PDHID) coupled with three two-position valves, one two-way solenoid valve and four packed columns. During the operation, the moisture and heavy compounds are first back-flushed via a pre-column. Then the trace impurities (except CO(2) which is diverted to a separate analytical column for separation and detection) together with the matrix enter onto a main column, followed by the heart-cut of the impurities onto a longer analytical column for complete separation. Finally the detection is performed by PDHID. This method has been applied to different bulk gases and the applicability of detecting impurities in H(2), Ar, and N(2) are herewith demonstrated. As an example, the resulting detection limit of 100 nL/L and a dynamic range of 100-1000 nL/L have been obtained using an Ar sample containing methane.

  2. Impact of impurities on zonal flow driven by trapped electron mode turbulence

    NASA Astrophysics Data System (ADS)

    Guo, Weixin; Wang, Lu; Zhuang, Ge

    2017-12-01

    The impact of impurities on the generation of zonal flow (ZF) driven by collisonless trapped electron mode turbulence in deuterium (D)-tritium (T) plasmas is investigated. An expression for ZF growth rate with impurities is derived by balancing the ZF potential shielded by polarization effects and the ZF modulated radial turbulent current. Then, it is shown that the maximum normalized ZF growth rate is reduced by the presence of fully ionized non-trace light impurities with relatively flat density profile, and slightly reduced by highly ionized trace tungsten, while the maximum normalized ZF growth rate can be enhanced by fully ionized non-trace light impurities with relatively steep density profile. In particular, the effects of high temperature helium from D-T reaction on ZF depend on the temperature ratio between electrons and high temperature helium. The possible relevance of our findings to recent experimental results and future burning plasmas is also discussed.

  3. Neutron activation analysis traces copper artifacts to geographical point of origin

    NASA Technical Reports Server (NTRS)

    Conway, M.; Fields, P.; Friedman, A.; Kastner, M.; Metta, D.; Milsted, J.; Olsen, E.

    1967-01-01

    Impurities remaining in the metallic copper are identified and quantified by spectrographic and neutron activation analysis. Determination of the type of ore used for the copper artifact places the geographic point of origin of the artifact.

  4. Method and apparatus for detecting and measuring trace impurities in flowing gases

    DOEpatents

    Taylor, Gene W.; Dowdy, Edward J.

    1979-01-01

    Trace impurities in flowing gases may be detected and measured by a dynamic atomic molecular emission spectrograph utilizing as its energy source the energy transfer reactions of metastable species, atomic or molecular, with the impurities in the flowing gas. An electronically metastable species which maintains a stable afterglow is formed and mixed with the flowing gas in a region downstream from and separate from the region in which the metastable species is formed. Impurity levels are determined quantitatively by the measurement of line and/or band intensity as a function of concentration employing emission spectroscopic techniques.

  5. Source Attribution of Cyanides Using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics.

    PubMed

    Mirjankar, Nikhil S; Fraga, Carlos G; Carman, April J; Moran, James J

    2016-02-02

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs), such as cyanides, are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. Herein, stocks of KCN and NaCN were analyzed for trace anions by high performance ion chromatography (HPIC), carbon stable isotope ratio (δ(13)C) by isotope ratio mass spectrometry (IRMS), and trace elements by inductively coupled plasma optical emission spectroscopy (ICP-OES). The collected analytical data were evaluated using hierarchical cluster analysis (HCA), Fisher-ratio (F-ratio), interval partial least-squares (iPLS), genetic algorithm-based partial least-squares (GAPLS), partial least-squares discriminant analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminant analysis (SVMDA). HCA of anion impurity profiles from multiple cyanide stocks from six reported countries of origin resulted in cyanide samples clustering into three groups, independent of the associated alkali metal (K or Na). The three groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries each having one known solid cyanide factory: Czech Republic, Germany, and United States. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). Classification errors for two validation studies using anion impurity profiles collected over five years on different instruments were as low as zero for KNN and SVMDA, demonstrating the excellent reliability associated with using anion impurities for matching a cyanide sample to its factory using our current cyanide stocks. Variable selection methods reduced errors for those classification methods having errors greater than zero; iPLS-forward selection and F-ratio typically provided the lowest errors. Finally, using anion profiles to classify cyanides to a specific stock or stock group for a subset of United States stocks resulted in cross-validation errors ranging from 0 to 5.3%.

  6. [Standard addition determination of impurities in Na2CrO4 by ICP-AES].

    PubMed

    Wang, Li-ping; Feng, Hai-tao; Dong, Ya-ping; Peng, Jiao-yu; Li, Wu; Shi, Hai-qin; Wang, Yong

    2015-02-01

    Coupled plasma atomic emission spectrometry (ICP-AES) was used to determine the trace impurities of Ca, Mg, Al, Fe and Si in industrial sodium chromate. Wavelengths of 167.079, 393.366, 259.940, 279.533 and 251.611 nm were selected as analytical lines for the determination of Al, Ca, Fe, Mg and Si, respectively. The analytical errors can be eliminated by adjusting the determined solution with high pure hydrochloric acid. Standard addition method was used to eliminate matrix effects. The linear correlation, detection limit, precision and recovery for the concerned trace impurities have been examined. The effect of standard addition method on the accuracy for the determination under the selected analytical lines has been studied in detail. The results show that the linear correlations of standard curves were very good (R2 = 0.9988 to 0.9996) under the determined conditions. Detection limits of these trace impurities were in the range of 0.0134 to 0.0280 mg x L(-1). Sample recoveries were within 97.30% to 107.50%, and relative standard deviations were lower than 5.86% for eleven repeated determinations. The detection limits and accuracies established by the experiment can meet the analytical requirements and the analytic procedure was used to determine trace impurities in sodium chromate by ion membrane electrolysis technique successfully. Due to sodium chromate can be changed into sodium dichromate and chromic acid by adding acids, the established method can be further used to monitor trace impurities in these compounds or other hexavalent chromium compounds.

  7. Device for sampling and enriching impurities in hydrogen comprising hydrogen-permeable membrane

    DOEpatents

    Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon D. H.; Kumar, Romesh

    2017-01-31

    Provided herein are methods and devices to enrich trace quantities of impurities in gaseous mixtures, such as hydrogen fuel. The methods and devices rely on concentration of impurities so as to allow the detection of the impurities using commonly-available detection methods.

  8. Luminescence and radiation resistance of undoped NaI crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiran, N., E-mail: shiran@isc.kharkov.com; Boiaryntseva, I.; Gektin, A.

    2014-11-15

    Highlights: • The performance of NaI scintillators depends on luminescence properties. • A criterion of crystals’ purity level is radiation colorability at room temperature. • The traces of the most dangerous impurities were detected. • Crucial role in efficiency of pure NaI scintillator play the crystal perfection. - Abstract: Undoped NaI single crystal is an excellent scintillator at low temperature. However, scintillation parameters of different quality crystals vary in a wide range, significantly exceeding measurement error. Experimental data demonstrate the features of luminescence, radiation induced coloration, and afterglow dependence on the quality of nominally pure crystals. It is found thatmore » defects level that allows to elucidate artefacts introduced by traces of harmful impurities corresponds to 3 × 10{sup 15} cm{sup −3} that significantly overhead accuracy of chemical and absorption analysis. It is shown that special raw material treatment before and during the single crystal growth allows to reach NaI purity level that avoids impurities influence to the basic luminescence data.« less

  9. Trace element analysis of rough diamond by LA-ICP-MS: a case of source discrimination?

    PubMed

    Dalpé, Claude; Hudon, Pierre; Ballantyne, David J; Williams, Darrell; Marcotte, Denis

    2010-11-01

    Current profiling of rough diamond source is performed using different physical and/or morphological techniques that require strong knowledge and experience in the field. More recently, chemical impurities have been used to discriminate diamond source and with the advance of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) empirical profiling of rough diamonds is possible to some extent. In this study, we present a LA-ICP-MS methodology that we developed for analyzing ultra-trace element impurities in rough diamond for origin determination ("profiling"). Diamonds from two sources were analyzed by LA-ICP-MS and were statistically classified by accepted methods. For the two diamond populations analyzed in this study, binomial logistic regression produced a better overall correct classification than linear discriminant analysis. The results suggest that an anticipated matrix match reference material would improve the robustness of our methodology for forensic applications. © 2010 American Academy of Forensic Sciences.

  10. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGES

    Xu, Ning; Gallimore, David; Lujan, Elmer; ...

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  11. High Temperature Silicides and Refractory Alloys Symposium Held in Boston, Massachusetts on November 29 -December 2, 1993. Volume 322

    DTIC Science & Technology

    1993-12-02

    determined by Leco* analysis with the highest impurity being C (< 91 wt. ppm) followed by 0 (< 39 ppm) and H (< 5 ppm). Results The yield stress of single... Analysis The slip trace analyses made after deformation along [0011, J021), and 17711 are summarized in Table 1. The characteristics of the slip traces...elastic recovery of the material as the indenter is removed. Following their analysis , we used the unloading portion of the curve to estimate the

  12. Characterisation of mineralogical forms of barium and trace heavy metal impurities in commercial barytes by EPMA, XRD and ICP-MS.

    PubMed

    Ansari, T M; Marr, I L; Coats, A M

    2001-02-01

    This study was carried out to characterise the mineralogical forms of barium and the trace heavy metal impurities in commercial barytes of different origins using electron probe microanalysis (EPMA), X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). Qualitative EPMA results show the presence of typically eight different minerals in commercial barytes including barite (BaSO4), barium feldspar, galena (PbS), pyrite (FeS2), sphalerite (ZnS), quartz (SiO2), and silicates, etc. Quantitative EPMA confirms that the barite crystals in the barytes contain some strontium and a little calcium, whereas trace heavy metals occur in the associated minerals. Analysis of aqua regia extracts of barytes samples by ICP-MS has shown the presence of a large number of elements in the associated minerals. Arsenic, copper and zinc concentrations correlate closely in all 10 samples. The findings suggest that barytes is not, as traditionally thought, an inert mineral, but is a potentially toxic substance due to its associated heavy metal impurities, which can be determined by an aqua regia digest without the need for complete dissolution of the barite itself. X-ray powder diffraction was not informative as the complex barite pattern masks the very weak lines from the small amounts of associated minerals.

  13. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  14. ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.

    PubMed

    Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K

    2017-01-01

    Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Suitability of different containers for the sampling and storage of biogas and biomethane for the determination of the trace-level impurities--A review.

    PubMed

    Arrhenius, Karine; Brown, Andrew S; van der Veen, Adriaan M H

    2016-01-01

    The traceable and accurate measurement of biogas impurities is essential in order to robustly assess compliance with the specifications for biomethane being developed by CEN/TC408. An essential part of any procedure aiming to determinate the content of impurities is the sampling and the transfer of the sample to the laboratory. Key issues are the suitability of the sample container and minimising the losses of impurities during the sampling and analysis process. In this paper, we review the state-of-the-art in biogas sampling with the focus on trace impurities. Most of the vessel suitability studies reviewed focused on raw biogas. Many parameters need to be studied when assessing the suitability of vessels for sampling and storage, among them, permeation through the walls, leaks through the valves or physical leaks, sorption losses and adsorption effects to the vessel walls, chemical reactions and the expected initial concentration level. The majority of these studies looked at siloxanes, for which sampling bags, canisters, impingers and sorbents have been reported to be fit-for-purpose in most cases, albeit with some limitations. We conclude that the optimum method requires a combination of different vessels to cover the wide range of impurities commonly found in biogas, which have a wide range of boiling points, polarities, water solubilities, and reactivities. The effects from all the parts of the sampling line must be considered and precautions must be undertaken to minimize these effects. More practical suitability tests, preferably using traceable reference gas mixtures, are needed to understand the influence of the containers and the sampling line on sample properties and to reduce the uncertainty of the measurement. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Investigation of impurity transport using laser blow-off technique in the HL-2A Ohmic and ECRH plasmas

    NASA Astrophysics Data System (ADS)

    Kai, Zhang; Zheng-Ying, Cui; Ping, Sun; Chun-Feng, Dong; Wei, Deng; Yun-Bo, Dong; Shao-Dong, Song; Min, Jiang; Yong-Gao, Li; Ping, Lu; Qing-Wei, Yang

    2016-06-01

    Impurity transports in two neighboring discharges with and without electron cyclotron resonance heating (ECRH) are studied in the HL-2A tokamak by laser blow-off (LBO) technique. The progression of aluminium ions as the trace impurity is monitored by soft x-ray (SXR) and bolometer detector arrays with good temporal and spatial resolutions. Obvious difference in the time trace of the signal between the Ohmic and ECRH L-mode discharges is observed. Based on the numerical simulation with one-dimensional (1D) impurity transport code STRAHL, the radial profiles of impurity diffusion coefficient D and convective velocity V are obtained for each shot. The result shows that the diffusion coefficient D significantly increases throughout the plasma minor radius for the ECRH case with respect to the Ohmic case, and that the convection velocity V changes from negative (inward) for the Ohmic case to partially positive (outward) for the ECRH case. The result on HL-2A confirms the pump out effect of ECRH on impurity profile as reported on various other devices.

  17. [The application of inductively coupled plasma atomic emission spectrometry/mass spectrometry to the analysis of advanced ceramic materials].

    PubMed

    Wang, Zheng; Wang, Shi-Wei; Qiu, De-Ren; Yang, Peng-Yuan

    2009-10-01

    Advanced ceramics have been applied to various important fields such as information science, aeronautics and astronautics, and life sciences. However, the optics and electric properties of ceramics are significantly affected by the micro and trace impurities existing in the material even at very low concentration level. Thus, the accurate determination of impurities is important for materials preparation and performance. Methodology of the analysis of advanced ceramic materials using ICP-AES/MS was reviewed in the present paper for the past decade. Various techniques of sample introduction, especially advances in the authors' recent work, are described in detail. The developing trend is also presented. Sixty references are cited.

  18. Microbeam Characterization of Corning Archeological Reference Glasses: New Additions to the Smithsonian Microbeam Standard Collection

    PubMed Central

    Vicenzi, Edward P.; Eggins, Stephen; Logan, Amelia; Wysoczanski, Richard

    2002-01-01

    An initial study of the minor element, trace element, and impurities in Corning archeological references glasses have been performed using three microbeam techniques: electron probe microanalysis (EPMA), laser ablation ICP-mass spectrometry (LA ICP-MS), and secondary ion mass spectrometry (SIMS). The EPMA results suggest a significant level of heterogeneity for a number of metals. Conversely, higher precision and a larger sampling volume analysis by LA ICP-MS indicates a high degree of chemical uniformity within all glasses, typically <2 % relative (1 σ). SIMS data reveal that small but measurable quantities of volatile impurities are present in the glasses, including H at roughly the 0.0001 mass fraction level. These glasses show promise for use as secondary standards for minor and trace element analyses of insulating materials such as synthetic ceramics, minerals, and silicate glasses. PMID:27446764

  19. Direct Analysis in Real Time Mass Spectrometry of Potential By-Products from Homemade Nitrate Ester Explosive Synthesis

    PubMed Central

    Sisco, Edward; Forbes, Thomas P.

    2016-01-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here, enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. PMID:26838397

  20. Chemometrics-assisted chromatographic fingerprinting: An illicit methamphetamine case study.

    PubMed

    Shekari, Nafiseh; Vosough, Maryam; Tabar Heidar, Kourosh

    2017-03-01

    The volatile chemical constituents in complex mixtures can be analyzed using gas chromatography with mass spectrometry. This analysis allows the tentative identification of diverse impurities of an illicit methamphetamine sample. The acquired two-dimensional data of liquid-liquid extraction was resolved by multivariate curve resolution alternating curve resolution to elucidate the embedded peaks effectively. This is the first report on the application of a curve resolution approach for chromatogram fingerprinting to identify particularly the embedded impurities of a drug of abuse. Indeed, the strong and broad peak of methamphetamine makes identifying the underlying peaks problematic and even impossible. Mathematical separation instead of conventional chromatographic approaches was performed in a way that trace components embedded in methamphetamine peak were successfully resolved. Comprehensive analysis of the chromatogram, using multivariate curve resolution, resulted in elution profiles and mass spectra for each pure compound. Impurities such as benzaldehyde, benzyl alcohol, benzene, propenyl methyl ketone, benzyl methyl ketone, amphetamine, N-benzyl-2-methylaziridine, phenethylamine, N,N,α-trimethylamine, phenethylamine, N,α,α-trimethylmethamphetamine, N-acetylmethamphetamine, N-formylmethamphetamine, and other chemicals were identified. A route-specific impurity, N-benzyl-2-methylaziridine, indicating a synthesis route based on ephedrine/pseudoephedrine was identified. Moreover, this is the first report on the detection of impurities such as phenethylamine, N,α,α-trimethylamine (a structurally related impurity), and clonitazene (as an adulterant) in an illicit methamphetamine sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The effects of trace impurities in coal-derived liquid fuels on deposition and accelerated high temperature corrosion of cast superalloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. J.; Santoro, G. J.; Kohl, F. J.

    1981-01-01

    The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations.

  2. Profiling extractable and leachable inorganic impurities in ophthalmic drug containers by ICP-MS.

    PubMed

    Solomon, Paige; Nelson, Jenny

    2018-03-01

    In this study, we investigated the elemental impurities present in the plastic material of ophthalmic eye drop bottles using inductively coupled plasma-mass spectrometry (ICP-MS). Metallic contaminations, especially localized within the small cavity of the eye, can significantly perturb the ocular metallome. The concern is two-fold: first certain elements, for example heavy metals, can be toxic to humans at even trace levels, and second, these contaminations can have adverse reactions with other medicines or enzymatic processes in the eye. The implication of redox-active metals in cataract formation is one such biological consequence. The analysis demonstrated the effect of aggressive storage and transportation conditions on elemental extractable and leachable contamination, and posits that release of these elemental impurities can disrupt metallome equilibrium in the ocular compartment, leading to toxicity and disease.

  3. HPLC-MS Examination of Impurities in Pentaerythritol Tetranitrate

    NASA Astrophysics Data System (ADS)

    Brown, Geoffrey W.; Giambra, Anna M.

    2014-04-01

    Pentaerythritol tetranitrate (PETN) has trace homolog impurities that can be detected by high-performance liquid chromatography-mass spectrometry. Consideration of observed impurity masses and candidate structures based on known pentaerythritol impurities allows identification of 22 compounds in the data. These are all consistent with either fully nitrated homologs or derivatives substituted with methyl, methoxy, or hydroxyl groups in place of a nitric ester. Examining relative impurity concentrations in three starting batches of PETN and six subsequently processed batches shows that it is possible to use relative concentration profiles as a fingerprint to differentiate batches and follow them through recrystallization steps.

  4. Direct analysis in real time mass spectrometry of potential by-products from homemade nitrate ester explosive synthesis.

    PubMed

    Sisco, Edward; Forbes, Thomas P

    2016-04-01

    This work demonstrates the coupling of direct analysis in real time (DART) ionization with time-of-flight mass spectrometry (MS) in an off-axis configuration for the trace detection and analysis of potential partially nitrated and dimerized by-products of homemade nitrate ester explosive synthesis. Five compounds relating to the synthesis of nitroglycerin (NG) and pentaerythritol tetranitrate (PETN) were examined. Deprotonated ions and adducts with molecular oxygen, nitrite, and nitrate were observed in the mass spectral responses of these compounds. A global optimum temperature of 350 °C for the by-products investigated here enabled single nanogram to sub nanogram trace detection. Matrix effects were examined through a series of mixtures containing one or more compounds (sugar alcohol precursors, by-products, and/or explosives) across a range of mass loadings. The explosives MS responses experienced competitive ionization in the presence of all by-products. The magnitude of this influence corresponded to both the degree of by-product nitration and the relative mass loading of the by-product to the explosive. This work provides a characterization of potential by-products from homemade nitrate ester synthesis, including matrix effects and potential challenges that might arise from the trace detection of homemade explosives (HMEs) containing impurities. Detection and understanding of HME impurities and complex mixtures may provide valuable information for the screening and sourcing of homemade nitrate ester explosives. Published by Elsevier B.V.

  5. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    NASA Astrophysics Data System (ADS)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  6. Differential auger spectrometry

    DOEpatents

    Strongin, Myron; Varma, Matesh Narayan; Anne, Joshi

    1976-06-22

    Differential Auger spectroscopy method for increasing the sensitivity of micro-Auger spectroanalysis of the surfaces of dilute alloys, by alternately periodically switching an electron beam back and forth between an impurity free reference sample and a test sample containing a trace impurity. The Auger electrons from the samples produce representative Auger spectrum signals which cancel to produce an Auger test sample signal corresponding to the amount of the impurity in the test samples.

  7. Impurity profiling of a chemical weapon precursor for possible forensic signatures by comprehensive two-dimensional gas chromatography/mass spectrometry and chemometrics.

    PubMed

    Hoggard, Jamin C; Wahl, Jon H; Synovec, Robert E; Mong, Gary M; Fraga, Carlos G

    2010-01-15

    In this report we present the feasibility of using analytical and chemometric methodologies to reveal and exploit the chemical impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound of a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC/TOF-MS data was analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlapped GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization indicated that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into five distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported the idea that the other four DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. Finally, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples.

  8. Trace impurities analysis of aluminum nanopowder and its air combustion product

    NASA Astrophysics Data System (ADS)

    Kabanov, Denis V.; Merkulov, Viktor G.; Mostovshchikov, Andrey V.; Ilyin, Alexander P.

    2018-03-01

    Neutron activation analysis (NAA) allows estimating micro-concentrations of chemicals and analyzes tens of elements at one measurement. In this paper we have used NAA to examine metal impurities in the electroexplosive aluminum nanopowder (ANP) and its air-combustion products produced by burning in crucibles in an electric and magnetic field and without application of fields. It has been revealed that in the air-combustion products impurities content is reduced. The presence of impurities in the ANP is associated with electric explosion technology (erosion of electrode and chamber materials) and with the previous development of various nanopowders in the composition of this electric explosive device. NAA is characterized by a high sensitivity and reproducibility to elements content and low metering error. According to the obtained results it has been concluded that NAA metering error does not exceed 10% in the wide concentration range, from 0.01 to 2100 ppm, particularly. Besides, there is high reproducibility of the method that has been proved on macro-elements of Ca (>1000 ppm), Fe (>2000 ppm), and micro-elements as Sm, U, Ce, Sb, Th, etc. (<0.9 ppm). It is recommended to use an individual unit for the production of pure metal powders for electric explosion and production of nanopowders, which is possible with mass production of nanopowders.

  9. Glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2002-01-01

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured.

  10. Chemical Characterization and Thermal Stressing Studies of Perfluorohexane Fluids for Space-Based Applications

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Hartman, Thomas G.; McQuillen, John

    2006-01-01

    Perfluorohexane (PFH), C6F14, is a perfluorocarbon fluid. Several PFH fluids with different isomer concentrations were evaluated for use in an upcoming NASA space experiment. Samples tested included two commercially obtained high-purity n-perfluorohexane (n-PFH) fluids and a technical grade mixture of C6F14 branched and linear isomers (FC-72(TradeMark)). These fluids were evaluated for exact chemical composition, impurity purity and high temperature degradation behavior (pyrolysis). Our investigation involved simulated thermal stressing studies of PFH fluids under conditions likely to occur in the event of an atmospheric breach within the International Space Station (ISS) and subsequent exposure of the vapors to the high temperature and catalyst present in its Trace Contaminant Control Subsystem (TCCS). Exposure to temperatures in the temperature range of 200-450 C in an inert or oxidizing atmosphere, with and without the presence of catalyst was investigated. The most aggressive conditions studied were exposure of PFH vapors to 450 C in air and in the presence of TCCS (palladium) catalyst. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography (GC) analyses were conducted on the perfluorohexane samples before and after pyrolysis. The FC-72 and n-PFH samples showed no significant degradation following pyrolysis even under the most aggressive study conditions. Some trace level impurities associated with the PFH samples such as linear perfluorocarbon monohydrides or monoiodides were destroyed by pyrolysis at the upper limit. Other trace level impurities such as olefinic or cycloolefinic perfluorocarbons were converted into oxidation products by pyrolysis. The purity of PFH following pyrolysis actually increased slightly as a consequence since these trace contaminants were effectively scrubbed from the samples. However, since the initial concentrations of the thermally-impacted impurities were so low, the net effect was trivial. A potential byproduct of exposure of perfluorohexane fluids to high temperatures is the production of perfluoroisobutene (PFiB), which is extremely toxic. An ultra-high sensitivity PFiB-specific analysis based on GC-MS with negative ion chemical ionization (NICI) detection was used to evaluate the samples following thermal stressing. The perfluorohexanes examined here under conditions reflective of the ISS TCCS environment showed no signs of PFiB production with an analytical detection limit of 10 part per billion (ppb v/v).

  11. Signature-Discovery Approach for Sample Matching of a Nerve-Agent Precursor using Liquid Chromatography–Mass Spectrometry, XCMS, and Chemometrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Clowers, Brian H.; Moore, Ronald J.

    2010-05-15

    This report demonstrates the use of bioinformatic and chemometric tools on liquid chromatography mass spectrometry (LC-MS) data for the discovery of ultra-trace forensic signatures for sample matching of various stocks of the nerve-agent precursor known as methylphosphonic dichloride (dichlor). The use of the bioinformatic tool known as XCMS was used to comprehensively search and find candidate LC-MS peaks in a known set of dichlor samples. These candidate peaks were down selected to a group of 34 impurity peaks. Hierarchal cluster analysis and factor analysis demonstrated the potential of these 34 impurities peaks for matching samples based on their stock source.more » Only one pair of dichlor stocks was not differentiated from one another. An acceptable chemometric approach for sample matching was determined to be variance scaling and signal averaging of normalized duplicate impurity profiles prior to classification by k-nearest neighbors. Using this approach, a test set of dichlor samples were all correctly matched to their source stock. The sample preparation and LC-MS method permitted the detection of dichlor impurities presumably in the parts-per-trillion (w/w). The detection of a common impurity in all dichlor stocks that were synthesized over a 14-year period and by different manufacturers was an unexpected discovery. Our described signature-discovery approach should be useful in the development of a forensic capability to help in criminal investigations following chemical attacks.« less

  12. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  13. Deicing chemicals as source of constituents of highway runoff

    USGS Publications Warehouse

    Granato, G.E.

    1996-01-01

    The dissolved major and trace constituents of deicing chemicals as a source of constituents in highway runoff must be quantified for interpretive studies of highway runoff and its effects on surface water and groundwater. Dissolved constituents of the deicing chemicals-sodium chloride, calcium chloride, and premix (a mixture of sodium and calcium chloride)-were determined by analysis of salt solutions created in the laboratory and are presented as mass ratios to chloride. Deicing chemical samples studied are about 98 and 97 percent pure sodium chloride and calcium chloride, respectively: however, each has a distinct major and trace ion constituent signature. The greatest impurity in sodium chloride road sail samples was sulfate, followed by calcium, potassium, bromide, vanadium, magnesium, fluoride, and other constituents with a ratio to chloride of less than 0.0001 by mass. The greatest impurity in the calcium chloride road salt samples was sodium, followed by potassium, sulfate, bromide, silica, fluoride. strontium, magnesium, and other constituents with a ratio to chloride of less than 0.0001 by mass. Major constituents of deicing chemicals in highway runoff may account for a substantial source of annual chemical loads. Comparison of estimated annual loads and first flush concentrations of deicing chemical constituents in highway runoff with those reported in the literature indicate that although deicing chemicals are not a primary source of trace constituents, they are not a trivial source, either. Therefore, deicing chemicals should be considered as a source of many major and trace constituents in highway and urban runoff.

  14. Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy

    USGS Publications Warehouse

    Kargel, J.S.; Delmelle, P.; Nash, D.B.

    1999-01-01

    The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ??m that gradually diminishes out to 1.6 ??m - similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ??m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found any natural sulfur containing significant Na beyond that attributable to silicate inclusions. In sum, the unique physical-chemical properties of S-rich systems and the strong affinity of certain elements for S may have broad implications for the appearance, spectroscopic interpretation, and geologic processes of Io. Identification of impurities in sulfur may be helpful in tracing the geochemical evolution of surface deposits on Io. Perhaps foretelling of new areas of investigation, Cl has recently been reported in the Io torus (M. Kueppers and N. M. Schneider 1999, Eos Trans.80, 5207), suggesting the presence on Io of either salts, such as halite, or sulfur chlorides. Further evidence of minor iogenic impurities should be sought in Io's neutral cloud and plasma torus as well as in further scrutiny of Io's reflectance spectra. ?? 1999 Academic Press.

  15. Correlation between Charge Contrast Imaging and the Distribution of Some Trace Level Impurities in Gibbsite

    NASA Astrophysics Data System (ADS)

    Baroni, Travis C.; Griffin, Brendan J.; Browne, James R.; Lincoln, Frank J.

    2000-01-01

    Charge contrast images (CCI) of synthetic gibbsite obtained on an environmental scanning electron microscope gives information on the crystallization process. Furthermore, X-ray mapping of the same grains shows that impurities are localized during the initial stages of growth and that the resulting composition images have features similar to these observed in CCI. This suggests a possible correlation between impurity distributions and the emission detected during CCI. X-ray line profiles, simulating the spatial distribution of impurities derived from the Monte Carlo program CASINO, have been compared with experimental line profiles and give an estimate of the localization. The model suggests that a main impurity, Ca, is depleted from the solution within approximately 3 4 [mu]m of growth.

  16. Determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by ICP-OES

    NASA Astrophysics Data System (ADS)

    Yong, Cheng

    2018-03-01

    The method that direct determination of 18 kinds of trace impurities in the vanadium battery grade vanadyl sulfate by inductively coupled plasma atomic emission spectrometry (ICP-OES) was established, and the detection range includes 0.001% ∼ 0.100% of Fe, Cr, Ni, Cu, Mn, Mo, Pb, As, Co, P, Ti, Zn and 0.005% ∼ 0.100% of K, Na, Ca, Mg, Si, Al. That the influence of the matrix effects, spectral interferences and background continuum superposition in the high concentrations of vanadium ions and sulfate coexistence system had been studied, and then the following conclusions were obtained: the sulfate at this concentration had no effect on the determination, but the matrix effects or continuous background superposition which were generated by high concentration of vanadium ions had negative interference on the determination of potassium and sodium, and it produced a positive interference on the determination of the iron and other impurity elements, so that the impacts of high vanadium matrix were eliminated by the matrix matching and combining synchronous background correction measures. Through the spectral interference test, the paper classification summarized the spectral interferences of vanadium matrix and between the impurity elements, and the analytical lines, the background correction regions and working parameters of the spectrometer were all optimized. The technical performance index of the analysis method is that the background equivalent concentration -0.0003%(Na)~0.0004%(Cu), the detection limit of the element is 0.0001%∼ 0.0003%, RSD<10% when the element content is in the range from 0.001% to 0.007%, RSD< 20% even if the element content is in the range from 0.0001% to 0.001% that is beyond the scope of the method of detection, recoveries is 91.0% ∼ 110.0%.

  17. Universal trace pollutant detector for aircraft monitoring of the ozone layer and industrial areas

    NASA Technical Reports Server (NTRS)

    Filiouguine, I. V.; Kostiouchenko, S. V.; Koudriavtsev, N. N.

    1994-01-01

    A method of monitoring the trace impurities of nitrogen oxides based on controlling of luminescence of NO molecules excited by nanosecond gas discharge have been developed having pptv-ppbv sensitivity and temporal resolution less than 0.01 s.

  18. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials

    DOE PAGES

    Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso; ...

    2017-02-02

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less

  19. Solid-phase extraction microfluidic devices for matrix removal in trace element assay of actinide materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jun; Manard, Benjamin Thomas; Castro, Alonso

    Advances in sample nebulization and injection technology have significantly reduced the volume of solution required for trace impurity analysis in plutonium and uranium materials. Correspondingly, we have designed and tested a novel chip-based microfluidic platform, containing a 100-µL or 20-µL solid-phase microextraction column, packed by centrifugation, which supports nuclear material mass and solution volume reductions of 90% or more compared to standard methods. Quantitative recovery of 28 trace elements in uranium was demonstrated using a UTEVA chromatographic resin column, and trace element recovery from thorium (a surrogate for plutonium) was similarly demonstrated using anion exchange resin AG MP-1. Of ninemore » materials tested, compatibility of polyvinyl chloride (PVC), polypropylene (PP), and polytetrafluoroethylene (PTFE) chips with the strong nitric acid media was highest. Finally, the microcolumns can be incorporated into a variety of devices and systems, and can be loaded with other solid-phase resins for trace element assay in high-purity metals.« less

  20. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spemann, D., E-mail: spemann@uni-leipzig.de; Esquinazi, P., E-mail: esquin@physik.uni-leipzig.de; Setzer, A.

    In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearlymore » exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.« less

  1. Coaxial carbon plasma gun deposition of amorphous carbon films

    NASA Technical Reports Server (NTRS)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  2. Erosion and Retention Properties of Beyllium

    NASA Astrophysics Data System (ADS)

    Doerner, R.; Grossman, A.; Luckhardt, S.; Serayderian, R.; Sze, F. C.; Whyte, D. G.

    1997-11-01

    Experiments in PISCES-B have investigated the erosion and hydrogen retention characteristics of beryllium. The sputtering yield is strongly influenced by trace amounts (≈1 percent) of intrinsic plasma impurities. At low sample exposure temperatures (below 250^oC), the beryllium surface remains free of contaminants and a sputtering yield similar to that of beryllium-oxide is measured. At higher exposure temperatures, impurities deposited on the surface can diffuse into the bulk and reduce their chance of subsequent erosion. These impurities form a surface layer mixed with beryllium which exhibits a reduced sputtering yield. Depth profile analysis has determined the composition and chemical bonding of the impurity layer. The hydrogen isotope retention of beryllium under ITER first wall (temperature = 200^oC, ion flux = 1 x 10^21 m-2 s-1) and baffle (temperature = 500^oC, ion flux = 1 x 10^22 m-2 s-1) conditions has been investigated. The retained deuterium saturates above a fluence of 10^23 m-2 at about 4 x 10^20 m-2 for the 200^oC exposure and at 2 x 10^20 m-2 for the 500^oC case. The TMAP code is used to model the deuterium release characteristics.

  3. Trace analysis of high-purity graphite by LA-ICP-MS.

    PubMed

    Pickhardt, C; Becker, J S

    2001-07-01

    Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.

  4. Pfirsch–Schlüter neoclassical heavy impurity transport in a rotating plasma

    DOE PAGES

    Belli, Emily A.; Candy, Jefferey M.; Angioni, C.

    2014-11-07

    In this paper, we extend previous analytic theories for the neoclassical transport of a trace heavy impurity in a rotating plasma in the Pfirsch-Schl¨uter regime. The complete diffusive and convective components of the ambipolar particle flux are derived. The solution is valid for arbitrary impurity charge and impurity Mach number and for general geometry. Inclusion of finite main ion temperature gradient effects is shown in the small ion Mach number limit. A simple interpolation formula is derived for the case of high impurity charge and circular geometry. While an enhancement of the diffusion coefficient is found for order one impuritymore » Mach number, a reduction due to the rotation-driven poloidal asymmetry in the density occurs for very large Mach number.« less

  5. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Bronk, Krys; Dockendorff, Brian P.

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities produced during the synthesis of tris(2-chloroethyl)amine (HN3) that point to specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. Reaction-produced impurities indicative ofmore » specific TEA and chloroform stocks were exclusively discovered in HN3 batches made with those reagent stocks. In addition, some reagent impurities were found in the HN3 batches that were presumably not altered during synthesis and believed to be indicative of reagent type regardless of stock. Supervised classification using partial least squares discriminant analysis (PLSDA) on the impurity profiles of chloroform samples from seven stocks resulted in an average classification error by cross-validation of 2.4%. A classification error of zero was obtained using the seven-stock PLSDA model on a validation set of samples from an arbitrarily selected chloroform stock. In a separate analysis, all samples from two of seven chloroform stocks that were purposely not modeled had their samples matched to a chloroform stock rather than assigned a “no class” classification.« less

  6. Impact of metal-induced degradation on the determination of pharmaceutical compound purity and a strategy for mitigation.

    PubMed

    Dotterer, Sally K; Forbes, Robert A; Hammill, Cynthia L

    2011-04-05

    Case studies are presented demonstrating how exposure to traces of transition metals such as copper and/or iron during sample preparation or analysis can impact the accuracy of purity analysis of pharmaceuticals. Some compounds, such as phenols and indoles, react with metals in the presence of oxygen to produce metal-induced oxidative decomposition products. Compounds susceptible to metal-induced decomposition can degrade following preparation for purity analysis leading to falsely high impurity results. Our work has shown even metals at levels below 0.1 ppm can negatively impact susceptible compounds. Falsely low results are also possible when the impurities themselves react with metals and degrade prior to analysis. Traces of metals in the HPLC mobile phase can lead to chromatographic artifacts, affecting the reproducibility of purity results. To understand and mitigate the impact of metal induced decomposition, a proactive strategy is presented. The pharmaceutical would first be tested for reactivity with specific transition metals in the sample solvent/diluents and in the HPLC mobile phase. If found to be reactive, alternative sample diluents and/or mobile phases with less reactive solvents or addition of a metal chelator would be explored. If unsuccessful, glassware cleaning or sample solution refrigeration could be investigated. By employing this strategy during method development, robust purity methods would be delivered to the quality control laboratories, preventing future problems from potential sporadic contamination of glassware with metals. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    PubMed

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.

  8. Stable glow discharge detector

    DOEpatents

    Koo, Jackson C.; Yu, Conrad M.

    2004-05-18

    A highly sensitive electronic ion cell for the measurement of trace elements in He carrier gas which involves glow discharge. A constant wave (CW) stable glow discharge detector which is controlled through a biased resistor, can detect the change of electron density caused by impurities in the He carrier gas by many orders of magnitude larger than that caused by direct ionization or electron capture. The stable glow discharge detector utilizes a floating pseudo-electrode to form a probe in or near the plasma and a solid rod electrode. By using this probe, the large variation of electron density due to trace amounts of impurities can be directly measured. The solid rod electrode provides greater stability and thus easier alignment.

  9. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  10. Analysis of Greek small coinage from the classic period

    NASA Astrophysics Data System (ADS)

    Šmit, Ž.; Šemrov, A.

    2018-02-01

    A series of 25 Greek coins from the 6th to 4th centuries BC was studied by PIXE for their trace element composition, with an aim to discover the origin of their silver ore. The procedure revealed a counterfeited coin, and then concentrated on distinguishing the coins minted from the ore of Laurion on the Attica peninsula and the coins minted from other sources. Linear discriminant analysis based on the impurities and alloying elements of copper, gold, lead and bismuth revealed that discrimination is indeed possible according to a single canonical variable.

  11. Effect of ionization suppression by trace impurities in mobile phase water on the accuracy of quantification by high-performance liquid chromatography/mass spectrometry.

    PubMed

    Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K

    2010-06-15

    The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.

  12. Impurity measurements in semiconductor materials using trace element accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    McDaniel, F. D.; Datar, S. A.; Nigam, M.; Ravi Prasad, G. V.

    2002-05-01

    Accelerator mass spectrometry (AMS) is commonly used to determine the abundance ratios of long-lived isotopes such as 10B, 14C, 36Cl, 129I, etc. to their stable counterparts at levels as low as 10 -16. Secondary ion mass spectrometry (SIMS) is routinely used to determine impurity levels in materials by depth profiling techniques. Trace-element accelerator mass spectrometry (TEAMS) is a combination of AMS and SIMS, presently being used at the University of North Texas, for high-sensitivity (ppb) impurity analyses of stable isotopes in semiconductor materials. The molecular break-up characteristics of AMS are used with TEAMS to remove the molecular interferences present in SIMS. Measurements made with different substrate/impurity combinations demonstrate that TEAMS has higher sensitivity for many elements than other techniques such as SIMS and can assist with materials characterization issues. For example, measurements of implanted As in the presence of Ge in Ge xSi 1- x/Si is difficult with SIMS because of molecular interferences from 74GeH, 29Si 30Si 16O, etc. With TEAMS, the molecular interferences are removed and higher sensitivities are obtained. Measured substrates include Si, SiGe, CoSi 2, GaAs and GaN. Measured impurities include B, N, F, Mg, P, Cl, Cr, Fe, Ni, Co, Cu, Zn, Ge, As, Se, Mo, Sn and Sb. A number of measurements will be presented to illustrate the range and power of TEAMS.

  13. Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallimore, David L.

    2012-06-13

    The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples,more » post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.« less

  14. Utilization of nuclear methods for materials analysis and the determination of concentration gradients

    NASA Technical Reports Server (NTRS)

    Darras, R.

    1979-01-01

    The various types of nuclear chemical analysis methods are discussed. The possibilities of analysis through activation and direct observation of nuclear reactions are described. Such methods make it possible to analyze trace elements and impurities with selectivity, accuracy, and a high degree of sensitivity. Such methods are used in measuring major elements present in materials which are available for analysis only in small quantities. These methods are well suited to superficial analyses and to determination of concentration gradients; provided the nature and energy of the incident particles are chosen judiciously. Typical examples of steels, pure iron and refractory metals are illustrated.

  15. Method using gas chromatography to determine the molar flow balance for proton exchange membrane fuel cells exposed to impurities

    NASA Astrophysics Data System (ADS)

    Bender, G.; Angelo, M.; Bethune, K.; Dorn, S.; Thampan, T.; Rocheleau, R.

    An understanding of the potentially serious performance degradation effects that trace level contaminants can cause in proton exchange membrane fuel cells (PEMFCs) is crucial for the successful deployment of PEMFC for commercial applications. An experimental and analytic methodology is described that employs gas chromatography (GC) to accurately determine the concentration of impurity species in the fuel and oxidant streams of a PEMFC. In this paper we further show that the accurate determination of the contaminant concentrations at the anode and cathode inlets and outlets provides a means to quantify reactions of contaminants within the cell and to identify diffusive mass transport across the membrane. High data accuracy down to sub-ppm contaminant levels is required and was achieved by addressing several challenges pertaining to experimental setup and data analysis which are both discussed in detail. The application of the methodology is demonstrated using carbon monoxide and toluene which were injected into the cell at concentrations between 1 and 10 ppm and 20 and 60 ppm, respectively. Both impurities were observed to react in the fuel cell: carbon monoxide to carbon dioxide, and toluene to methylcyclohexane. For both contaminants closure of the molar flow balances to within 3% was achieved even at the low contaminant concentrations. This allowed the extent of both reactions at the applied operating conditions to be quantified. The presented methodology is shown to be a valuable tool for investigating the effects and reactions of trace contaminants in fuel cells and for providing critical insights into the mechanisms responsible for the associated performance degradation.

  16. Application of copper sulfate pentahydrate as an ammonia removal reagent for the determination of trace impurities in ammonia by gas chromatography.

    PubMed

    Aomura, Yoko; Kobayashi, Yoshihiko; Miyazawa, Yuzuru; Shimizu, Hideharu

    2010-03-12

    Rapid analysis of trace permanent gas impurities in high purity ammonia gas for the microelectronics industry is described, using a gas chromatograph equipped with a phtoionization detector. Our system incorporates a reactive precolumn in combination with the analytical column to remove the ammonia matrix peak that otherwise would complicate the measurements due to baseline fluctuations and loss of analytes. The performance of 21 precolumn candidate materials was evaluated. Copper sulfate pentahydrate (CuSO(4).5H(2)O) was shown to selectively react with ammonia at room temperature and atmospheric column pressures, without affecting the hydrogen, oxygen, nitrogen, methane or carbon monoxide peak areas. To prevent loss of trace carbon dioxide, an additional boron trioxide reactant layer was inserted above the copper sulfate pentahydrate bed in the reactive precolumn. Using the combined materials, calibration curves for carbon dioxide proved to be equivalent in both ammonia and helium matrix gases. These curves were equivalent in both matrix gases. The quantitative performance of the system was also evaluated. Peak repeatabilities, based on eight injections, were in the range of 4.1-8.2% relative standard deviation; and detection limits were 6.9 ppb for H(2), 1.8 ppb for O(2), 1.6 ppb for N(2), 6.4 ppb for CH(4), 13 ppb for CO, and 5.4 ppb for CO(2). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  17. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1985-01-01

    High-efficiency dendritic cells were discussed. The influence of twin planes and heat treatment on the location and effect of trace impurities was of particular interest. Proper heat treatment often increases efficiency by causing impurities to pile up at twin planes. Oxide passivation had a beneficial effect on efficiency. A very efficient antireflective (AR) coating of zinc selenide and magnesium fluoride was designed and fabricated. An aluminum back-surface reflector was also effective.

  18. Isolation and characterization of a newly identified impurity in methamphetamine synthesized via reductive amination of 1-phenyl-2-propanone (P2P) made from phenylacetic acid/lead (II) acetate.

    PubMed

    Toske, Steven G; McConnell, Jennifer B; Brown, Jaclyn L; Tuten, Jennifer M; Miller, Erin E; Phillips, Monica Z; Vazquez, Etienne R; Lurie, Ira S; Hays, Patrick A; Guest, Elizabeth M

    2017-03-01

    A trace processing impurity found in certain methamphetamine exhibits was isolated and identified as trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine hydrochloride (1). It was determined that this impurity was produced via reductive amination of trans-4-methyl-5-phenyl-4-penten-2-one (4), which was one of a cluster of related ketones generated during the synthesis of 1-phenyl-2-propanone (P2P) from phenylacetic acid and lead (II) acetate. This two-step sequence resulted in methamphetamine containing elevated levels of 1. In contrast, methamphetamine produced from P2P made by other methods produced insignificant (ultra-trace or undetectable) amounts of 1. These results confirm that 1 is a synthetic marker compound for the phenylacetic acid and lead (II) acetate method. Analytical data for 1 and 4, and a postulated mechanism for the production of 4, are presented. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Trace and surface analysis of ceramic layers of solid oxide fuel cells by mass spectrometry.

    PubMed

    Becker, J S; Breuer, U; Westheide, J; Saprykin, A I; Holzbrecher, H; Nickel, H; Dietze, H J

    1996-06-01

    For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.

  20. Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narlesky, Joshua E.; Stroud, Mary Ann; Smith, Paul Herrick

    2013-02-15

    The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metalmore » and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.« less

  1. Recent developments in the analysis of toxic elements.

    PubMed

    Lisk, D J

    1974-06-14

    One may conclude that it is impractical to confine oneself to any one analytical method since ever more sensitive instrumentation continues to be produced. However, in certain methods such as anodic stripping voltammetry and flameless atomic absorption it may be background contamination from reagent impurities and surroundings rather than instrument sensitivity which controls the limits of element detection. The problem of contamination from dust or glassware is greatly magnified when the sample size becomes ever smaller. Air entering laboratories near highways may contain trace quantities of lead, cadmium, barium, antimony, and other elements from engine exhaust. Even plastic materials contacting the sample may be suspect as a source of contamination since specific metals may be used as catalysts in the synthesis of the plastic and traces may be retained in it. Certain elements may even be deliberately added to plastics during manufacture for identification purposes. Nondestructive methods such as neutron activation and x-ray techniques thus offer great advantages not only in time but in the elimination of impurities introduced during sample ashing. Future improvements in attainable limits of detection may arise largely from progress in the ultrapurification of reagents and "clean-room" techniques. Finally, the competence of the analyst is also vitally important in the skillful operation of modern complex analytical instrumentation and in the experienced evaluation of data.

  2. The Spectral and Chemical Measurement of Pollutants on Snow Near South Pole, Antarctica

    NASA Technical Reports Server (NTRS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-01-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from less than 1 W m(exp. -2) for clean snow to approximately 70 W m(exp. -2) for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  3. The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica

    NASA Astrophysics Data System (ADS)

    Casey, K. A.; Kaspari, S. D.; Skiles, S. M.; Kreutz, K.; Handley, M. J.

    2017-06-01

    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350-2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014-2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from <1 W m-2 for clean snow to 70 W m-2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models.

  4. Comprehensive two-dimensional gas chromatography for the analysis of synthetic and crude-derived jet fuels.

    PubMed

    van der Westhuizen, Rina; Ajam, Mariam; De Coning, Piet; Beens, Jan; de Villiers, André; Sandra, Pat

    2011-07-15

    Fully synthetic jet fuel (FSJF) produced via Fischer-Tropsch (FT) technology was recently approved by the international aviation fuel authorities. To receive approval, comparison of FSJF and crude-derived fuel and blends on their qualitative and quantitative hydrocarbon composition was of utmost importance. This was performed by comprehensive two-dimensional gas chromatography (GC×GC) in the reversed phase mode. The hydrocarbon composition of synthetic and crude-derived jet fuels is very similar and all compounds detected in the synthetic product are also present in crude-derived fuels. Quantitatively, the synthetic fuel consists of a higher degree of aliphatic branching with less than half the aromatic content of the crude-derived fuel. GC×GC analyses also indicated the presence of trace levels of hetero-atomic impurities in the crude-derived product that were absent in the synthetic product. While clay-treatment removed some of the impurities and improved the fuel stability, the crude-derived product still contained traces of cyclic and aromatic S-containing compounds afterwards. Lower level of aromatics and the absence of sulphur are some of the factors that contribute to the better fuel stability and environmental properties of the synthetic fuel. GC×GC was further applied for the analysis of products during Jet Fuel Thermal Oxidation Testing (JFTOT), which measures deposit formation of a fuel under simulated engine conditions. JFTOT showed the synthetic fuel to be much more stable than the crude-derived fuel. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Divertor impurity monitor for the International Thermonuclear Experimental Reactor

    NASA Astrophysics Data System (ADS)

    Sugie, T.; Ogawa, H.; Nishitani, T.; Kasai, S.; Katsunuma, J.; Maruo, M.; Ebisawa, K.; Ando, T.; Kita, Y.

    1999-01-01

    The divertor impurity monitoring system of the International Thermonuclear Experimental Reactor has been designed. The main functions of this system are to identify impurity species and to measure the two-dimensional distributions of the particle influxes in the divertor plasmas. The wavelength range is 200-1000 nm. The viewing fans are realized by molybdenum mirrors located in the divertor cassette. With additional viewing fans seeing through the gap between the divertor cassettes, the region approximately from the divertor leg to the x point will be observed. The light from the divertor region passes through the quartz windows on the divertor port plug and the cryostat, and goes through the dog-leg optics in the biological shield. Three different type of spectrometers: (i) survey spectrometers for impurity species monitoring, (ii) filter spectrometers for the particle influx measurement with the spatial resolution of 10 mm and the time resolution of 1 ms, and (iii) high dispersion spectrometers for high resolution wavelength measurements are designed. These spectrometers are installed just behind the biological shield (for λ<450 nm) to prevent the transmission loss in fiber and in the diagnostic room (for λ⩾450 nm) from the point of view of accessibility and flexibility. The optics have been optimized by a ray trace analysis. As a result, 10-15 mm spatial resolution will be achieved in all regions of the divertor.

  6. Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal.

    PubMed

    Matsumiya, Hiroaki; Kato, Tatsuya; Hiraide, Masataka

    2014-02-01

    The analysis of high-purity materials for trace impurities is an important and challenging task. The present paper describes a facile and sensitive method for the determination of trace heavy metals in high-purity iron metal. Trace heavy metals in an iron sample solution were rapidly and selectively preconcentrated by the extraction into a tiny volume of an ionic liquid [1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] for the determination by graphite-furnace atomic absorption spectrometry (GFAAS). A nitrogen-donating neutral ligand, 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), was found to be effective in the ionic liquid-based selective extraction, allowing the nearly complete (~99.8%) elimination of the iron matrix. The combination with the optimized GFAAS was successful. The detectability reached sub-μg g(-1) levels in iron metal. The novel use of TPTZ in ionic liquid-based extraction followed by GFAAS was successfully applied to the determination of traces of Co, Ni, Cu, Cd, and Pb in certified reference materials for high-purity iron metal. © 2013 Published by Elsevier B.V.

  7. Investigating the Microscopic Location of Trace Elements in High-Alpine Glacier Ice

    NASA Astrophysics Data System (ADS)

    Avak, Sven Erik; Birrer, Mario; Laurent, Oscar; Guillong, Marcel; Wälle, Markus; Jenk, Theo Manuel; Bartels-Rausch, Thorsten; Schwikowski, Margit; Eichler, Anja

    2017-04-01

    Past changes in atmospheric pollution can be reconstructed from high-alpine ice core trace element records (Schwikowski et al., 2004). Percolation of meltwater alters the information originally stored in these environmental archives. Eichler et al. (2001) suggested that the preservation of major ions with respect to meltwater percolation depends on their location in the crystal ice lattice, i.e. grain boundaries versus grain interiors. Other studies have also focused on the effect of meltwater on organic pollutant concentrations as well as on stable isotope profiles in ice cores, whereas no information exists about trace elements. Here, we investigate for the first time the effect of the microscopic location of anthropogenic, dust and volcanic related trace elements on the behavior during meltwater percolation by using two different approaches. On the one hand we assess the microscopic location of trace elements indirectly by analyzing trace element concentrations in a high-alpine ice core, which has been shown to be affected by an inflow of meltwater, using discrete inductively coupled plasma mass spectrometry (ICP-MS). Impurities located at grain boundaries are prone to be removed by meltwater and tend to be depleted in the affected section of the record whereas those incorporated into the ice interior are preserved and not disturbed in the record. In the second approach we work towards a direct quantification of differences in concentrations of trace elements between ice grain boundaries and grain interiors in samples both from unaffected and affected sections of this ice core. Therefore we use cryocell laser ablation (LA) ICP-MS, which is the method of choice for the direct in situ chemical analysis of trace elements at a sub-millimeter resolution in glacier ice (Reinhardt et al., 2001, Della Lunga et al., 2014, Sneed et al., 2015). We will present first results of both approaches with regard to the evaluation of the potential of trace elements as environmental proxies in glaciers partially affected by melting. References Della Lunga, D., Müller, W., Rasmussen, S. O. & Svensson, A. 2014: Location of cation impurities in NGRIP deep ice revealed by cryo-cell UV-laser-ablation ICPMS, Journal of Glaciology, 60, 970-988. Eichler, A., Schwikowski, M., Gäggeler, H. W. 2001: Meltwater-induced relocation of chemical species in Alpine firn, Tellus B, 53, 192-203. Reinhardt, H., Kriews, M., Miller, H., Schrems, O., Lüdke, C., Hoffmann, E. & Skole, J. 2001: Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores, Fresenius' Journal of Analytical Chemistry, 370, 629-636. Schwikowski, M., Barbante, C., Doering, T., Gäggeler, H. W., Boutron, C., Schotterer, U., Tobler, L., van de Velde, K., Ferrari, C., Cozzi, G., Rosman, K., Cescon, P. 2004: Post-17th-Century Changes of European Lead Emissions Recorded in High-Altitude Alpine Snow and Ice, Environmental Science & Technology, 38, 957-964. Sneed, S. B., Mayewski, P. A., Sayre, W. G., Handley, M. J., Kurbatov, A. V., Taylor, K. C., Bohleber, P., Wagenbach, D., Erhardt, T. & Spaulding, N. E. 2015: New LA-ICP-MS cryocell and calibration technique for sub-millimeter analysis of ice cores, Journal of Glaciology, 61, 233-242.

  8. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  9. Physical properties of the WAIS Divide ice core

    USGS Publications Warehouse

    Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.

    2014-01-01

    The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.

  10. Barium Transport Process in Impregnated Dispenser Cathodes.

    DTIC Science & Technology

    1982-01-25

    experiments were carried out on pure tungsten. The tung- sten was either in the form of thin foils (6 mm on a side) or single crystal disks (6 mm in...temperature reveal the presence of car- bon, silicon , calcium, and nitrogen impurities, with only trace amounts (ɚ%) of calcium and nitrogen. Carbon is not...expected to be present at diffusion temperatures but forms as an overlayer only upon cooling [6]. We hope to re- duce silicon impurity levels by use of

  11. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    NASA Astrophysics Data System (ADS)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  12. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    PubMed

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  13. Fluorescence metrology used for analytics of high-quality optical materials

    NASA Astrophysics Data System (ADS)

    Engel, Axel; Haspel, Rainer; Rupertus, Volker

    2004-09-01

    Optical, glass ceramics and crystals are used for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. In order to qualify and control the material quality during the research and production processes several specialized ultra trace analytisis methods have to be appliedcs Schott Glas is applied. One focus of our the activities is the determination of impurities ranging in the sub ppb-regime, because such kind of impurity level is required e.g. for pure materials used for microlithography for example. Common analytical techniques for these impurity levels areSuch impurities are determined using analytical methods like LA ICP-MS and or Neutron Activation Analysis for example. On the other hand direct and non-destructive optical analysistic becomes is attractive because it visualizes the requirement of the optical applications additionally. Typical eExamples are absorption and laser resistivity measurements of optical material with optical methods like precision spectral photometers and or in-situ transmission measurements by means ofusing lamps and or UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). For a non-destructive qualification for the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometery is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity than state of the art UV absorption spectroscopy), fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analystics). An overview is given for spectral characteristics using specified standards, which are necessary to establish the analytical system. The elementary fluorescence and absorption of rare earth element impurities as well as crystal defects induced luminescence originated by impurities was investigated. Quantitative numbers are given for the relative quantum yield as well as for the excitation cross section for doped glass and calcium fluoride.

  14. Electrical and magnetic properties of nano-sized magnesium ferrite

    NASA Astrophysics Data System (ADS)

    T, Smitha; X, Sheena; J, Binu P.; Mohammed, E. M.

    2015-02-01

    Nano-sized magnesium ferrite was synthesized using sol-gel techniques. Structural characterization was done using X-ray diffractometer and Fourier Transform Infrared Spectrometer. Vibration Sample Magnetometer was used to record the magnetic measurements. XRD analysis reveals the prepared sample is single phasic without any impurity. Particle size calculation shows the average crystallite size of the sample is 19nm. FTIR analysis confirmed spinel structure of the prepared samples. Magnetic measurement study shows that the sample is ferromagnetic with high degree of isotropy. Hysterisis loop was traced at temperatures 100K and 300K. DC electrical resistivity measurements show semiconducting nature of the sample.

  15. Heavy metal contamination from gold mining recorded in Porites lobata skeletons, Buyat-Ratototok district, North Sulawesi, Indonesia.

    PubMed

    Edinger, Evan N; Azmy, Karem; Diegor, Wilfredo; Siregar, P Raja

    2008-09-01

    Shallow marine sediments and fringing coral reefs of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of tailings from industrial gold mining and by small-scale gold mining using mercury amalgamation. Between-site variation in heavy metal concentrations in shallow marine sediments was partially reflected by trace element concentrations in reef coral skeletons from adjacent reefs. Corals skeletons recorded silicon, manganese, iron, copper, chromium, cobalt, antimony, thallium, and lead in different concentrations according to proximity to sources, but arsenic concentrations in corals were not significantly different among sites. Temporal analysis found that peak concentrations of arsenic and chromium generally coincided with peak concentrations of silica and/or copper, suggesting that most trace elements in the coral skeleton were incorporated into detrital siliciclastic sediments, rather than impurities within skeletal aragonite.

  16. Using chromatogram averaging to improve quantitation of minor impurities.

    PubMed

    Zawatzky, Kerstin; Lin, Mingxiang; Schafer, Wes; Mao, Bing; Trapp, Oliver; Welch, Christopher J

    2016-09-23

    Averaging of chromatograms can lead to enhancement of signal to noise ratio (S/N) in proportion to the square root of the number of measurements. Although the general principle has been known for decades, chromatogram averaging is almost never used in current pharmaceutical research. In this study we explore the utility of this approach, showing it to be a simple and easily accessible method for boosting sensitivity for quantification of minor components and trace impurities, where current techniques deliver insufficient S/N. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. PROCESS FOR TREATING VOLATILE METAL FLUORIDES

    DOEpatents

    Rudge, A.J.; Lowe, A.J.

    1957-10-01

    This patent relates to the purification of uranium hexafluoride, made by reacting the metal or its tetrafluoride with fluorine, from the frequently contained traces of hydrofluoric acid. According to the present process, UF/sub 6/ containing as an impurity a small amount of hydrofluoric acid, is treated to remove such impurity by contact with an anhydrous alkali metal fluoride such as sodium fluoride. In this way a non-volatile complex containing hydrofluoric acid and the alkali metal fluoride is formed, and the volatile UF /sub 6/ may then be removed by distillation.

  18. Matrix precipitation: a general strategy to eliminate matrix interference for pharmaceutical toxic impurities analysis.

    PubMed

    Yang, Xiaojing; Xiong, Xuewu; Cao, Ji; Luan, Baolei; Liu, Yongjun; Liu, Guozhu; Zhang, Lei

    2015-01-30

    Matrix interference, which can lead to false positive/negative results, contamination of injector or separation column, incompatibility between sample solution and the selected analytical instrument, and response inhibition or even quenching, is commonly suffered for the analysis of trace level toxic impurities in drug substance. In this study, a simple matrix precipitation strategy is proposed to eliminate or minimize the above stated matrix interference problems. Generally, a sample of active pharmaceutical ingredients (APIs) is dissolved in an appropriate solvent to achieve the desired high concentration and then an anti-solvent is added to precipitate the matrix substance. As a result, the target analyte is extracted into the mixed solution with very less residual of APIs. This strategy has the characteristics of simple manipulation, high recovery and excellent anti-interference capability. It was found that the precipitation ratio (R, representing the ability to remove matrix substance) and the proportion of solvent (the one used to dissolve APIs) in final solution (P, affecting R and also affecting the method sensitivity) are two important factors of the precipitation process. The correlation between R and P was investigated by performing precipitation with various APIs in different solvent/anti-solvent systems. After a detailed mathematical reasoning process, P=20% was proved to be an effective and robust condition to perform the precipitation strategy. The precipitation method with P=20% can be used as a general strategy for toxic impurity analysis in APIs. Finally, several typical examples are described in this article, where the challenging matrix interference issues have been resolved successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Further developments in oxidation of methane traces with radiofrequency discharge

    NASA Technical Reports Server (NTRS)

    Flamm, D. L.; Wydeven, T. J.

    1977-01-01

    The radiofrequency discharge, previously shown to oxidize trace levels of methane in oxygen, was studied with contaminated air at 50, 600, and 760 torr. As with oxygen, the concentration of methane traces could be reduced by several orders of magnitude, and no organic reaction products were detected in the effluent; however, substantial concentrations of NOx (0.1-6%) were formed during treatment. The concentration of NOx was decreased by using a large diameter electrode. There is evidence that the process will oxidize N2 and NO as well as organic impurities in oxygen or oxygen/inert gas atmospheres.

  20. Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi

    1999-01-01

    Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH<5. It became weaker with increasing supersaturation. It also became weaker as the pH was increased and at pH>5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.

  1. Solvent hold tank sample results for MCU-15-914-915-916. December 2015 Monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    2016-03-01

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-914-915-916), pulled on 12/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-914-915-916 indicated the TiDG, Isopar™L, and MaxCalix are at nominal levels. The modifier concentration is 3% below its nominal concentration. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in November 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additionsmore » to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, the Fourier transform infra-red spectroscopy (FTIR) method detected trace levels (a few ppm) of amides (more indicative of bacteria than a possible degradation product of TiDG). In addition, up to 18 ± 4 micrograms of mercury per gram of solvent (or 14.8 μg/mL) was detected in this sample. The current gamma concentration level (8.48E4 dpm/mL) confirmed that the gamma concentration has returned to the previous level where the process operated normally as expected. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  2. Solvent hold tank sample results for MCU-16-53-55. January 2016 Monthly sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-16-53-54-55), pulled on 01/25/2016 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-16-53-54-55 indicated the Isopar™L, and MaxCalix are at nominal levels. The modifier and TiDG concentrations are 3% and 23 % below their nominal concentrations. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent on November 28, 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time.more » Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, the Fourier transform infra-red spectroscopy (FTIR) method detected trace levels (a few ppm) of amides (a possible degradation product of TiDG). In addition, up to 21 ± 4 micrograms of mercury per gram of solvent (or 17.5 μg/mL) was detected in this sample. There appears to be a possible correlation between the mercury level and the TiDG concentration in the solvent. The current gamma level (9.16 E4 dpm/mL) confirmed that the gamma concentration has returned to previous level where the process operated normally and as expected. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  3. Capillary zone electrophoresis-tandem mass spectrometry detects low concentration host cell impurities in monoclonal antibodies

    PubMed Central

    Zhu, Guijie; Sun, Liangliang; Heidbrink-Thompson, Jennifer; Kuntumalla, Srilatha; Lin, Hung-yu; Larkin, Christopher J.; McGivney, James B.; Dovichi, Norman J.

    2016-01-01

    We have evaluated capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) for detection of trace amounts of host cell protein impurities in recombinant therapeutics. Compared to previously published procedures, we have optimized the buffer pH used in the formation of a pH junction to increase injection volume. We also prepared a five-point calibration curve by spiking twelve standard proteins into a solution of a human monoclonal antibody. A custom CZE-MS/MS system was used to analyze the tryptic digest of this mixture without depletion of the antibody. CZE generated a ~70 min separation window (~90 min total analysis duration) and ~300 peak capacity. We also analyzed the sample using ultra-performance liquid chromatography (UPLC)-MS/MS. CZE-MS/MS generated ~five times higher base peak intensity and more peptide identifications for low-level spiked proteins. Both methods detected all proteins spiked at the ~100 ppm level with respect to the antibody. PMID:26530276

  4. Comparison of Impurities in Charcoal Sorbents Found by Neutron Activation Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doll, Charles G.; Finn, Erin C.; Cantaloub, Michael G.

    2013-01-01

    Abstract: Neutron activation of gas samples in a reactor often requires a medium to retain sufficient amounts of the gas for analysis. Charcoal is commonly used to adsorb gas and hold it for activation; however, the amount of activated sodium in the charcoal after irradiation swamps most signals of interest. Neutron activation analysis (NAA) was performed on several commonly available charcoal samples in an effort to determine the activation background. The results for several elements, including the dominant sodium element, are reported. It was found that ECN charcoal had the lowest elemental background, containing sodium at 2.65 ± 0.05 ppm,more » as well as trace levels of copper and tungsten.« less

  5. Dynamics of fractional condensation of a substance on a probe for spectral analysis

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu. A.; Kokorina, O. B.; Lysogorskiĭ, Yu. V.; Sevastianov, A. A.

    2008-11-01

    The fractional separation of trace metals on a cold tungsten probe from salt matrix vapor, which interferes with the spectral analysis, is studied. The spatial structure of the vapor flows of sodium chloride, potassium sulfate, and indium atoms is visualized at characteristic wavelengths as they interact with the probe. The vapor flow rate and the probe orientation were varied. It is found that the smoke of the matrix does not prevent the deposition of the metal on the probe because of spatial separation of these fractions and that the detrimental effect of thermal gas expansion and other factors is eliminated. The sensitivity of the atomic absorption analysis of indium impurities in these salts is increased by an order of magnitude.

  6. Influence of rock salt impurities on limestone aggregate durability : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    Non-durable coarse aggregate in concrete pavement can break down under repeated freeze-thaw cycles. : Application of rock salt may increase the severity of exposure conditions because of trace compounds, such as calcium : sulfate, in rock salt. Concr...

  7. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Seidensticker, R. G.; Rai-Choudhury, P.

    1984-01-01

    The development of high efficiency solar cells on a silicon web is discussed. Heat treatment effects on web quality; the influence of twin plane lamellae, trace impurities and stress on minority carrier lifetime; and the fabrication of cells are discussed.

  8. Influence of rock salt impurities on limestone aggregate durability : technical summary.

    DOT National Transportation Integrated Search

    2016-08-01

    Non-durable coarse aggregate in concrete pavement can break down under : repeated freeze-thaw cycles. Application of rock salt may increase the severity of : exposure conditions because of trace compounds, such as calcium sulfate, in rock : salt. Con...

  9. Quality monitoring methods of initial and terminal manufacture of LiFePO4 based lithium ion batteries by capillary electrophoresis.

    PubMed

    Xie, Xia; Yang, Yang; Zhou, Henghui; Li, Meixian; Zhu, Zhiwei

    2018-03-01

    Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO 4 , two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO 4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO 4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO 4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1μM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO 4 manufacture. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Heavy impurity confinement in hybrid operation scenario plasmas with a rotating 1/1 continuous mode

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Nicolas, T.; Cooper, W. A.; Garbet, X.; Pfefferlé, D.

    2017-12-01

    In future tokamaks like ITER with tungsten walls, it is imperative to control tungsten accumulation in the core of operational plasmas, especially since tungsten accumulation can lead to radiative collapse and disruption. We investigate the behavior of tungsten trace impurities in a JET-like hybrid scenario with both axisymmetric and saturated 1/1 ideal helical core in the presence of strong plasma rotation. For this purpose, we obtain the equilibria from VMEC and use VENUS-LEVIS, a guiding-center orbit-following code, to follow heavy impurity particles. In this work, VENUS-LEVIS has been modified to account for strong plasma flows with associated neoclassical effects arising from such flows. We find that the combination of helical core and plasma rotation augments the standard neoclassical inward pinch compared to axisymmetry, and leads to a strong inward pinch of impurities towards the magnetic axis despite the strong outward diffusion provided by the centrifugal force, as frequently observed in experiments.

  11. Transport of light, trace impurities in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Rowan, W. L.; Bespamyatnov, I. O.; Liao, K. T.; Horton, W.; Fu, X. R.; Hughes, J. W.

    2012-10-01

    Light impurity profiles for boron were measured in ITB, H-mode, L-mode, and I-mode discharges in Alcator C-Mod. Within this wide range of modes, the profiles varied from peaked to hollow to flat. Specifically, hollow profiles are often observed in H-mode, while ITBs produce strong peaking, and L-mode produces moderate peaking. I-mode discharges are characterized by flat impurity profiles. For the study reported here, the profiles were measured with charge exchange recombination spectroscopy. The dependences of Rv/D were sought on dimensionless quantities including ion density scale length, effective charge, collisionality, and temperature scale length. We find that neoclassical transport consistently underestimates the measured transport. The excess measured transport is assumed to be turbulent. The strongest dependence of Rv/D is with temperature scale length. In addition, the measured transport was compared with the prediction of an analytical theory of drift wave turbulence that identifies transport implications for drift waves driven by ion and impurity density gradients.

  12. Grain size effect on activation energy in spinel CoFe{sub 2}O{sub 4} ceramic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriya, Sweety, E-mail: sweety@iitp.ac.in; Kumar, Sunil; Kar, Manoranjan

    2016-05-23

    Cobalt ferrite of different average crystallites (from nanocrystallite to micro crystallites) has been prepared by the Sol-Gel Method. The X-ray diffraction (XRD) analysis confirms the cubic spinel phase with no trace of impurity phases. The effect of annealing temperature on micro structure and electric transport properties as a function of frequency and temperature has been studied. It is observed that the electric impedance and conductivity are strongly dependent on grain size. The impedance spectroscopic study is employed to understand the electrical transport properties of cobalt ferrite.

  13. Method for quantitative determination and separation of trace amounts of chemical elements in the presence of large quantities of other elements having the same atomic mass

    DOEpatents

    Miller, C.M.; Nogar, N.S.

    1982-09-02

    Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.

  14. A Robust Static Headspace GC-FID Method to Detect and Quantify Formaldehyde Impurity in Pharmaceutical Excipients

    PubMed Central

    Al-Khayat, Mohammad Ammar; Karabet, Francois; Al-Mardini, Mohammad Amer

    2018-01-01

    Formaldehyde is a highly reactive impurity that can be found in many pharmaceutical excipients. Trace levels of this impurity may affect drug product stability, safety, efficacy, and performance. A static headspace gas chromatographic method was developed and validated to determine formaldehyde in pharmaceutical excipients after an effective derivatization procedure using acidified ethanol. Diethoxymethane, the derivative of formaldehyde, was then directly analyzed by GC-FID. Despite the simplicity of the developed method, however, it is characterized by its specificity, accuracy, and precision. The limits of detection and quantification of formaldehyde in the samples were of 2.44 and 8.12 µg/g, respectively. This method is characterized by using simple and economic GC-FID technique instead of MS detection, and it is successfully used to analyze formaldehyde in commonly used pharmaceutical excipients. PMID:29686930

  15. Classical impurities and boundary Majorana zero modes in quantum chains

    NASA Astrophysics Data System (ADS)

    Müller, Markus; Nersesyan, Alexander A.

    2016-09-01

    We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.

  16. Determination of trace level genotoxic impurities in small molecule drug substances using conventional headspace gas chromatography with contemporary ionic liquid diluents and electron capture detection.

    PubMed

    Ho, Tien D; Yehl, Peter M; Chetwyn, Nik P; Wang, Jin; Anderson, Jared L; Zhong, Qiqing

    2014-09-26

    Ionic liquids (ILs) were used as a new class of diluents for the analysis of two classes of genotoxic impurities (GTIs), namely, alkyl/aryl halides and nitro-aromatics, in small molecule drug substances by headspace gas chromatography (HS-GC) coupled with electron capture detection (ECD). This novel approach using ILs as contemporary diluents greatly broadens the applicability of HS-GC for the determination of high boiling (≥ 130°C) analytes including GTIs with limits of detection (LOD) ranging from 5 to 500 parts-per-billion (ppb) of analytes in a drug substance. This represents up to tens of thousands-fold improvement compared to traditional HS-GC diluents such as dimethyl sulfoxide (DMSO) and dimethylacetamide (DMAC). Various ILs were screened to determine their suitability as diluents for the HS-GC/ECD analysis. Increasing the HS oven temperatures resulted in varying responses for alkyl/aryl halides and a significant increase in response for all nitroaromatic GTIs. Linear ranges of up to five orders of magnitude were found for a number of analytes. The technique was validated on two active pharmaceutical ingredients with excellent recovery. This simple and robust methodology offers a key advantage in the ease of method transfer from development laboratories to quality control environments since conventional validated chromatographic data systems and GC instruments can be used. For many analytes, it is a cost effective alternative to more complex trace analytical methodologies like LC/MS and GC/MS, and significantly reduces the training needed for operation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features.

    PubMed

    Liljeblad, Arto; Kallio, Pauli; Vainio, Marita; Niemi, Jarmo; Kanerva, Liisa T

    2010-02-21

    Various commercial lyophilized and immobilized preparations of lipase A from Candida antarctica (CAL-A) were studied for their ability to catalyze the hydrolysis of amide bonds in N-acylated alpha-amino acids, 3-butanamidobutanoic acid (beta-amino acid) and its ethyl ester. The activity toward amide bonds is highly untypical of lipases, despite the close mechanistic analogy to amidases which normally catalyze the corresponding reactions. Most CAL-A preparations cleaved amide bonds of various substrates with high enantioselectivity, although high variations in substrate selectivity and catalytic rates were detected. The possible role of contaminant protein species on the hydrolytic activity toward these bonds was studied by fractionation and analysis of the commercial lyophilized preparation of CAL-A (Cat#ICR-112, Codexis). In addition to minor impurities, two equally abundant proteins were detected, migrating on SDS-PAGE a few kDa apart around the calculated size of CAL-A. Based on peptide fragment analysis and sequence comparison both bands shared substantial sequence coverage with CAL-A. However, peptides at the C-terminal end constituting a motile domain described as an active-site flap were not identified in the smaller fragment. Separated gel filtration fractions of the two forms of CAL-A both catalyzed the amide bond hydrolysis of ethyl 3-butanamidobutanoate as well as the N-acylation of methyl pipecolinate. Hydrolytic activity towards N-acetylmethionine was, however, solely confined to the fractions containing the truncated form of CAL-A. These fractions were also found to contain a trace enzyme impurity identified in sequence analysis as a serine carboxypeptidase. The possible role of catalytic impurities versus the function of CAL-A in amide bond hydrolysis is further discussed in the paper.

  18. Studies of LA-ICP-MS on quartz glasses at different wavelengths of a Nd:YAG laser.

    PubMed

    Becker, J S; Tenzler, D

    2001-07-01

    The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.

  19. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.

    PubMed

    Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver

    2017-04-04

    The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.

  20. Safety evaluation of traces of nickel and chrome in cosmetics: The case of Dead Sea mud.

    PubMed

    Ma'or, Ze'evi; Halicz, Ludwik; Portugal-Cohen, Meital; Russo, Matteo Zanotti; Robino, Federica; Vanhaecke, Tamara; Rogiers, Vera

    2015-12-01

    Metal impurities such as nickel and chrome are present in natural ingredients-containing cosmetic products. These traces are unavoidable due to the ubiquitous nature of these elements. Dead Sea mud is a popular natural ingredient of cosmetic products in which nickel and chrome residues are likely to occur. To analyze the potential systemic and local toxicity of Dead Sea mud taking into consideration Dead Sea muds' natural content of nickel and chrome. The following endpoints were evaluated: (Regulation No. 1223/20, 21/12/2009) systemic and (SCCS's Notes of Guidance) local toxicity of topical application of Dead Sea mud; health reports during the last five years of commercial marketing of Dead Sea mud. Following exposure to Dead Sea mud, MoS (margin of safety) calculations for nickel and chrome indicate no toxicological concern for systemic toxicity. Skin sensitization is also not to be expected by exposure of normal healthy skin to Dead Sea mud. Topical application, however, is not recommended for already nickel-or chrome-sensitized persons. As risk assessment of impurities present in cosmetics may be a difficult exercise, the case of Dead Sea mud is taken here as an example of a natural material that may contain traces of unavoidable metals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Immunoaffinity column as clean-up tool for determination of trace amounts of microcystins in tap water.

    PubMed

    Tsutsumi, T; Nagata, S; Hasegawa, A; Ueno, Y

    2000-07-01

    Trace amounts of microcystins (MCs) in drinking water should be monitored because of their potential hazard for human health as an environmental tumor promoter. We describe here a new clean-up tool with immunoaffinity column (IAC) for determination of trace amounts of MCs (from pg to microg/litre) in tap water. The water samples were concentrated with IAC clean-up and MCs levels were determined by HPLC with UV detection or enzyme-linked immunosorbent assay (ELISA). In the combination with HPLC analysis, mean recovery of microcystin-LR (MCLR),-RR and-YR spiked to tap water were 91.8%, 77.3% and 86.4%, respectively, in the range 2.5-100 microg/litre. The chromatogram of MCs-spiked tap water sample cleaned up with IAC showed effective elimination of the impurities compared to that with octadecyl silanized cartridge, which had been cleaned up with a conventional method. Also, in the combination with highly sensitive ELISA, mean recovery of MCLR spiked to tap water was 80% in the range 0.1-1000 ng/litre. The combined methods developed here can detect pg to microg/litre of MCs in tap water. The overall results indicated that IAC will be suitable as a clean-up tool for trace amounts of MCs in tap water.

  2. Diffusion and phase change characterization by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Koslin, M. E.; White, F. A.

    1979-01-01

    The high temperature diffusion of trace elements in metals and alloys was investigated. Measurements were made by high sensitivity mass spectrometry in which individual atoms were detected, and quantitative data was obtained for zircaloy-2, 304 stainless steel, and tantalum. Additionally, a mass spectrometer was also an analytical tool for determining an allotropic phase change for stainless steel at 955 C, and a phase transition region between 772 C and 1072 C existing for zircaloy-2. Diffusion rates were measured in thin (0.001" (0.0025 cm) and 0.0005" (0.0013 cm)) ribbons which were designed as high temperature thermal ion sources, with the alkali metals as naturally occurring impurities. In the temperature and pressure regime where diffusion measurements were made, the solute atoms evaporated from the ribbon filaments when the impurities diffused to the surface, with a fraction of these impurity atoms ionized according to the Langmuir-Saha relation. The techniques developed can be applied to many other alloys important to space vehicles and supersonic transports; and, with appropriate modifications, to the diffusion of impurities in composites.

  3. Calculations of neoclassical impurity transport in stellarators

    NASA Astrophysics Data System (ADS)

    Mollén, Albert; Smith, Håkan M.; Langenberg, Andreas; Turkin, Yuriy; Beidler, Craig D.; Helander, Per; Landreman, Matt; Newton, Sarah L.; García-Regaña, José M.; Nunami, Masanori

    2017-10-01

    The new stellarator Wendelstein 7-X has finished the first operational campaign and is restarting operation in the summer 2017. To demonstrate that the stellarator concept is a viable candidate for a fusion reactor and to allow for long pulse lengths of 30 min, i.e. ``quasi-stationary'' operation, it will be important to avoid central impurity accumulation typically governed by the radial neoclassical transport. The SFINCS code has been developed to calculate neoclassical quantities such as the radial collisional transport and the ambipolar radial electric field in 3D magnetic configurations. SFINCS is a cutting-edge numerical tool which combines several important features: the ability to model an arbitrary number of kinetic plasma species, the full linearized Fokker-Planck collision operator for all species, and the ability to calculate and account for the variation of the electrostatic potential on flux surfaces. In the present work we use SFINCS to study neoclassical impurity transport in stellarators. We explore how flux-surface potential variations affect the radial particle transport, and how the radial electric field is modified by non-trace impurities and flux-surface potential variations.

  4. Quantitative Analysis of Defects in Silicon. [to predict energy conversion efficiency of silicon samples for solar cells

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Smith, J. M.; Qidwai, H. A.; Bruce, T.

    1979-01-01

    The evaluation and prediction of the conversion efficiency for a variety of silicon samples with differences in structural defects, such as grain boundaries, twin boundaries, precipitate particles, dislocations, etc. are discussed. Quantitative characterization of these structural defects, which were revealed by etching the surface of silicon samples, is performed by using an image analyzer. Due to different crystal growth and fabrication techniques the various types of silicon contain a variety of trace impurity elements and structural defects. The two most important criteria in evaluating the various silicon types for solar cell applications are cost and conversion efficiency.

  5. Spectral signatures for RDX-based explosives in the 3 micron region

    NASA Astrophysics Data System (ADS)

    Osborn, Tabetha; Kaimal, Sindhu; Reeve, Scott W.; Burns, William

    2008-04-01

    Explosive compounds such as RDX, and HMX present significant challenges to optically based sensors. This difficulty is due in part to the low vapor pressures these compounds possess. One approach for sensing explosives that circumvents the low explosive vapor pressure problem, involves focusing on the trace amounts of relatively high vapor pressure impurities that will be present in the vapor signature. In order to effectively detect these volatile impurities, the spectral signature databases must be readily available. One of our goals therefore, is the generation of a database of high resolution spectral signatures for these volatile organic impurities. Some rather formidable spectroscopic measurement challenges have been encountered while working to extend the spectral signature effort to the 3 micron region. Here we will outline progress to date, with a focus on the volatile organic compounds formaldehyde, acetaldehyde, nitromethane, acetone, isobutene, and cyclohexanone.

  6. Inorganic trace analysis by mass spectrometry

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine; Dietze, Hans-Joachim

    1998-10-01

    Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g -1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.

  7. A New Platform for Profiling Degradation-Related Impurities Via Exploiting the Opportunities Offered by Ion-Selective Electrodes: Determination of Both Diatrizoate Sodium and Its Cytotoxic Degradation Product.

    PubMed

    Riad, Safaa M; Abd El-Rahman, Mohamed K; Fawaz, Esraa M; Shehata, Mostafa A

    2018-05-01

    Although the ultimate goal of administering active pharmaceutical ingredients (APIs) is to save countless lives, the presence of impurities and/or degradation products in APIs or formulations may cause harmful physiological effects. Today, impurity profiling (i.e., the identity as well as the quantity of impurity in a pharmaceutical) is receiving critical attention from regulatory authorities. Despite the predominant use of spectroscopic and chromatographic methods over electrochemical methods for impurity profiling of APIs, this work investigates the opportunities offered by electroanalytical methods, particularly, ion-selective electrodes (ISEs), for profiling degradation-related impurities (DRIs) compared with conventional spectroscopic and chromatographic methods. For a meaningful comparison, diatrizoate sodium (DTA) was chosen as the anionic X-ray contrast agent based on its susceptibility to deacetylation into its cytotoxic and mutagenic degradation product, 3,5-diamino-2,4,6 triiodobenzoic acid (DTB). This cationic diamino compound can be also detected as an impurity in the final product because it is used as a synthetic precursor for the synthesis of DTA. In this study, four novel sensitive and selective sensors for the determination of both DTA and its cytotoxic degradation products are presented. Sensors I and II were developed for the determination of the anionic drug, DTA, and sensors III and IV were developed for the determination of the cationic cytotoxic impurity. The use of these novel sensors not only provides a stability-indicating method for the selective determination of DTA in the presence of its degradation product, but also permits DRI profiling. Moreover, a great advantage of these proposed ISE systems is their higher sensitivity for the quantification of DTB relative to other spectroscopic and chromatographic methods, so it can measure trace amounts of DTB impurities in DTA bulk powder and pharmaceutical formulation without a need for preliminary separation.

  8. Illite polytype quantification using Wildfire© calculated x-ray diffraction patterns

    USGS Publications Warehouse

    Grathoff, Georg H.; Moore, D.M.

    1996-01-01

    Illite polytype quantification allows the differentiation of diagenetic and detrital illite components. In Paleozoic shales from the Illinois Basin, we observe 3 polytypes: 1Md, 1M and 2M1. 1Md and 1M are of diagenetic origin and 2M1 is of detrital origin. In this paper, we compare experimental X-ray diffraction (XRD) traces with traces calculated using WILDFIRE© and quantify mixtures of all 3 polytypes, adjusting the effects of preferred orientation and overlapping peaks. The broad intensity (“illite hump”) around the illite 003, which is very common in illite from shales, is caused by the presence of 1Md illite and mixing of illite polytypes and is not an artifact of sample preparation or other impurities in the sample. Illite polytype quantification provides a tool to extrapolate the K/Ar age and chemistry of the detrital and diagenetic end-members by analysis of different size fractions containing different proportions of diagenetic and detrital illite polytypes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smentkowski, Vincent S., E-mail: smentkow@ge.com

    Changes in the oxidation state of an element can result in significant changes in the ionization efficiency and hence signal intensity during secondary ion mass spectrometry (SIMS) analysis; this is referred to as the SIMS matrix effect [Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. The SIMS matrix effect complicates quantitative analysis. Quantification of SIMS data requires the determination of relative sensitivity factors (RSFs), which can be used to convert the as measured intensity into concentration units [Secondarymore » Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis, edited by R. G. Wilson, F. A. Stevie, and C. W. Magee (Wiley, New York, 1990)]. In this manuscript, the authors report both: RSFs which were determined for quantification of B in Si and SiO{sub 2} matrices using a dual beam time of flight secondary ion mass spectrometry (ToF-SIMS) instrument and the protocol they are using to provide quantitative ToF-SIMS images and line scan traces. The authors also compare RSF values that were determined using oxygen and Ar ion beams for erosion, discuss the problems that can be encountered when bulk calibration samples are used to determine RSFs, and remind the reader that errors in molecular details of the matrix (density, volume, etc.) that are used to convert from atoms/cm{sup 3} to other concentration units will propagate into errors in the determined concentrations.« less

  10. Estimating the entropy and quantifying the impurity of a swarm of surface-hopping trajectories: A new perspective on decoherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Wenjun; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu

    2014-05-28

    In this article, we consider the intrinsic entropy of Tully's fewest switches surface hopping (FSSH) algorithm (as estimated by the impurity of the density matrix) [J. Chem. Phys. 93, 1061 (1990)]. We show that, even for a closed system, the total impurity of a FSSH calculation increases in time (rather than stays constant). This apparent failure of the FSSH algorithm can be traced back to an incorrect, approximate treatment of the electronic coherence between wavepackets moving along different potential energy surfaces. This incorrect treatment of electronic coherence also prevents the FSSH algorithm from correctly describing wavepacket recoherences (which is amore » well established limitation of the FSSH method). Nevertheless, despite these limitations, the FSSH algorithm often predicts accurate observables because the electronic coherence density is modulated by a phase factor which varies rapidly in phase space and which often integrates to almost zero. Adding “decoherence” events on top of a FSSH calculation completely destroys the incorrect FSSH electronic coherence and effectively sets the Poincaré recurrence time for wavepacket recoherence to infinity; this modification usually increases FSSH accuracy (assuming there are no recoherences) while also offering long-time stability for trajectories. In practice, we show that introducing “decoherence” events does not change the total FSSH impurity significantly, but does lead to more accurate evaluations of the impurity of the electronic subsystem.« less

  11. Analysis of the Effects of Impurities in Silicon. [to determine solar cell efficiency

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Lafky, W. M.; Burkholder, J. H.

    1979-01-01

    A solar cell fabrication and analysis program to determine the effects on the resultant solar cell efficiency of impurities incorporated into silicon is conducted. Flight quality technologies and quality assurance are employed to assure that variations in cell performance are due to the impurities incorporated in the silicon. The type and level of impurity doping in each test lot is given and the mechanism responsible for the degradation of cell performance is identified and correlated to the doped impurities.

  12. Study of radioactive impurities in neutron transmutation doped germanium

    NASA Astrophysics Data System (ADS)

    Mathimalar, S.; Dokania, N.; Singh, V.; Nanal, V.; Pillay, R. G.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.

    2015-02-01

    A program to develop low temperature (mK) sensors with neutron transmutation doped Ge for rare event studies with a cryogenic bolometer has been initiated. For this purpose, semiconductor grade Ge wafers are irradiated with thermal neutron flux from Dhruva reactor at Bhabha Atomic Research Centre (BARC), Mumbai. Spectroscopic studies of irradiated samples have revealed that the environment of the capsule used for irradiating the sample leads to significant levels of 65Zn, 110mAg and 182Ta impurities, which can be reduced by chemical etching of approximately 50 μm thick surface layer. From measurements of the etched samples in the low background counting setup, activity due to trace impurities of 123Sb in bulk Ge is estimated to be 1 Bq / g after irradiation. These estimates indicate that in order to use the NTD Ge sensors for rare event studies, a cooldown period of 2 years would be necessary to reduce the radioactive background to ≤ 1 mBq / g.

  13. Development and validation of a selective, sensitive and stability indicating UPLC-MS/MS method for rapid, simultaneous determination of six process related impurities in darunavir drug substance.

    PubMed

    A, Vijaya Bhaskar Reddy; Yusop, Zulkifli; Jaafar, Jafariah; Aris, Azmi B; Majid, Zaiton A; Umar, Khalid; Talib, Juhaizah

    2016-09-05

    In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analysis of the effects of impurities in silicon

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J.; Giuliano, M. N.

    1980-01-01

    A solar cell fabrication and analysis program was conducted to determine the effects on the resultant solar cell efficiency of impurities intentionally incorporated into silicon. It was found that certain impurities such as titanium, tantalum, and vanadium were bad, even in very small concentrations. Cell performance appeared relatively tolerable to impurities such as copper, carbon, calcium, chromium, iron and nickel (in the concentration levels which were considered).

  15. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram.

    PubMed

    Silva de Almeida, Francylaine; Bussler, Larissa; Marcio Lima, Sandro; Fiorucci, Antonio Rogério; da Cunha Andrade, Luis Humberto

    2016-07-01

    In this work, low-cost substrates with rough silver surfaces were prepared from commercial copper foil-covered phenolic board (CPB) and an aqueous solution of AgNO3, and were used for surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) measurements. A maximum SERS amplification factor of 1.2 × 10(7) was obtained for Rhodamine 6G (R6G), and use of the CPB resulted in a detection limit for Thiram pesticide of 0.5 µmol L(-1) The minimum detection level was limited by residual traces of phenolic groups that originated from the substrate resin, which became solubilized in the aqueous Ag(+) solution. It was found that the bands corresponding to the impurities had less influence in the Thiram analysis, which could be explained by the high affinity of sulfur for Ag surfaces. The influence of impurities in the SERS analyses therefore depended on the linkage between the rough silver surface and the analyte. The findings demonstrated the ease and effectiveness of using CPB to prepare a nanostructured surface for SERS. © The Author(s) 2016.

  16. Analysis of optical purity and impurity of synthetic D-phenylalanine products using sulfated beta-cyclodextrin as chiral selector by reversed-polarity capillary electrophoresis.

    PubMed

    Zhao, Yan; Yang, Xing-Bin; Jiang, Ru; Sun, Xiao-Li; Li, Xiao-Ye; Liu, Wen-Min; Zhang, Sheng-Yong

    2006-02-01

    A new capillary electrophoresis (CE) method has been achieved for simultaneous separation and quantification of phenylalanine, N-acetylphenylalanine enantiomers, and prochiral N-acetylaminocinnamic acid, possibly co-existent in reaction systems or synthesized products of D-phenylalanine. The separation was carried out in an uncoated capillary under reversed-electrophoretic mode. Among the diverse charged cyclodextrins (CDs) examined, highly sulfated (HS)-beta-CD as the chiral selector exhibited the best enantioselectivity. The complete separation of the analytes was obtained under the optimum conditions of pH 2.5, 35 mM Tris buffer containing 4% HS-beta-CD, applied voltage -15 kV, and capillary temperature 25 degrees C. Furthermore, the proposed method was applied to the determination of optical purity and trace impurities in three batches of the asymmetric synthetic samples of D-phenylalanine, and satisfactory results were obtained. The determination recoveries of the samples were in the range of 97.8-103.8%, and precisions fell within 2.3-5.0% (RSD). The results demonstrate that this CE method is a useful, simple technique and is applicable to purity assays of D-phenylalanine. (c) 2005 Wiley-Liss, Inc.

  17. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE PAGES

    Singh, Andy; Luening, Katharina; Brennan, Sean; ...

    2017-01-01

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  18. Determination of copper nanoparticle size distributions with total reflection X-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Andy; Luening, Katharina; Brennan, Sean

    Total reflection X-ray fluorescence (TXRF) analysis is extensively used by the semiconductor industry for measuring trace metal contamination on silicon surfaces. In addition to determining the quantity of impurities on a surface, TXRF can reveal information about the vertical distribution of contaminants by measuring the fluorescence signal as a function of the angle of incidence. In this study, two samples were intentionally contaminated with copper in non-deoxygenated and deoxygenated ultrapure water (UPW) resulting in impurity profiles that were either atomically dispersed in a thin film or particle-like, respectively. The concentration profile of the samples immersed into deoxygenated UPW was calculatedmore » using a theoretical concentration profile representative of particles, yielding a mean particle height of 16.1 nm. However, the resulting theoretical profile suggested that a distribution of particle heights exists on the surface. The fit of the angular distribution data was further refined by minimizing the residual error of a least-squares fit employing a model with a Gaussian distribution of particle heights about the mean height. The presence of a height distribution was also confirmed with atomic force microscopy measurements.« less

  19. Synthesis and optical properties of Co2+-doped ZnO Network prepared by new precursors

    NASA Astrophysics Data System (ADS)

    Akhtari, Fereshteh; Zorriasatein, Suzan; Farahmandjou, Majid; Elahi, Seyed Mohammad

    2018-06-01

    Pure ZnO nanoparticles (NPs) and Co/ZnO alloy NPs were synthesized with different percentages of cobalt impurity (1%, 3%, 5%, and 25%) with new precursors through the coprecipitation method. The structural results of the XRD analysis indicated that the pure and impure samples have a wurtzite hexagonal structure such that with an elevation of Co impurity up to 1%, the size of the nanocrystals declines by up to 30 nm. Furthermore, the FESEM analysis results suggest the homogeneity of the NPs such that with increased cobalt impurity, its level declines. The TEM analysis results revealed that the NPs with 5% impurity have a mean size of 32 nm in spherical form. The FTIR optical analysis results suggest a very sharp absorption peak within the wavelength ranges of 434–448 cm‑1, belonging to the Zn-O vibration bond. In addition, the absorption peak developed at the wavelength of 3428 cm‑1 is related to the activation of the OH radicals, whose absorption value grows with the addition of an impurity, thereby, causing enhanced photocatalytic activity. The UV-DRS optical analysis indicated that the absorption wavelength grows with increased impurity, causing the development of redshift and a reduction of the energy band gap. In this regard, for the pure sample, the band gap value was 3.18 eV, while for the sample with 5% impurity, the band gap was obtained as 2.68 eV. The VSM magnetic analysis suggests ferromagnetic development in the impure sample, with a saturation magnetism of 16 memu g‑1 and a coercivity field of 342 G.

  20. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  1. Removal of contaminant gases from an electrolytic urine pretreatment process. [in spacecraft life support systems

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1977-01-01

    The effluent gas stream from an electrolytic urine pretreatment process was analyzed by gas chromatography-mass spectroscopy and wet chemical methods to determine its composition. The major constituents were identified as: hydrogen, carbon dioxide, oxygen, nitrogen, water vapor, and chlorine. The trace impurities were chlorinated light hydrocarbons, and a number of other organic impurities in the low ppm range. Several methods of removing all of the undesirable gases to levels acceptable for return to a space cabin atmosphere were investigated experimentally. A subsystem concept comprised of the following sequential unit processes and operations was successfully demonstrated: (1) raw urine scrubbing, (2) silica gel sorption, (3) dilution with cabin air, and (4) catalytic oxidation.

  2. Search for a Possible Chalcophile Chemical Component in Io's Color and Spectral Reflectance

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey S.; Nash, Douglas B.

    1996-09-01

    Galileo images of Io show red, orange, brown, tan, yellow, green, white, and black regions. Color changes reported on Io represent a redistribution of surface materials and are related to Io's dynamic geologic and geochemical processes. Most Ionian colors and spectral features are attributable to a heterogeneous cover of quenched forms of pure elemental sulfur and sulfur dioxide frost perhaps with sodium pentasulfide and polysulfur oxides. However, the olive greens and greenish tans of some areas require something additional. S-associated elements abundant in meteorites and comets (e.g., percentage amounts of C, P, and Cl as CS2, P4S10, and SCl2, and smaller traces of As, Se, and others), could be important impurities on Io. These elements follow S in many terrestrial materials, such as the metallic core, massive sulfide deposits, carbonatite lavas, evaporite salts, and hydrothermal sublimates; it is doubtful that Io's sulfurous crust would somehow have excluded or lost all of these elements. Chalcophile impurities, acting through modifications of sulfur polymer chain structures, could have important effects on spectroscopic reflectance, sulfur volcanic flow rheology, subsurface flow of molten sulfur in magmatic plumbing, and crustal tectonics. We have started collection and analysis of native sulfur and related minerals obtained from diverse terrestrial environments and are analyzing these substances (particularly materials whose colors resemble Io's) for major and trace elements and reflectance from 0.23 to 23 microns. We will investigate whether expected correlations of chemical and spectroscopic parameters of these substances might explain some Io observations. Acknowledgements. JSK thanks P. Delmelle and C. Oppenheimer for donating samples for this study, and R.A. Hutchinson and the National Park Service for facilitating the collection of sulfur samples from Yellowstone National Park.

  3. CE-MS analysis of heroin and its basic impurities using a charged polymer-protected gold nanoparticle-coated capillary.

    PubMed

    Zhang, Zhengxiang; Yan, Bo; Liu, Kelin; Liao, Yiping; Liu, Huwei

    2009-01-01

    The first application of charged polymer-protected gold nanoparticles (Au NPs) as semi-permanent capillary coating in CE-MS was presented. Poly(diallyldimethylammonium chloride) (PDDA) was the only reducing and stabilizing agent for Au NPs preparation. Stable and repeatable coating with good tolerance to 0.1 M HCl, methanol, and ACN was obtained via a simple rinsing procedure. Au NPs enhanced the coating stability toward flushing by methanol, improved the run-to-run and capillary-to-capillary repeatabilities, and improved the separation efficiency of heroin and its basic impurities for tracing geographical origins of illicit samples. Baseline resolution of eight heroin-related alkaloids was achieved on the PDDA-protected Au NPs-coated capillary under the optimum conditions: 120 mM ammonium acetate (pH 5.2) with addition of 13% methanol, separation temperature 20 degrees C, applied voltage -20 kV, and capillary effective length 60.0 cm. CE-MS analysis with run-to-run RSDs (n=5) of migration time in the range of 0.43-0.62% and RSDs (n=5) of peak area in the range of 1.49-4.68% was obtained. The established CE-MS method would offer sensitive detection and confident identification of heroin and related compounds and provide an alternative to LC-MS and GC-MS for illicit drug control.

  4. Major fraction of black carbon is flushed from the melting New Hampshire snowpack nearly as quickly as soluble impurities

    NASA Astrophysics Data System (ADS)

    Lazarcik, James; Dibb, Jack E.; Adolph, Alden C.; Amante, Jacqueline M.; Wake, Cameron P.; Scheuer, Eric; Mineau, Madeleine M.; Albert, Mary R.

    2017-01-01

    Seasonal snowpacks accumulate impurities derived from atmospheric aerosols and trace gases throughout the winter and release them during snowmelt. Previous field and laboratory studies have shown that a snowpack can lose up to 80% of the soluble ion burden in the first 20% of the melt, an event commonly known as an ionic pulse. Other studies have concluded that particulate impurities (e.g., black carbon (BC)) concentrate in surface layers during melt which can have important implications for snowpack albedo. However, model and field studies have indicated that meltwater scavenging efficiency of BC in melting snowpacks is still an area of uncertainty. To quantify BC melt dynamics and the release of soluble impurities, we collected and analyzed near-daily chemical profiles in the snowpack at three sites during two winters in New Hampshire, United States of America. We observe an ionic pulse and a pulse of BC from the snowpack at the onset of melt; up to 62% of BC leaves within the first 24% of the melt. Surface concentrations of BC are higher than seasonal medians at the end of the winter season, but surface enhancements do not appear to be closely linked to decreases in snow-water equivalence caused by melting.

  5. Trace radioactive impurities in final construction materials for EXO-200

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, D. S.; Auty, D. J.; Didberidze, T.

    Here, we report results from a systematic measurement campaign conducted to identify low radioactivity materials for the construction of the EXO-200 double beta decay experiment. Partial results from this campaign have already been reported in a 2008 paper by the EXO collaboration. Here we release the remaining data, collected since 2007, to the public. The data reported were obtained using a variety of analytic techniques. The measurement sensitivities are among the best in the field. We concluded the construction of the EXO-200 detector and Phase-I data was taken from 2011 to 2014. The detector’s extremely low background implicitly verifies themore » measurements and the analysis assumptions made during construction and reported in this paper.« less

  6. Trace radioactive impurities in final construction materials for EXO-200

    DOE PAGES

    Leonard, D. S.; Auty, D. J.; Didberidze, T.; ...

    2017-05-01

    Here, we report results from a systematic measurement campaign conducted to identify low radioactivity materials for the construction of the EXO-200 double beta decay experiment. Partial results from this campaign have already been reported in a 2008 paper by the EXO collaboration. Here we release the remaining data, collected since 2007, to the public. The data reported were obtained using a variety of analytic techniques. The measurement sensitivities are among the best in the field. We concluded the construction of the EXO-200 detector and Phase-I data was taken from 2011 to 2014. The detector’s extremely low background implicitly verifies themore » measurements and the analysis assumptions made during construction and reported in this paper.« less

  7. Flight data analysis and further development of variable-conductance heat pipes. [for aircraft control

    NASA Technical Reports Server (NTRS)

    Enginer, J. E.; Luedke, E. E.; Wanous, D. J.

    1976-01-01

    Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated.

  8. Surface analysis of space telescope material specimens

    NASA Technical Reports Server (NTRS)

    Fromhold, A. T.; Daneshvar, K.

    1985-01-01

    Qualitative and quantitative data on Space Telescope materials which were exposed to low Earth orbital atomic oxygen in a controlled experiment during the 41-G (STS-17) mission were obtained utilizing the experimental techniques of Rutherford backscattering (RBS), particle induced X-ray emission (PIXE), and ellipsometry (ELL). The techniques employed were chosen with a view towards appropriateness for the sample in question, after consultation with NASA scientific personnel who provided the material specimens. A group of eight samples and their controls selected by NASA scientists were measured before and after flight. Information reported herein include specimen surface characterization by ellipsometry techniques, a determination of the thickness of the evaporated metal specimens by RBS, and a determination of trace impurity species present on and within the surface by PIXE.

  9. Quantitative Analysis of Trace Element Impurity Levels in Some Gem-Quality Diamonds

    NASA Astrophysics Data System (ADS)

    McNeill, J. C.; Klein-Bendavid, O.; Pearson, D. G.; Nowell, G. M.; Ottley, C. J.; Chinn, I.; Malarkey, J.

    2009-05-01

    Perhaps the most important information required to understand the origin of diamonds is the nature of the fluid that they crystallise from. Constraining the identity of the diamond-forming fluid for high purity gem diamonds is hampered by analytical challenges because of the very low analyte levels involved. Here we use a new ultra- low blank 'off-line' laser ablation method coupled to sector-field ICPMS for the quantitative analysis of fluid-poor gem diamonds. Ten diamonds comprised of both E- and P-type parageneses, from the Premier Mine, South Africa, were analysed for trace element abundances. We assume that the elemental signatures arise from low densities of sub-microscopic fluid inclusions that are analogous to the much higher densities of fluid inclusions commonly found within fluid-rich diamonds exhibiting fibrous growth. Repeatability of multiple (>20) blanks yielded consistently low values so that using the current procedure our limits of quantitation (10-ã blank) are <1pg for most trace elements, except for Sr, Zr, Ba, from 2-9pg and Pb ~30pg. Trace element patterns of the Premier diamond suite show enrichment of LREE over HREE. Abundances broadly decrease with increasing elemental compatibility. As a suite the chondrite normalised diamond patterns show negative Sr, Zr, Ti and Y anomalies and positive U, and Pb anomalies. All sample abundances are very depleted relative to chondrites (0.1 to 0.001X ch). HREE range from 0.1 to 1ppb as do Y, Nb, Cs. Other lighter elements vary from 2-30ppb. Pb reaches several ppb and Ti ranges from ppb values up to 2ppm. No significant difference were observed between the trace element systematics of the eclogitic and peridotitic diamonds. Overall, these initial data have inter-element fractionation patterns similar to those evident from fluid-rich fibrous diamonds and can be sued to infer that both types of diamond-forming fluids share a common origin.

  10. Impurity characterization of magnesium diuranate using simultaneous TG-DTA-FTIR measurements

    NASA Astrophysics Data System (ADS)

    Raje, Naina; Ghonge, Darshana K.; Hemantha Rao, G. V. S.; Reddy, A. V. R.

    2013-05-01

    Current studies describe the application of simultaneous thermogravimetry-differential thermal analysis - evolved gas analysis techniques for the compositional characterization of magnesium diuranate (MDU) with respect to the impurities present in the matrix. The stoichiometric composition of MDU was identified as MgU2O7ṡ3H2O. Presence of carbonate and sulphate as impurities in the matrix was confirmed through the evolved gas analysis using Fourier Transformation Infrared Spectrometry detection. Carbon and magnesium hydroxide content present as impurities in magnesium diuranate have been determined quantitatively using TG and FTIR techniques and the results are in good agreement. Powder X-ray diffraction analysis of magnesium diuranate suggests the presence of magnesium hydroxide as impurity in the matrix. Also these studies confirm the formation of magnesium uranate, uranium sesquioxide and uranium dioxide above 1000 °C, due to the decomposition of magnesium diuranate.

  11. Preparation and provisional certification of NBL Spectrographic Impurity Standards, CRM 123 (1-7) and 124 (1-7)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santoliquido, P.M.

    This report describes the design, production, and provisional certification of two new certified reference materials (CRMs): CRM No. 123 (1-7), U/sub 3/O/sub 8/ containing 18 trace elements, and CRM No. 124 (1-7), U/sub 3/O/sub 8/ containing 24 trace elements. The elements to be included and concentrations to be used were decided on the basis of information gathered from users of a previous CRM of this type, CRM No. 98 (1-7). The new CRMs were prepared by the addition of trace elements to high purity U/sub 3/O/sub 8/. Provisional certification was accomplished by an interlaboratory program in which four different laboratoriesmore » analyzed the materials by carrier distillation dc arc emission spectrography.« less

  12. Effect of Impurities on the Freezing Point of Zinc

    NASA Astrophysics Data System (ADS)

    Sun, Jianping; Rudtsch, Steffen; Niu, Yalu; Zhang, Lin; Wang, Wei; Den, Xiaolong

    2017-03-01

    The knowledge of the liquidus slope of impurities in fixed-point metal defined by the International Temperature Scale of 1990 is important for the estimation of uncertainties and correction of fixed point with the sum of individual estimates method. Great attentions are paid to the effect of ultra-trace impurities on the freezing point of zinc in the National Institute of Metrology. In the present work, the liquidus slopes of Ga-Zn, Ge-Zn were measured with the slim fixed-point cell developed through the doping experiments, and the temperature characteristics of the phase diagram of Fe-Zn were furthermore investigated. A quasi-adiabatic Zn fixed-point cell was developed with the thermometer well surrounded by the crucible with the pure metal, and the temperature uniformity of less than 20 mK in the region where the metal is located was obtained. The previous doping experiment of Pb-Zn with slim fixed-point cell was checked with quasi-adiabatic Zn fixed-point cell, and the result supports the previous liquidus slope measured with the traditional fixed-point realization.

  13. [Research on partial least squares for determination of impurities in the presence of high concentration of matrix by ICP-AES].

    PubMed

    Wang, Yan-peng; Gong, Qi; Yu, Sheng-rong; Liu, You-yan

    2012-04-01

    A method for detecting trace impurities in high concentration matrix by ICP-AES based on partial least squares (PLS) was established. The research showed that PLS could effectively correct the interference caused by high level of matrix concentration error and could withstand higher concentrations of matrix than multicomponent spectral fitting (MSF). When the mass ratios of matrix to impurities were from 1 000 : 1 to 20 000 : 1, the recoveries of standard addition were between 95% and 105% by PLS. For the system in which interference effect has nonlinear correlation with the matrix concentrations, the prediction accuracy of normal PLS method was poor, but it can be improved greatly by using LIN-PPLS, which was based on matrix transformation of sample concentration. The contents of Co, Pb and Ga in stream sediment (GBW07312) were detected by MSF, PLS and LIN-PPLS respectively. The results showed that the prediction accuracy of LIN-PPLS was better than PLS, and the prediction accuracy of PLS was better than MSF.

  14. Sorbent control of trace metals in sewage sludge combustion and incineration

    NASA Astrophysics Data System (ADS)

    Naruse, I.; Yao, H.; Mkilaha, I. S. N.

    2003-05-01

    Coal and wastes combustion have become an important issue not only in terms of energy generation but also environmental conservation. The need for alternative fuels and wastes management has made the two energy sources of importance. However, the utilization of the two is faced with problems of impurity trace metals in the fuel. These metals usually speciate during combustion or incineration leading to generation of fumes and subsequently particles. This paper reports on the study aimed at understanding the speciation of trace metals and their emission from combustion systems as particulates. Experiments carried out using a down-flow furnace and theoretical study carried out using lead, chromium and cadmium as basic metals had shown that their speciation and subsequent emission is controlled by both chemical composition and physical properties of the fuel. The physical and chemical and physical properties of the fuel and their respective compounds and the operating conditions of the incineration and combustion system control the enrichment of the particles with trace metals.

  15. Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST

    NASA Astrophysics Data System (ADS)

    Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan

    2017-10-01

    Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.

  16. Cryogenic Laser Calorimetry for Impurity Analysis

    NASA Technical Reports Server (NTRS)

    Swimm, R. T.

    1985-01-01

    The results of a one-year effort to determine the applicability of laser-calorimetric spectroscopy to the study of deep-level impurities in silicon are presented. Critical considerations for impurity analysis by laser-calorimetric spectroscopy are discussed, the design and performance of a cryogenic laser calorimeter is described, and measurements of background absorption in high-purity silicon are presented.

  17. Impurity profiling of trinitrotoluene using vacuum-outlet gas chromatography-mass spectrometry.

    PubMed

    Brust, Hanneke; Willemse, Sander; Zeng, Tuoyu; van Asten, Arian; Koeberg, Mattijs; van der Heijden, Antoine; Bolck, Annabel; Schoenmakers, Peter

    2014-12-29

    In this work, a reliable and robust vacuum-outlet gas chromatography-mass spectrometry (GC-MS) method is introduced for the identification and quantification of impurities in trinitrotoluene (TNT). Vacuum-outlet GC-MS allows for short analysis times; the analysis of impurities in TNT was performed in 4min. This study shows that impurity profiling of TNT can be used to investigate relations between TNT samples encountered in forensic casework. A wide variety of TNT samples were analyzed with the developed method. Dinitrobenzene, dinitrotoluene, trinitrotoluene and amino-dinitrotoluene isomers were detected at very low levels (<1wt.%) by applying the MS in selected-ion monitoring (SIM) mode. Limits of detection ranged from 6ng/mL for 2,6-dinitrotoluene to 43ng/mL for 4-amino-2,6-dinitrotoluene. Major impurities in TNT were 2,4-dinitrotoluene and 2,3,4-trinitrotoluene. Impurity profiles based on seven compounds showed to be useful to TNT samples from different sources. Statistical analysis of these impurity profiles using likelihood ratios demonstrated the potential to investigate whether two questioned TNT samples encountered in forensic casework are from the same source. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Automated Solid Phase Extraction (SPE) LC/NMR Applied to the Structural Analysis of Extractable Compounds from a Pharmaceutical Packaging Material of Construction.

    PubMed

    Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C

    2013-01-01

    The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.

  19. Field aligned flows driven by neutral puffing at MAST

    NASA Astrophysics Data System (ADS)

    Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.

    2018-06-01

    Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.

  20. Efficient design and verification of diagnostics for impurity transport experiments.

    PubMed

    Chilenski, M A; Greenwald, M J; Marzouk, Y M; Rice, J E; White, A E

    2018-01-01

    Recent attempts to measure impurity transport in Alcator C-Mod using an x-ray imaging crystal spectrometer and laser blow-off impurity injector have failed to yield unique reconstructions of the transport coefficient profiles. This paper presents a fast, linearized model which was constructed to estimate diagnostic requirements for impurity transport experiments. The analysis shows that the spectroscopic diagnostics on Alcator C-Mod should be capable of inferring simple profiles of impurity diffusion D Z and convection V Z accurate to better than ±10% uncertainty, suggesting that the failure to infer unique D Z and V Z from experimental data is attributable to an inadequate analysis procedure rather than the result of insufficient diagnostics. Furthermore, the analysis reveals that even a modest spatial resolution can overcome a low time resolution. This approach can be adapted to design and verify diagnostics for transport experiments on any magnetic confinement device.

  1. Local moment relaxation in heavy-fermion compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simanek, E.; Sasahara, K.

    1987-02-01

    The Korringa relaxation rate for a local moment of an impurity in a heavy fermion compound is calculated using the model of Yoshimori and Kasai. Consistent with the recent ESR data for local moments in UBe/sub 13/, the relaxation rate is found to be unaffected by the heavy fermion renormalizations. This result can be traced to the single-site approximation and the weak k dependence of the conduction electron self-energy.

  2. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, N. E.; Borg, L. E.; Eppich, G. R.

    2015-07-09

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  3. Space shuttle nonmetallic materials age life prediction

    NASA Technical Reports Server (NTRS)

    Mendenhall, G. D.; Hassell, J. A.; Nathan, R. A.

    1975-01-01

    The chemiluminescence from samples of polybutadiene, Viton, Teflon, Silicone, PL 731 Adhesive, and SP 296 Boron-Epoxy composite was measured at temperatures from 25 to 150 C. Excellent correlations were obtained between chemiluminescence and temperature. These correlations serve to validate accelerated aging tests (at elevated temperatures) designed to predict service life at lower temperatures. In most cases, smooth or linear correlations were obtained between chemiluminescence and physical properties of purified polymer gums, including the tensile strength, viscosity, and loss tangent. The latter is a complex function of certain polymer properties. Data were obtained with far greater ease by the chemiluminescence technique than by the conventional methods of study. The chemiluminescence from the Teflon (Halon) samples was discovered to arise from trace amounts of impurities, which were undetectable by conventional, destructive analysis of the sample.

  4. Toxicological methods for tracing drug abuse: chromatographic, spectroscopic and biological characterisation of ecstasy derivatives.

    PubMed

    Belhadj-Tahar, Hafid; Payoux, Pierre; Tafani, Mathieu; Coulais, Yvon; Calet, Serge; Bousseksou, Azzedine

    2010-03-01

    Analysis often reveals variability in the composition of ecstasy pills from pure 3,4-methylenedioxymethamphetamine (MDMA) to mixtures of MDMA derivatives, amphetamine, and other unidentified substances. For a comprehensive toxicological analysis one needs to know all steps to MDMA synthesis which may originate impurities. The aim of this study was to synthesise and determine the chemical-physical and in vitro biological properties of a series of MDMA derivatives.3,4-methylendioxyphenyl-2-nitropropene (MDNP) was obtained by condensation of piperonal with an excess of nitroethane in the presence of ammonium acetate. MDNP was then reduced to methylenedioxyamphetamine (MDA) by LiAlH3. All compounds were analysed using HPLC and spectroscopic technique [Raman, nuclear magnetic resonance (NMR), or infrared (IR)] at all the steps of synthesis. In addition, we assessed the biological potentials of these compounds by measuring in vitro their (i) blood cell/whole blood partition coefficient, (ii) binding to plasmatic proteins (Fbp), and (iii) membrane adsorption. Chemical structure was determined with antibody fluorescence polarisation immunoassay (FPIA). This study showed the presence of solid impurities, particularly of a neurotoxic compound of Al3+ in the final products. FPIA identified the aminoethane group close to the substituted benzene ring, but did not detect the two major precursors of MDMA: MDNP and piperonal. Raman spectroscopy is an attractive alternative technique to characterise ecstasy pills and it can identify stereoisomeric forms such as cis-MDNP and trans-MDNP, which exhibit signals at 1650 cm-1 and 1300 cm-1, respectively.

  5. Effect of impurities and processing on silicon solar cells. Volume 1: Characterization methods for impurities in silicon and impurity effects data base

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Campbell, R. B.; Blais, P. D.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1980-01-01

    Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. Discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, conventional solar cell I-V techniques, and descriptions of silicon chemical analysis are presented and discussed. The tabulated data include lists of impurity segregation coefficients, ingot impurity analyses and estimated concentrations, typical deep level impurity spectra, photoconductive and open circuit decay lifetimes for individual metal-doped ingots, and a complete tabulation of the cell I-V characteristics of nearly 200 ingots.

  6. Disentangling controls on element impurities of bivalve shells

    NASA Astrophysics Data System (ADS)

    Zhao, Liqiang; Schöne, Bernd R.; Mertz-Kraus, Regina

    2017-04-01

    Trace and minor elements of bivalve shells can potentially serve as proxies of past environmental change. However, retrieving environmental information from element impurities of bivalve shells remains an extremely challenging task. A central difficulty concerns the fact that extrinsic and intrinsic factors governing the element incorporation are poorly constrained. Within the framework of the ARAMACC project, we aim to decipher the complexity of the incorporation of trace and minor elements into bivalve shells and explore their full potential as proxies of environmental change. More specifically, the following questions were tackled. (1) How are trace and minor elements transported from the ambient environment to the calcifying front? (2) How is their incorporation into the shells affected by environmental and physiological variables? Our findings lend support to the general assumption that divalent ions (e.g., Cu2+, Mn2+, Zn2+ and Pb2+) share the same transport pathways as Ca2+ because of similar ionic radii and electrochemical properties. However, results obtained for Mg2+, Sr2+ and Ba2+ are particularly interesting as they are at odds with existing hypotheses on the incorporation of these three elements, i.e., intracellular Ca2+ pathways (via Ca2+ channels and Ca2+-ATPase) are likely not responsible for their incorporation. Despite the existence of strong physiological interference, some encouraging results were found, in particular (1) strong, positive relationships between the Sr, Ba and Mn contents of the shells and concentrations in the ambient water, (2) only minor effects of growth rate (which is closely linked to the rate of crystal growth and hence, kinetics) on the amounts of Na, Sr, Ba and Mn incorporation into the shells. Overall, our findings demonstrate that environmental and physiological controls on the element incorporation do not have to be mutually exclusive, i.e., if environmental changes outweigh physiological influences, one could still expect that trace and minor elements of bivalve shells serve as promising environmental proxies.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Sego, Landon H.; Hoggard, Jamin C.

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA’s impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2-D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products ofmore » the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA’s useable impurity profile, (2) low selectivity among a CTA’s known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted towards higher volatility impurities are more likely to be altered by volatilization following CTA exposure.« less

  8. Study of impurity transport in HL-2A ECRH L-mode plasmas with radially different ECRH power depositions

    NASA Astrophysics Data System (ADS)

    Cui, Z. Y.; Zhang, K.; Morita, S.; Ji, X. Q.; Ding, X. T.; Xu, Y.; Sun, P.; Gao, J. M.; Dong, C. F.; Zheng, D. L.; Li, Y. G.; Jiang, M.; Li, D.; Zhong, W. L.; Liu, Yi; Dong, Y. B.; Song, S. D.; Yu, L. M.; Shi, Z. B.; Fu, B. Z.; Lu, P.; Huang, M.; Yuan, B. S.; Yang, Q. W.; Duan, X. R.

    2018-05-01

    In HL-2A, an inverse sawtooth oscillation is observed with a long-lasting m/n  =  1/1 mode during ECRH phase with power deposition inside sawtooth inversion radius (inner-deposited ECRH), while a normal sawtooth instead appears when the ECRH power is deposited outside sawtooth inversion radius (outer-deposited ECRH). Aluminum is then injected as a trace impurity with laser blow-off (LBO) method into the inner- and outer-deposited ECRH phases of HL-2A discharges to investigate the effect of ECRH on impurity transport. Temporal behavior of soft x-ray (SXR) array signals is analyzed with a 1D impurity transport code, and radial structures of impurity transport coefficients are obtained. The result shows that the radial transport of Al ions is strongly enhanced during the inner-deposited ECRH phase. In particular, an outward convection velocity is developed with positive values of 0  ⩽  V(ρ)  ⩽  3.8 m s-1 in ρ  ⩽  0.5, while the convection velocity is inward in ρ  ⩾  0.6. In the outer-deposited ECRH discharge, on the other hand, the convection velocity takes a big negative value in ρ  ⩽  0.4 and close to zero at ρ ~ 0.6. In ohmic discharges, an inward V(ρ) always appears in the whole plasma radii and gradually increases toward the plasma edge (-3.2 m s-1 at ρ  =  1). The simulation result also indicates that centrally-peaked Al ion density profiles presented in the outer-deposited ECRH discharge can be flattened by the inner-deposited ECRH. Modification of impurity transport is discussed in the presence of long-lasting m/n  =  1/1 MHD mode.

  9. Impurity-induced divertor plasma oscillations

    DOE PAGES

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...

    2016-01-07

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less

  10. Lowering the Spectral Detection Threshold for Molecular Impurities in Gas Mixtures by Interference Multiplexing

    NASA Astrophysics Data System (ADS)

    Ivanov, M. P.; Tolmachev, Yu. A.

    2018-05-01

    We consider the most feasible ways to significantly improve the sensitivity of spectroscopic methods for detection and measurement of trace concentrations of greenhouse gas molecules in the atmosphere. The proposed methods are based on combining light fluxes from a number of spectral components of the specified molecule on the same photodetector, taking into account the characteristic features of the transmission spectrum of devices utilizing multipath interference effects.

  11. Effects of Convective Solute and Impurity Transport in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Vekilov, Peter G.; Thomas, Bill R.; Rosenberger, Franz

    1998-01-01

    High-resolution optical interferometry was used to investigate the effects of forced solution convection on the crystal growth kinetics of the model protein lysozyme. Most experiments were conducted with 99.99% pure protein solutions. To study impurity effects, approx. 1% of lysozyme dimer (covalently bound) was added in some cases. We show that the unsteady kinetics, corresponding to bunching of growth steps, can be characterized by the Fourier components of time traces of the growth rate. Specific Fourier spectra are uniquely determined by the solution conditions (composition, temperature, and flow rate) and the growth layer source activity. We found that the average step velocity and growth rate increase by approx. I0% with increasing flow rate, as a result of the enhanced solute supply to the interface. More importantly, faster convective transport results in lower fluctuation amplitudes. This observation supports our rationale for system-dependent effects of transport on the structural perfection of protein crystals. We also found that solution flow rates greater than 500 microns/s result in stronger fluctuations while the average growth rate is decreased. This can lead to growth cessation at low supersaturations. With the intentionally contaminated solutions, these undesirable phenomena occurred at about half the flow rates required in pure solutions. Thus, we conclude that they are due to enhanced convective supply of impurities that are incorporated into the crystal during growth. Furthermore, we found that the impurity effects are reduced at higher crystal growth rates. Since the exposure time of terraces is inversely proportional to the growth rate, this observation suggests that the increased kinetics instability results from impurity adsorption on the interface. Finally, we provide evidence relating earlier observations of "slow protein crystal growth kinetics" to step bunch formation in response to nonsteady step generation.

  12. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study.

    PubMed

    Sevimoğlu, Orhan; Tansel, Berrin

    2013-01-01

    Performances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period. Trace compounds entering the gas engines, their impact on the engine performance were evaluated. The operational problems included deposit formation in the combustion chamber, turbocharger, and intercooler of engine before the scheduled maintenance times. High levels of hydrogen sulfide, as well as chlorinated and fluorinated compounds cause corrosion of the engine parts and decrease life of the engine oils. Persistence of siloxanes results in deposit formation, increasing engine maintenance costs. Pretreatment of LFG is necessary to protect the engines at the waste-to-energy facilities with persistence levels of siloxanes and volatile halogenated hydrocarbons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Preliminary effects of real-world factors on the recovery and exploitation of forensic impurity profiles of a nerve-agent simulant from office media.

    PubMed

    Fraga, Carlos G; Sego, Landon H; Hoggard, Jamin C; Acosta, Gabriel A Pérez; Viglino, Emilie A; Wahl, Jon H; Synovec, Robert E

    2012-12-28

    Dimethyl methylphosphonate (DMMP) was used as a chemical threat agent (CTA) simulant for a first look at the effects of real-world factors on the recovery and exploitation of a CTA's impurity profile for source matching. Four stocks of DMMP having different impurity profiles were disseminated as aerosols onto cotton, painted wall board, and nylon coupons according to a thorough experimental design. The DMMP-exposed coupons were then solvent extracted and analyzed for DMMP impurities by comprehensive 2D gas chromatography/mass spectrometry (GC×GC/MS). The similarities between the coupon DMMP impurity profiles and the known (reference) DMMP profiles were measured by dot products of the coupon profiles and known profiles and by score values obtained from principal component analysis. One stock, with a high impurity-profile selectivity value of 0.9 out of 1, had 100% of its respective coupons correctly classified and no false positives from other coupons. Coupons from the other three stocks with low selectivity values (0.0073, 0.012, and 0.018) could not be sufficiently distinguished from one another for reliable matching to their respective stocks. The results from this work support that: (1) extraction solvents, if not appropriately selected, can have some of the same impurities present in a CTA reducing a CTA's useable impurity profile, (2) low selectivity among a CTA's known impurity profiles will likely make definitive source matching impossible in some real-world conditions, (3) no detrimental chemical-matrix interference was encountered during the analysis of actual office media, (4) a short elapsed time between release and sample storage is advantageous for the recovery of the impurity profile because it minimizes volatilization of forensic impurities, and (5) forensic impurity profiles weighted toward higher volatility impurities are more likely to be altered by volatilization following CTA exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Determining factors for the presence of impurities in selectively collected biowaste.

    PubMed

    Puig-Ventosa, Ignasi; Freire-González, Jaume; Jofra-Sora, Marta

    2013-05-01

    The presence of impurities in biodegradable waste (biowaste) causes problems with the management of waste, among which are additional costs derived from the need to improve pre-treatment of biowaste, loss of treatment capacity and the difficulty selling treated biowaste as compost owing to its low quality. When treated biowaste is used for soil conditioning it can also cause soil pollution. Understanding the reasons why impurities are in biowaste and the factors affecting the percentage of impurities present can be used to determine ways to minimise these negative effects. This article attempts to identify the main causes for the presence of impurities in biowaste. In order to do so, it carries out an empirical analysis of the level of impurities in biowaste from municipal waste collection in two steps. First, a bivariate analysis focuses on significant correlations between the presence of impurities and several variables. Second, the construction of an explanatory model based on the significant relations obtained in the first step, and on literature research, are used to check the stated hypothesis. The estimates demonstrate that the collection system, the global levels of separate collection, the urban density of the municipality and the requirement to use compostable bags may be the main drivers of impurity levels in biowaste.

  15. Analytical characterization of recombinant hCG and comparative studies with reference product.

    PubMed

    Thennati, Rajamannar; Singh, Sanjay Kumar; Nage, Nitin; Patel, Yena; Bose, Sandip Kumar; Burade, Vinod; Ranbhor, Ranjit Sudhakar

    2018-01-01

    Regulatory agencies recommend a stepwise approach for demonstrating biosimilarity between a proposed biosimilar and reference biological product emphasizing for functional and structural characterization to trace if there is any difference which may impact safety and efficacy. We studied the comparative structural and biological attributes of recombinant human chorionic gonadotropin (rhCG), SB005, with reference product, Ovidrel ® and Ovitrelle ® . Recombiant hCG was approved in 2000 by the US Food and Drug Administration for the induction of final follicular maturation, early luteinization in infertile women as part of assisted reproductive technology program. It is also indicated for the induction of ovulation and pregnancy in ovulatory infertile patients whose cause of infertility is not due to ovarian failure. Primary structure was studied by intact mass analysis, peptide fingerprinting, peptide mass fingerprinting and sequence coverage analysis. Higher order structure was studied by circular dichroism, ultraviolet-visible spectroscopy, fluorescence spectroscopy, and disulfide bridge analysis. Different isoforms of reference product and SB005 were identified using capillary isoelectric focusing and capillary zone electrophoresis. Glycosylation was studied by N-glycan mapping using LC-ESI-MS, point of glycosylation, released glycan analysis using ultra performance liquid chromatography and sialic acid analysis. Product related impurities such as oligomer content analysis and oxidized impurities were studied using size exclusion chromatography and reverse phase high performance liquid chromatography, respectively. Biological activity in term of potency of reference product and SB005 was studied by in vivo analysis. In this study we have compared analytical similarity of recombinant rhCG (SB005) produced at Sun Pharmaceuticals with the reference product with respect to its primary, higher order structure, isoforms, charge variants, glycosylation, sialyation pattern, pharmacodynamic and in vivo efficacy. Our studies show that the in house produced rhCG has a high degree of structural and functional similarity with the reference product available in the market.

  16. Analytical characterization of recombinant hCG and comparative studies with reference product

    PubMed Central

    Thennati, Rajamannar; Singh, Sanjay Kumar; Nage, Nitin; Patel, Yena; Bose, Sandip Kumar; Burade, Vinod

    2018-01-01

    Introduction Regulatory agencies recommend a stepwise approach for demonstrating biosimilarity between a proposed biosimilar and reference biological product emphasizing for functional and structural characterization to trace if there is any difference which may impact safety and efficacy. We studied the comparative structural and biological attributes of recombinant human chorionic gonadotropin (rhCG), SB005, with reference product, Ovidrel® and Ovitrelle®. Recombiant hCG was approved in 2000 by the US Food and Drug Administration for the induction of final follicular maturation, early luteinization in infertile women as part of assisted reproductive technology program. It is also indicated for the induction of ovulation and pregnancy in ovulatory infertile patients whose cause of infertility is not due to ovarian failure. Materials and methods Primary structure was studied by intact mass analysis, peptide fingerprinting, peptide mass fingerprinting and sequence coverage analysis. Higher order structure was studied by circular dichroism, ultraviolet-visible spectroscopy, fluorescence spectroscopy, and disulfide bridge analysis. Different isoforms of reference product and SB005 were identified using capillary isoelectric focusing and capillary zone electrophoresis. Glycosylation was studied by N-glycan mapping using LC-ESI-MS, point of glycosylation, released glycan analysis using ultra performance liquid chromatography and sialic acid analysis. Product related impurities such as oligomer content analysis and oxidized impurities were studied using size exclusion chromatography and reverse phase high performance liquid chromatography, respectively. Biological activity in term of potency of reference product and SB005 was studied by in vivo analysis. Results and Conclusion In this study we have compared analytical similarity of recombinant rhCG (SB005) produced at Sun Pharmaceuticals with the reference product with respect to its primary, higher order structure, isoforms, charge variants, glycosylation, sialyation pattern, pharmacodynamic and in vivo efficacy. Our studies show that the in house produced rhCG has a high degree of structural and functional similarity with the reference product available in the market. PMID:29430170

  17. Undetectable Transcription of cap in a Clinical AAV Vector: Implications for Preformed Capsid in Immune Responses

    PubMed Central

    Hauck, Bernd; Murphy, Samuel L; Smith, Peter H; Qu, Guang; Liu, Xingge; Zelenaia, Olga; Mingozzi, Federico; Sommer, Jürg M; High, Katherine A; Wright, J. Fraser

    2008-01-01

    In a gene therapy clinical trial for hemophilia B, adeno-associated virus 2 (AAV2) capsid–specific CD8+ T cells were previously implicated in the elimination of vector-transduced hepatocytes, resulting in loss of human factor IX (hFIX) transgene expression. To test the hypothesis that expression of AAV2 cap DNA impurities in the AAV2-hFIX vector was the source of epitopes presented on transduced cells, transcription of cap was assessed by quantitative reverse transcription–PCR (Q-RT-PCR) following transduction of target cells with the vector used in the clinical trial. Transcriptional profiling was also performed for residual AmpR, and adenovirus E2A and E4. Although trace amounts of DNA impurities were present in the clinical vector, transcription of these sequences was not detected after transduction of human hepatocytes, nor in mice administered a dose 26-fold above the highest dose administered in the clinical study. Two methods used to minimize encapsidated DNA impurities in the clinical vector were: (i) a vector (cis) production plasmid with a backbone exceeding the packaging limit of AAV; and (ii) a vector purification step that achieved separation of the vector from vector-related impurities (e.g., empty capsids). In conclusion, residual cap expression was undetectable following transduction with AAV2-hFIX clinical vectors. Preformed capsid protein is implicated as the source of epitopes recognized by CD8+ T cells that eliminated vector-transduced cells in the clinical study. PMID:18941440

  18. The effect of secondary impurities on solar cell performance

    NASA Technical Reports Server (NTRS)

    Hill, D. E.; Gutsche, H. W.; Wang, M. S.; Gupta, K. P.; Tucker, W. F.; Dowdy, J. D.; Crepin, R. J.

    1976-01-01

    Czochralski and float zone sigle crystals of silicon were doped with the primary impurities B or P so that a resistivity of 0.5 ohm cm resulted, and in addition doped with certain secondary impurities including Al, C, Cr, Cu, Fe, Mg, Mn, Na, Ni, O, Ti, V, and Zr. The actual presence of these impurities was confirmed by analysis of the crystals. Solar cell performance was evaluated and found to be degraded most significantly by Ti, V, and Zr and to some extent by most of the secondary impurities considered. These results are of significance to the low cost silicon program, since any such process would have to yield at least tolerable levels of these impurities.

  19. Synchrotron X-ray micro-beam studies of ancient Egyptian make-up

    NASA Astrophysics Data System (ADS)

    Martinetto, P.; Anne, M.; Dooryhée, E.; Drakopoulos, M.; Dubus, M.; Salomon, J.; Simionovici, A.; Walter, Ph.

    2001-07-01

    Vases full of make-up are most often present in the burial furniture of Egyptian tombs dated from the pharaonic period. The powdered cosmetics made of isolated grains are analysed to identify their trace element signature. From this signature we identify the provenance of the mineral ingredients in the make-up and we observe different impurities in products, which have been demonstrated as synthetic substances by previous works. Focused X-ray micro-beam ( 2×5 μm2) is successively tuned at 11 keV, below the L III absorption edge of Pb, and 31.8 keV for global characterisation of the metal impurities. The fluorescence signal integrated over each single grain is detected against the X-ray micro-diffraction pattern collected in transmission with a bi-dimensional detector. Furthermore, for galena grains rich in Zn, the XANES signal at the K-absorption edge of Zn shows its immediate nearest-neighbour environment.

  20. Catalytic conversion wood syngas to synthetic aviation turbine fuels over a multifunctional catalyst.

    PubMed

    Yan, Qiangu; Yu, Fei; Liu, Jian; Street, Jason; Gao, Jinsen; Cai, Zhiyong; Zhang, Jilei

    2013-01-01

    A continuous process involving gasification, syngas cleaning, and Fischer-Tropsch (FT) synthesis was developed to efficiently produce synthetic aviation turbine fuels (SATFs). Oak-tree wood chips were first gasified to syngas over a commercial pilot plant downdraft gasifier. The raw wood syngas contains about 47% N(2), 21% CO, 18% H(2), 12% CO(2,) 2% CH(4) and trace amounts of impurities. A purification reaction system was designed to remove the impurities in the syngas such as moisture, oxygen, sulfur, ammonia, and tar. The purified syngas meets the requirements for catalytic conversion to liquid fuels. A multi-functional catalyst was developed and tested for the catalytic conversion of wood syngas to SATFs. It was demonstrated that liquid fuels similar to commercial aviation turbine fuels (Jet A) was successfully synthesized from bio-syngas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. 2D- and 3D SIMS investigations on hot-pressed steel powder HS 6-5-3-8.

    PubMed

    Rosner, M; Pöckl, G; Danninger, H; Hutter, H

    2002-10-01

    Processing of steel with powder metallurgical methods such as sintering or hot-pressing have proven to be a powerful tool for the production of industrial parts and for components in the automotive industry. Series of steel-powders (HS 6-5-3-8) produced by gas atomization has been hot-pressed in a graphite tube at temperatures from 820 degrees C to 1050 degrees C. The samples have been characterized with a Secondary Electron Microscope (SEM) due to their porosity and then investigated with 2D- and 3D- SIMS. The spatial distribution of the non-metallic impurities and the covering oxide layer of the single particles has been traced dependent to the pressing temperature. Powders pressed at temperatures higher than 880 degrees C exhibited different precipitation behavior of the impurities and an excessive loss of the covering oxide layer of the single powder particles.

  2. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  3. A comparison of a novel robust decentralised control strategy and MPC for industrial high purity, high recovery, multicomponent distillation.

    PubMed

    Udugama, Isuru A; Wolfenstetter, Florian; Kirkpatrick, Robert; Yu, Wei; Young, Brent R

    2017-07-01

    In this work we have developed a novel, robust practical control structure to regulate an industrial methanol distillation column. This proposed control scheme is based on a override control framework and can manage a non-key trace ethanol product impurity specification while maintaining high product recovery. For comparison purposes, a MPC with a discrete process model (based on step tests) was also developed and tested. The results from process disturbance testing shows that, both the MPC and the proposed controller were capable of maintaining both the trace level ethanol specification in the distillate (X D ) and high product recovery (β). Closer analysis revealed that the MPC controller has a tighter X D control, while the proposed controller was tighter in β control. The tight X D control allowed the MPC to operate at a higher X D set point (closer to the 10ppm AA grade methanol standard), allowing for savings in energy usage. Despite the energy savings of the MPC, the proposed control scheme has lower installation and running costs. An economic analysis revealed a multitude of other external economic and plant design factors, that should be considered when making a decision between the two controllers. In general, we found relatively high energy costs favour MPC. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Analysis of potential genotoxic impurities in rabeprazole active pharmaceutical ingredient via Liquid Chromatography-tandem Mass Spectrometry, following quality-by-design principles for method development.

    PubMed

    Iliou, Katerina; Malenović, Anđelija; Loukas, Yannis L; Dotsikas, Yannis

    2018-02-05

    A novel Liquid Chromatography-tandem mass spectrometry (LC-MS/MS) method is presented for the quantitative determination of two potential genotoxic impurities (PGIs) in rabeprazole active pharmaceutical ingredient (API). In order to overcome the analytical challenges in the trace analysis of PGIs, a development procedure supported by Quality-by-Design (QbD) principles was evaluated. The efficient separation between rabeprazole and the two PGIs in the shortest analysis time was set as the defined analytical target profile (ATP) and to this purpose utilization of a switching valve allowed the flow to be sent to waste when rabeprazole was eluted. The selected critical quality attributes (CQAs) were the separation criterion s between the critical peak pair and the capacity factor k of the last eluted compound. The effect of the following critical process parameters (CPPs) on the CQAs was studied: %ACN content, the pH and the concentration of the buffer salt in the mobile phase, as well as the stationary phase of the analytical column. D-Optimal design was implemented to set the plan of experiments with UV detector. In order to define the design space, Monte Carlo simulations with 5000 iterations were performed. Acceptance criteria were met for C 8 column (50×4mm, 5μm) , and the region having probability π≥95% to achieve satisfactory values of all defined CQAs was computed. The working point was selected with the mobile phase consisting ‎of ACN, ammonium formate 11mM at a ratio 31/69v/v with pH=6,8 for the water phase. The LC protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Method of determining lanthanidies in a transition element host

    DOEpatents

    De Kalb, Edward L.; Fassel, Velmer A.

    1976-02-03

    A phosphor composition contains a lanthanide activator element within a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO.sub.4 with a portion of the rare earth replaced with one or more of the transition elements. On X-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence.

  6. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. A quasi-linear analysis of the impurity effect on turbulent momentum transport and residual stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, S. H., E-mail: shko@nfri.re.kr; Jhang, Hogun; Singh, R.

    2015-08-15

    We study the impact of impurities on turbulence driven intrinsic rotation (via residual stress) in the context of the quasi-linear theory. A two-fluid formulation for main and impurity ions is employed to study ion temperature gradient modes in sheared slab geometry modified by the presence of impurities. An effective form of the parallel Reynolds stress is derived in the center of mass frame of a coupled main ion-impurity system. Analyses show that the contents and the radial profile of impurities have a strong influence on the residual stress. In particular, an impurity profile aligned with that of main ions ismore » shown to cause a considerable reduction of the residual stress, which may lead to the reduction of turbulence driven intrinsic rotation.« less

  8. STUDY OF THE SUITABILITY OF ISRAELI HOUSEHOLD SALT FOR RETROSPECTIVE DOSIMETRY.

    PubMed

    Datz, Hanan; Druzhyna, Sofia; Oster, Leonid; Orion, Itzhak; Horowitz, Yigal

    2016-09-01

    The first results of an in-depth evaluation of the practical potential of common household Israeli salt as a retrospective dosemeter in the event of a nuclear accident or terror attack are presented. Ten brands of salt were investigated with emphasis on four of the bestselling brands that constitute 76 % of the total consumer market. Eight of the ten brands show similar glow curves with two main glow peaks at maximum temperatures of ∼176°C and ∼225°C measured at a heating rate of 1°C s(-1) Chemical analysis of three major brands indicates substantial impurity levels of 200-500 ppm of Ca, K, Mg and S and significant differences of additional ppm trace impurities, which lead to an ∼50 % difference in the TL response of the three major brands. Fading in the dark is in significant but under room light is of the order of 35 % per day. The dose response is linear/supralinear with the threshold of supralinearity at ∼0.01 Gy reaching maximum value of ∼4 at 0.5-1 Gy for two of the major brands. The precision of repeated measurements is ∼10 % (1 SD), but the accuracy of dose assessment under field conditions requires further study. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The magnetodynamic filters in monitoring the contaminants from polluted water systems (abstract)

    NASA Astrophysics Data System (ADS)

    Swarup, R.; Singh, Bharat

    1994-05-01

    The magnetic interaction seems to influence the ``structural memory'' of water systems which is quenched in ideally pure water. The sedentary lifetime of each water molecule is extremely short (10-10 s) and its molecular structures may be influenced by some physical effect like magnetic field treatment, it's space time gradients, water velocity, pressure drop, etc. in the interpolar space, so as to yield a noticeable temporal magnetopotential development characterizing the properties of homogeneous and heterogeneous water systems. This principle is also extended to prevailing water systems which always contain various impurities, gas, molecules, ions, microscopic particles in random order. Still the existence of structural memory may be verified by reliable experimental data. The magnetopotential curves of different water systems depict the design and develop-software package for constructing the magnetodynamic-filters superior to the existing techniques on pollution studies like remote sensing, muon spin resonance, laser spectroscopy, nuclear techniques, the gamma ray peak efficiency method, trace elemental characterization due to NBS, neutron activation analysis, and graphite furnance atomic absorption spectrometer. The physiochemical characteristics of water calibrated in terms of magnetopotential curves change with the removal of dissolved gasses, impurities, thermal activation, etc. and the algae, bacteria, phosphates, etc. have been removed at a rapid rate. The magnetodynamic study of ganga water proves it to be an extremely pure and highly resourced fluid.

  10. Spectral, electron microscopic and chemical investigations of gamma-induced purple color zonings in amethyst crystals from the Dursunbey-Balıkesir region of Turkey

    NASA Astrophysics Data System (ADS)

    Hatipoğlu, Murat; Kibar, Rana; Çetin, Ahmet; Can, Nurdoğan; Helvacı, Cahit; Derin, H.

    2011-07-01

    Amethyst crystals on matrix specimens from the Dursunbey-Balıkesir region in Turkey have five representative purple color zonings: dark purple, light purple, lilac, orchid, and violet. The purple color zonings have been analyzed with optical absorption spectra in the visible wavelength region, chemical full trace element analyses (inductively coupled plasma-atomic emission spectroscopy and inductively coupled plasma-mass spectroscopy), and scanning electron microscopic images with high magnification. It can be proposed that the production of the purple color in amethyst crystals is due to three dominant absorption bands centered at 375, 530, and 675 nm, respectively. In addition, the purple color zonings are also due to four minor absorption bands centered at 435, 480, 620, and 760 nm. X-ray diffraction graphics of the investigated amethyst crystals indicate that these crystals are composed of a nearly pure alpha-quartz phase and do not include any moganite silica phase and/or other mineral implications. Trace element analyses of the amethyst crystals show five representative purple color zonings, suggesting that the absorption bands can be mainly attributed to extrinsic defects (chemical impurities). However, another important factor that influences all structural defects in amethyst is likely to be the gamma irradiation that exists during amethyst crystallization and its inclusion in host materials. This gamma irradiation originates from the large underlying intrusive granitoid body in the region of amethyst formation. Irradiation modifies the valence values of the impurity elements in the amethyst crystals. It is observed that the violet-colored amethyst crystals have the most stable and the least reversible coloration when exposed to strong light sources. This situation can be related to the higher impurity content of Fe (2.50 ppm), Co (3.1 ppm), Ni (38 ppm), Cu (17.9 ppm), Zn (10 ppm), Zr (3.9 ppm), and Mo (21.8 ppm).

  11. Identification, characterization, synthesis and HPLC quantification of new process-related impurities and degradation products in retigabine.

    PubMed

    Douša, Michal; Srbek, Jan; Rádl, Stanislav; Cerný, Josef; Klecán, Ondřej; Havlíček, Jaroslav; Tkadlecová, Marcela; Pekárek, Tomáš; Gibala, Petr; Nováková, Lucie

    2014-06-01

    Two new impurities were described and determined using gradient HPLC method with UV detection in retigabine (RET). Using LC-HRMS, NMR and IR analysis the impurities were identified as RET-dimer I: diethyl {4,4'-diamino-6,6'-bis[(4-fluorobenzyl)amino]biphenyl-3,3'-diyl}biscarbamate and RET-dimer II: ethyl {2-amino-5-[{2-amino-4-[(4-fluorobenzyl) amino] phenyl} (ethoxycarbonyl) amino]-4-[(4-fluorobenzyl)amino] phenyl}carbamate. Reference standards of these impurities were synthesized followed by semipreparative HPLC purification. The mechanism of the formation of these impurities is also discussed. An HPLC method was optimized in order to separate, selectively detect and quantify all process-related impurities and degradation products of RET. The presented method, which was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ) and selectivity is very quick (less than 11min including re-equilibration time) and therefore highly suitable for routine analysis of RET related substances as well as stability studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Identification, characterization, and high-performance liquid chromatography quantification of process-related impurities in vonoprazan fumarate.

    PubMed

    Liu, Lei; Cao, Na; Ma, Xingling; Xiong, Kaihe; Sun, Lili; Zou, Qiaogen

    2016-04-01

    High-performance liquid chromatography analysis of vonoprazan fumarate, a novel proton pump inhibitor drug revealed six impurities. These were identified by liquid chromatography with mass spectrometry. Further, the structures of the impurities were confirmed by synthesis followed by characterization by mass spectrometry, NMR spectroscopy, and infrared spectroscopy. On the basis of these data and knowledge of the synthetic scheme of vonoprazan fumarate, the previously unknown impurity was identified as 1-[5-(2-fluorophenyl)-1-(pyridin-3-ylsulfonyl)-1H-pyrrol-3-yl]-N-methyldimethylamine, which is a new compound. The possible mechanisms by which these impurities were formed were also discussed. A high-performance liquid chromatography method was optimized in order to separate, selectively detect, and quantify all process-related impurities of vonoprazan fumarate. The presented method has been validated in terms of linearity, limits of detection, and quantification, and response factors and, therefore, is highly suitable for routine analysis of vonoprazan fumarate related substances as well as stability studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Classical confinement and outward convection of impurity ions in the MST RFP

    NASA Astrophysics Data System (ADS)

    Kumar, S. T. A.; Den Hartog, D. J.; Mirnov, V. V.; Caspary, K. J.; Magee, R. M.; Brower, D. L.; Chapman, B. E.; Craig, D.; Ding, W. X.; Eilerman, S.; Fiksel, G.; Lin, L.; Nornberg, M.; Parke, E.; Reusch, J. A.; Sarff, J. S.

    2012-05-01

    Impurity ion dynamics measured with simultaneously high spatial and temporal resolution reveal classical ion transport in the reversed-field pinch. The boron, carbon, oxygen, and aluminum impurity ion density profiles are obtained in the Madison Symmetric Torus [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] using a fast, active charge-exchange-recombination-spectroscopy diagnostic. Measurements are made during improved-confinement plasmas obtained using inductive control of tearing instability to mitigate stochastic transport. At the onset of the transition to improved confinement, the impurity ion density profile becomes hollow, with a slow decay in the core region concurrent with an increase in the outer region, implying an outward convection of impurities. Impurity transport from Coulomb collisions in the reversed-field pinch is classical for all collisionality regimes, and analysis shows that the observed hollow profile and outward convection can be explained by the classical temperature screening mechanism. The profile agrees well with classical expectations. Experiments performed with impurity pellet injection provide further evidence for classical impurity ion confinement.

  14. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  15. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguardsmore » Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.« less

  16. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples.

    PubMed

    Boulyga, Sergei F; Heilmann, Jens; Prohaska, Thomas; Heumann, Klaus G

    2007-10-01

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for (35)Cl+ to more than 6 x 10(5) cps for (238)U+ for 1 microg of trace element per gram of coal sample. Detection limits vary from 450 ng g(-1) for chlorine and 18 ng g(-1) for sulfur to 9.5 pg g(-1) for mercury and 0.3 pg g(-1) for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis.

  17. Gamma-ray spectrometry of ultra low levels of radioactivity within the material screening program for the GERDA experiment.

    PubMed

    Budjás, D; Gangapshev, A M; Gasparro, J; Hampel, W; Heisel, M; Heusser, G; Hult, M; Klimenko, A A; Kuzminov, V V; Laubenstein, M; Maneschg, W; Simgen, H; Smolnikov, A A; Tomei, C; Vasiliev, S I

    2009-05-01

    In present and future experiments in the field of rare events physics a background index of 10(-3) counts/(keV kg a) or better in the region of interest is envisaged. A thorough material screening is mandatory in order to achieve this goal. The results of a systematic study of radioactive trace impurities in selected materials using ultra low-level gamma-ray spectrometry in the framework of the GERDA experiment are reported.

  18. MM&T Program to Establish Production Techniques for the Automatic Detection and Qualification of Trace Elements Present in the Production of Microwave Semiconductors.

    DTIC Science & Technology

    1981-03-01

    lots. A single store of partially processed devices may serve as a source for several different product lines. Because the manufacture of microwave...matrix, or react chem- ically with some of the semiconductor materials. In some cases these element impurities may migrate to an interface inducing... different viscosity, the background intensity varied independently of the signal, a significant error could be introduced. A more effec- tive method

  19. Activated phosphors having matrices of yttrium-transition metal compound

    DOEpatents

    De Kalb, E.L.; Fassel, V.A.

    1975-07-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO$sub 4$ with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence. (auth)

  20. Laser Window Materials and Optical Coating Science

    DTIC Science & Technology

    1977-08-01

    nitric, sulphuric, and acetic acids , but attack was too slow or insufficient. Finally, a mixture of nitric and hydrochloric acids was found to...trace of acetic acid . The As2S3 was subsequently mmm ’■ ’■ I .’■ " "■’ ’ reacted with CS-, tor two hours to remove the impurities and...immersing the deforming boule under Cereclor 42P, a chlorinated paraffin. This viscous, honey-colored liquid is 41%, chlorine by weight, and loses

  1. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  2. Combined effects of drift waves and neoclassical transport on density profiles in tokamaks

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Strand, P.

    2005-10-01

    The relative importance of neoclassical and anomalous particle transport depends on the charge number of the species being studied. The detailed particle balance including the EDWM [1] drift wave model for anomalous transport that includes ITG, TEM and in some cases ETG modes, and the neoclassical model NCLASS [2], are illustrated by simulations with the DEA particle transport code. DEA models the evolution of all ion species, and can be run in a mode to evaluate dynamic responses to perturbations or to conditions far from equilibrium by perturbing the profiles from the experimental measurements. The perturbations allow the fluxes to be decomposed into diffusive and convective (pinch) terms. The different scaling with charge number between drift wave and neoclassical models favors a stronger component of neoclassical transport for higher Z impurities through the effective pinch term. Although trace impurities illustrate a simple Ficks Law form, the main ions as well as higher concentrations of intrinsic impurities exhibit non-linear responses to the density gradients as well as off-diagonal gradient dependencies, leading to a more complicated response for the particle fluxes.[1] H. Nordman, et al., Plasma Phys. Control. Fusion 47 (2005) L11. [2] W.A. Houlberg, et al., Phys. Plasmas 4 (1997) 3230.

  3. Development of RP UPLC-TOF/MS, stability indicating method for omeprazole and its related substances by applying two level factorial design; and identification and synthesis of non-pharmacopoeial impurities.

    PubMed

    Jadhav, Sushant Bhimrao; Kumar, C Kiran; Bandichhor, Rakeshwar; Bhosale, P N

    2016-01-25

    A new UPLC-TOF/MS compatible, reverse phase-stability indicating method was developed for determination of Omeprazole (OMP) and its related substances in pharmaceutical dosage forms by implementing Design of Experiment (DoE) i.e. two level full factorial Design (2(3)+3 center points=11 experiments) to understand the Critical Method Parameters (CMP) and its relation with Critical Method Attribute (CMA); to ensure robustness of the method. The separation of eleven specified impurities including conversion product of OMP related compound F (13) and G (14) i.e. Impurity-I (1), OMP related compound-I (11) and OMP 4-chloro analog (12) was achieved in a single method on Acquity BEH shield RP18 100 × 2.1 mm, 1.7 μm column, with inlet filter (0.2 μm) using gradient elution and detector wavelength at 305 nm and validated in accordance with ICH guidelines and found to be accurate, precise, reproducible, robust and specific. The drug was found to degrade extensively in heat, humidity and acidic conditions and forms unknown degradation products during stability studies. The same method was used for LC-MS analysis to identify m/z and fragmentation of maximum unknown impurities (Non-Pharmacopoeial) i.e. Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9) formed during stability studies. Based on the results, degradation pathway for the drug has been proposed and synthesis of identified impurities i.e. impurities (Impurity-I (1), Impurity-III (3), Impurity-V (5) and Impurity-VIII (9)) are discussed in detail to ensure in-depth understanding of OMP and its related impurities and optimum performance during lifetime of the product. Copyright © 2015. Published by Elsevier B.V.

  4. Nuclear Magnetic Resonance Observations of Octahedral Aluminum in Forsterite, Clinoenstatite and Periclase.

    NASA Astrophysics Data System (ADS)

    McCarty, R. J.; Stebbins, J. F.

    2015-12-01

    This research seeks to constrain the crystallographic site preferences of aluminum in forsterite, clinoenstatite and periclase, mantle minerals in which this element is only found at low concentrations. Improved site preference information will help constrain thermodynamic descriptions of the substitution mechanisms, making them more useful to geobarometric and geothermometric techniques. Using high field magic angle spinning nuclear magnetic resonance (NMR) and electron probe microanalysis (EPMA), we constrain the site preferences of minor and trace amounts (2000 to 400 mol ppm) of aluminum in extremely pure synthetic forsterite, clinoenstatite and periclase. The primary challenge of this research is determining how much of each of the aluminum species observed by NMR in the bulk sample (abundances and coordinations) resides in the major synthesized mineral. In our samples, the aluminum partitions between small amounts (often <1%) of impurity phases with high aluminum concentrations, such as glass and accessory crystals, and the major, intended phase with low aluminum concentrations. We use EPMA composition maps to locate scarce impurity phases and EPMA point analyses to determine the aluminum concentrations in both the intended major phase and in the impurity phases. Long NMR acquisitions (several days) and careful subtraction of rotor background signals (present in even 'low-Al' zirconia rotor materials) are required to obtain adequate signal-to-noise ratios at such low concentrations. Ordered octahedral aluminum has been identified in forsterite, clinoenstatite, and periclase. Disordered 4, 5 and 6 coordinated aluminum species have also been observed, but it is still unclear if the disordered species are in the major mineral phases, the impurity phases or both.

  5. Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Bruegge, Carol J.; Springsteen, Arthur W.

    1993-01-01

    A detailed chemical analysis was carried out on Spectralon, a highly Lambertian, diffuse reflectance material. Results of this investigation unambiguously identified the presence of an organic (hydrocarbon) impurity intrinsic to the commercial material. This impurity could be removed by a vacuum bake-out procedure and was identified as the cause of optical changes (degradation) that occur in the material when exposed to UV light. It was found that when this impurity was removed, the Spectralon material was photochemically stable and maintained its reflectance properties even after extensive solar UV exposure.

  6. Synthesis and impurity doping of GaN powders by the two-stage vapor-phase method for phosphor applications

    NASA Astrophysics Data System (ADS)

    Hara, K.; Okuyama, E.; Yonemura, A.; Uchida, T.; Okamoto, N.

    2006-09-01

    The analysis of particle formation and the doping of luminescent impurities during the two-stage vapor-phase synthesis of GaN powder were carried. GaN particles were grown very fast during the second stage of this method, and the increment in particle size was larger for higher reaction temperature in the region between 800 and 1000 °C. The analysis on the behaviour of particle growth based on the reaction kinetics suggested that the growth almost finishes in a few seconds with an extremely high rate at the early stage at 1000 °C, whereas the growth lasts with relatively low rates for a time longer than the actual growth duration for the case of lower temperature synthesis. GaN powders doped with various impurity atoms were synthesized by supplying impurity sources with GaCl during the second stage. The samples doped with Zn, Mg and Tb showed emissions characteristic for each doped impurity.

  7. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

    PubMed Central

    Hiraki, Takehito; Miki, Takahiro; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2014-01-01

    The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn’t significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling. PMID:28788144

  8. Development of a new chlorogenic acid certified reference material for food and drug analysis.

    PubMed

    Yang, Dezhi; Jiao, LingTai; Zhang, Baoxi; Du, Guanhua; Lu, Yang

    2017-06-05

    This paper reports the preparation and characterization of a new chlorogenic acid (CHA) certified reference material (CRM), which is unavailable commercially. CHA is an active ingredient found in many geo-authentic Chinese medicinal materials and developed as an anti-cancer drug. In this work, trace impurities were isolated and identified through various techniques. CHA CRM was quantified with two analytical methods, and their results were in good agreement with each other. The certified value and corresponding expanded uncertainty of CHA CRM reached 99.4%±0.2%, which was calculated by multiplying the combined standard uncertainty by the coverage factor (k=2), at a confidence level of 95%. This CRM can be used to calibrate measurement system, evaluate or validate measurement procedures, assign traceable property values to non-CRMs, and conduct quality control assays. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A sensible technique to detect mollicutes impurities in human cells cultured in GMP condition.

    PubMed

    Ugolotti, Elisabetta; Vanni, Irene

    2014-01-01

    In therapeutic trials the use of manipulated cell cultures for clinical applications is often required. Mollicutes microorganism contamination of tissue cultures is a major problem because it can determine various and severe alterations in cellular function. Thus methods able to detect and trace cell cultures with Mollicutes contamination are needed in the monitoring of cells grown under good manufacturing practice conditions, and cell lines in continuous culture must be tested at regular intervals. We here describe a multiplex quantitative polymerase chain reaction assay able to detect contaminant Mollicutes species in a single-tube reaction through analysis of 16S-23S rRNA intergenic spacer regions and Tuf and P1 cytoadhesin genes. The method shows a sensitivity, specificity, and robustness comparable with the culture and the indicator cell culture as required by the European Pharmacopoeia guidelines and was validated following International Conference on Harmonization guidelines and Food and Drug Administration requirements.

  10. Range safety signal attenuation by the Space Shuttle main engine exhaust plumes

    NASA Technical Reports Server (NTRS)

    Pearce, B. E.

    1983-01-01

    An analysis of attenuation of the range safety signal at 416.5 MHz observed after SRB separation and ending at hand over to Bermuda, during which transmission must pass through the LOX/H2 propelled main engine exhaust plumes, is summarized. Absorption by free electrons in the exhaust plume can account for the nearly constant magnitude of the observed attenuation during this period; it does not explain the short term transient increases that occur at one or more times during this portion of the flight. It is necessary to assume that a trace amount (about 0.5 ppm) of easily ionizable impurity must be present in the exhaust flow. Other mechanisms of attenuation, such as scattering by turbulent fluctuations of both free and bound electrons and absorption by water vapor, were examined but found to be inadequate to explain the observations.

  11. An innovative approach to the analysis of 3-[4-(2-methylpropyl)phenyl]propanoic acid as an impurity of ibuprofen on a carbon-coated zirconia stationary phase.

    PubMed

    Kalafut, P; Kucera, R; Klimes, J; Sochor, J

    2009-07-12

    3-[4-(2-Methylpropyl)phenyl]propanoic acid has been introduced as impurity F to the European Pharmacopoeia in its Supplement 4.2. In contrast to other impurities, which are evaluated by HPLC, the content of impurity F is determined by gas chromatography after previous derivatization. Thus a novel reversed-phase HPLC method was developed to simplify the evaluation of pharmacopoeial impurity F of ibuprofen. Favourable properties of zirconia stationary phases were employed for this purpose. The HPLC separation was achieved on a Zr-CARB column (150 mm x 4.6mm i.d., 5 microm) using the mobile phase acetonitrile-phosphate buffer (pH 3.5, 25 mM) (38:62, v/v), temperature 80 degrees C and the flow rate 1.2 ml min(-1). The fluorescence detection was employed to enhance the sensitivity of the method. Optimal detection parameters were chosen on the basis of fluorescence spectra of the analytes. The excitation and emission wavelengths were 220 nm and 285 nm, respectively. The analysis was completed within 25 min. The subsequent validation of the method confirmed the applicability of method for the analytical assay of impurity F.

  12. Method for Determination of Less Than 5 ppm Oxygen in Sodium Samples

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Schmidt, G. L.

    2005-01-01

    Alkali metals used in pumped loops or heat pipes must be sufficiently free of nonmetallic impurities to ensure long heat rejection system life. Life issues are well established for alkali metal systems. Impurities can form ternary compounds between the container and working fluid, leading to corrosion. This Technical Memorandum discusses the consequences of impurities and candidate measurement techniques to determine whether impurities have been reduced to suf.ciently low levels within a single-phase liquid metal loop or a closed two-phase heat transfer system, such as a heat pipe. These techniques include the vanadium wire equilibration, neutron activation analysis, plug traps, distillation, and chemical analysis. Conceptual procedures for performing vanadium wire equilibration purity measurements on sodium contained in a heat pipe are discussed in detail.

  13. Hydrogen passivation of silicon(100) used as templates for low-temperature epitaxy and oxidation

    NASA Astrophysics Data System (ADS)

    Atluri, Vasudeva Prasad

    Epitaxial growth, oxidation and ohmic contacts require surfaces as free as possible of physical defects and chemical contaminants, especially, oxygen and hydrocarbons. Wet chemical cleaning typically involves a RCA clean to remove contaminants by stripping the native oxide and regrowing a chemical oxide with only trace levels of carbon and metallic impurities. Low temperature epitaxy, T<800sp° C, limits the thermal budget for the desorption of impurities and surface oxides, and can be performed on processed structures. But, silicon dioxide cannot be desorbed at temperatures lower than 800sp°C. Recently, hydrogen passivation of Si(111) has been reported to produce stable and ordered surfaces at low temperatures. Hydrogen can then be desorbed between 200sp°C and 600sp°C prior to deposition. In this work, Si(100) is passivated via a solution of hydrofluoric acid in alcohol (methanol, ethanol, or isopropyl alcohol) with HF concentrations between 0.5 to 10%. A rinse in water or alcohol is performed after etching to remove excess fluorine. This work investigates wet chemical cleaning of Si(100) to produce ordered, hydrogen-terminated, oxygen- and carbon-free surfaces to be used as templates for low temperature epitaxial growth and rapid thermal oxidation. Ion beam analysis, Tapping mode atomic force microscopy, Fourier transform infrared spectroscopy, Secondary ion mass spectroscopy, Chemical etching, Capacitance-voltage measurements and Ellipsometry are used to measure, at the surface and interface, impurities concentration, residual disorder, crystalline order, surface topography, roughness, chemical composition, defects density, electrical characteristics, thickness, and refractive index as a function of cleaning conditions for homoepitaxial silicon growth and oxidation. The wetting characteristics of the Si(100) surfaces are measured with a tilting plate technique. Different materials are analyzed by ion beam analysis for use as hydrogen standards in elastic recoil detection of hydrogen on sample surfaces. The results obtained in this study provide a quantitative optimization of passivation of Si(100) surfaces and their use as templates for low temperature epitaxy and rapid thermal oxidation. Ion beam analysis shows that the total coverage of H increases during passivation of Si(100) via HF in alcohol, while Fourier transform infrared spectroscopy indicates that more complex termination than the formation of simple silicon hydrides occurs.

  14. Characterization of recombinant human C1 inhibitor secreted in milk of transgenic rabbits.

    PubMed

    van Veen, Harrie A; Koiter, Jaco; Vogelezang, Carla J M; van Wessel, Noucha; van Dam, Tijtje; Velterop, Ingeborg; van Houdt, Kristina; Kupers, Luc; Horbach, Danielle; Salaheddine, Mourad; Nuijens, Jan H; Mannesse, Maurice L M

    2012-12-31

    C1 inhibitor (C1INH) is a single-chain glycoprotein that inhibits activation of the contact system of coagulation and the complement system. C1INH isolated from human blood plasma (pd-hC1INH) is used for the management of hereditary angioedema (HAE), a disease caused by heterozygous deficiency of C1INH, and is a promise for treatment of ischemia-reperfusion injuries like acute myocardial or cerebral infarction. To obtain large quantities of C1INH, recombinant human C1INH (rhC1INH) was expressed in the milk of transgenic rabbits (12 g/l) harboring genomic human C1INH sequences fused to 5' bovine αS(1) casein promoter sequences. Recombinant hC1INH was isolated from milk to a specific activity of 6.1 U/mg and a purity of 99%; by size-exclusion chromatography the 1% impurities consisted of multimers and N-terminal cleaved C1INH species. Mass spectrometric analysis of purified rhC1INH revealed a relative molecular mass (M(r)) of 67,200. Differences in M(r) on SDS PAGE and mass spectrometric analysis between rhC1INH and pd-hC1INH are explained by differential glycosylation (calculated carbohydrate contents of 21% and 28%, respectively), since protein sequencing analysis of rhC1INH revealed intact N- and C-termini. Host-related impurity analysis by ELISA revealed trace amounts of rabbit protein (approximately 10 ppm) in purified batches, but not endogenous rabbit C1INH. The kinetics of inhibition of the target proteases C1s, Factor XIIa, kallikrein and Factor XIa by rhC1INH and pd-hC1INH, indicated comparable inhibitory potency and specificity. Recently, rhC1INH (Ruconest(®)) has been approved by the European Medicines Agency for the treatment of acute attacks of HAE. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. An effective method for thallium bromide purification and research on crystal properties

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiping; Meng, Fang; Gong, Shuping; Quan, Lin; Wang, Jing; Zhou, Dongxiang

    2012-06-01

    Thallium bromide (TlBr) is a promising candidate for room-temperature X- and gamma-ray detectors in view of its excellent intrinsic features. However, material purity and crystal quality concerns still limit the use of TlBr crystals as detectors. In this work, a combination of hydrothermal recrystallization (HR) and vacuum distillation (VD) methods were applied to purify TlBr salts prior to crystal growth. Trace impurities at the ppb/ppm level were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The results showed that the impurity concentrations of the TlBr salt decreased significantly after HR and VD purification, and high performance of the resultant TlBr crystal in areas such as electrical and optical properties was achieved. The combination of HR and VD methods could fabricate purer material, with an order of magnitude higher resistivity and better optical quality, than HR or VD method used separately. The possible technological considerations affecting the parameters of the crystals are investigated.

  16. Investigating the Effect of Impurities on Macromolecule Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Judge, Russell A.; Crawford, Lisa; Forsythe, Elizabeth L.; Pusey, Marc L.; Sportiello, Michael; Todd, Paul; Bellamy, Henry; Lovelace, Jeff; Cassanto, John M.; hide

    2001-01-01

    Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity and reduced the signal to noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.

  17. Study of the structures of photodegradation impurities and pathways of photodegradation of cilnidipine by liquid chromatography/Q-Orbitrap mass spectrometry.

    PubMed

    Zeng, Hongxia; Wang, Fan; Zhu, Bingqi; Zhong, Weihui; Shan, Weiguang; Wang, Jian

    2016-08-15

    The structures of photodegradation impurities in cilnidipine were studied by liquid chromatography/Q-Orbitrap mass spectrometry (LC/Q-Orbitrap MS) for the further improvement of the official monographs in Pharmacopoeias. The complete fragmentation patterns of impurities were investigated to obtain their structural information. Two pathways of photodegradation of cilnidipine were also explored to clarify the source of impurities in cilnidipine. Chromatographic separation was performed on a Boston Group C18 column (250 mm × 4.6 mm, 5 μm). The mobile phase consisted of acetonitrile/H2 O at a ratio of 75:25 (v/v). In order to determine the m/z values of the molecular ions and formulas of all detected impurities, full scan LC/MS in both positive and negative ion modes was firstly performed using a Thermo LC system coupled with a Q-Orbitrap high-resolution mass spectrometer. LC/MS/MS analysis was also carried out on target compounds to obtain as much structural information as possible. Five novel photodegradation impurities of cilnidipine were separated and identified based on the high-resolution MS/MS data. Impurity III was synthesized and its structure was confirmed by (1) H-NMR and (13) C-NMR data. Two photodegradation pathways to produce different photodegradation impurities were also revealed in this study. Among those impurities, impurities II and III were the main impurities which existed in the cilnidipine available on the market. Impurity II (the Z-isomer) was mainly produced when cilnidipine powder was directly exposed to daylight while impurity III (containing a piperidine ring) was mainly produced when cilnidipine was exposed to daylight in an ethanolic solution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Stability-indicating HPLC-DAD/UV-ESI/MS impurity profiling of the anti-malarial drug lumefantrine.

    PubMed

    Verbeken, Mathieu; Suleman, Sultan; Baert, Bram; Vangheluwe, Elien; Van Dorpe, Sylvia; Burvenich, Christian; Duchateau, Luc; Jansen, Frans H; De Spiegeleer, Bart

    2011-02-28

    Lumefantrine (benflumetol) is a fluorene derivative belonging to the aryl amino alcohol class of anti-malarial drugs and is commercially available in fixed combination products with β-artemether. Impurity characterization of such drugs, which are widely consumed in tropical countries for malaria control programmes, is of paramount importance. However, until now, no exhaustive impurity profile of lumefantrine has been established, encompassing process-related and degradation impurities in active pharmaceutical ingredients (APIs) and finished pharmaceutical products (FPPs). Using HPLC-DAD/UV-ESI/ion trap/MS, a comprehensive impurity profile was established based upon analysis of market samples as well as stress, accelerated and long-term stability results. In-silico toxicological predictions for these lumefantrine related impurities were made using Toxtree® and Derek®. Several new impurities are identified, of which the desbenzylketo derivative (DBK) is proposed as a new specified degradant. DBK and the remaining unspecified lumefantrine related impurities are predicted, using Toxtree® and Derek®, to have a toxicity risk comparable to the toxicity risk of the API lumefantrine itself. From unstressed, stressed and accelerated stability samples of lumefantrine API and FPPs, nine compounds were detected and characterized to be lumefantrine related impurities. One new lumefantrine related compound, DBK, was identified and characterized as a specified degradation impurity of lumefantrine in real market samples (FPPs). The in-silico toxicological investigation (Toxtree® and Derek®) indicated overall a toxicity risk for lumefantrine related impurities comparable to that of the API lumefantrine itself.

  19. Gaussian impurity moving through a Bose-Einstein superfluid

    NASA Astrophysics Data System (ADS)

    Pinsker, Florian

    2017-09-01

    In this paper a finite Gaussian impurity moving through an equilibrium Bose-Einstein condensate at T = 0 is studied. The problem can be described by a Gross-Pitaevskii equation, which is solved perturbatively. The analysis is done for systems of 2 and 3 spatial dimensions. The Bogoliubov equation solutions for the condensate perturbed by a finite impurity are calculated in the co-moving frame. From these solutions the total energy of the perturbed system is determined as a function of the width and the amplitude of the moving Gaussian impurity and its velocity. In addition we derive the drag force the finite sized impurity approximately experiences as it moves through the superfluid, which proves the existence of a superfluid phase for finite extensions of the impurities below the speed of sound. Finally we find that the force increases with velocity until an inflection point from which it decreases again in 2 and 3d.

  20. Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-05-01

    Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.

  1. Investigation of the origin of ephedrine and methamphetamine by stable isotope ratio mass spectrometry: a Japanese experience.

    PubMed

    Makino, Y; Urano, Y; Nagano, T

    2005-01-01

    Illicit drug abuse is a serious global problem that can only be solved through international cooperation. In Asian countries, the abuse of methamphetamine is one of the most pressing problems. To assist in the control of methamphetamine, the authors investigated in detail the character of ephedrine, which is a key precursor for the illicit manufacture of methamphetamine. Commercial ephedrine is produced by one of three methods: (a) extraction from Ephedra plants, (b) full chemical synthesis or (c) via a semi-synthetic process involving the fermentation of sugar, followed by amination. Although chemically there is no difference between ephedrine samples from different origins (natural, synthetic or semi-synthetic), scientific and analytical tools such as drug-characterization and impurity-profiling programmes may provide valuable information for law enforcement and regulatory activities as part of precursor control strategies. During the research under discussion in the present article, in addition to classical impurity profiling of manufacturing by-products, the use of stable isotope ratio mass spectrometry was investigated for determining the origin of the ephedrine that had been used as a precursor in seized methamphetamine samples. The results of carbon and nitrogen stable isotope ratio (delta13C and delta15N) analysis of samples of crystalline methamphetamine seized in Japan suggested that the drug had been synthesized from either natural or semi-synthetic ephedrine and not from synthetic ephedrine. Stable isotope ratio analysis is expected to be a useful tool for tracing the origins of seized methamphetamine. It has attracted much interest from precursor control authorities in Japan and the East Asian region and may prove useful in the international control of precursors.

  2. Quantifying Main Trends in Lysozyme Nucleation: The Effects of Precipitant Concentration, Supersaturation and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Leardi, Riccardo; Judge, Russell A.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Full factorial experimental design incorporating multi-linear regression analysis of the experimental data allows quick identification of main trends and effects using a limited number of experiments. In this study these techniques were employed to identify the effect of precipitant concentration, supersaturation, and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal forin of chicken egg white lysozyme. Decreasing precipitant concentration, increasing supers aturation, and increasing impurity, were found to increase crystal numbers. The crystal axial ratio decreased with increasing precipitant concentration, independent of impurity.

  3. Measurements of impurity concentrations and transport in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Boyle, D. P.; Bell, R. E.; Kaita, R.; Lucia, M.; Schmitt, J. C.; Scotti, F.; Kubota, S.; Hansen, C.; Biewer, T. M.; Gray, T. K.

    2016-10-01

    The Lithium Tokamak Experiment (LTX) is a modest-sized spherical tokamak with all-metal plasma facing components (PFCs), uniquely capable of operating with large area solid and/or liquid lithium coatings essentially surrounding the entire plasma. This work presents measurements of core plasma impurity concentrations and transport in LTX. In discharges with solid Li coatings, volume averaged impurity concentrations were low but non-negligible, with 2 - 4 % Li, 0.6 - 2 % C, 0.4 - 0.7 % O, and Zeff < 1.2 . Transport was assessed using the TRANSP, NCLASS, and MIST codes. Collisions with the main H ions dominated the neoclassical impurity transport, and neoclassical transport coefficients calculated with NCLASS were similar across all impurity species and differed no more than a factor of two. However, time-independent simulations with MIST indicated that neoclassical theory did not fully capture the impurity transport and anomalous transport likely played a significant role in determining impurity profiles. Progress on additional analysis, including time-dependent impurity transport simulations and impurity measurements with liquid lithium coatings, and plans for diagnostic upgrades and future experiments in LTX- β will also be presented. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.

  4. Derivative spectrophotometric analysis of benzophenone (as an impurity) in phenytoin

    PubMed Central

    2011-01-01

    Three simple and rapid spectrophotometric methods were developed for detection and trace determination of benzophenone (the main impurity) in phenytoin bulk powder and pharmaceutical formulations. The first method, zero-crossing first derivative spectrophotometry, depends on measuring the first derivative trough values at 257.6 nm for benzophenone. The second method, zero-crossing third derivative spectrophotometry, depends on measuring the third derivative peak values at 263.2 nm. The third method, ratio first derivative spectrophotometry, depends on measuring the peak amplitudes of the first derivative of the ratio spectra (the spectra of benzophenone divided by the spectrum of 5.0 μg/mL phenytoin solution) at 272 nm. The calibration graphs were linear over the range of 1-10 μg/mL. The detection limits of the first and the third derivative methods were found to be 0.04 μg/mL and 0.11 μg/mL and the quantitation limits were 0.13 μg/mL and 0.34 μg/mL, respectively, while for the ratio derivative method, the detection limit was 0.06 μg/mL and the quantitation limit was 0.18 μg/mL. The proposed methods were applied successfully to the assay of the studied drug in phenytoin bulk powder and certain pharmaceutical preparations. The results were statistically compared to those obtained using a polarographic method and were found to be in good agreement. PMID:22152156

  5. Elemental Impurities in Pharmaceutical Excipients.

    PubMed

    Li, Gang; Schoneker, Dave; Ulman, Katherine L; Sturm, Jason J; Thackery, Lisa M; Kauffman, John F

    2015-12-01

    Control of elemental impurities in pharmaceutical materials is currently undergoing a transition from control based on concentrations in components of drug products to control based on permitted daily exposures in drug products. Within the pharmaceutical community, there is uncertainty regarding the impact of these changes on manufactures of drug products. This uncertainty is fueled in part by a lack of publically available information on elemental impurity levels in common pharmaceutical excipients. This paper summarizes a recent survey of elemental impurity levels in common pharmaceutical excipients as well as some drug substances. A widely applicable analytical procedure was developed and was shown to be suitable for analysis of elements that are subject to United States Pharmacopoeia Chapter <232> and International Conference on Harmonization's Q3D Guideline on Elemental Impurities. The procedure utilizes microwave-assisted digestion of pharmaceutical materials and inductively coupled plasma mass spectrometry for quantitative analysis of these elements. The procedure was applied to 190 samples from 31 different excipients and 15 samples from eight drug substances provided through the International Pharmaceutical Excipient Council of the Americas. The results of the survey indicate that, for the materials included in the study, relatively low levels of elemental impurities are present. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Development of a sensitive and rapid method for rifampicin impurity analysis using supercritical fluid chromatography.

    PubMed

    Li, Wei; Wang, Jun; Yan, Zheng-Yu

    2015-10-10

    A novel simple, fast and efficient supercritical fluid chromatography (SFC) method was developed and compared with RPLC method for the separation and determination of impurities in rifampicin. The separation was performed using a packed diol column and a mobile phase B (modifier) consisting of methanol with 0.1% ammonium formate (w/v) and 2% water (v/v). Overall satisfactory resolutions and peak shapes for rifampicin quinone (RQ), rifampicin (RF), rifamycin SV (RSV), rifampicin N-oxide (RNO) and 3-formylrifamycinSV (3-FR) were obtained by optimization of the chromatography system. With gradient elution of mobile phase, all of the impurities and the active were separated within 4 min. Taking full advantage of features of SFC (such as particular selectivity, non-sloping baseline in gradient elution, and without injection solvent effects), the method was successfully used for determination of impurities in rifampicin, with more impurity peaks detected, better resolution achieved and much less analysis time needed compared with conventional reversed-phase liquid chromatography (RPLC) methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Determination of Organic Impurities in Anthraquinone Color Additives D&C Violet No. 2 and D&C Green No. 6 by Ultra-High Performance Liquid Chromatography.

    PubMed

    Yang, H H Wendy

    2017-01-01

    A new practical and time-saving ultra-high performance liquid chromatography (UHPLC) method has been developed for determining the organic impurities in the anthraquinone color additives D&C Violet No. 2 and D&C Green No. 6. The impurities determined are p-toluidine, 1-hydroxyanthraquinone, 1,4-dihydroxyanthraquinone, and two subsidiary colors. The newly developed UHPLC method uses a 1.7-μ particle size C-18 column, 0.1 M ammonium acetate and acetonitrile as eluents, and photodiode array detection. For the quantification of the impurities, six-point calibration curves were used with correlation coefficients that ranged from 0.9974 to 0.9998. Recoveries of impurities ranged from 99 to 104%. Relative standard deviations ranged from 0.81 to 4.29%. The limits of detection for the impurities ranged from 0.0067% to 0.216%. Samples from sixteen batches of each color additive were analyzed, and the results favorably compared with the results obtained by gravity-elution column chromatography, thin-layer chromatography, and isooctane extraction. Unlike with those other methods, use of the UHPLC method permits all of the impurities to be determined in a single analysis, while also reducing the amount of organic waste and saving time and labor. The method is expected to be implemented by the U.S. Food and Drug Administration for analysis of color additive samples submitted for batch certification.

  8. The ice VII-ice X phase transition with implications for planetary interiors

    NASA Astrophysics Data System (ADS)

    Aarestad, B.; Frank, M. R.; Scott, H.; Bricker, M.; Prakapenka, V.

    2008-12-01

    A significant amount of research on the high pressure polymorphs of H2O have detailed the lattice structure and density of these phases, namely ice VI, ice VII, and ice X. These high pressure ices are noteworthy as they may comprise a considerable part of the interior of large icy planets and satellites. However, there is a dearth of data on how the incorporation of an impurity, charged or non-charged, affects the ice VII-ice X transition. This study examined the ice VII-ice X transition that occurs at approximately 62 GPa with a pure system and two select impure systems. Solutions of pure H2O, 1.6 mole percent NaCl in H2O, and 1.60 mole percent CH3OH in H2O were compressed in a diamond anvil cell (DAC). The experiments were performed at the GSECARS 13-BM-D beam line at the Advanced Photon Source at Argonne National Laboratory. Powder diffraction data of the ice samples were collected using monochromatic X-ray radiation, 0.2755 Å, and a MAR 345 online imaging system at intervals of approximately 2 GPa up to ~71.5, ~74.5, and ~68 GPa, respectively. Analyses of the data provided volume-pressure relations (at 298 K) which were used to detail the ice VII-ice X phase transition. The pressure of the phase transition, based upon an interpretation of the X-ray diffraction data, was found to vary as a function of the impurity type. Thus, the depth of the ice VII-ice X phase transition within an ice-rich planetary body can be influenced by trace-level impurities.

  9. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  10. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  11. Development and validation of a hydrophilic interaction chromatography method coupled with a charged aerosol detector for quantitative analysis of nonchromophoric α-hydroxyamines, organic impurities of metoprolol.

    PubMed

    Xu, Qun; Tan, Shane; Petrova, Katya

    2016-01-25

    The European Pharmacopeia (EP) metoprolol impurities M and N are polar, nonchromophoric α-hydroxyamines, which are poorly retained in a conventional reversed-phase chromatographic system and are invisible for UV detection. Impurities M and N are currently analyzed by TLC methods in the EP as specified impurities and in the United States Pharmacopeia-National Formulary (USP-NF) as unspecified impurities. In order to modernize the USP monographs of metoprolol drug substances and related drug products, a hydrophilic interaction chromatography (HILIC) method coupled with a charged aerosol detector (CAD) was explored for the analysis of the two impurities. A comprehensive column screening that covers a variety of HILIC stationary phases (underivatized silica, amide, diol, amino, zwitterionic, polysuccinimide, cyclodextrin, and mixed-mode) and optimization of HPLC conditions led to the identification of a Halo Penta HILIC column (4.6 × 150 mm, 5 μm) and a mobile phase comprising 85% acetonitrile and 15% ammonium formate buffer (100 mM, pH 3.2). Efficient separations of metoprolol, succinic acid, and EP metoprolol impurities M and N were achieved within a short time frame (<8 min). The HILIC-CAD method was subsequently validated per USP validation guidelines with respect to specificity, robustness, linearity, accuracy, and precision, and could be incorporated into the current USP-NF monographs to replace the outdated TLC methods. Furthermore, the developed method was successfully applied to determine organic impurities in metoprolol drug substance (metoprolol succinate) and drug products (metoprolol tartrate injection and metoprolol succinate extended release tablets). Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  13. A prefilter for mitigating PH 3 contamination of a Ni-YSZ anode

    NASA Astrophysics Data System (ADS)

    Xu, Chunchuan; Zondlo, John W.; Sabolsky, Edward M.

    Ni-YSZ is used as the anode of a solid oxide fuel cell (SOFC) because it has excellent electrochemical performance for operation with coal-derived syngas. However, trace impurities, PH 3 H 2S AsH 3, and Sb in coal-syngas can cause SOFC degradation. Described here is a means of removing PH 3 impurity from syngas by using a Ni-based prefilter. In one test, a thin Ni-based filter was set upstream of a Ni-YSZ anode-supported SOFC. The SOFC was exposed to syngas with PH 3 under a constant current load at 800 °C. The filter decreased 20 ppm PH 3 in the feed to a level which did not degrade the SOFC for over 400 h until the filter became saturated. In another test, both H 2S and PH 3 were co-fed to the cell with Ni-based and Fe/Ni-based filters. The interaction between these two impurities did not significantly impact the filter performance with respect to PH 3 removal for both filter formulations. The cell performance was evaluated by current-voltage measurements and impedance spectroscopy. Post-mortem analyses of the cell and filter were performed by means of XRD, SEM/EDS and XPS. With proper filter design, the Ni-YSZ SOFC can operate on contaminated coal-syngas without degradation over a prescribed period of time.

  14. The origin of the residual conductivity of GaN films on ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Keun; Cai, Zhuhua; Ziemer, Katherine; Doolittle, William Alan

    2009-08-01

    In this paper, the origin of the conductivity of GaN films grown on ferroelectric materials was investigated using XPS, AES, and XRD analysis tools. Depth profiles confirmed the existence of impurities in the GaN film originating from the substrates. Bonding energy analysis from XPS and AES verified that oxygen impurities from the substrates were the dominant origin of the conductivity of the GaN film. Furthermore, Ga-rich GaN films have a greater chance of enhancing diffusion of lithium oxide from the substrates, resulting in more substrate phase separation and a wider inter-mixed region confirmed by XRD. Therefore, the direct GaN film growth on ferroelectric materials causes impurity diffusion from the substrates, resulting in highly conductive GaN films. Future work needs to develop non-conductive buffer layers for impurity suppression in order to obtain highly resistive GaN films.

  15. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar, E-mail: awadheshkrai@rediffmail.com

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known asmore » “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.« less

  16. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  17. Qualitative and Quantitative Analysis of Organic Impurities in Feedwater of a Heat-Recovery Steam Generator

    NASA Astrophysics Data System (ADS)

    Chichirov, A. A.; Chichirova, N. D.; Filimonova, A. A.; Gafiatullina, A. A.

    2018-03-01

    In recent years, combined-cycle units with heat-recovery steam generators have been constructed and commissioned extensively in the European part of Russia. By the example of the Kazan Cogeneration Power Station no. 3 (TETs-3), an affiliate of JSC TGK-16, the specific problems for most power stations with combined-cycle power units that stem from an elevated content of organic impurities in the feedwater of the heat-recovery steam generator (HRSG) are examined. The HRSG is fed with highly demineralized water in which the content of organic carbon is also standardized. It is assumed that the demineralized water coming from the chemical water treatment department of TETs-3 will be used. Natural water from the Volga River is treated to produce demineralized water. The results of a preliminary analysis of the feedwater demonstrate that certain quality indices, principally, the total organic carbon, are above the standard values. Hence, a comprehensive investigation of the feedwater for organic impurities was performed, which included determination of their structure using IR and UV spectroscopy techniques, potentiometric measurements, and element analysis; determination of physical and chemical properties of organic impurities; and prediction of their behavior in the HRSG. The estimation of the total organic carbon revealed that it exceeded the standard values in all sources of water comprising the feedwater for the HRSG. The extracted impurities were humic substances, namely, a mixture of humic and fulvic acids in a 20 : 80 ratio, respectively. In addition, an analysis was performed of water samples taken at all intermediate stages of water treatment to study the behavior of organic substances in different water treatment processes. An analysis of removal of the humus substances in sections of the water treatment plant yielded the concentration of organic substances on the HRSG condensate. This was from 100 to 150 μg/dm3. Organic impurities in boiler water can induce internal corrosion and deposits containing products of their degradation.

  18. Tests of Transport Theory and Reduced Impurity Influx with Highly Radiative Plasmas in TFTR

    NASA Astrophysics Data System (ADS)

    Hill, K. W.

    1997-11-01

    The electron and ion temperature profiles in beam-heated plasmas were observed to be remarkably invariant when radiative losses were increased significantly through gas puffing of high-Z impurities (argon, krypton, xenon) in the Tokamak Fusion Test Reactor. Without impurity puffing, radiative losses accounted for typically only ~ 25\\char'45 of the input power and the radiation profile was strongly peaked at the plasma edge, where the dominant carbon impurity was not fully stripped. At central electron temperatures, T_eo, of ~ 6 keV, trace concentrations of krypton and xenon (n_z/ne ~ 10-3) generated flat and centrally peaked radiation profiles respectively, and a significant fraction of the input power (45-100\\char'45 ) was lost through radiation. This loss provided a nearly ideal technique for studying local heat transport in tokamaks because it perturbed the net heating profile strongly and in a measureable way, with little effect on the density and the beam deposition profiles. In supershot plasmas, Ti >> T_e, the ion temperature profile remained constant, or even increased modestly, as the radiated power fraction was increased to 75-90\\char'45 with krypton and xenon. This observation is surprising because ion-electron coupling is the dominant power loss term for the ions in the core of supershot plasmas, and the central Ti would have decreased a factor of two if the local ion thermal diffusivity had remained constant at its value without impurity puffing. In L-mode plasmas where ion-electron power coupling is a smaller term in the power balance, the electron temperature during impurity puffing also changed only ~ 10-15\\char'45 even as the net power flow through the electrons was decreased by a factor of ~ 3. The ``stiffness" of the temperature profiles to net input power is supportive of transport mechanisms which have a marginal-stability character. Preliminary comparisons of the temperature changes with predictions of the IFS/PPPL transport model,(M. Kotschenreuther, W. Dorland, M. A. Beer, and G. W. Hammett, Phys. Plasmas 2, 2381 (1995)) which has strong marginal-stability behavior, are reasonable; more detailed comparisons are in progress. Use of high-Z radiators did not impair fusion performance, confirming they can be used to reduce the heat flux to the plasma facing components with minimal ion dilution. At input power level s of 30-33 MW, enhanced radiation through krypton and xenon puffing eliminated serious carbon influx (carbon ``blooms") which occurred in comparable plasmas without impurity puffing.

  19. Analysis of effects of impurities intentionally incorporated into silicon

    NASA Technical Reports Server (NTRS)

    Uno, F.

    1977-01-01

    A methodology was developed and implemented to allow silicon samples containing intentionally incorporated impurities to be fabricated into finished solar cells under carefully controlled conditions. The electrical and spectral properties were then measured for each group processed.

  20. Innovative sludge pretreatment technology for impurity separation using micromesh.

    PubMed

    Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao

    2018-05-23

    In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2  min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.

  1. Impurity transport in enhanced confinement regimes in RFX-mod Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Carraro, Lorella; Menmuir, Sheena; Fassina, Alessandro

    2010-11-01

    The results of impurity transport studies in RFX-mod enhanced confinement quasi-single helicity (QSH) and single helical axis (SHAx) regimes are presented and discussed. The impurity diffusion coefficient and pinch velocity are obtained through comparing experimental emission pattern (line emission and SXR time evolutions, SXR profiles) with the results of a 1-D impurity transport code. Previous analysis [S. Menmuir et al. to be published in Plasma Phys. Contr. Fus.] of impurity transport in RFX-mod standard discharges showed that the impurity pinch velocity, always directed outwards, features a barrier with high values around r/a = 0.8, where the diffusion coefficient decreases by one order of magnitude. In the QSH regime, the transition region in D and v is more internal and the barrier in velocity is wider and stronger. New results have been obtained in experiments with Ni laser blow-off (LBO) injection in high current discharges (Ip>1.5 MA) with long lasting QSH, to better characterize the Ni behavior inside the helical magnetic topology.

  2. Defect Analysis Of Quality Palm Kernel Meal Using Statistical Quality Control In Kernels Factory

    NASA Astrophysics Data System (ADS)

    Sembiring, M. T.; Marbun, N. J.

    2018-04-01

    The production quality has an important impact retain the totality of characteristics of a product or service to pay attention to its capabilities to meet the needs that have been established. Quality criteria Palm Kernel Meal (PKM) set Factory kernel is as follows: oil content: max 8.50%, water content: max 12,00% and impurity content: max 4.00% While the average quality of the oil content of 8.94%, the water content of 5.51%, and 8.45% impurity content. To identify the defective product quality PKM produced, then used a method of analysis using Statistical Quality Control (SQC). PKM Plant Quality Kernel shows the oil content was 0.44% excess of a predetermined maximum value, and 4.50% impurity content. With excessive PKM content of oil and dirt cause disability content of production for oil, amounted to 854.6078 kg PKM and 8643.193 kg impurity content of PKM. Analysis of the results of cause and effect diagram and SQC, the factors that lead to poor quality of PKM is Ampere second press oil expeller and hours second press oil expeller.

  3. Recent trends in the impurity profile of pharmaceuticals

    PubMed Central

    Pilaniya, Kavita; Chandrawanshi, Harish K.; Pilaniya, Urmila; Manchandani, Pooja; Jain, Pratishtha; Singh, Nitin

    2010-01-01

    Various regulatory authorities such as the International Conference on Harmonization (ICH), the United States Food and Drug administration (FDA), and the Canadian Drug and Health Agency (CDHA) are emphasizing on the purity requirements and the identification of impurities in Active Pharmaceutical Ingredients (APIs). The various sources of impurity in pharmaceutical products are — reagents, heavy metals, ligands, catalysts, other materials like filter aids, charcoal, and the like, degraded end products obtained during \\ after manufacturing of bulk drugs from hydrolysis, photolytic cleavage, oxidative degradation, decarboxylation, enantiomeric impurity, and so on. The different pharmacopoeias such as the British Pharmacopoeia, United State Pharmacopoeia, and Indian Pharmacopoeia are slowly incorporating limits to allowable levels of impurities present in APIs or formulations. Various methods are used to isolate and characterize impurities in pharmaceuticals, such as, capillary electrophoresis, electron paramagnetic resonance, gas–liquid chromatography, gravimetric analysis, high performance liquid chromatography, solid-phase extraction methods, liquid–liquid extraction method, Ultraviolet Spectrometry, infrared spectroscopy, supercritical fluid extraction column chromatography, mass spectrometry, Nuclear magnetic resonance (NMR) spectroscopy, and RAMAN spectroscopy. Among all hyphenated techniques, the most exploited techniques for impurity profiling of drugs are Liquid Chromatography (LC)-Mass Spectroscopy (MS), LC-NMR, LC-NMR-MS, GC-MS, and LC-MS. This reveals the need and scope of impurity profiling of drugs in pharmaceutical research. PMID:22247862

  4. Magnetic impurity effect on charge and magnetic order in doped La1.5Ca0.5CoO4

    NASA Astrophysics Data System (ADS)

    Horigane, K.; Hiraka, H.; Tomiyasu, K.; Ohoyama, K.; Louca, D.; Yamada, K.

    2012-02-01

    Neutron scattering experiments were performed on single crystals of magnetic impurity doped cobalt oxides La1.5Ca0.5CoO4 to characterize the charge and spin orders. We newly found contrasting impurity effects. Two types of magnetic peaks are observed at q = (0.5,0,L) with L = half-integer and integer in La1.5Ca0.5CoO4, while magnetic peak at L = half-integer (integer) was only observed in Mn (Fe)-substituted sample. Although Mn and Fe impurities degrade charge and magnetic order, Cr impurity stabilizes the ordering at x = 0.5. Based on the crystal structural analysis of Cr doped sample, we found that the excess oxygen and change of octahedron around Co3+ were realized in Cr doped sample.

  5. High-Performance Ultrathin Active Chiral Metamaterials.

    PubMed

    Wu, Zilong; Chen, Xiaodong; Wang, Mingsong; Dong, Jianwen; Zheng, Yuebing

    2018-05-22

    Ultrathin active chiral metamaterials with dynamically tunable and responsive optical chirality enable new optical sensors, modulators, and switches. Herein, we develop ultrathin active chiral metamaterials of highly tunable chiroptical responses by inducing tunable near-field coupling in the metamaterials and exploit the metamaterials as ultrasensitive sensors to detect trace amounts of solvent impurities. To demonstrate the active chiral metamaterials mediated by tunable near-field coupling, we design moiré chiral metamaterials (MCMs) as model metamaterials, which consist of two layers of identical Au nanohole arrays stacked upon one another in moiré patterns with a dielectric spacer layer between the Au layers. Our simulations, analytical fittings, and experiments reveal that spacer-dependent near-field coupling exists in the MCMs, which significantly enhances the spectral shift and line shape change of the circular dichroism (CD) spectra of the MCMs. Furthermore, we use a silk fibroin thin film as the spacer layer in the MCM. With the solvent-controllable swelling of the silk fibroin thin films, we demonstrate actively tunable near-field coupling and chiroptical responses of the silk-MCMs. Impressively, we have achieved the spectral shift over a wavelength range that is more than one full width at half-maximum and the sign inversion of the CD spectra in a single ultrathin (1/5 of wavelength in thickness) MCM. Finally, we apply the silk-MCMs as ultrasensitive sensors to detect trace amounts of solvent impurities down to 200 ppm, corresponding to an ultrahigh sensitivity of >10 5 nm/refractive index unit (RIU) and a figure of merit of 10 5 /RIU.

  6. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.

  7. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry.

    PubMed

    Wang, Shunhai; Liu, Anita P; Yan, Yuetian; Daly, Thomas J; Li, Ning

    2018-05-30

    Traditional SDS-PAGE method and its modern equivalent CE-SDS method are both widely applied to assess the purity of therapeutic monoclonal antibody (mAb) drug products. However, structural identification of low molecular weight (LMW) impurities using those methods has been challenging and largely based on empirical knowledges. In this paper, we present that hydrophilic interaction chromatography (HILIC) coupled with mass spectrometry analysis is a novel and orthogonal method to characterize such LMW impurities present within a purified mAb drug product sample. We show here that after removal of N-linked glycans, the HILIC method separates mAb-related LMW impurities with a size-based elution order. The subsequent mass measurement from a high-resolution accurate mass spectrometer provides direct and unambiguous identification of a variety of low-abundance LMW impurities within a single LC-MS analysis. Free light chain, half antibody, H2L species (antibody possessing a single light chain) and protein backbone-truncated species can all be confidently identified and elucidated in great detail, including the truncation sites and associated post-translational modifications. It is worth noting that this study provides the first example where the H2L species can be directly detected in a mAb drug product sample by intact mass analysis without prior enrichment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES).

    PubMed

    Engelhard, Carsten; Scheffer, Andy; Nowak, Sascha; Vielhaber, Torsten; Buscher, Wolfgang

    2007-02-05

    A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min(-1) in contrast to 15 L min(-1) using conventional ICP sources. The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source. Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44+/-0.04 and 3.19+/-0.21 microg g(-1) for Co and Mn in the CRM 075c and 2.32+/-0.09, 81.8+/-0.4, 32.2+/-3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.

  9. Forced degradation and impurity profiling: recent trends in analytical perspectives.

    PubMed

    Jain, Deepti; Basniwal, Pawan Kumar

    2013-12-01

    This review describes an epigrammatic impression of the recent trends in analytical perspectives of degradation and impurities profiling of pharmaceuticals including active pharmaceutical ingredient (API) as well as drug products during 2008-2012. These recent trends in forced degradation and impurity profiling were discussed on the head of year of publication; columns, matrix (API and dosage forms) and type of elution in chromatography (isocratic and gradient); therapeutic categories of the drug which were used for analysis. It focuses distinctly on comprehensive update of various analytical methods including hyphenated techniques for the identification and quantification of thresholds of impurities and degradants in different pharmaceutical matrices. © 2013 Elsevier B.V. All rights reserved.

  10. Photoreflectance measurements of unintentional impurity concentrations in undoped GaAs

    NASA Astrophysics Data System (ADS)

    Sydor, Michael; Angelo, James; Mitchel, William; Haas, T. W.; Yen, Ming-Yuan

    1989-07-01

    Modulated photoreflectance is used to measure the unintentional impurity concentrations in undoped epitaxial GaAs. A photoreflectance signal above the band gap spreads with the unintentional impurity concentrations and shows well-defined Franz-Keldysh peaks whose separation provide a good measure of the current carrier concentrations. In samples less than 3-micron thick, a photoreflectance signal at the band edge contains a substrate-epilayer interface effect which precludes the analysis of the data by using the customary third derivative functional fits for low electric fields.

  11. Synthesis markers in illegally manufactured 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine.

    PubMed

    Bohn, M; Bohn, G; Blaschke, G

    1993-01-01

    In this paper the isolation and identification of 12 compounds as impurities in illicit 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA) is reported. Isolation of these substances is performed by preparative TLC, while identification is performed by using mass spectrometry and 1H-NMR spectroscopy. A simple and rapid method for detection of these impurities in seized MDA and MDMA samples is described. The identification of the impurities can provide numerous points on which to base comparative analysis of different exhibits.

  12. Kinetic performance comparison of fully and superficially porous particles with a particle size of 5 µm: intrinsic evaluation and application to the impurity analysis of griseofulvin.

    PubMed

    Kahsay, Getu; Broeckhoven, Ken; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre

    2014-05-01

    After the great commercial success of sub-3 µm superficially porous particles, vendors are now also starting to commercialize 5 µm superficially porous particles, as an alternative to their fully porous counterparts which are routinely used in pharmaceutical analysis. In this study, the performance of 5 µm superficially porous particles was compared to that of fully porous 5 µm particles in terms of efficiency, separation performance and loadability on a conventional HPLC instrument. Van Deemter and kinetic plots were first used to evaluate the efficiency and performance of both particle types using alkylphenones as a test mixture. The van Deemter and kinetic plots showed that the superficially porous particles provide a superior kinetic performance compared to the fully porous particles over the entire relevant range of separation conditions, when both support types were evaluated at the same operating pressure. The same observations were made both for isocratic and gradient analysis. The superior performance was further demonstrated for the separation of a pharmaceutical compound (griseofulvin) and its impurities, where a gain in analysis time of around 2 could be obtained using the superficially porous particles. Finally, both particle types were evaluated in terms of loadability by plotting the resolution of the active pharmaceutical ingredient and its closest impurity as a function of the signal-to-noise ratio obtained for the smallest impurity. It was demonstrated that the superficially porous particles show better separation performance for griseofulvin and its impurities without significantly compromising sensitivity due to loadability issues in comparison with their fully porous counterparts. Moreover these columns can be used on conventional equipment without modifications to obtain a significant improvement in analysis time. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. DETECTING LOW-LEVEL SYNTHESIS IMPURITIES IN MODIFIED PHOSPHOROTHIOATE OLIGONUCLEOTIDES USING LIQUID CHROMATOGRAPHY – HIGH RESOLUTION MASS SPECTROMETRY

    PubMed Central

    Nikcevic, Irena; Wyrzykiewicz, Tadeusz K.; Limbach, Patrick A.

    2010-01-01

    Summary An LC-MS method based on the use of high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS) for profiling oligonucleotides synthesis impurities is described. Oligonucleotide phosphorothioatediesters (phosphorothioate oligonucleotides), in which one of the non-bridging oxygen atoms at each phosphorus center is replaced by a sulfur atom, are now one of the most popular oligonucleotide modifications due to their ease of chemical synthesis and advantageous pharmacokinetic properties. Despite significant progress in the solid-phase oligomerization chemistry used in the manufacturing of these oligonucleotides, multiple classes of low-level impurities always accompany synthetic oligonucleotides. Liquid chromatography-mass spectrometry has emerged as a powerful technique for the identification of these synthesis impurities. However, impurity profiling, where the entire complement of low-level synthetic impurities is identified in a single analysis, is more challenging. Here we present an LC-MS method based the use of high resolution-mass spectrometry, specifically Fourier transform ion cyclotron resonance mass spectrometry (FTIRCMS or FTMS). The optimal LC-FTMS conditions, including the stationary phase and mobile phases for the separation and identification of phosphorothioate oligonucleotides, were found. The characteristics of FTMS enable charge state determination from single m/z values of low-level impurities. Charge state information then enables more accurate modeling of the detected isotopic distribution for identification of the chemical composition of the detected impurity. Using this approach, a number of phosphorothioate impurities can be detected by LC-FTMS including failure sequences carrying 3′-terminal phosphate monoester and 3′-terminal phosphorothioate monoester, incomplete backbone sulfurization and desulfurization products, high molecular weight impurities, and chloral, isobutyryl, and N3 (2-cyanoethyl) adducts of the full length product. When compared with low resolution LC-MS, ~60% more impurities can be identified when charge state and isotopic distribution information is available and used for impurity profiling. PMID:21811394

  14. NMR and mass spectrometric characterization of vinblastine, vincristine and some new related impurities - part I.

    PubMed

    Dubrovay, Zsófia; Háda, Viktor; Béni, Zoltán; Szántay, Csaba

    2013-10-01

    In the course of exploring the possibilities of developing a new, improved process at Gedeon Richter for the production of the "bisindole" alkaloids vinblastine (VLB) and vincristine (VCR), some novel VLB/VCR-related trace impurities were detected by analytical HPLC. Following isolation by preparative HPLC, a combination of 1D and 2D ultra high-field NMR and high-resolution (HR) (LC-)MS/MS studies allowed the structural identification and complete spectral characterization of several hitherto unpublished VLB/VCR-analogue impurities. Since the impurities could not be isolated in entirely pure forms and were available only in minute, mass-limited quantities, accessing the spectral information needed for their ab initio structure determination was met with various practical difficulties. Successful structure determination therefore relied heavily on the availability and use of detailed and definitive spectral data for both VLB and VCR. In particular, the utilization of detailed (1)H, (13)C, and (15)N NMR assignments as well as (1)H-(1)H, (1)H-(13)C and (1)H-(15)N spin-spin connectivities pertaining to different solvents for VLB/VCR base and sulphate salt was required. Although NMR studies on VLB base and other bisindoles were reported earlier in the literature, an NMR characterization of VLB and VCR under the above-mentioned circumstances and using ultra-high field instrumentation is either scarcely available or entirely lacking, therefore the necessary data had to be obtained in-house. Likewise, a modern tandem HR-ESI-MS/MS(n) fragmentation study of VLB and VCR has not been published yet. In the present paper we therefore give a thorough NMR and MS characterization of VLB and VCR specifically with a view to filling this void and to provide sufficiently extensive and solid reference data for the structural investigation of the aforementioned VLB/VCR impurities. Besides being scientifically relevant in its own right, the disclosed data should be useful for anyone interested in VLB/VCR-related molecules at a structural level. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Lithium Oxysilicate Compounds Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apblett, Christopher A.; Coyle, Jaclyn

    In this study, the structure and composition of lithium silicate thin films deposited by RF magnetron co-sputtering is investigated. Five compositions ranging from Li2Si2O5 to Li8SiO6 were confirmed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and structure analysis on the evolution of non-bridging oxygens in the thin films was conducted with fourier transform infrared (FTIR) spectroscopy. It was found that non-bridging oxygens (NBOs) increased as the silicate network breaks apart with increasing lithium content which agrees with previous studies on lithium silicates. Thin film impurities were examined with x-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectroscopymore » (TOFSIMS) and traced back to target synthesis. This study utilizes a unique synthesis technique for lithium silicate thin films and can be referred to in future studies on the ionic conductivity of lithium silicates formed on the surface of silicon anodes in lithium ion batteries.« less

  16. Advances in boronization on NSTX-Upgrade

    DOE PAGES

    Skinner, C. H.; Bedoya, F.; Scotti, F.; ...

    2017-01-27

    Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF) with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5 s to 5–8 s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron depositionmore » versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. Furthermore, this increase correlated with the rise of oxygen emission from the plasma.« less

  17. Characterization of hydrogenated amorphous silicon films obtained from rice husk

    NASA Astrophysics Data System (ADS)

    Nandi, K. C.; Mukherjee, D.; Biswas, A. K.; Acharya, H. N.

    1991-08-01

    Hydrogenated amorphous silicon ( a-Si: H) films were prepared by chemical vapour deposition (CVD) of silanes generated by the acid hydrolysis of magnesium silicide (Mg 2Si) obtained from rice husk. The films were deposited at various substrate temperatures ( Ts) ranging from 430 to 520°C. The results show that the films have room temperature (294 K) dark conductivity (σ d) of the order of 10 -8 - 10 -10 (ohm-cm) -1 with single activation energy (Δ Ed) and the photoconductivity (σ ph) decreases with increase of Ts. Optical band gap ( Eopt) lies between 1.60-1.73 eV and hydrogen content ( CH) in the films is at best 8.3 at %. Au/ a-Si: H junction shows that it acts as a rectifier contact with Schottky barrier height ( VB) 0.69 eV. The films are contaminated by traces of impurities like Na, K, Al, Cl and O as revealed by secondary ion mass spectrometric (SIMS) analysis.

  18. The control of purity and stoichiometry of compound semiconductors by high vapor pressure transport

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.; Ito, Kazufumi; Scroggs, Jeffery S.; Tran, Hien T.

    1995-01-01

    In this report we summarize the results of a three year research program on high pressure vapor transport (HPVT) of compound semiconductors. Most of our work focused onto pnictides, in particular ZnGeP2, as a model system. Access to single crystals of well controlled composition of this material is desired for advancing the understanding and control of its point defect chemistry in the contest of remote, real-time sensing of trace impurities, e.g., greenhouse gases, in the atmosphere by ZnGeP2 optical parametric oscillators (OPO's).

  19. Impurities Removal in Seawater to Optimize the Magnesium Extraction

    NASA Astrophysics Data System (ADS)

    Natasha, N. C.; Firdiyono, F.; Sulistiyono, E.

    2017-02-01

    Magnesium extraction from seawater is promising way because magnesium is the second abundant element in seawater and Indonesia has the second longest coastline in the world. To optimize the magnesium extraction, the impurities in seawater need to be eliminated. Evaporation and dissolving process were used in this research to remove the impurities especially calcium in seawater. Seawater which has been evaporated from 100 ml to 50 ml was dissolved with variations solution such as oxalic acid and ammonium bicarbonate. The solution concentration is 100 g/l and it variations are 2 ml, 4 ml, 6 ml, 8 ml, 10 ml, 20 ml, 30 ml, 40 ml and 50 ml. This step will produce precipitate and filtrate then it will be analysed to find out the result of this process. The precipitate was analysed by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) but the filtrate was analysed by Inductively Coupled Plasma (ICP). XRD analysis shows that calcium oxalate and calcium carbonate were formed and ICP analysis shows that the remaining calcium in seawater using oxalic acid is about 0.01% and sodium 0.14% but when using ammonium bicarbonate the remaining calcium is 2.5% and sodium still more than 90%. The results show that both oxalic acid and ammonium bicarbonate can remove the impurities but when using oxalic acid, not only the impurities but also magnesium was precipitated. The conclusion of this research is the best solution to remove the impurities in seawater without precipitate the magnesium is using ammonium bicarbonate.

  20. Development and validation of a reversed phase liquid chromatographic method for analysis of oxytetracycline and related impurities.

    PubMed

    Kahsay, Getu; Shraim, Fairouz; Villatte, Philippe; Rotger, Jacques; Cassus-Coussère, Céline; Van Schepdael, Ann; Hoogmartens, Jos; Adams, Erwin

    2013-03-05

    A simple, robust and fast high-performance liquid chromatographic method is described for the analysis of oxytetracycline and its related impurities. The principal peak and impurities are all baseline separated in 20 min using an Inertsil C₈ (150 mm × 4.6 mm, 5 μm) column kept at 50 °C. The mobile phase consists of a gradient mixture of mobile phases A (0.05% trifluoroacetic acid in water) and B (acetonitrile-methanol-tetrahydrofuran, 80:15:5, v/v/v) pumped at a flow rate of 1.3 ml/min. UV detection was performed at 254 nm. The developed method was validated for its robustness, sensitivity, precision and linearity in the range from limit of quantification (LOQ) to 120%. The limits of detection (LOD) and LOQ were found to be 0.08 μg/ml and 0.32 μg/ml, respectively. This method allows the separation of oxytetracycline from all known and 5 unknown impurities, which is better than previously reported in the literature. Moreover, the simple mobile phase composition devoid of non-volatile buffers made the method suitable to interface with mass spectrometry for further characterization of unknown impurities. The developed method has been applied for determination of related substances in oxytetracycline bulk samples available from four manufacturers. The validation results demonstrate that the method is reliable for quantification of oxytetracycline and its impurities. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Application of ion-trap mass spectrometry for identification and structural determination of an unknown impurity in simvastatin.

    PubMed

    Reddy, G V Ram; Kumar, A Praveen; Reddy, B Venkateswara; Sreeramulu, J

    2009-10-01

    Anhydro-simvastatin and simvastatin dimer are the two main impurities in the fermentation broth as well as in the final product of simvastatin, which is a hypolipidemic drug. An unknown impurity with m/z 451 for [(M + H)(+)] was detected in the analysis of final simvastatin drug sample. By using reverse phase high performance liquid chromatography (HPLC)-mass spectrometry (MS) and MS/MS spectra, the unknown impurity was detected and identified. Separation was achieved on ACE-5 C18 (150 x 4.6 mm, 3 microm column) at the flow rate of 1.2 ml min(-1) applying gradient elution of mobile phase A consisting of Milli-Q water of pH 3.0 with formic acid and B consisting of acetonitrile. MS/MS spectrum of the unknown impurity was obtained using HPLC-MS equipped with positive electrosoray ionization (ESI). The unknown impurity is named as 7-[7-(2,2-dimethyl-butyryloxy)-2,6-dimethyl-1,2,6,7,8,8a-hexahydro-naphthalen-1 -yl]-3-hydroxy-5-hydroxymethyl-heptanoic acid.

  2. Development and validation of a multiplex quantitative polymerase chain reaction assay for the detection of Mollicutes impurities in human cells, cultured under good manufacturing practice conditions, and following European Pharmacopoeia requirements and the International Conference on Harmonization guidelines.

    PubMed

    Vanni, Irene; Ugolotti, Elisabetta; Raso, Alessandro; Di Marco, Eddi; Melioli, Giovanni; Biassoni, Roberto

    2012-07-01

    The clinical applications of in vitro manipulated cultured cells and their precursors are often made use of in therapeutic trials. However, tissue cultures can be easily contaminated by the ubiquitous Mollicutes micro-organisms, which can cause various and severe alterations in cellular function. Thus methods able to detect and trace Mollicutes impurities contaminating cell cultures are required before starting any attempt to grow cells under good manufacturing practice (GMP) conditions. We developed a multiplex quantitative polymerase chain reaction (qPCR) assay specific for the 16S-23S rRNA intergenic spacer regions, for the Tuf and P1 cytoadhesin genes, able to detect contaminant Mollicutes species in a single tube reaction. The system was validated by analyzing different cell lines and the positive samples were confirmed by 16S and P1 cytoadhesin gene dideoxy sequencing. Our multiplex qPCR detection system was able to reach a sensitivity, specificity and robustness comparable with the culture and the indicator cell culture method, as required by the European Pharmacopoeia guidelines. We have developed a multiplex qPCR method, validated following International Conference on Harmonization (ICH) guidelines, as a qualitative limit test for impurities, assessing the validation characteristics of limit of detection and specificity. It also follows the European Pharmacopoeia guidelines and Food and Drug Administration (FDA) requirements.

  3. Impurity effects in highly frustrated diamond-lattice antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile; Gull, Emanuel; Trebst, Simon; Alicea, Jason; Bergman, Doron; Balents, Leon

    2011-08-01

    We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model” analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  4. Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Savary, Lucile

    2012-02-01

    We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.

  5. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JETa)

    NASA Astrophysics Data System (ADS)

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Czarski, T.; Dominik, W.; Karpinski, L.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Conway, N. J.; Dalley, S.; Figueiredo, J.; Nakano, T.; Tyrrell, S.; Zastrow, K.-D.; Zoita, V.

    2014-11-01

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  6. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET.

    PubMed

    Shumack, A E; Rzadkiewicz, J; Chernyshova, M; Jakubowska, K; Scholz, M; Byszuk, A; Cieszewski, R; Czarski, T; Dominik, W; Karpinski, L; Kasprowicz, G; Pozniak, K; Wojenski, A; Zabolotny, W; Conway, N J; Dalley, S; Figueiredo, J; Nakano, T; Tyrrell, S; Zastrow, K-D; Zoita, V

    2014-11-01

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  7. Development of visual peak selection system based on multi-ISs normalization algorithm to apply to methamphetamine impurity profiling.

    PubMed

    Lee, Hun Joo; Han, Eunyoung; Lee, Jaesin; Chung, Heesun; Min, Sung-Gi

    2016-11-01

    The aim of this study is to improve resolution of impurity peaks using a newly devised normalization algorithm for multi-internal standards (ISs) and to describe a visual peak selection system (VPSS) for efficient support of impurity profiling. Drug trafficking routes, location of manufacture, or synthetic route can be identified from impurities in seized drugs. In the analysis of impurities, different chromatogram profiles are obtained from gas chromatography and used to examine similarities between drug samples. The data processing method using relative retention time (RRT) calculated by a single internal standard is not preferred when many internal standards are used and many chromatographic peaks present because of the risk of overlapping between peaks and difficulty in classifying impurities. In this study, impurities in methamphetamine (MA) were extracted by liquid-liquid extraction (LLE) method using ethylacetate containing 4 internal standards and analyzed by gas chromatography-flame ionization detection (GC-FID). The newly developed VPSS consists of an input module, a conversion module, and a detection module. The input module imports chromatograms collected from GC and performs preprocessing, which is converted with a normalization algorithm in the conversion module, and finally the detection module detects the impurities in MA samples using a visualized zoning user interface. The normalization algorithm in the conversion module was used to convert the raw data from GC-FID. The VPSS with the built-in normalization algorithm can effectively detect different impurities in samples even in complex matrices and has high resolution keeping the time sequence of chromatographic peaks the same as that of the RRT method. The system can widen a full range of chromatograms so that the peaks of impurities were better aligned for easy separation and classification. The resolution, accuracy, and speed of impurity profiling showed remarkable improvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Identification of new impurities of enalapril maleate on oxidation in the presence of magnesium monoperoxyphthalate.

    PubMed

    Toporisic, Rebeka; Mlakar, Anita; Hvala, Jernej; Prislan, Iztok; Zupancic-Kralj, Lucija

    2010-06-05

    Stress stability testing and forced degradation were used to determine the stability of enalapril maleate (EM) and to find a degradation pathway for the drug. The degradation impurities, formed under different stressed conditions, were investigated by HPLC and UPLC-MS methods. HPLC analysis showed several degradation impurities of which several were already determined, but on oxidation in the presence of magnesium monoperoxyphthalate (MMPP) several impurities of EM were observed which were not yet characterized. The HPLC methods for determination of EM were validated. The linearity of HPLC method was established in the concentration range between 0.5 and 10 microg/mL with correlation coefficient greater than 0.99. The LOD of EM was 0.2 microg/mL and LOQ was 0.5 microg/mL. The validated HPLC method was used to determine the degradation impurities in samples after stress stability testing and forced degradation of EM. In order to identify new degradation impurities of EM after forced degradation UPLC-MS/MS(n), Orbitrap has been used. It was found that new impurities are oxidation products: (S)-1-((S)-2-((S)-1-ethoxy-4-(o,m,p-hydroxyphenyl)-1-oxobutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid, (2S)-1-((2S)-2-((2S)-1-ethoxy-4-hydroxy-1-oxo-4-phenylbutan-2-ylamino)propanoyl)pyrrolidine-2-carboxylic acid. (S)-2-(3-phenylpropylamino)-1-(pyrrolidin-1-yl)propan-1-one was identified as a new degradation impurity. Copyright (c) 2010. Published by Elsevier B.V.

  9. Estimation of snow albedo reduction by light absorbing impurities using Monte Carlo radiative transfer model

    NASA Astrophysics Data System (ADS)

    Sengupta, D.; Gao, L.; Wilcox, E. M.; Beres, N. D.; Moosmüller, H.; Khlystov, A.

    2017-12-01

    Radiative forcing and climate change greatly depends on earth's surface albedo and its temporal and spatial variation. The surface albedo varies greatly depending on the surface characteristics ranging from 5-10% for calm ocean waters to 80% for some snow-covered areas. Clean and fresh snow surfaces have the highest albedo and are most sensitive to contamination with light absorbing impurities that can greatly reduce surface albedo and change overall radiative forcing estimates. Accurate estimation of snow albedo as well as understanding of feedbacks on climate from changes in snow-covered areas is important for radiative forcing, snow energy balance, predicting seasonal snowmelt, and run off rates. Such information is essential to inform timely decision making of stakeholders and policy makers. Light absorbing particles deposited onto the snow surface can greatly alter snow albedo and have been identified as a major contributor to regional climate forcing if seasonal snow cover is involved. However, uncertainty associated with quantification of albedo reduction by these light absorbing particles is high. Here, we use Mie theory (under the assumption of spherical snow grains) to reconstruct the single scattering parameters of snow (i.e., single scattering albedo ῶ and asymmetry parameter g) from observation-based size distribution information and retrieved refractive index values. The single scattering parameters of impurities are extracted with the same approach from datasets obtained during laboratory combustion of biomass samples. Instead of using plane-parallel approximation methods to account for multiple scattering, we have used the simple "Monte Carlo ray/photon tracing approach" to calculate the snow albedo. This simple approach considers multiple scattering to be the "collection" of single scattering events. Using this approach, we vary the effective snow grain size and impurity concentrations to explore the evolution of snow albedo over a wide wavelength range (300 nm - 2000 nm). Results will be compared with the SNICAR model to better understand the differences in snow albedo computation between plane-parallel methods and the statistical Monte Carlo methods.

  10. Statics and dynamics of atomic dark-bright solitons in the presence of impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achilleos, V.; Frantzeskakis, D. J.; Kevrekidis, P. G.

    2011-11-15

    Adopting a mean-field description for a two-component atomic Bose-Einstein condensate, we study the statics and dynamics of dark-bright solitons in the presence of localized impurities. We use adiabatic perturbation theory to derive an equation of motion for the dark-bright soliton center. We show that, counterintuitively, an attractive (repulsive) delta-like impurity, acting solely on the bright-soliton component, induces an effective localized barrier (well) in the effective potential felt by the soliton; this way, dark-bright solitons are reflected from (transmitted through) attractive (repulsive) impurities. Our analytical results for the small-amplitude oscillations of solitons are found to be in good agreement with resultsmore » obtained via a Bogoliubov-de Gennes analysis and direct numerical simulations.« less

  11. Geochemistry, environmental and provenance study of the Middle Miocene Leitha limestones (Central Paratethys)

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed; Wagreich, Michael

    2017-06-01

    Mineralogical, major, minor, REE and trace element analyses of rock samples were performed on Middle Miocene limestones (Leitha limestones, Badenian) collected from four localities from Austria (Mannersdorf, Wöllersdorf, Kummer and Rosenberg quarries) and the Fertőrákos quarry in Hungary. Impure to pure limestones (i.e. limited by Al2O3 contents above or below 0.43 wt. %) were tested to evaluate the applicability of various geochemical proxies and indices in regard to provenance and palaeoenvironmental interpretations. Pure and impure limestones from Mannersdorf and Wöllersdorf (southern Vienna Basin) show signs of detrital input (REEs = 27.6 ± 9.8 ppm, Ce anomaly = 0.95 ± 0.1 and the presence of quartz, muscovite and clay minerals in impure limestones) and diagenetic influence (low contents of, e.g., Sr = 221 ± 49 ppm, Na is not detected, Ba = 15.6 ± 8.8 ppm in pure limestones). Thus, in both limestones the reconstruction of original sedimentary palaeoenvironments by geochemistry is hampered. The Kummer and Fertőrákos (Eisenstadt-Sopron Basin) comprise pure limestones (e.g., averages Sr = 571 ± 139 ppm, Na = 213 ± 56 ppm, Ba = 21 ± 4 ppm, REEs = 16 ± 3 ppm and Ce anomaly = 0.62 ± 0.05 and composed predominantly of calcite) exhibiting negligible diagenesis. Deposition under a shallow-water, well oxygenated to intermittent dysoxic marine environment can be reconstructed. Pure to impure limestones at Rosenberg-Retznei (Styrian Basin) are affected to some extent by detrital input and volcano-siliciclastic admixture. The Leitha limestones at Rosenberg have the least diagenetic influence among the studied localities (i.e. averages Sr = 1271 ± 261 ppm, Na = 315 ± 195 ppm, Ba = 32 ± 15 ppm, REEs = 9.8 ± 4.2 ppm and Ce anomaly = 0.77 ± 0.1 and consist of calcite, minor dolomite and quartz). The siliciclastic sources are characterized by immobile elemental ratios (i.e. La/Sc and Th/Co) which apply not only for the siliciclastics, but also for marls and impure limestones. At Mannersdorf the detrital input source varies between intermediate to silicic igneous rocks, while in Kummer and Rosenberg the source is solely silicic igneous rocks. The Chemical Index of Alteration (CIA) is only applicable in the shale-contaminated impure limestones. CIA values of the Leitha limestones from Mannersdorf indicate a gradual transition from warm to temperate palaeoclimate within the limestone succession of the Badenian.

  12. Investigation of non-uniformity and inclusions in 6LiInSe2 utilizing laser induced breakdown spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Wiggins, Brenden; Tupitsyn, Eugene; Bhattacharya, Pijush; Rowe, Emmanuel; Lukosi, Eric; Chvala, Ondrej; Burger, Arnold; Stowe, Ashley

    2013-09-01

    Impurity analysis and compositional distribution studies have been conducted on a crystal of LiInSe2, a compound semiconductor which recently has been shown to respond to ionizing radiation. IR microscopy and laser induced breakdown spectroscopy (LIBS) revealed the presence of inclusions within the crystal lattice. These precipitates were revealed to be alkali and alkaline earth elemental impurities with non-uniform spatial distribution in the crystal. LIBS compositional maps correlate the presence of these impurities with visual color differences in the crystal as well as a significant shift of the band gap. Further, LIBS revealed variation in the ratio of I-III-VI2 elemental constituents throughout the crystal. Analysis of compositional variation and impurities will aid in discerning optimal synthesis and crystal growth parameters to maximize the mobility-lifetime product and charge collection efficiency in the LiInSe2 crystal. Preliminary charge trapping calculations have also been conducted with the Monte Carlo N-particle eXtended (MCNPx) package indicating preferential trapping of holes during irradiation with thermal neutrons.

  13. Design of experiments as a tool for LC-MS/MS method development for the trace analysis of the potentially genotoxic 4-dimethylaminopyridine impurity in glucocorticoids.

    PubMed

    Székely, Gy; Henriques, B; Gil, M; Ramos, A; Alvarez, C

    2012-11-01

    The present study reports on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method development strategy supported by design of experiments (DoE) for the trace analysis of 4-dimethylaminopyridine (DMAP). The conventional approaches for development of LC-MS/MS methods are usually via trial and error, varying intentionally the experimental factors which is time consuming and interactions between experimental factors are not considered. The LC factors chosen for the DoE study include flow (F), gradient (G) and injection volume (V(inj)) while cone voltage (E(con)) and collision energy (E(col)) were chosen as MS parameters. All of the five factors were studied simultaneously. The method was optimized with respect to four responses: separation of peaks (Sep), peak area (A(peak)), length of the analysis (T) and the signal to noise ratio (S/N). A quadratic model, namely central composite face (CCF) featuring 29 runs was used instead of a less powerful linear model since the increase in the number of injections was insignificant. In order to determine the robustness of the method a new set of DoE experiments was carried out applying robustness around the optimal conditions was evaluated applying a fractional factorial of resolution III with 11 runs, wherein additional factors - such as column temperature and quadrupole resolution - were considered. The method utilizes a Phenomenex Gemini NX C-18 HPLC analytical column with electrospray ionization and a triple quadrupole mass detector in multiple reaction monitoring (MRM) mode, resulting in short analyses with a 10min runtime. Drawbacks of derivatization, namely incomplete reaction and time consuming sample preparation, have been avoided and the change from SIM to MRM mode resulted in increased sensitivity and lower LOQ. The DoE method development strategy led to a method allowing the trace analysis of DMAP at 0.5 ng/ml absolute concentration which corresponds to a 0.1 ppm limit of quantification in 5mg/ml mometasone furoate glucocorticoid. The obtained method was validated in a linear range of 0.1-10 ppm and presented a %RSD of 0.02% for system precision. Regarding DMAP recovery in mometasone furoate, spiked samples produced %recoveries between 83 and 113% in the range of 0.1-2 ppm. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Experimental design for the optimization and robustness testing of a liquid chromatography tandem mass spectrometry method for the trace analysis of the potentially genotoxic 1,3-diisopropylurea.

    PubMed

    Székely, György; Henriques, Bruno; Gil, Marco; Alvarez, Carlos

    2014-09-01

    This paper discusses a design of experiments (DoE) assisted optimization and robustness testing of a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method development for the trace analysis of the potentially genotoxic 1,3-diisopropylurea (IPU) impurity in mometasone furoate glucocorticosteroid. Compared to the conventional trial-and-error method development, DoE is a cost-effective and systematic approach to system optimization by which the effects of multiple parameters and parameter interactions on a given response are considered. The LC and MS factors were studied simultaneously: flow (F), gradient (G), injection volume (Vinj), cone voltage (E(con)), and collision energy (E(col)). The optimization was carried out with respect to four responses: separation of peaks (Sep), peak area (A(p)), length of the analysis (T), and the signal-to-noise ratio (S/N). An optimization central composite face (CCF) DoE was conducted leading to the early discovery of carry-over effect which was further investigated in order to establish the maximum injectable sample load. A second DoE was conducted in order to obtain the optimal LC-MS/MS method. As part of the validation of the obtained method, its robustness was determined by conducting a fractional factorial of resolution III DoE, wherein column temperature and quadrupole resolution were considered as additional factors. The method utilizes a common Phenomenex Gemini NX C-18 HPLC analytical column with electrospray ionization and a triple quadrupole mass detector in multiple reaction monitoring (MRM) mode, resulting in short analyses with a 10-min runtime. The high sensitivity and low limit of quantification (LOQ) was achieved by (1) MRM mode (instead of single ion monitoring) and (2) avoiding the drawbacks of derivatization (incomplete reaction and time-consuming sample preparation). Quantitatively, the DoE method development strategy resulted in the robust trace analysis of IPU at 1.25 ng/mL absolute concentration corresponding to 0.25 ppm LOQ in 5 g/l mometasone furoate glucocorticosteroid. Validation was carried out in a linear range of 0.25-10 ppm and presented a relative standard deviation (RSD) of 1.08% for system precision. Regarding IPU recovery in mometasone furoate, spiked samples produced recoveries between 96 and 109 % in the range of 0.25 to 2 ppm. Copyright © 2013 John Wiley & Sons, Ltd.

  15. Separation and determination of impurities in paracetamol, codeine and pitophenone in the presence of fenpiverinium in combined suppository dosage form.

    PubMed

    Vojta, Jiří; Hanzlík, Pavel; Jedlička, Aleš; Coufal, Pavel

    2015-01-01

    A new HPLC method for separation and determination of impurities in paracetamol, codeine phosphate hemihydrate and pitophenone hydrochloride in the presence of fenpiverinium bromide in combined suppository dosage form was developed and validated. The separation of paracetamol and its impurities 4-aminophenol, 4-nitrophenol, 4-chloracetanilid; codeine and its impurities methylcodeine, morphine, codeine dimer and 10-hydroxycodeine; pitophenone and its impurities 2-[4-[2-(1-piperidinyl)ethoxy]benzoyl] benzoic acid, 2-[4-[2-(1-piperidinyl)ethoxy]benzoyl]benzoic acid 2-(1-piperidinyl)-ethyl ester, methyl ester of 2-(4-hydroxybenzoyl) benzoic acid and fenpiverinium was achieved by using ion-pair reversed phase liquid chromatography with UV detection. Validation parameters such as the precision, accuracy, linearity, limit of detection (LOD), limit of quantification (LOQ) and robustness were verified for all the mentioned impurities of codeine phosphate hemihydrate and 4-aminophenol and 2-[4-[2-(1-piperidinyl)ethoxy]benzoyl] benzoic acid as the main degradation products of paracetamol and pitophenone hydrochloride, respectively. The described method was found to be useful for analysis of the stability samples and therefore suitable for routine purity testing of the drug product. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Universal sensor based on the spectroscopy of glow discharge for the detection of traces of atoms or molecules in air

    NASA Astrophysics Data System (ADS)

    Atutov, S. N.; Galeyev, A. E.; Plekhanov, A. I.; Yakovlev, A. V.

    2018-03-01

    A sensitive and versatile sensor for the detection of traces of atoms or molecules in air based on the emission spectroscopy of glow discharge in air has been developed and studied. The advantages of this sensor compared to other well-known methods are that it renders the use of ultrahigh vacuum or cryogenic temperatures superfluous. The sensor is insensitive to the presence of water vapor (for example, in exhaled air) because of the absence of strong water lines in the visible spectral range. It has a high spectral selectivity limited only by Doppler broadening of the emission lines. The high selectivity of the sensor combined with a wide spectral range allows the detection of many toxic impurities, which can be present in air. Moreover, the spectral range used covers almost all biomarkers in exhaled air, making the proposed sensor extremely interesting for medical applications. To our knowledge, the proposed method is the first based on a glow discharge in air.

  17. Stability-Indicating Related Substances HPLC Method for Droxidopa and Characterization of Related Substances Using LC-MS and NMR.

    PubMed

    Kumar, Thangarathinam; Ramya, Mohandass; Arockiasamy Xavier, S J

    2016-11-01

    Stress degradation studies using high-performance liquid chromatography (HPLC) was performed and validated for Droxidopa (L-DOPS). Droxidopa was susceptible to acid hydrolysis (0.1 N HCl), alkaline hydrolysis (0.15 N NaOH) and thermal degradation (105°C). It was found to be resistant to white light, oxidation and UV light exposure (72 h). The thermal, acid and alkali degradation impurities were detected with the retention time (RT) of 12.7, 19.25 and 22.95 min. Our HPLC method detected process impurities (2R,3R)-2-amino-3-(3,4-dihydroxyphenyl)-3-hydroxypropionic acid (Impurity H), N-Hydroxypthalimide (Impurity N), (2R,3S)-2-amino-3-(benzo[d][1,3]dioxol-5-yl)-3-hydroxypropionic acid (Impurity L) and L-threo n-phthaloyl-3-(3, 4-dihydroxyphenyl)-serine (Intermediate) with RTs of 3.48, 15.5, 25.76 and 28.0 min. The related substances were further characterized and confirmed by liquid chromatography-mass spectroscopy (LC-MS), and nuclear magnetic resonance spectroscopy analysis. Our HPLC method detected up to 0.05 µg/mL of Droxidopa with S/N > 3.0 and quantified up to 0.10 µg /mL of Droxidopa with S/N ratio > 10.0. Droxidopa was highly stable for 12 h after its preparation for HPLC analysis. Our newly developed HPLC method was highly precise, specific, reliable and accurate for the analysis of Droxidopa and its related substances. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Pilot study on peptide purity—synthetic human C-peptide

    NASA Astrophysics Data System (ADS)

    Josephs, R. D.; Li, M.; Song, D.; Daireaux, A.; Choteau, T.; Stoppacher, N.; Westwood, S.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Melanson, J. E.; Ün, I.; Gören, A. C.; Quaglia, M.; Warren, J.

    2017-01-01

    Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P55.2, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Four Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-P55.2. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a quantitative nuclear magnetic resonance spectroscopy (qNMR) corrected for peptide impurities. Other participants provided results obtained by peptide impurity corrected amino acid analysis (PICAA) or elemental analysis (PICCHN). It was decided to assign reference values based on the KCRVs of CCQM-K115 for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the reference value. The reference value for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The reference value for the mass fraction of hCP for CCQM-KP55.2 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. Inspection of the degree of equivalence plots for CCQM-P55.2 for the mass fraction of hCP shows that three results agree with the reference value. Main text To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.

  19. Particle and momentum confinement in tokamak plasmas with unbalanced neutral beam injection and strong rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M.A.

    1988-01-01

    There is a self-consistent theory of the effects of neutral beam injection on impurity transport in tokamak plasmas. The theory predicts that co-injection drives impurities outward and that counter-injection enhances the normally inward flow of impurities. The theory was applied to carry out a detailed analysis of the large experimental database from the PLT and the ISX-B tokamaks. The theory was found to generally model the experimental data quite well. It is, therefore, concluded that neutral beam co-injection can drive impurities outward to achieve clean central plasmas and a cool radiating edge. Theoretical predictions for future thermonuclear reactors such asmore » INTOR, TIBER II, and ITER indicated that neutral beam driven flow reversal might be an effective impurity control method if the rate of beam momentum deposited per plasma ion is adequate. The external momentum drag, which is a pivotal concept in impurity flow reversal theory, is correctly predicted by the gyroviscous theory of momentum confinement. The theory was applied to analyze experimental data from the PLT and the PDX tokamaks with exact experimental conditions. The theory was found to be in excellent agreement with experiment over a wide range of parameters. It is, therefore, possible to formulate the impurity transport theory from first principles, without resort to empiricism.« less

  20. Study of the initial transient in the one-dimensional analytical models of impurity segregation during melt crystallization in the presence of convection

    NASA Astrophysics Data System (ADS)

    Voloshin, A. E.

    2013-11-01

    The well-known one-dimensional Burton-Prim-Slichter and Ostrogorsky-Müller analytical models obtained for the stationary mass transfer regime describe in a simple form the dependence of the effective impurity segregation coefficient on the ratio of the crystal growth and convective flow rates. Solutions for the initial transient regime are found in both models. It is shown that the formulas obtained make it possible to determine both the crystal growth rate and the convective mixing intensity on the basis of the analysis of impurity segregation in crystal.

  1. Chemometrically assisted development and validation of LC-MS/MS method for the analysis of potential genotoxic impurities in meropenem active pharmaceutical ingredient.

    PubMed

    Grigori, Katerina; Loukas, Yannis L; Malenović, Anđelija; Samara, Vicky; Kalaskani, Anastasia; Dimovasili, Efi; Kalovidouri, Magda; Dotsikas, Yannis

    2017-10-25

    A sensitive Liquid Chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitative analysis of three potential genotoxic impurities (318BP, M9, S5) in meropenem Active Pharmaceutical Ingredient (API). Due to the requirement for LOD values in ppb range, a high concentration of meropenem API (30mg/mL) had to be injected. Therefore, efficient determination of meropenem from its impurities became a critical aim of this study, in order to divert meropenem to waste, via a switching valve. ‎ After the selection of the important factors affecting analytes' elution, a Box-Behnken design was utilized to set the plan of experiments conducted with UV detector. As responses, the separation factor s between the last eluting impurity and meropenem, as well as meropenem retention factor k were used. Grid point search methodology was implemented aiming to obtain the optimal conditions that simultaneously comply to the conflicted criteria. Optimal mobile phase consisted of ACN, methanol and 0.09% HCOOH at a ratio 71/3.5/15.5v/v. All impurities and internal standard omeprazole were eluted before 7.5min and at 8.0min the eluents were directed to waste. The protocol was transferred to LC-MS/MS and validated according to ICH guidelines. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Devitrification and delayed crazing of SiO2 on single-crystal silicon and chemically vapor-deposited silicon nitride

    NASA Technical Reports Server (NTRS)

    Choi, Doo Jin; Scott, William D.

    1987-01-01

    The linear growth rate of cristobalite was measured in thin SiO2 films on silicon and chemically vapor-deposited silicon nitride. The presence of trace impurities from alumina furnace tubes greatly increased the crystal growth rate. Under clean conditions, the growth rate was still 1 order-of-magnitude greater than that for internally nucleated crystals in bulk silica. Crystallized films cracked and lifted from the surface after exposure to atmospheric water vapor. The crystallization and subsequent crazing and lifting of protective SiO2 films on silicon nitride should be considered in long-term applications.

  3. Side draw control design for a high purity multi-component distillation column.

    PubMed

    A Udugama, Isuru; Munir, M T; Kirkpatrick, Rob; Young, Brent R; Yu, Wei

    2018-05-01

    Industrial methanol production involves a multi component feed containing methanol, water and trace levels of ethanol being refined to produce AA grade methanol at high product recovery. Due to practical constraints, the bottoms discharge of the column is primarily water with only trace of methanol impurities. As a result of these constraints, ethanol, which is a non-key middle boiling component gets "trapped" near the side draw of the column forming an ethanol bulge, which in turn results in non-linear, inverse, time and state varying behaviour of the side draw ethanol composition. In this work, we established that the existence of the ethanol bulge creates the complex process behaviour of the side draw ethanol composition and that this bulge needs to be explicitly controlled. This type of explicit composition bulge analysis and subsequent control has not been attempted on methanol distillation columns before. For this purpose a novel, robust and practical side draw control scheme to detect and remedy the excess ethanol bulge movement using override control is presented. The side draw controller, together with other regulatory controllers is shown to maintain on-specification operations of the column. Disturbance rejection tests carried out illustrate that the side draw control scheme will keep the column operating within commercial specification. It is also shown that a traditional DV control structure is unable to achieve this objective. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Water Oxidation Catalysis by Co(II) Impurities in Co(III) 4O 4 Cubanes

    DOE PAGES

    Ullman, Andrew M.; Liu, Yi; Huynh, Michael; ...

    2014-11-18

    Here, the observed water oxidation activity of the compound class Co 4O 4(OAc) 4(Py–X) 4 emanates from a Co(II) impurity. This impurity is oxidized to produce the well-known Co-OEC heterogeneous cobaltate catalyst, which is an active water oxidation catalyst. We present results from electron paramagnetic resonance spectroscopy, nuclear magnetic resonance line broadening analysis, and electrochemical titrations to establish the existence of the Co(II) impurity as the major source of water oxidation activity that has been reported for Co 4O 4 molecular cubanes. Differential electrochemical mass spectrometry is used to characterize the fate of glassy carbon at water oxidizing potentials andmore » demonstrate that such electrode materials should be used with caution for the study of water oxidation catalysis.« less

  5. Precise impurity analysis of Cu films by GDMS: relation between negative substrate bias voltage and impurity ionization potentials

    NASA Astrophysics Data System (ADS)

    Lim, J. W.; Mimura, K.; Isshiki, M.

    2005-02-01

    Cu films were deposited on Si(100) substrates by applying a negative substrate bias voltage using the non-mass-separated ion beam deposition method. Glow-discharge mass spectrometry was used to determine the impurity concentrations of the deposited Cu films and the 6N Cu target. It was found that the Cu film deposited at the substrate bias voltage of -50 V showed lower impurity contents than the Cu film deposited without the substrate bias voltage, although both the Cu films were contaminated during the deposition. The purification effect might result from the following reasons: (i) the Penning ionization and an ionization mechanism proposed in the present study, (ii) a difference in the kinetic energy of accelerated Cu+ ions toward the substrate with/without the negative substrate bias voltage.

  6. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  7. Experimental pathways to understand and avoid high-Z impurity contamination from ICRF heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew

    2016-10-01

    Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out within the framework of the EUROfusion Consortium and has received funding from Euratom under Grant Agreement No 633053.

  8. Toxic metals contained in cosmetics: a status report.

    PubMed

    Bocca, Beatrice; Pino, Anna; Alimonti, Alessandro; Forte, Giovanni

    2014-04-01

    The persistence of metals in the environment and their natural occurrence in rocks, soil and water cause them to be present in the manufacture of pigments and other raw materials used in the cosmetic industry. Thus, people can be exposed to metals as trace contaminants in cosmetic products they daily use. Cosmetics may have multiple forms, uses and exposure scenarios, and metals contained in them can cause skin local problems but also systemic effects after their absorption via the skin or ingestion. Even this, cosmetics companies are not obliged to report on this kind of impurities and so consumers have no way of knowing about their own risk. This paper reviewed both the concentration of metals in different types of cosmetics manufactured and sold worldwide and the data on metals' dermal penetration and systemic toxicology. The eight metals of concern for this review were antimony (Sb), arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), mercury (Hg), nickel (Ni) and lead (Pb). This was because they are banned as intentional ingredients in cosmetics, have draft limits as potential impurities in cosmetics and are known as toxic. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Characterization of the cell growth analysis for detection of immortal cellular impurities in human mesenchymal stem cells.

    PubMed

    Kono, Ken; Takada, Nozomi; Yasuda, Satoshi; Sawada, Rumi; Niimi, Shingo; Matsuyama, Akifumi; Sato, Yoji

    2015-03-01

    The analysis of in vitro cell senescence/growth after serial passaging can be one of ways to show the absence of immortalized cells, which are frequently tumorigenic, in human cell-processed therapeutic products (hCTPs). However, the performance of the cell growth analysis for detection of the immortalized cellular impurities has never been evaluated. In the present study, we examined the growth rates of human mesenchymal stem cells (hMSCs, passage 5 (P = 5)) contaminated with various doses of HeLa cells, and compared with that of hMSCs alone. The growth rates of the contaminated hMSCs were comparable to that of hMSCs alone at P = 5, but significantly increased at P = 6 (0.1% and 0.01% HeLa) or P = 7 (0.001% HeLa) within 30 days. These findings suggest that the cell growth analysis is a simple and sensitive method to detect immortalized cellular impurities in hCTPs derived from human somatic cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Signatures of two-step impurity mediated vortex lattice melting in Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Dey, Bishwajyoti

    2017-04-01

    We study impurity mediated vortex lattice melting in a rotating two-dimensional Bose-Einstein condensate (BEC). Impurities are introduced either through a protocol in which vortex lattice is produced in an impurity potential or first creating the vortex lattice in the absence of random pinning and then cranking up the impurity potential. These two protocols have obvious relation with the two commonly known protocols of creating vortex lattice in a type-II superconductor: zero field cooling protocol and the field cooling protocol respectively. Time-splitting Crank-Nicolson method has been used to numerically simulate the vortex lattice dynamics. It is shown that the vortex lattice follows a two-step melting via loss of positional and orientational order. This vortex lattice melting process in BEC closely mimics the recently observed two-step melting of vortex matter in weakly pinned type-II superconductor Co-intercalated NbSe2. Also, using numerical perturbation analysis, we compare between the states obtained in two protocols and show that the vortex lattice states are metastable and more disordered when impurities are introduced after the formation of an ordered vortex lattice. The author would like to thank SERB, Govt. of India and BCUD-SPPU for financial support through research Grants.

  11. Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials.

    PubMed

    Wang, Jing

    2018-03-28

    We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.

  12. Role of four-fermion interaction and impurity in the states of two-dimensional semi-Dirac materials

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    2018-03-01

    We study the effects of four-fermion interaction and impurity on the low-energy states of 2D semi-Dirac materials by virtue of the unbiased renormalization group approach. The coupled flow equations that govern the energy-dependent evolutions of all correlated interaction parameters are derived after taking into account one-loop corrections from the interplay between four-fermion interaction and impurity. Whether and how four-fermion interaction and impurity influence the low-energy properties of 2D semi-Dirac materials are discreetly explored and addressed attentively. After carrying out the standard renormalization group analysis, we find that both trivial insulating and nontrivial semimetal states are qualitatively stable against all four kinds of four-fermion interactions. However, while switching on both four-fermion interaction and impurity, certain insulator-semimetal phase transitions and the distance of Dirac nodal points can be respectively induced and modified due to their strong interplay and intimate competition. Moreover, several non-Fermi liquid behaviors that deviate from the conventional Fermi liquids are exhibited at the lowest-energy limit.

  13. Elements and inorganic ions as source tracers in recent Greenland snow

    NASA Astrophysics Data System (ADS)

    Lai, Alexandra M.; Shafer, Martin M.; Dibb, Jack E.; Polashenski, Chris M.; Schauer, James J.

    2017-09-01

    Atmospheric transport of aerosols leads to deposition of impurities in snow, even in areas of the Arctic as remote as Greenland. Major ions (e.g. Na+, Ca2+, NH4+, K+, SO42-) are frequently used as tracers for common aerosol sources (e.g. sea spray, dust, biomass burning, anthropogenic emissions). Trace element data can supplement tracer ion data by providing additional information about sources. Although many studies have considered either trace elements or major ions, few have reported both. This study determined total and water-soluble concentrations of 31 elements (Al, As, Ca, Cd, Ce, Co, Cr, Dy, Eu, Fe, Gd, K, La, Mg, Mn, Na, Nb, Nd, Pb, Pr, S, Sb, Si, Sm, Sn, Sr, Ti, V, U, Y, Zn) in shallow snow pits at 22 sampling sites in Greenland, along a transect from Summit Station to sites in the northwest. Black carbon (BC) and inorganic ions were measured in colocated samples. Sodium, which is typically used as a tracer of sea spray, did not appear to have any non-marine sources. The rare earth elements, alkaline earth elements (Mg, Ca, Sr), and other crustal elements (Fe, Si, Ti, V) were not enriched above crustal abundances relative to Al, indicating that these elements are primarily dust sourced. Calculated ratios of non-sea salt Ca (nssCa) to estimated dust mass affirm the use of nssCa as a dust tracer, but suggest up to 50% uncertainty in that estimate in the absence of other crustal element data. Crustal enrichment factors indicated that As, Cd, Pb, non-sea-salt S, Sb, Sn, and Zn were enriched in these samples, likely by anthropogenic sources. Principal component analysis indicated more than one crustal factor, and a variety of factors related to anthropogenically enriched elements. Analysis of trace elements alongside major tracer ions does not change interpretation of ion-based source attribution for sources that are well-characterized by ions, but is valuable for assessing uncertainty in source attribution and identifying sources not represented by major ions.

  14. Triethylamine-assisted Mg(OH)2 coprecipitation/preconcentration for determination of trace metals and rare earth elements in seawater by inductively coupled plasma mass spectrometry (ICP-MS).

    PubMed

    Arslan, Zikri; Oymak, Tulay; White, Jeremy

    2018-05-30

    In this paper, we report an improved magnesium hydroxide, Mg(OH) 2 , coprecipitation method for the determination of 16 trace elements (Al, V, Cr, Mn, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sb, Sn and Pb) and 18 rare earth elements (REEs), including Sc, Y, U and Th in seawater and estuarine water samples. The procedure involves coprecipitation of the trace elements and REEs on Mg(OH) 2 upon addition of a small volume of triethylamine (TEA) followed by analysis of the dissolved pellet solutions by inductively coupled plasma mass spectrometry (ICP-MS). Three-step sequential coprecipitation was carried out on 10 mL aliquots of seawater to eliminate the matrix ions and to preconcentrate the analytes of interest into a 1 mL final volume. Spike recoveries varied from 85% (Th) to 105% (Y). Calcium (Ca), sodium (Na) and potassium (K) matrices were virtually eliminated from the analysis solutions. Collision reaction interface (CRI) technology utilizing H 2 and He gases was employed to determine its effectiveness in removing the spectral interferences originating from the residual Mg matrix, TEA and plasma gases. H 2 was more effective than He in reducing spectral interferences from TEA and plasma gases. Limits of detection (LODs) ranged from 0.01 ng L -1 (Ho) to 72 ng L -1  (Al). The method was validated by using certified seawater (CASS-4) and estuarine water (SLEW-3) reference materials. Precision for five (n = 5) replicate measurements were between 1.2% (Pr) and 18% (Lu). Fe, Pb, Sn, and Zn impurities in TEA were significant in comparison to the levels in CASS-4 and SLEW-3, while relatively high background signals impacted determinations of low levels of Sc and Th. The effects of these hurdles on precision and accuracy were alleviated by measuring these elements in spiked CASS-4 and SLEW-3. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Characterisation of semi-insulating GaAs

    NASA Technical Reports Server (NTRS)

    Walukiewicz, W.; Pawlowicz, L.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    Hole and electron mobilities as functions of temperature and ionised impurity concentration are calculated for GaAs. It is shown that these calculations, when used to analyse electrical properties of semi-insulating GaAs, enable an assessment of the Fermi energy position and ionised impurity concentration to be made. In contrast to previous work, the analysis does not require any phenomenological assumptions.

  16. Effect of boron doping on first-order Raman scattering in superconducting boron doped diamond films

    NASA Astrophysics Data System (ADS)

    Kumar, Dinesh; Chandran, Maneesh; Ramachandra Rao, M. S.

    2017-05-01

    Aggregation of impurity levels into an impurity band in heavily boron doped diamond results in a background continuum and discrete zone centre phonon interference during the inelastic light scattering process. In order to understand the Raman scattering effect in granular BDD films, systematically heavily doped samples in the semiconducting and superconducting regimes have been studied using the excitation wavelengths in the UV and visible regions. A comprehensive analysis of the Fano resonance effect as a function of the impurity concentrations and the excitation frequencies is presented. Various Raman modes available in BDD including signals from the grain boundaries are discussed.

  17. Analysis of pharmaceutical impurities using multi-heartcutting 2D LC coupled with UV-charged aerosol MS detection.

    PubMed

    Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P

    2013-09-01

    To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hyperspectral, photogrammetric and morphological characterization of surface impurities over the Greenland ice sheet from remote sensing observations

    NASA Astrophysics Data System (ADS)

    Tedesco, M.; Alexander, P. M.; Briggs, K.; Linares, M.; Mote, T. L.

    2016-12-01

    The spatial and temporal evolution of surface impurities over the Greenland ice sheet plays a crucial role in modulating the meltwater production in view of the associated feedback on albedo. Recent studies have pointed to a `darkening' of the west portion of the ice sheet with this reduction in albedo likely associated with the increasing presence of surface impurities (e.g., soot, dust) and biological activity (e.g., cryoconite holes, algae, bacteria). Regional climate models currently do not account for the presence, evolution and impact on albedo of such impurities, mostly because the underlying processes driving the spectral and morphological evolution of impurities are poorly known. One for the reasons for this is the lack of hyperspectral and high-spatial resolution data over specific regions of the Greenland ice sheet. To put things in perspective: there is more hyperspectral data at high spatial resolution for the planet Mars than for the Greenland ice sheet. In this presentation, we report the results of an analysis using the few available hyperspectral data collected over Greenland by the HYPERION and AVIRIS sensors, in conjunction with visible (RGB) helicopter-based high resolution images and LANDSAT/WorldView data for characterizing the spectral and morphological evolution of surface impurities and cryoconite holes over western Greenland. The hyperspectral data is used to characterize the abundance of different `endmembers' and the temporal evolution (inter-seasonal and intra-seasonal) of surface impurities composition and concentration. Digital photographs from helicopter are used to characterize the size and distribution of cryoconite holes as a function of elevation and, lastly, LANDSAT/WV images are used to study the evolution of `mysterious' shapes that form as a consequence of the accumulation of impurities and the ice flow.

  19. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    DOE PAGES

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...

    2018-03-01

    Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less

  20. Capillary electrophoresis method for the analysis of organic acids and amino acids in the presence of strongly alternating concentrations of aqueous lactic acid.

    PubMed

    Laube, Hendrik; Boden, Jana; Schneider, Roland

    2017-07-01

    During the production of bio-based bulk chemicals, such as lactic acid (LA), organic impurities have to be removed to produce a ready-to-market product. A capillary electrophoresis method for the simultaneous detection of LA and organic impurities in less than 10 min was developed. LA and organic impurities were detected using a direct UV detection method with micellar background electrolyte, which consisted of borate and sodium dodecyl sulfate. We investigated the effects of electrolyte composition and temperature on the speed, sensitivity, and robustness of the separation. A few validation parameters, such as linearity, limit of detection, and internal and external standards, were evaluated under optimized conditions. The method was applied for the detection of LA and organic impurities, including tyrosine, phenylalanine, and pyroglutamic acid, in samples from a continuous LA fermentation process from post-extraction tapioca starch and yeast extract.

  1. Structural Characterization of AgGaS2-type Photocatalysts for Hydrogen Production from Water Under Visible Light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sun Hee; Shin, Namsoo; Jang, Jum Suk

    Bulky AgGaS2 was synthesized as a p-type semiconductor photocatalyst by a conventional solid state reaction under N2 flow for hydrogen production under visible light. To remove the impurity phase involved in the synthesized material and improve its crystallinity, the material was treated at various temperatures of 873-1123 K under H2S flow. Impurity phases were identified as {beta}-Ga2O3 and Ag9GaS6 with Rietveld analysis of XRD, and the local coordination structure around gallium atom in AgGaS2 was investigated by EXAFS. As the H2S-treatment temperature increased, the contribution from impurity phase was diminished. When the temperature reached 1123 K, the impurity phases weremore » completely removed and the material showed the highest photocatalytic activity.« less

  2. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  3. Reichardt's dye and its reactions with the alkylating agents 4-chloro-1-butanol, ethyl methanesulfonate, 1-bromobutane and Fast Red B - a potentially useful reagent for the detection of genotoxic impurities in pharmaceuticals.

    PubMed

    Corrigan, Damion K; Whitcombe, Michael J; McCrossen, Sean; Piletsky, Sergey

    2009-04-01

    Alkylating agents are potentially genotoxic impurities that may be present in drug products. These impurities occur in pharmaceuticals as by-products from the synthetic steps involved in drug production, as impurities in starting materials or from in-situ reactions that take place in the final drug product. Currently, analysis for genotoxic impurities is typically carried out using either HPLC/MS or GC/MS. These techniques require specialist expertise, have long analysis times and often use sample clean-up procedures. Reichardt's dye is well known for its solvatochromic properties. In this paper the dye's ability to undergo alkylation is reported. The reaction between Reichardt's dye and alkylating agents such as 4-chloro-1-butanol and ethyl methanesulfonate was monitored spectrophotometrically at 618 nm in acetonitrile and 624 nm in N,N-dimethylformamide. Changes in absorption were observed using low levels of alkylating agent (5-10 parts per million). Alkylation of the dye with 4-chloro-1-butanol and ethyl methanesulfonate was confirmed. Reichardt's dye, and its changing UV absorption, was examined in the presence of paracetamol (10 and 100 mg/ml). Whilst the alkylation-induced changes in UV absorption were not as pronounced as with standard solutions, detection of alkylation was still possible. Using standard solutions and in the presence of a drug matrix, Reichardt's dye shows promise as a reagent for detection of low levels of industrially important alkylating agents.

  4. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉.

    PubMed

    Chahrour, Osama; Malone, John; Collins, Mark; Salmon, Vrushali; Greenan, Catherine; Bombardier, Amy; Ma, Zhongze; Dunwoody, Nick

    2017-10-25

    The new guidelines of the United States pharmacopeia (USP), European pharmacopeia (EP) and international conference on harmonization (ICH) regulating elemental impurities limits in pharmaceuticals signify the end of unspecific analysis of metals as outlined in USP 〈231〉. The new guidelines specify both daily doses and concentration/limits of elemental impurities in pharmaceutical final products, active pharmaceutical ingredients (API) and excipients. In chapter USP 〈233〉 method implementation, validation and quality control during the analytical process are described. We herein report the use of a stabilising matrix that overcomes low spike recovery problem encountered with Os and allows the determination of all USP required elemental impurities (As, Cd, Hg, Pb, V, Cr, Ni, Mo, Cu, Pt, Pd, Ru, Rh, Os and Ir) in a single analysis. The matrix was used in the validation of a method to determine elemental impurities in TP-6076 active pharmaceutical ingredient (API) by ICP-MS according to the procedures defined in USP〈233〉 and to GMP requirements. This validation will support the regulatory submission of TP-6076 which is a novel tetracycline analogue effective against the most urgent multidrug-resistant gram-negative bacteria. Evaluation of TP-6076 in IND-enabling toxicology studies has led to the initiation of a phase 1 clinical trial. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Investigation of the mechanism of impurity assisted nanoripple formation on Si induced by low energy ion beam erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyiloth Vayalil, Sarathlal, E-mail: sarathlal.koyilothvayalil@desy.de; UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017; Gupta, Ajay

    A detailed mechanism of the nanoripple pattern formation on Si substrates generated by the simultaneous incorporation of pure Fe impurities at low energy (1 keV) ion beam erosion has been studied. To understand and clarify the mechanism of the pattern formation, a comparative analysis of the samples prepared for various ion fluence values using two complimentary methods for nanostructure analysis, atomic force microscopy, and grazing incidence small angle x-ray scattering has been done. We observed that phase separation of the metal silicide formed during the erosion does not precede the ripple formation. It rather concurrently develops along with the ripple structure.more » Our work is able to differentiate among various models existing in the literature and provides an insight into the mechanism of pattern formation under ion beam erosion with impurity incorporation.« less

  6. Three-dimensional flow and trace metal mobility in shallow Chalk groundwater, Dorset, United Kingdom

    NASA Astrophysics Data System (ADS)

    Schürch, Marc; Edmunds, W. Michael; Buckley, David

    2004-06-01

    The three-dimensional groundwater flow and the hydrogeochemical regime have been determined in the Bere Stream valley, North Dorset Downs, southern England. The dual porosity characteristics of the Portsdown Chalk have been established using geophysical and hydrochemical borehole logging. Chemical properties have been established using major and trace element analyses of depth samples and groundwaters. The study site is located at the unconfined-confined boundary of the Chalk aquifer, where it is overflowing in the observation boreholes. The Chalk dips locally at about 5 m/km to the south-east under Palaeogene confining beds and three distinctive flow horizons may be recognised. The Chalk groundwater is of Ca-HCO 3 type and three separate geochemical groundwater zones were also determined with depth, having different oxygen levels and trace element characteristics. (1) A shallow O 2-rich zone with around 80% dissolved O 2 and low trace element concentrations. (2) A mixing and transition zone with significant concentrations of trace elements and high trace metal concentrations at its base: manganese 29 μg/l, nickel 55 μg/l, cadmium 146 μg/l, and zinc 214 μg/l. (3) A deeper zone with depleted oxygen (5-20% dissolved O 2) and with longer water residence times shown by higher Mg/Ca and K/Na ratios as well as higher Sr and F. The groundwater geochemistry in the Chalk aquifer is dominated by incongruent reactions with the fine-grained carbonate sediments, which release trace element impurities to the water. Some of the metals are co-precipitated with Mn- and Fe-oxide phases on fissure surfaces, whilst producing a purer calcite. During subsequent recrystallisation to purer iron- and manganese-oxides on fissure surfaces under specific geochemical and hydrodynamic conditions, trace metals are released into the fissure water. The results demonstrate the need to monitor quality stratification and the changes in the groundwater baseline chemistry in areas close to the redox boundary which, in the dual porosity Chalk is likely to be a diffuse zone with exchange between oxygen poor matrix waters and more oxic water flowing through the fissures.

  7. Large exchange bias effect in NiFe2O4/CoO nanocomposites

    NASA Astrophysics Data System (ADS)

    Mohan, Rajendra; Prasad Ghosh, Mritunjoy; Mukherjee, Samrat

    2018-03-01

    In this work, we report the exchange bias effect of NiFe2O4/CoO nanocomposites, synthesized via chemical co-precipitation method. Four samples of different particle size ranging from 4 nm to 31 nm were prepared with the annealing temperature varying from 200 °C to 800 °C. X-ray diffraction analysis of all the samples confirmed the presence of cubic spinel phase of Nickel ferrite along with CoO phase without trace of any impurity. Sizes of the particles were studied from transmission electron micrographs and were found to be in agreement with those estimated from x-ray diffraction. Field cooled (FC) hysteresis loops at 5 K revealed an exchange bias (HE) of 2.2 kOe for the sample heated at 200 °C which decreased with the increase of particle size. Exchange bias expectedly vanished at 300 K due to high thermal energy (kBT) and low effective surface anisotropy. M-T curves revealed a blocking temperature of 135 K for the sample with smaller particle size.

  8. Influence of VO2+ ions on structural and optical properties of potassium succinate-succinic acid single crystal for non-linear optical applications

    NASA Astrophysics Data System (ADS)

    Juliet sheela, K.; Subramanian, P.

    2018-04-01

    A transparent and good optical quality semi organic single crystal of vanadium doped potassium succinate-succinic acid (KSSA) was synthesized by slow evaporation technique at room temperature. The structural perfection was supported by the powder XRD of the KSSA-VO2+ single crystal. Optical behavior of the material was discovered from the absorption and transmission spectra of UV-vis-NIR characterization. Functional group and presence of metal ion in the specimen are depicted from FTIR traces. From the photoluminescence studies, emission of wavelength in the violet region (418 nm) at the excitation of 243 nm could be ascertained. EDAX, SEM measurements identify presence of elements and pictures the step-line growth and the imperfection presents in the grown crystal. EPR analysis extracts the information about the local site symmetry around the impurity ion, molecular orbital coefficients, admixture coefficients and ground state wave function of VO2+ doped KSSA single crystal. Second harmonic generation (SHG) efficiency of the grown crystal was investigated to explore the NLO characteristic of the material.

  9. Low Cost Solar Array Project: Composition Measurements by Analytical Photon Catalysis

    NASA Technical Reports Server (NTRS)

    Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III

    1979-01-01

    The applicability of the photon catalysis technique for effecting composition analysis of silicon samples was assessed. Third quarter activities were devoted to the study of impurities in silicon matrices. The evaporation process was shown to be congruent; thus, the spectral analysis of the vapor yields the composition of the bulk sample. Qualitative analysis of metal impurities in silicon was demonstrated e part per million level. Only one atomic spectral interference was noted; however, it is imperative to maintain a leak tight system due to chemical and spectral interferences caused by the presence of even minute amounts of oxygen in the active nitrogen afterglow.

  10. Eclogite-facies metamorphism in impure marble from north Qaidam orogenic belt: Geodynamic implications for early Paleozoic continental-arc collision

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Xu, Rongke; Schertl, Hans-Peter; Zheng, Youye

    2018-06-01

    In the North Qaidam ultrahigh-pressure (UHP) metamorphic belt, impure marble and interbedded eclogite represent a particular sedimentary provenance and tectonic setting, which have important implications for a controversial problem - the dynamic evolution of early Paleozoic subduction-collision complexes. In this contribution, detailed field work, mineral chemistry, and whole-rock geochemistry are presented for impure marble to provide the first direct evidence for the recycling of carbonate sediments under ultrahigh-pressures during subduction and collision in the Yuka terrane, in the North Qaidam UHP metamorphic belt. According to conventional geothermobarometry, pre-peak subduction to 0.8-1.3 GPa/485-569 °C was followed by peak UHP metamorphism at 2.5-3.3 GPa/567-754 °C and cooling to amphibolite facies conditions at 0.6-0.7 GPa/571-589 °C. U-Pb dating of zircons from impure marble reveals a large group with ages ranging from 441 to 458 Ma (peak at 450 Ma), a smaller group ranging from 770 to 1000 Ma (peak at 780 Ma), and minor >1.8 Ga zircon aged ca. 430 Ma UHP metamorphism. The youngest detrital zircons suggest a maximum depositional age of ca. 442 Ma and a burial rate of ca. 1.0-1.1 cm/yr when combined with P-T conditions and UHP metamorphic age. The REE and trace element patterns of impure marble with positive Sr and U anomalies, negative high field strength elements (Nb, Ta, Zr, Hf, and Ti), and Ce anomalies imply that the marble had a marine limestone precursor. Impure marble intercalated with micaschist and eclogite was similar to limestone and siltstone protoliths deposited in continental fore-arc or arc setting with basic volcanic activity. Therefore, the Yuka terrane most likely evolved in a continental island arc setting during the Paleozoic. These data suggest that metasediments were derived from a mixture of Proterozoic continental crust and juvenile early Paleozoic oceanic and/or island arc crust. In addition, their protoliths were likely deposited in a terrigenous-dominated forearc marine basin rather than an intracontinental basin environment, further evidence that some continental arc volcanic rock may have been the source of eclogite in the North Qaidam. These sediments, formed in a forearc basin close to the Qaidam Block to the north, were transported in the subduction zone to 100-110 km depth with UHP metamorphism prior to exhumation. Meanwhile, the new results suggest that subduction erosion occurred along the active continental margin during the Qaidam Block with north-dipping subduction, indicating that the North Qaidam UHP metamorphic belt may have formed during continental-arc collision.

  11. Development of RP-HPLC, Stability Indicating Method for Degradation Products of Linagliptin in Presence of Metformin HCl by Applying 2 Level Factorial Design; and Identification of Impurity-VII, VIII and IX and Synthesis of Impurity-VII.

    PubMed

    Jadhav, Sushant B; Reddy, P Sunil; Narayanan, Kalyanaraman L; Bhosale, Popatrao N

    2017-06-27

    The novel reverse phase-high performance liquid chromatography (RP-HPLC), stability indicating method was developed for determination of linagliptin (LGP) and its related substances in linagliptin and metformin HCl (MET HCl) tablets by implementing design of experiment to understand the critical method parameters and their relation with critical method attributes; to ensure robustness of the method. The separation of nine specified impurities was achieved with a Zorbax SB-Aq 250 × 4.6 mm, 5 µm column, using gradient elution and a detector wavelength of 225 nm, and validated in accordance with International Conference on Harmonization (ICH) guidelines and found to be accurate, precise, reproducible, robust, and specific . The drug was found to be degrading extensively in heat, humidity, basic, and oxidation conditions and was forming degradation products during stability studies. After slight modification in the buffer and the column, the same method was used for liquid chromatography-mass spectrometry (LC-MS) and ultra-performance liquid chromatography -time-of-flight/mass spectrometry UPLC-TOF/MS analysis, to identify m/z and fragmentation of maximum unspecified degradation products i.e., Impurity-VII ( 7 ), Impurity-VIII ( 8 ), and Impurity-IX ( 9 ) formed during stability studies. Based on the results, a degradation pathway for the drug has been proposed and synthesis of Impurity-VII ( 7 ) is also discussed to ensure an in-depth understanding of LGP and its related degradation products and optimum performance during the lifetime of the product.

  12. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G.

    In this study, an experimental design matrix was created and executed in order to test the effects of various real-world factors on the ability of the (1) accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposuremore » time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) ADS-SPME with vacuum (i.e., reduced pressure) increased the amount of detected CAS impurity, as measured by GC/MS peak area, by a factor of 1.7 to 1.9 for PWB under certain experimental conditions, (2) the amount of detected CAS impurity was most influenced by spiked volume, stock, and ADS headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, the ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB.« less

  13. Identification and accurate quantification of structurally related peptide impurities in synthetic human C-peptide by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei

    2018-06-04

    Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.

  14. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction.

    PubMed

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G

    2017-03-01

    In this study, an experimental design matrix was created and executed to test the effects of various real-world factors on the ability of (1) the accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposure time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) the amount of CAS impurity detected using ADS-SPME and GC/MS was most influenced by spiked volume, stock, and ADS headspace pressure, (2) reduced ADS headspace pressure increased the amount of detected CAS impurity, as measured by GC/MS peak area, by up to a factor of 1.7-1.9 compared to ADS at ambient headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Identification, isolation, and synthesis of seven novel impurities of anti-diabetic drug Repaglinide.

    PubMed

    Kancherla, Prasad; Keesari, Srinivas; Alegete, Pallavi; Khagga, Mukkanti; Das, Parthasarathi

    2018-01-01

    Seven unknown impurities in Repaglinide bulk drug batches at below 0.1% (ranging from 0.05 to 0.10%) were detected by an ultra-performance liquid chromatographic (UPLC) method. These impurities were isolated from the crude sample of Repaglinide using preparative high performance liquid chromatography (prep-HPLC). Based on liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI/MS) study, the chemical structures of seven new impurities (8, 9, 10, 11, 13, 14, and 16) were presumed and characterized as 4-(cyanomethyl)-2-ethoxybenzoic acid (8), 4-(cyanomethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)benzamide (9), 4-(2-amino-2-oxoethyl)-2-ethoxy-N-(3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) benzamide (10) and 2-(3-ethoxy-4-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl) carbamoyl) phenyl) acetic acid (11) and 4-(cyanomethyl)-N-cyclohexyl-2-ethoxybenzamide (13), 2-(4-(cyclohexylcarbamoyl)-3-ethoxyphenyl) acetic acid (14) and N-cyclohexyl-4-(2-(cyclohexylamino)-2-oxoethyl)-2-ethoxybenzamide (16). The complete spectral analysis, proton nuclear magnetic resonance ( 1 H NMR), 13 C NMR, MS, and infrared (IR) confirmed the proposed chemical structures of impurities. Identification, structural characterization, formation, and their synthesis was first reported in this study. The impurity 11 was crystallized and structure was solved by single crystal X-ray diffraction. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Optimizing multi-dimensional high throughput screening using zebrafish

    PubMed Central

    Truong, Lisa; Bugel, Sean M.; Chlebowski, Anna; Usenko, Crystal Y.; Simonich, Michael T.; Massey Simonich, Staci L.; Tanguay, Robert L.

    2016-01-01

    The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. PMID:27453428

  17. Quantifying Main Trends in Lysozyme Nucleation: The Effect of Precipitant Concentration and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Full factorial experiment design incorporating multi-linear regression analysis of the experimental data allows the main trends and effects to be quickly identified while using only a limited number of experiments. These techniques were used to identify the effect of precipitant concentration and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal form of chicken egg white lysozyme. Increasing precipitant concentration was found to decrease crystal numbers, the magnitude of this effect also depending on the supersaturation. The presence of the dimer generally increased nucleation. The crystal axial ratio decreased with increasing precipitant concentration independent of impurity.

  18. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited).

    PubMed

    Huber, A; Brezinsek, S; Mertens, Ph; Schweer, B; Sergienko, G; Terra, A; Arnoux, G; Balshaw, N; Clever, M; Edlingdon, T; Egner, S; Farthing, J; Hartl, M; Horton, L; Kampf, D; Klammer, J; Lambertz, H T; Matthews, G F; Morlock, C; Murari, A; Reindl, M; Riccardo, V; Samm, U; Sanders, S; Stamp, M; Williams, J; Zastrow, K D; Zauner, C

    2012-10-01

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 μm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  19. Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio.

    PubMed

    Xiao, Jie; Chernova, Natasha A; Upreti, Shailesh; Chen, Xilin; Li, Zheng; Deng, Zhiqun; Choi, Daiwon; Xu, Wu; Nie, Zimin; Graff, Gordon L; Liu, Jun; Whittingham, M Stanley; Zhang, Ji-Guang

    2011-10-28

    In this paper, the influences of the lithium content in the starting materials on the final performances of as-prepared Li(x)MnPO(4) (x hereafter represents the starting Li content in the synthesis step which does not necessarily mean that Li(x)MnPO(4) is a single phase solid solution in this work.) are systematically investigated. It has been revealed that Mn(2)P(2)O(7) is the main impurity when Li < 1.0 while Li(3)PO(4) begins to form once x > 1.0. The interactions between Mn(2)P(2)O(7) or Li(3)PO(4) impurities and LiMnPO(4) are studied in terms of the structural, electrochemical, and magnetic properties. At a slow rate of C/50, the reversible capacity of both Li(0.5)MnPO(4) and Li(0.8)MnPO(4) increases with cycling. This indicates a gradual activation of more sites to accommodate a reversible diffusion of Li(+) ions that may be related to the interaction between Mn(2)P(2)O(7) and LiMnPO(4) nanoparticles. Among all of the different compositions, Li(1.1)MnPO(4) exhibits the most stable cycling ability probably because of the existence of a trace amount of Li(3)PO(4) impurity that functions as a solid-state electrolyte on the surface. The magnetic properties and X-ray absorption spectroscopy (XAS) of the MnPO(4)·H(2)O precursor, pure and carbon-coated Li(x)MnPO(4) are also investigated to identify the key steps involved in preparing a high-performance LiMnPO(4). This journal is © the Owner Societies 2011

  20. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, A.; Brezinsek, S.; Mertens, Ph.

    2012-10-15

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II,more » C I, C II, C III) with high optical transmittance ({>=}30% in the designed wavelength range) as well as high spatial resolution that is {<=}2 mm at the object plane and {<=}3 mm for the full depth of field ({+-}0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the {lambda} > 0.95 {mu}m range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.« less

  1. A LIBS method for simultaneous monitoring of the impurities and the hydrogenic composition present in the wall of the TJ-II stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    López-Miranda, B., E-mail: belen.lopez@ciemat.es; Zurro, B.; Baciero, A.

    The study of plasma-wall interactions and impurity transport in the plasma fusion devices is critical for the development of future fusion reactors. An experiment to perform laser induced breakdown spectroscopy, using minor modifications of our existing laser blow-off impurity injection system, has been set up thus making both experiments compatible. The radiation produced by the laser pulse focused at the TJ-II wall evaporates a surface layer of deposited impurities and the subsequent radiation produced by the laser-produced plasma is collected by two separate lens and fiber combinations into two spectrometers. The first spectrometer, with low spectral resolution, records a spectrummore » from 200 to 900 nm to give a survey of impurities present in the wall. The second one, with high resolution, is tuned to the wavelengths of the Hα and Dα lines in order to resolve them and quantify the hydrogen isotopic ratio present on the surface of the wall. The alignment, calibration, and spectral analysis method will be described in detail. First experimental results obtained with this setup will be shown and its relevance for the TJ-II experimental program discussed.« less

  2. Mass Spectrometric Distinction of In-Source and In-Solution Pyroglutamate and Succinimide in Proteins: A Case Study on rhG-CSF

    NASA Astrophysics Data System (ADS)

    Kumar, Mukesh; Chatterjee, Amarnath; Khedkar, Anand P.; Kusumanchi, Mutyalasetty; Adhikary, Laxmi

    2013-02-01

    Formation of cyclic intermediates involving water or ammonia loss is a common occurrence in any reaction involving terminal amines or hydroxyl group containing species. Proteins that have both these functional groups in abundance are no exception, and presence of amino acids such as asparagine, glutamines, aspartic acids, and glutamic acids aid in formation of such intermediates. In the biopharma scenario, such intermediates lead to product- or process-related impurities that might be immunogenic. Mass spectroscopy is a powerful technique that is used to decipher the presence and physicochemical characteristics of such impurities. However, such intermediates can also form in situ during mass spectrometric analysis. We present here the detection of in-source and in-solution formation of succinimide and pyroglutamate in the protein granulocyte colony stimulating factor. We also propose an approach for quick differentiation of such in-situ species from the tangible impurities. We believe that this will not only reduce the time spent in unambiguous identification of succinimide- and/or pyroglutamate-related impurity in bio-pharmaceutics but also provide a platform for similar studies on other impurities that may form due to stabilized intermediates.

  3. Symmetry transition via tetravalent impurity and investigations on magnetic properties of Li0.5Fe2.5O4

    NASA Astrophysics Data System (ADS)

    Kounsalye, Jitendra S.; Kharat, Prashant B.; Chavan, Apparao R.; Humbe, Ashok V.; Borade, R. M.; Jadhav, K. M.

    2018-04-01

    The present study, deals with the phase symmetry transformation of lithium ferrite after introducing tetravalent (Ti4+) impurity. The sol-gel auto combustion technique was adopted for the synthesis of nanoparticle samples with generic chemical formula Li0.5Fe2.5O4 and Li0.55Ti0.10Fe2.35O4. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) technique for structural analysis. The XRD patterns show the single phase cubic structure without any impurity phase but the P4332 to Fd-3m transformation was observed after introducing Ti4+ impurity. The Nano size of the synthesized particles was confirmed by crystallite size ( 20nm) calculated using Debye-Scherrer's formula. The Fourier transform infrared spectroscopy (FTIR) studies shows shifting of band frequencies which reflect the structural changes after tetravalent substitutional impurities. The magnetic properties were studied through pulse field hysteresis loop (M-H loop) technique at room temperature, the M-H loops showdecrease in magnetic properties afternonmagnetic Ti4+ ion substitution. This is attributed to transition of inverse spinel structure of lithium ferrite to random spinel structure.

  4. Occurrence and Characterization Microstructure of Iron Impurities in Halloysite.

    PubMed

    Liu, Rong; Yan, Chunjie; Wang, Hongquan; Xiao, Guoqi; Tu, Dong

    2015-09-01

    The quality of the clays and over all halloysite are mostly associated with minor amounts of ferruginous impurities content, since this element gives an undesirable reddish color to the halloysite mineral. Hence, finding out the modes of occurrence of iron in halloysite is of prime importance in the value addition and optimum utilization of halloysite. In order to analyze the occurrence of iron impurities in halloysite, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were combined with wet chemical analysis methods to study the low-grade halloysite. The results indicated that the mineral phases of iron impurities in the concentrates are mainly composed of amounts of magnetite, goethite and hematite. Two types of occurrences for iron impurities have been found. One is single crystalline mineral consist in the halloysite, which contains three different phases of Goethite FeO(OH) (44.75%), Magnetite Fe3O4 (27.43%) and Hematite Fe2O3 (31.96%). The other is amorphous Fe-Al-Si glial materials. This study is of significance in the theoretical research on the halloysite mineralogy and in the developmental practice of halloysite in coal measures.

  5. Ultra-low background mass spectrometry for rare-event searches

    NASA Astrophysics Data System (ADS)

    Dobson, J.; Ghag, C.; Manenti, L.

    2018-01-01

    Inductively Coupled Plasma Mass Spectrometry (ICP-MS) allows for rapid, high-sensitivity determination of trace impurities, notably the primordial radioisotopes 238U and 232Th, in candidate materials for low-background rare-event search experiments. We describe the setup and characterisation of a dedicated low-background screening facility at University College London where we operate an Agilent 7900 ICP-MS. The impact of reagent and carrier gas purity is evaluated and we show that twice-distilled ROMIL-SpATM-grade nitric acid and zero-grade Ar gas delivers similar sensitivity to ROMIL-UpATM-grade acid and research-grade gas. A straightforward procedure for sample digestion and analysis of materials with U/Th concentrations down to 10 ppt g/g is presented. This includes the use of 233U and 230Th spikes to correct for signal loss from a range of sources and verification of 238U and 232Th recovery through digestion and analysis of a certified reference material with a complex sample matrix. Finally, we demonstrate assays and present results from two sample preparation and assay methods: a high-sensitivity measurement of ultra-pure Ti using open digestion techniques, and a closed vessel microwave digestion of a nickel-chromium-alloy using a multi-acid mixture.

  6. Characterization of representative materials in support of safe, long term storage of surplus plutonium in DOE-STD-3013 containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Paul H; Narlesky, Joshua E; Worl, Laura A

    2010-01-01

    The Surveillance and Monitoring Program (SMP) is a joint LANL/SRS effort funded by DOE/EM to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performancemore » of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. The chlorides (NaCl, KCl, CaCl{sub 2}, and MgCl{sub 2}) range from less than half of the impurities present to nearly all the impurities. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on over 60 samples of plutonium chosen to represent the broader population of materials in storage. This paper will summarize the characterization data, including the origin and process history, particle size, surface area, density, calorimetry, chemical analysis, moisture analysis, prompt gamma, gas generation and corrosion behavior.« less

  7. Quality-by-design approach for the development of telmisartan potassium tablets.

    PubMed

    Oh, Ga-Hui; Park, Jin-Hyun; Shin, Hye-Won; Kim, Joo-Eun; Park, Young-Joon

    2018-05-01

    A quality-by-design approach was adopted to develop telmisartan potassium (TP) tablets, which were bioequivalent with the commercially available Micardis ® (telmisartan free base) tablets. The dissolution pattern and impurity profile of TP tablets differed from those of Micardis ® tablets because telmisartan free base is poorly soluble in water. After identifying the quality target product profile and critical quality attributes (CQAs), drug dissolution, and impurities were predicted to be risky CQAs. To determine the exact range and cause of risks, we used the risk assessment (RA) tools, preliminary hazard analysis and failure mode and effect analysis to determine the parameters affecting drug dissolution, impurities, and formulation. The range of the design space was optimized using the face-centered central composite design among the design of experiment (DOE) methods. The binder, disintegrant, and kneading time in the wet granulation were identified as X values affecting Y values (disintegration, hardness, friability, dissolution, and impurities). After determining the design space with the desired Y values, the TP tablets were formulated and their dissolution pattern was compared with that of the reference tablet. The selected TP tablet formulated using design space showed a similar dissolution to that of Micardis ® tablets at pH 7.5. The QbD approach TP tablet was bioequivalent to Micardis ® tablets in beagle dogs.

  8. Plasma Interactions with Mixed Materials and Impurity Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rognlien, T. D.; Beiersdorfer, Peter; Chernov, A.

    2016-10-28

    The project brings together three discipline areas at LLNL to develop advanced capability to predict the impact of plasma/material interactions (PMI) on metallic surfaces in magnetic fusion energy (MFE) devices. These areas are (1) modeling transport of wall impurity ions through the edge plasma to the core plasma, (2) construction of a laser blow-off (LBO) system for injecting precise amounts of metallic atoms into a tokamak plasma, and (3) material science analysis of fundamental processes that modify metallic surfaces during plasma bombardment. The focus is on tungsten (W), which is being used for the ITER divertor and in designs ofmore » future MFE devices. In area (1), we have worked with the University of California, San Diego (UCSD) on applications of the UEDGE/DUSTT coupled codes to predict the influx of impurity ions from W dust through the edge plasma, including periodic edge-plasma oscillations, and revived a parallel version of UEDGE to speed up these simulations. In addition, the impurity transport model in the 2D UEDGE code has been implemented into the 3D BOUT++ turbulence/transport code to allow fundamental analysis of the impact of strong plasma turbulence on the impurity transport. In area (2), construction and testing of the LBO injection system has been completed. The original plan to install the LBO on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton and its use to validate the impurity transport simulations is delayed owing to NSTX-U being offline for substantial magnetic coil repair period. In area (3), an analytic model has been developed to explain the growth of W tendrils (or fuzz) observed for helium-containing plasmas. Molecular dynamics calculations of W sputtering by W and deuterium (D) ions shows that a spatial blending of interatomic potentials is needed to describe the near-surface and deeper regions of the material.« less

  9. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities.

    PubMed

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Verheijen, Marcel A; Kooi, Bart J; Palasantzas, George

    2018-01-18

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiC x /Mg/MgO, TiC x /MgO and TiH x /MgO core/shell NPs via synthesis using CH 4 /H 2 as a trace gas, and with good control of the final NP morphology and size distribution. Moreover, depending on the concentration of Ti and type of employed trace gas, the as prepared MgTi NPs can be tuned from truncated hexagonal pyramid to triangular and hexagonal platelet shapes. The shape of MgTi NPs is identified using detailed analysis from selected area electron diffraction (SAED) patterns and tomography (3D reconstruction based on a tilt series of Bright-Field transmission electron microscopy (TEM) micrographs). We observe the truncated hexagonal pyramid as a shape of MgTi alloy NPs in contrast to Mg NPs that show a hexagonal prismatic shape. Moreover, based on our experimental observations and generic geometrical model analysis, we also prove that the formation of the various structural motifs is based on a sequential growth mechanism instead of phase separation. One of the prime reasons for such mechanism is based on the inadequacy of Mg to nucleate without template in the synthesis condition. In addition, the shape of the TiC x /TiH x core, and the concentration of Mg have strong influence on the shape evolution of TiC x /MgO and TiH x /MgO NPs compared to TiC x /Mg/MgO NPs, where the thermodynamics and growth rates of the Mg crystal planes dominate the final shape. Finally, it is demonstrated that the core shape of TiC x and TiH x is affected by the Mg/Ti target ratio (affecting the composition in the plasma), and the type of the trace gas employed. In the case of CH 4 the TiC x core forms a triangular platelet, while in the case of H 2 the TiH x core transforms into a hexagonal platelet. We elucidate the reason for the TiC x /TiH x core shape based on the presence of (i) defects, and (ii) hydrogen and carbon adsorption on {111} planes that alter the growth rates and surface facet stabilization.

  10. [Analytical control of organic impurities in the drinking and bottled water after its contact with a pack and filters made from polymer materials].

    PubMed

    Sotnikov, E E; Kir'ianova, L F; Mikhaĭlova, R I; Ryzhova, I N; Moskovkin, A S

    2009-01-01

    The paper provides the results of gas chromatographic analysis of organic impurities in the drinking water after its contact with various packs and filters made from polymer materials. Vapor-phase analysis in combination with selective gas chromatographic detectors was used to determine volatile substances and liquid extraction in combination with chromatographic mass-spectrometry was employed to identify high-boiling compounds. The release sources of toxic compounds from materials to water, the taste and odor of which is affected by them were studied.

  11. Analysis of neutral beam driven impurity flow reversal in PLT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, M.A.; Stacey, W.M. Jr.; Thomas, C.E.

    1986-10-01

    The Stacey-Sigmar impurity transport theory for tokamak plasmas is applied to the analysis of experimental data from the PLT tokamak with a tungsten limiter. The drag term, which is a central piece in the theory, is evaluated from the recently developed gyroviscous theory for radial momentum transfer. An effort is made to base the modeling of the experiment on measured quantities. Where measured data is not available, recourse is made to extrapolation or numerical modeling. The theoretical and the experimental tungsten fluxes are shown to agree very closely within the uncertainties of the experimental data.

  12. Solvent Hold Tank Sample Results for MCU-15-129-130-131: January 2015 Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Taylor-Pashow, K. M. L.

    2015-02-19

    SRNL received one set of SHT samples (MCU-15-129, MCU-15-130, and MCU-15-131), pulled on 01/25/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-129-130-131 indicated low concentrations of the suppressor (TiDG), of the extractant (MaxCalix), and of the modifier (CS-7SB) in the solvent relative to their nominal values. This analysis confirms a downward trend of these components. No impurities were found in this solvent. The laboratory will continue to monitor the quality of the solvent in particular for any new impurity or degradation of the solvent components.

  13. Analysis of Sulfidation Routes for Processing Weathered Ilmenite Concentrates Containing Impurities

    NASA Astrophysics Data System (ADS)

    Ahmad, Sazzad; Rhamdhani, M. Akbar; Pownceby, Mark I.; Bruckard, Warren J.

    Rutile is the preferred feedstock for producing high-grade TiO2 pigment but due to decreasing resources, alternative materials such as ilmenite is now used to produce a synthetic rutile (SR) feedstock. This requires removal of impurities (e.g. Fe, Mg, Mn) which, for a primary ilmenite is straightforward process. Processing of weathered ilmenite however, is complex, especially when chrome-bearing impurities are present since minor chromium downgrades the SR market value as it imparts color to the final TiO2 pigment, Chrome-bearing spinels are a problem in weathered ilmenites from the Murray Basin, Australia as their physical and chemical properties overlap with ilmenite making separation difficult. In this paper, different sulfidation process routes for weathered ilmenites are analyzed for their applicability to Murray Basin deposits as a mean of remove chrome spinel impurities. Thermodynamic and experimental studies indicated that selective sulfidation of chrome-bearing spinel can be achieved under controlled pO2 and pS2 processing conditions thereby making them amenable to separation.

  14. Identification, preparation and UHPLC determination of process-related impurity in zolmitriptan.

    PubMed

    Douša, Michal; Gibala, Petr; Rádl, Stanislav; Klecán, Ondřej; Mandelová, Zuzana; Břicháč, Jiří; Pekárek, Tomáš

    2012-01-25

    A new impurity was detected and determined using gradient ion-pair UHPLC method with UV detection in zolmitriptan (ZOL). Using MS, NMR and IR study the impurity was identified as (4S,4'S)-4,4'-(2,2'-(4-(dimethylamino)butane-1,1-diyl)bis(3-(2-(dimethylamino) ethyl)-1H-indole-5,2-diyl))bis(methylene)di(oxazolidin-2-one) (ZOL-dimer). The standard of ZOL-dimer was consequently prepared via organic synthesis followed by semipreparative HPLC purification. The UHPLC method was optimized in order to selectively detect and quantify other known and unknown process-related impurities and degradation products of ZOL as well. The presented method which was validated with respect to linearity, accuracy, precision and selectivity has an advantage of a very quick UHPLC chromatographic separation (less than 7 min including re-equilibration time) and therefore is highly suitable for routine analysis of related substances and stability studies of ZOL. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Trapped one-dimensional ideal Fermi gas with a single impurity

    NASA Astrophysics Data System (ADS)

    Astrakharchik, G. E.; Brouzos, I.

    2013-08-01

    Ground-state properties of a single impurity in a one-dimensional Fermi gas are investigated in uniform and trapped geometries. The energy of a trapped system is obtained (i) by generalizing the McGuire expression from a uniform to trapped system (ii) within the local density approximation (iii) using the perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that there is a closed formula based on the exact solution of the homogeneous case which provides a precise estimation for the energy of a trapped system even for a small number of fermions and arbitrary coupling constant of the impurity. Using this expression, we analyze energy contributions from kinetic, interaction, and potential components, as well as spatial properties such as the system size and the pair-correlation function. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.

  16. Local nature of impurity induced spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Nikolaev, Sergey; Kalitsov, Alan; Chshiev, Mairbec; Mryasov, Oleg

    Spin-orbit torques are of a great interest due to their potential applications for spin electronics. Generally, it originates from strong spin orbit coupling of heavy 4d/5d elements and its mechanism is usually attributed either to the Spin Hall effect or Rashba spin-orbit coupling. We have developed a quantum-mechanical approach based on the non-equilibrium Green's function formalism and tight binding Hamiltonian model to study spin-orbit torques and extended our theory for the case of extrinsic spin-orbit coupling induced by impurities. For the sake of simplicity, we consider a magnetic material on a two dimensional lattice with a single non-magnetic impurity. However, our model can be easily extended for three dimensional layered heterostructures. Based on our calculations, we present the detailed analysis of the origin of local spin-orbit torques and persistent charge currents around the impurity, that give rise to spin-orbit torques even in equilibrium and explain the existence of anisotropy.

  17. Identification, synthesis and structural characterization of process related and degradation impurities of acrivastine and validation of HPLC method.

    PubMed

    Kumar, Ajay; Devineni, Subba Rao; Dubey, Shailender Kumar; Kumar, Pradeep; Srivastava, Vishal; Ambulgekar, Girish; Jain, Mohit; Gupta, Dharmendra Kumar; Singh, Gurmeet; Kumar, Rajesh; Hiriyanna, S G; Kumar, Pramod

    2016-10-17

    Four impurities (Imp-I-IV) were detected using gradient HPLC method in few laboratory batches of acrivastine in the level of 0.03-0.12% and three impurities (Imp-I-III) were found to be known and one (Imp-IV) was unknown. In forced degradation study, the drug is degraded into four degradation products under oxidation and photolytic conditions. Two impurities (Imp-III and -IV) were concurred with process related impurities whereas Imp-V and -VI were identified as new degradation impurities. Based on LC-ESI/MS n study, the chemical structures of new impurities were presumed as 1-[(2E)-3-(4-methylphenyl)-3-{6-[(1E)-3-oxobut-1-en-1-yl]pyridin-2-yl}prop-2-en-1-yl]pyrrolidin-1-ium-1-olate (Imp-IV), 1-{[3-(4-methylphenyl)-3-{6-[(1E)-3-oxobut-1-en-1-yl]pyridin-2-yl}oxiran-2-yl]methyl}pyrrolidin-1-ium-1-olate (Imp-V) and 2-[2-(4-methylphenyl)-3-[(1-oxidopyrrolidin-1-ium-1-yl)methyl]oxiran-2-yl]-6-[(1E)-3-oxobut-1-en-1-yl]pyridin-1-ium-1-olate (Imp-VI), and confirmed by their synthesis followed by spectroscopic analysis, IR, NMR ( 1 H, 13 C) and mass. An efficient and selective high-performance liquid chromatography method has been developed and resolved well the drug related substances on a Phenomenex Gemini C-18 (250×4.6mm, particle size 5μm) column. The mobile phase was composed of sodium dihydrogen phosphate (10mM) and methanol, temperature at 25°C, and a PDA detector set at 254nm used for detection. The method was validated with respect to specificity, linearity, precision, accuracy, and sensitivity and satisfactory results were achieved. Identification, synthesis, characterization of impurities and method validation were first reported in this paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    PubMed

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A Novel In Vitro Method for Detecting Undifferentiated Human Pluripotent Stem Cells as Impurities in Cell Therapy Products Using a Highly Efficient Culture System

    PubMed Central

    Tano, Keiko; Yasuda, Satoshi; Kuroda, Takuya; Saito, Hirohisa; Umezawa, Akihiro; Sato, Yoji

    2014-01-01

    Innovative applications of cell therapy products (CTPs) derived from human pluripotent stem cells (hPSCs) in regenerative medicine are currently being developed. The presence of residual undifferentiated hPSCs in CTPs is a quality concern associated with tumorigencity. However, no simple in vitro method for direct detection of undifferentiated hPSCs that contaminate CTPs has been developed. Here, we show a novel approach for direct and sensitive detection of a trace amount of undifferentiated human induced pluripotent stem cells (hiPSCs) using a highly efficient amplification method in combination with laminin-521 and Essential 8 medium. Essential 8 medium better facilitated the growth of hiPSCs dissociated into single cells on laminin-521 than in mTeSR1 medium. hiPSCs cultured on laminin-521 in Essential 8 medium were maintained in an undifferentiated state and they maintained the ability to differentiate into various cell types. Essential 8 medium allowed robust hiPSC proliferation plated on laminin-521 at low cell density, whereas mTeSR1 did not enhance the cell growth. The highly efficient culture system using laminin-521 and Essential 8 medium detected hiPSCs spiked into primary human mesenchymal stem cells (hMSCs) or human neurons at the ratio of 0.001%–0.01% as formed colonies. Moreover, this assay method was demonstrated to detect residual undifferentiated hiPSCs in cell preparations during the process of hMSC differentiation from hiPSCs. These results indicate that our highly efficient amplification system using a combination of laminin-521 and Essential 8 medium is able to detect a trace amount of undifferentiated hPSCs contained as impurities in CTPs and would contribute to quality assessment of hPSC-derived CTPs during the manufacturing process. PMID:25347300

  20. Quantification of active pharmaceutical ingredient and impurities in sildenafil citrate obtained from the Internet.

    PubMed

    Veronin, Michael A; Nutan, Mohammad T; Dodla, Uday Krishna Reddy

    2014-10-01

    The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug products compared with the US innovator product are not equivalent with regards to potency and levels of impurities. These findings have implications for safety and effectiveness that should be addressed by clinicians to safeguard consumers who choose to purchase sildenafil citrate and foreign-manufactured drugs, in general, via the Internet.

  1. Quantification of active pharmaceutical ingredient and impurities in sildenafil citrate obtained from the Internet

    PubMed Central

    Nutan, Mohammad T.; Dodla, Uday Krishna Reddy

    2014-01-01

    Background: The accessibility of prescription drugs produced outside of the United States, most notably sildenafil citrate (innovator product, Viagra®), has been made much easier by the Internet. Of greatest concern to clinicians and policymakers is product quality and patient safety. The US Food and Drug Administration (FDA) has issued warnings to potential buyers that the safety of drugs purchased from the Internet cannot be guaranteed, and may present a health risk to consumers from substandard products. Objective: The objective of this study was to determine whether generic sildenafil citrate tablets from international markets obtained via the Internet are equivalent to the US innovator product regarding major aspects of pharmaceutical quality: potency, accuracy of labeling, and presence and level of impurities. This will help identify aspects of drug quality that may impact public health risks. Methods: A total of 15 sildenafil citrate tablets were obtained for pharmaceutical analysis: 14 generic samples from international Internet pharmacy websites and the US innovator product. According to US Pharmacopeial guidelines, tablet samples were tested using high-performance liquid chromatography for potency of active pharmaceutical ingredient (API) and levels of impurities (impurities A, B, C, and D). Impurity levels were compared with International Conference on Harmonisation (ICH) limits. Results: Among the 15 samples, 4 samples possessed higher impurity B levels than the ICH qualification threshold, 8 samples possessed higher impurity C levels than the ICH qualification threshold, and 4 samples possessed more than 1% impurity quantity of maximum daily dose (MDD). For API, 6 of the samples failed to fall within the 5% assay limit. Conclusions: Quality assurance tests are often used to detect formulation defects of drug products during the manufacturing and/or storage process. Results suggest that manufacturing standards for sildenafil citrate generic drug products compared with the US innovator product are not equivalent with regards to potency and levels of impurities. These findings have implications for safety and effectiveness that should be addressed by clinicians to safeguard consumers who choose to purchase sildenafil citrate and foreign-manufactured drugs, in general, via the Internet. PMID:25360239

  2. Decomposition of banten ilmenite by caustic fusion process for TiO2 photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Aristanti, Y.; Supriyatna, Y. I.; Masduki, N. P.; Soepriyanto, S.

    2018-01-01

    Decomposition of Banten ilmenite by caustic fusion process for TiO2 photocatalytic applications has been done. Caustic fusion process using NaOH to obtain sodium titanate compound which is soluble in sulfuric acid (H2SO4) to produces TiOSO4 as a precursor. Synthesis of TiO2 from TiOSO4 precursors by variations of pH hydrolysis are 1.0 (TiO2 A), 1.5 (TiO2 B) and 2.0 (TiO2 C). XRD pattern identified TiO2 structures crystals are anatase phase and traces α-Fe2O3 as an impurity. Presence of Fe2O3 as an impurities give positive effect on TiO2 photocatalytic activity that is to narrower the band gap energy thus facilitates of electrons excitation from valence band to conduction band and enlarge the specific surface area thus reaction between Rhodamin B solution and TiO2 surface can be faster. TiO2 A, TiO2 B and TiO2 C was compared to TiO2 M (commercial TiO2) in Rhodamin B solution for the photocatalytic activity where the maximum TiO2 degradation efficiency was obtained at TiO2 C 80.0 % while TiO2 M 59.8 %.

  3. A new capillary electrophoresis buffer for determining organic and inorganic anions in electroplating bath with surfactant additives.

    PubMed

    Sun, H; Lau, K M; Fung, Y S

    2010-05-07

    Monitoring of trace impurities in electroplating bath is needed to meet EU requirements for WEEE and RoHS and for quality control of electrodeposits. Methods using IC and 100% aqueous CE buffer were found producing non-repeatable results attributed to interference of surfactants and major methanesulphonate anion. A new CE buffer containing 1.5mM tetraethylenepentaamine, 3mM 1,3,5-benzenetricarboxylic acid and 15 mM Tris in 20% (v/v) methanol at pH=8.4 was shown to enhance the separation window, reduce interaction between buffer and bath constituents, and give satisfactory repeatability with baseline separation for 14 organic and inorganic anions within 14 min, good repeatability for migration time (0.32-0.57% RSD), satisfactory peak area and peak height (2.9-4.5 and 3-4.7% respectively), low detection limit (S/N=2, 20-150 ppb), and wide working ranges (0.1-100 ppm). The CE buffer with 20% (v/v) methanol has demonstrated its capability for identifying anion impurities causing problem in aged tin bath and the use of only 10-fold dilution to produce reliable results for quality assessment in plating bath containing high surfactant additives. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

    NASA Astrophysics Data System (ADS)

    Ghosh, Krishnendu; Singisetti, Uttam

    2017-11-01

    This work reports an investigation of electron transport in monoclinic \\beta-Ga2O3 based on a combination of density functional perturbation theory based lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations and Boltzmann theory based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes make the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in \\beta-Ga2O3 is studied in bulk material form and also in the form of two-dimensional electron gas. Under high electron density a bulk mobility of 182 cm2/ V.s is predicted while in 2DEG form the corresponding mobility is about 418 cm2/V.s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high electron mobility in dopant isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

  5. Investigation of Color in a Fusion Protein Using Advanced Analytical Techniques: Delineating Contributions from Oxidation Products and Process Related Impurities.

    PubMed

    Song, Hangtian; Xu, Jianlin; Jin, Mi; Huang, Chao; Bongers, Jacob; Bai, He; Wu, Wei; Ludwig, Richard; Li, Zhengjian; Tao, Li; Das, Tapan K

    2016-04-01

    Discoloration of protein therapeutics has drawn increased attention recently due to concerns of potential impact on quality and safety. Investigation of discoloration in protein therapeutics for comparability is particularly challenging primarily for two reasons. First, the description of color or discoloration is to certain extent a subjective characteristic rather than a quantitative attribute. Secondly, the species contributing to discoloration may arise from multiple sources and are typically present at trace levels. Our purpose is to development a systematic approach that allows effective identification of the color generating species in protein therapeutics. A yellow-brown discoloration event observed in a therapeutic protein was investigated by optical spectroscopy, ultra-performance liquid chromatography, and mass spectrometry (MS). Majority of the color generating species were identified as oxidatively modified protein. The location of the oxidized amino acid residues were identified by MS/MS. In addition, the impact of process-related impurities co-purified from media on discoloration was also investigated. Finally a semi-quantitative scale to estimate the contribution of each color source is presented, which revealed oxidized peptides are the major contributors. A systematic approach was developed for identification of the color generating species in protein therapeutics and for estimation of the contribution of each color source.

  6. Chirped self-similar optical pulses in tapered centrosymmetric nonlinear waveguides doped with resonant impurities

    NASA Astrophysics Data System (ADS)

    He, J. R.; Xu, S. L.; Xue, L.

    2017-11-01

    Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.

  7. On the accuracy of analytical models of impurity segregation during directional melt crystallization and their applicability for quantitative calculations

    NASA Astrophysics Data System (ADS)

    Voloshin, A. E.; Prostomolotov, A. I.; Verezub, N. A.

    2016-11-01

    The paper deals with the analysis of the accuracy of some one-dimensional (1D) analytical models of the axial distribution of impurities in the crystal grown from a melt. The models proposed by Burton-Prim-Slichter, Ostrogorsky-Muller and Garandet with co-authors are considered, these models are compared to the results of a two-dimensional (2D) numerical simulation. Stationary solutions as well as solutions for the initial transient regime obtained using these models are considered. The sources of errors are analyzed, a conclusion is made about the applicability of 1D analytical models for quantitative estimates of impurity incorporation into the crystal sample as well as for the solution of the inverse problems.

  8. Acoustic Properties of Crystals with Jahn-Teller Impurities: Elastic Moduli and Relaxation Time. Application to SrF2:Cr2+

    NASA Astrophysics Data System (ADS)

    Averkiev, Nikita S.; Bersuker, Isaac B.; Gudkov, Vladimir V.; Zhevstovskikh, Irina V.; Sarychev, Maksim N.; Zherlitsyn, Sergei; Yasin, Shadi; Shakurov, Gilman S.; Ulanov, Vladimir A.; Surikov, Vladimir T.

    2017-11-01

    A new approach to evaluate the relaxation contribution to the total elastic moduli for crystals with Jahn-Teller (JT) impurities is worked out and applied to the analysis of the experimentally measured ultrasound velocity and attenuation in SrF2:Cr2+. Distinguished from previous work, the background adiabatic contribution to the moduli, important for revealing the impurity relaxation contribution, is taken into account. The temperature dependence of the relaxation time for transitions between the equivalent configurations of the JT centers has been obtained, and the activation energy for the latter in SrF2:Cr2+, as well as the linear vibronic coupling constant have been evaluated.

  9. Distribution of elastic strains appearing in gallium arsenide as a result of doping with isovalent impurities of phosphorus and indium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru

    2015-01-15

    The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.

  10. Supercritical fluid chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances.

    PubMed

    Pirrone, Gregory F; Mathew, Rose M; Makarov, Alexey A; Bernardoni, Frank; Klapars, Artis; Hartman, Robert; Limanto, John; Regalado, Erik L

    2018-03-30

    Impurity fate and purge studies are critical in order to establish an effective impurity control strategy for approval of the commercial filing application of new medicines. Reversed phase liquid chromatography-diode array-mass spectrometry (RPLC-DAD-MS) has traditionally been the preferred tool for impurity fate mapping. However, separation of some reaction mixtures by LC can be very problematic requiring combination LC-UV for area % analysis and a different LC-MS method for peak identification. In addition, some synthetic intermediates might be chemically susceptible to the aqueous conditions used in RPLC separations. In this study, the use of supercritical fluid chromatography-photodiode array-electrospray ionization mass spectrometry (SFC-PDA-ESIMS) for fate and purge of two specified impurities in the 1-uridine starting material from the synthesis of a bis-piv 2'keto-uridine, an intermediate in the synthesis of uprifosbuvir, a treatment under investigation for chronic hepatitis C infection. Readily available SFC instrumentation with a Chiralpak IC column (4.6 × 150 mm, 3 μm) and ethanol: carbon dioxide based mobile phase eluent enabled the separation of closely related components from complex reaction mixtures where RLPC failed to deliver optimal chromatographic performance. These results illustrate how SFC combined with PDA and ESI-MS detection can become a powerful tool for direct impurity fate mapping across multiple reaction steps. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. One-Step Synthesis of B/N Co-doped Graphene as Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Synergistic Effect of Impurities.

    PubMed

    Mazánek, Vlastimil; Matějková, Stanislava; Sedmidubský, David; Pumera, Martin; Sofer, Zdeněk

    2018-01-19

    In the last decade, numerous studies of graphene doping by various metal and nonmetal elements have been done in order to obtain tailored properties, such as non-zero band gap, electrocatalytic activity, or controlled optical properties. From nonmetal elements, boron and nitrogen were the most studied dopants. Recently, it has been shown that in some cases the enhanced electrocatalytic activity of graphene and its derivatives can be attributed to metal impurities rather than to nonmetal elements. In this paper, we investigated the electrocatalytical properties of B/N co-doped graphene with respect to the content of metallic impurities introduced by the synthesis procedures. For this purpose, a permanganate (Hummers) and a chlorate (Hofmann) route were used for the preparation of the starting graphene oxides (GO). The GO used for the synthesis of B/N co-doped graphene had significantly difference compositions of oxygen functionalities as well as metallic impurities introduced by the different synthetic procedures. We performed a detailed structural and chemical analysis of the doped graphene samples to correlate their electrocatalytic activity with the concentration of incorporated boron and nitrogen as well as metallic impurities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Utilization of Photochemically Induced Fluorescence Detection for HPLC Determination of Genotoxic Impurities in the Vortioxetine Manufacturing Process.

    PubMed

    Douša, Michal; Doubský, Jan; Srbek, Jan

    2016-07-01

    An analytical reversed-phase high-performance liquid chromatography (HPLC) method for the detection and quantitative determination of two genotoxic impurities at ppm level present in the vortioxetine manufacturing process is described. Applying the concept of threshold of toxicological concern, a limit of 75 ppm each for both genotoxic impurities was calculated based on the maximum daily dose of active pharmaceutical ingredients. The novel reversed-phase HPLC method with photochemically induced fluorescence detection was developed on XSELECT Charged Surface Hybrid Phenyl-Hexyl column using the mobile phase consisted a mixture of 10 mM ammonium formate pH 3.0 and acetonitrile. The elution was performed using an isocratic composition of 48:52 (v/v) at a flow rate of 1.0 mL/min. The photochemically induced fluorescence detection is based on the use of UV irradiation at 254 nm through measuring the fluorescence intensity at 300 nm and an excitation wavelength of 272 nm to produce fluorescent derivatives of both genotoxic impurities. The online photochemical conversion and detection is easily accomplished for two expected genotoxic impurities and provides a sufficiently low limit detection and quantification for the target analysis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Factorial experimental design intended for the optimization of the alumina purification conditions

    NASA Astrophysics Data System (ADS)

    Brahmi, Mounaouer; Ba, Mohamedou; Hidri, Yassine; Hassen, Abdennaceur

    2018-04-01

    The objective of this study was to determine the optimal conditions by using the experimental design methodology for the removal of some impurities associated with the alumina. So, three alumina qualities of different origins were investigated under the same conditions. The application of full-factorial designs on the samples of different qualities of alumina has followed the removal rates of the sodium oxide. However, a factorial experimental design was developed to describe the elimination of sodium oxide associated with the alumina. The experimental results showed that chemical analyze followed by XRF prior treatment of the samples, provided a primary idea concerning these prevailing impurities. Therefore, it appeared that the sodium oxide constituted the largest amount among all impurities. After the application of experimental design, analysis of the effectors different factors and their interactions showed that to have a better result, we should reduce the alumina quantity investigated and by against increase the stirring time for the first two samples, whereas, it was necessary to increase the alumina quantity in the case of the third sample. To expand and improve this research, we should take into account all existing impurities, since we found during this investigation that the levels of partial impurities increased after the treatment.

  14. Solubility of Plutonium (IV) Oxalate During Americium/Curium Pretreatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T.S.

    1999-08-11

    Approximately 15,000 L of solution containing isotopes of americium and curium (Am/Cm) will undergo stabilization by vitrification at the Savannah River Site (SRS). Prior to vitrification, an in-tank pretreatment will be used to remove metal impurities from the solution using an oxalate precipitation process. Material balance calculations for this process, based on solubility data in pure nitric acid, predict approximately 80 percent of the plutonium in the solution will be lost to waste. Due to the uncertainty associated with the plutonium losses during processing, solubility experiments were performed to measure the recovery of plutonium during pretreatment and a subsequent precipitationmore » process to prepare a slurry feed for a batch melter. A good estimate of the plutonium content of the glass is required for planning the shipment of the vitrified Am/Cm product to Oak Ridge National Laboratory (ORNL).The plutonium solubility in the oxalate precipitation supernate during pretreatment was 10 mg/mL at 35 degrees C. In two subsequent washes with a 0.25M oxalic acid/0.5M nitric acid solution, the solubility dropped to less than 5 mg/mL. During the precipitation and washing steps, lanthanide fission products in the solution were mostly insoluble. Uranium, and alkali, alkaline earth, and transition metal impurities were soluble as expected. An elemental material balance for plutonium showed that greater than 94 percent of the plutonium was recovered in the dissolved precipitate. The recovery of the lanthanide elements was generally 94 percent or higher except for the more soluble lanthanum. The recovery of soluble metal impurities from the precipitate slurry ranged from 15 to 22 percent. Theoretically, 16 percent of the soluble oxalates should have been present in the dissolved slurry based on the dilution effects and volumes of supernate and wash solutions removed. A trace level material balance showed greater than 97 percent recovery of americium-241 (from the beta dec ay of plutonium-241) in the dissolved precipitate, a value consistent with the recovery of europium, the americium surrogate.In a subsequent experiment, the plutonium solubility following an oxalate precipitation to simulate the preparation of a slurry feed for a batch melter was 21 mg/mL at 35 degrees C. The increase in solubility compared to the value measured during the pretreatment experiment was attributed to the increased nitrate concentration and ensuing increase in plutonium complexation. The solubility of the plutonium following a precipitant wash with 0.1M oxalic acid was unchanged. The recovery of plutonium from the precipitate slurry was greater than 97 percent allowing an estimation that approximately 92 percent of the plutonium in Tank 17.1 will report to the glass. The behavior of the lanthanides and soluble metal impurities was consistent with the behavior seen during the pretreatment experiment. A trace level material balance showed that 99.9 percent of the americium w as recovered from the precipitate slurry. The overall recovery of americium from the pretreatment and feed preparation processes was greater than 97 percent, which was consistent with the measured recovery of the europium surrogate.« less

  15. Quantitative detection of the respective concentrations of chiral compounds with weak measurements

    NASA Astrophysics Data System (ADS)

    Xie, Linguo; Qiu, Xiaodong; Luo, Lan; Liu, Xiong; Li, Zhaoxue; Zhang, Zhiyou; Du, Jinglei; Wang, Deqiang

    2017-11-01

    In this letter, we determine the respective concentrations of glucose and fructose in the mixed chiral solution by simultaneously measuring the optical rotation angle (ORA) and the refractive index change (RIC) with weak measurements. The photonic spin Hall effect (PSHE) serves as a probe in our scheme. The measurement of ORA is based on the high sensitivity of the amplification factor to the polarization state in weak measurements. The measurement of RIC is based on the rapid variation of spin splitting of the PSHE. The measurement precision of the respective concentrations can be achieved to be 0.02 mg/ml. This method can detect traces of enantiomeric impurities and has a potential application in chiral sensing.

  16. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    PubMed Central

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-01-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789

  17. Mercury source sector asssessment for the Greater Milwaukee Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obenauf, P.; Skavroneck, S.

    1997-09-01

    The Mercury Reduction Project for the Greater Milwaukee Area is a joint effort of the Pollution Prevention Partnership, Milwaukee Metropolitan Seweage District (MMSD) and Wisconsin Department of Natural Resources. Estimates of the amounts of mercury present, used and/or annually released to air, land and water within the MMSD service area are provided for 25 source sectors. This 420 square mile area (including Milwaukee County and parts of Waukesha, Racine, Ozaukee and Washington Counties) is home to just over 1 million people. The tables and figures summarize the relative amounts of mercury: annually released from purposeful uses; annually released due tomore » trace impurities; and present or in use from the various source sectors in the Greater Milwaukee Area.« less

  18. Optimizing multi-dimensional high throughput screening using zebrafish.

    PubMed

    Truong, Lisa; Bugel, Sean M; Chlebowski, Anna; Usenko, Crystal Y; Simonich, Michael T; Simonich, Staci L Massey; Tanguay, Robert L

    2016-10-01

    The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    NASA Astrophysics Data System (ADS)

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-08-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth.

  20. Radioluminescence response of germanosilicate optical fibres

    NASA Astrophysics Data System (ADS)

    Khanlary, M. R.; Townsend, P. D.; Townsend, J. E.

    1993-07-01

    X-ray irradiation of germanosilicate optical fibres simultaneously produces signals from both the core and substrate and so the radioluminescence spectra record the defect structure of both regions. The data provide evidence for the presence of dopants and trace impurities, as well as intrinsic defects formed by thermal and radiation processing. Examples of the changes in spectra or luminescence sensitivity with radiation dose, the influence of fibre pulling conditions and post irradiation heating are noted. The temperature dependence of the radioluminescence is reported. Whilst most of the intrinsic defects produce broad emission bands, rare earth dopants show line features. However, line features have also been noted for Al doped fibres. Such studies of fibre luminescence offer a sensitive monitor of changes in the structure of the glass network.

  1. RAPID COMMUNICATION: Diffusion thermopower in graphene

    NASA Astrophysics Data System (ADS)

    Vaidya, R. G.; Kamatagi, M. D.; Sankeshwar, N. S.; Mulimani, B. G.

    2010-09-01

    The diffusion thermopower of graphene, Sd, is studied for 30 < T < 300 K, considering the electrons to be scattered by impurities, vacancies, surface roughness and acoustic and optical phonons via deformation potential couplings. Sd is found to increase almost linearly with temperature, determined mainly by vacancy and impurity scatterings. A departure from linear behaviour due to optical phonons is noticed. As a function of carrier concentration, a change in the sign of |Sd| is observed. Our analysis of recent thermopower data obtains a good fit. The limitations of Mott formula are discussed. Detailed analysis of data will enable a better understanding of the scattering mechanisms operative in graphene.

  2. Simultaneous gas chromatographic determination of chlorpyrifos and its impurity sulfotep in liquid pesticide formulations.

    PubMed

    Płonka, Marlena; Walorczyk, Stanisław; Miszczyk, Marek; Kronenbach-Dylong, Dorota

    2016-11-01

    An analytical method for simultaneous determination of the active substance (chlorpyrifos) and its relevant impurity (sulfotep) in commercial pesticide formulations has been developed and validated. The proposed method entails extraction of the analytes from samples by sonication with acetone and analysis by gas chromatography-flame ionization detection (GC-FID). The proposed method was characterized by satisfactory accuracy and precision. The repeatability expressed as relative standard deviation (RSD) was lower than the acceptable values calculated from the modified Horwitz equation whereas individual recoveries were in the range of 98-102% and 80-120% for chlorpyrifos and sulfotep, respectively. The limit of quantification (LOQ) for the impurity (sulfotep) was 0.003 mg mL(-1) corresponding to the maximum permitted level according to Food and Agricultural Organization of the United Nations (FAO) specifications for the active substance (chlorpyrifos) being 3 g kg(-1) of the chlorpyrifos content found. The main advantage of the proposed method was a considerable reduction in the analysis time since both analytes were determined based on a single injection into the GC-FID. Analysis of real samples of commercial pesticide formulations confirmed fitness-for-purpose of the proposed method.

  3. Reducing treatment of coppersmelting slag: Thermodynamic analysis of impurities behavior

    NASA Astrophysics Data System (ADS)

    Komkov, Alexey; Kamkin, Rostislav

    2011-01-01

    A thermodynamic mathematical model, describing behavior of Pb, Zn, and As during reducing slag cleaning in the Vanyukov furnace has been developed. Using a developed model, the influence of different factors, such as temperature, oxygen partial pressure, the ratio of the formed phases on the behavior of impurities, was analyzed. It was found that arsenic can significantly move to the bottom phase, and zinc can be significantly vaporized under conditions in the Vanyukov furnace.

  4. Relationship between HPLC precision and number of significant figures when reporting impurities and when setting specifications.

    PubMed

    Agut, Christophe; Segalini, Audrey; Bauer, Michel; Boccardi, Giovanni

    2006-05-03

    The rounding of an analytical result is a process that should take into account the uncertainty of the result, which is in turn assessed during the validation exercise. Rounding rules are known in physical and analytical chemistry since a long time, but are often not used or misused in pharmaceutical analysis. The paper describes the theoretical background of the most common rules and their application to fix the rounding of results and specifications. The paper makes use of uncertainty values of impurity determination acquired during studies of reproducibility and intermediate precision with regards to 22 impurities of drug substances or drug products. As a general rule, authors propose the use of sound and well-established rounding rules to derive rounding from the results of the validation package.

  5. CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe

    NASA Astrophysics Data System (ADS)

    Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.

    1995-05-01

    Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.

  6. Lipstick dermatitis due to C18 aliphatic compounds.

    PubMed

    Hayakawa, R; Matsunaga, K; Suzuki, M; Arima, Y; Ohkido, Y

    1987-04-01

    An 18-year-old girl developed cheilitis. She had a past history of lip cream dermatitis, but the cause was not found. Patch tests with 2 lipsticks were strongly positive. Tests with the ingredients were positive to 2 aliphatic compounds, glyceryl diisostearate and diisostearyl malate. Impurities in the materials were suspected as the cause. Analysis by gas chromatography detected 3 chemicals in glyceryl diisostearate and 1 in diisostearyl malate as impurities. Patch testing with the impurities and glyceryl monoisostearate 0.01% pet in glyceryl diisostearate and isostearyl alcohol 0.25% pet in diisostearyl malate were strongly positive. The characteristics common to the 2 chemicals were liquidity at room temperature, branched C18 aliphatic compound and primary alcohol. Chemicals lacking any of the above 3 features did not react.

  7. Quantitative analysis of trace element concentrations in some gem-quality diamonds

    NASA Astrophysics Data System (ADS)

    McNeill, J.; Pearson, D. G.; Klein-Ben David, O.; Nowell, G. M.; Ottley, C. J.; Chinn, I.

    2009-09-01

    The geochemical signature of diamond-forming fluids can be used to unravel diamond-forming processes and is of potential use in the detection of so-called 'conflict' diamonds. While fluid-rich fibrous diamonds can be analyzed by a variety of techniques, very few data have been published for fluid-poor, gem-quality diamonds because of their very low impurity levels. Here we present a new ICPMS-based (ICPMS: inductively coupled plasma mass spectrometry) method for the analysis of trace element concentrations within fluid-poor, gem-quality diamonds. The method employs a closed-system laser ablation cell. Diamonds are ablated and the products trapped for later pre-concentration into solutions that are analyzed by sector-field ICPMS. We show that our limits of quantification for a wide range of elements are at the sub-pg to low pg level. The method is applied to a suite of 10 diamonds from the Cullinan Mine (previously known as Premier), South Africa, along with other diamonds from Siberia (Mir and Udachnaya) and Venezuela. The concentrations of a wide range of elements for all the samples (expressed by weight in the solid) are very low, with rare earth elements along with Y, Nb, Cs ranging from 0.01 to 2 ppb. Large ion lithophile elements (LILE) such as Rb and Ba vary from 1 to 30 ppb. Ti ranges from ppb levels up to 2 ppm. From the combined, currently small data set we observe two kinds of diamond-forming fluids within gem diamonds. One group has enrichments in LILE over Nb, whereas a second group has normalized LILE abundances more similar to those of Nb. These two groups bear some similarity to different groups of fluid-rich diamonds, providing some supporting evidence of a link between the parental fluids for both fluid-inclusion-rich and gem diamonds.

  8. Key comparison study on peptide purity—synthetic human C-peptide

    NASA Astrophysics Data System (ADS)

    Josephs, R. D.; Li, M.; Song, D.; Westwood, S.; Stoppacher, N.; Daireaux, A.; Choteau, T.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Flatschart, R.; Borges Oliveira, R.; Melanson, J. E.; Ohlendorf, R.; Henrion, A.; Kinumi, T.; Wong, L.; Liu, Q.; Oztug Senal, M.; Vatansever, B.; Ün, I.; Gören, A. C.; Akgöz, M.; Quaglia, M.; Warren, J.

    2017-01-01

    Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM-K115, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Eight Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-K115. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a peptide impurity corrected amino acid analysis (PICAA) approach as the amount of material that has been provided to each participant (25 mg) is insufficient to perform a full mass balance based characterization of the material by a participating laboratory. The coordinators, both the BIPM and the NIM, were the laboratories to use the mass balance approach as they had more material available. It was decided to propose KCRVs for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. More detailed studies on the identification/quantification of peptide related impurities and the hydrolysis efficiency revealed that the integrity of the impurity profile of the related peptide impurities obtained by the participant is crucial for the impact on accuracy of the hCP mass fraction assignment. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and elaborate set of results is taken for the calculation of the KCRVPepImp. The KCRVPepImp for the peptide related impurity mass fractions of the material was 83.3 mg/g with a combined standard uncertainty of 1.5 mg/g. Inspection of the degree of equivalence plots for the mass fraction of peptide impurities and additional information obtained from the peptide related impurity profile indicates that in many cases only a very small number of impurities have been identified and quantified resulting in an underestimation of the peptide related impurity mass fractions. The approach to obtain a KCRVhCP for the mass fraction of hCP is based on a mass balance calculation that takes into account the most exhaustive and elaborate set of results for the peptide related impurities KCRVPepImp, the TFA mass fraction value, water and other minor counter ions obtained by the coordinating laboratories. Differences in the quality of the results obtained for both peptides related impurity mass fractions and hCP mass fractions are better weighted and reflected in smaller uncertainties. The KCRVhCP for CCQM-K115 is 801.8 mg/g with a corresponding combined standard uncertainty of 3.1 mg/g. In general, mass balance approaches show smaller uncertainties than PICAA approaches and the majority of results obtained by the PICAA approach are in agreement because of larger corresponding uncertainties. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Analytical approach to impurity transport studies: Charge state dynamics in tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shurygin, V. A.

    2006-08-15

    Ionization and recombination of plasma impurities govern their charge state kinetics, which is imposed upon the dynamics of ions that implies a superposition of the appropriate probabilities and causes an impurity charge state dynamics. The latter is considered in terms of a vector field of conditional probabilities and presented by a vector charge state distribution function with coupled equations of the Kolmogorov type. Analytical solutions of a diffusion problem are derived with the basic spatial and temporal dimensionless parameters. Analysis shows that the empirical scaling D{sub A}{proportional_to}n{sub e}{sup -1} [K. Krieger, G. Fussmann, and the ASDEX Upgrade Team, Nucl. Fusionmore » 30, 2392 (1990)] can be explained by the ratio of the diffusive and kinetic terms, D{sub A}/(n{sub e}a{sup 2}), being used instead of diffusivity, D{sub A}. The derived time scales of charge state dynamics are given by a sum of the diffusive and kinetic times. Detailed simulations of charge state dynamics are performed for argon impurity and compared with the reference modeling.« less

  10. First-Principles Study of Carbon and Vacancy Structures in Niobium

    DOE PAGES

    Ford, Denise C.; Zapol, Peter; Cooley, Lance D.

    2015-04-03

    The interstitial chemical impurities hydrogen, oxygen, nitrogen, and carbon are important for niobium metal production, and particularly for the optimization of niobium SRF technology. These atoms are present in refined sheets and can be absorbed into niobium during processing treatments, resulting in changes to the residual resistance and the performance of SRF cavities. A first-principles approach is taken to study the properties of carbon in niobium, and the results are compared and contrasted with the properties of the other interstitial impurities. The results indicate that C will likely form precipitates or atmospheres around defects rather than strongly bound complexes withmore » other impurities. Based on the analysis of carbon and hydrogen near niobium lattice vacancies and small vacancy chains and clusters, the formation of extended carbon chains and hydrocarbons is not likely to occur. Association of carbon with hydrogen atoms can, however, occur through the strain fields created by interstitial binding of the impurity atoms. In conclusion, calculated electronic densities of states indicate that interstitial C may have a similar effect as interstitial O on the superconducting transition temperature of Nb.« less

  11. Identification and characterization of potential impurities of donepezil.

    PubMed

    Krishna Reddy, K V S R; Moses Babu, J; Kumar, P Anil; Chandrashekar, E R R; Mathad, Vijayavitthal T; Eswaraiah, S; Reddy, M Satyanarayana; Vyas, K

    2004-09-03

    Five unknown impurities ranging from 0.05 to 0.2% in donepezil were detected by a simple isocratic reversed-phase high performance liquid chromatography (HPLC). These impurities were isolated from crude sample of donepezil using isocratic reversed-phase preparative high performance liquid chromatography. Based on the spectral data (IR, NMR and MS), the structures of these impurities were characterised as 5,6-dimethoxy-2-(4-pyridylmethyl)-1-indanone (impurity I), 4-(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity II), 2-(1-benzyl-4-piperdylmethyl)-5,6-dimethoxy-1-indanol (impurity III) 1-benzyl-4(5,6-dimethoxy-2,3-dihydro-1H-2-indenylmethyl) piperidine (impurity IV) and 1,1-dibenzyl-4(5,6-dimethoxy-1-oxo-2,3-dihydro-2H-2-indenylmethyl)hexahydropyridinium bromide (impurity V). The synthesis of these impurities and their formation was discussed.

  12. Certified Reference Material for Use in 1H, 31P, and 19F Quantitative NMR, Ensuring Traceability to the International System of Units.

    PubMed

    Rigger, Romana; Rück, Alexander; Hellriegel, Christine; Sauermoser, Robert; Morf, Fabienne; Breitruck, KathrinBreitruck; Obkircher, Markus

    2017-09-01

    In recent years, quantitative NMR (qNMR) spectroscopy has become one of the most important tools for content determination of organic substances and quantitative evaluation of impurities. Using Certified Reference Materials (CRMs) as internal or external standards, the extensively used qNMR method can be applied for purity determination, including unbroken traceability to the International System of Units (SI). The implementation of qNMR toward new application fields, e.g., metabolomics, environmental analysis, and physiological pathway studies, brings along more complex molecules and systems, thus making use of 1H qNMR challenging. A smart workaround is possible by the use of other NMR active nuclei, namely 31P and 19F. This article presents the development of three classes of qNMR CRMs based on different NMR active nuclei (1H, 31P, and 19F), and the corresponding approaches to establish traceability to the SI through primary CRMs from the National Institute of Standards and Technology and the National Metrology Institute of Japan. These TraceCERT® qNMR CRMs are produced under ISO/IEC 17025 and ISO Guide 34 using high-performance qNMR.

  13. Applications of Cavity-Enhanced Direct Frequency Comb Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cossel, Kevin C.; Adler, Florian; Maslowski, Piotr; Ye, Jun

    2010-06-01

    Cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) is a unique technique that provides broad bandwidth, high resolution, and ultra-high detection sensitivities. This is accomplished by combining a femtosecond laser based optical frequency comb with an enhancement cavity and a broadband, multichannel imaging system. These systems are capable of simultaneously recording many terahertz of spectral bandwidth with sub-gigahertz resolution and absorption sensitivities of 1×10-7 cm-1 Hz-1/2. In addition, the ultrashort pulses enable efficient nonlinear processes, which makes it possible to reach spectral regions that are difficult to access with conventional laser sources. We will present an application of CE-DFCS for trace impurity detection in the semiconductor processing gas arsine near 1.8 μm and the development of a high-power, mid-infrared frequency comb for breath analysis in the 2.8-4.8 μm region. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye. Science 311, 1595-1599 (2006) F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye. Annu. Rev. Anal. Chem. 3, 175-205 (2010) F. Adler, K. C. Cossel, M. J. Thorpe, I. Hartl, M. E. Fermann, and J. Ye. Opt. Lett. 34, 1330-1332 (2009)

  14. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stergiou, Charalampos, E-mail: stergiou@cperi.certh.gr; Litsardakis, George, E-mail: lits@eng.auth.gr

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover,more » the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.« less

  15. Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3-PbTiO3 electronic system

    NASA Astrophysics Data System (ADS)

    Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.

    2016-06-01

    A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.

  16. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3-δ

    NASA Astrophysics Data System (ADS)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.

    2018-05-01

    Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

  17. Impurity effects in transition metal silicides

    NASA Technical Reports Server (NTRS)

    Lien, C.-D.; Nicolet, M.-A.

    1984-01-01

    Impurities can affect the properties of silicides directly by virtue of their presence. Impurities can also influence the processes by which silicides are formed. The effect of impurities on the reaction of transition metal films with a silicon substrate induced by thermal annealing are well documented. The interpretation of these results is discussed. It is shown that impurity redistribution is a major factor in determining how significant the effect of an impurity is. Redistribution observed for dopant impurities is also discussed.

  18. Preparation of Large-Diameter GaAs Crystals.

    DTIC Science & Technology

    1981-09-18

    ionized impurity content for 40 n-type semi-insulating GaAs. Figure 17 Analysis (in wt %) of impurities in B203 after crystal growth 41 from PBN and quartz...encapsulant to the generation of defect clusters in LEC InP. (15 ) Statistics relative to the incidence of twinning for growth with dry ( ppm wt OH...and wet (> 1000 ppm wt OH) B203 are given in Fig. 5 for growths from fused-SiO 2 and PBN crucibles. A crystal is defined as having twinned if it

  19. Analysis of Voltammetric Half-Wave Potentials in Low Ionic Strength Solutions and Voltammetric Measurement of Ion Impurity Concentrations

    DTIC Science & Technology

    1990-11-17

    voltammetric response. As will be developed in this paper , the ability to observe sigmoidally shaped voltammograms requires a minimum number of solution ions...polished with I 4im diamond paste (Buehler). Similar results ,vere obtained using both methods of electrode construction. Precise values of the electrode...impurities in the bulk of the solution that can serve as an electrolyte, Cimp * We will assume for simplicity that all ionic i f11urities are 1: 1

  20. A fast and simple dose-calibrator-based quality control test for the radionuclidic purity of cyclotron-produced (99m)Tc.

    PubMed

    Tanguay, J; Hou, X; Esquinas, P; Vuckovic, M; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2015-11-07

    Cyclotron production of 99mTc through the (100)Mo(p,2n)99mTc reaction channel is actively being investigated as an alternative to reactor-based (99)Mo generation by nuclear fission of (235)U. Like most radioisotope production methods, cyclotron production of 99mTc will result in creation of unwanted impurities, including Tc and non-Tc isotopes. It is important to measure the amounts of these impurities for release of cyclotron-produced 99mTc (CPTc) for clinical use. Detection of radioactive impurities will rely on measurements of their gamma (γ) emissions. Gamma spectroscopy is not suitable for this purpose because the overwhelming presence of 99mTc and the count-rate limitations of γ spectroscopy systems preclude fast and accurate measurement of small amounts of impurities. In this article we describe a simple and fast method for measuring γ emission rates from radioactive impurities in CPTc. The proposed method is similar to that used to identify (99)Mo breakthrough in generator-produced 99mTc: one dose calibrator (DC) reading of a CPTc source placed in a lead shield is followed by a second reading of the same source in air. Our experimental and theoretical analysis show that the ratio of DC readings in lead to those in air are linearly related to γ emission rates from impurities per MBq of 99mTc over a large range of clinically-relevant production conditions. We show that estimates of the γ emission rates from Tc impurities per MBq of 99mTc can be used to estimate increases in radiation dose (relative to pure 99mTc) to patients injected with CPTc-based radiopharmaceuticals. This enables establishing dosimetry-based clinical-release criteria that can be tested using commercially-available dose calibrators. We show that our approach is highly sensitive to the presence of 93gTc, 93mTc, 94gTc, 94mTc, 95mTc, 95gTc, and 96gTc, in addition to a number of non-Tc impurities.

  1. A fast and simple dose-calibrator-based quality control test for the radionuclidic purity of cyclotron-produced 99mTc

    NASA Astrophysics Data System (ADS)

    Tanguay, J.; Hou, X.; Esquinas, P.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2015-11-01

    Cyclotron production of {{}99\\text{m}} Tc through the 100Mo(p,2n){{}99\\text{m}} Tc reaction channel is actively being investigated as an alternative to reactor-based 99Mo generation by nuclear fission of 235U. Like most radioisotope production methods, cyclotron production of {{}99\\text{m}} Tc will result in creation of unwanted impurities, including Tc and non-Tc isotopes. It is important to measure the amounts of these impurities for release of cyclotron-produced {{}99\\text{m}} Tc (CPTc) for clinical use. Detection of radioactive impurities will rely on measurements of their gamma (γ) emissions. Gamma spectroscopy is not suitable for this purpose because the overwhelming presence of {{}99\\text{m}} Tc and the count-rate limitations of γ spectroscopy systems preclude fast and accurate measurement of small amounts of impurities. In this article we describe a simple and fast method for measuring γ emission rates from radioactive impurities in CPTc. The proposed method is similar to that used to identify 99Mo breakthrough in generator-produced {{}99\\text{m}} Tc: one dose calibrator (DC) reading of a CPTc source placed in a lead shield is followed by a second reading of the same source in air. Our experimental and theoretical analysis show that the ratio of DC readings in lead to those in air are linearly related to γ emission rates from impurities per MBq of {{}99\\text{m}} Tc over a large range of clinically-relevant production conditions. We show that estimates of the γ emission rates from Tc impurities per MBq of {{}99\\text{m}} Tc can be used to estimate increases in radiation dose (relative to pure {{}99\\text{m}} Tc) to patients injected with CPTc-based radiopharmaceuticals. This enables establishing dosimetry-based clinical-release criteria that can be tested using commercially-available dose calibrators. We show that our approach is highly sensitive to the presence of {{}93\\text{g}} Tc, {{}93\\text{m}} Tc, {{}94\\text{g}} Tc, {{}94\\text{m}} Tc, {{}95\\text{m}} Tc, {{}95\\text{g}} Tc, and {{}96\\text{g}} Tc, in addition to a number of non-Tc impurities.

  2. Thermal properties and chemical reactivity. Quarterly report, October 1971--December 1971

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, L.C.

    1998-12-31

    A very high boiling impurity was concentrated from a sample of FEFO with a hexane wash. Additional washing of this sample has increased the concentration of this impurity. A mass spectrum was obtained but an identification has not been made. The results of the analysis of the products from the thermal decomposition of FEFO at 120, 135, 150 C are discussed. A chromatogram of FEFO heated for 22 hours at 150 C shows a definite increase in low and high boiling impurities. The evaluation of the condition of the two coupon test assemblies aged at 80 C for 21 andmore » 27 months are discussed. Thermal analysis of the LX-09 from these two coupon tests, a PASS A mechanical test specimen and a control sample are reported. A PDP-12/30 was interfaced with a Perkin Elmer DSC-1 to measure the heat of fusion of PETN. Some of the problems associated with getting reproducible data are discussed. The heat of fusion for six lots of LX-13 grade PETN are given.« less

  3. Literature Review of the Extraction and Analysis of Trace Contaminants in Food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Audrey Martin; Alcaraz, Armando

    2010-06-15

    There exists a serious concern that chemical warfare agents (CWA) may be used in a terrorist attack against military or civilian populations. While many precautions have been taken on the military front (e.g. protective clothing, gas masks), such precautions are not suited for the widespread application to civilian populations. Thus, defense of the civilian population, and applicable to the military population, has focused on prevention and early detection. Early detection relies on accurate and sensitive analytical methods to detect and identify CWA in a variety of matrices. Once a CWA is detected, the analytical needs take on a forensic applicationmore » – are there any chemical signatures present in the sample that could indicate its source? These signatures could include byproducts of the reaction, unreacted starting materials, degradation products, or impurities. Therefore, it is important that the analytical method used can accurately identify such signatures, as well as the CWA itself. Contained herein is a review of the open literature describing the detection of CWA in various matrices and the detection of trace toxic chemicals in food. Several relevant reviews have been published in the literature,1-5 including a review of analytical separation techniques for CWA by Hooijschuur et al.1 The current review is not meant to reiterate the published manuscripts; is focused mainly on extraction procedures, as well as the detection of VX and its hydrolysis products, as it is closely related to Russian VX, which is not prevalent in the literature. It is divided by the detection technique used, as such; extraction techniques are included with each detection method.« less

  4. Coal-Derived Warm Syngas Purification and CO 2 Capture-Assisted Methane Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Robert A.; King, David L.; Li, Xiaohong S.

    2014-10-01

    Gasifier-derived syngas from coal has many applications in the area of catalytic transformation to fuels and chemicals. Raw syngas must be treated to remove a number of impurities that would otherwise poison the synthesis catalysts. Inorganic impurities include alkali salts, chloride, sulfur compounds, heavy metals, ammonia, and various P, As, Sb, and Se- containing compounds. Systems comprising multiple sorbent and catalytic beds have been developed for the removal of impurities from gasified coal using a warm cleanup approach. This approach has the potential to be more economic than the currently available acid gas removal (AGR) approaches and improves upon currentlymore » available processes that do not provide the level of impurity removal that is required for catalytic synthesis application. Gasification also lends itself much more readily to the capture of CO 2, important in the regulation and control of greenhouse gas emissions. CO 2 capture material was developed and in this study was demonstrated to assist in methane production from the purified syngas. Simultaneous CO 2 sorption enhances the CO methanation reaction through relaxation of thermodynamic constraint, thus providing economic benefit rather than simply consisting of an add-on cost for carbon capture and release. Molten and pre-molten LiNaKCO 3 can promote MgO and MgO-based double salts to capture CO 2 with high cycling capacity. A stable cycling CO 2 capacity up to 13 mmol/g was demonstrated. This capture material was specifically developed in this study to operate in the same temperature range and therefore integrate effectively with warm gas cleanup and methane synthesis. By combining syngas methanation, water-gas-shift, and CO 2 sorption in a single reactor, single pass yield to methane of 99% was demonstrated at 10 bar and 330°C when using a 20 wt% Ni/MgAl 2O 4 catalyst and a molten-phase promoted MgO-based sorbent. Under model feed conditions both the sorbent and catalyst exhibited favorable stability after multiple test cycles. The cleanup for warm gas cleanup of inorganics was broken down into three major steps: chloride removal, sulfur removal, and the removal for a multitude of trace metal contaminants. Na 2CO 3 was found to optimally remove chlorides at an operating temperature of 450ºC. For sulfur removal two regenerable ZnO beds are used for bulk H 2S removal at 450ºC (<5 ppm S) and a non-regenerable ZnO bed for H 2S polishing at 300ºC (<40 ppb S). It was also found that sulfur from COS could be adsorbed (to levels below our detection limit of 40 ppb) in the presence of water that leads to no detectable slip of H 2S. Finally, a sorbent material comprising of Cu and Ni was found to be effective in removing trace metal impurities such as AsH 3 and PH 3 when operating at 300ºC. Proof-of-concept of the integrated cleanup process was demonstrated with gasifier-generated syngas produced at the Western Research Institute using Wyoming Decker Coal. When operating with a ~1 SLPM feed, multiple inorganic contaminant removal sorbents and a tar-reforming bed was able to remove the vast majority of contaminants from the raw syngas. A tar-reforming catalyst was employed due to the production of tars generated from the gasifier used in this particular study. It is envisioned that in a real application a commercial scale gasifier operating at a higher temperature would produce lesser amount of tar. Continuous operation of a poison-sensitive copper-based WGS catalyst located downstream from the cleanup steps resulted in successful demonstration.« less

  5. Specific solubilization of impurities in culture media: Arg solution improves purification of pH-responsive tag CspB50 with Teriparatide.

    PubMed

    Oki, Shogo; Nonaka, Takahiro; Shiraki, Kentaro

    2018-06-01

    Protein purification using non-chromatographic methods is a simple technique that avoids costly resin. Recently, a cell surface protein B (CspB) tag has been developed for a pH-responsive tag for protein purification by solid-liquid separation. Proteins fused with the CspB tag show reversible insolubilization at acidic pH that can be used in solid-liquid separation for protein purification. However, brown-color impurities from co-precipitation hamper further analysis of the target proteins. In this study, we investigated the effect of additives on the co-precipitation of CspB-tagged Teriparatide (CspB50TEV-Teriparatide) expressed in Corynebacterium glutamicum and associated impurities. Arginine (Arg) at 1.0 M was found to be the most effective additive for removing impurities, particularly carotenoids and nucleic acids. Furthermore, all impurities detected in the fluorescence and absorbance spectra were successfully removed by the repetition of precipitation-redissolution in the Arg solution. The precipitation yield of the CspB50TEV-Teriparatide did not change with the addition of Arg and the repetition of the precipitation-redissolution process. Collectively, our findings indicate that the specific desorption of π-electron rich compounds by Arg may be useful in conjunction with the pH-responsive CspB tag for solid-liquid protein purification. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. [Determination of unknown impurities in cefotiam hexetil by HPLC-MS/MS].

    PubMed

    Tang, Qun-Xing; Liu, Ming-Dong; Yan, You-Yi; Ye, Yi; Wang, Zhi-Hui; Zhan, Lan-Fen; Liao, Lin-Chuan

    2013-05-01

    To detect unknown impurities in raw drug material of cefotiam hexetil. High performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed for the determination of impurities in cefotiam hexetil. Agilent SB-C18 column (150 mm x 2.1 mm i. d. , 3.5 microm particles) was used for chromatographic separations of cofotiam hexetil dissolved in deionized water, with mobile phase consisting of (A) 0.1% formic acid and (B) acetonitrile and timed gradient program T (min)/B (%): 0/3, 5/3, 15/20, 20/40, 30/60, 40/80. The flow rate was set at 0. 3 mL/min with DAD detector wavelength fixed at 254 nm. Electrospray ionization source was applied and operated in positive ion MRM mode. The source voltage was kept at 4 kV and cone voltage was 100 V with the mass range m/z 50-1000. Nitrogen was used as nebulizing gas and the nebulizer pressure was 40 psi. The drying gas temperature was 350 degrees C and the drying gas flow was 10 L/min. Results Unknown impurities of cefotiam hexetil were identified. Substance 1 was delta3-isomer of cefotiam hexetil. The structures of 3 other substances were also determined. The method is sensitive, rapid and credible for the analysis of cefotiam hexetil and its related impurities, which can be applied in quality control of cefotiam hexetil.

  7. Analysis and characterization of heparin impurities.

    PubMed

    Beni, Szabolcs; Limtiaco, John F K; Larive, Cynthia K

    2011-01-01

    This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007-2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations.

  8. Unusually Large Deuterium Discrimination during Spore Photoproduct Formation

    PubMed Central

    2015-01-01

    The deuterium-labeling strategy has been widely used and proved highly effective in mechanistic investigation of chemical and biochemical reactions. However, it is often hampered by the incomplete label transfer, which subsequently obscures the mechanistic conclusion. During the study of photoinduced generation of 5-thyminyl-5,6-dihydrothymine, which is commonly called the spore photoproduct (SP), the Cadet laboratory found an incomplete (∼67%) deuterium transfer in SP formation, which contrasts to the exclusive transfer observed by the Li laboratory. Here, we investigated this discrepancy by re-examining the SP formation using d3-thymidine. We spiked the d3-thymidine with varying amounts of unlabeled thymidine before the SP photochemistry is performed. Strikingly, our data show that the reaction is highly sensitive to the trace protiated thymidine in the starting material. As many as 17-fold enrichment is detected in the formed SP, which may explain the previously observed one-third protium incorporation. Although commercially available deuterated reagents are generally satisfactory as mechanistic probes, our results argue that attention is still needed to the possible interference from the trace protiated impurity, especially when the reaction yield is low and large isotopic discrimination is involved. PMID:24820206

  9. Segregation Coefficients of Impurities in Selenium by Zone Refining

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao

    1998-01-01

    The purification of Se by zone refining process was studied. The impurity solute levels along the length of a zone-refined Se sample were measured by spark source mass spectrographic analysis. By comparing the experimental concentration levels with theoretical curves the segregation coefficient, defined as the ratio of equilibrium concentration of a given solute in the solid to that in the liquid, k = x(sub s)/x(sub l) for most of the impurities in Se are found to be close to unity, i.e., between 0.85 and 1.15, with the k value for Si, Zn, Fe, Na and Al greater than 1 and that for S, Cl, Ca, P, As, Mn and Cr less than 1. This implies that a large number of passes is needed for the successful implementation of zone refining in the purification of Se.

  10. Monitoring xenon purity in the LUX detector with a mass spectrometry system

    NASA Astrophysics Data System (ADS)

    Balajthy, Jon; LUX Experiment Collaboration

    2015-04-01

    The LUX dark matter search experiment is a 350 kg two-phase liquid/gas xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. To monitor for radioactive impurities such as krypton and impurities which limit charge yield such as oxygen, LUX uses a xenon sampling system consisting of a mass spectrometer and a liquid nitrogen cold trap. The cold trap separates the gaseous impurities from a small sample of xenon and allows them to pass to the mass spectrometer for analysis. We report here on results from the LUX xenon sampling program. We also report on methods to enhance the sensitivity of the cold trap technique in preparation for the next-generation LUX-ZEPLIN experiment which will have even more stringent purity requirements.

  11. Analysis of local symmetry and impurity location of Cu2+ ions doped C8H11KO8 single crystal through EPR technique for site I

    NASA Astrophysics Data System (ADS)

    Sheela, K. Juliet; Subbulakshmi, N.; Subramanian, P.

    2018-04-01

    Electron paramagnetic resonance (EPR) studies have been investigated on Cu2+ ion incorporated into the single crystals of potassium succinate-succinic acid (KSSA) at room temperature. Two magnetically in-equivalent Cu2+ sites in the lattice are identified, among them site I has been reported. The spin Hamiltonian parameters are determined with the fitting of spectra to rhombic symmetry crystalline field. The co-ordination of the Cu2+ ion in this molecule is a distorted dodecahedron. From the calculated gxx, gyy, gzz and Axx, Ayy, Azz and their directional cosines values, location of site I impurity ion Cu2+ could be identified as a substituitional one. Also the ground state wave function of the impurity ion was found to be d2z.

  12. NMR analysis of the iron ligand ethylenediaminedi(o-hydroxyphenyl)acetic acid (EDDHA) employed in fertilizers.

    PubMed

    Cremonini, M A; Alvarez-Fernández, A; Lucena, J J; Rombolà, A; Marangoni, B; Placucci, G

    2001-08-01

    The exceptional efficiency of the iron chelate of ethylenediaminedi(o-hydroxyphenyl)acetic acid (o,o-EDDHA) in correcting iron chlorosis in plants and the medical applications of various metallic chelates of this compound have long been recognized. As commercial preparations of o,o-EDDHA usually contain impurities, a method for their detection is proposed. By using one- and two-dimensional nuclear magnetic resonance two impurities were identified. The structure of one of these compounds was assigned to an isomer of EDDHA containing at least one p-hydroxyphenyl moiety. The structure of the other impurity was tentatively assigned to a byproduct of the EDDHA synthesis: 2,6-di[CH(COOH)NHCH(2)CH(2)NHCH(COOH)Ar]phenol (Ar = hydroxyphenyl). Both compounds were also detected in the EDDHA extracted from a commercial iron fertilizer.

  13. Evidence of waste electrical and electronic equipment (WEEE) relevant substances in polymeric food-contact articles sold on the European market

    PubMed Central

    Puype, Franky; Samsonek, Jiří; Knoop, Jan; Egelkraut-Holtus, Marion; Ortlieb, Markus

    2015-01-01

    In order to confirm the possibility that recycled fractions from the waste electrical and electronic equipment (WEEE) stream were illegally entering the European market in black polymeric food-contact articles (FCAs), bromine quantification, brominated flame retardant (BFR) identification combined with WEEE-relevant elemental analysis and polymer impurity analysis were performed. From the 10 selected FCAs, seven samples contained a bromine level ranging from 57 to 5975 mg kg− 1, which is lower than expected to achieve flame retardancy. The BFRs that were present were tetrabromobisphenol A (TBBPA), decabromodiphenylether (decaBDE), decabromodiphenylethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Typical elements used in electronic equipment and present in WEEE were detected either at trace level or at elevated concentrations. In all cases when bromine was detected at higher concentrations, concurrently antimony was also detected, which confirms the synergetic use of antimony in combination with BFRs. This study describes also the measurement of rare earth elements where combinations of cerium, dysprosium, lanthanum, neodymium, praseodymium and yttrium were detected in four of the seven BFR-positive samples. Additionally, polymer purity was investigated where in all cases foreign polymer fractions were detected. Despite the fact that this study was carried out on a very small amount of samples, there is a significant likelihood that WEEE has been used for the production of FCAs. PMID:25599136

  14. Magnetism in Pd: Magnetoconductance and transport spectroscopy of atomic contacts

    NASA Astrophysics Data System (ADS)

    Strigl, F.; Keller, M.; Weber, D.; Pietsch, T.; Scheer, E.

    2016-10-01

    Since the rapid technological progress demands for ever smaller storage units, the emergence of stable magnetic order in nanomaterials down to the single-atom regime has attracted huge scientific attention to date. Electronic transport spectroscopy has been proven to be a versatile tool for the investigation of electronic, magnetic, and mechanical properties of atomic contacts. Here we report a comprehensive experimental study of the magnetoconductance and electronic properties of Pd atomic contacts at low temperature. The analysis of electronic transport (d I /d V ) spectra and the magnetoconductance curves yields a diverse behavior of Pd single-atom contacts, which is attributed to different contact configurations. The magnetoconductance shows a nonmonotonous but mostly continuous behavior, comparable to those found in atomic contacts of band ferromagnets. In the d I /d V spectra, frequently, a pronounced zero-bias anomaly (ZBA) as well as an aperiodic and nonsymmetric fluctuation pattern are observed. While the ZBA can be interpreted as a sign of the Kondo effect, suggesting the presence of magnetic impurity, the fluctuations are evaluated in the framework of conductance fluctuations in relation to the magnetoconductance traces and to previous findings in Au atomic contacts. This thorough analysis reveals that the magnetoconductance and transport spectrum of Au atomic contacts can completely be accounted for by conductance fluctuations, while in Pd contacts the presence of local magnetic order is required.

  15. Solvent Hold Tank Sample Results For MCU-15-750-751-752-: June Monthly Sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.; Taylor-Pashow, K.

    2015-10-07

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-750, MCU-15-751, and MCU-15-752), pulled on 06/22/2015 for analysis. The samples were combined and analyzed for composition. Analysis of the composite sample MCU-15-750-751-752 indicated a low concentration (~ 49 % of nominal) of the suppressor (TiDG) and slightly lower than nominal concentrations of the extractant (MaxCalix), and of the modifier (Cs-7SB) in the solvent. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent in February 2015. Based on the current monthly sample, the levels of TiDG, MaxCalix, and modifier are sufficient formore » continuing operation without adding a trim at this time but it is recommended that an addition of TiDG, modifier and Isopar™L should be made in the near future. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). In addition, up to 13.9 micrograms of mercury per gram of solvent (or 11.5 µg/mL) was detected in this sample. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  16. Analysis of residual products in benzyl chloride used for the industrial synthesis of quaternary compounds by liquid chromatography with diode-array detection.

    PubMed

    Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D

    2009-02-01

    In industrial and pharmaceutical processes, the study of residual products becomes essential to guarantee the quality of compounds and to eliminate or minimize toxic residual products. Knowledge about the origin of impurities (raw materials, processes, the contamination of industrial plants, etc.) is necessary in preventive treatment and in the control of a product's lifecycle. Benzyl chloride is used as raw material to synthesize several quaternary ammonium compounds, such as benzalkonium chloride, which may have pharmaceutical applications. Benzaldehyde, benzyl alcohol, toluene, chloro derivatives of toluene, and dibenzyl ether are compounds that may be found as impurities in technical benzyl chloride. We proposed a high-performance liquid chromatography method for the separation of these compounds, testing two stationary phases with different dimensions and particle sizes, with the application of photodiode array-detection. The linearity for four possible impurities (benzaldehyde, toluene, alpha,alpha-dichlorotoluene, and 2-chlorotoluene) ranged from 0.1 to 10 microg/mL, limits of detection from 11 to 34 ng/mL, and repeatability from 1% to 2.9% for a 0.3-1.2 microg/mL concentration range. The method was applied to samples of technical benzyl chloride, and alpha,alpha-dichlorotoluene and benzaldehyde were identified by spectral analysis and quantitated. The selection of benzyl chloride with lower levels of impurities is important to guarantee the reduction of residual products in further syntheses.

  17. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance---ascertained from plasma current and density measurements---progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2 O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.

  18. Advances in primary recovery: centrifugation and membrane technology.

    PubMed

    Roush, David J; Lu, Yuefeng

    2008-01-01

    Significant and continual improvements in upstream processing for biologics have resulted in challenges for downstream processing, both primary recovery and purification. Given the high cell densities achievable in both microbial and mammalian cell culture processes, primary recovery can be a significant bottleneck in both clinical and commercial manufacturing. The combination of increased product titer and low viability leads to significant relative increases in the levels of process impurities such as lipids, intracellular proteins and nucleic acid versus the product. In addition, cell culture media components such as soy and yeast hydrolysates have been widely applied to achieve the cell culture densities needed for higher titers. Many of the process impurities can be negatively charged at harvest pH and can form colloids during the cell culture and harvest processes. The wide size distribution of these particles and the potential for additional particles to be generated by shear forces within a centrifuge may result in insufficient clarification to prevent fouling of subsequent filters. The other residual process impurities can lead to precipitation and increased turbidity during processing and even interference with the performance of the capturing chromatographic step. Primary recovery also poses significant challenges owing to the necessity to execute in an expedient manner to minimize both product degradation and bioburden concerns. Both microfiltration and centrifugation coupled with depth filtration have been employed successfully as primary recovery processing steps. Advances in the design and application of membrane technology for microfiltration and dead-end filtration have contributed to significant improvements in process performance and integration, in some cases allowing for a combination of multiple unit operations in a given step. Although these advances have increased productivity and reliability, the net result is that optimization of primary recovery processes has become substantially more complicated. Ironically, the application of classical chemical engineering approaches to overcome issues in primary recovery and purification (e.g., turbidity and trace impurity removal) are just recently gaining attention. Some of these techniques (e.g., membrane cascades, pretreatment, precipitation, and the use of affinity tags) are now seen almost as disruptive technologies. This paper will review the current and potential future state of research on primary recovery, including relevant papers presented at the 234th American Chemical Society (ACS) National Meeting in Boston.

  19. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.

    PubMed

    Santos, A J G; Mazzilli, B P; Fávaro, D I T; Silva, P S C

    2006-01-01

    Phosphogypsum is a waste produced by the phosphate fertilizer industry. Although phosphogypsum is mainly calcium sulphate dihydrate, it contains elevated levels of impurities, which originate from the source phosphate rock used in the phosphoric acid production. Among these impurities, radionuclides from 238U and 232Th decay series are of most concern due to their radiotoxicity. Other elements, such as rare earth elements (REE) and Ba are also enriched in the phosphogypsum. The bioavailability of radionuclides (226Ra, 210Pb and 232Th), rare earth elements and Ba to the surrounding aquatic system was evaluated by the application of sequential leaching of the phosphogypsum samples from the Brazilian phosphoric acid producers. The sequential extraction results show that most of the radium and lead are located in the "iron oxide" (non-CaSO4) fraction, and that only 13-18% of these radionuclides are distributed in the most labile fraction. Th, REE and Ba were found predominantly in the residual phase, which corresponds to a small fraction of the phosphate rock or monazite that did not react and to insoluble compounds such as sulphates, phosphates and silicates. It can be concluded that although all these elements are enriched in the phosphogypsum samples they are not associated with CaSO4 itself and therefore do not represent a threat to the surrounding aquatic environment.

  20. Reliability of the one-crossing approximation in describing the Mott transition

    NASA Astrophysics Data System (ADS)

    Vildosola, V.; Pourovskii, L. V.; Manuel, L. O.; Roura-Bas, P.

    2015-12-01

    We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds and nanoscale systems. However, several recent studies in the framework of impurity models pointed out serious deficiencies of OCA and raised questions regarding its reliability. Here we consider a single band Hubbard model on the Bethe lattice at finite temperatures and compare the results of OCA to those of a numerically exact quantum Monte Carlo (QMC) method. The temperature-local repulsion U phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with that of QMC, with the metal-insulator transition captured very well. We find, however, that the insulator to metal transition is shifted to higher values of U and, simultaneously, correlations in the metallic phase are significantly overestimated. This counter-intuitive behaviour is due to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the insulating gap. We trace the underestimation of the insulating gap to that of the second moment of the high-frequency expansion of the impurity spectral density. Calculations of the system away from the particle-hole symmetric case are also presented and discussed.

  1. Water inhibits CO oxidation on gold cations in the gas phase. Structures and binding energies of the sequential addition of CO, H2O, O2, and N2 onto Au.

    PubMed

    Reveles, J Ulises; Saoud, Khaled M; El-Shall, M Samy

    2016-10-19

    We report a detailed experimental and theoretical study of the gas phase reactivity of Au + with CO, O 2 , N 2 and their mixtures in the presence of a trace amount of water impurity. The gold cation is found to strongly interact with CO and H 2 O molecules via successive addition reactions until reaching saturation. The stoichiometry of the formed complex is determined by the strength of the binding energy of the neutral molecule to the gold cation. CO binds the strongest to Au + , followed by H 2 O, N 2 and then O 2 . We found that the gold cation (Au + ) can activate the O 2 molecule within the Au + (CO) 2 (O 2 ) complex which could react with another CO molecule to form Au + (CO)(CO 2 ) + CO 2 . The product Au + (CO)(CO 2 ) is observed experimentally with a small intensity at room temperature. However, the presence of water leads to the formation of Au + (CO)(H 2 O)(O 2 ) instead of Au + (CO) 2 (O 2 ) due to the strong interaction between Au + and water. The current experiments and calculations might lead to a molecular level understanding of the interactions between the active sites, reactants and impurities which could pave the way for the design of efficient nanocatalysts.

  2. Simultaneous detection and quantitation of organic impurities in methamphetamine by ultra-high-performance liquid chromatography-tandem mass spectrometry, a complementary technique for methamphetamine profiling.

    PubMed

    Li, Li; Brown, Jaclyn L; Toske, Steven G

    2018-04-06

    The analysis of organic impurities plays an important role in the impurity profiling of methamphetamine, which in turn provides valuable information about methamphetamine manufacturing, in particular its synthetic route, chemicals, and precursors used. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) is ideally suited for this purpose due to its excellent sensitivity, selectivity, and wide linear range in multiple reaction monitoring (MRM) mode. In this study, a dilute-and-shoot UHPLC-MS/MS method was developed for the simultaneous identification and quantitation of 23 organic manufacturing impurities in illicit methamphetamine. The developed method was validated in terms of stability, limit of detection (LOD), lower limit of quantification (LLOQ), accuracy, and precision. More than 100 illicitly prepared methamphetamine samples were analyzed. Due to its ability to detect ephedrine/pseudoephedrine and its high sensitivity for critical target markers (eg, chloro-pseudoephedrine, N-cyclohexylamphetamine, and compounds B and P), more impurities and precursor/pre-precursors were identified and quantified versus the current procedure by gas chromatography-mass spectrometry (GC-MS). Consequently, more samples could be classified by their synthetic routes. However, the UHPLC-MS/MS method has difficulty in detecting neutral and untargeted emerging manufacturing impurities and can therefore only serve as a complement to the current method. Despite this deficiency, the quantitative information acquired by the presented UHPLC-MS/MS methodology increased the sample discrimination power, thereby enhancing the capacity of methamphetamine profiling program (MPP) to conduct sample-sample comparisons. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  3. Long-term evolution of the impurity composition and impurity events with the ITER-like wall at JET

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Sertoli, M.; Brezinsek, S.; Coffey, I.; Dux, R.; Giroud, C.; Groth, M.; Huber, A.; Ivanova, D.; Krieger, K.; Lawson, K.; Marsen, S.; Meigs, A.; Neu, R.; Puetterich, T.; van Rooij, G. J.; Stamp, M. F.; Contributors, JET-EFDA

    2013-07-01

    This paper covers aspects of long-term evolution of intrinsic impurities in the JET tokamak with respect to the newly installed ITER-like wall (ILW). At first the changes related to the change over from the JET-C to the JET-ILW with beryllium (Be) as the main wall material and tungsten (W) in the divertor are discussed. The evolution of impurity fluxes in the newly installed W divertor with respect to studying material migration is described. In addition, a statistical analysis of transient impurity events causing significant plasma contamination and radiation losses is shown. The main findings comprise a drop in carbon content (×20) (see also Brezinsek et al (2013 J. Nucl. Mater. 438 S303)), low oxygen content (×10) due to the Be first wall (Douai et al 2013 J. Nucl. Mater. 438 S1172-6) as well as the evolution of the material mix in the divertor. Initially, a short period of repetitive ohmic plasmas was carried out to study material migration (Krieger et al 2013 J. Nucl. Mater. 438 S262). After the initial 1600 plasma seconds the material surface composition is, however, still evolving. With operational time, the levels of recycled C are increasing slightly by 20% while the Be levels in the deposition-dominated inner divertor are dropping, hinting at changes in the surface layer material mix made of Be, C and W. A steady number of transient impurity events, consisting of W and constituents of inconel, is observed despite the increase in variation in machine operation and changes in magnetic configuration as well as the auxiliary power increase.

  4. An R package for state-trace analysis.

    PubMed

    Prince, Melissa; Hawkins, Guy; Love, Jonathon; Heathcote, Andrew

    2012-09-01

    State-trace analysis (Bamber, Journal of Mathematical Psychology, 19, 137-181, 1979) is a graphical analysis that can determine whether one or more than one latent variable mediates an apparent dissociation between the effects of two experimental manipulations. State-trace analysis makes only ordinal assumptions and so, is not confounded by range effects that plague alternative methods, especially when performance is measured on a bounded scale (such as accuracy). We describe and illustrate the application of a freely available GUI driven package, StateTrace, for the R language. StateTrace automates many aspects of a state-trace analysis of accuracy and other binary response data, including customizable graphics and the efficient management of computationally intensive Bayesian methods for quantifying evidence about the outcomes of a state-trace experiment, developed by Prince, Brown, and Heathcote (Psychological Methods, 17, 78-99, 2012).

  5. Material radioassay and selection for the XENON1T dark matter experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Di Gangi, P.; Di Giovanni, A.; Diglio, S.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Le Calloch, M.; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Laubenstein, M.; Nisi, S.

    2017-12-01

    The XENON1T dark matter experiment aims to detect weakly interacting massive particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.

  6. Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.

    PubMed

    Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A

    2004-07-23

    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society

  7. Effects of Impurities and Processing on Silicon Solar Cells, Phase 3

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    Results of the 14th quarterly report are presented for a program designed to assess the effects of impurities, thermochemical processes and any impurity process interactions on the performance of terrestrial silicon solar cells. The Phase 3 effort encompasses: (1) potential interactions between impurities and thermochemical processing of silicon; (2) impurity-cell performance relationships in n-base silicon; (3) effect of contaminants introduced during silicon production, refining or crystal growth on cell performance; (4) effects of nonuniform impurity distributions in large area silicon wafers; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells.

  8. Process and system for removing impurities from a gas

    DOEpatents

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  9. Development of Impurity Profiling Methods Using Modern Analytical Techniques.

    PubMed

    Ramachandra, Bondigalla

    2017-01-02

    This review gives a brief introduction about the process- and product-related impurities and emphasizes on the development of novel analytical methods for their determination. It describes the application of modern analytical techniques, particularly the ultra-performance liquid chromatography (UPLC), liquid chromatography-mass spectrometry (LC-MS), high-resolution mass spectrometry (HRMS), gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC). In addition to that, the application of nuclear magnetic resonance (NMR) spectroscopy was also discussed for the characterization of impurities and degradation products. The significance of the quality, efficacy and safety of drug substances/products, including the source of impurities, kinds of impurities, adverse effects by the presence of impurities, quality control of impurities, necessity for the development of impurity profiling methods, identification of impurities and regulatory aspects has been discussed. Other important aspects that have been discussed are forced degradation studies and the development of stability indicating assay methods.

  10. Motion of a Distinguishable Impurity in the Bose Gas: Arrested Expansion Without a Lattice and Impurity Snaking

    NASA Astrophysics Data System (ADS)

    Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.

    2016-04-01

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

  11. Motion of a distinguishable Impurity in the Bose gas: Arrested expansion without a lattice and impurity snaking

    DOE PAGES

    Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.

    2016-04-07

    We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less

  12. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    NASA Astrophysics Data System (ADS)

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  13. Core Radial Electric Field and Transport in Wendelstein 7-X Plasmas

    NASA Astrophysics Data System (ADS)

    Pablant, Novimir

    2016-10-01

    Results from the investigation of core transport and the role of the radial electric field profile (Er) in the first operational phase of the Wendelstein 7-X (W7-X) stellarator are presented. In stellarator plasmas, the details of the Er profile are expected to have a strong effect on both the particle and heat fluxes. Neoclassical particle fluxes are not intrinsically ambipolar, which leads to the formation of a radial electric field that enforces ambipolarity. The radial electric field is closely related to the perpendicular plasma flow (u⊥) through the force balance equation. This allows the radial electric field to be inferred from measurements of the perpendicular flow velocity from the x-ray imaging crystal spectrometer (XICS) and correlation reflectometry diagnostics. Large changes in the perpendicular rotation, on the order of Δu⊥ 5km /s (ΔEr 12kV / m), have been observed within a set of experiments where the heating power was stepped down from 2 MW to 0.6 MW . These experiments are examined in detail to explore the relationship between, heating power, response of the temperature and density profiles and the response of the radial electric field. Estimations of the core transport are based on power balance and utilize electron temperature (Te) profiles from the ECE and Thomson scattering, electron density profiles (ne) from interferometry and Thomson scattering, ion temperature (Ti) profiles from XICS, along with measurements of the total stored energy and radiated power. Also described are a set core impurity confinement experiments and results. Impurity confinement has been investigated through the injection of trace amount of argon impurity gas at the plasma edge in conjunction with measurements of the density of various ionization states of argon from the XICS and High Efficiency eXtreme-UV Overview Spectrometer (HEXOS) diagnostics. Finally the inferred Er and heat flux profiles are compared to initial neoclassical calculations using measured plasma profiles. On behalf of the W7-X Team.

  14. Characterization of a backbone cleavage product of BMS-196854 (Oncostatin M), a recombinant anti-inflammatory cytokine.

    PubMed

    Zhao, F; Stein, D J; Paborji, M; Cash, P W; Root, B J; Wei, Z; Knupp, C J

    2001-01-01

    BMS-196843 (Oncostatin M) is a therapeutic recombinant protein in development. Scale-up process changes led to unexpected instability of the bulk drug substance solution during storage. A product with an apparent higher MW than the parent protein was observed by the size-exclusion chromatography (SEC). This study was aimed to fully characterize the product and to identify a solution to stabilize the protein. SEC, SDS-PAGE, tryptic mapping, and N-terminal sequencing were performed to characterize the unknown product. The effect of pH, temperature, bulk concentration, and immobilized trypsin inhibitor on the degradation rate was studied to elucidate the mechanism and to identify stabilization strategies. Despite the apparent high MW indicated initially by SEC, the unknown was characterized to be a degradation product resulted from a backbone cleavage between residues Arg145-Gly146. The resulting fragments from the backbone cleavage were, however, still linked through an intramolecular disulfide bond. Thus, the final product had a more open structure with an increased hydrodynamic radius compared to the parent protein, which explains the initial SEC results. The site-specific backbone cleavage was suspected to be catalyzed by trypsin-like protease impurities in the bulk solution. The bulk drug substance solution was subsequently treated with immobilized soybean trypsin inhibitor, and the degradation rate was significantly reduced. Furthermore, increasing the solution pH from 5 to 8 led to an increase in the degradation rate, which was consistent with the expected pH dependency of trypsin activity. In addition, the effect of bulk concentration also supported the involvement of protease impurities rather than a spontaneous peptide bond hydrolysis reaction. Trace trypsin-like protease impurities led to an unusual site-specific backbone cleavage of BMS-196854. The proteolytic degradation can be minimized by treating the bulk solution with immobilized soybean trypsin inhibitor and/or controlling the solution pH and storage temperature.

  15. Effect of homolog doping on surface morphology and mass-loss rates from PETN crystals. Studies using atomic force microscope and thermo-gravimetric analysis

    DOE PAGES

    Bhattacharya, S. K.; Maiti, A; Gee, R. H.; ...

    2012-08-28

    Pentaerythritol tetranitrate (PETN) is an important energetic material and its performance as a secondary explosive depends strongly on the density as well as flow porosity of powdered material, which in turn is governed by the size and surface properties of the PETN crystallite particles. Historically there has been evidence that the surface properties of PETN particles can be strongly influenced by the presence of homolog impurities of PETN, in particular, dipentaerythritol hexanitrate (diPEHN) and tripentaerythritol octanitrate (triPEON), although not many systematic studies characterizing such influence exist. In this work we employ thermogravimetric analysis (TGA) to measure mass-loss rates at elevatedmore » temperatures and show that doping with a small amount of diPEHN and triPEON can reduce the mass-loss rate from PETN single-crystal surfaces by as much as 35 % as compared to undoped crystals. Arrhenius plots of mass-loss rates as a function of temperature suggest that the reduction in evaporation is not due to the change in activation barrier of the molecular evaporation process, but perhaps due to the impedance to the receding motion of the steps by the immobile impurities on the surface. Removal of surface impurities through gentle washing with ethanol leads to enhanced mass-loss rate relative to pure PETN suggesting a roughened surface morphology. Some surface roughening in doped crystals is supported by Atomic force microscopy (AFM) images of growth layers that show evidences of growth layer stacking and rough edges. Furthermore, we find that a larger amount of impurity added to the original solution does not necessarily lead to a more highly doped crystal, which could perhaps be interpreted as PETN crystals being able to accommodate only up to a certain weight percent of homolog impurities.« less

  16. Analytical advances in pharmaceutical impurity profiling.

    PubMed

    Holm, René; Elder, David P

    2016-05-25

    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Impurity-directed transport within a finite disordered lattice

    NASA Astrophysics Data System (ADS)

    Magnetta, Bradley J.; Ordonez, Gonzalo; Garmon, Savannah

    2018-02-01

    We consider a finite, disordered 1D quantum lattice with a side-attached impurity. We study theoretically the transport of a single electron from the impurity into the lattice, at zero temperature. The transport is dominated by Anderson localization and, in general, the electron motion has a random character due to the lattice disorder. However, we show that by adjusting the impurity energy the electron can attain quasi-periodic motions, oscillating between the impurity and a small region of the lattice. This region corresponds to the spatial extent of a localized state with an energy matched by that of the impurity. By precisely tuning the impurity energy, the electron can be set to oscillate between the impurity and a region far from the impurity, even distances larger than the Anderson localization length. The electron oscillations result from the interference of hybridized states, which have some resemblance to Pendry's necklace states (Pendry, 1987) [21]. The dependence of the electron motion on the impurity energy gives a potential mechanism for selectively routing an electron towards different regions of a 1D disordered lattice.

  18. Local suppression of the hidden-order phase by impurities in URu2Si2

    NASA Astrophysics Data System (ADS)

    Pezzoli, Maria E.; Graf, Matthias J.; Haule, Kristjan; Kotliar, Gabriel; Balatsky, Alexander V.

    2011-06-01

    We consider the effects of impurities on the enigmatic hidden order (HO) state of the heavy-fermion material URu2Si2. In particular, we focus on local effects of Rh impurities as a tool to probe the suppression of the HO state. To study local properties, we introduce a lattice free energy, where the time invariant HO order parameter Ψ and local antiferromagnetic (AFM) order parameter M are competing orders. Near each Rh atom, the HO order parameter is suppressed, creating a hole in which local AFM order emerges as a result of competition. These local holes are created in the fabric of the HO state like in a Swiss cheese and “filled” with droplets of AFM order. We compare our analysis with recent NMR results on U(RhxRu1-x)2Si2 and find good agreement with the data.

  19. Proximity-induced magnetism in transition-metal substituted graphene

    PubMed Central

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.

    2015-01-01

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646

  20. Synthesis of o,p-EDDHA and its detection as the main impurity in o,o-EDDHA commercial iron chelates.

    PubMed

    Gómez-Gallego, Mar; Sierra, Miguel A; Alcázar, Roberto; Ramírez, Pedro; Piñar, Carmen; Mancheño, María José; García-Marco, Sonia; Yunta, Felipe; Lucena, Juan José

    2002-10-23

    Ethylenediamine-N,N'bis(o-hydroxyphenyl)acetic acid (o,o-EDDHA) is one of the most efficient iron chelates employed to relieve iron chlorosis in plants. However, the presence of positional isomers of EDDHA in commercial iron chelates has been recently demonstrated, and among them, it has been claimed that ethylenediamine-N(o-hydroxyphenylacetic)-N'(p-hydroxyphenylacetic) acid (o,p-EDDHA) is the main impurity present in EDDHA fertilizers. Here we report the preparation of o,p-EDDHA, a compound whose synthesis had not been previously reported. The synthetic o,p-EDDHA is able to form ferric complexes, and it has been used as a standard in the analysis of the impurities of commercial iron fertilizers. The presence of o,p-EDDHA/Fe(3+) in commercial samples has been unambiguously demonstrated by HPLC.

  1. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  2. Development and Validation of a Precise, Single HPLC Method for the Determination of Tolperisone Impurities in API and Pharmaceutical Dosage Forms.

    PubMed

    Raju, Thummala Veera Raghava; Seshadri, Raja Kumar; Arutla, Srinivas; Mohan, Tharlapu Satya Sankarsana Jagan; Rao, Ivaturi Mrutyunjaya; Nittala, Someswara Rao

    2013-01-01

    A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 μg/mL with respect to the test concentration of 1000 μg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.

  3. Solid-state characterization and impurities determination of fluconazol generic products marketed in Morocco

    PubMed Central

    Bourichi, Houda; Brik, Youness; Hubert, Philipe; Cherrah, Yahia; Bouklouze, Abdelaziz

    2012-01-01

    In this paper, we report the results of quality control based in physicochemical characterization and impurities determination of three samples of fluconazole drug substances marketed in Morocco. These samples were supplied by different pharmaceuticals companies. The sample A, as the discovered product, was supplied by Pfizer, while samples B and C (generics), were manufactured by two different Indian industries. Solid-state characterization of the three samples was realized with different physicochemical methods as: X-ray powder diffraction, Fourier-transformation infrared spectroscopy, differential scanning calorimetry. High performance liquid chromatography was used to quantify the impurities in the different samples. The results from the physicochemical methods cited above, showed difference in polymorph structure of the three drug substances. Sample A consisted in pure polymorph III, sample B consisted in pure polymorph II, sample C consisted in a mixture of fluconazole Form III, form II and the monohydrate. This result was confirmed by differential scanning calorimetry. Also it was demonstrated that solvents used during the re-crystallization step were among the origins of these differences in the structure form. On the other hand, the result of the stability study under humidity and temperature showed that fluconazole polymorphic transformation could be owed to the no compliance with the conditions of storage. The HPLC analysis of these compounds showed the presence of specific impurities for each polymorphic form, and a possible relationship could be exist between impurities and crystalline form of fluconazole. PMID:29403776

  4. [Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].

    PubMed

    Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying

    2013-05-01

    A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.

  5. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  6. Impurity bound states in mesoscopic topological superconducting loops

    NASA Astrophysics Data System (ADS)

    Jin, Yan-Yan; Zha, Guo-Qiao; Zhou, Shi-Ping

    2018-06-01

    We study numerically the effect induced by magnetic impurities in topological s-wave superconducting loops with spin-orbit interaction based on spin-generalized Bogoliubov-de Gennes equations. In the case of a single magnetic impurity, it is found that the midgap bound states can cross the Fermi level at an appropriate impurity strength and the circulating spin current jumps at the crossing point. The evolution of the zero-energy mode can be effectively tuned by the located site of a single magnetic impurity. For the effect of many magnetic impurities, two independent midway or edge impurities cannot lead to the overlap of zero modes. The multiple zero-energy modes can be effectively realized by embedding a single Josephson junction with impurity scattering into the system, and the spin current displays oscillatory feature with increasing the layer thickness.

  7. Characterization Of Nuclear Materials Using Time-Of-Flight ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2006-01-01

    The investigation of illicit trafficking of nuclear materials, nuclear safeguards analysis, and non-proliferation control requires sensitive and isotope-selective detection methods to gain crucial nuclear forensic information like isotope 'fingerprints' and multi-element signatures. The advantage of time-of-flight (TOF) mass spectrometry - quasi-simultaneous multi-mass analysis - combined with an inductively coupled plasma (ICP) ion source provides an analytical instrument with multi-element and multi-isotope capability and good detection limits. A TOF-ICP-MS system thus appears to be an advantageous choice for the investigation and characterization of nuclear materials. We present here results using a GBC OptiMass 8000 time-of-flight ICP-MS for the isotope screening ofmore » solid samples by laser ablation and the multi-element determination of impurities in uranium ore concentrates using matrix matched standards. A laser ablation system (New Wave Research, UP 213) coupled to the TOF-ICP-MS instrument has been used to optimize the system for analysis of non-radioactive metal samples of natural isotopic composition for a variety of elements including Cu, Sr, Zr, Mo, Cd, In, Ba, Ta, W, Re, Pt, and Pb in pure metals, alloys, and glasses to explore precision, accuracy, and detection limits. Similar methods were then applied to measure uranium. When the laser system is optimized, no mass bias correction is required. Precision and accuracy for the determination of the isotopic composition is typically 1 - 3% for elemental concentrations of as little as 50 ppm in the matrix, with no requirement for sample preparation. The laser ablation precision and accuracy are within ~10x of the instrumental limits for liquid analysis (0.1%). We have investigated the capabilities of the TOF-ICP-MS for the analysis of impurities in uranium matrices. Matrix matching has been used to develop calibration curves for a range of impurities (alkaline, earth-alkaline, transition metals, and rare earth elements). These calibration curves have been used to measure impurities in a number of uranium samples. The results from the TOF-ICP-MS will be compared with other mass spectrometric methods.« less

  8. Suppression of Superfluid Density and the Pseudogap State in the Cuprates by Impurities

    DOE PAGES

    Erdenemunkh, Unurbat; Koopman, Brian; Fu, Ling; ...

    2016-12-16

    Here, we use scanning tunneling microscopy (STM) to study magnetic Fe impurities intentionally doped into the high-temperature superconductor Bi 2Sr 2CaCu 2O 8+δ. Our spectroscopic measurements reveal that Fe impurities introduce low-lying resonances in the density of states at Ω 1 ≈ 4 meV and Ω 2 ≈ 15 meV , allowing us to determine that, despite having a large magnetic moment, potential scattering of quasiparticles by Fe impurities dominates magnetic scattering. In addition, using high-resolution spatial characterizations of the local density of states near and away from Fe impurities, we detail the spatial extent of impurity-affected regions as wellmore » as provide a local view of impurity-induced effects on the superconducting and pseudogap states. Lastly, our studies of Fe impurities, when combined with a reinterpretation of earlier STM work in the context of a two-gap scenario, allow us to present a unified view of the atomic-scale effects of elemental impurities on the pseudogap and superconducting states in hole-doped cuprates; this may help resolve a previously assumed dichotomy between the effects of magnetic and nonmagnetic impurities in these materials.« less

  9. The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study

    NASA Technical Reports Server (NTRS)

    Schall, Constance A.

    1998-01-01

    Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.

  10. Advanced industrial fluorescence metrology used for qualification of high quality optical materials

    NASA Astrophysics Data System (ADS)

    Engel, Axel; Becker, Hans-Juergen; Sohr, Oliver; Haspel, Rainer; Rupertus, Volker

    2003-11-01

    Schott Glas is developing and producing the optical material for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. The requirements on quality for optical materials are extremely high and still increasing. For example in micro lithography applications the impurities of the material are specified to be in the low ppb range. Usually the impurities in the lower ppb range are determined using analytical methods like LA ICP-MS and Neutron Activation Analysis. On the other hand absorption and laser resistivity of optical material is qualified with optical methods like precision spectral photometers and in-situ transmission measurements having UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). In order to achieve the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometer is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity that state of the art UV absorption spectroscopy) and fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analytics). An overview is given for spectral characteristics and using specified standards. Moreover correlations to the material qualities are shown. In particular we have investigated the elementary fluorescence and absorption of rare earth element impurities as well as defects induced luminescence originated by impurities.

  11. Incorporation of impurity to a tetragonal lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo

    1999-01-01

    Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.

  12. The effect of magnetic field on the impurity binding energy of shallow donor impurities in a Ga1−xInxNyAs1−y/GaAs quantum well

    PubMed Central

    2012-01-01

    Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations. PMID:23095253

  13. Quantum interference on electron scattering in graphene by carbon impurities in underlying h -BN

    NASA Astrophysics Data System (ADS)

    Kaneko, Tomoaki; Koshino, Mikito; Saito, Riichiro

    2017-03-01

    Electronic structures and transport properties of graphene on h -BN with carbon impurities are investigated by first-principles calculation and the tight-binding model. We show that the coupling between the impurity level and the graphene's Dirac cone sensitively depends on the impurity position, and in particular, it nearly vanishes when the impurity is located right below the center of the six membered ring of graphene. The Bloch phase factor at the Brillouin zone edge plays a decisive role in the cancellation of the hopping integrals. The impurity position dependence on the electronic structures of graphene on h -BN is investigated by the first-principles calculation, and its qualitative feature is well explained by a tight-binding model with graphene and a single impurity site. We also propose a simple one-dimensional chain-impurity model to analytically describe the role of the quantum interference in the position-dependent coupling.

  14. Impurity-limited resistance and phase interference of localized impurities under quasi-one dimensional nano-structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Nobuyuki, E-mail: sano@esys.tsukuba.ac.jp

    2015-12-28

    The impurity-limited resistance and the effect of the phase interference among localized multiple impurities in the quasi-one dimensional (quasi-1D) nanowire structures are systematically investigated under the framework of the scattering theory. We derive theoretical expressions of the impurity-limited resistance in the nanowire under the linear response regime from the Landauer formula and from the Boltzmann transport equation (BTE) with the relaxation time approximation. We show that the formula from the BTE exactly coincides with that from the Landauer approach with the weak-scattering limit when the energy spectrum of the in-coming electrons from the reservoirs is narrow and, thus, point outmore » a possibility that the distinction of the impurity-limited resistances derived from the Landauer formula and that of the BTE could be made clear. The derived formulas are applied to the quasi-1D nanowires doped with multiple localized impurities with short-range scattering potential and the validity of various approximations on the resistance are discussed. It is shown that impurity scattering becomes so strong under the nanowire structures that the weak-scattering limit breaks down in most cases. Thus, both phase interference and phase randomization simultaneously play a crucial role in determining the impurity-limited resistance even under the fully coherent framework. When the impurity separation along the wire axis direction is small, the constructive phase interference dominates and the resistance is much greater than the average resistance. As the separation becomes larger, however, it approaches the series resistance of the single-impurity resistance due to the phase randomization. Furthermore, under the uniform configuration of impurities, the space-average resistance of multiple impurities at room temperature is very close to the series resistance of the single-impurity resistance, and thus, each impurity could be regarded as an independent scattering center. The physical origin of this “self-averaging” under the fully coherent environments is attributed to the broadness of the energy spectrum of the in-coming electrons from the reservoirs.« less

  15. Numerical renormalization group calculation of impurity internal energy and specific heat of quantum impurity models

    NASA Astrophysics Data System (ADS)

    Merker, L.; Costi, T. A.

    2012-08-01

    We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.

  16. Behavior of some singly ionized, heavy-ion impurities during compression in a theta-pinch plasma

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1975-01-01

    The introduction of a small percentage of an impurity gas containing a desired element into a theta-pinch plasma is a standard procedure used to investigate the spectra and atomic processes of the element. This procedure assumes that the mixing ratio of impurity-to-fill gases remains constant during the collapse and heating phase. Spectroscopic investigations of the constant-mixing-ratio assumption for a 2% neon and argon impurity verifies the assumption only for the neon impurity. However, for the 2% argon impurity, only 20 to 25% of the argon is in the high-temperature compressed plasma. It is concluded that the constant-mixing-ratio assumption is not applicable to the argon impurity.

  17. Inclusion behavior of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization: Combined first-principles calculation and experimental study

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Kim, In-Tae; Park, Geun-Il; Kang, Jeung-Ku

    2013-05-01

    The pyroprocessing which uses a dry method to recycle spent oxide fuel generates a waste LiCl salt containing radioactive elements. To reuse LiCl salt, the radioactive impurities has to be separated by the purification process such as layer-melt crystallization. To enhance impurity separation efficiency, it is important to understand the inclusion mechanism of impurities within the LiCl crystal. Herein, we report the inclusion properties of impurities in LiCl crystals. First of all, the substitution enthalpies of Cs+, Sr2+, and Ba2+ impurities with 0-6 at% in LiCl crystal were evaluated via first-principles calculations. Also, the molten LiCl containing 1 mol of Cs+, Sr2+, and Ba2+ impurities was crystallized through the experimental layer-melt crystallization method. These substitution enthalpy and experiment clarify that a high substitution enthalpy should result in the high separation efficiency for an impurity. Furthermore, we find that the electron density map gives a clue to the mechanism for inclusion of impurities into LiCl crystal.

  18. Enhanced Laser-Induced Breakdown Spectroscopy By Second-Pulse Selective Wavelength Excitation

    NASA Astrophysics Data System (ADS)

    Vidal, F.; Chaker, M.; Goueguel, C.; Laville, S.; Loudyi, H.; Rifai, K.; Sabsabi, M.

    2008-09-01

    We investigate the use of a second laser with a selected wavelength to improve the limit of detection (LoD) of trace elements in the Laser-Induced Breakdown Spectroscopy (LIBS) technique. We consider the combination of LIBS with Laser-Induced Fluorescence (LIF), in which the second laser is used to excite trace elements in the plasma. The influence of the main experimental parameters on the trace elements LIF signal, namely the ablation fluence, the excitation energy, and the inter-pulse delay, was studied experimentally and a physical interpretation of the results was presented. For illustrative purpose we considered detection of Pb in brass samples and in water. The plasma was produced by a Q-switched Nd:YAG laser and then re-excited by a nanosecond optical parametric oscillator laser. We found out that the optimal conditions for our experimental set-up were obtained for relatively weak ablation fluence of 2-3 J/cm2 and inter-pulse delay of 5-10 μs. Using the LIBS-LIFS technique, a single-shot LoD for detection of lead of about 1.5 part per million (ppm) was obtained for solids and 0.5 ppm for liquids. These LoDs represent an improvement of about two orders of magnitude with respect to LIBS. We also discuss resonance-enhanced LIBS (RELIBS), in which the second laser excites the main plasma component instead of the impurities. For the set of parameters used the RELIBS, Pb signal does not differ significantly from the LIBS signal except at low ablation fluence.

  19. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experimentmore » (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (d ~ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H2 within minutes. For impurity sequestration, LTX plasma performance—ascertained from plasma current and density measurements—progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.« less

  20. GEM detectors for WEST and potential application for heavy impurity transport studies

    NASA Astrophysics Data System (ADS)

    Mazon, D.; Jardin, A.; Coston, C.; Faisse, F.; Chernyshova, M.; Czarski, T.; Kasprowicz, G.; Wojenski, A.

    2016-08-01

    In tokamaks equipped with metallic walls and in particular tungsten, the interplay between particle transport and MagnetoHydroDynamic (MHD) activity might lead to impurities accumulation and finally to sudden plasma termination called disruption. Studying such transport phenomena is thus essential if stationary discharges are to be achieved. On WEST a new SXR diagnostic is developed in collaboration with IPPLM (Poland) and the Warsaw University of Technology, based on a triple Gas Electron Multiplier (GEM) detector. Potential application of the WEST GEM detectors for tomographic reconstruction and subsequent transport analysis is presented.

  1. Effect of additives on the volatility of elements in a DC arc during the atomic emission analysis of nickel(II) oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotareva, N.I.; Kuzyakov, Yu.Ya.; Khlystova, A.D.

    1986-10-20

    The authors have studied the effect of traditional halogenating additives, AgCl, CdF/sub 2/, PTFE and that of an effective additive they have selected, ZnF/sub 2/, on the volatility of impurity elements, viz. tungsten, molybdenum, titanium, and zirconium from nickel (II) oxide, and determined the constants for the average relative volatility of the elements by the method of Kantor and Pungor. The results have been used to lower the limits of detection of the impurities cited in nickel(II) oxide.

  2. A pharmacology guided approach for setting limits on product-related impurities for bispecific antibody manufacturing.

    PubMed

    Rajan, Sharmila; Sonoda, Junichiro; Tully, Timothy; Williams, Ambrose J; Yang, Feng; Macchi, Frank; Hudson, Terry; Chen, Mark Z; Liu, Shannon; Valle, Nicole; Cowan, Kyra; Gelzleichter, Thomas

    2018-04-13

    bFKB1 is a humanized bispecific IgG1 antibody, created by conjoining an anti-Fibroblast Growth Factor Receptor 1 (FGFR1) half-antibody to an anti-Klothoβ (KLB) half-antibody, using the knobs-into-holes strategy. bFKB1 acts as a highly selective agonist for the FGFR1/KLB receptor complex and is intended to ameliorate obesity-associated metabolic defects by mimicking the activity of the hormone FGF21. An important aspect of the biologics product manufacturing process is to establish meaningful product specifications regarding the tolerable levels of impurities that copurify with the drug product. The aim of the current study was to determine acceptable levels of product-related impurities for bFKB1. To determine the tolerable levels of these impurities, we dosed obese mice with bFKB1 enriched with various levels of either HMW impurities or anti-FGFR1-related impurities, and measured biomarkers for KLB-independent FGFR1 signaling. Here, we show that product-related impurities of bFKB1, in particular, high molecular weight (HMW) impurities and anti-FGFR1-related impurities, when purposefully enriched, stimulate FGFR1 in a KLB-independent manner. By taking this approach, the tolerable levels of product-related impurities were successfully determined. Our study demonstrates a general pharmacology-guided approach to setting a product specification for a bispecific antibody whose homomultimer-related impurities could lead to undesired biological effects. Copyright © 2018. Published by Elsevier Inc.

  3. Dielectric studies of (x) NiFe2O4 + (1 - x) BaTi0.9Zr0.1O3 (where x = 0, 0.25, 0.50, 0.75 and 1)

    NASA Astrophysics Data System (ADS)

    Wadhwani, Kiran; Srivastava, Subodh; Mathur, Shubhra

    2018-05-01

    We present the room temperature dielectric studies of the samples in the series (x) NiFe2O4 + (1-x) BaTi0.9Zr0.1O3 (where x = 0, 0.25, 0.50, 0.75 and 1) containing nickel ferrite and Zr substituted barium titanate as the ferroelectric phase and their magnetoelectric (ME) composites in mixed in different molar ratios. Solid state diffusion has been used for the synthesis of samples. Powder X-ray diffraction (XRD) confirms the formation of ferrite and ferroelectric phases and their presence in all three composites with no impurity traces. Room temperature dielectric measurements have been made as a function of frequency (ranging from 100 Hz to 1 MHz).

  4. Microgravity

    NASA Image and Video Library

    1998-02-27

    NASA research Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming opticl films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers on the future, these films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  5. Microgravity

    NASA Image and Video Library

    1999-05-26

    NASA researcher Dr. Donald Frazier uses a blue laser shining through a quartz window into a special mix of chemicals to generate a polymer film on the inside quartz surface. As the chemicals respond to the laser light, they adhere to the glass surface, forming optical films. Dr. Frazier and Dr. Mark S. Paley developed the process in the Space Sciences Laboratory at NASA's Marshall Space Flight Center in Huntsville, AL. Working aboard the Space Shuttle, a science team led by Dr. Frazier formed thin-films potentially useful in optical computers with fewer impurities than those formed on Earth. Patterns of these films can be traced onto the quartz surface. In the optical computers of the future, thee films could replace electronic circuits and wires, making the systems more efficient and cost-effective, as well as lighter and more compact. Photo credit: NASA/Marshall Space Flight Center

  6. Dissolution of alkaline earth sulfates in the presence of montmorillonite

    USGS Publications Warehouse

    Eberl, D.D.; Landa, E.R.

    1985-01-01

    In a study of the effect of montmorillonite on the dissolution of BaSO4 (barite), SrSO4 (celestite), and 226Ra from U mill tailings, it was found that: (1) More of these substances dissolve in an aqueous system that contains montmorillonite than dissolve in a similar system without clay, due to the ion exchange properties of the clay; (2) Na-montmorillonite is more effective in aiding dissolution than is Ca-montmorillonite; (3) the amount of Ra that moves from mill tailings to an exchanger increases as solution sulfate activity decreases. Leaching experiments suggest that 226Ra from H2SO4-circuit U mill tailings from Edgemont, South Dakota, is not present as pure Ra sulfate or as an impurity in anhydrite or gypsum; it is less soluble, and probably occurs as a trace constituent in barite.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertucci, M.; Michelato, P.; Moretti, M.

    X-ray fluorescence probe for detection of foreign material inclusions on the inner surface of superconducting cavities has been developed and tested. The setup detects trace element content such as a few micrograms of impurities responsible for thermal breakdown phenomena limiting the cavity performance. The setup has been customized for the geometry of 1.3 GHz TESLA-type niobium cavities and focuses on the surface of equator area at around 103 mm from the centre axis of the cavities with around 20 mm detection spot. More precise localization of inclusions can be reconstructed by means of angular or lateral displacement of the cavity.more » Preliminary tests confirmed a very low detection limit for elements laying in the high efficiency spectrum zone (from 5 to 10 keV), and a high angular resolution allowing an accurate localization of defects within the equator surface.« less

  8. Low temperature detection of phase transitions and relaxation processes in strontium titanate by means of cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, B.; Townsend, P. D.; Fromknecht, R.

    2004-11-01

    Cathodoluminescence is an effective tool for investigating phase changes and relaxation processes in insulators and data are presented for strontium titanate. The results demonstrate considerable sensitivity to the origin of the samples as the detailed spectra and intensity changes with temperature are strongly dependent on the growth conditions, trace impurities and radiation induced defects. It is of particular note that in the defective surface layer the normal second-order phase transition cited near 105 K transforms into a sharply defined first-order transition because of the relaxation of the near surface layer in doped crystals. Detection of the other main relaxation stages is also straightforward via intensity and spectral changes. Secondary effects of phase changes incorporated within the surface layers are clearly evident, particularly for the 197 K sublimation of CO2 nanoparticle inclusions.

  9. Impurity-induced moments in underdoped cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaliullin, G.; Kilian, R.; Krivenko, S.

    1997-11-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potentialmore » approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}« less

  10. Impurity doping effects on the orbital thermodynamic properties of hydrogenated graphene, graphane, in Harrison model

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen

    2016-12-01

    Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.

  11. Multiply Controlled Verbal Operants: An Analysis and Extension to the Picture Exchange Communication System

    ERIC Educational Resources Information Center

    Bondy, A.; Tincani, M.; Frost, L.

    2004-01-01

    This paper presents Skinner's (1957) analysis of verbal behavior as a framework for understanding language acquisition in children with autism. We describe Skinner's analysis of pure and impure verbal operants and illustrate how this analysis may be applied to the design of communication training programs. The picture exchange communication system…

  12. Advances in the analysis of steroid hormone drugs in pharmaceuticals and environmental samples (2004-2010).

    PubMed

    Görög, Sándor

    2011-06-25

    A critical review of the literature of the analysis of steroid hormone drugs is presented based on 213 publications published between 2004 and 2010. The state of the art of the assay and purity check of bulk drug materials is characterized on the basis of the principal pharmacopoeias supplemented by the literature dealing with their impurity profiling and solid state characterization. The determination of the active ingredients and impurities/degradants in pharmaceutical formulation by HPLC, other chromatographic, electrodriven, spectrophotometric and other methods is also summarized. A short section deals with the application of analytical methods in drug research. The literature of the determination of steroid hormones in environmental samples is summarized in tabulated form. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Electric Propulsion Induced Secondary Mass Spectroscopy

    NASA Technical Reports Server (NTRS)

    Amini, Rashied; Landis, Geoffrey

    2012-01-01

    A document highlights a means to complement remote spectroscopy while also providing in situ surface samples without a landed system. Historically, most compositional analysis of small body surfaces has been done remotely by analyzing reflection or nuclear spectra. However, neither provides direct measurement that can unambiguously constrain the global surface composition and most importantly, the nature of trace composition and second-phase impurities. Recently, missions such as Deep Space 1 and Dawn have utilized electric propulsion (EP) accelerated, high-energy collimated beam of Xe+ ions to propel deep space missions to their target bodies. The energies of the Xe+ are sufficient to cause sputtering interactions, which eject material from the top microns of a targeted surface. Using a mass spectrometer, the sputtered material can be determined. The sputtering properties of EP exhaust can be used to determine detailed surface composition of atmosphereless bodies by electric propulsion induced secondary mass spectroscopy (EPI-SMS). EPI-SMS operation has three high-level requirements: EP system, mass spectrometer, and altitude of about 10 km. Approximately 1 keV Xe+ has been studied and proven to generate high sputtering yields in metallic substrates. Using these yields, first-order calculations predict that EPI-SMS will yield high signal-to-noise at altitudes greater than 10 km with both electrostatic and Hall thrusters.

  14. The economic potential of El-Gedida glauconite deposits, El-Bahariya Oasis, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El-Habaak, Galal; Askalany, Mohamed; Faraghaly, Mohamed; Abdel-Hakeem, Mahmoud

    2016-08-01

    The mining work at El-Gedida iron mine, El-Bahariya Oasis, in the Western Desert of Egypt extracts commercial iron ore deposits without attention paid to the large glauconite deposits overlying these iron ore deposits. For this reason, the present paper aims at evaluating and attracting the attention to these glauconite deposits as alternative potassium fertilizers. The study was achieved by investigating mineralogical, physical and chemical properties of the green deposits. Mineralogical and physical properties involved the determination of glauconite pellets content in different grain size fractions relative to impurities and the analysis of the percentage of clay matrix and grain size distribution. Different pre-treatment strategies and methods including comminution, sieving, magnetic separation, and X-ray diffraction were used for investigating those mineralogical and physical properties. On the other hand, chemical analyses included potassium content, heavy metal concentrations, and pH and salinity measurements. The major elements and trace elements were measured using ICP-OES and the pH was measured using a pH conductometer. Moreover, this study investigated the nature of grain boundaries and the effect of sieving on glauconite beneficiation. Results of this study suggest that El-Gedida glauconite deposits are mineralogically, physically and chemically suitable for exploitation and can be beneficiated for use as an alternative potassium fertilizer.

  15. Impurity rejection in the crystallization of ABT-510 as a method to establish starting material specifications.

    PubMed

    Tolle, John C; Becker, Calvin L; Califano, Jean C; Chang, Jane L; Gernhardt, Kevin; Napier, James J; Wittenberger, Steven J; Yuan, Judy

    2009-01-01

    Understanding impurity rejection in a drug substance crystallization process is valuable for establishing purity specifications for the starting materials used in the process. Impurity rejection has been determined for all known ABT-510 impurities and for many of the reasonable & conceivable impurities. Based on this study, a very high purity specification (e.g., > 99.7%) can be set for ABT-510 with a high level of confidence.

  16. Adsorption site analysis of impurity embedded single-walled carbon nanotube bundles

    USGS Publications Warehouse

    Agnihotri, S.; Mota, J.P.B.; Rostam-Abadi, M.; Rood, M.J.

    2006-01-01

    Bundle morphology and adsorptive contributions from nanotubes and impurities are studied both experimentally and by simulation using a computer-aided methodology, which employs a small physisorbed probe molecule to explore the porosity of nanotube samples. Grand canonical Monte Carlo simulation of nitrogen adsorption on localized sites of a bundle is carried out to predict adsorption in its accessible internal pore volume and on its external surface as a function of tube diameter. External adsorption is split into the contributions from the clean surface of the outermost nanotubes of the bundle and from the surface of the impurities. The site-specific isotherms are then combined into a global isotherm for a given sample using knowledge of its tube-diameter distribution obtained by Raman spectroscopy. The structural parameters of the sample, such as the fraction of open-ended nanotubes and the contributions from impurities and nanotube bundles to total external surface area, are determined by fitting the experimental nitrogen adsorption data to the simulated isotherm. The degree of closure between experimental and calculated adsorption isotherms for samples manufactured by two different methods, to provide different nanotube morphology and contamination level, further strengthens the validity and resulting interpretations based on the proposed approach. The average number of nanotubes per bundle and average bundle size, within a sample, are also quantified. The proposed method allows for extrapolation of adsorption properties to conditions where the purification process is 100% effective at removing all impurities and opening access to all intrabundle adsorption sites. ?? 2006 Elsevier Ltd. All rights reserved.

  17. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters

    NASA Astrophysics Data System (ADS)

    Smith, David C.

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  18. In situ mobile subaquatic archaeometry evaluated by non-destructive Raman microscopy of gemstones lying under impure waters.

    PubMed

    Smith, David C

    2003-08-01

    A series of laboratory simulations have been made in order to evaluate the credibility of carrying out physico-chemical analysis of cultural heritage items by Raman spectral fingerprinting using a mobile Raman microscope in situ under natural impure water in subaquatic or submarine conditions. Three different kinds of gemstone (zircon, microcline and sodalite) were successively placed under different kinds of impure water into which a low power microscope objective was immersed to eliminate the normal aerial pathway between the objective and the object to be analysed. According to the nature of the impurities (inorganic or organic, dissolved or suspended, transparent or coloured) the results obtained variously gave Raman band intensities stronger than, similar to or weaker than those of spectra obtained without water, i.e. in air. The significant point is that after only minor spectral treatment the less good spectra nevertheless yielded exploitable data with most, if not all, of the key Raman bands being detected. Thus the problems of fluorescence or peak absences under water are of a similar degree of magnitude to the other problems inherent with the Raman spectroscopic technique in aerial conditions, e.g. relative peak intensities varying with crystal orientation; peak positions varying with chemical composition. These results indicate that even if at certain sites of submerged cities or sunken ships, the combination of animal, vegetal, mineral and microbial impurities join together to inhibit or hinder the success of subaquatic or submarine archaeometry, there will certainly be other sites where such activity is indeed credible.

  19. Purification of telluric acid for SNO+ neutrinoless double-beta decay search

    NASA Astrophysics Data System (ADS)

    Hans, S.; Rosero, R.; Hu, L.; Chkvorets, O.; Chan, W. T.; Guan, S.; Beriguete, W.; Wright, A.; Ford, R.; Chen, M. C.; Biller, S.; Yeh, M.

    2015-09-01

    Tellurium-130 has the highest natural abundance of any double-beta decay isotopes. Recently it has been developed as a promising candidate for loading in liquid scintillator to explore the Majorana or Dirac nature of the neutrino through a search for neutrinoless double beta decay (0νββ). To this end, procedures have been developed to transfer tellurium ions into the organic liquid by a water-based loading technology. However, traces of naturally occurring radioactivity and cosmic-ray induced isotopes introduced into the scintillator with tellurium could produce undesirable contaminations in the 130Te 0νββ region. Measurements using various elemental spikes prepared from different chemical forms indicate that the uses of self-scavenging as well as acid and thermal recrystallization prior to the preparation of a tellurium-loaded liquid scintillator can deplete U and Th and several cosmic-activated isotopes from Te feedstock by a factor of 102-103 in a single pass. The process is also found to improve the optical transmission in the blue region, sensible to the photomultiplier tube, by removing traces of colored impurities. In addition to the scintillator-based experiments, this cleansing scheme has potential applications to the production of radiopure tellurium crystals for other rare-event experiments.

  20. Chemical characterization of surface snow in Istanbul (NW Turkey) and their association with atmospheric circulations.

    PubMed

    Baysal, Asli; Baltaci, Hakki; Ozbek, Nil; Destanoglu, Orhan; Ustabasi, Gul Sirin; Gumus, Gulcin

    2017-06-01

    The understanding of the impurities in natural snow is important in realizing its atmospheric quality, soil characteristics, and the pollution caused to the environment. Knowledge of the occurrence of major ions and trace metals in the snow in the megacity of Istanbul is very limited. This manuscript attempts to understand the origin of major soluble ions (fluoride, acetate, formate, chlorite, chloride, nitrite, chlorate, bromide, nitrate, sulfate, phosphate, and perchlorate) and some trace metals (Fe, Mn, Cd, Co, Ni, Pb, Zn, Cu) in winter surface snow, collected in Istanbul, Turkey. The sampling of the surface snow was conducted after each precipitation during the winter of 2015-2016 at three sites in the city. Besides the statistical evaluation of the major ions, and some trace metal concentrations, the chemical variations along with atmospheric circulations, which are important modification mechanisms that influence the concentrations, were investigated in the study. At examined locations and times, 12 major anions were investigated and in these anions fluoride, chlorite, chlorate, bromide, and perchlorate in the snow samples were below the detection limit; only SO 4 2- , NO 3 - , and CI - were found to be in the range of 1.11-17.90, 0.75-4.52, and 0.19-3.01 mg/L. Also, according to the trace element determination, the concentration was found to be 29.2-53.7, 2.0-16.1, 1.0-2.2, 50.1-71.1, 24.2-35.2, ND-7.9, 43.2-106.6, and 3.0-17.7 μg/L for Fe, Mn, Cd, Co, Ni, Pb, Zn, and Cu, respectively. The major anions and investigated trace elements here originated mainly from anthropogenic and atmospheric circulation and mainly influenced by northerly and southerly circulation patterns. While the main limitations in the present study may be the low number of samples that may not be entirely representative, accurately reflect identification, or support other previously observed local measurements, we believe that the type of data presented in this study has the potential to be used in the field of environmental risk assessment and, as result, for human health.

  1. Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc.

    PubMed

    Hou, X; Tanguay, J; Vuckovic, M; Buckley, K; Schaffer, P; Bénard, F; Ruth, T J; Celler, A

    2016-12-07

    Cyclotron-produced 99m Tc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99m Tc. However, the small amount of 92-98 Mo in the irradiation of enriched 100 Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.

  2. Evaluation of Li{sub 3}N accumulation in a fused LiCl/Li salt matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, C.S.

    1998-09-01

    Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research, a pilot scale of the preprocessing stage is being designed by ANL-West to demonstrate the in situ hot cell capability of the chemical reduction process. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent light water reactor uranium oxide fuel. A simple analysis was performed in which the sources of impurities inmore » the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation, and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hot cell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix, and the mass rate for the device was determined.« less

  3. Imaging study of using radiopharmaceuticals labeled with cyclotron-produced 99mTc

    NASA Astrophysics Data System (ADS)

    Hou, X.; Tanguay, J.; Vuckovic, M.; Buckley, K.; Schaffer, P.; Bénard, F.; Ruth, T. J.; Celler, A.

    2016-12-01

    Cyclotron-produced 99mTc (CPTc) has been recognized as an attractive and practical substitution of reactor/generator based 99mTc. However, the small amount of 92-98Mo in the irradiation of enriched 100Mo could lead to the production of other radioactive technetium isotopes (Tc-impurities) which cannot be chemically separated. Thus, these impurities could contribute to patient dose and affect image quality. The potential radiation dose caused by these Tc-impurities produced using different targets, irradiation conditions, and corresponding to different injection times have been investigated, leading us to create dose-based limits of these parameters for producing clinically acceptable CPTc. However, image quality has been not considered. The aim of the present work is to provide a comprehensive and quantitative analysis of image quality for CPTc. The impact of Tc-impurities in CPTc on image resolution, background noise, and contrast is investigated by performing both Monte-Carlo simulations and phantom experiments. Various targets, irradiation, and acquisition conditions are employed for investigating the image-based limits of CPTc production parameters. Additionally, the relationship between patient dose and image quality of CPTc samples is studied. Only those samples which meet both dose- and image-based limits should be accepted in future clinical studies.

  4. Anderson metal-insulator transitions with classical magnetic impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Daniel; Kettemann, Stefan

    We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less

  5. Compatibility study of a parenteral microdose polyethylene glycol formulation in medical devices and identification of degradation impurity by 2D-LC/MS.

    PubMed

    Dai, Lulu; Yeh, Geoffrey K; Ran, Yingqing; Yehl, Peter; Zhang, Kelly

    2017-04-15

    Polyethylene glycol (PEG) based formulation and polyvinylchloride (PVC) tubing are frequently used for drug delivery and administration. The compatibility of a parenteral drug microdose formulation in intravenous infusion (IV) devices was studied to support the clinical determination of absolute bioavailability by the microdosing method. The investigational microdose formulation containing PEG was found prone to significant loss of potency within hours of storage in the PVC IV tubing due to degradation. Degradation occurred only when both PEG and PVC tubing were present. The degradation product could not be detected by LC/MS due to the significant interference from the high concentration of PEG (4%) matrix and the extremely low level of drug (0.6ppm). To obtain structural information of the degradation impurity and understand the cause of the degradation, a simple heart-cutting 2D-LC/MS approach was utilized to effectively separate the impurity from the complex PEG oligomers and overcome the matrix interference, enabling mass spectrometric analysis of the impurity. An oxidation- dominated mechanism was proposed in which the combination of PEG auto-oxidation and dehydrochlorination of the PVC tubing yielded an oxidative environment that enhanced radical propagation and accelerated degradation of the investigational parent drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Stability of Weyl metals under impurity scattering

    NASA Astrophysics Data System (ADS)

    Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.

    2013-04-01

    We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight-binding versions of the continuum models recently discussed by [Burkov, Hook, and Balents, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.235126 84, 235126 (2011)], describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected and that a scalar impurity will induce an intragap resonance over a wide range of scattering strength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength.

  7. Adsorption mechanisms of the nonequilibrium incorporation of admixtures in a growing crystal

    NASA Astrophysics Data System (ADS)

    Franke, V. D.; Punin, Yu. O.; Smetannikova, O. G.; Kenunen, D. S.

    2007-12-01

    The nonequilibrium partition of components between a crystal and solution is mainly controlled by impurity adsorption on the surface of the growing crystal. The specificity of adsorption on the faces of various simple forms leads to the sectorial zoning of crystals. This effect was studied experimentally for several crystallizing systems with different impurities, including isomorphous, 2d-isomorphous, and nonisomorphous, readily adsorbed impurities. In all systems, the sectorial selectivity of impurity incorporation into host crystals has been detected with partition coefficients many times higher than in the case of equilibrium partition. Specific capture of impurities by certain faces is accompanied by inhibition of their growth and modification of habit. The decrease in nonequilibrium partition coefficients with degree of oversaturation provides entrapment of impurities in the growing crystals. Thereby, the adsorption mechanism works in much the same mode for impurities of quite different nature. The behavior of partition coefficient differs drastically from impurity capturing by diffusion mechanism.

  8. Compact, accurate description of diagnostic neutral beam propagation and attenuation in a high temperature plasma for charge exchange recombination spectroscopy analysis.

    PubMed

    Bespamyatnov, Igor O; Rowan, William L; Granetz, Robert S

    2008-10-01

    Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

  9. Trace element diffusion in minerals: the role of multiple diffusion mechanisms operating simultaneously

    NASA Astrophysics Data System (ADS)

    Dohmen, R.; Marschall, H.; Wiedenbeck, M.; Polednia, J.; Chakraborty, S.

    2016-12-01

    Diffusion of trace elements, often with ionic charge that differs from those of ions in the regular structural sites of a mineral, controls a number of important processes in rocks, such as: (i) Closure of radiogenic isotopic systems, (e.g. Pb diffusion in rutile; REE diffusion in garnet); (ii) Closure of trace element thermometers (e.g., Zr in rutile, Mg in plagioclase, Al in olivine); (iii) Closure of element exchange between melt inclusions and host minerals (e.g., H, REE in olivine). In addition, preserved trace element zoning profiles in minerals can be used for diffusion chronometry (e.g. Nb in rutile, Mg in plagioclase). However, experimentally determined diffusion coefficients of these trace elements are in many cases controversial (e.g., REE in olivine: [1] vs. [2]; Mg in plagioclase: [3] vs. [4]). We have carried out experiments to study the diffusion behavior in olivine, rutile, and plagioclase, and are able to show that two mechanisms of diffusion, differing in rates by up to four orders of magnitude, may operate simultaneously in a given crystal. The two mechanisms result in complex diffusion profile shapes. As a general rule, the incorporation of heterovalent substituting elements in relatively high concentrations is necessary to activate two diffusion mechanisms. This behavior is produced by the control of these elements on the point defect chemistry of a mineral - these impurities become a majority point defect when a threshold concentration limit is exceeded. In certain cases, e.g., for Li in olivine, the trace element can also be incorporated in different sites, resulting in interaction of the different species with other point defects (vacancies) during diffusion. Thus, depending on the diffusion couple used in the experiment, the associated concentration gradients within the mineral, and the analytical techniques used to measure the diffusion profile, only one diffusion mechanism may be activated or detected. These studies allow us to explain some of the differing results noted above and such considerations need to be taken into account when modelling diffusion in natural systems. [1] Cherniak 2010, Am Mineral 95:362-368; [2] Spandler and O'Neill 2010, Contrib Mineral Petrol 159:791-818; [3] Faak et al. 2013 Geochim Cosmochim Acta 123:195-217; [4] Van Orman et al. 2014 Earth Planet Sci Lett 385:79-88

  10. Power Radiated from ITER and CIT by Impurities

    DOE R&D Accomplishments Database

    Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.

    1990-07-01

    The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.

  11. Combined effects of an intense laser field, electric field and hydrostatic pressure on donor impurity states in zinc-blende InGaN/GaN quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi

    2016-07-01

    The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.

  12. Clusterization Effects in III-V Nitrides: Nitrogen Vacancies, and Si and Mg Impurities in Aluminum Nitride and Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.

    1997-03-01

    We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.

  13. Identification and control of unspecified impurity in trimetazidine dihydrochloride tablet formulation

    NASA Astrophysics Data System (ADS)

    Jefri; Puspitasari, A. D.; Talpaneni, J. S. R.; Tjandrawinata, R. R.

    2018-04-01

    Trimetazidine dihydrochloride is an anti-ischemic metabolic agent which is used as drug for angina pectoris treatment. The drug substance monograph is available in European Pharmacopoeia and British Pharmacopoeia, while the drug product monograph is not available in any of the pharmacopoeias. During development of trimetazidine dihydrochloride tablet formulation, we found increase of an unspecified impurity during preliminary stability study. The unspecified impurity was identified by high performance liquid chromatography coupled with mass spectrometry (LC-MS) and the molecular weight obtained was matching with the molecular weight of N-formyl trimetazidine (m/z 295). Further experiments were performed to confirm the suspected result by injecting the impurity standard and spiking formic acid into the drug substance. The retention time of N-formyl trimetazidine was similar to the unspecified impurity in drug product. Even spiking of formic acid into drug substance showed that the suspected impurity increased with increasing concentration of formic acid. The proposed mechanism of impurity formation is via amidation of piperazine moiety of trimetazidine by formic acid which present as residual solvent in tablet binder used in the formulation. Subsequently, the impurity in our product was controlled by choosing the primary packaging which could minimize the formation of impurity.

  14. Liquid sodium dip seal maintenance system

    DOEpatents

    Briggs, Richard L.; Meacham, Sterling A.

    1980-01-01

    A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.

  15. Electronic Structure of p- and n-Type Doping Impurities in Cubic Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Pentaleri, E. A.; Gubanov, V. A.; Fong, C. Y.; Klein, B. M.

    1996-03-01

    LMTO-TB calculations were performed to investigate the electronic structure of C, Be, Mg, Si, Zn, and Cd substitutional impurities in cubic GaN (c-GaN). The calculations used 128-site supercells consisting of 64-atoms. Empty spheres of two types occupied the remaining sites. Semi-core Ga 3d states were treated explicitly as valence states. Both amphoteric substitutions were considered for C and Si impurities, while only cation-site substitutions were considered for Be, Mg, Zn, and Cd. All metal impurities formed partially occupied impurity states at the VB edge, which may result in p-type conductivity. C and Si impurities substituted at anion sites form sharp resonances in the gap, and are inactive in creating either p- or n-type carriers. Likewise, cation-site C substitutions introduce to the middle of the band gap strongly localized states that are inactive in carrier formation. Cation-site Si substitutions form an impurity sub-band at the CB edge, leading to n-type conductivity. The DOS at the Fermi level for each impurity-doped c-GaN crystal is used to estimate the most effective p-type doping impurities. The wave-function composition, space, and energy localization is analyzed for different impurities via projections onto the orbital basis and atomic coordinational spheres, and by examining calculated charge-density distributions.

  16. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    NASA Astrophysics Data System (ADS)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.

  17. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  18. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 2 2013-04-01 2013-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  19. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 2 2014-04-01 2014-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  20. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 2 2012-04-01 2012-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  1. 19 CFR 151.46 - Allowance for detectable moisture and impurities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Allowance for detectable moisture and impurities... Petroleum and Petroleum Products § 151.46 Allowance for detectable moisture and impurities. An allowance for all detectable moisture and impurities present in or upon imported petroleum or petroleum products...

  2. Characterization of the isomeric configuration and impurities of (Z)-endoxifen by 2D NMR, high resolution LC⬜MS, and quantitative HPLC analysis.

    PubMed

    Elkins, Phyllis; Coleman, Donna; Burgess, Jason; Gardner, Michael; Hines, John; Scott, Brendan; Kroenke, Michelle; Larson, Jami; Lightner, Melissa; Turner, Gregory; White, Jonathan; Liu, Paul

    2014-01-01

    (Z)-Endoxifen (4-hydroxy-N-desmethyltamoxifen), an active metabolite generated via actions of CYP3A4/5 and CYP2D6, is a more potent selective estrogen receptor modulator (SERM) than tamoxifen. In the MCF-7 human mammary tumor xenograft model with female athymic mice, (Z)-endoxifen, at an oral dose of 4⬜8 mg/kg, significantly inhibits tumor growth. (Z)-Endoxifen's potential as an alternative therapeutic agent independent of CYP2D6 activities, which can vary widely in ER+ breast cancer patients, is being actively evaluated. This paper describes confirmation of the configuration of the active (Z)-isomer through 2D NMR experiments, including NOE (ROESY) to establish spatial proton⬜proton correlations, and identification of the major impurity as the (E)-isomer in endoxifen drug substance by HPLC/HRMS (HPLC/MS-TOF). Stability of NMR solutions was confirmed by HPLC/UV analysis. For pre-clinical studies, a reverse-phase HPLC⬜UV method, with methanol/water mobile phases containing 10 mM ammonium formate at pH 4.3, was developed and validated for the accurate quantitation and impurity profiling of drug substance and drug product. Validation included demonstration of linearity, method precision, accuracy, and specificity in the presence of impurities, excipients (for the drug product), and degradation products. Ruggedness and reproducibility of the method were confirmed by collaborative studies between two independent laboratories. The method is being applied for quality control of the API and oral drug product. Kinetic parameters of Z- to E-isomerization were also delineated in drug substance and in aqueous formulation, showing conversion at temperatures above 25 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Argon purification studies and a novel liquid argon re-circulation system

    NASA Astrophysics Data System (ADS)

    Mavrokoridis, K.; Calland, R. G.; Coleman, J.; Lightfoot, P. K.; McCauley, N.; McCormick, K. J.; Touramanis, C.

    2011-08-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficiency of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O2, H2O, N2 and CO2 in the range of between 0.01 ppm to 1000 ppm - H2O was found to have the most profound effect on gaseous argon scintillation light, and N2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N2 gas and H2O vapour has been quantified using BET isotherm analysis. The efficiency of Cu and P2O5 at removing O2 and H2O impurities from 1 bar N6 argon gas at both room temperature and -130 °C was investigated and found to be high. A novel, highly scalable LAr re-circulation system has been developed. The complete system, consisting of a motorised bellows pump operating in liquid and a purification cartridge, were designed and built in-house. The system was operated successfully over many days and achieved a re-circulation rate of 27 litres/hour and high purity.

  4. Electronic structure and magnetic properties of dilute U impurities in metals

    NASA Astrophysics Data System (ADS)

    Mohanta, S. K.; Cottenier, S.; Mishra, S. N.

    2016-05-01

    The electronic structure and magnetic moment of dilute U impurity in metallic hosts have been calculated from first principles. The calculations have been performed within local density approximation of the density functional theory using Augmented plane wave+local orbital (APW+lo) technique, taking account of spin-orbit coupling and Coulomb correlation through LDA+U approach. We present here our results for the local density of states, magnetic moment and hyperfine field calculated for an isolated U impurity embedded in hosts with sp-, d- and f-type conduction electrons. The results of our systematic study provide a comprehensive insight on the pressure dependence of 5f local magnetism in metallic systems. The unpolarized local density of states (LDOS), analyzed within the frame work of Stoner model suggest the occurrence of local moment for U in sp-elements, noble metals and f-block hosts like La, Ce, Lu and Th. In contrast, U is predicted to be nonmagnetic in most transition metal hosts except in Sc, Ti, Y, Zr, and Hf consistent with the results obtained from spin polarized calculation. The spin and orbital magnetic moments of U computed within the frame of LDA+U formalism show a scaling behavior with lattice compression. We have also computed the spin and orbital hyperfine fields and a detail analysis has been carried out. The host dependent trends for the magnetic moment, hyperfine field and 5f occupation reflect pressure induced change of electronic structure with U valency changing from 3+ to 4+ under lattice compression. In addition, we have made a detailed analysis of the impurity induced host spin polarization suggesting qualitatively different roles of f-band electrons on moment stability. The results presented in this work would be helpful towards understanding magnetism and spin fluctuation in U based alloys.

  5. Analysis of refill liquids for electronic cigarettes.

    PubMed

    Etter, Jean-François; Zäther, Eva; Svensson, Sofie

    2013-09-01

    To assess levels of nicotine, nicotine degradation products and some specific impurities in commercial refill liquids for electronic cigarettes. We analyzed 20 models of 10 of the most popular brands of refill liquids, using gas and liquid chromatography. We assessed nicotine content, content of the known nicotine degradation products and impurities, and presence of ethylene glycol and diethylene glycol. The nicotine content in the bottles corresponded closely to the labels on the bottles. The levels of nicotine degradation products represented 0-4.4% of those for nicotine, but for most samples the level was 1-2%. Cis-N-oxide, trans-N-oxide, myosmine, anatabine and anabasine were the most common additional compounds found. Neither ethylene glycol nor diethylene glycol were detected. The nicotine content of electronic cigarette refill bottles is close to what is stated on the label. Impurities are detectable in several brands above the level set for nicotine products in the European Pharmacopoeia, but below the level where they would be likely to cause harm. © 2013 Society for the Study of Addiction.

  6. Proximity-induced magnetism in transition-metal substituted graphene

    DOE PAGES

    Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; ...

    2015-08-03

    We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less

  7. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiationmore » damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.« less

  8. Oxygen impurity effects at metal/silicide interfaces - Formation of silicon oxide and suboxides in the Ni/Si system

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.

    1981-01-01

    The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.

  9. Development and validation of a single robust HPLC method for the characterization of a pharmaceutical starting material and impurities from three suppliers using three separate synthetic routes.

    PubMed

    Sheldon, E M; Downar, J B

    2000-08-15

    Novel approaches to the development of analytical procedures for monitoring incoming starting material in support of chemical/pharmaceutical processes are described. High technology solutions were utilized for timely process development and preparation of high quality clinical supplies. A single robust HPLC method was developed and characterized for the analysis of the key starting material from three suppliers. Each supplier used a different process for the preparation of this material and, therefore, each suppliers' material exhibited a unique impurity profile. The HPLC method utilized standard techniques acceptable for release testing in a QC/manufacturing environment. An automated experimental design protocol was used to characterize the robustness of the HPLC method. The method was evaluated for linearity, limit of quantitation, solution stability, and precision of replicate injections. An LC-MS method that emulated the release HPLC method was developed and the identities of impurities were mapped between the two methods.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F. F.; Jones, D. H.

    Savannah River National Laboratory (SRNL) received one set of Solvent Hold Tank (SHT) samples (MCU-15-815-816-817-818-819-820), pulled on 11/29/2015 for analysis. The samples were inspected, combined, and analyzed for composition. Chemical analysis of the composite sample MCU-15-815-816-817-818-819-820 indicated the TiDG, Isopar™L, and MaxCalix are at nominal levels. The modifier concentration is 3% below its nominal concentration. This analysis confirms the addition of TiDG, MaxCalix, and modifier to the solvent on November 28, 2015. Based on the current monthly sample, the levels of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterizationmore » and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). However, up to 12.5 ± 3 micrograms of mercury per gram of solvent (or 10.4 μg/mL) was detected in this sample. The solids residues found at the bottom of the p-nut vial from sample MCU-15-815 were determined to be left-over pipe residues that were flushed into the sample and they were found to have no impact on the solvent purity or on the chemical and physical properties of the solvent. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less

  11. Study of the use of axial viewed inductively coupled plasma atomic emission spectrometry with ultrasonic nebulization for the determination of select elemental impurities in oral drug products.

    PubMed

    Menoutis, James; Parisi, Angela; Verma, Natasha

    2018-04-15

    In efforts to control the potential presence of heavy metals in pharmaceuticals, the United States Pharmacopeia (USP) and International Conference on Harmonization (ICH) have put forth new requirements and guidelines for their control. The new requirements and guidelines establish specific daily exposures (PDE) for 24 heavy metals/elemental impurities (EI) based upon their toxicological properties. USP General Chapter 〈233〉 provides a general reference procedure for preparing pharmaceutical samples for analysis employing microwave assisted digestion (MWAD). It also provides two Compendial Procedures, Procedure 1 employing ICP-AES, and Procedure 2 employing ICP-MS. Given the extremely low detection limits afforded by ICP-MS, much work has been done in developing and evaluating analytical methods to support the analysis of elemental impurities in finished pharmaceutical products, active pharmaceutical ingredients, and excipients by this analytical technique. In this study, we have evaluated the use of axial ICP-AES. This employs ultrasonic nebulization (UN) for the determination of Class 1 and 2 EI, instead of traditional pneumatic nebulization. The study also employed closed vessel MWAD to prepare samples for analysis. Limits of quantitation were element specific and significantly lower than the PDEs for oral drugs. Spike recoveries for the elements studied ranged between 89.3% and 109.25%, except for Os, which was subject to OsO4 formation during MWAD. The use of axial ICP-AES UN provides an alternative to ICP-MS in the analysis of EI requiring low detection limits. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Phase transition in one Josephson junction with a side-coupled magnetic impurity

    NASA Astrophysics Data System (ADS)

    Zhi, Li-Ming; Wang, Xiao-Qi; Jiang, Cui; Yi, Guang-Yu; Gong, Wei-Jiang

    2018-04-01

    This work focuses on one Josephson junction with a side-coupled magnetic impurity. And then, the Josephson phase transition is theoretically investigated, with the help of the exact diagonalization approach. It is found that even in the absence of intradot Coulomb interaction, the magnetic impurity can efficiently induce the phenomenon of Josephson phase transition, which is tightly related to the spin correlation manners (i.e., ferromagnetic or antiferromagnetic) between the impurity and the junction. Moreover, the impurity plays different roles when it couples to the dot and superconductor, respectively. This work can be helpful in describing the influence of one magnetic impurity on the supercurrent through the Josephson junction.

  13. Volatile Impurities in the Plutonium Immobilization Ceramic Wasteform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A.D.

    1999-10-15

    Approximately 18 of the 50 metric tons of plutonium identified for disposition contain significant quantities of impurities. A ceramic waste form is the chosen option for immobilization of the excess plutonium. The impurities associated with the stored plutonium have been identified (CaCl2, MgF2, Pb, etc.). For this study, only volatile species are investigated. The impurities are added individually. Cerium is used as the surrogate for plutonium. Three compositions, including the baseline composition, were used to verify the ability of the ceramic wasteform to accommodate impurities. The criteria for evaluation of the effect of the impurities were the apparent porosity andmore » phase assemblage of sintered pellets.« less

  14. Current and future darkening of the Greenland ice sheet

    NASA Astrophysics Data System (ADS)

    Tedesco, Marco; Stroeve, Julienne; Fettweis, Xavier; Warren, Stephen; Doherty, Sarah; Noble, Erik; Alexander, Patrick

    2015-04-01

    Surface melting over the Greenland ice sheet (GIS) promotes snow grains growth, reducing albedo and further enhancing melting through the increased amount of absorbed solar radiation. Using a combination of remote sensing data and outputs of a regional climate model, we show that albedo over the GIS decreased significantly from 1996 to 2012. Further, we show that most of this darkening can be accounted for by enhanced snow grain growth and the expansion of areas where bare ice is exposed, both of which are driven by increases in snow warming. An analysis of the impact of light-absorbing impurities on albedo trends detected from spaceborne measurements was inconclusive because the estimated impact for concentrations of impurities of order of magnitude found in Greenland is within the albedo uncertainty retrievable from space-based instruments. However, neither models nor observations show an increase in pollutants (black carbon and associated organics) in the atmosphere over the GIS in this time period. Additionally, we could not identify trends in the number of fires over North America and Russia, assumed to be among the sources of soot for Greenland. We did find that a 'dark band' of tilted ice plays a crucial role in decreasing albedo along the west margin, and there is some indication that dust deposition to the GIS may be decreasing albedo in this region but this is not conclusive. In addition to looking at the direct impact of impurities on albedo, we estimated the impact of impurities on albedo via their influence on grain growth and found it is relatively small (~ 1- 2 %), though more sophisticated analysis needs to be carried out. Projections obtained under different warming scenarios consistently point to a continued darkening, with anomalies in albedo driven solely by the effects of climate warming of as much as -0.12 along the west margin of the GIS by the end of this century (with respect to year 2000). Projected darkening is likely underestimated because of an underestimation in melting and because the model used to project albedo does not account for the influence of light-absorbing impurities.

  15. The influence of dopants on the nucleation of semiconductor nanocrystals from homogeneous solution.

    PubMed

    Bryan, J Daniel; Schwartz, Dana A; Gamelin, Daniel R

    2005-09-01

    The influence of Co2+ ions on the homogeneous nucleation of ZnO is examined. Using electronic absorption spectroscopy as a dopant-specific in-situ spectroscopic probe, Co2+ ions are found to be quantitatively excluded from the ZnO critical nuclei but incorporated nearly statistically in the subsequent growth layers, resulting in crystallites with pure ZnO cores and Zn(1-x)Co(x)O shells. Strong inhibition of ZnO nucleation by Co2+ ions is also observed. These results are explained using the classical nucleation model. Statistical analysis of nucleation inhibition data allows estimation of the critical nucleus size as 25 +/- 4 Zn2+ ions. Bulk calorimetric data allow the activation barrier for ZnO nucleation containing a single Co2+ impurity to be estimated as 5.75 kcal/mol cluster greater than that of pure ZnO, corresponding to a 1.5 x 10(4)-fold reduction in the ZnO nucleation rate constant upon introduction of a single Co2+ impurity. These data and analysis offer a rare view into the role of composition in homogeneous nucleation processes, and specifically address recent experiments targeting formation of semiconductor quantum dots containing single magnetic impurity ions at their precise centers.

  16. Numerical renormalization group method for entanglement negativity at finite temperature

    NASA Astrophysics Data System (ADS)

    Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.

    2018-04-01

    We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.

  17. Binding energy and photoionization cross-section of hydrogen-like donor impurity in strongly oblate ellipsoidal quantum dot

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.

    2018-01-01

    Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.

  18. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  19. Laser Blow-Off Impurity Injection Experiments at the HSX Stellarator

    NASA Astrophysics Data System (ADS)

    Castillo, J. F.; Bader, A.; Likin, K. M.; Anderson, D. T.; Anderson, F. S. B.; Kumar, S. T. A.; Talmadge, J. N.

    2017-10-01

    Results from the HSX laser blow-off experiment are presented and compared to a synthetic diagnostic implemented in the STRAHL impurity transport modeling code in order to measure the impurity transport diffusivity and convective velocity. A laser blow-off impurity injection system is used to rapidly deposit a small, controlled quantity of aluminum into the confinement volume. Five AXUV photodiode arrays are used to take time-resolved measurements of the impurity radiation. The spatially one-dimensional impurity transport code STRAHL is used to calculate a time-dependent plasma emissivity profile. Modeled intensity signals calculated from a synthetic diagnostic code provide direct comparison between plasma simulation and experimental results. An optimization algorithm with impurity transport coefficients acting as free parameters is used to fit the model to experimental data. This work is supported by US DOE Grant DE-FG02-93ER54222.

  20. 19 CFR 158.13 - Allowance for moisture and impurities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Allowance for moisture and impurities. 158.13... EXPORTED Damaged or Defective Merchandise § 158.13 Allowance for moisture and impurities. (a) Application... section 507, Tariff Act of 1930, as amended (19 U.S.C. 1507), for all detectable moisture and impurities...

Top